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Introduction

This thesis is an account of the research that started with a simple observation.
In 2008 the investigations of W.T.M. Irvine and D. Bouwmeester with respect
to curious solutions to Maxwell’s equations culminated in an article in Nature
Physics [1]. These solutions, which had been described earlier but less complete
by A. Rañada [2], were dubbed linked and knotted beams of light. Although they
are more general than the term ’light’ suggests, ’linked and knotted’ describes
these solutions very well: a picture of all the electric field lines at a particular
instant of time would reveal that they consist of circles, any two of which are
linked in the manner of two neighboring Olympic rings. The complete collection
of circles fill all of space in a tangled manner. ’Knotted’ refers to this tangle, but
more aptly, also to the mathematical notion of knot of which a circle is a simple
example.
One of the investigators, D.B., had been a post-doc in the group of Roger
Penrose and knew therefore very well the similarity between the new solutions
and a picture representing a certain kind of twistor, drawn by its inventor in
the standard reference for twistor theory [3]. This intriguing configuration is
referred to in the twistor theory literature as the Robinson congruence.
Both pictures, of the electric field lines and the twistor, exhibit a geometry that is
far from commonplace and a naturally justified question was therefore born: is
there any deeper connection between these? It was my initial task, as a theorist
in a predominant experimental quantum optics group, to address this question.
Confronted with this task it is also natural to search for the differences. There
are many. A twistor is a mathematical object, whereas Maxwell equations
describe accurately an import part of nature. Apart from an overall translational
movement the twistor picture does not change in time. The circles of the electric
field deform in a complicated way that is very hard to describe. There are other
twistors, unrelated to the linked structure. Besides the electric field, the magnetic
field exhibits the same structure, only rotated with respect to the electric one.
Why then should there be a deeper correspondence?

Happily, as part of present research, it was found that a neat description
of the linked and knotted solutions was possible in terms of a complex com-
bination of the electric and magnetic field. From this it could be established
that there is another physical quantity of the knotted solutions, the Poynting
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0. INTRODUCTION

vector, also exhibiting the same structure as the electric or magnetic field,
again rotated, now with respect to both. The surprise was the observation
that the time development of the Poynting vector was simple and equal to the
time development in the twistor picture. This fact was an important contri-
bution to [4,5] and led to the conclusion that further investigation was warranted.

It was realized that the investigated structures related to Robinson congru-
ences could be of interest in other fields of physics too. Plasma physics,
hydrodynamics and general relativity were possible theories among others for
which the knotted solutions could be ’generalized’. The connection to general
relativity very much appealed to me although it implied that I would venture
deeper into terra incognita for the research group that I was embedded in.
My research supervisor encouraged this branching out of the research and
arranged support from additional researchers. In the second half of my PhD
research I have therefore worked closely together with a bachelor, a Masters, and
another PhD student. Furthermore we had fruitful discussion with Prof. Iwo
Białinicky-Birula (Warsaw), Prof. Roger Penrose (Oxford, and Lorentz professor
2011) and Prof. Alexander Burinskii (Moscow, and visiting professor summer
2012).
Whereas the additional students, with my support, focused on studies of twistors
and Robinson congruences in plasma physics and in the linearized version of
general relativity, I set myself the ambitious goal of searching for a solution
of the full non-linear Einstein equations with a source term based on the
electromagnetic knot. The approach that I took is based on the Newman-Penrose
tetrad formalism and by the time of writing of this thesis several insights have
been obtained that reduces the large number of coupled equations to a much
smaller and more manageable set of equations. However a conclusive result
has not yet been obtained. It might well be that the next step would require a
significant numerical effort. As this thesis will show, my interest is mainly in
analytic studies and future contributions from a researcher with better computer
skills might be needed to complete this ambitious project. Apart from presenting
my findings in a clear and precise way I have taken it therefore as my task to
present my understanding of knotted structures of light, of special topics in
twistor theory, and of the Newman-Penrose formalism in a form that will bring
new researchers quickly up to date in this specialized field of research.

In the following I will describe and comment on the content of my thesis
chapter by chapter.

Chapter 1 introduces the basic ingredients for this thesis: tetrads, spinors
and twistors. With the possible exception of twistors, every physicist is familiar
with these concepts. However, the way in which spinors are introduced here, as
general mathematical objects without the for physicists self-evident association

xii



with spin- 1
2 particles, is not standard. Vectors and tensors can be built from

spinors, and therefore it is possible to ’rewrite’ many physical theories in
’spinor-language’, and this will be done in later chapters.
The introduction of a null tetrad leads in a natural way to Infeld Van Der
Waerden symbols, hybrid quantities that figure as a dictionary between ’tensor-
language’ and ’spinor-language’. In later chapters the null tetrad will turn up
again, but now as a field of basis vectors in the Newman-Penrose formalism.
Twistors are introduced in the most basic and succinct manner as a combination
of two spinors. Twistor theory is covering a broad and expanding range of topics
but for this thesis only one instance of the relationships between subspaces of
twistor space and subspaces of Minkowski space will be relevant: a null twistor
as a null geodesic.
The important Kerr theorem is given, including a sketchy proof, and will play
an essential role in later chapters.

Chapter 2 is about the geometry of the key structure in this thesis, the
Hopf fibration, which is intimately linked to the Robinson congruence. Modern
literature deals with the Hopf fibration with the help of mathematical tools from
algebraic topology and discusses the geometry in question in just a few lines.
Given the importance of a detailed understanding of all aspects of the Hopf
fibration, we prefer a more basic treatment, in which all features are explicitly
written out.

Chapter 3 recapitulates the basic equations of Maxwell theory in different
forms. The familiar vector notation is used to define the units that will be used
and to list the properties that will be of importance throughout this work. The
Riemann-Silberstein vector and the Faraday tensor are introduced to rewrite the
equations in ’RS-form’ and in manifest covariant (relativistic) form. Finally, the
equations are rewritten in spinor-language. Since this will be the least familiar,
some basic examples are given.
All the presented forms will be used in later chapters.

Chapter 4 together with chapter 5 are two long chapters containing most
of the new results that are presented in this thesis. It starts with a summary
of what can be considered the germ of present research, Rañada’s attempt at a
topological theory of electromagnetism. This summary contains elucidations,
partly in the form of an appendix, not present in the original work of Rañada as
well as explicit expressions for the fields considered to make the connection with
chapter 2. Although these expressions have appeared in the literature before [6],
we show that in order to have a manageable expression for all times, they should
be combined in the form of the Riemann-Silberstein vector (4.1). In this form
these fields were found to be given in a different context and without further
ado in [7] as a specific example of Trautman-Robinson fields. The Poynting
vector, which has not been considered before, exhibits the structure of a Hopf
fibration for all times (4.2). Alternative forms of these fields are also presented.
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0. INTRODUCTION

Next, with the help of a theorem by Robinson we show that the ’optical analogy’
for null twistors can be extended to non-null twistors. This establishes a mathe-
matical correspondence between a non-null twistor and an electromagnetic Hopf
knot. Included is a discussion of local duality transformations in electrodynamics,
for which literature is very scarce.
The method used for the optical analogy for a non-null twistor is also applied
to a null twistor, leading to what we call a degenerate Robinson congruence. We
note that this congruence can also be obtained by a sequence of operations on
a plane wave solution, including conformal inversion and shifts of parameters
into the complex plane. This sequence was brought to our attention by work of,
and discussions with, I. Białinicky-Birula [7, 8].
The main results of this chapter were published in [4].
We surmise that in the later part of chapter 4 there is a strong link with the
work of E. Newman [9] but acknowledge that more research has to be done in
this direction.

Chapter 5 was intended to study the said sequence of operations in more
detail, but grew into a more general study of conformal transformations and in
particular conformal inversion, after it was observed that not much was written
about this elusive symmetry of vacuum Maxwell equations.
In the literature one encounters confusion about the interpretation of conformal
transformations. Sometimes, without explicitly stating this, it is assumed that
the transformation is just a change of coordinates, and that tensors transform
accordingly, even when only Minkowski space is considered. This is incorrect,
although results derived in this manner have been found to be valid. To avoid
confusion we present a careful elementary exposition of the symmetry at hand,
resulting in a prescription for obtaining new solutions from old ones. To the
best of our knowledge this has not been done previously in this manner.
As a new result, a nice transformation formula for the Riemann-Silberstein
vector under conformal inversion is derived and applied to some familiar fields.
Among these examples is an electromagnetic Hopf knot, which, surprisingly, is
transformed into another Hopf knot.

Chapter 6 discusses the Penrose transform, a contour integral formula that
needs a twistor function as input and the evaluation of which gives a solution
to a particular zero rest mass free field equation. It is shown what twistor
function is needed in order to get an electromagnetic Hopf knot as a result
of the contour integral. This twistor function, which was found by my fellow
students J. Swearngin and A. Thompson, adapted slightly in order to meet the
requirements, is then used in the Penrose transform to arrive at a solution to
linearized Einstein equations. This solution, exhibiting the Hopf structure in
different ways, is discussed.
The results are also discussed in [10, 11].
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Chapter 7 is a review of mathematical notions from differential geometry
that are needed in the general theory of relativity, with an emphasis on the
tetrad formalism. In the remaining chapters we lean strongly on this chapter.
The method of presentation is based on [12].

Chapter 8 presents two exact solutions to Einstein’s equations. One con-
tains a Robinson congruence, the other a degenerate Robinson congruence.
Again, but different as in chapter 4, there is a relationship between the two
via a complex shift. The solutions are arrived at via the method presented by
Debney, Kerr and Schild [13], the relevant content of which is summarized and
supplemented.
Although the solutions are not new, we do not known whether they have
been published in this form. It is pointed out that there seems to be no
physical interpretation attached to the curves of the congruence. Comparison
with chapter 6, where the Robinson congruence appears as a linearized solu-
tion with interpretation suggests itself, but has not been carried out to completion.

Chapter 9 treats the electromagnetic Hopf knot in the Newman-Penrose
formalism, neglecting the curvature of space-time due to the energy density of
the knot. It leads to a suitable choice of tetrad fields adapted to the structure
of the knot and an expression for the spin coefficients in terms of Minkowski
coordinates. The knowledge of this description of the Hopf knot is needed in
the next chapter, were we try to include gravity effects.
The chapter is based on many calculations that are presented in a much
condensed form.

Chapter 10 presents an ambitious attempt to redo the calculation of chap-
ter 9, but now taking into account the effect of the energy distribution on the
curvature of space-time. This leads to a problem for which there is no obvious
solution: in order to describe the source correctly we need the metric, but in
order to calculate the metric we need to know the source. Ultimately this is
related to the problem of interpretation of coordinates in general relativity. It is
therefore allowed to take some freedom in the definition of the source, and here
we show one attempt to do this in such a way that the relevant equations can
be solved. This is "work in progress" and the assumptions that were chosen in
simplifying the problem have not yet resulted in a solution although important
insights have been obtained in how to address this challenging problem.
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1
Tetrads, spinors and twistors

Here we introduce mathematical concepts that are needed throughout this work.
Some of them are very familiar. However, the form in which they are presented
is not standard.

1.1 tetrads

We consider Minkowski space (flat space-time) M4 and orthonormal basis
vectors {e0, e1, e2, e3}:

g(ea, eb) ≡ gab = ηab , (ηab) ≡


1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 −1

.

Here g is the metric tensor and indices a, b, ... run from 0 to 3, whereas
k, l, ...will run from 1 to 4. The collection [0,1,2,3] is used to stress the difference
of the first component from the others as a time component.
It is possible to change to a basis {E1,E2,E3,E4} such that:

(g(Ek,El)) ≡


0 1 0 0
1 0 0 0
0 0 0 −1
0 0 −1 0

 . (1.1)

1



1. TETRADS, SPINORS AND TWISTORS

Since all Ek are null vectors, this basis is called a null tetrad. Two of
them need be complex in order to satisfy the definition (1.1). An example is
provided by:

E1 = 1√
2
(e0 + e3)

E2 = 1√
2
(e0 − e3)

E3 = 1√
2
(e1 + ie2)

E4 = 1√
2
(e1 − ie2).

If we define (eAX′) =
(
e11′ e12′

e21′ e22′

)
≡
(
E1 E4

E3 E2

)
, we find from the

form of (g(Ek,El)) that:

g(eAX′ , eBY ′) = εABεX′Y ′ ,

in which

(εAB) = (εX′Y ′) =
(

0 1
−1 0

)
. (1.2)

Indices A,B take the values 1 and 2, indices A′, B′ also take the values 1
and 2, but to avoid confusion this is sometimes written as 1′ and 2′. Both {eAX′}
and {ea} form a basis and therefore coefficients exist that relate the two:

eAX′ = σaAX′ea.

These coefficients are called Infeld Van Der Waerden symbols and from
the definition and the form of the metric tensor in both bases it follows that they
satisfy:

σaAX′σ
b
BY ′gab = εABεX′Y ′ . (1.3)

Einstein summation convention is used throughout this thesis. In the ex-
ample given above they are given by:

2



1.2. SPINORS

(σ0
AX′) = 1√

2

(
1 0
0 1

)
(σ1

AX′) = 1√
2

(
0 1
1 0

)
(σ2

AX′) = 1√
2

(
0 −i
i 0

)
(σ3

AX′) = 1√
2

(
1 0
0 −1

)
(1.4)

1.2 spinors

For most physicists the first encounter with spinors is in a course on non-
relativistic quantum mechanics when considering particles with spin. Every
physicist is therefore familiar with (Schrödinger) two-spinors and possibly
(Dirac) four-spinors. Lesser known is the fact that all of physics can be rewritten,
sometimes to great advantage, in spinor form. In a sense a spinor can be
considered as the "square root of a vector" (see for example (1.6)), and is thus
more basic than a vector. Although a solid introduction to spinors should
mention the group theoretical background [14], for our purposes it suffices to
introduce spinors in a more elementary and direct way.

The considerations in the previous paragraph show that, in a sense, Minkowski
space can be considered as a subspace of the tensor product of two complex
vector spaces of dimension two:

M4 ⊂M4
C
∼= S ⊗ S′,

in which the tensor product is regarded as complexified Minkowski space.

S ≡ spin-space ≡ {1-index spinors} ≡ {
(
ψ1

ψ2

)
|ψA ∈ C},

basis vectors: e1, e2

S′ ≡ conjugate spin-space≡ {1-index conjugate spinors} ≡
{
(
ψ1′ ψ2′

)
|ψX′ ∈ C},

basis vectors: e1′ , e2′ .

The column and row vector notation is arbitrary, but handy in a first en-

3



1. TETRADS, SPINORS AND TWISTORS

counter on spinors. Now we can make the following identification, relating the
basis in M4

C (and M4) with those in S and S′:

eAX′ = eA ⊗ eX′ . (1.5)

Corresponding to S and S′ we define the dual spaces S∗ and S′∗ in which the
vector components have subindices, and we can identify S with S∗ via:

ψA ≡ ψBεBA or ψA ≡ εABψB in which (εAB) = (εAB).

The same relations hold for primed spinor indices. This shows that (εAB)
can be considered as the metric spinor and plays the same role in S as the
metric tensor in M4, including the raising and lowering of spinor indices. The
antisymmetry of the metric spinor has consequences unfamiliar in ordinary
vector language, such as (for arbitrary spinors (ψA), (φA) and 2-component
spinor (ψAB) ∈ S∗ ⊗ S∗):

ψ1 = ψ2 and ψ2 = −ψ1

ψAψA = 0
ψAφA = −ψAφA
εAB = −δAB = −ε A

B (δAB = 1 if A = B, otherwise 0)
ψAB = −ψBA ⇐⇒ ψAB = 1

2εABψ
R
R (and obvious generalization for many-index

spinors)
ψAB = ψBA ⇐⇒ ψAB = α(AβB) for some (αA) and (βB) (and obvious
generalization)

Round brackets ( ) around indices means symmetrization and square
brackets [ ] anti-symmetrization. In the last example (αA) and (βA) are called
the principal spinors of (ψAB).

An arbitrary tensor T can be written T = T ab...cea ⊗ eb ⊗ ... ⊗ ec, but also
as TAX′...BY ′eAX′ ⊗ ...⊗ eBY ′ and therefore:

T a...c = σaAX′ ...σ
c
BY ′T

AX′...BY ′ or Ta...c = σ AX′

a ...σ BY ′

c TAX′...BY ′

TAX′...BY ′ is called the spinor equivalent of the tensor Ta...c and is given
by:

TAX′...BY ′ = σaAX′ ...σ
c
BY ′Ta...c.

Note that σaAX′ is a mixed quantity, since the tensor index a is raised
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1.2. SPINORS

and lowered with the metric tensor, whereas the spinor indices A,X ′ are
raised and lowered with the metric spinor. The general rule for going from
tensor indices to spinor indices or vice versa with the help of the Infeld Van Der
Waerden symbols can be read off from the foregoing three examples. We see that
the spinor equivalent of the metric tensor is given by (1.3). With the choice (1.4)
for the Infeld Van Der Waerden symbols, they satisfy σa∗AX′ ≡ (σaAX′)

∗ = σaXA′ ,
and it can be shown that this relation holds for every possible choice in
agreement with the requirement (1.3). As a consequence, the spinor equivalent
of a real tensor T satisfies T ∗AX′...BY ′ = TXA′...Y B′ . The Hermitian conjugate
T̄ of a spinor T is defined by T̄AX′...BY ′ = T ∗XA′...Y B′ and this spinor is called
Hermitian if T̄ = T . Thus the spinor equivalent of a real tensor is Hermitian. It
follows that the spinor that corresponds to a real null vector, V a = σaAX′V

AX′ ,
can be written

V AX
′

= ξAξ̄X
′
, (1.6)

so, in this sense, it is ξA that corresponds to V a. Of course, there is free-
dom in the choice of ξA. The spinor equivalent of a real anti-symmetric tensor,
Tab = −Tba, can be written

TAX′BY ′ = τABεX′Y ′ + τ̄X′Y ′εAB , (1.7)

with τAB = 1
2T

R′

AR′B = τBA. In this sense, it is the symmetric τAB that
corresponds to the anti-symmetric Tab. The principal spinors of τ define two
principal null directions via (1.6) that correspond to the eigenvectors of (Tab).
For a totally anti-symmetric tensor with three indices, Tabc, we have the spinor
equivalent

TAX′BY ′CZ′ = tBX′εACεY ′Z′ − tAY ′εBCεX′Z′

for some tBX′ , as can be seen by using previous result. This result in
turn can be used to derive the spinor corresponding to a totally anti-symmetric
four-index tensor, Tabcd, as

TAW ′BX′CY ′DZ′ = a(εBDεW ′Z′εACεX′Y ′ − εADεW ′Y ′εBCεX′Z′)

for some constant a. For the completely anti-symmetric Levi-Civita pseudo-
tensor, εabcd, this leads to a = ±i. We use the convention ε0123 = 1 = −ε0123. The
choice (1.4) for the Infeld Van Der Waerden symbols gives +i. Other choices
might give −i! With a = +i we have a spinor equivalent for the dual, ∗T ab, of

5



1. TETRADS, SPINORS AND TWISTORS

an anti-symmetric tensor Tab, defined by ∗T ab = 1
2ε
abcdTcd ⇔ ∗Tab = 1

2εabcdT
cd

∗TAX′BY ′ = i(−τABεX′Y ′ + τ̄X′Y ′εAB) (1.8)

where TAX′BY ′ is given by (1.7). Therefore, the first part in (1.7), τABεX′Y ′ is
called the anti-self-dual part of TAX′BY ′ , and the last part, τ̄X′Y ′εAB , its self-dual
part.

Since in differential geometry the basis vectors are associated with differ-
ential operators, it is natural to extend the equivalence between tensors and their
spinor form to differential operators:

∇AX′ = σ AX′

a ∂a.

Using (1.4) (the speed of light will be put equal to 1 in this work) we
find

(∇AX′) = 1√
2

(
∂t + ∂z ∂x + i∂y

∂x − i∂y ∂t − ∂z
)

= 1√
2

(
∂t − ∂z −∂x − i∂y
−∂x + i∂y ∂t + ∂z

)
.

This enables us to rewrite differential equations in spinor form. As an ex-
ample, Maxwell’s equations in vacuum can be written as

∇AX′φAB = 0

and linearized Einstein’s equations in vacuum are

∇AX′φABCD = 0.

In the sequel this will be shown in more detail and we will profit from
the resemblance of these two equations, which constitutes one of the advantages
of the spinor formalism.

1.2.1 geodesic shear-free null congruences

From equation (1.5) we infer that in spin-space there exist a normalized dyad,
((ϑA), (ιA)) with εABϑ

AιB = 1, from which we can construct a null tetrad
{l,n,m, m̄} in M4 satisfying (1.1), as follows:

la = σaAX′ϑ
Aϑ̄X

′
, na = σaAX′ι

AῑX
′
,ma = σaAX′ϑ

AῑX
′
, m̄a = σaAX′ι

Aϑ̄X
′ .

6



1.2. SPINORS

In these formula there is still an unnecessary reference to the basis {e0, ..., e3}.
This can be avoided by writing:

l↔ ϑϑ̄, n↔ ιῑ, m↔ ϑῑ, m̄↔ ιϑ̄.

It is clear that the spinors that form the normalized dyad could be spinor
fields on M4. The corresponding null tetrad now consists of four vector fields
that satisfy (1.1) everywhere. This tetrad is a basis that possibly changes from
point to point.

We now consider a congruence of null geodesics in M4, a space filling
family of curves with the property that all curves are geodesics and the tangent
vectors to the curves are null. The collection of tangent vectors, {l(x)|x ∈ M4},
is a vector field that satisfies lala = 0 everywhere, and therefore there exists a
spinor field, ϑ, such that l ↔ ϑϑ̄. We complement ϑ with a spinor field ι such
that (ϑ, ι) forms a normalized dyad. The condition that the integral curves of l
are geodesics is lb∇bla = f(xµ)la, for some arbitrary function f (see also section
7.2.4). In terms of ϑ this becomes ϑAϑBϑ̄X′∇BX′ϑA = 0.

The behaviour of neighbouring null geodesics can be expressed in terms
of the so called optical scalars, rotation, expansion and shear (see section 7.5).
Following the time development of the geodesics that make up a circle at one
instant of time, it is clear what rotation and expansion do to this circle. Shear
distorts the circle into an ellipse, without changing its area. The mathemat-
ical definition of (complex) shear is mamb∇bla, or, equivalently ϑAϑB ῑX

′∇BX′ϑA.

If the congruence of null geodesics is shear-free, a property of great im-
portance in this thesis as we will see, the two equations ϑAϑBϑ̄X′∇BX′ϑA = 0
and ϑAϑB ῑX

′∇BX′ϑA have to be fulfilled simultaneously. Since ϑ̄ and ῑ form a
basis we arrive at

l↔ ϑϑ̄ geodesic and shear-free ⇐⇒ ϑAϑB∇BX′ϑA = 0 (1.9)

1.2.2 Kerr’s theorem

We can try to solve (1.9) by decomposing ϑ in the constant basis (e1, e2) as

ϑ = λ(−Y e1 + e2). For e1 =
(

1
0

)
and e2 =

(
0
1

)
we have ϑ = λ

(
−Y
1

)
. With
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1. TETRADS, SPINORS AND TWISTORS

u ≡ 1√
2
(t+ z), v ≡ 1√

2
(t− z), w ≡ 1√

2
(x+ iy) and w̄ ≡ 1√

2
(x− iy)

we find (∇AX′) =
(
∂u ∂w
∂w̄ ∂v

)
, and equation (1.9) therefore becomes

Y ∂uY − ∂w̄Y = 0 and Y ∂wY − ∂vY = 0. Note that λ plays no role, since
ϑA(−Y e1 + e2)A = 0. The solution to these two equations can be given implicitly
by an arbitrary analytic function F in the following way:

F (Y,w + Y v, u+ Y w̄) ≡ 0, Y ≡ −ϑ
1

ϑ2
⇐⇒ l↔ ϑϑ̄ geodesic and shear-free

(1.10)

This is known as Kerr’s theorem and is of importance in chapter 4 and 8.
In words: the general (analytic) geodesic shear-free null congruence in flat
space-time is related to the zero set of an arbitrary analytic function. Although
this theorem has been shown to work in Minkowski space, its action can be
extended to the curved Kerr-Schild spaces of chapter 8.

1.3 twistors

Twistors were invented almost half a century ago by Roger Penrose [15] and,
though not widely used by physicists, have proven very useful in solving some
nonlinear equations. There has been a renewed interest in twistors within
the physical community since E. Witten combined string theory with twistor
theory [16], but it is only very recently that twistor theory is used by high energy
physicists for calculational purposes in scattering processes [17]. Although
twistors do appear in books for undergraduate students [18], it is considered as
an advanced subject. The full body of twistor theory, with all its mathematical
intricacies, its beautiful geometrical structure and its relations with group theory,
certainly needs some time to digest. However, in this thesis we would like to
add only one very tiny thing to that body (see chapter 4), and we do not need
the full theory for that. We therefore present here only the barest essentials of
twistor theory, just enough for the aforementioned purpose.

We now combine two spinors to form a twistor: twistor space consists of
pairs of spinors (ΩA, Π̄X′) ≡ (Zα) ≡ Z (α = 1, 2, 3, 4) with corresponding
conjugate (Z̄α) ≡ (ΠA, Ω̄X

′
) and inner product:

ZαZ̄α = ΩAΠA + Ω̄X
′
Π̄X′ = Z1Z̄3 + Z2Z̄4 + Z̄1Z3 + Z̄2Z4. (1.11)
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1.3. TWISTORS

A twistor for which the inner product is 0 is called null, otherwise it is
non-null. Twistor space is related to Minkowski space by the incidence relation:

ΩA = iXAX′Π̄X′ (1.12)

in which XAX′ is the spinor equivalent of the space-time point xµ:

(XAX′) =
1√
2

(
t+ z x+ iy
x− iy t− z

)
(1.13)

It is not difficult to proof that if and only if the (fixed) twistor (ΩA, Π̄X′)
in eq. (1.12) is null does there exist a real solution for xµ: in that case the
solution space is a null geodesic. (The incidence relation shows that it is really
projective twistor space that should concern us, since any non zero complex
multiple of a twistor gives rise to the same solution space. For reasons of
succinctness, here, as elsewhere in this thesis, we will not be too concerned
about technical subtleties (like analyticity, compactification, points at infinity .
. . ) that are needed for a complete treatment, whenever these subtleties do
not influence the result that concerns us.) For future reference we give here the
spinorial form of the null geodesic:

XAY ′ = XAY ′

0 + λΠAΠ̄Y ′ (1.14)

in which (XAY ′

0 ) corresponds to an arbitrary point on the geodesic, and λ
is a real parameter. A null twistor thus corresponds to a null geodesic in M4.
For a non-null twistor the solution space is a subspace of M4

C that does not
intersect the real part M4. There is therefore no direct correspondence between
a non-null twistor and a subspace of M4 defined via (1.12). The most natural
we can do is to consider the collection of null twistors that are orthogonal to
the non-null twistor Aα: {Zα|ĀαZα = 0}. This zero set of an analytic function
defines a collection of disjoint null geodesics that fill Minkowski space and is
known as a Robinson congruence. Now, for Aα = (0, 1√

2
, 0, 1) and constant t, the

structure of the projection of the corresponding Robinson congruence onto this
time slice is a Hopf fibration. As a function of time, this fibration moves with
the speed of light along the z-axis.
The details of these statements will be presented in chapter 2 and chapter 4.
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1. TETRADS, SPINORS AND TWISTORS

It is one of the goals of this work to show that the "optical analogy" between
null twistors and null geodesics (light rays), can be extended or generalized to
non-null twistors.

Finally, we rewrite Kerr’s theorem (1.10) in terms of twistors. Kerr’s theo-
rem states that for any spinor field ϑ that defines a geodesic shear-free null
congruence via (1.6), there exist a function of three variables, F , such that ϑ
is given implicitly by F (−ϑ1

ϑ2 , w − ϑ1

ϑ2 v, u − ϑ1

ϑ2 w̄) = 0. We can rewrite this as a
function of four variables, g, that is homogeneous to some degree, say n:

F (−ϑ1

ϑ2 , w − ϑ1

ϑ2 v, u− ϑ1

ϑ2 w̄) =

g(−i(u− ϑ1

ϑ2 w̄),−i(w − ϑ1

ϑ2 v), 1,−ϑ1

ϑ2 ) (this defines g) =

− ( 1
ϑ2 )ng(i(uϑ2 − w̄ϑ1), i(wϑ2 − vϑ1),−ϑ2, ϑ1) =

− ( 1
ϑ2 )ng(−i(uϑ1 + w̄ϑ2),−i(wϑ1 + vϑ2), ϑ1, ϑ2).

So there exists a function, f (homogeneous with the same degree) such
that:

f(i(uϑ̄1′ + wϑ̄2′), i(w̄ϑ̄1′ + vϑ̄2′), ϑ̄1′ , ϑ̄2′) = 0.

But the argument (i(uϑ̄1′ + wϑ̄2′), i(w̄ϑ̄1′ + vϑ̄2′), ϑ̄1′ , ϑ̄2′) defines a null
twistor:

Z = (iXAY ′ ϑ̄Y ′ , ϑ̄X′). (1.15)

Therefore the Kerr theorem can be stated as follows. The zero set of a
homogeneous analytic twistor function f(Zα) defines a geodesic shear-free null
congruence in M4, or, with Z as in (1.15):

{Zα | f(Zα) = 0 ∧ ZαZ̄α = 0} ⇐⇒ l↔ ϑϑ̄ geodesic shear-free. (1.16)

10



2
The Hopf fibration

Next we present a detailed and elementary study of the leading part in this
thesis, the Hopf fibration. Amazingly, this somewhat contrived structure is
relevant in various situations in physics.

2.1 stereographic projection

Let S2 be the two-sphere in R3: S2 = {x ∈ R3| ||x|| = 1}, N = (0, 0, 1) the
north-pole of S2 and S = (0, 0,−1) its south-pole. ||x|| denotes the Euclidian
norm of x. Define S2

S to be the two-sphere without its north-pole: S2
S = S2 \N ,

and similarly S2
N = S2 \ S.

The stereographic projection from the north-pole, π2
N , maps points from S2

S to
R2, seen as the plane through the equator of S2, in the following way.
Let (x1, x2, x3) be a point in S2. The line through N and this point is0

0
1

+ λ

 x1

x2

x3 − 1

.

This line intersects the equator-plane in the point where λ = 1
1−x3 :

( x1

1−x3 ,
x2

1−x3 , 0).
Now, π2

N is defined as π2
N (x1, x2, x3) = ( x1

1−x3 ,
x2

1−x3 ). Projection from N projects
points from the northern hemisphere outside the equator in the equator-plane
and points from the southern-hemisphere inside the equator. On the equator
π2
N is the identity mapping. (Strictly speaking this is incorrect, since π2

N maps
points from one space into another.)

11
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Stereographic projection from the south-pole can be done in a similar way:
π2
S : S2

N → R2 given by π2
S(x1, x2, x3) = ( x1

1+x3 ,
x2

1+x3 ). The image of the northern-
hemisphere is now inside the equator and the image of the southern-hemisphere
is outside the equator. On the equator π2

S is the identity.

In physics one often encounters continuous functions f : R2 → R that ap-
proach the same value, c, in whatever direction, once the distance from the
origin in R2 is large enough. In this case it is possible to add to R2 one point,
∞, and define f(∞) = c. Thus f can be extended to a function f : S2 → R in
a natural way. The same is true for a function g : R3 → R that under similar
conditions can be extended to a function g : S3 → R. The domain of the function
f and g has been compactified by one point: S2 is the one point compactification
of R2, S3 the one point compactification of R3.
When we consider the inverse of the projection π2

N , we see that here we do
have a mapping from R2 that, although its values are not in R, approach the
same point in S2 (when S2

S is considered as part of S2) whenever we proceed
away from the origin. It is then natural to add to the above definition of π2

N

the rule π2
N (0, 0, 1) ≡ ∞. We then have π2

N : S2 → R2 ∪ {∞} ≡ R2
C . Similar

considerations hold for π2
S .

An equivalent definition of the projection follows from the identification
of R2 with C via (x1, x2) ↔ x1 + ix2. This gives π2

N : S2 → CC as
π2
N (x1, x2, x3) = x1+ix2

1−x3 , and we can add π2
N (0, 0, 1) = ∞. Furthermore

π2
S : S2 → CC as π2

S(x1, x2, x3) = x1+ix2

1+x3 , and π2
N (0, 0,−1) =∞.

The inverse of the projection is easily obtained by noting that the line
through N and (x1, x2, 0) is given by0

0
1

+ λ

x1

x2

−1

.

This line intersects the sphere when (λx1)2 + (λx2)2 + (1 − λ)2 = 1. The
solution for λ is 2

1+(x1)2+(x2)2 , so:

(π2
N )−1(x1, x2) = ( 2x1

1+(x1)2+(x2)2 ,
2x2

1+(x1)2+(x2)2 ,
(x1)2+(x2)2−1
1+(x1)2+(x2)2 ).

We can take (π2
N )−1(∞) = (0, 0, 1) to be included in this formula. With

the identification (x1, x2)↔ x1 + ix2 ≡ z and z̄ = x1 − ix2 we have:

(π2
N )−1(z) = ( z+z̄1+zz̄ ,

z−z̄
i(1+zz̄) ,

zz̄−1
1+zz̄ ).

Similarly:
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(π2
S)−1(x1, x2) = ( 2x1

1+(x1)2+(x2)2 ,
2x2

1+(x1)2+(x2)2 ,
1−((x1)2+(x2)2)
1+(x1)2+(x2)2 ), or

(π2
S)−1(z) = ( z+z̄1+zz̄ ,

z−z̄
i(1+zz̄) ,

1−zz̄
1+zz̄ ).

The "z-form" makes calculations very simple, for example π2
S((π2

N )−1(z)) = 1
z̄ .

Very little changes in the calculations and definitions above when we con-
sider the stereographic projection in one dimension higher. Let S3 be the three
sphere in R4: S3 = {x ∈ R4| ||x|| = 1}, N = (0, 0, 0, 1) and S = (0, 0, 0,−1). The
projection from N is:

π3
N (x1, x2, x3, x4) = ( x1

1−x4 ,
x2

1−x4 ,
x3

1−x4 ).

The stereographic projection from S is:

π3
S(x1, x2, x3, x4) = ( x1

1+x4 ,
x2

1+x4 ,
x3

1+x4 ).

Extension of the definition and compactification of spaces work as before,
for example π3

N (0, 0, 0, 1) =∞ and π3
N : S3 → R3

C . There is however a difference
when we would like to consider C instead of R2. This cannot be done for the
target-space, but for the domain it can: S3 = {(z1, z2) ∈ C2| ||z1||2 + ||z2||2 = 1}.
We identify z1 with x1 + ix2 and z2 with x3 + ix4 and define π3

N : C2 → R3
C as

π3
N (z1, z2) ≡ π3

N (x1, x2, x3, x4).

2.2 the Hopf map

We are now in a position to define a very special mapping, discovered by Heinz
Hopf in 1931 [19, 20], from S3 to S2. This map, the Hopf map, has played an
important role in physics in seemingly unrelated situations ranging from qubits
to Taub-NUT spaces in general relativity [21] and it will figure prominently in
this thesis:

H : S3 → S2, H(z1, z2) = (π2
N )−1(

z1

z2
). (2.1)

Since for an arbitrary point p ∈ S2 it is always possible to find (z1, z2) ∈ S3 such
that π2

N (p) = z1

z2 and the definition of H involves the ratio z1

z2 only, the pre-image
of (the arbitrary point) p is given by {(eiφz1, eiφz2) ∈ C2 | φ ∈ [0, 2π]}. See figure
2.1 for this and the following discussion. We now investigate the stereographic
projection of this pre-image.
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S3

(z1, z2)

ei�(z1, z2)

H
S2

p
p = (z̄1z2 + z1z̄2, i(z̄1z2 � z1z̄2), z1z̄1 � z2z̄2)

⇡3
N

⇡2
N

R2
C

(Re( z1

z2 ), Im( z1

z2 ))

CC

z1

z2

R3
C

(X,Y, Z)

(x, y, z)(�)

Figure 2.1: Hopf mapping and stereographic projection

We split eiφz1 into its real and imaginary parts: eiφz1 = (x1cosφ − x2sinφ) +
i(x2cosφ+ x1sinφ). Also: eiφz2 = (x3cosφ− x4sinφ) + i(x4cosφ+ x3sinφ). Thus:
π3
N (eiφz1, eiφz2) = π3

N (x1cosφ−x2sinφ, x2cosφ+x1sinφ, x3cosφ−x4sinφ, x4cosφ+
x3sinφ).
The result for φ = 0 is π3

N (x1, x2, x3, x4) = ( x1

1−x4 ,
x2

1−x4 ,
x3

1−x4 ) and
we write this as (X,Y, Z). A short calculation shows that the result
for general φ can be expressed in terms of X , Y and Z as follows:
π3
N (eiφz1, eiφz2) = 1

N (Xcosφ − Y sinφ, Y cosφ + Xsinφ,Zcosφ − x4

1−x4 sinφ),
where N = 1

1−x4 − x4

1−x4 cosφ − Zsinφ. We write this as (x(φ), y(φ), z(φ)) or
(x, y, z)(φ):

(x, y, z)(φ) = 1
N (Xcosφ− Y sinφ, Y cosφ+Xsinφ,Zcosφ− x4

1−x4 sinφ).
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This is a closed parametrized curve, say C, through the point (X,Y, Z) ∈ R3
C

and every such point will be reached by some p ∈ S2. This implies that all these
curves fill R3

C , or: any point in R3
C is on at least one such curve. In fact there

can only be one curve through every point, as is clear from the form of the
pre-image of p in S3. The tangent vector to the curve at (x, y, z)(φ) is:

∂φ

xy
z

 (φ) =


−Xsinφ−Y cosφ

N − Xcosφ−Y sinφ
N2 ( x4

1−x4 sinφ− Zcosφ)
−Y sinφ+Xcosφ

N − Y cosφ+Xsinφ
N2 ( x4

1−x4 sinφ− Zcosφ)
−Zsinφ− x4

1−x4
cosφ

N − Zcosφ− x4

1−x4
sinφ

N2 ( x4

1−x4 sinφ− Zcosφ)

.

It is easy to see that the first two components, when written in terms of
x, y and z are −y + xz and x + yz respectively. The second term in the third
component is also straightforward, it equals z2. The first term in the third
component is more difficult: it equals

N− 1
1−x4

N . The third component can thus
be written as 1 + z2 − 1

N
1

1−x4 . We proceed to show that it can also be written as
1
N

1
1−x4 − x2 − y2, and therefore 1

N
1

1−x4 = 1
2 (1 + x2 + y2 + z2):

Third component =
−Zsinφ− x4

1−x4
cosφ

N − Zcosφ− x4

1−x4
sinφ

N2 ( x4

1−x4 sinφ − Zcosφ) =
−Zsinφ− x4

1−x4
cosφ

N + z2 = 1
N2 [− Z

1−x4 sinφ − x4

(1−x4)2 cosφ + 2Z x4

1−x4 cosφ.sinφ +

( x4

1−x4 )2cos2φ + Z2sin2φ] + z2 = 1
N2 [− Z

1−x4 sinφ + Z2 − x4

(1−x4)2 cosφ + ( x4

1−x4 )2] =
1
N2 [− Z

1−x4 sinφ− x4

(1−x4)2 cosφ+ 1
(1−x4)2 −X2−Y 2] = 1

N2 [− Z
1−x4 sinφ− x4

(1−x4)2 cosφ+
1

(1−x4)2 ]− x2 − y2 = 1
N

1
1−x4 − x2 − y2.

Combining these results we have the tangent vector at (x, y, z) given by −y + xz
x+ yz

1
2 (1− x2 − y2 + z2)

 . (2.2)

The integral curves of this vector field are the curves (x, y, z)(φ) we started with.
A similar calculation shows that if instead of using stereographic projection from
the north-pole we would have used projection from the south-pole, the tangent

vector at (x, y, z) would have been:

 −(y + xz)
x− yz

1
2 (−1 + x2 + y2 − z2)

.

In the definition of H we used stereographic projection from the north-
pole. It would have been possible to use projection from the south-pole.
But since π2

S((π2
N )−1(z)) = 1

z̄ , it follows that (π2
S)−1( z̄2

z̄1
) = (π2

N )−1( z
1

z2 ) and
therefore, except for a different relation between the zi and the xj , everything
in the discussion of integral curves and tangent vector fields would stay the same.
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2. THE HOPF FIBRATION

We now investigate in closer detail the tangent vector field, or, what amounts to
the same, the integral curves (x, y, z)(φ). It will be helpful to have a different
view of S3 and with it of R3, which will be developed first.

2.2.1 R3 as a collection of nested tori

There is an obvious reparametrization for S3 = {(z1, z2) ∈ C2 | ||z1||2+||z2||2 = 1},
namely if we write r1e

iα1 for z1 and r2e
iα2 for z2. Of course, r2

1 + r2
2 = 1, and

this implies that there is a δ ∈ [0, π2 ] such that r1 = cosδ and r2 = sinδ.

The topology of the set T ⊂ S3, for which r1 = r2 = 1
2

√
2 (δ = π

4 ) is
that of a torus: T = {( 1

2

√
2eiα1 , 1

2

√
2eiα2) | α1, α2 ∈ [0, 2π]}. According to

general theorems, the topology of the stereographic projection of T on R3
C

is a torus too. This will also become clear by performing the calculation:
Tπ ≡ π3

N (T ) = π3
N ( 1

2

√
2eiα1 , 1

2

√
2eiα2) = ( cosα1√

2−sinα2
, sinα1√

2−sinα2
, cosα2√

2−sinα2
). For any

fixed α2, varying α1 through its range makes circles around and perpendicular
to the z-axis. It suffices therefore to have a closer look at one particular section
with α1 fixed, for example α1 = 0. Now varying α2 gives a closed loop in the
x > 0 part of the x-z plane: ( 1√

2−sinα2
, 0, cosα2√

2−sinα2
). For α2 ∈ [0, π], change to

β ≡ α2 − π
2 (∈ [−π2 , π2 ]) and for α2 ∈ [π, 2π] change to γ ≡ α2 − 3π

2 (∈ [−π2 , π2 ]).
For β = 0 and for γ = 0 we have two different points on the x-axis. Furthermore,
the x-component of Tπ is symmetric and the z-component of Tπ anti-symmetric
for β → −β and for γ → −γ. This completes the picture of the loop in the x-z
plane. With suitable choices for a symmetric function r(ψ), it can be summarized
as (1 + r(ψ)cosψ, 0, r(ψ)sinψ) in which ψ is the polar angle as seen from (1,0,0).
For Tπ we now have ((1 + r(ψ)cosφ)cosα1, (1 + r(ψ)cosφ)sinα1, r(ψ)sinψ), which
is the parametrization of a (when r is different from 1, deformed) torus.

For r1 = 0 and r2 = 1 (δ = π
2 ) we have a circle: {(0, eiα)} ⊂ S3. Stereo-

graphic projection gives π3
N (0, eiα) = π3

N (0, 0, cosα, sinα) = (0, 0, cosα
1−sinα ), and this

is the z-axis in R3, or a circle with infinite radius in R3
C when the point ∞ is

included (and identified, as before, with -∞).

For r1 = 1 and r2 = 0 (δ = 0) we have a circle {(eiβ , 0)} ⊂ S3. Stereo-
graphic projection now gives π3

N (eiβ , 0) = π3
N (cosβ, sinβ, 0, 0) = (cosβ, sinβ, 0),

the unit circle in the x-y plane. Note that this circle lies within the aforemen-
tioned torus and is identical with the degenerate torus, for which the function
r(ψ) is zero.

For any fixed r1, r2 with r1 > r2 (δ ∈ 〈0, π4 〉), continuity demands that,
after stereographic projection, we have a torus (in R3) contained within Tπ
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2.2. THE HOPF MAP

(δ = π
4 ) and containing the unit circle in the x-y plane (δ = 0). A similar

calculation as before (δ = π
4 ) confirms this picture: for the closed loop in the

x-z plane we now have ( cosδ
1−sinδ.sinα2

, 0, cosα2
1

sinδ−sinα2
) instead of ( 1√

2−sinα2
, 0, cosα2√

2−sinα2
).

The x-coordinate of this loop varies between cosδ
1+sinδ and cosδ

1−sinδ . For δ ∈ 〈0, π4 〉
this interval encloses 1 and is enclosed by the previous interval for the x-
coordinate, [ 1√

2+1
, 1√

2−1
]. For every x in the new interval [ cosδ

1+sinδ ,
cosδ

1−sinδ ] we want
to check whether the new loop is closer to the x-axis than the corresponding
loop for δ = π

4 . This is done as follows. A particular x ∈ [ cosδ
1+sinδ ,

cosδ
1−sinδ ]

corresponds to (possibly two) particular value(s) of α2, say αnew2 , for the new
loop: x = cosδ

1−sinδ.sinαnew2
. The same x for the (δ = π

4 )-loop corresponds to,
say, αold2 : x = 1√

2−sinαold2
. Thus: sinαold2 =

√
2 − 1−sinδ.sinαnew2

cosδ . We should
now check |znew(αnew2 )| < |zold(αold2 )|, where znew/old is on the new/old loop:
| sinδ.cosαnew2
1−sinδ.sinαnew2

| < | cosαold2√
2−sinαold2

| = | cosαold2 .cosδ
1−sinδ.sinαnew2

| ⇔ |sinδ.cosαnew2 | < |cosδ.cosαold2 |.
Squaring, using sin2α2 + cos2α2 = 1 and cosδ > 1

2

√
2 leads ultimately to

|sinδ.sinαnew2 | < 1, which is indeed satisfied.
This shows that it is possible to rewrite the new loop as (1 +
rnew(ψ)cosψ, 0, rnew(ψ)sinψ) in which the function rnewtakes values be-
tween 0 and rold for every ψ.

Note that for δ ∈ 〈0, π4 〉 we have 1
sinδ >

√
2 and |znew(α2)| < |zold(α2)| for

every α2. But this is not enough to conclude that the new loop is inside the old
loop everywhere, since the same value for α2 in both cases do correspond to
different x values and also to different ψ values.

The remaining case where r2 > r1, or δ ∈ 〈π4 , π2 〉, is now easy to guess.
For any fixed δ the projection will be a (deformed) torus that contains torus Tπ ,
and for δ ↓ π

4 the projection will approach Tπ . For δ ↑ π
2 it will approach the

z-axis (or circle in R3
C). With very minor changes (interchange of < and >) the

previous calculation can be repeated in order to confirm this guess.

In summary, we have seen that S3 consists of a set of tori that after stere-
ographic projection lead to a set of nested tori that fill all of R3. Starting with a
degenerate torus for δ = 0, the unit circle in the x-y plane, for increasing δ we get
bigger and bigger tori, each containing the previous one. When δ approaches π

2
the tori approach the z-axis, that can be seen as a degenerate torus. This infinite
or degenerate torus itself is reached for δ = π

2 .
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2. THE HOPF FIBRATION

2.2.2 Hopf fibration

From the foregoing it now follows that the curve C, the pre-image of the point
p in S2 for which π2

N (p) = z1

z2 after stereographic projection, is fully contained
within the torus that corresponds to δ = tan−1| z2z1 |. The collection of all the
curves that stem from q ∈ S2 with |π2

N (q)| = | z1z2 | fill up this torus completely,
since every point will at least be reached once. (Two such curves will either
coincide completely or have no point in common, as we have seen before).
It is obvious that these q form a circle in S2 that is parallel to the equator.
Thus the equator-parallel circles in S2 correspond to the tori in R3 (or R3

C). It
is readily verified that the degenerate circle (0,0,-1) corresponds to the z-axis,
the equator to Tπ and the degenerate circle (0,0,1) to the unit circle in the x-y
plane. Furthermore, the (non-degenerate) equator-parallel circles in the southern
hemisphere correspond to tori that contain Tπ , those of the northern hemisphere
to tori contained by Tπ .

The curve C that contains the point (X,Y, Z) for φ = 0 lies in the planexy
z

 = λ

XY
Z

 + µ

 Y
−X
x4

1−x4

, as can be seen by taking λ = cosφ
N and µ = − sinφ

N .

C is therefore the intersection of this plane with the torus that corresponds
to δ = tan−1| z1z2 |. Since C also contains the point 1−x4

1+x4 (−X,−Y,−Z) for
φ = π (note: 1−x4

1+x4 > 0), C must be a Villarceau circle: depending on the
orientation of the plane, the intersection of a plane through the origin with
a torus with centre the origin consists of two circles that are both on oppo-
site sides of the torus-symmetry axes, two concentric circles with the origin
as centre, or two Villarceau circles [22–24]. The fact that (X,Y, Z) together
with 1−x4

1+x4 (−X,−Y,−Z) are on C excludes the first two possibilities, and C

must be one of the Villarceau circles. The case x4 = 1 corresponds to the
curve through ∞ (the z-axis) and the case x4 = 0 corresponds to the curve
(x, y, z)(φ) = 1

1−Zsinφ (Xcosφ − Y sinφ, Y cosφ + Xsinφ,Zcosφ). For |Z| = 1 this
again is the z-axis and for |Z| < 1, although (X,Y, Z) and also (−X,−Y,−Z) are
on the curve, the circle is not centred around the origin, since for φ = π

2 we have
1

1−Z (−Y,X, 0) whereas for φ = 3π
2 we have 1

1+Z (Y,−X, 0) (Z = 0 gives the unit
circle in the x-y plane).

Often one speaks of the Hopf fibration, and we can now understand where
this comes from. S3 can be thought of as base space S2 with fibers S1, since
every point in S3 is specified by one particular p ∈ S2 and a φ ∈ [0, 2π〉 and this
interval can be identified with S1. Locally we can write S3 = S2 × S1. Globally
this is not correct.
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2.2. THE HOPF MAP

2.2.3 linking

There is one more important property of the curves (x, y, z)(φ) that concerns the
interconnection between any two of them. The analogues in S3 (via (π3

N )−1) of
the unit circle in the x-y plane and the z-axis are two circles that are linked once.
The concept of linking is clear intuitively [25]. Stereographic projection does
not change this linking property. Via the Hopf map and π2

N these two circles
correspond to two specific points in CC (or R2

C), say p and q. Two arbitrary
points, not being p or q, can with the help of a suitably defined mapping be
mapped to p and q respectively. This mapping induces a mapping in S3 by
which the curves (circles) that correspond to the two arbitrary points are being
mapped into the analogues of the x-axis and unit circle in the x-y plane. It
is intuitively clear that this mapping does not change the linking between the
curves. Thus the two circles in S3 (or R3) that are the pre-images of two arbitrary
points in S2 are also linked once. (These statements can be made mathematically
precise with the help of algebraic topology [26].)

2.2.4 conclusion

We end this chapter by stating that a study of the Hopf map leads naturally to a
picture of R3 as a collection of disjoined and singly linked circles, organised on
nested tori, a truly remarkable and beautiful picture!
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3
Electrodynamics

Among all the great theories of physics, the one completed by Maxwell about
a century and a half ago takes a very special place. Maxwell’s equations show
that the speed of light is the same in all inertial reference frames. Whereas
many tried to resolve this "problem" Einstein derived special relativity from it.
It serves as a paradigm in gauge field theory and it is here that almost everyone
starts learning about that. Besides being aesthetically very appealing, it is very
hard to overrate its technological significance or its value for society in general
(try to imagine a world without knowledge of electricity). Accordingly, the
effort by engineers and scientists to solve the central equations of this theory, to
understand and make use of these solutions has been huge. The more surprising
it is that even now amazing new solutions are being found. [1, 2]. In the next
chapter we will have a closer look at one such solution in which the Hopf
fibration plays an important role.

In this chapter we want to rewrite Maxwell’s equations in the language of
spinors that was introduced in chapter 1.

3.1 Maxwell equations

In nondimensionalized (Heaviside-Lorentz, c=1) units Maxwell’s equations are:
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3. ELECTRODYNAMICS

∇ ·E = ρ (3.1)

∇×B− ∂E
∂t

= j (3.2)

∇ ·B = 0 (3.3)

∇×E +
∂B
∂t

= 0 (3.4)

The electromagnetic field (E,B) can be characterized in terms of potentials φ
and A as follows:

B = ∇×A
E = −∇φ− ∂A

∂t .

Associated with (E,B) are the energy density w, energy flux (Poynting
vector) S, momentum density p and stress tensor σij given by:

w =
E2 + B2

2
(3.5)

S = E×B (3.6)

p = E×B (3.7)

σij = −EiEj −BiBj + δij
E2 + B2

2
. (3.8)

Here, as elsewhere, i, j, k ∈ [1, 2, 3] and Greek indices will indicate an ele-
ment from [0, 1, 2, 3], except when it is used for a twistor (see section 1.3).
An electromagnetic field that satisfies |E| = |B| and E ·B = 0 is called null.
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3.2. RIEMANN-SILBERSTEIN VECTOR

3.2 Riemann-Silberstein vector

A convenient way to rewrite Maxwell’s equations is with the help of the
Riemann-Silberstein vector FRS = E+ iB. It’s complex conjugate will be denoted
by FRS∗. Maxwell’s equations become

∇ · FRS = ρ, ∂tFRS = −i∇× FRS − j. (3.9)

The Poynting vector and energy density of the electromagnetic field can
be written as

S = i
2F

RS × FRS∗ and w = 1
2F

RS · FRS∗.

A null electromagnetic field satisfies FRS · FRS = 0.

3.3 Faraday tensor

Maxwell’s equations can be written in manifest Lorentz covariant form with the
help of the electromagnetic field tensor (or Faraday tensor):

(Fµν) =


0 −Ex −Ey −Ez
Ex 0 −Bz By
Ey Bz 0 −Bx
Ez −By Bx 0

 (3.10)

and the (four-)current density (ρ, j) as follows:

∂νF
µν = −jµ (3.11)

and

∂λFµν + ∂µF νλ + ∂νFλµ = 0. (3.12)
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3. ELECTRODYNAMICS

In terms of the (four-)potential (φ,A) we can write Fµν = ∂µAν − ∂νAµ.

Other forms of the electromagnetic field tensor are:

(Fµν) = (Fµβηβν) =


0 Ex Ey Ez
Ex 0 Bz −By
Ey −Bz 0 Bx
Ez By −Bx 0

,

(Fµν) = (ηµαFαβηβν) =


0 Ex Ey Ez
−Ex 0 −Bz By
−Ey Bz 0 −Bx
−Ez −By Bx 0

,

((∗F )µν) = (1
2ε
µναβFαβ) =


0 Bx By Bz
−Bx 0 −Ez Ey
−By Ez 0 −Ex
−Bz −Ey Ex 0

 .

It follows that FµνFµν = 2(E2 − B2) and (∗F )µνFµν = −E · B and there-
fore we have for a null electromagnetic field: FµνFµν = 0 = Fµν(∗F )µν .

The energy density, energy flux, momentum density and stress tensor ((3.5)
- (3.8)) are combined in the symmetrical energy-momentum tensor of the
electromagnetic field

Tµν = −FµαF να +
1
4
ηµνFαβF

αβ =

w S

S σ

 (3.13)

Note that (3.12) does not contain 43 independent equations, but only 4 as
becomes clear by rewriting this equation in the form εαβγδ∂

βF γδ = 0. This in
turn can be written in terms of the dual of Fµν : ∂β(∗F )αβ = 0, or

∂ν(∗F )µν = 0

and this is like the source-free form of (3.11). Therefore, with the defini-
tion

Fµν = Fµν + i(∗F )µν

all of Maxwell’s equations (3.1) - (3.4) can be written succinctly as
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∂νFµν = −jµ. (3.14)

In terms of the Riemann-Silberstein vector we have

(Fµν) =


0 −FRS∗x −FRS∗y −FRS∗z

FRS∗x 0 −iFRS∗z iFRS∗y

FRS∗y iFRS∗z 0 −iFRS∗x

FRS∗z −iFRS∗y iFRS∗x 0

 . (3.15)

3.4 Maxwell spinor

Since the electromagnetic field tensor is anti-symmetric, we know from (1.7) that
its spinor equivalent can be written as

FAX′BY ′ = φABεX′Y ′ + φ̄X′Y ′εAB , φAB = 1
2F

R′

AR′B = φBA.

This φAB is called Maxwell spinor. From the formula for the dual of an
anti-symmetric tensor (1.8) we find for the spinor equivalent of Fµν :

1
2FAX′BY ′ = φABεX′Y ′

and for Maxwell’s equations (3.14) without source term (after some index
manipulation):

∇AX′φAB = 0. (3.16)

We see that when φAB is a solution, fφAB is also a solution whenever
αA∇AX′f = 0. It is a simple exercise to show that for a null electromagnetic
field the principal spinors and thus the principal null directions of φAB coincide:
φAB = αAαB and therefore φABφAB = 0. In this case equation (3.16) implies
αAαB∇AX′αB = 0, as can be seen by substitution and contraction with αB . Thus
the congruence defined by α is geodesic and shear free (see (1.9)).
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In anticipation of the Petrov classification in general relativity (section 7.6)
it may be remarked here that the Maxwell spinor gives rise to a simple classifi-
cation of electromagnetic fields. For this we use the two principal null directions
(PND) of the symmetric Maxwell spinor:

regular electromagnetic field: the PND are different,
null electromagnetic field: the PND coincide.

From section 1.2 we know that the principal null directions of the Maxwell
spinor correspond to the eigenvectors of the Faraday tensor. The two eigenvalues
turn out to be λ± = ±

√
− 1

4 (|B|2 − |E|2)− i
2E �B. As can be seen using equation

(4.8) from chapter 4, this is also the solution for to the following equation:
φ B
A βB = λ±βA. Combining previous results, we see that:

field is null ↔ |B| = |E|, E �B = 0 ↔ λ± = 0 ↔ φAB = αAαB .

The first arrow is the definition of section 3.1, the second arrow is a re-
sult from this section, and the last arrow follows from section 1.2.

3.5 simple examples of Maxwell spinors

We now give some simple examples in which the dependence on the space-time
coordinates only appears in a common factor. Except in the last example, all
fields are circularly polarized.

plane wave in -z direction

(φAB(xµ)) = f(xµ)
(

1 0
0 0

)
:

This is a solution of (3.16) if f(xµ) satisfies ∂tf = ∂zf and (∂x + i∂y)f = 0. For
continuous f the last equation implies that it is holomorphic in x + iy. The
first equation is satisfied whenever f is a function of the combination t + z.
For f(xµ) = eikµx

µ and (kµ) = (k, 0, 0, k) with k > 0 the electromagnetic field
is a right circularly polarized plane wave travelling in the -z direction. Using
f(xµ) = e−ikµx

µ with the same (kµ) leads to a left circularly polarized plane
wave propagating in the same direction.
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plane wave in +z direction

When instead of
(

1 0
0 0

)
we use

(
0 0
0 1

)
the function f(xµ) must be

anti-holomorphic (a function of the combination x− iy and not x+ iy) and with
respect to t and z it can only depend on the combination t− z. Using the same
f(xµ) as before, but now with (kµ) = (k, 0, 0,−k), leads to plane waves travelling
in the +z direction. The polarization interpretation is the same as before.

plane wave in -x direction

(φAB(xµ)) = f(xµ)
(

1 1
1 1

)
:

Now f(xµ) has to satisfy (∂t−∂z−∂x + i∂y)f = 0 and (−∂x− i∂y +∂t +∂z)f = 0,
which is equivalent to ∂tf = ∂xf and (∂z − i∂y)f = 0. So f(xµ) is a function
of z − iy and t + x. Again, we can use the same f(xµ) as before, now with
(kµ) = (k, k, 0, 0) and we have a plane wave travelling in the -x direction with
amplitude twice as big as before. The interpretation of polarization is the same
as in the previous cases.

plane wave in +x direction

When instead of using
(

1 1
1 1

)
we use

(
−1 1
1 −1

)
the function f(xµ)

depends on z − iy and t − x. Again using the same f(xµ) leads to propagation
in the x direction and polarizations as before.

plane wave in ± y direction

(φAB(xµ)) = f(xµ)
(
i 1
1 −i

)
:

Now f is a function of x + iz and t + y. The same f as before with
(kµ) = (k, 0, k, 0) leads to plane waves propagating in the -y direction and
polarizations as before. Complex conjugation of the matrix entries leads to
propagation in the y direction.
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constant fields

Note that (φAB(xµ)) = f(xµ)
(

1 0
0 1

)
and (φAB(xµ)) = f(xµ)

(
−1 0
0 1

)
are only possible for constant f and leads to a constant electric field with-
out magnetic field and a constant magnetic field without an electric field
respectively.

28



4
Twistors and electromagnetic

knots

4.1 electromagnetic field with Hopf-structure

In 1989 A.F. Rañada published an article [2] in which he showed that solutions
to source free Maxwell’s equations can be obtained from functions φ, θ : S3 → S2

that satisfy a duality relation. By considering the Hopf map, he arrived at an
electromagnetic field where the magnetic field lines are the closed curves C
from chapter 2. The electric field is everywhere perpendicular to the magnetic
field and the electric field lines also form a Hopf fibration. We will refer to such
a configuration as an electromagnetic knot [1, 4].
Here we will shortly summarize that part of Rañada’s paper that will be of
importance to us in the sequel, supplemented with explicit calculations for the
electromagnetic field.

Start with two complex functions, φ(t, r) and θ(t, r), defined on the three-
sphere. Let

fµν(χ) ≡
√
a

2πi
∂µχ

∗∂νχ−∂νχ∗∂µχ
(1+χ∗χ)2 .

Define Fµν = fµν(φ) and Gµν = fµν(θ) and suppose that F is the dual of
G:

Fµν = (∗G)µν = 1
2εµναβG

αβ .

When we apply ∂β to Fγδ we get sums of terms symmetrical in β and γ
or δ. Thus εαβγδ∂βFγδ = 0. For the same reason we have εαβγδ∂βGγδ = 0.
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Therefore, F and G satisfy the homogeneous Maxwell equations, equation (3.12).
But 0 = 1

2εαβγδ∂
βGγδ = ∂β(∗G)αβ = ∂βFαβ . Thus F also satisfies the source-free

inhomogeneous Maxwell equation, equation (3.11). Interchange of the role of
F and G in this argument shows that G also satisfies all of the (source-free)
Maxwell equations.

Rewriting Maxwell’s equations in the Lagrange formalism, using the dual-
ity condition as a constraint, shows that it is only necessary to have the functions
φ and θ for t = 0, because the duality relation, which takes the form (or better:
that implies) (∇φ∗×∇φ) · (∇θ∗×∇θ) = 0 now, remains valid once it is for t = 0.
See the appendix to this chapter for more details.

So all we need to make this prescription work are two functions,
φ, θ : S3 → S2 that satisfy (∇φ∗ × ∇φ) · (∇θ∗ × ∇θ) = 0. The first
function that comes to mind is the Hopf map H(z1, z2) = (π2

N )−1( z
1

z2 )
(2.1). If we stereographically project (from N ) S3 onto R3 and S2 onto
R2, this function becomes φH(r) = φH(x, y, z) = 2(x+iy)

2z+i(r2−1) . This follows
from π3

N (z1, z2) = π3
N (x1, x2, x3, x4) = ( x1

1−x4 ,
x2

1−x4 ,
x3

1−x4 ) ≡ (x, y, z) and
z1

z2 = x1+ix2

x3+ix4 = x+iy

z+i x4

1−x4
. With r2 = x2 + y2 + z2 we have r2 − 1 = 2x4

1−x4

since ||(x1, x2, x3, x4)|| = 1. A straightforward calculation shows that

B(t = 0, r) ∝ ∇φ∗H × ∇φH ∝

 2(xz − y)
2(x+ yz)

1− x2 − y2 + z2

. As expected the mag-

netic field lines coincide with the integral curves C (2.2) from chapter 2. We still
need a function θ(0, r) that solves the duality relation. It is natural to try another
Hopf structure, rotated with respect to the previous one. The level curves of the
function θH(x, y, z) = φ∗H(y, z, x) certainly exhibit a Hopf structure (level curves
of φ∗ coincide with those of φ , but different numbers are attached to the same

curves). This θH gives E(t = 0, r) ∝ ∇θ∗H × ∇θH ∝

−1− x2 + y2 + z2

2(z − xy)
−2(y + xz)

 and

it follows that it solves the duality relation (∇φ∗H × ∇φh) · (∇θ∗H × ∇θH) = 0.
Therefore we finally have a solution to Maxwell’s equations in vacuum in which
at t = 0 the electric and magnetic field lines are perpendicular Hopf fibrations.
In particular, any two electric (or magnetic) field lines are (possibly degenerate)
circles that are linked once. Although the smooth time development according to
Maxwell’s equations deforms the circles into intricate closed curves, the linking
property is not broken.
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4.2 relation between non-null twistors and electromagnetic knots

A detailed calculation shows that the electric and magnetic field at t = 0 are
given by the following expressions:

E(0, r) = 1
(1+r2)3

−1− x2 + y2 + z2

2(z − xy)
−2(y + xz)

,

B(0, r) = 1
(1+r2)3

 2(xz − y)
2(x+ yz)

1− x2 − y2 + z2

.

As can be expected, the expression for both fields for arbitrary t are rather
intricate, but if we combine these to form the Riemann-Silberstein vector we
have a simple expression:

FRS(t, r) = 1
((t−i)2−r2)3

 (x− iz)2 − (t− i+ y)2

2(x− iz)(t− i+ y)
i(x− iz)2 + i(t− i+ y)2


(again, the speed of light has been be put equal to 1). It is easy to check
that the field is null.
However, in the sequel we will often use a rotated version of this field configu-
ration, a(n active) rotation around the x-axis, such that the direction of the z-axis
goes over into the direction of the y-axis:

FRS(t, r) =
1

((t− i)2 − r2)3

 (x− iy)2 − (t− i− z)2

i(x− iy)2 + i(t− i− z)2

−2(x− iy)(t− i− z)

 (4.1)

From this it is immediately clear that the separate expressions for the fields
become simple only for t = 0, the instant of time when the electric-, magnetic-
and also the Poynting vector field all have the structure of a Hopf fibration. The
general formula for the Poynting vector in terms of the Riemann-Silberstein vector

S = −i
2 FRS∗ × FRS

gives a tractable expression for all times:

S =
(1 + x2 + y2 + (t− z)2)

((t2 − r2)2 + 1 + 2(t2 + r2))3

 2(x(t− z) + y)
2(y(t− z)− x)

x2 + y2 − (t− z)2 − 1

 (4.2)
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This shows that the structure (i.e. a picture of the field lines) of this vec-
tor field moves undistorted along the z-axis with the speed of light (see figure
4.1). This closely resembles the geometrical picture of a non-null twistor
described at the end of chapter 1. We now present a deeper correspondence
between a non-null twistor and the knotted electromagnetic field, in which the
Poynting vector plays a central role. But first we note that equation (4.1) implies
that the electric field can be written as a combination of two vector fields that
both have the structure of a Hopf fibration that moves undistorted along the
z-axis. A different combination of these two fields yield the magnetic field (with
f = f(xµ)):

E((t, r) = Re(f)

−1− x2 + y2 + (t− z)2

−2((t− z) + xy)
2(−y + x(t− z))

− Im(f)

 2(xy − (t− z))
1− x2 + y2 − (t− z)2

−2(x+ y(t− z))


(4.3)

B((t, r) = Re(f)

 2(xy − (t− z))
1− x2 + y2 − (t− z)2

−2(x+ y(t− z))

+ Im(f)

−1− x2 + y2 + (t− z)2

−2((t− z) + xy)
2(−y + x(t− z))

 .

(4.4)

We therefore have three orthogonal Hopf fibrations moving with the speed of
light along the z-axis, one of which corresponds with the Poynting vector, and
different space and time dependent combinations of the other two make up the
electric and magnetic field.
The Riemann-Silberstein vector (4.1) can also be written as a combination of five
time independent vector fields with time dependent coefficients:

FRS(t, r) =
−(1 + r2)3

((t− i)2 − r2)3
{E0 + iB0−

4t
(1 + r2)

A0 + i
4t

(1 + r2)
C0 +

t2

(1 + r2)3
W}.
(4.5)

In this expression A is the vector potential, B = ∇ × A, and C is the
vector potential for the electric field (since ∇ �E = 0), E = ∇×C:
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4.2. RELATION BETWEEN NON-NULL TWISTORS AND ELECTROMAGNETIC KNOTS

Figure 4.1: Some electric, magnetic and Poynting vector field lines of an electromagnetic knot
for t=0 and t=1. At t=0 the (electric, magnetic or Poynting) field lines are singly linked circles
on nested tori that fill all of space. At t=0 the structure of all three fields is identical up to
rotation. Linking is conserved, but the overall structure of the electric and magnetic field lines
gets strongly distorted, whereas the structure of the Poynting vector is independent of time:
it moves along the central axis with the speed of light. (picture produced by A. Wickes)

A0 = At=0 = 1
2(1+r2)2

 z
1
−x

, C0 = Ct=0 = 1
2(1+r2)2

−1
z
−y

 and W =

−1
i
0

.

Alternatively, FRS(t, r) = −(1+r2)3

((t−i)2−r2)3 {F
RS
t=0 + i 4t

(1+r2)Dt=0 + t2

(1+r2)3 W},

in which D = C + iA is the vector potential for FRS . Note that W corre-
sponds to a constant electromagnetic field, on which we have to say more in
chapter 5.

One of the first things one learns when studying twistor theory [3, 27] is
that there exists an optical analogy for a null twistor. A null twistor corresponds
to a null geodesic in Minkowski space, hence to a light ray. No such direct
analogy is given for a non-null twistor, although we have seen that its geometrical
picture resembles the Poynting vector of an electromagnetic knot. We proceed
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4. TWISTORS AND ELECTROMAGNETIC KNOTS

to show that this analogy is not merely a pictorial one.
As was shown in chapter 1, the geometrical picture corresponding to the
non-null twistor (Aα) = (0, 1√

2
, 0, 1) is defined to be the congruence in

M4 build from all null geodesics (straight lines) that correspond to null
twistors Z orthogonal to A: {Zα|ĀαZα = 0}. Since Z must be null, it
can be written as (Zα) = (iXAY ′Π̄Y ′ , Π̄X′) with (XAY ′) given by equation
(1.8) and (t, x, y, z) ∈ M4 ⊂ M4

C. From (Aα) = (0, 1√
2
, 0, 1) it follows that

(Āα) = (0, 1, 0, 1√
2
). The orthogonality condition can now be written as

(x− iy)Π̄1′ + (−i+ t− z)Π̄2′ = 0 and is solved by

(Π1,Π2) = f(xµ)(−t+ z − i, x+ iy), (4.6)

in which f(xµ) is an arbitrary scalar function that does not affect the inte-
gral curves of the corresponding vector field, known as a Robinson congruence,
kµ = σµAX′Π

AΠ̄X′ . Note the change from (Π̄1′ , Π̄2′) to (Π1,Π2). According to
Kerr’s theorem (1.10) this vector field is geodesic and shear-free (in the notation
of chapter 1: w + Y v + iY ≡ 0 here). These two properties also follow directly
from ΠAΠB∇AX′ΠB = 0 (1.9), which is easy to check for considered spinor field,
or from (1.16) with f(Zα) = ĀαZα. According to a theorem by Robinson [28] it
is possible to construct a null electromagnetic field from any geodesic shear free
null congruence: a scalar field ψ(t, x, y, z) exists such that the spinor equivalent
of the anti-self-dual part of the electromagnetic field tensor is given by

ΦAB = eψΠAΠB . (4.7)

(On hindsight, looking back at the discussion following (3.16) in combination
with (1.9), we could ourselves have come up with Robinson’s theorem, or at
least (and somewhat less presumptuous), this theorem should come as no
surprise. However, Robinson wrote [28] in 1961. Not much of what is needed
for the theorem was known then, and besides, spinors were not used. Even just
checking [28] is not so easy a task.)
We now show that an explicit solution can be obtained in the form of
an electromagnetic knot. From FRS∗i = F0i = σ AX′

0 σ BY ′

i FAX′BY ′ =
2σ AX′

0 σ BY ′

i φABεX′Y ′ and using (σ AX′

0 ) = (σ0
AX′), (σ AX′

1 ) =
(σ1

AX′), (σ AX′

2 ) = −(σ2
AX′) and (σ AX′

3 ) = (σ3
AX′) together with equa-

tion (1.4), we find
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4.2. RELATION BETWEEN NON-NULL TWISTORS AND ELECTROMAGNETIC KNOTS

FRS∗ =

 Φ00 − Φ11

i(Φ00 + Φ11)
−2Φ01

 . (4.8)

This leads to the following relation between the Poynting vector corresponding
to ΦAB and the vector field (k0,k) that is related to the Robinson congruence:

S = 2eψeψ
c

k0k (4.9)

kα = σαAX′Π
AΠ̄X′ . (4.10)

Here we already see that the structure of an electromagnetic knot emerges, since
k is a Hopf fibration that moves with the speed of light along the z-axis. For
null electromagnetic fields and given Poynting vector, the only freedom left for
the electric and magnetic field is a local duality transformation:

FRS′ = eiαFRS (4.11)

in which α(xµ) stisfies

∇α = β(xµ)S (4.12)

and

∂tα = −β(xµ)||S|| (4.13)

for β(xµ) an arbitrary function. This follows from writing out Maxwell’s
equations for FRS′ and for FRS (3.9). For β = 0, α is constant and the duality
transformation is global. For β constant, α satisfies the homogeneous wave
equation as follows from the for null fields valid equation ∇ · S = −∂t||S||.
The general formula for the energy density, ε, in terms of the Riemann-Silberstein
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vector

ε = 1
2F

RS∗ · FRS

when combined with equation (4.7) leads to

ε = 2eψeψ
c

(k0)2.

Together with equation (4.9), this gives

(Efield,Pfield) = 2
∫
dreψeψ

c

k0(k0,k)

which for source-free fields is an (energy-momentum) four-vector [29].
Combining equations (4.6), (4.7) and (4.8) leads directly to the electromagnetic
field that corresponds to the twistor (Aα):

FRS = g(xµ)

 (x− iy)2 − (t− i− z)2

i(x− iy)2 + i(t− i− z)2

−2(x− iy)(t− i− z)


in which g(xµ) is a function built from f(xµ) and ψ. When compared
with equation (4.1), we see that with the choice

g(xµ) = 1
((t−i)2−r2)3 ,

we indeed do get a solution to Maxwell’s equations. The mathematical
relation between a non-null twistor and an electromagnetic knot is hereby
established. However, we still do need to investigate the freedom left in the
choice of g(xµ).

4.2.1 relation is not unique

Any solution of Maxwell’s equations with the property of having a Poynting
vector that has the structure of a Hopf fibration that moves undistorted with the
speed of light along the central axis will be referred to as an electromagnetic
Hopf knot. From equations (4.6), (4.9) and (4.10), it is clear that any choice of
g(xµ) that is allowed by Maxwell’s equations corresponds to such a knot. We
have seen that among the solutions is the particular knot given by equation (4.1),
say Fpart. and corresponding Spart. (4.2). From equations (4.6)-(4.10) we see that
for any other solution there exist functions ψ̃ and f̃ such that

FRS = h(xµ)Fpart., S = h(xµ)h∗(xµ)Spart. and h(xµ) = eψ̃(f̃)2.

Again, we see explicitly that all solutions are electromagnetic Hopf knots.
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Those that have S = Spart. can be obtained from the particular knot by a
local duality transformation, see equations (4.11), (4.12) and (4.13). The case
|h(xµ)| 6= 1 might lead to different solutions, but not to different structures,
since at every point the Poynting vector is multiplied by a positive number and
(because E · B = 0 and ||E|| = ||B||) the only new consequence is that at each
point ||E|| gets multiplied by the square root of this number.
Write h = |h|eiα and consider Maxwell’s equations for FRS = h(xµ)Fpart.:
∇ · FRS = 0 gives

∇|h| ·Epart. − |h|∇α ·Bpart. = 0 (4.14)

∇|h| ·Bpart. + |h|∇α ·Epart. = 0 (4.15)

∇× FRS = i∂tFRS gives

∇|h| ×Epart. − |h|∇α×Bpart. = −Bpart.∂t|h| − |h|Epart.∂tα (4.16)

∇|h| ×Bpart. + |h|∇α×Epart. = Epart.∂t|h| − |h|Bpart.∂tα. (4.17)

Now suppose α satisfies equations (4.12) and (4.13) for some β and S = Spart..
The equations (4.14) - (4.17) then become

∇|h| · Epart. = 0, ∇|h| · Bpart. = 0, ∇|h| × Epart. = −Bpart.∂t|h| and
∇|h| ×Bpart. = Epart.∂t|h|.

The first two equations imply ∇|h| = γ(xµ)Spart. for some function γ(xµ),
and this combined with the last two equations give ∂t|h| = −γ(xµ)||Spart.||. The
norm function |h| thus satisfies the same equations as the phase function α,
except for a (possibly) different function multiplying the Poynting vector.
We proceed to show that this exhausts the possibilities for solving Maxwell’s
equations with given Poynting vector S = h(xµ)h∗(xµ)Spart.. Suppose
α(xµ) = αE(xµ) +αB(xµ) +αS(xµ) with ∇αS = s(xµ)Spart., ∇αE = e(xµ)Epart.,
∇αB = b(xµ)Bpart. and e, b not both equal to 0. From equation (4.16) it follows
that (∇α × Bpart.) · Epart. = ||Spart.||∂tα and, given the assumption for α, this
leads to ∂tα = −s(xµ)||Spart.||. This equation is used in that part of equation
(4.16) that is perpendicular to Bpart. to obtain e(xµ) = 0 and in that part
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of equation (4.17) that is perpendicular to Epart. to obtain b(xµ) = 0. This
contradicts the assumption.
The requirements on |h| and α define an equivalence relation and partitions the
electromagnetic Hopf knots into equivalence classes. A class is defined by the
structure (i.e. integral curves) of the Poynting vector and again within this class
an equivalence relation is defined by the condition on α(xµ). This subclass is
defined by the Poynting vector, not only its structure but also its norm. This
result is obtained as follows. For F′ ∼ F⇔ F′ = geiβF, reflexivity is achieved by
g = 1 and β = 0, symmetry by g → 1

g and β → −β, and multiplication of norm
functions and addition of phases supplies transitivity.

The question arises whether there exist a local duality transformation sat-
isfying (4.12) and (4.13) such that the electric and magnetic field lines also
move undistorted in time, like the structure of the Poynting vector. This will
be the case if there exists a function h(xµ) such that h(xµ)

((t−i)2−r2)3 ≡ G(xµ) is a
real function (see (4.3) and (4.4)), and |h(xµ)| and α ≡ Arg(h(xµ)) both satisfy
equations (4.12) and (4.13) with a function β = β1 and β = β2 respectively. This
leads to:

from the condition on |h(xµ)|:

((t2 + 1− r2)2 + 4r2)∂t|G|+ 6|G|(t2 + 1− r2)t = − β1√
((t2+1−r2)2+4r2)

||S||

and

((t2 + 1− r2)2 + 4r2)∇|G| − 6|G|(t2 − 1− r2)r = β1√
((t2+1−r2)2+4r2)

S

from the condition on α, split into real and imaginary parts:

(t2 − 1− r2)∂tG+ 6tG = −(2tβ2 + β1(t2−1−r2)

|G|((t2+1−r2)2+4r2)
3
2

)G||S||,

2t∂tG+ 6G = ((t2 − 1− r2)β2 − 2tβ1

|G|((t2+1−r2)2+4r2)
3
2

)G||S||

and

(t2 − 1− r2)∇G− 6Gr = (2tβ2 + β1(t2−1−r2)

|G|((t2+1−r2)2+4r2)
3
2

)GS,

2t∇G = −((t2 − 1− r2)β2 − 2tβ1

|G|((t2+1−r2)2+4r2)
3
2

)GS.

These are six real equations for three real functions, β1, β2 and G. From
the structure of the Poynting vector we can conclude that G = 0 does not appear,
so either |G| = G or |G| = −G everywhere. From the three equations containing
time derivatives or the three vector equations, it is easy to show by elimination
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of β2 that the only possibility is |G| = G. Elimination of β1 from the vector
equations now leads to a contradiction. So the "best" we can achieve in this
respect is the decomposition of (4.3) and (4.4).

4.2.2 changing the twistor

A different choice for the non-null twistor Aα will lead to a different class of
electromagnetic Hopf knots. It is instructive to calculate the electromagnetic
field that corresponds to the arbitrary non-null twistor Aα = ( a√

2
, b√

2
, c, d). The

analogue of (4.6) is

(Π1,Π2) = f(xµ)(c(x− iy) + d(t− z) + ib,−c(t+ z)− d(x+ iy)− ia)

which leads to

Φ00 = eψf2[c(x− iy) + d(t− z) + ib]2 (4.18)

Φ11 = eψf2[c(t+ z) + d(x+ iy) + ia]2 (4.19)

Φ01 = −eψf2[c(x− iy) + d(t− z) + ib][c(t+ z) + d(x+ iy) + ia]. (4.20)

From these, remembering (4.8), interesting properties can be read off.
For example, (Aα) = (0, b√

2
, 0, 1) and b ∈ R\{0} leads to the same solution

space as before, but with xµ replaced by (x′)µ = 1
bx

µ. For b > 0 this amounts
to an expansion (b > 1) or contraction (b ∈ 〈0, 1〉) of previous solutions. For
b < 0 there is an additional parity change and time reversal. All of these will
be referred to as dilations. This interpretation of b remains valid for c 6= 0, but
not when a 6= 0 unless a and b change both with the same factor. In general,
for a non-null (Re(b) 6= 0) twistor Aα = (a, b, 0, 1), we find that Re(b) is related
to dilations whenever a

b is constant, Im(b) to time translations or, equivalently,
z-translations and that Re(a) is related to y-translations and Im(a) to translations
in x direction.
When we interchange the components of the spinors that constitute the twistor
and negate a, (a, b, 0, 1) → (b,−a, 1, 0), we find that the new solutions will be
obtained from the old ones by a conformal inversion, xµ → xµ

xνxν
(the general

rule is FRS∗ → −FRS(t → −t), which for Hopf knots amounts to a conformal
inversion, see chapter 5). The interpretation of a and b is exactly as before.
The class of solutions of Maxwell’s equations that is obtained for
a = b = c = d = 1 is:
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E = Re(g(xµ))

 2(y − z(t+ x))
−2(yz + (t+ x))

(t+ x)2 + y2 − z2 − 1

− Im(g(xµ))

 2(z + y(t+ x))
1 + y2 − z2 − (t+ x)2

2(yz − (t+ x))

,

B = Re(g(xµ))

 2(z + y(t+ x))
1 + y2 − z2 − (t+ x)2

2(yz − (t+ x))

+ Im(g(xµ))

 2(y − z(t+ x))
−2(yz + (t+ x))

(t+ x)2 + y2 − z2 − 1

,

S = (1 + (t+ x)2 + y2 + z2)(g(xµ))(g(xµ))∗

1 + (t+ x)2 − y2 − z2

2(y(t+ x)− z)
2(y + z(t+ x))

.

It can be seen that a representative of this class is given by a rotated ver-
sion of (4.1), the axis of rotation is the y-axis and it is such that the +z-axis
rotates to the +x-axis.

4.3 the method applied to a null twistor

We have seen two routes to visualize a twistor. The first is valid for a null twistor
and gives a ray of light, the second for a non-null twistor and gives a class of
electromagnetic Hopf knots. What happens if we use the second method for a
null twistor? Applying this method to (Aα) = (0, 0, 0, 1) leads to the class of

FRS =
1

(t2 − r2)3

 (x− iy)2 − (t− z)2

i(x− iy)2 + i(t− z)2

−2(x− iy)(t− z)

 , (4.21)

with corresponding Poynting vector

S ∝

 2x(t− z)
2y(t− z)

x2 + y2 − (t− z)2

 . (4.22)

Changing this null twistor into the non-null (Aα) = (0, b√
2
, 0, 1) amounts

to applying an imaginary time translation t→ t− ib to the field (4.21), as can be
seen from (4.18)-(4.20). Since for b = 1, (Aα) = (0, 1√

2
, 0, 1) corresponds to (4.1)

this implies that an electromagnetic Hopf knot is obtained from (4.21) by the
transformation t→ t− i, as can be verified by direct comparison. For this reason
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we shall refer to the null congruence corresponding to (4.21) as a degenerate
Robinson congruence in the sequel.
The null twistor (Aα) = (0, 1, 0, 0) leads to (the class of) plane waves travelling in
the -z direction (see the examples at the end of chapter 3), and (Aα) = (1, 0, 0, 0)
to plane waves propagating in the z direction. As will be shown in chapter
5, a conformal inversion of this last field in the limit k = 0 (thus a constant
electromagnetic field) leads to (4.21). Therefore we have the surprising sequence:

E = x̂,B = ŷ → (4.21)→ (4.1), (4.23)

where the first arrow indicates a conformal inversion and the second an
imaginary time translation. (Aα) = (1, 1, 0, 0) leads to a plane wave propagating
in the x direction.
As a final example, the null twistor (Aα) = (0, 0, 1, 1) gives the class of solutions
for which the π

2 rotated version (with y-axis as rotation axis) of (4.21) is a
representative.
The light rays that correspond to these null twistors via the first method coincide
with the unique direction defined by the Poynting vector of the electromagnetic
fields that correspond to these twistors via the second method. From equations
(4.9), (4.10) and (1.14) it follows that this is true in general, and the second
method can therefore be considered as a generalization of the first.

4.4 shift in the complex domain

By considering Maxwell’s equations for the Riemann-Silberstein vector (3.9),
complex numbers have been introduced in electrodynamics. On various occa-
sions we have seen that it is a convenient way to combine electric and magnetic
fields into one vector. The complex structure here acts as a bookkeeping device,
to distinguish between electric and magnetic parts. The complex time shift in the
previous paragraph hints at another possible role for a complex structure. The
source-free Maxwell’s equations for the Riemann-Silberstein vector are invariant
under all the transformations that have been obtained in the last two paragraphs
(dilation, (complex) translation, rotation, conformal inversion). Let us consider
these equations as being defined not only in M4, but in M4

C. It is tempting
to assume that all the aforementioned electromagnetic fields that correspond
to different kinds of twistors are part of one (super)solution to these Maxwell
equations in M4

C. Depending on where we agree to locate the real slice M4 in
M4

C (and this really is a matter of choice) we do get one of the aforementioned
solutions on this slice. For example, for a particular choice of real space-time we
have solution (4.21). If now we shift the choice of real slice to a different part of
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M4
C related to the previous choice by t → t − i, we get the solution (4.1) on this

space-time. Pushing the real slice still further into the imaginary time direction,
t→ t− ib (b > 1) we get the expanded version of (4.1).
A careful analysis is needed to show whether this assumption can stand the test
of mathematical scrutiny, and to disclose the possible relationship with work of
E. Newman [9,30–34] and of A. Burinskii [35, 36].

A somewhat related question is the following. Dilations are part of the
conformal group C(1, 3). The transformations in twistor space that leave
invariant the inner product belong to SU(2, 2) which is a fourfold cover of the
conformal group. Does a SU(2, 2) transformation of a twistor always correspond
to a particular conformal transformation of the corresponding electromagnetic
field? Of course, the norm of (Aα) = (0, 1√

2
, 0, 1) is in general not the same

as that of (Aα) = (0, b√
2
, 0, 1), but this last twistor leads to the same class of

solutions as some constant times this twistor. The constant can be adjusted so
that the two twistors are related by a SU(2, 2) transformation.

4.5 conclusion and final remarks

In this chapter several forms to represent an electromagnetic Hopf knot have
been discussed. Using a theorem by Robinson, we presented a correspondence
between a non-null twistor and a class of solutions of the source-free Maxwell
equations. Based on the relation (4.9) the class is characterized by the structure
of the Poynting vector. All solutions within this class are electromagnetic Hopf
knots. All knots that constitute one class can be parametrized by a complex
function h(xµ) = |h|eiα in which both α(xµ) and |h(xµ)| satisfy equations (4.12)
and (4.13): a restricted local duality transformation. A different twistor will
correspond to a different class of knots only when the twistor is non-null. The
method can be applied to a null twistor, but will lead to a class of solutions
different from electromagnetic Hopf knots.

The main results of this chapter were published in [4]. Later, in [37], B.H.
Trishin discussed part of present calculations from a different perspective. He
used the Newman-Penrose formalism, the Kerr theorem and null coordinates as
will be discussed in chapter 8, to arrive at the general solution to our equation
(4.7), translated into the Riemann-Silberstein vector as:

FRS = (1 + w̄∂uY + v∂wY )f(u+ w̄Y, w + vY )

 1− Y 2

i(1 + Y 2)
−2Y

,
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in which f is an arbitrary holomorphic function. The notation is that of
chapter 8. It is interesting to note that when we use the congruence that
corresponds to the Schwarzschild solution of Einsteins equations (according to
chapter 8 we then have Y = − z+r

x−it ) we do get the following expressions for the
electric, magnetic and Poynting vector field:

E ∝

−(y2 + z2 + zr)
xy

x(z + r)

 , B ∝

 −xy
x2 + z2 + zr
−y(z + r)

 and S ∝

xy
z

.

The electromagnetic torus knots described in [38] (published october 2013)
all have the same Poynting vector as the electromagnetic Hopf knot presented in
this chapter. These torus knots thus belong to the same equivalence class as the
Hopf knot. For every torus knot, there exist therefore a local duality transforma-
tion (4.11), (4.12) and (4.13) relating it to the Hopf knot. This argument might be
used to show that in the case of torus knots all the field lines are closed. In [38]
this is shown only for the "core field lines" that correspond to degenerate tori.
It is also of some interest to note that the β appearing in [38] and describing
part of the Bateman construction for generating null electromagnetic fields,
corresponds to Y in the method of Debney, Kerr and Schild as presented here
in chapter 8. Does this give a clue of how to arrive at exact solutions of Einstein
equations that can be described as gravitational torus knots?

Appendix

From F0i = Ei and Fij = −εijkBk ⇔ Bi = − 1
2εijkFjk we have

E · B = EiBi = − 1
2εijkF0iFjk. For Fµν = fµν(φ) we see that F0iFjk con-

tains only factors symmetrical in i and j or k:

E ·B = 0

Since εαβγδ = −εαβγδ we have Gµν = −(∗F )µν and so G0i = −Bi and
Gij = −εijkEk ⇔ Ei = − 1

2εijkGjk.

Using Ei = F0i we get
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E(0, r) =
√
a

2πi
∂0φ
∗(0,r)∇φ(0,r)−∂0φ(0,r)∇φ∗(0,r)

(1+φ∗(0,r)φ(0,r))2

and from Ei = − 1
2εijkGjk we get

E(0, r) = − 1
2εijk

√
a

2πi
∂jθ
∗(0,r)∂kθ(0,r)−∂jθ(0,r)∂kθ

∗(0,r)
(1+θ∗(0,r)θ(0,r))2 .

Combining these expressions makes it possible to calculate ∂0φ and a sim-
ilar argument shows the possibility of calculating ∂0θ from φ(0, r) and θ(0, r).

The points in R3 for which φ takes a constant value consists of the inter-
section between two surfaces, one for which the real part of φ is constant and
the other for which the imaginary part of φ is constant. Very special cases aside,
this intersection is a one dimensional curve. The magnetic field lines coincide
with these level curves as follows from the following consideration. We have
∇φ ·B = (∂iφ)Bi = − 1

2εijk(∂iφ)Fjk = 0, since (∂iφ)Fjk contains only terms that
are symmetrical in i and j or k. For the same reasons we also have ∇φ∗ ·B = 0,
and thus B ∝ ∇φ∗ × ∇φ. A similar argument shows that the electric field lines
coincide with the level curves of θ. We now see that the duality condition
implies (∇φ∗ ×∇φ) · (∇θ∗ ×∇θ) = 0.
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5
Conformal inversion

5.1 introduction

It is well known that Maxwell’s equations are invariant under Poincare transfor-
mations P(1, 3). Less familiar is the fact that P(1, 3) is part of a larger group,
the conformal group C(1, 3), under which the source free Maxwell equations are
also invariant, as was discovered by Bateman and Cunningham in 1909 [39–42].
This extra symmetry does not lead to new (unknown) conservation laws, since
in the case of vacuum Maxwell equations the generators of the conformal group
can be expressed analytically in terms of the elements of the Poincare algebra,
all of whose conserved quantities are already known [43,44].
Apart from electrodynamics, conformal transformations play an important role
in general relativity. They are also used in a reformulation of Brans-Dicke theory
as an alternative to general relativity, in which the mass acquires a space-time
dependent variation [45, 46]. This variation depends on the conformal factor Ω
from the definition of conformally related metrics: g′ = Ω2g.
It is noteworthy to remark that in contrast with Poincare symmetry P(1, 3),
requiring conformal symmetry C(1, 3) for a (spin 1) vector field uniquely leads
to Maxwells equations [44].
Besides the Poincare transformations, the conformal group consists of dilations
and special conformal transformations. Here we investigate what can be learned
from this lesser known symmetry.
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5. CONFORMAL INVERSION

5.2 special conformal transformations and conformal inversion

When applying Lie’s approach to symmetries of differential equations (see
appendix A) to source free electrodynamics, you will arrive at the maximal
invariance group of Maxwell equations in vacuum [44]. The elements that
make up this group are duality transformations, dilations, Poincare transfor-
mations and special conformal transformations. The first three of these are
very familiar, therefore we concentrate on the special conformal group. We
would like to warn the reader with more than average knowledge about the
conformal group that it is a mistake to interpret a special conformal trans-
formation as a change from an inertial system to an uniformly accelerating
coordinate system [43,47–49], as used to be done early in the history of conformal
transformations and is still being done every now and then (see for example [50]).

A special conformal transformation (SCT (b)) is given by

xµ → x̃µ = xµ+bµ(xνx
ν)

1+2(bνxν)+(xνxν)(bνbν)

and can be build from a conformal inversion (CI(a)) xµ → x̃µ = a xµ

xνxν

and a translation (T (c)) xµ → x̃µ = xµ + cµ as follows:

SCT (b) = CI(1) ◦ T (b) ◦ CI(1).

In deriving this result, use has been made of lowering indices on trans-
formed coordinates. This is done with the original flat space-time metric tensor,
η: the transformation is thus not to be regarded as a coordinate transformation!
(See the sequel for more on this.) Note that SCT (b) ◦ SCT (a) = SCT (a+ b).

Dilations D(a) : xµ → axµ can be obtained in the same way, but with dif-
ferent parameters: D(a) = CI(a)◦T (0)◦CI(1) = CI(a)◦CI(1). We conclude that
any conformal transformation can be built from Poincare transformations and
conformal inversions, therefore we limit our discussion to CI = CI(1), which
can be regarded as a length inversion operator [43] and is in itself a conformal
transformation: Maxwell’s equations in vacuum are invariant under CI.
Note that conformal inversion is ill-defined for points on the light-cone. A
general discussion of the conformal group should therefore include M4

C , the
compactification of Minkowski space. However, for our discussion it will suffice
to consider M4.
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5.3 prescription for obtaining new fields from old ones

It is of no use to consider a SCT or a CI as a coordinate transformation (as is
often done in a different context), since Maxwell equations would not be valid
in the new system. According to the approach of Lie, the physical content of
the conformal symmetry of vacuum electrodynamics is that every solution can
be transformed into another different solution. In order to arrive at the new
transformed solution from a given one, we proceed as follows.

We start with Minkowski space M4, coordinates (x) and metric tensor

η =


1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 −1

, a copy hereof M̃4, coordinates (x̃) and metric tensor

η̃ = η and a mapping between these manifolds f : (x)→ (x̃) given by x̃µ = xµ

(x·x) .
We use the notation x · x for xνxν . Because η̃ = η we have for the inverse
f−1 : (x̃)→ (x) with xµ = x̃µ

(x̃·x̃) .
We use f to pull back tensor fields to M4. In this way the metric tensor η̄ is
mapped to gµν(x) := (f∗η̃)µν(x) = ∂x̃α

∂xµ (x)∂x̃
β

∂xν (x)η̃αβ . Using ∂x̃α

∂xµ = δαµ
x·x − 2 xαxµ

(x·x)2

we get gµν(x) = 1
(x·x)2 ηµν and this shows that, by definition, f is a conformal

map.
We will regard tensor fields inM4 and therefore use η to raise and lower indices,
not g. We proceed with pulling back a Faraday tensor (3.10) (satisfying Maxwell
equations) (F̃µν) from M̃4.

Fµν(x) := (f∗F̃ )µν(x) = ∂x̃α

∂xµ (x)∂x̃
β

∂xν (x)F̃αβ(x̃(x)) and

Fµν(x) = ηµαηνβFαβ = ηµαηνβ ∂x̃
σ

∂xα
∂x̃κ

∂xβ
ησληκρF̃

λρ(x̃(x)) = |∂(x̃)
∂(x) |∂x

µ

∂x̃λ
∂xν

∂x̃ρ F̃
λρ(x̃(x)).

See appendix B for details of the calculation. These are tensor fields on
M4. Since F̃ is a Faraday tensor on M̃4, the question arises wether F is a
Faraday tensor on M4:

∂λFµν(x) + ∂νFλµ(x) + ∂µFνλ(x) = 0 (3.12) follows easily by reshuffling of
indices, systematic cancellation of terms and using the fact that F̃ is a Faraday
tensor on M̃4. The other pair of equations (3.11) is more intricate, but the result
is ∂µFµν(x) = 0 (see appendix C). So indeed, the pull back of a Faraday tensor
is again a Faraday tensor when the mapping is a conformal inversion. With
this result we end up with a prescription for constructing new Maxwell fields
(vacuum solutions to Maxwell equations) from known ones:
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In Minkowski space M4, coordinates (x) and metric tensor η =


1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 −1

,

we define functions fµ(x) = xµ

(x·x) .

If F is a Faraday tensor, so:

∂λFµν + ∂νFλµ + ∂µFνλ = 0 and ∂µF
µν = 0 (Fµν = ηµαηνβFαβ)

then F ′ is also a Faraday tensor, in which:

F ′µν(x) = (∂µfα)(∂νfβ)Fαβ( x
x·x ) and F ′µν(x) = ηµαηνβF ′αβ(x).

A similar strategy to obtain new solutions from old with the help of conformal
transformations exists in general relativity, see for a general discussion [51] and
more specifically the references therein, such as [52].

5.4 transformation of Riemann-Silberstein vector

In electromagnetic calculations it can be advantageous to work with the
Riemann-Silberstein vector FRS = E + iB. Instead of the Faraday tensor, F , we
should then use the anti-self- or self-dual form, F (asd) or F (sd), of it:

F
(asd)
µν := (Fµν + i

2εµνλρF
λρ) and F

(sd)
µν := (Fµν − i

2εµνλρF
λρ)

Note that F (asd) coincides with F from chapter 3 (3.15).
Because F ′µν(x) = ∂x̃α

∂xµ (x)∂x̃
β

∂xν (x)Fαβ( x
x·x ) and F ′µν(x) = |∂(x̃)

∂(x) |∂x
µ

∂x̃λ
∂xν

∂x̃ρF
λρ( x

x·x ) it
is not immediately clear how to calculate F (asd)′ from F (asd). But with help from
appendix B(4) and B(5) it can be shown that in the case of conformal inversions
(but not in general!)

F ′µν(x) = |∂(x̃)
∂(x) |∂x

µ

∂x̃λ
∂xν

∂x̃ρF
λρ( x

x·x ) = ∂x̃µ

∂xλ
∂x̃ν

∂xρF
λρ( x

x·x ).

Now we have: F
′(asd)
µν = (F ′µν + i

2εµνλρF
′λρ) = ∂x̃α

∂xµ (x)∂x̃
β

∂xν (x)Fαβ( x
x.x ) +

∂x̃α

∂xκ (x)∂x̃
β

∂xσ (x) i2εµναβF
κσ( x

x.x ),

and this leads to (see appendix D):
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5.4. TRANSFORMATION OF RIEMANN-SILBERSTEIN VECTOR

F
′(asd)
µν (x) = ∂x̃α

∂xµ (x)∂x̃
β

∂xν (x)F (sd)
αβ ( x

x·x ),

so the self-dual is transformed into an anti-self-dual form.

And thus: F ′ρσ(asd)(x) = ηρµησνF
′(asd)
µν = ηρµησν ∂x̃

α

∂xµ (x)∂x̃
β

∂xν (x)F (sd)
αβ =

∂x̃α
∂xρ

(x)∂x̃β∂xσ
(x)Fαβ(sd) = ∂x̃ρ

∂xα (x)∂x̃
σ

∂xβ
(x)Fαβ(sd) = |∂(x̃)

∂(x) | ∂x
ρ

∂x̃α
∂xσ

∂x̃β
Fαβ(sd)(

x
x·x )

From this the transformation of the Riemann-Silberstein vector follows:

FRS′(x) = 1
(t2−r2)3 [−(t2− r2)FRS∗( x

x·x ) + 2r× (r×FRS∗( x
x·x ))− 2itr×FRS∗( x

x·x )]

where we have used x = (xµ) = (t, r). From this it can be shown that
applying the transformation twice leads back to the original input field:
CI(CI(E,B)) = (CI)2(E,B) = (E,B). This, of course, also follows immediately
from x′′µ = x′µ

x′·x′ = (x · x)x′µ = xµ. In looking for eigenstates of this conformal
inversion operation, the only possible eigenvalues are +1 and -1. More generally
we have: CI(b) ◦ CI(a) = D( ba ) = CI( 1

a ) ◦ CI( 1
b ).

From the transformation formula it follows that the Poynting vector trans-
forms in a complicated way, but it can be expressed as:

S′ = f1(xµ)S( x
x·x ) + f2(xµ)r.

The precise form of the functions f1 and f2 is not very illuminating.

The nice formula for the transformation of the Riemann-Silberstein vector
under conformal inversion is to be contrasted with the complicated transforma-
tion of this vector under a special conformal transformation. In [44] it is given
as (adapted to our notation and combined to form the RS-vector):

FRS′(xµ) = (1 − 2bµx̃µ + bνb
ν x̃µx̃

µ){(bµx̃µ − 1)2FRS(x̃) + 2(bµx̃µ − 1)(−ib0r̃ ×
FRS(x̃)+it̃b×FRS(x̃)−b(r̃·FRS(x̃))+r̃(b·FRS(x̃)))+b×r̃(−it̃(b·FRS(x̃))+ib0(r̃·
FRS(x̃))+b · r̃×FRS(x̃))+(bt̃− r̃b0)(−ib · r̃×FRS(x̃)− t̃b ·FRS(x̃)+b0r̃ ·FRS(x̃))}

Note that in this formula, x̃ still has to be expressed as function of x. For
(bµ) = (b, 0, 0, 0) this becomes the relatively simple

FRS′(x) =

1
(1+2bt+b2(t2−r2))3 {(1 + bt)2FRS( x

x·x )− b2r(r ·FRS( x
x·x )) + 2ib(1 + bt)r×FRS( x

x·x )}.

Since SCT (b,0) = CI(1) ◦ T (b,0) ◦ CI(1) and the conformal inversion of
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an electromagnetic Hopf knot is again a Hopf knot (see example (5.5.2)
below), the sequence (4.23) from chapter 4 implies that a special conformal
transformation with (bµ) = (b,0) applied to the field {E = x̂,B = ŷ} gives an
electromagnetic Hopf knot when b is imaginary.
Substitution of FRS = x̂+ iŷ and b = i leads to

FRS′ = −1
((t−i)2−r2)3

 x(x+ iy)− (t− i)2 − 2z(t− i)
y(x+ iy)− i(t− i)2 − 2iz(t− i)

(x+ iy)(z + 2(t− i))


whereas CI(1) ◦ T (i,0) ◦ CI(1) applied to FRS = x̂ + iŷ gives (see exam-
ples (5.5.1) and (5.5.2) below)

FRS′ = −1
((t−i)2−r2)3

 (x+ iy)2 − (t− i+ z)2

−i(x+ iy)2 − i(t− i+ z)2

2(x+ iy)(t− i+ z)

.

The difference between these is

−1
((t−i)2−r2)3

 iy(x+ iy)− z2

−ix(x+ iy)− iz2

z(x+ iy)

, which can be written as

−b2
(1+2bt+b2(t2−r2))3 r× (r× FRS).

We conclude that this last term, the general form of which will be

(1− 2bµx̃µ + bνb
ν x̃µx̃

µ)(bt̃− r̃b0)× (b0r̃× FRS( x
x·x )),

is missing from the expression given in [44].

With the missing term included, the transformation formula for SCT (b,0)
becomes:

FRS′(x) = 1
(1+2bt+b2(t2−r2))3 ×

{(1 + bt)2FRS( x
x·x )− b2(r(r ·FRS( x

x·x )) + r× (r×FRS)) + 2ib(1 + bt)r×FRS( x
x·x )},

the correctness of which can be checked with application of SCT (b,0) =
CI(1) ◦ T (b,0) ◦ CI(1) to other examples and various b.

An interesting application is the use of this formula to a constant electric
field E = x̂:

SCT (i,0)

1
0
0

 = − 1
2{FH + F∗H(t→ −t)},
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in which FH is the Riemann-Silberstein vector of the Hopf knot (4.1). Us-
ing example (5.5.2) below we infer that the special conformal transformation
with parameter (i,0) of a constant electric field gives an eigenstate of the
conformal inversion operation with eigenvalue −1. It also implies that ap-
plying an imaginary time translation t → t − i to the conformal inversion of
a constant electric field in the x-direction gives a superposition of two Hopf
knots that, except for a minus sign, are conformal inverted states of each other,
1
2{FH + F∗H(t→ −t)}. At t = 0 this field is given by:

E(0, r) = 1
(1+r2)3

−1− x2 + y2 + z2

2(z − xy)
−2(y + xz)

 , B(0, r) = 0.

The electric field is a Hopf fibration, identical to the one in FH(t = 0).
For arbitrary t, the field can be expressed with the same definitions as in (4.5) as

FRS(t, r) = −(1+r2)3

((t−i)2−r2)3 {E0 + i 4t
1+r2 C0 + t2

(1+r2)3Re(W)}.

The same exercise with a constant magnetic field B = ŷ gives an eigen-
state of conformal inversion with eigenvalue +1, 1

2{FH −F∗H(t→ −t)} . At t = 0
this field is:

E(0, r) = 0, B(0, r) =

 2(xy + z)
1− x2 + y2 − z2

−2(x− yz)

,

so the magnetic field is the same as that of FH(t = 0). For arbitrary t we
now have

FRS(t, r) = −(1+r2)3

((t−i)2−r2)3 i{B0 + i 4t
1+r2 A0 + t2

(1+r2)3 Im(W)}.

In (4.5) we defined five vector fields of which only four had a clear phys-
ical interpretation. It is only now that we can say something about the
interpretation of the other, W:

SCT (i,0)(W) = FH ,

the electromagnetic Hopf knot that was used to define W.
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5.5 examples of conformal inversion

The transformation formula for the Riemann-Silberstein vector will be used to
investigate the conformal inversion of some specific electromagnetic fields.

5.5.1 constant electric and magnetic field

FRS = (x̂+ iŷ) =

1
i
0

.

This leads to

FRS′ = 1
(t2−r2)3

 (x− iy)2 − (t− z)2

i(x− iy)2 + i(t− z)2

−2(x− iy)(t− z)

, or

E′ = 1
(t2−r2)3

x2 − y2 − (z − t)2

2yx
−2x(t− z)

, B′ = 1
(t2−r2)3

 −2xy
x2 − y2 + (t− z)2

2y(t− z)

.

This field has been considered in chapter 4, equation (4.21) (degenerate
Robinson congruence). Applying the imaginary time translation t → t − i to
this Riemann-Silberstein vector gives the electromagnetic Hopf knot of the next
example.

5.5.2 electromagnetic Hopf knot

FRS = 1
((t−i)2−r2)3

 (x− iy)2 − (t− i− z)2

i(x− iy)2 + i(t− i− z)2

−2(x− iy)(t− i− z)

.

A lengthy calculation (see appendix E) results in: FRS′ = −FRS∗(t→ −t).
Notice that this can also be seen as a rotation of 180◦ around the x-axis:
FRS′ = −Rotx̂(π){FRS}.
Thus the conformal inversion of an electromagnetic Hopf knot is a different
electromagnetic Hopf knot. The sum and difference of these two knots is
obviously an eigenstate of conformal inversion.
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5.5.3 plane wave

Example (5.5.1) is the k ↓ 0 limit of the plane wave:

FRS = eik.x

1
i
0

, (kµ) = (k, 0, 0, k), k > 0.

The transformed field is a local duality transformation of the field obtained in
(5.5.1):

FRS′ = eiα

(t2−r2)3

 (x− iy)2 − (t− z)2

i(x− iy)2 + i(t− z)2

−2(x− iy)(t− z)

,

in which α = k t−z
t2−r2 satisfies a "generalization" of the homogeneous wave

equation, (4.12) and (4.13), with β(xµ) = k (t2−r2)4

(t−z)2+x2+y2 .

Of course, the field we started with in (5.5.3) is itself a local duality transfor-
mation of the field we started with in (5.5.1) and in this case α satisfies the
homogeneous wave equation (see the discussion of equations (4.12) and (4.13)).

The field of a charge distribution satisfies vacuum Maxwell’s equations
except on the distribution’s world tube. In this case we can still use the transfor-
mation formula, the resulting field of which will be the field due to a different
charge distribution. Clearly, the transformation of the charge distribution is
defined such that Maxwell’s equations including sources are invariant under
present transformation. For a conformal inversion this does not necessarily lead
to a physical acceptable charge distribution. Here are a few examples.

5.5.4 Coulomb field

FRS(x) = q
r3

xy
z

.

FRS∗( x
x.x ) = q |t

2−r2|3
(t2−r2)r3

xy
z

 = q(t2−r2)2sgn(t2−r2)
r3

xy
z

.
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This gives the dichotomic E′(x) = −q sgn(t2−r2)
r3

xy
z

 and B′ = 0.

This amounts to changing the sign of the charge of the particle within the
particle’s light cone (t2 > r2), or, disregarding the solution for t < 0, it is the field
of a point particle that turns into its anti-particle at t = 0, the effect of which
spreads out with the speed of light.
But a better way to cope with the twofold character of the transformed solution
might be the following. Since the only purpose of the transformation is to
find new solutions to Maxwell’s equations and the transformation at hand is
ill-defined on the light cone, it is allowed to change the sign of the result in any of
the three parts in which the light-cone splits space-time. The resulting field will
still be a solution, with the possible exception of the light-cone, where it might
be ill-defined. If we apply this strategy we end up with the following physically
acceptable possibilities, of which the first two can be extended smoothly across
the light-cone.

- the transformed field is the same as the input field
- the transformation has the effect of charge conjugation q → −q
- at t = 0 the charge of the particle changes sign, which has a spreading effect.

5.5.5 uniformly moving charged particle

(through origin, velocity v, direction x̂)

FRS(x) = q
A‖r−vt‖3

 x− vt
y − ivz
z + ivy

 ,

in which A = γ2(1 − β2sin2ψ)
3
2 and ψ = cos−1(n.vv ) and n a unit vector

from the charge to fieldpoint (r) [29].

This gives FRS′(x) = −sgn(t2 − r2)FRS(x),

and again, this amounts to trading the particle for its antiparticle within
the light cone (centered at the coordinate origin) and no change outside it.
Exactly the same considerations concerning sign changes in part of the solution
apply as in (5.5.4).
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5.5.6 charged particle with uniform acceleration

(acceleration g, direction ẑ)
The case for uniform acceleration is much more difficult to handle, especially due
to retardation effects. This touches the very interesting and conceptually difficult
subject of radiation reaction for charges in uniform acceleration. A lot has been
written about it for over a century, also in the context of general relativity.
Some of the frequently cited authors are Bondi and Gold (1955) [53], Fulton
and Rohrlich (1960) [54], DeWitt and Brehme (1960) [55], Boulware (1980) [56]
and Parrott (2001) [57]. Any two authors agree on some points and disagree on
others. Part of the problem is the interpretation of coordinates and related with
this the correct definition of physical measurable quantities like energy.
Here we follow Lyle (Uniformly Accelerating Charged Particles: A Threat to the
Equivalence Principle [58]), and take his solution (eq. (15.178)-(15.182)) adapted
to our notations and conventions as our input field:

FRS(x) = q
4π

gθ(z+t)
R3

 −xz + iyt
−yz − ixt

− 1
2 (z2 − t2 − x2 − y2 − 1

g2

+ q
4π

2g2δ(z+t)
1+g2(x2+y2)

−x− iy−y + ix
0

,

with θ the Heaviside step function, δ Dirac’s function, g the (con-
stant) acceleration of the particle (taken to be in the +z direction), and
R := g

2 [( 1
g2 + x2 + y2 + z2 − t2)2 − 4(z2 − t2) 1

g2 ]
1
2 .

The charge moves along the hyperbola ( 1
g cosh(gτ), 0, 0, 1

g sinh(gτ)), in which the
parameter τ is eigen time. It is important to note that the step function has
been "put in by hand" in order not to violate causality principles. The Dirac
function is needed for the field to be a solution of Maxwell’s equations on all of
Minkowski space.

For the calculation of the output field we need FRS∗( x
x·x ):

We first calculate the transformed prefactor (skipping all the details) of
the θ part

R3( x
x·x ) = g3

8
1

|t2−r2|3 [( r
2−t2
g2 + 1)2 − 4

g2 (z2 − t2)]
3
2 and note that this equals

the original prefactor with g−1 substituted for g and an additional prefactor
1

|t2−r2|3 :

R3( x
x.x ) = 1

|t2−r2|3 {R(g → g−1)}3.

This is used to show that E′θ(x) = q
sgn(t2−r2)

4π

g−1θ( z+t
t2−r2

)

(R(g−1))3

 xz
yz

1
2 (z2 − t2 − x2 − y2 − g2)


and thus:
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for t2 > r2 : E′θ(x) = −Eθ(x; g → g−1).

Note that in the region z + t > 0 and t2 − r2 > 0 (future pointing light
cone) this amounts to changing the direction of the z-axis (besides the change in
acceleration):

E′θ(x) = Eθ(ẑ → −ẑ; g → g−1).

For t2 < r2 we get a + sign instead of a - sign, but now the field is nonzero only
for z + t < 0. It can be written as:

E′θ(x) = −Eθ(t→ −t, r̂→ −r̂; g → g−1)

A similar calculation leads to the transformed B-fields:

B′θ(x) = q
sgn(t2−r2)

4π

g−1θ( z+t
t2−r2

)

(R(g−1))3

−ytxt
0


and thus:

for t2 > r2 : B′θ(x) = −Bθ(x; g → g−1)

for t2 < r2 we get a + sign instead of a - sign and it is nonzero only for
z + t < 0.

The transformation of the δ-part:

As before, first the prefactor:

We need the following:

δ( z+t
t2−r2 ) = δ( z+t

(t−z)(z+t)−(x2+y2) ) = (x2 + y2)δ(z + t)

and frequently use the fact that f(t2 − r2)δ(z + t) = f(−(x2 + y2))δ(z + t)

in order to arrive at:

2g2

1+g2(x2+y2)δ(z + t)→ 2g2(x2+y2)2

g2+(x2+y2) δ(z + t)

and:

E′δ(x) = q
4π δ(z + t) 2g2

(x2+y2)(g2+x2+y2)

−x−y
0

,
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B′δ(x) = q
4π δ(z + t) 2g2

(x2+y2)(g2+x2+y2)

−yx
0


This expression is unlike the θ part: it is not a simple replacement g → g−1.
But these δ fields are defined only on a hypersurface of measure zero. They
were in the first place defined in such a way that the combined θ and δ fields
are a solution of Maxwell equations on the hypersurface where the δ field is
nonzero, because the θ field alone is only a solution in Minkowski space with
this hypersurface left out.

Note: if we really would like an expression for the δ field like that of the
θ field, it would be:

E′δ(x) = g2

x2+y2 Eδ(x; g → g−1) , B′δ(x) = g2

x2+y2 Bδ(x; g → g−1).

Even if we disregard the δ part of the field, the resulting field is physi-
cally unacceptable. It would be due to an unrealistic charge distribution, with
charges running backwards in time. Of course, this is due to the fact that
conformal inversion can not be considered a valid coordinate transformation.
Like before, artificial changes in the transformed field will result in acceptable
solutions.

5.6 conclusion

We started this chapter in order to find out what can be learned from a symmetry
in the equations of source free electrodynamics that is rarely mentioned and
seems not to be investigated on a large scale: invariance under conformal
transformations. We picked out an ingredient, conformal inversion, of this
symmetry that together with well known Poincare transformations can be used
to build all conformal transformations.

After studying some examples of conformal inversion we are left with the
somewhat surprising result that a Hopf knot turns into a different, but simply
related Hopf knot under this transformation. However, it remains difficult
to attach meaning to the transformed fields in general. For the time being,
perhaps the best we can do is to subscribe the conclusion of Parrott [59], "This
[conformal invariance] rather remarkable mathematical fact seems to have no
obvious physical interpretation.", and consider the nice transformation formula
for the Riemann-Silberstein vector only as a way to generate new solutions from
old ones.
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Appendix A method of Lie

Starting point is the linear differential equation L̂(xµ, ∂µ)ψ(xµ) = 0, in which L̂ is
a linear operator and ψ stands for (ψ1, ..., ψr). First order differential operators,
Q̂A = ξµA(x, ψ)∂µ + ηkA(x, ψ) ∂

∂ψk
, are sought that satisfy the invariance condition

L̂Q̂Aψ(x) = 0 and form a Lie algebra [Q̂A, Q̂B ] = CABCQ̂C . The solution leads
to the invariance algebra for the differential equation, with help of which the
symmetry group can be constructed [44].
This construction clearly shows that related to a symmetry, new solutions can be
obtained from old ones. It is also clear that there exists many more symmetries
not obtainable by this method.

Appendix B frequently used equalities

(1) ∂f
∂xα

= ∂f
∂xβ

∂xβ

∂xα
= ∂

∂xα
(ηβσxσ) ∂f

∂xβ
= ηβα ∂f

∂xβ

This relation would not be valid if raising and lowering is done by g.

(2) |∂(x̃)
∂(x) | = | 1

(x.x)4 | = |
∂(x)
∂(x̃) |−1

This is a long but straightforward calculation.
The Jacobian of the transformation equals −1

(x.x)4 . We use the convention |∂(x̃)
∂(x) | =

absolute value of the Jacobian.

(3) ∂x̃
α

∂xµ
∂x̃β

∂xν ηαβ = |∂(x̃)
∂(x) |

1
2 ηµν and ∂xα

∂x̃µ
∂xβ

∂x̃ν ηαβ = |∂(x)
∂(x̃) |

1
2 ηµν

The second follows from the first by noting the functional similarity be-
tween f and f−1.

(4) ∂x̃µ
∂xν

= ηµλ
∂x̃λ

∂xρ η
ρν = |∂(x̃)

∂(x) |
1
2 ∂x

α

∂x̃µ
∂xβ

∂x̃λ
ηαβ

∂x̃λ

∂xρ η
ρν = |∂(x̃)

∂(x) |
1
2 ∂x

α

∂x̃µ δ
β
ρ ηαβη

ρν =

|∂(x̃)
∂(x) |

1
2 ∂x

α

∂x̃µ δ
ν
α = |∂(x̃)

∂(x) |
1
2 ∂x

ν

∂x̃µ

Use has been made of (1) and (3).

(5) For conformal inversions: ∂x̃µ
∂xν

= ∂x̃ν

∂xµ
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Appendix C is F a Faraday tensor?

We need

(1) ∂µ ∂x
µ

∂x̃λ
= ∂µ( δµλ

(x̃.x̃) − 2 x̃µx̃λ
(x̃.x̃)2 ) = ∂µ( δµλ

(x̃.x̃) − 2xµηλαxα) = ∂λ
1
x̃.x̃ − 8ηλαxα −

2xµηλαδαµ = ∂λ(x.x)− 10ηλαxα = 2xλ − 10ηλαxα = −8ηλαxα

(2) ∂x
µ

∂x̃λ
(∂µ ∂x

ν

∂x̃ρ )F̃λρ = ∂2xν

∂x̃λ∂x̃ρ
F̃λρ = 0

(3) ∂x
µ

∂x̃λ
∂µF̃

λρ = ∂λ̃F̃
λρ = 0

Thus:

∂µ(|∂(x̃)
∂(x) |∂x

µ

∂x̃λ
∂xν

∂x̃ρ F̃
λρ(x̃(x))) = (∂µ|∂(x̃)

∂(x) |)∂x
µ

∂x̃λ
∂xν

∂x̃ρ F̃
λρ(x̃(x)) +

|∂(x̃)
∂(x) |(−8ηλαxα)∂x

ν

∂x̃ρ F̃
λρ(x̃(x)) + 0 + 0

The first part of the first term is:

(∂µ|∂(x̃)
∂(x) |)∂x

µ

∂x̃λ
= (∂µ(x.x)−4)∂x

µ

∂x̃λ
= −8xµ

(x.x)5
∂xµ

∂x̃λ
= −8(x.x)−5ηµαx

α( δµλ
(x̃.x̃) − 2 x̃µx̃λ

(x̃.x̃)2 ) =
−8(x.x)−4(ηλαxα − 2xµx̃λxαηµα)

The last term in brackets is −2xµx̃λxαηµα = −2ηλαxα, and this makes the
first term (in the complete expression) cancel the second in the complete
expression.

Appendix D transformation of self-dual form

We have: F
′(sd)
µν = (f ′µν − i

2εµνλρf
′λρ) = ∂x̃α

∂xµ (x)∂x̃
β

∂xν (x)fαβ(x̃) −
∂x̃α

∂xκ (x)∂x̃
β

∂xσ (x) i2εµναβf
κσ(x̃).

Now ∂x̃α

∂xκ (x)∂x̃
β

∂xσ (x)εαβµν = −εκσαβ |∂(x̃)
∂(x) |∂x

α

∂x̃µ
∂xβ

∂x̃ν = −εκσαβ ∂x̃
α

∂xµ (x)∂x̃
β

∂xν (x).

The second equality follows from appendix B(4)-(5) and the first comes
from the following property of the ε symbol:

Mα
aM

β
b M

γ
cM

δ
d εαβγδ = εabcd(det(M))
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and thus Mα
aM

β
b εαβλρ = εabcd(M−1)cλ(M−1)dρ(det(M)).

The required equality follows from taking Mα
β = ∂x̃α

∂xβ
(so det(M) = −1

(x.x)4 =

−|∂(x̃)
∂(x) |).

Appendix E conformal inversion of electromagnetic Hopf knot

Here we will use the transformation formula for the (anti-) self-dual form of the
electromagnetic field tensor.
We have:

(F (asd)
µν (x)) =


0 Ex + iBx Ey + iBy Ez + iBz

−Ex − iBx 0 −Bz + iEz By − iEy
−Ey − iBy Bz − iEz 0 −Bx + iEx
−Ez − iBz −By + iEy Bx − iEx 0


∗

=

1
((t+i)2−r2)3


0 a2 − d2 −ia2 − id2 −2ad

−a2 + d2 0 2iad a2 + d2

ia2 + id2 −2iad 0 −ia2 + id2

2ad −a2 − d2 ia2 − id2 0


in which a ≡ x+ iy and d ≡ t− z + i.

Thus: (F (asd)
µν ( x

t2−r2 )) = −(t2−r2)
((t−i)2−r2)3


0 a2 − b2 −ia2 − ib2 −2ab

−a2 + b2 0 2iab a2 + b2

ia2 + ib2 −2iab 0 −ia2 + ib2

2ab −a2 − b2 ia2 − ib2 0


in which a ≡ x+ iy and b ≡ t− z + i(t2 − r2).

Using the transformation formula, we now find:

F
′(sd)
0i (x) =

F
(asd)
0i ( x

t2−r2
)

(t2−r2)2 + 2 xixj

(t2−r2)3F
(asd)
0j ( x

t2−r2 )− 2 txα

(t2−r2)3F
(asd)
αi ( x

t2−r2 )

= 1
(t2−r2)3 {(t2 − r2) − 2t2}F (asd)

0i ( x
t2−r2 ) + 2 xixj

(t2−r2)3F
(asd)
0j ( x

t2−r2 ) −
2 txj

(t2−r2)3F
(asd)
ji ( x

t2−r2 )

= −1
(t2−r2)3 {t2 + r2 − 2(xi)2}F (asd)

0i ( x
t2−r2 ) + {2 xixj

(t2−r2)3F
(asd)
0j ( x

t2−r2 ) −
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2 txj

(t2−r2)3F
(asd)
ji ( x

t2−r2 )}j 6=i

Substituting from above we find for the x component of the RS vector:

F
′(sd)
01 (x) = 1

(t2−r2)3 (t2−x2 + y2 + z2) t2−r2
((t−i)2−r2)3 {(x+ iy)2− (t− z+ i(t2− r2))2}−

2 xy
(t2−r2)3

t2−r2
((t−i)2−r2)3 {−i(x+iy)2−i(t−z+i(t2−r2))2}−2 xz

(t2−r2)3
t2−r2

((t−i)2−r2)3 {−2(x+

iy)(t − z + i(t2 − r2))} + 2 ty
(t2−r2)3

t2−r2
((t−i)2−r2)3 {−2i(x + iy)(t − z + i(t2 − r2))} +

2 tz
(t2−r2)3

t2−r2
((t−i)2−r2)3 {−(x+ iy)2 − (t− z + i(t2 − r2))2}

≡ A
(t2−r2)2((t−i)2−r2)3

in which:

A = (t2 − x2 + y2 + z2){(x + iy)2 − (t − z + i(t2 − r2))2} + 2ixy{(x +
iy)2 + (t− z + i(t2 − r2))2}+ 4xz{(x+ iy)(t− z + i(t2 − r2))} − 4ity{(x+ iy)(t−
z + i(t2 − r2))} − 2tz{(x+ iy)2 + (t− z + i(t2 − r2))2}

= (−(t + z)2 + (x + iy)2){t − z + i(t2 − r2)}2 + ((t − z)2 − (x − iy)2)(x +
iy)2 + 4(xz − ity)(x+ iy)(t− z + i(t2 − r2))

(Now use (xz − ity) = 1
2{(x− iy)(t+ z)− (x+ iy)(t− z)})

= (−(t + z)2 + (x + iy)2){t − z + i(t2 − r2)}2 + ((t − z)2 − (x − iy)2)(x +
iy)2 + 2{(x− iy)(t+ z)− (x+ iy)(t− z)}(x+ iy)(t− z + i(t2 − r2))

= {−(t + z)2 + (x + iy)2}{(t − z) + i(t2 − r2)}2 + {(t − z)2 − (x − iy)2}(x +
iy)2+2(x−iy)(t+z)(x+iy){(t−z)+i(t2−r2)}−2(x+iy)2(t−z){(t−z)+i(t2−r2)}

= {−(t+ z)2 + (x+ iy)2}{(t− z) + i(t2− r2)}2 + {−(t− z)2− (x− iy)2}(x+ iy)2 +
2(x− iy)(x+ iy)(t+ z){(t− z) + i(t2 − r2)} − 2(x+ iy)2(t− z)i(t2 − r2)

= −(t+ z)2{(t− z) + i(t2 − r2)}2 + (x+ iy)2{(t− z)2 − (t2 − r2)2}+ {−(t− z)2 −
(x− iy)2}(x+ iy)2 + 2(x− iy)(x+ iy)(t+ z){(t− z) + i(t2 − r2)}

= −(t + z)2{(t − z) + i(t2 − r2)}2 − (x + iy)2(t2 − r2)2 − (x − iy)2(x +
iy)2 + 2(x− iy)(x+ iy)(t+ z){(t− z) + i(t2 − r2)}

= −(t + z)2{(t − z)2 − (t2 − r2)2 + 2i(t − z)(t2 − r2)} − (x + iy)2{(t2 −
r2)2 + (x− iy)2}+ 2(x− iy)(x+ iy)(t+ z)(t− z) + 2i(x− iy)(x+ iy)(t+ z)(t2− r2)

= −(t + z)2{(t − z)2 − (t2 − r2)2} − (x + iy)2{(t2 − r2)2 + (x − iy)2} +
2(x− iy)(x+ iy)(t+ z)(t− z)− 2i(t+ z)(t2 − r2)2
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= (t2− r2)2{(t+ z)2− (x+ iy)2− 2i(t+ z)}− (t− z)2(t+ z)2− (x+ iy)2(x− iy)2 +
2(x2 + y2)(t2 − z2)

= (t2−r2)2{(t+z)2−(x+iy)2−2i(t+z)}−(t2−z2)2−(x2+y2)2+2(x2+y2)(t2−z2)

= (t2 − r2)2{(t+ z)2 − (x+ iy)2 − 2i(t+ z)} − {(t2 − z2)− (x2 + y2)}2

= (t2 − r2)2{−1 + (t+ z)2 − (x+ iy)2 − 2i(t+ z)}

And thus:

(FRS′)x(x) = 1
((t−i)2−r2)3 {−1 + (t+ z)2 − x2 + y2 − 2i(t+ z + xy)}

= −1
((t−i)2−r2)3 {(x+ iy)2 − (t− i+ z)2}

= −(FRS(t→ −t))∗x

The y component is rather simple now:

F
′(sd)
02 (x) = 1

(t2−r2)3 (t2−y2+x2+z2) t2−r2
((t−i)2−r2)3 {−i(x+iy)2−i(t−z+i(t2−r2))2}−

2 xy
(t2−r2)3

t2−r2
((t−i)2−r2)3 {(x+ iy)2− (t− z+ i(t2− r2))2}−2 yz

(t2−r2)3
t2−r2

((t−i)2−r2)3 {−2(x+

iy)(t − z + i(t2 − r2))} + 2 tx
(t2−r2)3

t2−r2
((t−i)2−r2)3 {2i(x + iy)(t − z + i(t2 − r2))} +

2 tz
(t2−r2)3

t2−r2
((t−i)2−r2)3 {i(x+ iy)2 − i(t− z + i(t2 − r2))2}

Notice: F
′(sd)
02 (x) = iF

′(sd)
01 (x → −y, y → x) as can be seen from the ex-

pression for F ′(sd)
01 above.

So: F
′(sd)
02 (x) = −i

((t−i)2−r2)3 {(−y + ix)2 − (t − i + z)2} = −1
((t−i)2−r2)3 {−i(x +

iy)2 − i(t− i+ z)2}

= −(FRS(t→ −t))∗y .

What remains is the z component (in less detail than before):

With the details of F
′(sd)
01 fresh in mind it is not difficult to see the first

step:

F
′(sd)
03 (x) = B

(t2−r2)2((t−i)2−r2)3

in which:
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B = (t2 + x2 + y2 − z2){−2(x + iy)(t − z + i(t2 − r2))} − 2xz{(x + iy)2 −
(t− z + i(t2 − r2)2}+ 2iyz{(x+ iy)2 + (t− z + i(t2 − r2))2}+ 2tx{(x+ iy)2 + (t−
z + i(t2 − r2))2}+ 2ity{−(x+ iy)2 + (t− z + i(t2 − r2))2}

= {t − z + i(t2 − r2)}22(x + iy)(t + z) + (x + iy)22(x − iy)(t − z) − 2(x +
iy)(t− z + i(t2 − r2))(t2 + x2 + y2 − z2)

= {(t− z)2− (t2− r2)2 + 2i(t− z)(t2− r2)}2(x+ iy)(t+ z) + (x+ iy)22(x− iy)(t−
z)− 2(x+ iy)(t− z)(t2 − z2 + x2 + y2)− 2(x+ iy)i(t2 − r2)(t2 − z2 + x2 + y2)

= 2(x+ iy){−(t2−r2)2(t+z)+2i(t−z)(t+z)(t2−r2)− i(t2−r2)(t2−z2 +x2 +y2)}

= 2(x+ iy){−(t2 − r2)2(t+ z) + i(t2 − r2){t2 − z2 − x2 − y2}}

= −2(x+ iy)(t2 − r2)2(t− i+ z)

Thus: F
′(sd)
03 (x) = −1

((t−i)2−r2)3 2(x + iy)(t − i + z) and this agrees with the
previous results. Combining the components:

FRS′(x) = −{FRS(t→ −t)}∗

Q.E.D.
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6
Linked field configurations
and the Penrose transform

This chapter marks the transition from electrodynamics to general relativity.
Here we ’transform’ an electromagnetic Hopf knot into a gravitational Hopf
knot. For this we need the twistor functions leading via the Penrose transform
to respective knots. In a sense these functions are to be considered the same and
were, in present context, first considered in [11]. An article on the main results
of this chapter, J. Swearngin, A. Thompson, A.Wickes, J.W. Dalhuisen, and D.
Bouwmeester, Linked Gravitational Radiation, arXiv preprint arXiv:1302.1431
(2013) has been submitted for publication.

6.1 introduction

In chapter 4 we used Robinson’s theorem to show that there is a correspondence
between a non-null twistor and an electromagnetic Hopf knot. Robinson’s
theorem associates a null electromagnetic field to every geodesic shear free null
congruence. Here we will consider the Penrose transform, a contour integral
formula that associates solutions to the zero rest mass free field equations
with twistor functions that satisfy certain conditions. Since vacuum Maxwell’s
equations form a particular instance of a zero rest mass equation, it must
be possible to arrive at an electromagnetic Hopf knot from a specific twistor
function. Having found this twistor function, it can be used in a modified form
to generate solutions to linearized Einstein’s equations, which forms another
example of a zero rest mass equation. Although this strategy could have been
used with respect to a generalized Robinson’s theorem [60], its solutions depend
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on solving a set of difficult partial differential equations. When using the contour
integral formula the solution comes ’automatically’.

From the discussion of the Kerr theorem in chapter 1 we know that every
analytic geodesic shear-free null congruence is related to a holomorphic twistor
function that is homogeneous of some degree (1.16). Combined with Robinson’s
theorem we thus have a relation between homogeneous holomorphic twistor
functions and solutions to the zero rest mass equation. The precise relation is
encoded in the following contour integral, known as the Penrose transform [27]:

φ̄X′...Y ′(xµ) =
1

2πi

∮
π̄X′ ...π̄Y ′ρxf(Zα)π̄Z′dπ̄Z

′
(6.1)

or

ψA...B(xµ) =
1

2πi

∮
ρx

∂

∂ωA
...

∂

∂ωB
f(Zα)π̄Z′dπ̄Z

′
(6.2)

where the symbol ρx means that the twistors are restricted to correspond
to the line through x = (xµ):

(Zα) = (ωA, π̄X′), ωA = iXAX′ π̄X′ and XAX′ corresponds to x (1.13).

The integrals in equations (6.1) and (6.2) make sense only when the twistor
function has the correct degree of homogeneity (see also the remark concerning
projective twistor space in chapter 1). In equation (6.1) this means -n-2, with n
the number of indices in X ′...Y ′ and in (6.2) this means n-2, now with n the
number of indices in A...B.
That the fields φX′...Y ′ and ψA...B satisfy the zero rest mass free field equation
follows by noting that ∇ X′

A = εX
′Y ′ ∂

∂XAY ′
and ∂

∂XAY ′
ρxf(Zα) = iπ̄Y ′ρx

∂f
∂ωA

: the
resulting expression is a product of an anti-symmetric quantity in two indices
and a symmetric quantity with respect to the same indices. The n=0 case leads
to the wave equation �φ = 0.
From equations (6.1) and (6.2) it follows that there is not a single twistor function
that corresponds to a particular solution to the zero rest mass equation, but
a whole class of twistor functions. This touches upon the subject of sheaf
cohomology [61], that will not be needed for our purposes.
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6.2 examples

Fields that result from the Penrose transform of twistor functions that have the
form (ĀαZα)p(B̄βZβ)q

(C̄αZα)r(D̄βZβ)s
(p, q, r, s ∈ N ∪ {0}), are called elementary states.

We will consider three examples, n=0, n=1 and n=2, in which in the first example
we use the simplest possible twistor function in (6.1) leading to a non-trivial
elementary state. In the two following examples we then alter the twistor
function minimally, by raising one of the powers in the denominator, in order
to satisfy the homogeneity requirements. In a quantum context this could be
seen as a spin or helicity raising operation. In a sense the resulting fields can be
considered as generalizations of each other.

6.2.1 wave equation

(n=0) and we take f(Zα) = 1
(ĀαZα)(B̄βZβ)

Āα = (AA, C̄X
′
) and B̄α = (BA, D̄X′) are fixed dual twistors.

This leads to the integral φ̄(xµ) = 1
2πi

∮
1

(ᾱX′ π̄X′ )(β̄
Y ′ π̄Y ′ )

π̄Z′dπ̄
Z′ ,

where ᾱX′ = iAAX
AX′ + C̄X

′ and β̄Y
′

= iBAX
AY ′ + D̄Y ′ .

Suppose that Āα and B̄α are such that ᾱX
′ and β̄X

′ provide a basis in
(conjugate) spin-space. The poles in the integral are then different and we can
write π̄Z′ = ᾱZ′ + zβ̄Z′ and dπ̄Z

′
= β̄Z

′
dz for some complex z. Choosing the

contour to enclose only the pole with respect to Āα we now have

φ̄(xµ) = 1
2πi

∮
dz

(ᾱX′ β̄X′ )z
= 1

ᾱX′ β̄X′
= 2

AABA(xµ−yµ)(xµ−yµ)
.

Where the last equality follows if we assume in addition that there exists
a y ∈M4

C corresponding to Y AX′ such that

C̄X
′

= −iY AX′AA and D̄X′ = −iY AX′BA.

(Compare the discussion of the incidence relation (1.12); note that above
equation implies CA = iȲ AX

′
ĀX′ .)

This assumption is equivalent to AαB̄α = iBA(Ȳ AX
′ − Y AX′)ĀX′ and in case the

two twistors are null, this equals 0 and then it implies that the corresponding
geodesics have one point in M4 in common.
We can solve the two equations to obtain an expression for Y AX′ :
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Y AX
′

= iA
AD̄X

′
−BAC̄X

′

AABA

In the calculation of the last expression of φ̄ the following identity is use-
ful:

ABB
A −AABB = δ A

B ACB
C .

6.2.2 source-free electrodynamics

(n=1) and we take f(Zα) = 1
(ĀαZα)(B̄βZβ)3

We now have to compute

φ̄X′Y ′(xµ) = 1
2πi

∮
π̄X′ π̄Y ′ρx

1
(ĀαZα)(B̄βZβ)3

π̄Z′dπ̄
Z′ ,

and with the same assumptions for Aα and Bα as in the previous exam-
ple this leads to

φ̄X′Y ′(xµ) = 1
2πi

∮
(ᾱX′ + β̄X′z)(ᾱY ′ + β̄Y ′z) 1

z(ᾱZ′ β̄Z′ )
3 dz =

( 2
AABA(xµ−yµ)(xµ−yµ)

)3ᾱX′ ᾱY ′ ,

or, for comparison with equation (4.7):

φAB(xµ) = ( 2
ĀX′ B̄

X′ (xµ−ȳµ)(xµ−ȳµ)
)3αAαB .

If we now take (Aα) = (0, 1√
2
, 0, 1) we get (αA) = −i√

2
(−t + z − i, x + iy).

Comparison with equation (4.6) shows that the solution belongs to the same
class of electromagnetic Hopf knots as the one given in equation (4.1), which
will be reproduced exactly for (Bα) = (−2√

2
, b√

2
,−2, b) and arbitrary b. With

present choices of (Aα) and (Bα) we have (yµ) = (i, 0, 0, 0), ĀX′B̄X
′

= 2 and
ᾱX′ β̄

X′(xµ) 6= 0, so that indeed ᾱX
′ and β̄X

′ do form a basis for all (xµ).
A possible choice for b would be -2 and we know from chapter 4 that in this case
B corresponds via Robinson’s theorem with the class of which a rotated version
of equation (4.1) is a representative.

Starting with the twistor (Aα) = (0, 1√
2
, 0, 1), in chapter 4 we had to solve

partial differential equations for g(xµ) in order to arrive at a solution of
Maxwell’s equations. Here we start with the same twistor A and have to find
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another twistor B algebraically. In chapter 4 we could solve the problem easily
because we knew what to look for, otherwise it would have been a hard exercise.
The Penrose transform makes this exercise much simpler.

In the following example we will use (Aα) = (i, 1, i
√

2,
√

2) and therefore
we note here that a representative of the class that Robinson’s theorem associates
with this twistor is given by a rotated version of the field (4.1) (rotation around
x-axis such that the z-axis turns into the y-axis):

FRS(t, r) =
1

((t− i)2 − r2)3

 (x− iz)2 − (t− i+ y)2

2(x− iz)(t− i+ y)
i(x− iz)2 + i(t− i+ y)2

 . (6.3)

When combined with (Bα) = (1
2 )

2
3 (1, i,

√
2, i
√

2) the Penrose transform also leads
to this field. The interchange of A and B would lead to a 1800 rotation around
the z-axis of the field (6.3).

Present discussion shows that an electromagnetic Hopf knot is to be con-
sidered as what is known in the twistor literature as an elementary state.

6.2.3 linearized Einstein equation

(n=2) and we take f(Zα) = 1
(ĀαZα)(B̄βZβ)5

In chapter 3 we showed how the spinor form of Maxwell’s equations can
be derived. A similar but much more complicated analysis applied to Einstein’s
equations lead to the following result [62]. The spinor form of the Riemann
tensor is (a short mathematical introduction to the tensors used here is given in
section 7.2)

RAW ′BX′CY ′DZ′ =

ΦABCDεW ′X′εY ′Z′ + Φ̄W ′X′Y ′Z′εABεCD +
ΨABY ′Z′εW ′X′εCD + Ψ̄CDW ′X′εABεY ′Z′ +
2Λ(εACεBDεW ′X′εY ′Z′ + εABεCDεW ′Z′εX′Y ′),

in which

ΦABCDεW ′X′εY ′Z′ + Φ̄W ′X′Y ′Z′εABεCD corresponds to the Weyl tensor Cκλµν ,
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−2ΨABW ′X′ corresponds to the trace free Ricci tensor Rµν − 1
4Rgµν and

24Λ corresponds to the Ricci scalar R.

From this we see that in vacuum the Einstein field equations are simply
ΨABW ′X′ = 0 = Λ. The Bianchi identity in vacuum gives ∇AX′ΦABCD = 0.
It is important to note that in a curved space-time the form (1.4) for the
Infeld van der Waerden symbols do not solve the requirement (1.3). We first
need the metric before we can find a suitable representation for the symbols.
Therefore we cannot solve the vacuum Bianchi identity for ΦABCD without
further assumptions. But, in the weak field limit (or linearized Einstein theory)
we have ∇AX′φABCD = 0 for the linearized Weyl spinor φABCD and the usual
Minkowski space form of the differential operators. Conversely, in vacuum, a
solution to this zero rest mass field equation defines a linearized Weyl tensor [63].

In electrodynamics, the sources are represented by the four-current (jµ)
and the field degrees of freedom by the Faraday tensor (Fµν). The analogues
in general relativity are the energy-momentum tensor (Tµν) for the sources and
the Weyl tensor (Cabcd) for the field. The Weyl tensor can be regarded as the
Riemann tensor with the influences of the sources "taken out of it". So, when
classifying gravitational fields, it is natural to look at the Weyl tensor, not the
Riemann tensor. The Weyl spinor, the spinor equivalent of the Weyl tensor, is
completely symmetric. Its principal spinors define four principal null directions
that are used to classify fields.

There exists a striking algebraic similarity between the electric (Ei ≡ F0i)
and magnetic (Bi ≡ ∗F0i) part of a Faraday tensor in Maxwell theory and the
electric part (Eij ≡ Ci0j0) and magnetic part (Bij ≡ −∗Ci0j0) of the Weyl tensor
in general relativity [64, 65] .
Since Eijξj measures the relative (tidal) acceleration between to points separated
by a small vector ξ, we can interpret the electric part of the Weyl tensor as a
tidal field. The matrix (Eij) is traceless and symmetric, and can therefore be
characterized by its eigenvalues and eigenvectors, the integral curves of which
are called tendex lines [66] and can be considered the gravitational analogue of
electric field lines. An extended object placed in the field Eij will be stretched in
the direction of the lines corresponding to positive eigenvalues and compressed
along the curves corresponding to negative eigenvalues. The strength of this
effect is related to the eigenvalue.

The interpretation of the magnetic part of the Weyl tensor is as a frame-
drag field (possibly a misnomer, see [67,68]). A gyroscope at the tip of the vector
ξ will precess with angular velocity Bijξ

j relative to inertial frames at the tail.
The matrix (Bij) is also traceless and symmetric and the integral curves of the
eigenvectors are now called vortex lines [66].

Continuing now the n=2 example, with the help of the previous examples
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it can be seen immediately that φABCD(xµ) ∝ αAαBαCαD. There is only one
fourfold degenerate principal null direction. In the Petrov classification of
gravitational fields this corresponds to a type N field (see section 7.6).
For (Aα) = (i, 1, i

√
2,
√

2) and (Bα) = ( 1
2 )

2
3 (1, i,

√
2, i
√

2) the calculation leads
to the eigenvalues −a, 0 and a for both the electric part and the magnetic part
of the Weyl tensor. The corresponding (eigen) vector fields will be denoted by
E−,E0,E+ and B−,B0,B+ respectively, and we will use the Riemann-Silberstein
like combination FE ≡ E− + iE+ and FB ≡ B− + iB+.

A detailed calculation shows:

a(xµ) = (1+x2+(y+t)2+z2)2

2
2
3 ((t2−r2)2+1+2(t2+r2))

5
2
,

E0(xµ) = B0(xµ) ∝

 2(x(t+ y) + z)
1 + (t+ y)2 − x2 − z2

2(z(t+ y)− x)


and

FE(xµ) = ei
π
4 FB(xµ) ∝ eiθFRS(6.3)(x

µ)

Here, FRS(6.3) is given by (6.3) and θ(xµ) = Arg(
√
−(t− i)2 + r2 ). Both

proportionality factors are real constants, not functions and can simultaneously
be made equal to unity by multiplying the twistor (Bα) with a suitable factor.
This then changes the eigenvalue field accordingly.

We thus have a solution to linearized Einstein’s equations in which five
Hopf knots appear. Two perpendicular tendex (or tidal) knots and two perpen-
dicular vortex (or frame drag) knots. These two sets are rotated 45◦ with respect
to each other. Perpendicular to these sets we have another Hopf structure, at
every point defining the direction where no stretching, no compression and no
precession occurs. Only this last structure moves without distortion.
At t = 0 the two tendex Hopf knots (one indicating compression, the other
stretching) are exactly aligned with the electric and magnetic fields of the
electromagnetic Hopf knot (6.3). At other times the difference, apart from the
proportionality constant, is a local duality transformation between the corre-
sponding Riemann-Silberstein vectors. Both elementary states were obtained
from the Penrose transform using the same twistors (Aα) and (Bα) in a slightly
different function, to meet the requirements of homogeneity. Note that the fields
E0 and B0 are proportional to the Poynting vector corresponding to the field
(6.3). In analogy with electrodynamics, in [64] a super Poynting vector is defined
that in present context is aligned with E0(xµ) and B0(xµ). It is thus possible to
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6. LINKED FIELD CONFIGURATIONS AND THE PENROSE TRANSFORM

describe this gravitational Hopf knot or "linked gravitational radiation" in terms
of the electromagnetic Hopf knot [10].

Note that θ(xµ) = arctan{ 1
2t (t

2 − r2 − 1 +
√

(t2 − r2)2 + 1 + 2(t2 + r2))}
and does not satisfy the generalized wave equation (4.12) and (4.13): as expected
FE is not a solution of Maxwell’s equations.

Although in general relativity the interpretation of quantities that appear
in equations has to be done very carefully due to diffeomorphism invariance
of the theory [58, 69], it is important to realize that according to a valid inter-
pretation of linearized general relativity the physical fields can be considered as
Lorentz tensors on Minkowski (flat) space-time [68]. A nice feature, since every
physicists has gained some intuition in this respect. This changes dramatically
when considering the full nonlinear equations of Einstein’s theory, and some of
the problems that this gives rise to will be discussed in later chapters.
Since in linearized general relativity the fields can be considered as fields in
Minkowski space, it is still possible to construct the Riemann-Silberstein like
structures appearing in present section, in the obvious way. In the full theory
however one should be more careful. Now one needs for its definition a time-like
congruence, or, what amounts to the same, two real null congruences.

As a final remark, we mention that besides the aforementioned similarity
between the Faraday tensor in electrodynamics and the Weyl tensor in general
relativity, there is another electromagnetic analogy in linearized general relativ-
ity [70]. Under certain restrictions this analogy can for instance be used to predict
the motion of test particles in a gravitational field, based on the knowledge of
the corresponding problem in electrodynamics. With the help of this analogy it
is however not possible to simply transform a solution of Maxwell’s equations
into a solution of linearized Einstein equations. It is therefore of no help in our
endeavour to ’generalize’ an ectromagnetic Hopf knot to a gravitational one.
A lucid account of this and the previous analogy, including a discussion of their
limitations, is to be found in [71, 72].
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7
Review of tetrad formalism

in general relativity

7.1 introduction

Einstein’s equations, Rµν − 1
2Rgµν = κTµν , relate the energy-momentum tensor

of sources with the geometry of space-time. It tells us how matter curves
space-time and contains the equations of motion of the matter via Bianchi’s
identity. It looks deceptively simple: when realizing that we need hundreds of
pages to write them out in terms of components of the metric tensor and its
derivatives, it comes as no surprise that only very few exact solutions are known
that have physical, astronomical or cosmological relevance. Karl Schwarzschild
found a spherical symmetric static solution shortly after the birth of general
relativity. His solution describes the space-time of non-rotating spherically
symmetric matter distributions, for example a non-rotating star or black hole.
More relevant to astronomy is the solution that includes the effect of rotation,
the Kerr solution, valid for rotating black holes or as an approximation to the
exterior solution outside an axially symmetric rotating mass distribution [73].
This was found by Roy Kerr (and independently by Ezra Newman) in 1963: it
took almost 50 years just to include angular momentum! This solution is more
mysterious than Schwarzschild’s in that still, after many years of unsuccessful
search, no acceptable interior solution has been found that matches the exterior
solution [74] (however, for a different view see [75]). According to Kerr this
interior solution will probably never be found [76]. In addition, the maximal
analytic extension contains closed timelike curves [77], which form a problem
for causality. An exact solution that is important in cosmology is the Friedmann-
Lemaitre-Robertson-Walker solution describing a spatially homogeneous and
isotropic universe.
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Obtaining exact solutions of Einstein’s equations has become a field of re-
search in its own. In general relativity, a theory where experiments are extremely
difficult, where it is not immediately clear what coordinates mean and where
you have to think hard how to define the most basic physical quantities, it is
important to think about solutions that have no counterpart in the world around
us, the category that contains almost all known exact solutions.
Confronted with the complexity of the field equations of general relativity, there
are essentially three options to proceed. We could consider weak fields only
and linearize the theory, resulting in a theory that has some similarities with
electrodynamics. We could turn to numerics and, not surprisingly in a computer
dominated era, numerical relativity has become an important branch of Einstein’s
theory in the last decade. Finally, we can try to solve the equations analytically
with the help of assumptions, like symmetry, that reduces the complexity.

In chapter 8 and chapter 10 we will consider exact solutions. Here we re-
view the mathematical notions that are needed in those chapters. Reference [12]
comes closest to our preferences with respect to notation and signature choices
and can therefore be best consulted for additional information. In geometrized
units with 4πG ≡ 1, Einstein’s equations read Rµν − 1

2Rgµν = 2Tµν . Here, as
elsewhere, c ≡ 1.

7.2 differential geometric notations

In chapter 1 we considered null tetrads in Minkowski space. In general relativity
Minkowski space figures as tangent space to the curved space-time. It is one
of our goals in this mathematical intermezzo to introduce the Newman-Penrose
formalism, a specific example of the tetrad formalism in curved space-time.

A basis of the tangent space defined by local coordinates (x) of the space-
time manifold is {eµ} ≡ {e0, e1, e2, e3}, the dual basis is the collection of
one-forms (or linear functionals or covariant vectors) {eµ}:

eµ(eν) = eµ · eν = δµν

The following notation is often used: eµ = ∂µ and eµ = dxµ.

Any other n linearly independent tangent vectors {eα} define a different
basis related to the coordinate basis in the following manner:
eα = M µ

α ∂µ.

The dual basis to this is {eα}, eα = Mα
µdx

µ.
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The matrices (M µ
α ) and (Mα

µ) are inverses of each other, the upper index
labeling different elements in one row (the column index). Whenever {eα} comes
from a different basis (x̃), the matrix elements are

M µ
α = ∂xµ

∂x̃α .

Of course, the aforementioned pointwise definitions are valid throughout
the manifold, thus defining vector fields.

7.2.1 tensors

Let Tp denote the tangent space at point p and T ∗p the cotangent space at p. Define

Πs
r = T ∗p × ...× T ∗p × Tp × ...× Tp,

in which the cotangent space appears r times and the tangent space
s times. A tensor of type (r, s) is a multilinear mapping from Πs

r to
R : T(ω1, ..., ωr,V1, ...,Vs) ∈ R. The space of these tensors is denoted

T rs(p) = Tp ⊗ ...⊗ Tp ⊗ T ∗p ⊗ ...⊗ T ∗p ,

in which the tangent space appears r times and the cotangent space s times (note
the interchange of r and s). Clearly, the collection {eα1 ⊗ ...⊗ eαr ⊗ eβ1 ⊗ ...⊗ eβs }
is a basis for T rs.

7.2.2 forms

An important subclass of T rs consists of antisymmetric tensors. Combined with
functions and dual vectors they constitute the class of forms, for which a calculus
can be developed that serves as a convenient instrument for calculations in
general relativity.
A zero-form, f, is just a function from the manifold into the reals. One-forms are
linear combinations of dual basis vectors. A s-form is a totally antisymmetric
tensor of type (0, s). We can construct a s-form from any tensor of type (0, s)
with aid of the alternating operator Â:

ÂT(V1, ...,Vs) = 1
s!

∑
j1,...,js

sgn(j1, ..., js)T(Vj1 , ...,Vjs).

The n!
s!(n−s)! dimensional vector space of s-forms is denoted ΛsT ∗p . A basis
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for this vector space can be obtained from a basis of T 0
s:

{Â(eα1 ⊗ ...⊗ eαs)} ≡ {eα1 ∧ ... ∧ eαs | α1 > ... > αs}.

This defines the exterior or wedge product of one-forms.
The exterior differential operator, d, is defined for forms. For a zero-form f , df
is a one-form:

df(V) = df ·V = V(f).

In a local coordinate basis: df = f,µdx
µ.

The abstract definition for the other forms comes down to, in a local coor-
dinate basis:

dA = d(Aµ1...µpdx
µ1 ∧ ... ∧ dxµp) = Aµ1...µp,νdx

ν ∧ dxµ1 ∧ ... ∧ dxµp .

This rule is consistent with an important fact that is not a result of the foregoing,
but part of the abstract definition of exterior differentiation: d(dA) = 0.

7.2.3 covariant differentiation

We define an affine (or Koszul) connection ∇ in such a way that for any vector
field V, ∇V maps another vector field W into the vector field ∇VW. We require
the following conditions (with U an arbitrary vector field):

∇(fV+gW)U = f∇VU + g∇WU

∇V(W + U) = ∇VW +∇VU

∇Vf = V(f)

∇V(fW) = (∇Vf)W + f∇VW

and define ∇W to be the following tensor field of type (1,1): ∇W(V) = ∇VW.

For higher order tensors we demand the Leibniz rule to hold.

In terms of an arbitrary dual basis {eα} and {eα}, since ∇eβeα is a vector
field:

∇eβeα = ωγα(eβ)eγ ≡ ωγαβeγ ,
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in which ωγα are one-forms. Thus a connection is specified by 42 one-
forms ωγα or by 43 scalar fields ωγαβ . We write Γλµν for ωλµν and Wλ

;µ for
(∇∂µW)λ in case a local coordinate basis is used. We thus arrive, for example,
at the familiar

Wλ
;µ = Wλ

,µ + ΓλνµW
ν . (7.1)

We will be concerned with connections that are derived from a metric,

Γλµν = 1
2g
λκ(∂gκµ∂xν + ∂gκν

∂xµ −
∂gµν
∂xκ )

and for these the torsion tensor vanishes: Tλµν = −(Γλµν − Γλνµ) = 0.

The connection coefficients are then called the Christoffel symbols and a
vanishing torsion means a symmetric connection.

7.2.4 parallel propagation and geodesics

A vector V is parallely propagated along a curve c if

V µ;ν
dxν(c(t))

dt δt = 0.

A curve is a geodesic when the parallel propagation of its tangent vector
is a multiple of itself, the proportionality possibly changing from point to point:

d2xµ

dt2 + Γµλκ
dxλ

dt
dxκ

dt = f(t)dx
µ

dt .

If we reparametrize the geodesic according to s =
∫ t
dt
′′
e

R t′′ dt′f(t
′
) this

becomes

d2xµ

ds2 + Γµλκ
dxλ

ds
dxκ

ds = 0. In this case s is called an affine parameter.

Written in terms of the ’four velocity’ uµ = dxµ

ds we do get

uµ;λu
λ = 0.
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7.2.5 Riemann tensor, Ricci tensor, Bianchi identity and more

In general the Riemann tensor, R, is defined by

R(V,W) = ∇V∇W −∇W∇V −∇[V,W].

We will use a basis, and for a coordinate basis this definition boils down
to:

Rκλµν = Γκλν,µ − Γκλµ,ν + ΓκσµΓσλν − ΓκσνΓσλµ.

The Ricci tensor is defined by Rµν = Rλµλν , and the scalar curvature is
defined as R = Rµµ.

Some important formula that can be derived with the help of the defini-
tions stated thus far are:

V µ;κ;λ − V
µ
;λ;κ = −RµνκλV ν (Ricci identity) and obvious generalizations

gµν;λ = 0

Rνλκµ +Rνκµλ +Rνµλκ = 0 (cyclic identity)

Rνλκµ;σ +Rνλµσ;κ +Rνλσκ;µ = 0 (or Rνλ[κµ;σ] = 0) (Bianchi identity)

Rµνκλ +Rνµκλ = 0, Rµνκλ +Rµνλκ = 0, Rµνκλ = Rκλµν , Rµν = Rνµ

From the symmetries of the Riemann tensor we conclude that it contains
20 independent components, whereas the Ricci tensor contains 10 independent
components.

7.2.6 Einstein tensor and Weyl tensor

The Einstein tensor G is defined as:

Gµν = Rµν − 1
2gµνR

and from the Bianchi identity it follows that

Gµν;µ = 0,

an identity with important implications for the structure of general relativ-
ity. The Weyl tensor C is defined as follows
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Cµνκλ = Rµνκλ − 1
2 (gµκRνλ + gνλRµκ − gνκRµλ − gµλRνκ) + 1

6 (gµκgνλ − gµλgνκ)R.

It shares all the symmetries of the Riemann tensor, and in addition satis-
fies gνλCµνκλ = 0.

As can be seen from the symmetries it satisfies, the number of indepen-
dent components is 10. The most important property of this tensor is the
invariance under conformal transformations of Cµνκλ. In vacuum it coincides
with the Riemann tensor.

7.3 tetrad formalism

The tetrad formalism can be used as a mathematical tool by which vector fields
with complex functional dependence become the basis vector fields in which all
other tensor fields are expressed.
We consider four contravariant vector fields that in every point of the manifold
form a basis, called a vierbein or a tetrad:

{e(k)} ≡ {e(1), e(2), e(3), e(4)}

with e µ
(k) the components along the (coordinate) basis {eµ}:

e(k) = e µ
(k) eµ.

For tetrad and tetrad components we will use round brackets around indices.
The discussion somewhat parallels the introduction of tetrads in chapter 1. There
is indeed a very elegant spinor alternative to all that follows. Here we opt for
the more conventional route, that, except perhaps for the expert, is more intuitive.

Components of the corresponding covariant vector fields are

e(k)µ = gµνe ν
(k) .

We consider tetrads for which

g(e(k), e(l)) = e µ
(k) e(l)µ ≡ η(k)(l) form a constant (symmetric) matrix with

inverse [η(k)(l)].

The components of the tetrad do form a matrix [e µ
(k) ]. We define the in-

verse to be [e(k)
µ]:
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e µ
(k) e

(l)
µ = δ

(l)
(k) and e µ

(k) e
(k)
ν = δµν .

Thus the upper index labels different elements in a row (the column in-
dex). It is easy to check the following rules:

η(k)(l)e
(k)
µ = e(l)µ

η(k)(l)e(k)µ = e(l)
µ

e(k)µe
(k)
ν = gµν

A(k) = e(k)µA
µ = e µ

(k) Aµ

A(k) = η(k)(l)A(l) = e(k)
µAµ = e(k)µAµ are the tetrad components of the

vector field A: A = A(k)e(k)

Aµ = e µ
(k) A

(k) = e(k)µA(k)

T(k)(l) = e µ
(k) e ν

(l) Tµν = e µ
(k) Tµ(l)

etc.

So, for tetrad components η plays the role of the metric tensor, and we can
change from tetrad indices to tensor indices and vice versa with the help of the
matrices formed by the components of the tetrad along the original basis. These
matrices now play the role of (M) in the beginning of section 7.2. Tetrads are
defined independent of coordinates. Tetrad components of tensors therefore
do not change when a coordinate transformation is applied: tetrad compo-
nents of tensors are scalar fields. Especially when one learned about tensors
from the older literature, often still used by physicists, in which a tensor is
defined by its transformation properties, this fact has to be remembered carefully.

When the basis {eµ} is a coordinate basis it is also clear that

e(k) = e µ
(k) ∂µ

A(k),(l) = e µ
(l) ∂µA(k) = ... = A(k)|(l) + γ(m)(k)(l)A

(m) in which

γ(m)(k)(l) = −γ(k)(m)(l) ≡ e µ
(m)e

ν
(l) e(k)µ;ν are called the Ricci rotation coeffi-

cients

A(k)|(l) ≡ e µ
(k) e ν

(l) Aµ;ν is called the intrinsic derivative.

Thus, from comparison with (7.1): the intrinsic derivative takes over the role
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of covariant derivative, and

γ
(m)

(k)(l) comes instead of Γλµν .

Calculation of the Ricci rotation coefficients do not require knowledge of
the Christoffel symbols, because of:

γ(k)(l)(m) = 1
2 [λ(k)(l)(m) + λ(m)(k)(l) − λ(l)(m)(k)]

with λ(k)(l)(m) ≡ [e(l)µ,ν − e(l)ν,µ]e µ
(k) e ν

(m) in which only partial, not covari-
ant, derivatives appear.

7.4 Newman-Penrose formalism

The Newman-Penrose formalism [78] results from a particular choice for the
matrix (η(k)(l)), namely the form (1.1). We take the tetrad {e(k)} to be {l,n,m, m̄}
with the first pair being real null vectors and the last pair complex conjugate
null vectors. We require the following relations to hold:

l · l = n · n = m ·m = m̄ · m̄ = 0 null condition

l ·m = l · m̄ = n ·m = n · m̄ = 0 orthogonality condition

l · n = 1 = −m · m̄ normalization condition

Then the dual tetrad basis {e(k)} is {n, l,−m̄,−m}, and

[η(k)(l)] = [η(k)(l)] =


0 1 0 0
1 0 0 0
0 0 0 −1
0 0 −1 0

 (7.2)

When considering directional derivatives, we write {D,∆, δ, δ∗} for {l,n,m, m̄}.

The Ricci rotation coefficients are now called spin coefficients:

κ = γ(3)(1)(1)

σ = γ(3)(1)(3)

λ = γ(2)(4)(4)

ν = γ(2)(4)(2)
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ρ = γ(3)(1)(4)

µ = γ(2)(4)(3)

τ = γ(3)(1)(2)

π = γ(2)(4)(1)

ε = 1
2 (γ(2)(1)(1) + γ(3)(4)(1))

γ = 1
2 (γ(2)(1)(2) + γ(3)(4)(2))

α = 1
2 (γ(2)(1)(4) + γ(3)(4)(4))

β = 1
2 (γ(2)(1)(3) + γ(3)(4)(3))

and the complex conjugates will be arrived at when interchanging the la-
bels (3) and (4).

The equations of the Newman-Penrose formalism consist of the commuta-
tion relations for the tetrad seen as derivatives, the Ricci identities, the so called
eliminant relations and the Bianchi identities. These equations, some real and
some complex, stand in the place of Einstein’s equations and will be given in
chapter 10, where we try to solve them simultaneously in case the curvature of
space-time is due to an electromagnetic Hopf knot.

7.4.1 Weyl tensor

It is a time consuming but otherwise simple exercise to show that the ten
independent components of the Weyl tensor in the present formalism can be
represented by the complex scalar fields Ψ0, ...,Ψ4:

Ψ0 ≡ −C(1)(3)(1)(3) = −Cκλµν lκmλlµmν

Ψ1 ≡ −C(1)(2)(1)(3) = −Cκλµν lκnλlµmν

Ψ2 ≡ −C(1)(3)(4)(2) = −Cκλµν lκmλm̄µnν

Ψ3 ≡ −C(1)(2)(4)(2) = −Cκλµν lκnλm̄µnlν

Ψ4 ≡ −C(2)(4)(2)(4) = −Cκλµνnκm̄λnµm̄ν

Note that there is no need for parentheses around indices of the Ψ’s since,
besides the fact that they are only defined for the tetrad formalism, the indices
do not refer to a decomposition with respect to basis vectors. The explicit form
of the Weyl tensor in a coordinate basis in terms of these complex scalar fields
is the daunting expression:

Cκλµν = −(Ψ2 + Ψ∗2)[{lκnλlµnν}+ {mκm̄λmµm̄ν}] + (Ψ2 −Ψ∗2){lκnλmµm̄ν}+
2Re{−Ψ0{nκm̄λnµm̄ν} − Ψ4{lκmλlµmν} + Ψ2{lκmλnµm̄ν} − Ψ1[{lκnλnµm̄ν} +
{nκκm̄λm̄µmν}] + Ψ3[{lκnλlµmν} − {lκmλmµm̄ν}]}
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in which {lκnλmµm̄ν} stands for

lκnλmµm̄ν − lκnλm̄µmν − nκlλmµm̄ν + nκlλm̄µmν + mκm̄λlµnν − mκm̄λnµlν −
m̄κmλlµnν + m̄κmλnµlν .

This time, simply by looking at the expression above, one convinces one-
self of the following form for all the distinct tetrad components of the Weyl
tensor in terms of the Ψ’s:

C(1)(3)(1)(4) = C(2)(3)(2)(4) = C(1)(3)(3)(2) = C(1)(4)(4)(2) = 0
C(1)(3)(3)(4) = Ψ1

C(2)(4)(4)(3) = Ψ3

C(1)(2)(1)(2) = C(3)(4)(3)(4) = −(Ψ2 + Ψ∗2)
C(1)(2)(3)(4) = (Ψ2 −Ψ∗2)

supplemented with the defining equations for the Ψ’s, and the complex
conjugates of all these (interchanging labels (3) and (4)). The equations that
follow for the complex scalar fields, as well as those of the following subsection,
as a result of the equations of general relativity will be given in chapter 10.

7.4.2 Ricci tensor

We have seen that the Ricci tensor contains ten independent components. In
the Newman-Penrose formalism the tetrad components of this tensor will be
represented in terms of four real and three complex scalar fields as follows:

Λ = 1
24R = 1

12 (R(1)(2) −R(3)(4))
Φ00 = − 1

2R(1)(1)

Φ11 = − 1
4 (R(1)(2) +R(3)(4))

Φ22 = − 1
2R(2)(2)

Φ01 = − 1
2R(1)(3) (and Φ10 = − 1

2R(1)(4))
Φ02 = − 1

2R(3)(3) (and Φ20 = − 1
2R(4)(4))

Φ12 = − 1
2R(2)(3) (and Φ21 = − 1

2R(2)(4)).

7.4.3 electrodynamical quantities and equations

Einstein’s (strong) equivalence principle implies that the equations of physics
in the presence of a gravitational field, when written in a freely falling (and
non-rotating) coordinate system, have the same form (locally) as in special
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relativity. This means that we do get the manifest covariant tensor equations
in the presence of gravity from the special relativistic form by substituting
semicolons for commas. See in this respect equation (7.1). The source-free
Maxwell equations in the absence of gravity can, according to (3.11) and (3.12),
be written as Fµν,µ = 0 and F[µν,λ] = 0. Maxwell’s equations without source in a
curved space-time become therefore Fµν;µ = 0 and F[µν;λ] = 0.

The six independent components of the electromagnetic field tensor F will
be represented by three complex fields:

φ0 ≡ F(1)(3) = Fµν l
µmν

φ1 ≡ 1
2 (F(1)(2) + F(4)(3)) = 1

2Fµν(lµnν + m̄µmν)
φ2 ≡ F(4)(2) = Fµνm̄

µnν

in terms of which Maxwell’s equations in curved space-time

F[µν;λ] = 0, Fµν;µ = 0 (in a coordinate basis) or

F[(k)(l)|(m)] = 0, F (m)
(k)|(m) = 0 (in a tetrad basis) reads

Dφ1 − δ∗φ0 = (π − 2α)φ0 + 2ρφ1 − κφ2

Dφ2 − δ∗φ1 = −λφ0 + 2πφ1 + (ρ− 2ε)φ2

δφ1 −∆φ0 = (µ− 2γ)φ0 + 2τφ1 − σφ2

δφ2 −∆φ1 = −νφ0 + 2µφ1 + (τ − 2β)φ2

and in terms of which the nine independent components of the electro-
magnetic energy-momentum tensor Te.m. (3.13) will be represented as

T(1)(1) = −2φ0φ
∗
0

T(1)(2) + T(3)(4) = −4φ1φ
∗
1

T(2)(2) = −2φ2φ
∗
2

T(1)(3) = −2φ0φ
∗
1

T(2)(3) = −2φ1φ
∗
2

T(3)(3) = −2φ0φ
∗
2

Whenever the electromagnetic field is the only source for gravity, T = Te.m., we
find, using the fact that Te.m. is traceless (see (3.13)), from Einstein’s equations,
R(k)(l) = 2T(k)(l), that

Φnm = 2φnφ∗m and Λ = 0 (7.3)
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This relates the Ricci tensor with the electromagnetic field that acts as its
sole source.

7.4.4 tetrad transformations

We will now consider the effect of changing the tetrad. By considering the
relation between the tetrad and the basis vectors coresponding to local geodesic
coordinates at a point p, for which gµν(p) = ηµν(p), the Minkowski metric, it is
clear that we have as much freedom to change the tetrad as we have in changing
these basis vectors such that they remain related to local geodesic coordinates
at p. This, of course, means a Lorentz transformation and correspondingly we
have six degrees of freedom. If we extend this transformation continuously
throughout the manifold, we do get a tetrad transformation depending on six
function that does not alter (η(k)(l)). Direct calculation of inner products will
show that these tetrad transformations can be represented as follows.

With a and b arbitrary complex functions, A and θ arbitrary real func-
tions:

type 1)

l→ l
n→ n + a∗m + am̄ + aa∗l
m→ m + al
m̄→ m̄ + a∗l

(7.4)

type 2)

l→ l + b∗m + bm̄ + bb∗n
n→ n
m→ m + bn
m̄→ m̄ + b∗n

(7.5)

type 3)

l→ A−1l
n→ An
m→ eiθm
m̄→ e−iθm̄

(7.6)

As straightforward calculations show, these tetrad transformations do have
an effect on the previous defined quantities in the following way.
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type 1)

Ψ0 → Ψ0

Ψ1 → Ψ1 + a∗Ψ0

Ψ2 → Ψ2 + 2a∗Ψ1 + (a∗)2Ψ0

Ψ3 → Ψ3 + 3a∗Ψ2 + 3(a∗)2Ψ1 + (a∗)3Ψ0

Ψ4 → Ψ4 + 4a∗Ψ3 + 6(a∗)2Ψ2 + 4(a∗)3Ψ1 + (a∗)4Ψ4

κ→ κ
σ → σ + aκ
λ→ λ+ a∗(2α+ π) + (a∗)2(ρ+ 2ε) + (a∗)3κ+ δ∗a∗ + a∗Da∗
ρ→ ρ+ a∗κ
µ→ µ+ aπ + 2a∗β + 2aa∗ε+ (a∗)2σ + a(a∗)2κ+ δa∗ + aDa∗
τ → τ + aρ+ a∗σ + aa∗κ
π → π + 2a∗ε+ (a∗)2κ+Da∗
ε→ ε+ a∗κ
γ → γ + aα+ a∗(β + τ) + aa∗(ρ+ ε) + (a∗)2σ + a(a∗)2κ
α→ α+ a∗(ρ+ ε) + (a∗)2κ
β → β + aε+ a∗σ + aa∗κ
ν → ν + aλ+ a∗(µ+ 2γ) + (a∗)2(τ + 2β) + (a∗)3σ + aa∗(π + 2α) + a(a∗)2(ρ+ 2ε) +
a(a∗)3κ+ (∆ + a∗δ + aδ∗ + aa∗D)a∗

φ0 → φ0

φ1 → φ1 + a∗φ0

φ2 → φ2 + 2a∗φ1 + (a∗)2φ0

type 2)

With respect to type 1) l and n have been interchanged, resulting in the
transformation

Ψ0 � Ψ∗4
Ψ1 � Ψ∗3
Ψ2 � Ψ∗2
φ0 � −φ∗2
φ1 � −φ∗1
κ� −ν∗
ρ� −µ∗
σ � −λ∗
α� −β∗
ε� −γ∗
π � −τ∗
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Thus, for example: Ψ1 → Ψ1 + 3bΨ2 + 3b2Ψ3 + b3Ψ4, etc.

type 3)

Ψ0 → A−2e2iθΨ0

Ψ1 → A−1eiθΨ1

Ψ2 → Ψ2

Ψ3 → Ae−iθΨ3

Ψ4 → A2e−2iθΨ4

κ→ A−2eiθκ
σ → A−1e2iθσ
ρ→ A−1ρ
τ → eiθτ
π → e−iθπ
λ→ Ae−2iθλ
µ→ Aµ
ν → A2e−iθν
γ → Aγ − 1

2∆A + i
2A∆θ

ε→ A−1ε− 1
2A
−2DA + i

2A
−1Dθ

α→ e−iθα+ i
2e
−iθδ∗θ − 1

2A
−1e−iθδ∗A

β → eiθβ + i
2e
iθδθ − 1

2A
−1eiθδA

φ0 → A−1eiθφ0

φ1 → φ1

φ2 → Ae−iθφ2

7.5 the optical scalars

In section 1.2.1 we introduced the optical scalars rotation, expansion and shear
for a null congruence in Minkowski space. Here we review a more general
mathematical treatment, not confined to flat space-time. In doing so, we will
learn about the geometrical interpretation of at least some of the spin coefficients.
In the Newman-Penrose formalism Einstein’s equations have been replaced by
43 equations, each of which does not have a physical interpretation individually.
Often in solving equations of physics, (physical) intuition or (physical) analogies
are helpful. Here, in the present formalism, we have to solve many equations
containing symbols of a highly mathematical character, the physics of which is
hidden far behind the surface. Ultimately the expert will possibly acquire some
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intuition ("when doing this or that with this parameter such or so will happen"),
but, no doubt, in cases like this it is desirable to have powerful general theorems
(see next section) or the relief of having an interpretation for at least some of the
symbols.

The change in the basis vector e(k) between two infinitesimally (δs−) sep-
arated points is δe(k)µ = e(k)µ;νδs

ν = e(l)
µγ(l)(k)(m)e

(m)
ν δsν = −γ(k)(l)(m)e

(l)
µδs(m).

This leads to δe(k)(m) = −γ(k)(l)(m)e(l) for the change in e(k) per unit displace-
ment along the direction (m) . Applied to the vectors from the Newman-Penrose
tetrad, the change in l per unit displacement along l is:

δl(1) = −γ(1)(k)(1)e(k) = −γ(1)(2)(1)l+γ(1)(3)(1)m̄+γ(1)(4)(1)m = (ε+ε∗)l−κm̄−κ∗m

or: lµ;ν l
ν = (ε+ ε∗)lµ − κm̄µ − κ∗mµ.

In the same way we find for n and m:

δn(1) = −(ε+ ε∗)n + πm + π∗m̄ , δn(2) = −(γ + γ∗)n + νm + ν∗m̄ ,

δm(1) = (ε+ ε∗)m + π∗l− κn , etc.

From this and section 7.2.4 we see that the vector field l is a congruence
of null geodesics if and only if κ = 0 and that these are affinely parametrized
when in addition Re(ε) = 0. We can apply a tetrad type 3) transformation to
achieve ε = 0, whenever this is not already the case and this will not change the
direction of l or the fact that κ = 0.
With κ = ε = 0, writing out lµ;ν in terms of spin coefficients and antisymmetriz-
ing the result, we arrive at

l[µ;ν] = −(α∗ + β − τ)l[µm̄ν] − (α+ β∗ − τ∗)l[µmν] + (ρ− ρ∗)m̄[µmν]

and thus

l[µ;ν lκ] = (ρ− ρ∗)m̄[µmν lκ].

These two equations tell us that whenever ρ = ρ∗, l will be proportional to
the gradient of a scalar field (we say: the congruence of the null geodesics is
hyper-surface orthogonal) and that when in addition α∗ + β = τ , l will be equal
to the gradient of this scalar field. We also find (again, κ = ε = 0)

1
2 l
µ
;µ = − 1

2 (ρ+ ρ∗) ≡ Θ

1
2 l[µ;ν]l

µ;ν = − 1
4 (ρ− ρ∗)2 ≡ ω2
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1
2 l(µ;ν)l

µ;ν = Θ2 + |σ|2.

Θ, ω and σ are called the optical scalars (expansion, rotation and shear; these
names indicate what happens with bundles of light-rays as they travel through
a gravitational field for example). The significance of Θ = −Re(ρ), ω = Im(ρ)
and σ can also be grasped from the change in l in the orthogonal direction m:

δl(3) = (α∗ + β)l− ρ∗m− σm̄.

When κ = 0 = ε we do find the following propagation equations (varia-
tion along l) from the form the Riemann tensor takes in the present formalism
(see also section 10.3):

Dσ = σ(ρ+ ρ∗) + Ψ0 = −2Θσ + Ψ0

Dρ = (ρ2 + |σ|2) + Φ00 (or Dω = −2Θω and DΘ = ω2 −Θ2 − |σ|2 − Φ00).

7.6 Petrov classification and Goldberg-Sachs theorem

In chapter 6 it was already mentioned that the spinor equivalent of the Weyl
tensor is completely symmetric and from chapter 1 we know that as a result
the Weyl spinor defines four principal null directions via its principal spinors.
These null directions are used to distinguish gravitational fields according to
the Petrov classification. In contrast with electrodynamics, where an analoguous
classification is possible since the Maxwell spinor is symmetric (see section 3.4),
the invariant classification of the Weyl tensor is very important. Many powerful
theorems exist that relate certain properties of the field with its Petrov type, one
example of which will be given below: the Goldberg-Sachs theorem.
Many exact solutions have been rediscovered again and again. Perhaps, even
likely, our chapter 10, if successful is an example of this. The problem of
proving or disproving that two solutions are the same can be very hard, but the
complexity is reduced by the invariant classification of fields, combined with the
powerful theorems available.

The Petrov classification is as follows (PND = principal null directions):

Type I: four distinct PND
Type II: two PND coincide
Type D: two degenerate PND
Type III: three PND coincide
Type N: four PND coincide
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When at least two principal null directions coincide, the space-time is called
algebraically special. By considering the tetrad transformations from section
7.4.4 it is not difficult to show that there exists a tetrad such that:

Type I: only Ψ0 = Ψ4 = 0
Type II: only Ψ2 and Ψ3 6= 0
Type D: only Ψ2 6= 0
Type III: only Ψ3 6= 0
Type N: only Ψ4 6= 0

There are many forms of the theorem that goes under the name Goldberg-
Sachs [79]. Even the lemmas or corollaries are sometimes presented as the
Goldberg-Sachs theorem. Here we list indiscriminately two of these, the first of
which will be used in chapter 10:

If a gravitational field contains a shear-free geodesic null congruence l (so,
κ = 0 = σ) and Φ00 = Φ01 = Φ02 = 0, then the field is algebraically special (so,
Ψ0 = 0 = Ψ1) with l a degenerate principal null direction.

A vacuum metric is algebraically special if and only if it contains a shear-
free geodesic null congruence.

Similar in spirit is the Mariot-Robinson theorem [65]:

An arbitrary space-time admits a geodesic shear-free null congruence if
and only if it admits an electromagnetic null field satisfying Maxwell’s equations
in it

and its corollary:

The Weyl tensor of Einstein-Maxwell fields with an electromagnetic null
field is algebraically special.
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8
The Robinson congruence in

general relativity

8.1 introduction

In previous chapters the Robinson congruence or its projection on a time-slice,
the Hopf fibration, was seen to correspond to a non-null twistor, an exact
solution to source-free Maxwell equations and a solution to linearized Einstein
equations. The purpose of this chapter is to show that it is also related to
an exact solution in general relativity. To this end we summarize and, to suit
our purposes, supplement an article by Debney, Kerr and Schild [13] in which
a formalism was established that can be considered as a solution generating
technique "avant-la-lettre".

Consider a metric that can be cast in so called Kerr-Schild form:

gµν = ηµν + 2heµeν ,

in which η is the metric of Minkowski space (M4 with usual coordinates
{t,x,y,z} that will also be used (with different interpretation of course) as
coordinates in the curved manifold), h = h(xµ) and e is a null vector:

gµνeνeµ = eµeµ = 0.

The contravariant form of the metric tensor can easily be seen to be
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gµν = ηµν − 2heµeν .

It follows that ηµνeµeν = 0: e is also a null vector with respect to "auxil-
iary" Minkowski space. Raising and lowering of indices of vectors that are
orthogonal to e, including e itself, can be done with η.

In terms of the null coordinates {u, v, w, w̄}:

u ≡ 1√
2
(t+ z)

v ≡ 1√
2
(t− z)

w ≡ 1√
2
(x+ iy)

w̄ = 1√
2
(x− iy)

we can write a general (covariant) vector with unit coefficient in front of
du as

e = du+Adv + Ȳ dw + Y dw̄

(the case of vanishing coefficient in front of du can be treated by a suit-
able limiting process, but will be of no concern here)
and the Minkowski metric tensor as

(ηµν) = (ηµν) =


0 1 0 0
1 0 0 0
0 0 0 −1
0 0 −1 0

.

The condition for e to be null with respect to η now gives A = Y Ȳ :

e = du+ Y Ȳ dv + Ȳ dw + Y dw̄, or

(eµ) =


1
Y Ȳ
Ȳ
Y

 and (eµ) = (ηµνeν) =


Y Ȳ
1
−Y
−Ȳ

.

The line element in null coordinates is ds2 = 2dudv − 2dwdw̄ + 2h(du +
Y Ȳ dv + Ȳ dw + Y dw̄)2, and therefore

(gµν) =


0 1 0 0
1 0 0 0
0 0 0 −1
0 0 −1 0

+ 2h


1 Y Ȳ Ȳ Y
Y Ȳ (Y Ȳ )2 Y Ȳ 2 Y 2Ȳ
Ȳ Y Ȳ 2 Ȳ 2 Y Ȳ
Y Y 2Ȳ Y Ȳ Y 2

.
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The inverse can be calculated most directly from gµν = ηµν − 2heµeν :

(gµν) =


0 1 0 0
1 0 0 0
0 0 0 −1
0 0 −1 0

− 2h


(Y Ȳ )2 Y Ȳ −Y 2Ȳ −Y Ȳ 2

Y Ȳ 1 −Y −Ȳ
−Y 2Ȳ −Y Y 2 Y Ȳ
−Y Ȳ 2 −Ȳ Y Ȳ Ȳ 2

.

Using the null vector e, we can form a Newman-Penrose tetrad {l,n,m, m̄},
l = (lµ) ≡ (eµ), n = (nµ), m = (mµ), m̄ = (m̄µ), with, in null coordinates

(lµ) =


Y Ȳ
1
−Y
−Ȳ

 , (nµ) ≡


1− hY Ȳ
−h
hY
hȲ

 , (mµ) ≡


−Y
0
0
1

 , (m̄µ) ≡


−Ȳ
0
1
0

 .

Note that in these coordinates m̄µ is not simply the complex conjugate of
mµ, as would be the case in real coordinates. In terms of the more familiar
{t, x, y, z} these definitions would be more complicated. We will need only e in
these coordinates:

(eµ) =
1√
2


1 + Y Ȳ
−(Y + Ȳ )
i(Y − Ȳ )
−1 + Y Ȳ

 (8.1)

When the spinor field (ΠA) = (Π1,Π2) corresponds to the direction of e,
considered as a vector in auxiliary Minkowski space, M4, we find from
eµ ∝ σµAX′ΠAΠ̄X′ and equations (8.1), (1.4) that

Y = −Π1

Π2
=

Π2

Π1
. (8.2)

8.2 Debney, Kerr and Schild

The result of the article by Debney, Kerr and Schild that is of interest here can
be summarized as follows.
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For arbitrary (complex) analytic functions Φ and Ψ, constant q ∈ C and
constants p, c,m ∈ R we generate a solution of Einstein-Maxwell equations in
terms of null coordinates {u, v, w, w̄}:

F ≡ Φ(Y ) + (qY + c)(w + Y v)− (pY + q̄)(u+ Y w̄)

generates, via F ≡ 0:

e.m. field:

φ0 = 0, φ1 = 1
2Ψ(Y )P−2ρ2, φ2 = − 1

2 (∂Y Ψ)(∂Y F )−2 + 1
2Ψ(Y )(∂Y F )−3∂Y ∂Y F

metric:

gµν = ηµν + 2heµeν

where

P ≡ pY Ȳ + qY + q̄Ȳ + c

ρ ≡ −P (∂Y F )−1

h ≡ 1
2mP

−3(ρ+ ρ̄)− 1
2ΨΨ̄P−4ρρ̄

e ≡ du+ Y Ȳ dv + Y dw̄ + Ȳ dw is null geodesic and shear-free

φ0, φ1, φ2 and ρ are defined as in the Newman-Penrose formalism with
{l,n,m, m̄} as in section 8.1.

Comparison of this function F with equations (8.2) and (1.10), which is
also valid in curved spaces of Kerr-Schild form, explains one part of the working
of this prescription to generate solutions to the combined system of Maxwell
and Einstein equations, the fact that e is geodesic and shear-free.

The defining equations of φ0, φ1 and φ2 in terms of the tetrad compo-
nents of the Faraday tensor in section 7.4.3 can be used to obtain the
inverse relations, expressing the tetrad components in terms of the φ’s:
F(1)(3) = −F(3)(1) = F ∗(1)(4) = φo, F(1)(2) = −F(2)(1) = φ1 + φ∗1, etc. Equation
(7.2) can now be used to obtain the F (k)(l)’s. From these, the calculation of
F (k)(l)F(k)(l) leads to 4(φ0φ2 +φ∗0φ

∗
2)−4(φ2

1 +φ∗21 ). This shows that the formalism
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of Debney, Kerr and Schild does not lead to null electromagnetic fields, since,
from section 3.3, 2(E2 − B2) = FµνFµν = F (k)(l)F(k)(l) = 0 only for Ψ(Y ) = 0:
when an electromagnetic field is present, at least one of the requirements for
this field to be null is not satisfied.

8.3 examples

In [13] the choice Φ = iaY, q = 0 and p = 1√
2

= c was shown to lead to the
now famous Kerr metric for Ψ = 0 and to its electrically charged version, the
Kerr-Newman metric, for Ψ = e. Since the angular momentum of these solutions
is proportional to a it follows that we arrive at the Schwarzschild and the
charged Schwarzschild or Reissner-Nordström solutions by putting a = 0 in the
choices from above. Here we are interested in other choices of the parameters.
However, for comparison we first give the results of the present procedure for
the Schwarzschild and Kerr solutions.

Schwarzschild solution, Φ = 0 = Ψ, q = 0, p = 1√
2

= c :

ρ =
√

2 z+r
x2+y2 , h = m

2
(x2+y2)2

(r+z)2r3 , r
2 ≡ x2 + y2 + z2

(eµ) =
√

2(r+z)
x2+y2


r
x
y
z


Note that the combination heµeν that appears in the metric does not con-
tain the common factor in (eµ), in agreement with the sperical symmetry of the
solution. The form of the expansion, -Re(ρ) = ρ here, seems to contradict this
symmetry. However, the spin coefficients depend on the chosen tetrad. A type
3) transformation with A=

√
2 z+r
r(x2+y2) leads to a manifest spherical symmetric

expansion.

Kerr solution, Φ = iaY, Ψ = 0, q = 0, p = 1√
2

= c :

ρ =
√

2 z+r̃
x2+y2

r̃2

r̃2+iaz , h = m
2

(x2+y2)2

(r̃+z)2
r̃

r̃4+a2z2 , r̃
4 + (a2 − x2 − y2 − z2)r̃2 − a2z2 = 0

(eµ) =
√

2(r̃+z)
x2+y2


r̃

r̃ xr̃+ayr̃2+a2

r̃ yr̃−axr̃2+a2

z


Note the difference between r̃ (an ellipsoidal radial coordinate) and r. In
the limit a → 0 we have r̃ → r, resulting in the Schwarzschild solution. Apart
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from the flat space-time part, the metric now contains the factor 2mr̃3

r̃4+a2z2 , shared
by all coefficients. It it clear that the angular momentum is directed in the
z-direction.
The coordinate transformation u = t+ r̃, eiφsinθ = (x+ iy)(r̃ − ia)−1, z = r̃cosθ
leads to the form of the Kerr metric as it appeared for the first time in the
literature [80]:

ds2(= gµνdx
µdxν) = [1 − 2mr̃

r̃2+a2cos2θ ](du + asin2θdφ)2 − 2(du + asin2θdφ)(dr̃ +
asin2θdφ)− (r̃2 + a2cos2θ)(dθ2 + sin2θdφ2).

The limit a → 0 of this expression gives the Schwarzschild metric in the
familiar advanced Eddington-Finkelstein coordinates. For r̃ = 0 and θ = π

2
there is a curvature singularity (not just a coordinate singularity) that has the
geometry of a ring in auxiliary Minkowski space.

8.3.1 Robinson congruence

Φ = i√
2
Y, Ψ = 0, p = 0 = q, c = 1

These choices lead to P = 1, F = ( i√
2

+ v)Y +w, thus F ≡ 0 ⇐⇒ Y = −
√

2w
i+
√

2v
.

In terms of the auxiliary coordinates {t, x, y, z} we have:

Y = x+iy
−t+z−i , ρ =

√
2

1+(t−z)2 (−t+ z + i), h = m
√

2( −t+z
1+(t−z)2 ) and

(eµ) =
1√

2(1 + (t− z)2)


1 + x2 + y2 + (t− z)2

2(x(t− z) + y)
2(y(t− z)− x)

x2 + y2 − 1− (t− z)2

 . (8.3)

We recognise the Robinson congruence or Hopf fibration in this form, see
equations (4.2), (4.9) and (4.10). Alternatively, the corresponding spinor field
(Π1,Π2) with Π2

Π1
= Y is (Π1,Π2) = f(xµ)(−t + z − i, x + iy) which is exactly

equation (4.6), which led to the Robinson congruence.

In all the previous appearances of the Hopf fibration we were able to give
a physical interpretation of the integral curves of the vector field: as electric
or magnetic field lines, lines related to energy flow ((super-)Poynting vector),
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tendex or vortex lines. But now the vector field appears twice in the metric
without obvious interpretation. In addition, we do not have a clear and global
distinction between time and space here, as was the case in past examples,
where fields could be considered to be defined on flat space-time. The vector
field in (8.3) is still to be considered as a Robinson congruence, but a projection
on a time-slice in order to arrive at the structure of a Hopf fibration cannot be
done, except in auxiliary space.
Of course, the congruence is built from null geodesics and these are possible
photon paths or light rays. But in every point there are possible photon paths in
all directions.

If we change Ψ from zero to constant e, the difference appears only in the
expressions for h and the electromagnetic field. There is an extra term in
h due to the contribution of the electromagnetic energy density to the cur-
vature of space-time: −e2

1+(z−t)2 . The electromagnetic field is represented as

φ0 = 0 = φ2, φ1 = e (z−t+i)2
(1+(z−t)2)2 . This expression is not very illuminating, but

again a Robinson congruence pops up, since the corresponding electromagnetic
field can also be obtained from a one form α: Fµνdxµ ∧ dxν = dα, in which

α = e 2
√

2(z−t)
1+(z−t)2 e.

8.3.2 degenerate Robinson congruence

Φ = 0 = Ψ, p = 0 = q, c = 1

This leads to Y = x+iy
z−t , ρ =

√
2

z−t , h = m
√

2
z−t and

(eµ) = 1√
2(t−z)2


x2 + y2 + (t− z)2

2x(t− z)
2y(t− z)

x2 + y2 − (t− z)2

,

in which we recognise a degenerate Robinson congruence, see (4.22).

Putting Ψ = e, a constant, leads to an additional term in h: − e2

(z−t)2 , and
an electromagnetic field that can be represented as in example (8.3.1), with
α = e 2

√
2

z−t e.
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8.4 conclusion and final remarks

In this chapter we used a method developed by Debney, Kerr and Schild to
show that the Robinson congruence also appears in exact solutions of the full
Einstein equations. However, within the confines of classical general relativity
it is fair to say that in contrast with previous cases we do not know whether
a physical interpretation is possible. An attempt at an interpretation along the
lines of [35, 36, 81, 82] could be worthwhile.
An interesting possibility suggests itself when comparing the solution of section
8.3.1 with the solution in chapter 6. Could the latter be the linearized version
of the former? If yes, can the interpretation of the curves of the Robinson
congruence in the solution of the linearized theory in some sense be taken over
to the exact solution in the full theory?

It has not yet been investigated whether the solution in section 8.3.1 be-
longs to the class of solutions for which no general solution is known [83] or
perhaps to the class of which only a few solutions are known [84], or neither of
these possibilities.

It may further be noted that from [85] we may conclude the Petrov type-
D character of at least the vacuum solutions in sections 8.3.1 and 8.3.2, as well
as the fact that these solutions must contain singularities not confined to a
bounded region. This makes it unlikely that they will bring any changes to
the observation in [86]: ’But the hope of finding metrics amongst the solutions
[. . . ] which describe the radiation field of a physically meaningful matter
distribution has not been realized.’

As in chapter 4, there is a complex shift related to the transition degener-
ate Robinson congruence→ Robinson congruence. The relation between the two
shifts has not been investigated. Again, there is a possible connection with work
done by E. Newman [31,33].

Finally, it is of interest to note that in the case of rotation-free Kerr-Schild
metrics there is a geometrical interpretation for (eµ) and other quantities appear-
ing in the present procedure [87] (also described in [88]). For this interpretation
to work for the degenerate Robinson congruence (rotation-free, since ρ is a real
function) we need the unphysical assumption of a massive particle travelling
along the z-axis with the speed of light in order to have the correct retarded
distance [88]. In addition, other quantities do not fit into the scheme presented
in said references.
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9
Electromagnetic Hopf knot

in tetrad formalism

In this chapter we search for a tetrad adapted to the field of an electromagnetic
Hopf knot, such that as many of the spin coefficients as possible are vanishing
or otherwise do have a simple expression. It mainly consists of calculations.
Doing these by hand, one soon acquires an intuition of how to change the tetrad
in order to achieve a desired expression for one of the coefficients. The choice
presented here is only one of the nicer possibilities. The results of this chapter
are needed in the next.

9.1 introduction

Among the many exact solutions of Einstein’s equations with a source, almost
all sources are unphysical. Only very few known exact solutions correspond to
a realistic source, such as the Schwarzschild or Kerr solution. In the rest of this
thesis we will be concerned with finding an exact solution due to a source that
might be of physical relevance.

Parallel light beams have been considered as a source to Einstein’s equa-
tions, leading to plane gravitational waves [89, 90]. Plane waves in general
relativity played an important role in the acceptance of the existence of gravita-
tional radiation.
Experimental physicists are currently thinking about the production in the
laboratory of electromagnetic knots. Although the extend of a Hopf knot is
infinite, and in this respect an experimental realization can only approximate
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the full Hopf knot, in contrast to a plane electromagnetic wave the energy of an
electromagnetic Hopf knot is finite and very much concentrated [1].

In chapter 10 we will try to find an exact solution of the combined sys-
tem of Einstein and Maxwell equations with as sole source an electromagnetic
Hopf knot. Starting with a source, a fluid, an electromagnetic field or anything
else, considered in flat space-time, thus neglecting gravity, that is fully under-
stood and specified in terms of familiar Minkowski coordinates {t, x, y, z} and
using this as input for the energy-momentum tensor in Einstein’s equations
in order to calculate the metric leads to a problem that is peculiar to general
relativity: in order to calculate the metric we need the source, but to describe
the source correctly, we must know the metric. In the problem at hand this
peculiarity leads to a comfortable freedom in the definition of an electromagnetic
Hopf knot in the context of curved space-time. In chapter 10 it will become clear
how we can trim our sails according to the current wind.
Due to the complicated t, x, y, z dependence of the Robinson congruence and the
fact that this congruence is null, geodesic and shear free, the Newman-Penrose
formalism seems most suited for solving our problem. We therefore first need
to know what a Hopf knot in flat space-time looks like in this formalism.

9.2 Hopf knot in flat space-time in Newman-Penrose formalism

A possible tetrad adapted to the congruence of Robinson consists of the following
basis.

l = 1
A (S,S)

n = A( 1
2S ,− S

2S2 )

m = eiθ√
2S

(0,F)

m̄ = e−iθ√
2S

(0,F∗)

(9.1)

in which A and θ are unspecified real functions, and

S = |S| = |E×B| = E2 = ε (energy density, for E ·B = 0, |E| = |B|)

E = |E|
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F = E + iB

A nice property of this choice of tetrad is the direct relation between any
of the vector fields contained in it with the electric, magnetic or Poynting vector
of the electromagnetic field under consideration. We take

F = FRS(t, r) =
1

((t− i)2 − r2)3

 (x− iy)2 − (t− i− z)2

i(x− iy)2 + i(t− i− z)2

−2(x− iy)(t− i− z)

 (9.2)

which defines an electromagnetic Hopf knot (equation (4.1)). The first
vector field from the tetrad therefore defines a Robinson congruence: we know
from chapter 4 ((4.9), (4.10)) that l can be written as l = 2eψeψ

c

k0(kα), with
(kα) = (k0,k), the Robinson congruence associated with (4.2), and |k0| = k0 = |k|.

Since we use the Minkowski metric, the following relations hold. These
can be seen almost without effort from what we know from electromagnetic null
fields.

mµmµ = 0 = m̄µm̄µ

mµm̄µ = −1
lµmµ = 0 = lµm̄µ

lµlµ = 0 = nµnµ
lµnµ = 1
mµnµ = 0 = m̄µnµ

The tetrad thus qualifies as a Newman-Penrose tetrad (section 7.4).

9.2.1 the spin coefficients

We now calculate the spin coefficients (section 7.4), including the optical scalars,
and use the fact that we are working in Minkowski space, so the Christoffel
symbols vanish. First we derive general expressions for κ, σ, ρ with respect to
(9.1), the boxed equations below. They can be formulated straightforwardly
in terms of properties of the electromagnetic field considered. For example, κ
is proportional to the projection along the Poynting vector of the directional
derivative in the direction of the Poynting vector of the Rieman-Silberstein
vector. The fields A and θ could be adjusted in such a way as to make this
proportionality factor equal to 1. But we will need a different choice, the one
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that makes ε = 0. As soon as we start using (9.2) the spin coefficients will receive
the label Rob.

κ = γ(3)(1)(1) = e µ
(3) e

ν
(1) e(1)µ;ν = e µ

(3) e
ν

(1) e(1)µ,ν

and thus (for the tetrad (9.1) defined above)

κ = eiθ√
2S

F · (− S
A ),ν S

ν

A

It follows that (remember D = lµ∂µ)

κ =
−eiθ√

2S
F ·D S

A
=

eiθ√
2SA

S ·DF since F · S = 0

σ = γ(3)(1)(3) = e µ
(3) e

ν
(3) e(1)µ,ν = eiθ√

2S
F · δ S

A , or

σ =
eiθ√
2SA

S · δF

ρ = γ(3)(1)(4) = e µ
(3) e

ν
(4) e(1)µ,ν

The difference with respect to σ is that now we have a directional deriva-
tive m̄µ∂µ, thus

ρ =
eiθ√
2SA

S · δ∗F

ε = 1
2 (γ(2)(1)(1) + γ(3)(4)(1)) = 1

2 (e µ
(2) e

ν
(1) e(1)µ,ν + e µ

(3) e
ν

(1) e(4)µ,ν) =

1
2{ 1

2SDS + A
2 D

1
A + −AS

2S2 ·D−S
A + −1

2SF ·DF∗ − eiθ

2EF · F∗D e−iθ

E } =
1
2{ 1

2SDS − 1
2ADA+ 1

2SDS − 1
2ADA− 1

2SF ·DF∗ + 1
EDE + iDθ} =

1
2{ 1

SDS − 1
ADA− 1

2SF ·DF∗ + 1
2SDS + iDθ

Thus ε = 1
2{ 3

2SDS − 1
ADA− 1

2SF ·DF∗ + iDθ}

Although we did not calculate κ yet, we do know that the first tetrad vec-
tor field is aligned with a geodesic Robinson congruence. Therefore we expect κ
to be zero (see section 7.5 for the interpretation of some of the spin coefficients).
Further, it is always possible to use an affine parameter along the geodesics
(section 7.2.4), and then Re(ε)=0 also. Note that here we actually are considering
an affine parameter field. We will try to find A and θ such that ε = 0.
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To compute the above expressions concretely, we first need the derivatives
of the Riemann-Silberstein vector

F = 1
((t−i)2−r2)3

 (x− iy)2 − (t− i− z)2

i(x− iy)2 + i(t− i− z)2

−2(x− iy)(t− i− z)

 .

∂tF = −6(t−i)
((t−i)2−r2)4

 (x− iy)2 − (t− i− z)2

i(x− iy)2 + i(t− i− z)2

−2(x− iy)(t− i− z)

+ −2
((t−i)2−r2)3

 (t− i− z)
−i(t− i− z)

(x− iy)



∂xF = 6x
((t−i)2−r2)4

 (x− iy)2 − (t− i− z)2

i(x− iy)2 + i(t− i− z)2

−2(x− iy)(t− i− z)

+ 2
((t−i)2−r2)3

 (x− iy)
i(x− iy)
−(t− i− z)



∂yF = 6y
((t−i)2−r2)4

 (x− iy)2 − (t− i− z)2

i(x− iy)2 + i(t− i− z)2

−2(x− iy)(t− i− z)

+ 2
((t−i)2−r2)3

−i(x− iy)
(x− iy)

i(t− i− z)



∂zF = 6z
((t−i)2−r2)4

 (x− iy)2 − (t− i− z)2

i(x− iy)2 + i(t− i− z)2

−2(x− iy)(t− i− z)

+ 2
((t−i)2−r2)3

 (t− i− z)
−i(t− i− z)

(x− iy)


The first term in these four derivatives is proportional to F and is there-
fore not needed in the calculation of the first three spin coefficients, κ, σ, ρ,
because S · F = 0. Therefore:

S·∂tF = −2
((t−i)2−r2)3

(1+x2+y2+(t−z)2)
((r2−(t2+1))2+4r2)3

 2(x(t− z) + y)
2(y(t− z)− x)

x2 + y2 − (t− z)2 − 1

 .

 (t− i− z)
−i(t− i− z)

(x− iy)

 =

−2
((t−i)2−r2)3

(1+x2+y2+(t−z)2)2

((r2−(t2+1))2+4r2)3 (x− iy) = −2(x−iy)
((t−i)2−r2)3S

Similarly:

S · ∂xF = 2(t−z−i)
((t−i)2−r2)3S

S · ∂yF = −2i(t−z−i)
((t−i)2−r2)3S

S · ∂zF = 2(x−iy)
((t−i)2−r2)3S

We now calculate the spin coefficients explicitly.
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κRob. ∝ lµS · ∂µF ∝ (1 + x2 + y2 + (t − z)2)S · ∂tF + 2(x(t − z) + y)S ·
∂xF + 2(y(t− z)− x)S · ∂yF + (x2 + y2 − (t− z)2 − 1)S · ∂zF = 0

This expresses the known fact that the integral curves of the vector field l
are geodesics.

σRob. ∝ mµS · ∂µF ∝ ((x − iy)2 − (t − i − z)2)S · ∂xF + (i(x − iy)2 + i(t −
i− z)2)S · ∂yF− 2(x− iy)(t− i− z)S · ∂zF = 0

As expected, the Robinson congruence is shear-free.

Returning now to the expression for εRob., the real part vanishes for A such that
3

2SDS − 1
ADA − 1

2SF ·DF∗ is imaginary. From DS = 1
2 (F ·DF∗ + F∗ ·DF) we

infer that A = S is the desired choice. If in addition we want Im(ε) = 0, we have
to solve the following equation for θ:

Dθ = i
4S (F∗ ·DF− F ·DF∗) ⇔ (∂t + S

S · ∇)θ = 2
1+x2+y2+(t−z)2 .

The right hand side of this equation, combined with our knowledge of
the electromagnetic Hopf knot justify the "ansatz" θ(t, x, y, z) = θ(x2 + y2, t− z).
We write ρ ≡ x2 + y2, ξ ≡ t− z to obtain:

(1 + ξ2)∂ξθ + 2ρξ∂ρθ = 1

For θ 6= θ(ρ) the equation is simple to solve:

∂ξθ = 1
1+ξ2 , with solution tanθ = ξ or θ = tan−1(t− z).

With the choices A = S and θ = tan−1(t− z) we now also have εRob. = 0.

Note that this choice leads to eiθ = 1+i(t−z)√
1+(t−z)2

.

Obtaining explicit expressions for the other coefficients requires lengthy
but simple calculations, that will be presented in compressed form:

ρRob. = eiθ√
2SS

m̄µS · ∂µF =
1

2S2
1

((t+i)2−r2)3 {((x + iy)2 − (t + i − z)2)S · ∂xF + (−i(x + iy)2 − i(t + i − z)2)S ·
∂yF + (−2(x+ iy)(t+ i− z))S · ∂zF} =

1
2S2

1
((t+i)2−r2)3

2
((t−i)2−r2)3S{((x + iy)2 − (t + i − z)2)(t − z − i) + (−i(x + iy)2 −

i(t+ i− z)2)(−i)(t− z − i) + (−2(x+ iy)(t+ i− z))(x− iy)} =
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1
S

1
((r2−(t2+1))2+4r2)3 {((x + iy)2 − (t + i − z)2)(t − z − i) + (−i(x + iy)2 − i(t + i −

z)2)(−i)(t− z − i) + (−2(x+ iy)(t+ i− z))(x− iy)} =

1
S
−2(1+x2+y2+(t−z)2)
((r2−(t2+1))2+4r2)3 (t− z + i) = −2 t−z+i

1+x2+y2+(t−z)2

So that

ΘRob. =
2(t− z)

1 + x2 + y2 + (t− z)2

and

ωRob. =
−2

1 + x2 + y2 + (t− z)2

From this and the fact that there is no freedom left for a suitable tetrad
transformation to achieve ρ = ρ∗ (see section 7.4.4), it follows that the Robinson
congruence is not hyper-surface orthogonal (i.e. not proportional to the gradient
of a scalar function).

For the propagation equations, expressing the change along the geodesics
of the congruence, we find

DωRob. = 8(t−z)
(1+x2+y2+(t−z)2)2 and DΘRob. = 4(1−(t−z)2)

(1+x2+y2+(t−z)2)2

From equations like this (D(...) = f(xµ)), of which one more will be given later
in this chapter, we could take advantage in the next chapter, were, depending
on some choices we make, we have to solve these kind of equations for (...).

We continue with the remaining spin coefficients.

πRob. = γ(2)(4)(1) = e µ
(2) e

ν
(1) e(4)µ,ν = − S

2S ·D(−e
−iθ
√

2S
F∗)

This expression contains a term proportional to S·DF∗ = (S·DF)∗ ∝ (κRob.)∗ = 0,
and a term proportional to S · F∗ = 0. Therefore πRob. = 0.

λRob. = γ(2)(4)(4) = e µ
(2) e

ν
(4) e(4)µ,ν = − S

2S · δ∗(−e
−iθ
√

2S
F∗)

This expression contains a term proportional to S·δ∗F∗ = (S·δF)∗ ∝ (σRob.)∗ = 0,
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and a term proportional to S · F∗ = 0. Therefore λRob. = 0.

µRob. = γ(2)(4)(3) = e µ
(2) e

ν
(3) e(4)µ,ν =

− S
2S ·δ(−e

−iθ
√

2S
F∗) = e−iθ√

2S
1

2SS ·δF∗ = 1
2 ( eiθ

S
√

2S
S ·δ∗F)∗ = 1

2 (ρRob.)∗ = −(t−z)+i
1+x2+y2+(t−z)2

νRob. = γ(2)(4)(2) = e µ
(2) e

ν
(2) e(4)µ,ν = − S

2S ·∆(−e
−iθ
√

2S
F∗) = e−iθ√

2S
1

2SS ·∆F∗

Note that ∆ = ∂t − 1
2D and S ·DF∗ ∝ κ∗ = 0 , thus

νRob. = e−iθ√
2S

1
2SS · ∂tF∗ = −e−iθ(x+iy)√

2S((t+i)2−r2)3

τRob. = γ(3)(1)(2) = e µ
(3) e

ν
(2) e(1)µ,ν = eiθ√

2S
F ·∆(−S

S ) = eiθ√
2S

1
SS ·∆F = 2(νRob.)∗

αRob. = 1
2 (γ(2)(1)(4) + γ(3)(4)(4)) and

γ(2)(1)(4) = e µ
(2) e

ν
(4) e(1)µ,ν = − S

2S · δ∗(−S
S ) = 1

4δ
∗ S·S
S2 = 0,

γ(3)(4)(4) = e µ
(3) e

ν
(4) e(4)µ,ν = eiθ√

2S
F · δ∗(−e−iθ√

2S
F∗) = − 1

2SF · δ∗F∗− eiθ
√

2Sδ∗ e
−iθ
√

2S
=

− 1
2SF · δ∗F∗ + iδ∗θ + 1

2S δ
∗S = 1

4S (F∗ · δ∗F− F · δ∗F∗) + iδ∗θ

We have δθ = eiθ√
2S

−2
((t−i)2−r2)3 (x − iy)(t − i − z)∂zθ = −τRob.(t − i − z)∂t−zθ =

−τRob.(t−i−z)
1+(t−z)2 ,

therefore iδ∗θ = −2iνRob.(t−z+i)
1+(t−z)2

The other terms turn out to be

−1
4SF · δ∗F∗ = e−iθ(x+iy)√

2S((t+i)2−r2)3
= −νRob. and 1

4SF∗ · δ∗F = 3 (t+i)2−r2
(t−i)2−r2 ν

Rob.

These terms sum to αRob. = 1
2 [3 (t+i)2−r2

(t−i)2−r2 −
(t−z)+i
(t−z)−i ]ν

Rob.

βRob. = 1
2 (γ(2)(1)(3) + γ(3)(4)(3)) and
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γ(2)(1)(3) = e µ
(2) e

ν
(3) e(1)µ,ν = − S

2S · δ(−S
S ) = 1

4δ
S·S
S2 = 0,

γ(3)(4)(3) = e µ
(3) e

ν
(3) e(4)µ,ν = eiθ√

2S
F · δ(−e−iθ√

2S
F∗) = − 1

2SF · δF∗ − eiθ
√

2Sδ e
−iθ
√

2S
=

1
4S (F∗ · δF− F · δF∗) + iδθ = −2(αRob.)∗ and this implies:

βRob. = −(αRob.)∗

γRob. = 1
2 (γ(2)(1)(2) + γ(3)(4)(2)) and

γ(2)(1)(2) = e µ
(2) e

ν
(2) e(1)µ,ν = − S

2S ·∆(−S
S ) = 1

4∆S·S
S2 = 0,

γ(3)(4)(2) = e µ
(3) e

ν
(2) e(4)µ,ν = eiθ√

2S
F ·∆(−e

−iθ
√

2S
F∗) = − 1

2SF ·∆F∗ − eiθ
√

2S∆ e−iθ√
2S

=

1
4S (F∗ ·∆F− F ·∆F∗) + i∆θ

Now use ∆ = ∂t − 1
2D and Dθ = i

4S (F∗ ·DF− F ·DF∗) to get

γRob. = 1
8S (F∗ · ∂tF − F · ∂tF∗) + i

2∂tθ = i
1+x2+y2+(t−z)2 −

3i(t2+r2+1)
(t2−r2)2+1+2(t2+r2) +

1
2

i
1+(t−z)2

We could try to express γ in terms of the other spin coefficients with the
help of relations like

ντ = x2+y2

(1+x2+y2+(t−z)2)2 , µµ∗ = 1+(t−z)2
(1+x2+y2+(t−z)2)2 , or

1 + (t− z)2 = µµ∗

(ντ+µµ∗)2 , x2 + y2 = ντ
(ντ+µµ∗)2 ,

supplemented with formulas that contain α and β, but it is more impor-
tant for the needs of the following chapter to note that γRob. ∈ I. Chapter 10
starts with a summary of the results obtained here.

9.2.2 the electromagnetic field

We now calculate the tetrad representation for the electromagnetic field tensor
that corresponds to this particular electromagnetic Hopf knot. For this we need
the following relations
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(F (asd)
µν ) =


0 Fx Fy Fz
−Fx 0 iFz −iFy
−Fy −iFz 0 iFx
−Fz iFy −iFx 0



(F (sd)
µν ) =


0 F ∗x F ∗y F ∗z
−F ∗x 0 −iF ∗z iF ∗y
−F ∗y iF ∗z 0 −iF ∗x
−F ∗z −iF ∗y iF ∗x 0



(Fµν) = 1
2 (F (asd)

µν + F
(sd)
µν ) =


0 Ex Ey Ez
−Ex 0 −Bz By
−Ey Bz 0 −Bx
−Ez −By Bx 0

, thus

Fij = i
2εijk(F k − F ∗k), (F k) = (Fx, Fy, Fz) = (−Fk).

Using F · F = 0 = F · S, F · F∗ = 2S, we find for the Faraday ten-
sor:

φ0 = F(1)(3) = Fµν l
µmν =

F0j
eiθ√
2S
F j + Fij

Si

S
eiθ√
2S
F j = − 1

2 (Fj + F ∗j )F j eiθ√
2S

+ i
2εijk(F k − F ∗k)S

i

S
eiθ√
2S
F j =

1
2 (F · F + F∗ · F) eiθ√

2S
+ ieiθ

2S
√

2S
εijk(F k − F ∗k)SiF j = eiθ

√
S√

2
+ ieiθ

2S
√

2S
(S · (F× F) +

S · (F∗ × F)) =

eiθ
√
S√

2
− eiθ

S
√

2S
S · S = 0.

φ1 = 1
2 (F(1)(2) + F(4)(3)) = 1

2Fµν(lµnν + m̄µmν) =

− 1
4F0j

Sj

S + 1
4Fi0

Si

S − 1
2Fij

Si

S
Sj

S + 1
2Fij

1
2SF

∗iF j = − 1
2F0j

Sj

S + i
4

1
2S εijk(F k −

F ∗k)F ∗iF j = 0.

φ2 = F(4)(2) = Fµνm̄
µnν =

e−iθ

2
√

2S
Fi0F

∗i − e−iθ

2S
√

2S
FijF

∗iSj = − e−iθ

4
√

2S
F · F∗ − ie−iθ

4S
√

2S
εijkF

kF ∗iSj =

− e−iθ
√
S

2
√

2
− e−iθ

2S
√

2S
S · S = −e−iθ

√
S
2 ,
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so:

φ2 = −e
−iθ
√

2
1 + x2 + y2 + (t− z)2

((t2 − r2)2 + 1 + 2(t2 + r2))
3
2

and φ0 = 0 = φ1 .

This immediately leads to the energy-momentum tensor for the electro-
magnetic field in tetrad terms:

the only nonzero component is

T(2)(2) = −2φ2φ
∗
2 = −S = − (1+x2+y2+(t−z)2)2

((t2−r2)2+1+2(t2+r2)2)3 .

9.2.3 miscellanea

If this tensor acts as the only source for Einstein’s equations we arrive at a
space-time in which all Ricci coefficients except one vanish:

R(2)(2) = −2S , or Φ22 = S = (1+x2+y2+(t−z)2)2

((t2−r2)2+1+2(t2+r2)2)3

Looking back at the Maxwell equations in Newman-Penrose formalism
(section 7.4.3), we see that for the present electromagnetic field they read:

κφ2 = 0, which is satisfied trivially because κ = 0
Dφ2 = ρφ2

σφ2 = 0, which is satisfied because σ = 0
δφ2 = (τ − 2β)φ2.

From the second equation we infer that DS = −4S t−z
1+x2+y2+(t−z)2 , as can

be checked by direct calculation. This, like the explicit propagation equations
for the expansion and rotation given above, could be of use when solving the
combined system of Maxwell and Einstein equations with an electromagnetic
Hopf knot as source. It is not difficult to add to this list more equations of the
same form or with δ substituted for D, etc. However, since in the example given
in the next chapter we do not use any of these, they will not be presented here.
Other choices than those of chapter 10 have been considered in which this list is
of importance.
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9.2.4 another choice for the tetrad

We had good physical reasons to consider the tetrad in (9.1). This choice led
to reasonable expressions for the spin coefficients, five of which turned out
to vanish. However, for the sake of the problem posed in chapter 10, it can
be advantageous to have an alternative at hand. Therefore, here we consider
an alternative choice for the tetrad that will have an additional vanishing spin
coefficient.
We perform a type 1 tetrad transformation (section 7.4.4) to the tetrad (9.1) such
that τ → 0. Since, with κ = 0 = σ, for type 1 transformations τ → τ + aρ, this
will be achieved for

a = − τρ = − i√
2

x−iy√
1+(t−z)2

(t−z−i)((t+i)2−r2)
3
2

(t−z+i)((t−i)2−r2)
3
2
,

thus aa∗ = 1
2

x2+y2

1+(t−z)2 .

From equation (7.4) we find for the new tetrad:

l = (1, S
S )

n = 1
2

1+x2+y2+(t−z)2
1+(t−z)2 (1, 0, 0, 1)

m = a(1, 0, 0, 1) + a t−z−ix−iy (0, 1,−i, 0)

m̄ = a∗(1, 0, 0, 1) + a∗ t−z+ix+iy (0, 1, i, 0)

(9.3)

Note that n = ( 1
2 + aa∗)(1, 0, 0, 1).

The spin coefficients can be calculated as before, or, much simpler, from the
previous ones by the transformation formula in section 7.4.4. For the latter
strategy, use can be made of equations that are given in section 10.3. This leads
to the following expressions for the spin coefficients:

σ = κ = τ = ε = π = λ = 0,

γ = 3i
1+(t−z)2 −

6i(t2+r2+1)
(t2−r2)2+1+2(t2+r2) + 6i(x2+y2)

1+(t−z)2
t2−r2−1

(t2−r2)2+1+2(t2+r2) ,

ρ = −2 t−z+i
1+x2+y2+(t−z)2 ,

α = 6ia∗

(t−i)2−r2 ,
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β = 6ia
(t+i)2−r2 −

2a(t−z−i)
1+x2+y2+(t−z)2 ,

µ = t−z−i
1+(t−z)2 (((t− i)2 − r2)3 − 1),

ν = 2ia∗

1+x2+y2+(t−z)2 + ia∗

1+(t−z)2 −
6ia∗(t2+r2+1)

(t2−r2)2+1+2(t2+r2) + a∗(t−z−i){((t−i)2−r2)3−1}
1+(t−z)2

Part of the last expression comes from ∆a∗ = ∂ta
∗, which is valid since

Da∗ = 0. Note that ∆ here refers to the original tetrad (9.1), and not (9.3). Again
we have a simple relation between α and β: β = −α∗ + aρ∗.

A type 1 tetrad transformation does not change the representation of an
electromagnetic field for which φ0 = 0 = φ1, so with tetrad (9.3) we still have

φ0 = 0 = φ1, φ2 = − 1−i(t−z)√
2(1+(t−z)2)

1+x2+y2+(t−z)2

((t2−r2)2+1+2(t2+r2))
3
2
.
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10
Hopf knot curves space-time

The basic issue is this: one can extend the notion of electric and magnetic fields to
quite arbitrary coordinates in arbitrary space times, and one can extend the notion
of the Poynting vector with it, but one does not understand what these things mean
physically. In other words, the extension is purely formal. This is a very general problem
in G[eneral] R[elativity], . . . [91].

In the final chapter of this thesis we set ourselves the ambitious task of
solving the full nonlinear Einstein equations with an electromagnetic Hopf knot
as its source. In doing so we audaciously neglect what can be considered as a
warning or request, not to come up with new exact solutions but instead trying
to interpret the ones that have already been found. This warning, that can be
sensed for example in [92], expresses the fact that it can be very hard to give an
interpretation for exact solutions. However, when our attempt will be successful,
we do have an understanding of the source.
We will use the Newman-Penrose formalism for which the preparations appear
in the previous chapter, that will be summarized first.
It should be noted that in the process of solving the equations every now and
then a choice has to be made. The examples presented here are just two of the
few options that have been considered, some of which, like the one presented
first, lead to a contradiction, whereas other lead to a set of equations that have
not been solved. The list of equations of the form D(...) = f(xµ) partly presented
in chapter 9 could be of help in solving said equations. However, the complexity
of the equations to be solved is daunting. The purpose of present example is to
convey the method used, for which these choices are best suited.
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10.1 introduction (summary of chapter 9)

In the previous chapter we have seen that an electromagnetic Hopf knot can be
represented in the Newman-Penrose formalism in the following way.

In M4 we use the tetrad

l = (1, S
S ), n = 1

2 (1,−S
S ), m = 1+i(t−z)√

2S(1+(t−z)2)
(0,F), m̄ = 1−i(t−z)√

2S(1+(t−z)2)
(0,F∗),

with F and S as in chapter 4, equations (4.1) and (4.2).

The spin coefficients that correspond with this tetrad are:

κ = σ = ε = π = λ = 0, τ = 2ν∗, β = −α∗, µ = 1
2ρ
∗,

ρ = −2 t−z+i
1+x2+y2+(t−z)2 ,

ν = −(1−i(t−z))(x+iy)√
2S(1+(t−z)2)((t+i)2−r2)3

,

α = [3 (t+i)2−r2
(t−i)2−r2 − t−z+i

t−z−i ]ν,

γ = 2i
1+x2+y2+(t−z)2 −

6i(t2+r2+1)
(t2−r2)2+1+2(t2+r2) + i

1+(t−z)2

in which r2 = x2 + y2 + z2.

The electromagnetic Hopf knot is given by:

φ0 = φ1 = 0, φ2 = −(1− i(t− z))
√

S
2(1+(t−z)2)

which leads to the only nonzero component of the energy-momentum ten-
sor: T(2)(2) = −S.

10.2 how does an electromagnetic Hopf knot curve space-time?

Associated with an electromagnetic field is an energy-momentum distribution.
When considering Einstein’s equations, electromagnetic fields should therefore
be included as a source. We now attempt to solve the combined Einstein-Maxwell
equations in case the energy-momentum tensor of the electromagnetic Hopf knot
is the only source for curvature. Due to the complicated functional relationship
of the various physical quantities in terms of Minkowski coordinates, it seems
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appropriate to use the Newman-Penrose formalism in which we can take
advantage of the incorporation of these complicated structures in the tetrad
vector fields, thereby simplifying the equations to be solved.

The combined system of Einstein and Maxwell equations in this formal-
ism consists of 64 (real) equations [12] that contain the tetrad as derivative
operators, D,∆, δ, δ∗, the spin coefficients, κ, σ, ... and the tetrad representatives
of the Weyl tensor, Ψ0, ...,Ψ4, the Ricci tensor, Φ00, ...,Φ22,Λ, and the Faraday
tensor, φ1, φ2, φ3.

If we would use the quantities that define an electromagnetic Hopf knot
in M4, given in the introduction, in the 64 equations, we would get back flat
space-time. Of course, this is no surprise, since it has already been build in.
This relates to the fact that, in general relativity, in order to describe the sources
in detail we do need the metric first. There is a circularity, since the metric
depends on the details of the sources. Apart from linearizing the theory, few
circumventions to this circularity exists:
1. We could try to find an exact solution mathematically, without consideration
to the physical sources. When the solution has been found we try to interpret
the sources.
2. We could give up a detailed description of the source, and only demand for
example axial symmetry. The more symmetry we demand, the less likely we
find a solution.
3. In the present context, we should "declare" what really is essential to the
source, and only demand those properties for the source. This then defines a
generalization of a "Minkowski electromagnetic Hopf knot" into the realm of
general relativity.

It can (and will) be argued that κ = σ = 0 is essential to a Hopf knot.
We surely want this to be true when commencing our task of solving the 64
equations simultaneously. But what about the fact that γ ∈ I or β = −α∗? What
do they mean? Notice that in the equations (see below) the combination γ + γ∗

as well as α + β∗ appears, often in complicated equations. Demanding these
combinations to vanish would certainly help to reduce the difficulty of our task.
However, it is very well possible that with these extra restrictions there will
be no solution, other than the one already found: flat space-time. The more
restrictions we impose, the less likely it becomes that we find a new solution. On
the other hand, with very few restrictions it becomes almost impossible to solve
the equations simultaneously. This might result in a delicate balance between
too many and too few requirements in the definition for the knot.
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10.2.1 the strategy

We must start with what we consider to be essential, try to solve as many
equations as possible, and in the process decide wether we impose additional
restrictions in order to relieve the difficulty of the equations encountered. We
possibly then find our previous result (flat space-time) or some contradiction.
In that case we know that we imposed the wrong extra condition. We return
to that point, alter the restrictions and try again. If there is no progress after
many repetitions, we come to a point of finally changing the assumptions in the
definition of the source and start the whole process over again. There could of
course be multiple repetitions of this also. It seems reasonable to assume that
a non trivial solution will in the end be found. It is however uncertain how
much of what we hoped to include in the definition of an electromagnetic Hopf
knot in the context of curved space-time is also possible. It can only be hoped
that when the sought after solution has been obtained, enough reason is left for
justifying the said knowledge of the source.

We first list the equations to be solved (10.3), mention some equations
that can be used advantageously (10.4), state what is to be considered essential
to an electromagnetic Hopf knot (10.5) and then show one attempt to solve the
equations in detail (10.6.1) and a summary of another (10.6.2).

10.3 the equations to be solved

From the Ricci identities (36 real or 18 complex equations):

Dρ− δ∗κ = (ρ2 + σσ∗) + ρ(ε+ ε∗)− κ∗τ − κ(3α+ β∗ − π) + Φ00 (10.1)

Dσ − δκ = σ(ρ+ ρ∗ + 3ε− ε∗)− κ(τ − π∗ + α∗ + 3β) + Ψ0 (10.2)

Dτ −∆κ = ρ(τ + π∗) + σ(τ∗ + π) + τ(ε− ε∗)− κ(3γ + γ∗) + Ψ1 + Φ01 (10.3)

Dα− δ∗ε = α(ρ+ ε∗ − 2ε) + βσ∗ − β∗ε− κλ− κ∗γ + π(ε+ ρ) + Φ10 (10.4)

Dβ − δε = σ(α+ π) + β(ρ∗ − ε∗)− κ(µ+ γ)− ε(α∗ − π∗) + Ψ1 (10.5)

Dγ−∆ε = α(τ+π∗)+β(τ ∗+π)−γ(ε+ε∗)−ε(γ+γ∗)+τπ−νκ+Ψ2+Φ11−Λ (10.6)

Dλ− δ∗π = (ρλ+ σ∗µ) + π(π + α− β∗)− νκ∗ − λ(3ε− ε∗) + Φ20 (10.7)

Dµ− δπ = (ρ∗µ+ σλ) + π(π∗ − α∗ + β)− µ(ε+ ε∗)− νκ+ Ψ2 + 2Λ (10.8)

Dν −∆π = µ(π + τ∗) + λ(π∗ + τ) + π(γ − γ∗)− ν(3ε+ ε∗) + Ψ3 + Φ21 (10.9)
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∆λ− δ∗ν = −λ(µ+ µ∗ + 3γ − γ∗) + ν(3α+ β∗ + π − τ∗)−Ψ4 (10.10)

δρ− δ∗σ = ρ(α∗ + β)− σ(3α− β∗) + τ(ρ− ρ∗) + κ(µ− µ∗)−Ψ1 + Φ01 (10.11)

δα−δ∗β = (µρ−λσ)+αα∗+ββ∗−2αβ+γ(ρ−ρ∗)+ε(µ−µ∗)−Ψ2+Φ11+Λ (10.12)

δλ− δ∗µ = ν(ρ− ρ∗) + π(µ− µ∗) + µ(α+ β∗) + λ(α∗ − 3β)−Ψ3 + Φ21 (10.13)

δν −∆µ = (µ2 + λλ∗) + µ(γ + γ∗)− ν∗π + ν(τ − 3β − α∗) + Φ22 (10.14)

δγ −∆β = γ(τ − α∗ − β) + µτ − σν − εν∗ − β(γ − γ∗ − µ) + αλ∗ + Φ12 (10.15)

δτ −∆σ = (µσ + λ∗ρ) + τ(τ + β − α∗)− σ(3γ − γ∗)− κν∗ + Φ02 (10.16)

∆ρ− δ∗τ = −(ρµ∗ + σλ) + τ(β∗ − α− τ∗) + ρ(γ + γ∗) + νκ−Ψ2 − 2Λ (10.17)

∆α− δ∗γ = ν(ρ+ ε)− λ(τ + β) + α(γ∗ − µ∗) + γ(β∗ − τ∗)−Ψ3 (10.18)

From the Bianchi identities (16 real or 8 complex equations):

−δ∗Ψ0 +DΨ1 + (4α− π)Ψ0 − 2(2ρ+ ε)Ψ1 + 3κΨ2 +R1 = 0 (10.19)

in which
R1 = −DΦ01 + δΦ00 + 2(ε+ ρ∗)Φ01 + 2σΦ10− 2κΦ11−κ∗Φ02 + (π∗− 2α∗− 2β)Φ00

δ∗Ψ1 −DΨ2 − λΨ0 + 2(π − α)Ψ1 + 3ρΨ2 − 2κΨ3 +R2 = 0 (10.20)

in which
R2 = δ∗Φ01−∆Φ00−2(α+τ∗)Φ01+2ρΦ11+σ∗Φ02−(µ∗−2γ−2γ∗)Φ00−2τΦ10−2DΛ

−δ∗Ψ2 +DΨ3 + 2λΨ1 − 3πΨ2 + 2(ε− ρ)Ψ3 + κΨ4 +R3 = 0 (10.21)

in which
R3 = −DΦ21+δΦ20+2(ρ∗−ε)Φ21−2µΦ10+2πΦ11−κ∗Φ22−(2α∗−2β−π∗)Φ20−2δ∗Λ

δ∗Ψ3 −DΨ4 − 3λΨ2 + 2(2π + α)Ψ3 − (4ε− ρ)Ψ4 +R4 = 0 (10.22)

in which
R4 = −∆Φ20 + δ∗Φ21 +2(α− τ∗)Φ21 +2νΦ10 +σ∗Φ22−2λΦ11− (µ∗+2γ−2γ∗)Φ20
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−∆Ψ0 + δΨ1 + (4γ − µ)Ψ0 − 2(2τ + β)Ψ1 + 3σΨ2 +R5 = 0 (10.23)

in which
R5 = −DΦ02 + δΦ01 + 2(π∗− β)Φ01− 2κΦ12− λ∗Φ00 + 2σΦ11 + (ρ∗+ 2ε− 2ε∗)Φ02

−∆Ψ1 + δΨ2 + νΨ0 + 2(γ − µ)Ψ1 − 3τΨ2 + 2σΨ3 +R6 = 0 (10.24)

in which
R6 = ∆Φ01−δ∗Φ02+2(µ∗−γ)Φ01−2ρΦ12−ν∗Φ00+2τΦ11+(τ∗−2β∗+2α)Φ02+2δΛ

−∆Ψ2 + δΨ3 + 2νΨ1 − 3µΨ2 + 2(β − τ)Ψ3 + σΨ4 +R7 = 0 (10.25)

in which
R7 = −DΦ22+δΦ21+2(π∗+β)Φ21−2µΦ11−λ∗Φ20+2πΦ12+(ρ∗−2ε−2ε∗)Φ22−2∆Λ

−∆Ψ3 + δΨ4 + 3νΨ2 − 2(γ + 2µ)Ψ3 − (τ − 4β)Ψ4 +R8 = 0 (10.26)

in which
R8 = ∆Φ21− δ∗Φ22 + 2(µ∗+ γ)Φ21− 2νΦ11− ν∗Φ20 + 2λΦ12 + (τ∗− 2α− 2β∗)Φ22

and further, also from the Bianchi identities (2 real and 1 complex equa-
tions):

δ∗Φ01 + δΦ10 −D(Φ11 + 3Λ)−∆Φ00 =
κ∗Φ12 + κΦ21 + (2α+ 2τ∗ − π)Φ01 + (2α∗ + 2τ − π∗)Φ10 − 2(ρ+ ρ∗)Φ11 − σ∗Φ02 −
σΦ20 + (µ+ µ∗ − 2(γ + γ∗))Φ00

δ∗Φ12 + δΦ21 −∆(Φ11 + 3Λ)−DΦ22 =
− νΦ01 − ν∗Φ10 + (τ∗ − 2β∗ − 2π)Φ12 + (τ − 2β − 2π∗)Φ21 + 2(µ+ µ∗)Φ11 − (ρ+
ρ∗ − 2ε− 2ε∗)Φ22 + λΦ02 + λ∗Φ20

δ(Φ11 − 3Λ)−DΦ12 −∆Φ01 + δ∗Φ02 =
κΦ22 − ν∗Φ00 + (τ∗ − π + 2α − 2β∗)Φ02 − σΦ21 + λ∗Φ10 + 2(τ − π∗)Φ11 − (2ρ +
ρ∗ − 2ε∗)Φ12 + (2µ∗ + µ− 2γ)Φ01
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And finally, Maxwell’s equations:

Dφ1 − δ∗φ0 = (π − 2α)φ0 + 2ρφ1 − κφ2 (10.27)

Dφ2 − δ∗φ1 = −λφ0 + 2πφ1 + (ρ− 2ε)φ2 (10.28)

δφ1 −∆φ0 = (µ− 2γ)φ0 + 2τφ1 − σφ2 (10.29)

δφ2 −∆φ1 = −νφ0 + 2µφ1 + (τ − 2β)φ2 (10.30)

10.4 useful equations

When solving the combined system of equations, use can be made of the
commutation relations, which are easy to obtain from the definitions of the spin
coefficients:

∆D −D∆ = (γ + γ∗)D + (ε+ ε∗)∆− (τ∗ + π)δ − (τ + π∗)δ∗ (10.31)

δD −Dδ = (α∗ + β − π∗)D + κ∆− (ρ∗ + ε− ε∗)δ − σδ∗ (10.32)

δ∆−∆δ = −ν∗D + (τ − α∗ − β)∆ + (µ− γ + γ∗)δ + λ∗δ∗ (10.33)

δ∗δ − δδ∗ = (µ∗ − µ)D + (ρ∗ − ρ)∆ + (α− β∗)δ + (β − α∗)δ∗ (10.34)

The following set of so called eliminant equations can be useful too. They
can be derived from combinations of (10.1) - (10.18).

D(ρ−ρ∗)+δκ∗−δ∗κ = (ρ−ρ∗)(ρ+ρ∗+ε+ε∗)+κ(τ∗+π−3α−β∗)−κ∗(τ+π∗−3α∗−β)

D(µ − µ∗) + δ(α + β∗ − π) − δ∗(α∗ + β − π∗) = (γ + γ∗)(ρ − ρ∗) + α(π∗ −
2β)− α∗(π − 2β∗) + κ∗ν∗ − κν + βπ − β∗π∗ + (ρ+ ρ∗)(µ− µ∗)

D(µ − µ∗ − γ + γ∗) + ∆(ε − ε∗) − δπ + δ∗π∗ = (ε + ε∗)(µ∗ − µ) + τ∗(α∗ +
π∗ − β)− τ(α+ π − β∗) + λσ − λ∗σ∗ + ρ∗µ− ρµ∗ + 2(εγ − ε∗γ∗)

∆(µ∗ − µ) + δν − δ∗ν∗ = (µ − µ∗)(µ + µ∗ + γ + γ∗) + ν(τ − 3β − α∗ +
π∗)− ν∗(τ∗ + π − 3β∗ − α)

D(τ − α∗ − β) − ∆κ + δ(ε + ε∗) = ρ(τ + π∗) + κ∗λ∗ + σ(τ∗ − α − β∗) +
ε(τ − π∗)− ρ∗(β + α∗ + π∗) + ε∗(2α∗ + 2β − τ − π∗) + κ(µ− 2γ)
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δ(ρ − ε + ε∗) − δ∗σ + D(β − α∗) = ρ(α∗ + β + τ) − ρ∗(τ − β + α∗ + π∗) +
(ε∗ − ε)(2α∗ − π∗) + σ(π − 2α) + κ(γ∗ − γ − µ∗) + κ∗λ∗

Dλ + ∆σ∗ − δ∗(τ∗ + π) = σ∗(3γ∗ − γ + µ − µ∗) + (π + τ∗)(π − τ∗ + α) +
λ(ρ− ρ∗ − 3ε+ ε∗)− βπ − τ∗β∗

Dν + ∆(α + β∗ − π) − δ∗(γ + γ∗) = ν(ρ − 2ε) + λ(π∗ − α∗ − β) + µ(π +
τ∗)− µ∗(α+ β∗ + τ∗) + γ(π − τ∗) + γ∗(2α+ 2β∗ − π − τ∗) + σ∗ν∗

∆(β∗ − α) + δλ + δ∗(γ − γ∗ − µ) = ν(ε∗ − ε − ρ∗) + λ(τ − 2β) + α(µ +
µ∗)− µ∗(π + τ∗ + β∗) + µ(π + β∗) + (γ − γ∗)(τ∗ − 2β∗) + σ∗ν∗

Dµ+∆ρ−δπ−δ∗τ = ρ∗µ−ρµ∗+π(π∗−α∗+β)+τ(β∗−α−τ∗)+ρ(γ+γ∗)−µ(ε+ε∗)

10.5 essentials of a Hopf knot

We must define the source now. For every constant real a the vector (compare
(4.1))

F(t, r) = a
((t−i)2−r2)3

 (x− iy)2 − (t− i− z)2

i(x− iy)2 + i(t− i− z)2

−2(x− iy)(t− i− z)


defines the Riemann-Silberstein vector of an electromagnetic knot. In the
limit of very small a, the energy(density) is accordingly small and the curvature
of space-time due to this field can be safely neglected. This is the situation
described in the introduction, except that the constant a should now appear in
the representation of the Faraday tensor. In this case there is a direct relation
between the first tetrad vector field, l, and the electromagnetic field. We expect
this relation to hold also in the case of stronger fields, so that stating properties
for the first of tetrads is tantamount to having corresponding properties for the
electromagnetic field.
An important property of an electromagnetic Hopf knot is that the field is null.
From section 3.4 we know that the principal null directions of the field coincide:
in spinor-language we have φAB ∝ ϑAϑB for some spinor ϑ. In the notation
of section 1.2.1, let l ↔ ϑϑ̄ and n ↔ ιῑ for some suitable but unspecified ι.
The spinor form of the defining equations for the tetrad representation of the
faraday tensor (section 7.4.3) can be seen to be φ0 = φABϑ

AϑB , φ1 = φABϑ
AιB

and φ2 = φABι
AιB . With present choice for l we therefore have φ2 as the only

nonzero component. From section 3.4 we also know that Maxwell equations
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in flat space-time implies that l defines a geodesic and shear-free null congruence.

This remains true in a general curved space-time (see below), and we therefore
proceed as follows.

We choose l to be the eigenvector field of the Faraday tensor. This im-
plies that the Faraday tensor is represented by φ2 alone, the other components
vanish. Maxwell’s equations (10.27) and (10.29) now give κ = 0 = σ.

In M4 the Robinson congruence is not proportional to the gradient of a
scalar field. Having in mind the converse of the limiting procedure just
described, it seems implausible that at one stage in the process we suddenly do
have this proportionality. We therefore assume ρ 6= ρ∗, in particular ρ 6= 0. Only
the latter property will be of importance in the sequel.

The choices that we will make next represent only one possible set. Oth-
ers have been considered, some of which could afterwards be rejected. With
one particular set of choices we finally obtained few difficult equations that still
have to be solved. However, we would like to present an example that has been
brought to completion. Besides, the choices discussed in the following section
allow for a better survey of the method used.
We would also like to mention that changes in the choice of the form of l (see
below) have been considered, with no prospect of obtaining a solution quickly.

10.6 an attempt to solve the equations

10.6.1 first attempt

We assume that there exists coordinates {t, x, y, z} such that

l = A(1, S
bS )

T(2)(2) = −bS, other components vanishing

bS = |S| , S = (1+x2+y2+(t−z)2)
((t2−r2)2+1+2(t2+r2))3

 2(x(t− z) + y)
2(y(t− z)− x)

x2 + y2 − (t− z)2 − 1

,

A = A(t, x, y, z) and b = b(t, x, y, z) undetermined

and φ0 = 0 = φ1; κ = 0 = σ, ρ 6= 0.
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The space-time under consideration contains a geodesic shear-free null
congruence, l. In addition, since φ0 = 0 = φ1, we have Φ00 = Φ01 = Φ02 = 0. All
the requirements for the Goldberg-Sachs theorem (section 7.6) to be valid are
therefore satisfied. We conclude that the space-time is algebraically special and:

Ψ0 = 0 = Ψ1.

Now apply a type 3 transformation to the tetrad (see section 7.4.4) such that
ε
A− DA

2A2 + iDθ
2A = 0. The function A will be absorbed in A. From now we also have:

ε = 0.

Next, consider a type 1 transformation with a = − τρ . From the Ricci identities,
(10.1)-(10.18), and what we know so far, it can be inferred that Da = −π∗ and
δa = −λ∗ + 2α∗ τρ − ρ∗ τ

2

ρ2 . These relations for a,Da and δa imply that we now
have in addition:

τ = π = λ = 0.

Plugging the known variables into the equations listed above and skip-
ping the ones that have become trivial, we see that, only due to
φ0 = φ1 = κ = σ = 0, ρ 6= 0 and suitable tetrad transformations, a great
simplification has occurred:

Dρ = ρ2

Dα = αρ
Dβ = βρ∗

Dγ = Ψ2

Dµ = ρ∗µ+ Ψ2

Dν = Ψ3

−δ∗ν = ν(3α+ β∗)−Ψ4

δρ = ρ(α∗ + β)
δα− δ∗β = µρ+ αα∗ + ββ∗ − 2αβ + γ(ρ− ρ∗)−Ψ2

−δ∗µ = ν(ρ− ρ∗) + µ(α+ β∗)−Ψ3

δν −∆µ = µ2 + µ(γ + γ∗)− ν(3β + α∗) + Φ22

δγ −∆β = γ(−α∗ − β)− β(γ − γ∗ − µ)
∆ρ = −ρµ∗ + ρ(γ + γ∗)−Ψ2

∆α− δ∗γ = νρ+ α(γ∗ − µ∗) + γβ∗ −Ψ3

DΨ2 = 3ρΨ2

−δ∗Ψ2 +DΨ3 − 2ρΨ3 = 0
δ∗Ψ3 −DΨ4 + 2αΨ3 + ρΨ4 = 0
δΨ2 = 0
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−∆Ψ2 + δΨ3 − 3µΨ2 + 2βΨ3 −DΦ22 + ρ∗Φ22 = 0
−∆Ψ3 + δΨ4 + 3νΨ2 − 2(γ + 2µ)Ψ3 + 4βΨ4 − δ∗Φ22 − 2(α+ β∗)Φ22 = 0

DΦ22 = (ρ+ ρ∗)Φ22

Dφ2 = ρφ2

δφ2 = −2βφ2

Since Φ22 ∝ φ2φ
∗
2, Dφ2 = ρφ2 implies DΦ22 = (ρ + ρ∗)Φ22, which can

therefore be omitted from the list.
From T(2)(2) = −bS it follows that φ2 = eiΩ

√
bS
2 for some real function Ω.

Dφ2 = ρφ2 then results in

ρ = iDΩ−A 2(t−z)
1+x2+y2+(t−z)2 + 1

2bDb.

Since ρ, α, β∗, φ2 and (Ψ2)
1
3 all satisfy the same equation D(...) = ρ(...), it

is tempting to express all these variables in terms of one of them:

α = fαρ, β = fβρ∗, φ2 = fφρ, Ψ2 = fΨρ3 in which all the f ... satisfy
Df ... = 0.
In the same spirit Dγ = Ψ2 then implies γ = 1

2f
Ψρ2 + fγ , and Dµ = ρ∗µ + Ψ2

suggests the form µ = f1ρ
∗ + f2ρ+ f3ρ

2. Substitution of this expression into the
equation leads to f3 = 1

2f
Ψ and f2 = fΨ ρρ∗

2(ρ−ρ∗) . Note that indeed Df2 = 0. To
summarize:

α = fαρ
β = fβρ∗

φ2 = fφρ
Ψ2 = fΨρ3

γ = 1
2f

Ψρ2 + fγ

µ = fµρ∗ + fΨ ρ3

2(ρ−ρ∗)
Φ22 = 2fφ(fφ)∗ρρ∗

Df ... = 0.

Dρ = ρ2

Dν = Ψ3

−δ∗ν = ν(3α+ β∗)−Ψ4

δρ = ρ(α∗ + β)
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δα− δ∗β = µρ+ αα∗ + ββ∗ − 2αβ + γ(ρ− ρ∗)−Ψ2

−δ∗µ = ν(ρ− ρ∗) + µ(α+ β∗)−Ψ3

δν −∆µ = µ2 + µ(γ + γ∗)− ν(3β + α∗) + Φ22

δγ −∆β = γ(−α∗ − β)− β(γ − γ∗ − µ)
∆ρ = −ρµ∗ + ρ(γ + γ∗)−Ψ2

∆α− δ∗γ = νρ+ α(γ∗ − µ∗) + γβ∗ −Ψ3

−δ∗Ψ2 +DΨ3 − 2ρΨ3 = 0
δ∗Ψ3 −DΨ4 + 2αΨ3 + ρΨ4 = 0
δΨ2 = 0
−∆Ψ2 + δΨ3 − 3µΨ2 + 2βΨ3 − ρΦ22 = 0
−∆Ψ3 + δΨ4 + 3νΨ2 − 2(γ + 2µ)Ψ3 + 4βΨ4 − δ∗Φ22 − 2(α+ β∗)Φ22 = 0

δφ2 = −2βφ2

From the equations for δρ, δΨ2 and δφ2 we deduce:

δfΨ = −3fΨ(fβ + fα∗)ρ∗, δfφ = −fφ(3fβ + fα∗)ρ∗, δρ = ρρ∗(fβ + fα∗).

This is a good point for an extra assumption that will lead to a welcome
further simplification.
If we assume β = −α∗, valid in the flat space-time case, we get:

Dρ = ρ2

Dν = Ψ3

−δ∗ν = 2να−Ψ4

δρ = 0
δα+ δ∗α∗ = µρ+ 4αα∗ + γ(ρ− ρ∗)−Ψ2

−δ∗µ = ν(ρ− ρ∗)−Ψ3

δν −∆µ = µ2 + µ(γ + γ∗) + 2να∗ + Φ22

δγ + ∆α∗ = α∗(γ − γ∗ − µ)
∆ρ = −ρµ∗ + ρ(γ + γ∗)−Ψ2

∆α− δ∗γ = νρ+ α(γ∗ − µ∗)− γα−Ψ3

−δ∗Ψ2 +DΨ3 − 2ρΨ3 = 0
δ∗Ψ3 −DΨ4 + 2αΨ3 + ρΨ4 = 0
−∆Ψ2 + δΨ3 − 3µΨ2 − 2α∗Ψ3 − ρΦ22 = 0
−∆Ψ3 + δΨ4 + 3νΨ2 − 2(γ + 2µ)Ψ3 − 4α∗Ψ4 − δ∗Φ22 = 0

δfΨ = 0
δfφ = 2fφfα∗ρ∗
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Except for ν, we have expressed all spin coefficients in terms of ρ. From
Dν = Ψ3 and −δ∗Ψ2 +DΨ3 − 2ρΨ3 = 0, we see that if δ∗Ψ2 = 0, we can express
Ψ3 and ν in terms of ρ.
Alternatively, and less restrictive, we can use the commutation relations, which
now read:

∆D −D∆ = (γ + γ∗)D
δD −Dδ = −ρ∗δ
δ∆−∆δ = −ν∗D + (µ− γ + γ∗)δ
δ∗δ − δδ∗ = (µ∗ − µ)D + (ρ∗ − ρ)∆ + 2αδ − 2α∗δ∗,

the second of which gives (δ∗D − Dδ∗)ρ = −ρδ∗ρ, or D(δ∗ρ) = 3ρ(δ∗ρ).
We therefore put

δ∗ρ = fρρ3, Dfρ = 0.

Also, (δ∗D −Dδ∗)fΨ = −ρδ∗fΨ, thus δ∗fΨ = fpsρ, Dfps = 0.

The same commutation relation also gives rise to D(δ∗Ψ2) = 4ρ(δ∗Ψ2)+3fΨfρρ6,
which suggests δ∗Ψ2 = f4ρ

4 + f5ρ
5. Substitution of this expression leads to

δ∗Ψ2 = fpρ4 + 3fρfΨρ6 and Dfp = 0. The equation that contains DΨ3 now
becomes:

DΨ3 = 2ρΨ3 + fpρ4 + 3fρfΨρ6.

This again leads to a suggestion for Ψ3 that, when substituted, results
in:

Ψ3 = fpρ3 + fρfΨρ5.

Alternatively, use ∆α−δ∗γ = νρ+α(γ∗−µ∗)−γα−Ψ3 and δγ+∆α∗ = α∗(γ−γ∗−µ)
to get Ψ3 = νρ+ δ∗(γ∗ + γ). Substitute γ in terms of ρ and use δD −Dδ = −ρ∗δ
several times in order to get:

Ψ3 = (ν + fg)ρ+ 1
2f

psρ3 + fρfΨρ4, Dfg = 0.

Comparing these results gives an expression for ν in terms of ρ:

ν = −fg + (fp − 1
2f

ps)ρ2 − fρfΨ(ρ3 − ρ4).

Dν = Ψ3 can now be used to arrive at fp = fps and fρ = 0 or fΨ = 0.
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Time to pause and recapitulate what the result is up till now.

α = fαρ = −β∗
γ = 1

2f
Ψρ2 + fγ

µ = fµρ∗ + fΨ ρ3

2(ρ−ρ∗)
ν = −fg + 1

2f
pρ2

φ2 = fφρ
Φ22 = 2fφ(fφ)∗ρρ∗

Ψ2 = fΨρ3

Ψ3 = fpρ3

Ψ4 = −(fh + 2fgfα)ρ+ (fpfα + 1
2f

q)ρ3 + fpfρρ4

Dρ = ρ2

δρ = 0
δ∗ρ = fρρ3

∆ρ = (fγ + fγ∗)ρ− fµ∗ρ2 − 1
2f

Ψρ3 + 1
2f

Ψ∗ρ(ρ∗)2 + fΨ∗ ρ(ρ∗)3

2(ρ−ρ∗)

δfΨ = 0
δfφ = 2fφfα∗ρ∗

in general δfa = f bρ∗

δ∗fΨ = fpρ
in general δ∗fa = f bρ : δ∗fg = fhρ, δ∗fp = fqρ, δ∗fµ = fmρ

δ∗Ψ2 = fpρ4

Df ... = 0
fρ = 0 or fΨ = 0

δα+ δ∗α∗ = µρ+ 4αα∗ + γ(ρ− ρ∗)−Ψ2

−δ∗µ = ν(ρ− ρ∗)−Ψ3

δν −∆µ = µ2 + µ(γ + γ∗) + 2να∗ + Φ22

δγ + ∆α∗ = α∗(γ − γ∗ − µ)
∆α− δ∗γ = νρ+ α(γ∗ − µ∗)− γα−Ψ3

δ∗Ψ3 −DΨ4 + 2αΨ3 + ρΨ4 = 0
−∆Ψ2 + δΨ3 − 3µΨ2 − 2α∗Ψ3 − ρΦ22 = 0
−∆Ψ3 + δΨ4 + 3νΨ2 − 2(γ + 2µ)Ψ3 − 4α∗Ψ4 − δ∗Φ22 = 0

The equation −δ∗µ = ν(ρ − ρ∗) − Ψ3 can be used to show that
1
2

1
ρρ∗ f

p[ρ3 − ρ4

ρ−ρ∗ + ρ∗ρ2] = fg (ρ∗−ρ)
ρρ∗ + fm. Since D(fg (ρ∗−ρ)

ρρ∗ + fm) = 0 we
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should also have D( 1
ρρ∗ [ρ3− ρ4

ρ−ρ∗ +ρ∗ρ2]) = 0. It is easy to show that this implies:

ρ = ρ∗.

Although we did not expect this to happen, in fact we only used ρ 6= 0.
Again we get a pleasant reduction in the complexity of the remaining equations.
The reality of ρ implies fρ = 0, since (δ∗ρ)∗ = δρ∗. It also implies fΨ = 0, as can
be seen from the derivation of the expression for µ in terms of ρ. This in turn
implies fp = 0, and therefore fq = 0 also. Now, the only nonzero Ψ is Ψ4. The
equation −∆Ψ2 + δΨ3 − 3µΨ2 − 2α∗Ψ3 − ρΦ22 = 0 however tells us that we ran
into a contradiction, since Φ22 6= 0.

10.6.2 second attempt

In the previous attempt we imposed β = −α∗, that was also valid in the flat
space-time in case we use the tetrad (9.1). However, in section 9.2.1 we did
not fix n in such a way as to obtain τ = 0, whereas in 10.6.1 we did have
τ = 0. This does not mean that the attempt in the previous section must fail,
but we might have better prospects when we use relations valid in the flat
space-time case related to a tetrad that is more akin to the one in the curved
space-time. Therefore, here we present a summary of an attempt to solve the
equations, in which we assume a relation that is valid in the flat space-time
case when we use the tetrad (9.3): β = −α∗ + aρ∗. This exercise has not been
brought to completion, but is presented here to show to what kind of task it leads.

Like before, we start with φ0 = 0 = φ1, κ = 0 = σ and ρ 6= 0. Again,
this implies Ψ0 = 0 = Ψ1. We now choose a such that τ + aρ = 0, and
apply a tetrad type 1 transformation with this a. This gives τ = 0, which in
combination with (10.3) and (10.16) leads to π = 0 and λ = 0 in addition. All
this leads to equations that still appear difficult. We therefore use the freedom
of a type 3 transformation to get ε = 0 like before. (We could go a different
direction here, since this is just a choice, motivated only by the reduction of the
complexity. Other choices also reduce the complexity. It is difficult to come
up with a physically preferred choice. At least, present choice does admit an
interpretation: the use of an affine parameter.) It is clear that we now have
exactly the same set of equations as the first set in the previous subsection. But
now, as a second choice, we make a different one from before: β = −α∗ + aρ∗,
and combine this with the assumption that ρ is real. We should therefore refrain
from using the previous expression for µ in terms of ρ, and have instead
µ = fµρ + fΨρ2. It is easy to find Da = 0. From the equations for δρ, δΨ2 and
δφ2 we deduce δfΨ = −3afΨρ and δfφ = −fφ(3fβ + (fα)∗)ρ. Applying the
commutation relation for δ∗ and D (now different from before) to Ψ2 leads to
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δ∗Ψ2 = fpρ4, which in turn leads to Ψ3 = fρρ2 + fpρ3. Dν = Ψ3 then gives
ν = fρρ + 1

2f
pρ2 + fν . Continuing in this spirit, it is perhaps not too difficult

to find few more expressions for the tetrad representatives in terms of ρ and
functions f .. that satisfy Df .. = 0 = D∆f .., δf .. = f

′..ρ and δ∗f .. = f
′′..ρ. We end

up with only a few of the original equations that are not identically satisfied,
and many unknown functions f .. that all satisfy the same relatively simple
equations. What is left from the original set can be used to relate some of the
f ..’s. Additional assumptions lead to simpler equations, but could also lead to
contradictions.

10.7 final remarks

The contradiction in the first attempt is the result of the collection of assumptions
made, at least one of which should not have been made. It seems reasonable to
assume that it is possible, changing assumptions every time when needed, to
bring this exercise to a satisfactory end. In practise however this turns out to be
very laborious. The Geroch-Held-Penrose [93] formalism is an alternative for the
Newman-Penrose formalism that might be better suited to our problem.

Suppose we succeeded in our task and would have an expression for all
tetrad components of the Weyl tensor in terms of t, x, y, z. We would then have a
formidable new task of showing that this solution really is a new one or that it is
a known one in disguise. Diffeomorphism invariance in general relativity leads
to an egalitarian principle among all coordinate systems. The same solution
expressed in weird but equally valid coordinates could look very different from
the solution in the usual coordinates. The problem of proving or disproving that
two solutions are the same, expressed in different coordinate systems, is called
the equivalence problem and is notorious. If it would lead to a solution already
known, the present context could possibly clarify questions about its source.
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Samenvatting

Dit proefschrift, "De Robinson Congruentie in Elektrodynamica en in de
Algemene Relativiteitstheorie", heeft als uitgangspunt een recent gevonden
oplossing van de Maxwell vergelijkingen, een zogenaamde elektromagnetis-
che Hopf knoop. Deze kenmerkt zich door een bijzondere structuur van de
elektrische en magnetische veldlijnen: elke elektrische (magnetische) veldlijn is
gesloten en twee willekeurige elektrische (magnetische) veldlijnen zijn aan elkaar
gekoppeld zoals twee naburige olympische ringen. Deze twee eigenschappen
gelden voor alle tijdstippen. Er is een uniek moment waarop elke veldlijn een
cirkel is. De ruimtevullende verzameling van alle elektrische veldlijnen tezamen
vormt op dit unieke tijdstip een Hopf fibratie. De magnetische veldlijnen vormen
op dit tijdstip ook een Hopf fibratie, negentig graden gedraaid ten opzichte van
de elektrische Hopf fibratie.
In hoofdstuk twee wordt de Hopf fibratie elementair en uitvoerig beschreven.

Deze structuur speelt ook een rol in twistortheorie: een nultwistor wordt
voorgesteld als een Hopf fibratie die met de lichtsnelheid langs een centrale
as beweegt. Na wiskundige voorbereidingen in de hoofdstukken één en drie,
laat hoofdstuk vier zien dat de overeenkomst tussen een elektromagnetische
Hopf knoop en een nultwistor geen toeval is. Het Poynting vectorveld van een
elektromagnetische knoop heeft op alle tijdstippen de structuur van een Hopf
fibratie en deze beweegt met de lichtsnelheid langs de centrale as, net als het
beeld van een nultwistor. Een stelling van Robinson wordt gebruikt voor de
wiskundige relatie tussen beide.

De bekende Lorentz transformaties maken deel uit van de groep van con-
forme transformaties. Een conforme inversie is een ander voorbeeld hiervan.
De vergelijkingen van Maxwell in vacuum zijn invariant onder alle conforme
transformaties. Hoofdstuk vijf ontwikkelt een methode om middels conforme
inversie van een oplossing van Maxwell vergelijkingen een andere oplossing
te verkrijgen. Deze methode wordt toegepast op een elektromagnetische Hopf
knoop met als verrassend resultaat een andere, maar eenvoudig gerelateerde,
Hopf knoop.
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De tot de driedimensionale Euclidische ruimte behorende raakvectoren
van de Hopf fibratie kunnen met een tijdcomponent worden aangevuld tot een
nulvectorveld in Minkowski ruimte, een vlakke ruimtetijd. Dit leidt tot een
zogenaamde Robinson congruentie, welke in een vlakke ruimtetijd onlosmakelijk
met de Hopf fibratie is verbonden. In een gekromde ruimtetijd is dit verband
er niet meer. Omdat in het lineaire regime van Einsteins veldvergelijkingen
een oplossing gedacht kan worden als een veld in de Minkowski ruimte, heeft
het zin om, in dit regime, te zoeken naar oplossingen met een Hopf structuur.
Hoofdstuk zes laat zien dat met behulp van de Penrose transformatie uit de
twistortheorie een elektromagnetische Hopf knoop ’gegeneraliseerd’ kan worden
tot een ’gravitationele Hopf knoop’: een oplossing van de gelineariseerde
Einstein vergelijkingen waarin vijf Hopf fibraties een rol spelen.

Hoofdstuk acht laat zien dat de Robinson congruentie ook een rol speelt
bij oplossingen van de volledige (niet-lineaire) Einstein vergelijkingen. Hoewel
de relatie met een Hopf fibratie er nu niet is, kan in de hier beschouwde
specifieke klasse van gekromde ruimtetijd toch in zekere zin gesproken worden
van een Hopf fibratie.

Omdat met elektromagnetische velden een energie-impulsdichtheid geasso-
cieerd wordt, moet bij het oplossen van Einsteins vergelijkingen ook dit veld
in de bronterm worden verwerkt. Hoofdstuk tien beschrijft een poging om de
gekromde ruimtetijd te vinden met een elektromagnetische Hopf knoop als
enige bron. Een bij dit vraagstuk behorende moeilijkheid betreft de definitie van
de bron in de context van een gekromde ruimtetijd: om de bron te beschrijven
moeten we de ruimtetijd kennen en om de ruimtetijd te kennen moeten we
Einsteins vergelijkingen oplossen met bronterm. Om dit probleem op te lossen
kiezen we voor enige vrijheid in de definitie van onze bron.
Het formalisme dat gebruikt wordt is het in hoofdstuk zeven geintroduceerde
Newman-Penrose formalisme. In hoofdstuk negen wordt de elektromagnetische
Hopf knoop in dit formalisme in een vlakke ruimtetijd behandeld. Dit geeft
mogelijke aanknopingspunten voor de definitie van de bron in de context van
een gekromde ruimtetijd.
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