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The largest radiative corrections to the cross section of electron-proton scattering at high energies are 
associated with emission of photons, real and virtual, by electron. They contain large logarithms coming 
from soft and collinear photons. Cancellation of the contributions of the soft photons to virtual and 
real corrections is well known. Less known is the fact that the contributions of the photons collinear 
to scattered electrons are also canceled for the most of experiments. On the contrary, contributions of 
the photons collinear to initial electrons as a rule are not canceled. It is shown, however, that these 
contributions are canceled for the experimental set up suggested by A.A. Vorobev for measurement of 
proton radius.

© 2019 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license 
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1. Introduction

The striking difference in the proton radius values extracted at 
the Paul Scherrer Institute from the 2S − 2P transition in muonic 
hydrogen [1,2] and obtained from electron-proton scattering and 
hydrogen spectroscopy [3] (for a review, see Ref. [4]) caused a 
surge of interest of theorists and experimentalists to the prob-
lem and got the name “proton radius puzzle” [5,6]. Latest electron 
scattering experiments at JLab [7] and MAMI [8] and hydrogen 
spectroscopy experiments [9,10] not only did not resolve the puz-
zle, but made it even more confusing.

Currently new scattering experiments are being prepared. A dis-
tinctive feature of one of them [11], which was suggested by 
A.A. Vorobev and has to be performed with a low-intensity elec-
tron beam at MAMI, is that instead of detecting a scattered elec-
tron, as in previous experiments, it is supposed to detect with a 
high precision a recoil proton in the region of low momentum 
transfer squared Q 2 from 0.001 to 0.04 GeV2. The aim is to extract 
the proton radius with 0.6 percent precision, which could be deci-
sive in solving the proton radius puzzle. To this end, it is planned 
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to achieve 0.2 percent accuracy of the cross section dσ/(dQ 2)

measurement.
Such accuracy requires precise account of radiative corrections. 

Although calculation of the radiative corrections to the electron-
proton scattering cross section has a long history (see, for example, 
Refs. [12–15] and recent reviews [16–18]),1 the results obtained 
before cannot be completely applied to the experiment discussed 
above. The reason it that they were obtained for experiments in 
which scattered electrons were detected (honestly speaking, there 
was the experiment [20] where the recoil proton was detected; but 
calculation of the radiative corrections to this experiment was not 
explained). Since the radiative corrections include contributions of 
inelastic processes with photon emission, they depend strongly on 
experimental conditions, so that the corrections calculated for ex-
periments with detection of scattered electrons are not suitable for 
experiments with detection of recoil proton. It occurs that the ra-
diative corrections for experiments with detection of recoil proton 
have a new and pleasant property – cancellation of the most im-
portant pieces. This paper is dedicated to explanation and deriva-
tion of this property.2

1 Higher order corrections to the lepton line were considered for the standard 
experimental set-up with scattered electron measurement in [19].

2 Cancellation of leptonic radiative corrections to deep inelastic scattering was 
discussed in [21] and [22].
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2. One-loop corrections

We will denote four-momenta of initial and final electron (pro-
ton) as l (p) and l′ (p′); l2 = l′ 2 = m2, p2 = p′ 2 = M2, and will 
use the designations Q 2 = −q2, q = p − p′ both for elastic the 
and inelastic processes. In the following we assume electrons to 
be ultrarelativistic in both the initial and final states and also ne-
glect m2 compared with M2 and Q 2.

In the Born approximation the electron-proton cross section is 
knownsince 1950 [23]. It can be written as

dσB

dQ 2
= 2πα2

Q 4

2M(E2
l + E ′ 2

l + M(El − E ′
l))

E2
l (2M + El − E ′

l)

×
(
τ G2

M(Q 2) + ε G2
E(Q 2)

)
, (1)

where El and E ′
l are initial and final electron energies in the rest 

frame of the initial proton,

ε = 2El E ′
l − M(El − E ′

l)

E2
l + E ′ 2

l + M(El − E ′
l)

, (2)

τ = Q 2/(4M2), G E (Q 2) and G M(Q 2) are electric and magnetic 
form factors, which are expressed through the Dirac and Pauli form 
factors f1(Q 2) and f2(Q 2), defined by the matrix element of the 
electromagnetic current Jμ between initial and final proton states

〈
P ′| Jμ(0)|P

〉 = ū(p′)
(

f1(Q 2)γ μ + f2(Q 2)
[γ μ,γ ν ]qν

4M

)
u(p) ,

(3)

as

G M(Q 2) = f1(Q 2) + f2(Q 2),

G E(Q 2) = f1(Q 2) − Q 2

4M2
f2(Q 2) . (4)

With elastic scattering E ′
l and Q 2 are not independent variables 

and are expressed through the initial electron energy El and the 
scattering angle θ in the proton rest frame:

E ′
l = El

1 + (2El/M) sin2(θ/2)
, Q 2 = 4El E

′
l sin2(θ/2) . (5)

The energies of the scattered electron E ′
l and the recoil proton E ′

p

can be expressed also through El and Q 2:

E ′
p = Q 2

2M
+ M , E ′

l = El − Q 2

2M
. (6)

Experimentally observed cross section dσexp usually is presented 
as

dσexp = dσB(1 + δ) , (7)

where the radiative correction δ is given by the sum of the correc-
tion δvirt accounting contributions of higher orders in the electro-
magnetic coupling α to the elastic scattering cross section and the 
correction δreal due to inelastic processes admitted by experimen-
tal conditions: δ = δvirt + δreal . In the one-loop approximation the 
virtual corrections δvirt is determined by the interference of the 
Born amplitude with the one-loop amplitudes, and the real correc-
tion δreal is related to the one-photon emission.

Taking separately, the virtual and real contributions has no 
sense, neither from theoretical, nor from experimental point of 
view; in the first case – because of infrared divergencies, in the 
second – because only processes with emission of any number of 
sufficiently soft photons are experimentally observed.

The most important virtual correction is so called vertex cor-
rection. In the one-loop approximation it is well known (see, for 
example, [24])

δe
vertex = α

π

[
−

(
ln

(
Q 2

m2

)
− 1

)
ln

(
m2

λ2

)

−1

2
ln2

(
Q 2

m2

)
+ 3

2
ln

(
Q 2

m2

)
+ π2

6
− 2

]
. (8)

Here λ is the “photon mass” introduced for regularization of the 
infrared divergencies.

Photons emitted in the scattering process by an electron can 
be conveniently divided, as is usually done, into soft, non-affecting 
the elastic kinematics of the process, and hard. The soft photons 
can be defined as those which have energy less than ω0 (with 
a sufficiently small ω0) in some reference frame. For them, the 
factorization theorem [25] can be used and their contribution δe

sof t
to δreal can be found in any frame using the integrals calculated in 
[26]. If the limitation on the photon energy ω < ω0 is imposed in 
the rest proton system, then (see, for example, [27])

δe
sof t = α

π

[(
ln
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Q 2
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)
− 1

)
ln
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4ω2

0

λ2

)

− 1

4
ln2

(
4E2

l
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− 1

4
ln2
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4E ′

l
2
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2
ln2

(
4El E ′

l
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+ ln

(
4El E ′

l

m2
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+ Li2

(
1 − Q 2

4El E ′
l

)
− π2

3

]
. (9)

The sum of the vertex and the soft photon corrections is free from 
infrared singularities

δe
vertex+sof t = α

π

[
−

(
ln

(
Q 2

m2

)
− 1

)
ln
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El E ′

l

ω2
0

)
+ 3

2
ln

(
Q 2
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− 2 − 1

2
ln2

(
El

E ′
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)
+ Li2

(
1 − Q 2

4El E ′
l

)
− π2

6

]
,

(10)

so that the hard photon contribution to δreal can be calculated 
with zero photon mass. The cancellation of the infrared singu-
larities in (10) is well known. It is a consequence of the general 
statement [25] about the cancellation of infrared singularities in 
the sum of virtual corrections and corrections due to the emission 
of soft photons. However, the sum (10) contains ln

(
Q 2

m2

)
, i.e. so 

called collinear singularities. In general, the terms with ln
(

Q 2

m2

)
remain also after account of contributions of hard photons, be-
cause the theorem on the cancellation of collinear singularities 
[28,29] evidently can not be applied to radiative corrections to 
electron-proton scattering. However, in the experimental condi-
tions of Ref. [11] these terms disappear. It is amusing enough that 
their cancellation may be related to the Kinoshita–Lee–Nauenberg 
theorem [28,29]. It will be explained in the next section. And here 
we will demonstrate it using less advanced arguments.

We have to add to (10) the correction from the hard photon 
emission. With logarithmic accuracy, this correction has a clear 
physical interpretation. It consists of two parts, corresponding to 
photon emission by initial and final electrons. Both of them can be 
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calculated using the quasi-real electron method [30]. For the final 
electron emission it gives

ω dσ f .e.e.

d3k
= α

4π2

(
E ′ 2

l + (E ′
l − ω)2

ω E ′
l(kl′)

− m2

(kl′)2

(E ′
l − ω)

E ′
l

)
dσB ,

(11)

where k and ω are the photon 4-momentum and energy, l′ and 
E ′

l are the 4-momentum and energy of the final electron in the 
elastic process, and dσB is the cross section of the elastic process. 
With the logarithmic accuracy, the upper limit of the integration 
over photon emission angle should be taken equal to the scattering 
angle in the elastic process, so that we obtain with this accuracy

x dσ f .e.e.

dx
= α

2π
ln

Q 2

m2

(
1 + (1 − x)2

)
dσB , (12)

where x = ω/E ′
l . Integration over x can be performed from ω0/E ′

l
to 1, that gives

dσ f .e.e. = α

π
ln

Q 2

m2

(
ln

E ′
l

ω0
− 3

4

)
dσB . (13)

Comparing it with (10) one sees that the contribution (13) can-

cels in (10) the collinear singular terms with the coefficient ln
E ′

l
ω0

and a half of the terms with the energy independent coefficient.
For the correction due to radiation of the initial electron we 

have, with the same accuracy

ω dσ i.e.e.

d3k
= α

4π2

(
E2

l + (El − ω)2

ω El(kl)
− m2

(kl)2

(El − ω)

El

)
dσB

∣∣∣�l→�l−�k ,

(14)

and after integration with the logarithmic accuracy over emission 
angles

dσ i.e.e. = α

2π
ln

Q 2

m2

xm∫
ω0/El

dx

x

(
1 + (1 − x)2

)
dσB

∣∣∣�l→�l(1−x)
, (15)

where x = ω/El and xm is its upper kinematic bound, xm = 1 −
(
√

Q 2(Q 2 + 4M2) + Q 2)/(4El M).
Emission of a photon by an initial electron changes its energy, 

and thus cross sections of processes initiated by the electron after 
radiation (quasi-real electron). This, along with the difference xm

from 1, is the reason why virtual corrections are not canceled by 
the real ones in the most experiments. But in the proposed exper-
iment [11], where the differential in the momentum transferred 
to the final proton, dσ/(dQ 2), is supposed to be measured in the 
region

Q 2 � E2
l , Q 2 � El M , (16)

one has xm � 1, E ′
l � El and

dσB

dQ 2
� 4πα2

Q 4
f 2
1 (Q 2), (17)

i.e. dσB/(dQ 2) does not depend on El at fixed Q 2, so that dσ i.e.e.

equal to dσ f .e.e. and in the sum they cancel the terms with ln Q 2

m2

in (10).
In fact, the cancellation of the virtual and real corrections turns 

out to be even stronger. It occurs that in the one-loop approx-
imation the cancellation takes place not only with logarithmic 
accuracy, and the terms not having the collinear singularities (con-
stant terms) are canceled as well. Of course, such cancellation can 
not be proved by some approximate method and requires more 
strict approach. It can be seen using exact results of Ref. [31] for 
a photon emission in collisions of muons with electrons. Making 
the necessary replacements and substitutions one can obtain for 
the cross section of photon emission by electron in the experi-
mental conditions discussed above (detailed output will be given 
elsewhere [32])

dσ e.e. = 4α3

Q 4
f 2
1 (Q 2)

1∫
ω0/El

dx

x

[(
1 + (1 − x)2) ln

Q 2

m2
− 2(1 − x)

]

= dσB

dQ 2

α

π

[
2

(
ln

Q 2

m2
− 1

)
ln

El

ω0
− 3

2
ln

Q 2

m2
+ 2

]
.

(18)

Comparing it with (10) at E ′
l � El, Q 2 � E2

l , one sees that the 
contribution (18) cancels it completely.

3. Higher order corrections

The cancellation demonstrated above is not restricted by the 
one-loop approximation, and takes place also in higher orders, at 
least with logarithmic accuracy. It can be shown using the parton 
picture, developed for the theoretical description of the deep in-
elastic electron-proton scattering [33–37], but applying it to “deep 
inelastic proton-electron scattering”.

The cross section of electron-proton scattering with radiative 
corrections due only to electron interaction can be considered as 
inclusive proton-electron scattering cross section. At fixed Q 2 it 
can be written with logarithmic accuracy in terms of the “parton 
distribution functions” f e

e (x, Q 2) and f ē
e (x, Q 2). More precisely, 

the cross section of the deep inelastic proton-electron scattering 
can be written as

(2π)32E ′
p

d3σ

d3 p′ = πe4

Q 4

1√
(pl)2 − m2M2

Jμν(p, p′)Wμν(l,q) ,

(19)

where Jμν(p, p′) is the proton current tensor

Jμν(p, p′) =
∑

pol
Jμ J∗ν , (20)

∑
pol means summation over final polarizations and averaging over 

initial ones,

Jμ = u(p′)
(

f1(Q 2)γ μ + f2(Q 2)
[γ μ,γ ν ]qν

4M

)
u(p) , (21)

and Wμν(l, q) is the deep inelastic scattering tensor,

Wμν(l,q) = 1

4π

∑
X
〈l| j(e)

ν (0)|X〉 〈X | j(e)
μ (0)|l〉

× (2π)4δ(q + l − p X ) . (22)

Here |l〉 is the initial electron state, X is any state which can be 
produced in photon-electron collisions, 

∑
X means averaging over 

initial electron polarizations and summation over discrete and in-
tegration over continuous variables of X , j(e)

μ (x) is the electron 
electromagnetic current operator. Taking into account the conser-
vation of the current, one can represent Wμν in the form
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W μν(l,q) = −
(

gμν − qμqν

q2

)
F1(x, Q 2)

+ 1

(lq)

(
lμ − (lq)

q2
qμ

)(
lν − (lq)

q2
qν

)
F2(x, Q 2) ,

(23)

where Q 2 = −q2 , x = Q 2/(2(lq)). Calculating the tensor Jμν

Jμν = G2
M(Q 2)

(
gμνq2 − qμqν

)

+ Q 2G2
M(Q 2) + 4M2G2

E(Q 2)

4M2 + Q 2
Pμ Pν , (24)

where P = p + p′ , G E(Q 2) and G M(Q 2) are proton electric and 
magnetic form factors, performing tensor convolution and using

d3 p′

2E ′
p

= π

4

Q 2dQ 2dx

x2
√

(pl)2 − m2M2
, (25)

we obtain

dσ

dQ 2dx
= πα2

2x2 Q 2((pl)2 − m2M2)

[
(2Q 2G2

M − 4M2G2
E)F1

+
(

−G2
M(m2 Q 2 + (lq)2) + Q 2G2

M + 4M2G2
E

4M2 + Q 2
(Pl)2

)
F2

(lq)

]
.

(26)

where

(lq) = Q 2

2x
, (Pl) = 2M El − Q 2

2x
. (27)

The region of variation of x at fixed Q 2 is determined by condi-

tions M2
X ≥ m2 and (lq) ≤ Elq0 +

√
E2

l − m2
√

q2
0 + Q 2 with q0 =

M − E ′
p = −Q 2/(2M), i.e.

1 ≥ x ≥ M Q 2√
E2

l − m2
√

Q 2(4M2 + Q 2) − El Q 2
. (28)

Till now we did not make any approximation. Using the conditions 
(16) of the proposed experiment and the Callan-Gross relation [38]
F2 = 2xF1, we obtain

dσ

dQ 2
= 4πα2

Q 4
f 2
1 (Q 2)

1∫
x0

dx

x
F2(x, Q 2) , (29)

where

x0 = Q

2El
� 1 . (30)

In the parton picture [33–37], which can be used with the loga-
rithmic accuracy, the structure functions are expressed through the 
parton distributions in the initial electron. The charged partons in 
this case are electrons and positrons, so that

F2 = x( f e
e + f ē

e ) , (31)

where f e
e and f ē

e are the electron and positron distributions in the 
initial electron.

The positron distribution f ē
e appears in the two-loop approxi-

mation, so that in the one-loop approximation only f e
e does con-

tribute. Moreover, in this approximation f e
e is equal to the valence 

electron distribution, f v
e , which is not singular at small x, so that 
the lower limit x0 of the integration in (29) can be taken equal to 
zero. Therefore the cancellation of the logarithmic radiative correc-
tions discussed in the previous section has a simple explanation in 
the language of parton distributions: it takes place because

1∫
0

dxf v
e (x, Q 2) = 1 (32)

regardless of the value of Q 2. Remind that (32) is the consequence 
of the charge conservation.

Surprisingly enough, this cancellation can be explained with 
the help of the Kinoshita–Lee–Nauenberg theorem. Of course, this 
theorem is not applicable to any processes with initial electron, 
contrary to a fairly common delusion that the theorem can be ap-
plied to inclusive cross sections (see, for example, [22]), i.e. for the 
cancellation of collinear singularities summation over final states 
is sufficient. As explicitly shown in [29], this is wrong, and sum-
mation over initial degenerate states is also necessary. But the 
theorem can be applied to completely inclusive production of elec-
trons, positrons and photons by the photon with the virtuality Q 2. 
Using the famous “reciprocal relation” [33–37,39,40], which means 
in our case equality of the parton distribution function f e

e (x, Q 2)

and the “parton fragmentation function” f̄ e
e (x, Q 2) for the inclu-

sive cross section of electron production by the photon with the 
virtuality Q 2, one can connect two processes and to prove the can-
cellation (for details see [32]).

Starting from the two-loop approximation the situation be-
comes not so simple. The radiative corrections depend strongly 
on what is really measured, and if the fully inclusive cross sec-
tion (29) is measured, they become large. The reason is that in 
this approximation the target proton can interact not only with 
the scattering electron, but also with one of components of the 
electron-positron pair produced by this electron. In this case the 
total cross section for interaction of the virtual photon emitted by 
the target proton with incoming electron does not decrease with 
energy, in contrast with the one-loop approximation, and the large 
contribution come from the region of small (lq), or small x in (29). 
On the language of the parton distributions it means that both 
f e
e (x, Q 2) and f ē

e (x, Q 2) becomes singular at x = 0 and the lower 
limit x0 of the integration in (29) can not be taken equal to 0. 
Evidently, such experimental conditions are not the best one. It 
seems that more preferable are the conditions at which produc-
tion of electron-positron pairs is forbidden. In this case in Eq. (31)
only f v

e does contribute, and due to its property (32) the major 
pieces of the radiative corrections cancel also in higher orders of 
perturbation theory (for details see [32]).

4. Conclusion

It turns out that the setting of the experiment suggested by 
A.A. Vorobev [11] has an interesting feature – cancellation of main 
radiative corrections. We showed it in this paper by several meth-
ods and with various accuracy. The most simple and physically 
transparent is the quasi-real electron method [30] which can be 
used in the one-loop approximation and has logarithmic accu-
racy. It turns out, however, that in the one-loop approximation the 
cancellation of the virtual and real radiative corrections is not re-
stricted by the logarithmic accuracy, but takes place for the terms 
not having the collinear divergence (constant terms) as well. It was 
shown with the help of the exact results of Ref. [31] for a pho-
ton emission in collisions of muons with electrons. Moreover, it 
turns out, that for the experimental conditions at which produc-
tion of electron-positron pairs is forbidden, the cancellation is not 
restricted by the one-loop approximation and with the logarithmic 
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accuracy it takes place in the higher orders of perturbation theory 
also. It was demonstrated using the parton distribution method 
[33–37] developed for the theoretical description of the deep in-
elastic electron-proton scattering. It is interesting that the famous 
reciprocal relation [33–37,39,40] permits to prove the cancellation 
of the terms with ln Q 2

m2 in the one-loop radiative corrections with 
the help of the Kinoshita–Lee–Nauenberg theorem [28,29].
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