
Computer Physics Communications 195 (2015) 172–190

Contents lists available at ScienceDirect

Computer Physics Communications

journal homepage: www.elsevier.com/locate/cpc

HEPMath 1.4: A mathematica package for semi-automatic
computations in high energy physics✩

Martin Wiebusch
Institute for Particle Physics Phenomenology, Department of Physics, Durham University, Durham CH1 3LE, United Kingdom

a r t i c l e i n f o

Article history:
Received 5 January 2015
Received in revised form
17 April 2015
Accepted 25 April 2015
Available online 8 May 2015

Keywords:
High energy physics
Feynman amplitudes
Tensor algebra
Code generation
Python

a b s t r a c t

This article introduces the Mathematica package HEPMath which provides a number of utilities and
algorithms for High Energy Physics computations in Mathematica. Its functionality is similar to packages
like FormCalc or FeynCalc, but it takes a more complete and extensible approach to implementing
common High Energy Physics notations in the Mathematica language, in particular those related to
tensors and index contractions. It also provides a more flexible method for the generation of numerical
code which is based on new features for C code generation in Mathematica. In particular it can
automatically generate Python extension modules which make the compiled functions callable from
Python, thus eliminating the need to write any code in a low-level language like C or Fortran. It also
contains seamless interfaces to LHAPDF, FeynArts, and LoopTools.

Program summary
Program title: HEPMath
Catalogue identifier: AEWU_v1_0
Program summary URL: http://cpc.cs.qub.ac.uk/summaries/AEWU_v1_0.html
Program obtainable from: CPC Program Library, Queen’s University, Belfast, N. Ireland
Licensing provisions: Standard CPC licence, http://cpc.cs.qub.ac.uk/licence/licence.html
No. of lines in distributed program, including test data, etc.: 27360
No. of bytes in distributed program, including test data, etc.: 668749
Distribution format: tar.gz
Programming language:Mathematica, C and python.
Computer:Workstation.
Operating system: Linux.
Classification: 11.1, 5, 4.4.
External routines: FeynArts (optional), LoopTools (optional), LHAPDF (optional)
Nature of problem:
Automatisation of (Feynman diagrammatic) computations in High Energy Physics, representation and
manipulation of tensors with symbolic indices in the Mathematica language, generation of numerical
code and interface to Python.
Solution method:
A Mathematica package which provides functions to construct and manipulate tensor expressions in
Mathematica and interface to other popular tools in High Energy Physics.
Unusual features:
A code generation method which uses Mathematica’s byte code compiler (Compile) rather than
CForm/FortranForm and the automatic generation of Python extension modules.
Running time:
The examples provided only take a few seconds to run.

© 2015 Elsevier B.V. All rights reserved.

✩ This paper and its associated computer program are available via the Computer Physics Communication homepage on ScienceDirect (http://www.sciencedirect.com/
science/journal/00104655).

E-mail address:martin.wiebusch@durham.ac.uk.

http://dx.doi.org/10.1016/j.cpc.2015.04.022
0010-4655/© 2015 Elsevier B.V. All rights reserved.

http://dx.doi.org/10.1016/j.cpc.2015.04.022
http://www.elsevier.com/locate/cpc
http://www.elsevier.com/locate/cpc
http://crossmark.crossref.org/dialog/?doi=10.1016/j.cpc.2015.04.022&domain=pdf
http://cpc.cs.qub.ac.uk/summaries/AEWU_v1_0.html
http://cpc.cs.qub.ac.uk/licence/licence.html
http://www.sciencedirect.com/science/journal/00104655
http://www.sciencedirect.com/science/journal/00104655
http://www.sciencedirect.com/science/journal/00104655
http://www.sciencedirect.com/science/journal/00104655
http://www.sciencedirect.com/science/journal/00104655
http://www.sciencedirect.com/science/journal/00104655
http://www.sciencedirect.com/science/journal/00104655
mailto:martin.wiebusch@durham.ac.uk
http://dx.doi.org/10.1016/j.cpc.2015.04.022

M. Wiebusch / Computer Physics Communications 195 (2015) 172–190 173

1. Introduction

Inmany areas of High Energy Physics the scientific progress is intrinsically linked to progress in the development of computational tools
and the implementation of computational algorithms. A prime example for this interplay is the numerical computation and integration of
scattering cross sections. For tree-level cross sections in the Standard Model (SM) automatisation has been accomplished about 10 years
ago [1–12]. The implementation of virtually arbitrary models has been automated in [13–19]. More recently substantial progress has been
made towards the automatisation of the computation next-to-leading order cross sections [20–24]. These tools aim to be fully automatic
in the sense that they implement a fixed computational scheme and the only user input required is information about the process, model
parameters, perturbative order, etc.

There are, however, other types of calculations in high energy physics where full automatisation (in the above-mentioned sense) is
either not possible or not yet available. Such cases include the computation of Wilson coefficients or anomalous dimensions in effective
field theories and calculations where the result is needed in analytic form or where process-specific manipulations (expansions in
external momenta, etc.) are required at some stage in the symbolic computation. These computations can still be greatly simplified by
automatisation, but they call for a different type of tool, which I will refer to as semi-automatic tools. Semi-automatic tools try to mirror
conventional mathematical notations in a programming environment and provide a common interface to as many standard algorithms
as possible (e.g. the computation of Dirac traces or the reduction of loop integrals). To offer the necessary flexibility they must, however,
leave control over the computational scheme in the hands of the user. The HEPMath package presented in this paper falls in this category.
It provides the following functionality:

1. Consistent integration of tensors with symbolic indices and index contractions in Mathematica, along with functions to manipulate
(expand, collect, etc.) such expressions. Arbitrary tensors and index types can be defined by the user.

2. Implementation of the basic building blocks of Feynman amplitudes, such as Dirac spinors, Dirac matrices, Lorentz vectors, and colour
matrices, and their algebraic properties.

3. Computation of traces over Dirac matrices in 4 and D dimensions.
4. Simplification of colour structures.
5. Passarino–Veltman reduction of one-loop integrals. Currently only the reduction to tensor integrals is implemented, but this is likely

to change in the future.
6. Seamless interfaces to FeynArts [25,26], LoopTools [2] and LHAPDF [27].
7. Generation and compilation of numerical code, based on Mathematica’s Compile and CCodeGenerate functions.
8. Generation of Python extension moduleswhich make the generated functions callable from Python.

Feature 8 is new to the best of my knowledge, but there are of course several other publicly available semi-automatic tools which
provide a subset of the above-mentioned functionality. Some also provide functionality that is not present in HEPMath (yet). In the
following I will briefly review these tools and highlight the differences and similarities with HEPMath.

FORM [28] is clearly one of the most established tools for symbolic computations in High Energy Physics. Its functionality covers
items 1–3 and it is highly optimised for handling large polynomial expressions. It is a standalone program with its own input
language which, despite its flexibility, cannot be regarded as a general purpose programming language. The design of FORM puts
performance before ease of use, while HEPMath is mainly intended as a convenience tool. Simply put, FORMwill reduce the run
time of your symbolic computations while HEPMath tries to reduce the development time. In many applications the latter vastly
outweighs the former, and HEPMath is written for these cases.

TRACER [29] is a Mathematica package which calculates traces over Dirac matrices. Its functionality covers item 3 and some aspects of
item 2. It can be regarded as an ancestor of HEPMath, since the HEPMath algorithm for the computation of Dirac traces was taken
from TRACER. However, the TRACER syntax for constructing tensor expressions (such as contractions between Lorentz vectors)
is ambiguous1 and was completely re-designed in HEPMath.

FormCalc [2,30–35] is a Mathematica package for the calculation of tree-level and one-loop amplitudes. It is developed in parallel with
FeynArts [25,26] and LoopTools [2] and its functionality covers items 2–7. It uses FORM as a back-end for parts of the symbolic
computation and thus offers the performance of FORM through a user friendly Mathematica interface. Its approach differs from
HEPMath in the sense that its computational scheme, although configurable with many options, is ultimately pre-defined and
out of the user’s control. Also, the structure of numerical code generatedwith FormCalc is mostly fixedwhile the code generation
mechanism of HEPMath offers a lot more freedom.

FeynCalc [36] is aMathematica packagewhose goals and design principles are very similar to those of HEPMath. Its functionality includes
items 2–6. It also provides several symbolic algorithms which are not present in HEPMath. In addition to features 1, 7, and 8 an
advantage of HEPMath over FeynCalc is the absence of an ‘internal’ representation of expressions involving tensors (i.e. Lorentz
vectors, Dirac matrices, etc.), which simplifies the implementation of additional symbolic algorithms by the user.

For any but the most trivial calculations it is generally unwise to rely on a single tool for automatic computations. With the exception
of TRACER, HEPMath has no code overlap with any of the above-mentioned tools. It can therefore be used as an independent check of
automatic calculations performed with any of them (except TRACER). The goal of the HEPMath project is to surpass these tools not so
much in speed but in flexibility and ease-of-use. But of course such criteria are somewhat subjective.

This article is a user’s guide for the HEPMath package. It documents its main functionality and illustrates its use with many examples.

1 Try to make a substitution like p → xk in TRACER, where p and k are Lorentz vectors and x a scalar. There is no way to tell TRACER that x is the scalar and k the vector.

174 M. Wiebusch / Computer Physics Communications 195 (2015) 172–190

2. Installation

The HEPMath package was developed with Mathematica 9 on a 64bit Linux platform. I will only describe the installation process on
Linux here. The latest version of the HEPMath package is available from

http://hepmath.hepforge.org.

After downloading the tarballhepmath- x.y .tar.gz (where ‘x.y ’ stands for the current version number) run the following commands
in a terminal:

tar -zxvf hepmath-x.y.tar.gz
cd hepmath-x.y
./configure [options]
make
make install

All necessary information for the installation can be specified through command line options to the configure script. The order of the
arguments is irrelevant.

As for all GNU packages, the installation prefix for various libraries and Python modules included in HEPMath can be set with the
--prefix option. The default setting typically requires administrator rights, and if you do not have them you might want to change it,
e.g. to

--prefix=my-prefix

If you want to generate Python extension modules with HEPMath you may want to use a prefix that your Python interpreter searches for
Python packages. On my system this is $HOME/.local.

To install only the Mathematica packages without the LHAPDF and LoopTools interfaces no additional options need to be passed to
configure. Note that make needs to execute a few Mathematica scripts. It assumes that the command which starts the command line
version of Mathematica is called math. If the executable has a different name, say math9, on your system (e.g. because you have several
Mathematica versions installed) you can tell configure about this by passing

MATH=math9

as a command line argument. The Mathematica modules will be installed in $HOME/.Mathematica/Applications/, independent of
your --prefix setting. You can change the installation directory of the Mathematica modules to path with

MATHDIR=path

However, it is your responsibility to assure that Mathematica searches path for packages, e.g. by setting the $UserBaseDirectory
variable in Mathematica accordingly.

HEPMath can access parton distribution functions by interfacingwith the LHAPDF library. This obviously requires aworking installation
of the LHAPDF package. In particular you must make sure that the library libLHAPDF.so from by the LHAPDF package is installed in a
directorywhere your dynamic linker can find it. This can, for example, be accomplished by adding the directory containinglibLHAPDF.so
to your LD_LIBRARY_PATH environment variable. The HEPMath interface to LHAPDF was tested with LHAPDF version 6.1.3. To enable it
use one of the following options:

--with-lhapdf
--with-lhapdf=path

Use the first form if you have installed LHAPDF under a standard prefix (e.g. /usr or /usr/local) or if you have configured your system
so that your C compiler and linker find the LHAPDF headers and libraries without additional flags. The second form allows you to specify
the prefix path under which LHAPDF is installed. Alternatively, you can specify the compiler and linker flags required for LHAPDF with

LHAPDF_CFLAGS=compile-flags
LHAPDF_LIBS=link-flags

One-loop tensor integrals can be evaluated numerically in HEPMath through an interface to the LoopTools package. The LoopTools
interface was tested with LoopTools version 2.9. To install it you will most likely need to re-compile the LoopTools library. The reason is
that LoopTools creates a static library by default, while the HEPMath interface requires a dynamic library. Converting a static to a dynamic
library is only possible when the static library was compiled with the right flags, and that is why you need to re-compile. On most Linux
platforms this can be done as follows:

cd looptools-path
make clean
CFLAGS=-fPIC FFLAGS=-fPIC defs ./configure opts
make

where looptools-path is the path to your LoopTools source directory and defs and opts are any additional variable definitions or
options you like to use when compiling LoopTools. After successfully re-compiling LoopTools pass the option

--with-looptools=looptools-path

http://hepmath.hepforge.org

M. Wiebusch / Computer Physics Communications 195 (2015) 172–190 175

to the HEPMath configure script. Since LoopTools is written in Fortran and the HEPMath interface in C the correct Fortran run-time
libraries are needed to link the interface. Usually configure will find them automatically, but if you have several Fortran compilers
installed on your system it might pick the wrong one. (It needs the one you used to compile LoopTools, but it has no way of detecting
which one that was.) You can point it to the right compiler, say, gfortranwith the option

F77=gfortran

Alternatively, you can specify the options needed to compile and link C code with LoopTools with the following options

LOOPTOOLS=/path/to/libooptools.a
LOOPTOOLS_CFLAGS=compile-flags
LOOPTOOLS_LIBS=link-flags

where link-flags should not include the -looptools flag.
Note that HEPMath does not use theMathematica interface provided in the LoopTools distribution, and you do not need to compile this

interface in order to access LoopTools from HEPMath. The reason for this duplication of interfaces is that the one provided by LoopTools
is based on MathLink. The code generation method used in HEPMath can only handle calls to external functions if these functions are
interfaced via LibraryLink, and therefore HEPMath must implement its own interface to LoopTools.

Once you have HEPMath installed correctly you can try and run the examples in the examples sub-directory of the source directory.
The provided examples are:

ee-mumu.m The computation of the e+e−
→ µ+µ− squared matrix element in QED. This example does not require FeynArts, LHAPDF

or LoopTools.
hepcompile.m A short demonstration of the code generation mechanism, including the generation of a Python extension module. This

example requires the LoopTools interface (but you can easily modify it so that it does not).
H-gg-SM.m The computation of the top-loop-induced H → gg decay width in the SM at leading order. This example illustrates the use

of the FeynArts interface, the computation of one-loop integrals with LoopTools, colour algebra and code generation. It requires
FeynArts and the LoopTools interface.

gg-gH-SM.m The computation of the gg → gH process in the SM at leading order. This process is used as a performance benchmark in
Section 8. The script needs the FeynArts and LoopTools interfaces.

I recommend to run the files as scripts, i.e. with

math -script example.m

The source code in the examples is well commented and should get you started quickly with HEPMath. For a more structured introduction
just continue reading.

3. Building blocks for Feynman amplitudes

If HEPMath is properly installed you can open a Mathematica session and load the package with

Needs["HEPMath‘"]

The HEPMath package defines a number of symbols which represent typical building blocks of Feynman amplitudes within Mathematica.
This section summarises these building blocks and describes their pre-defined behaviour.

3.1. Tensors and Dirac-algebra

Dirac matrices are represented by the symbol Ga. Try evaluating

HEPTensorSignature[Ga]
⇒ {Lorentz, Dirac, Dirac}

(The text after the arrow ‘⇒’ is the expression returned byMathematica.) This tells you that Ga is an objectwhich carries three indices: one
Lorentz index and twoDirac indices. All objectswhich can carry indices are calledHEPTensors inHEPMath, and theHEPTensorSignature
function gives you a list with the types of indices you can attach. In particular, any variable not known to HEPMath is a scalar, i.e. has an
empty tensor signature.

HEPTensorSignature[xyz]
⇒ {}

To attach symbolic indices to Ga simply apply it to the list of indices.

HEPTensorSignature[Ga[mu, alpha, beta]]
⇒ {}
HEPTensorSignature[Ga[mu]]
⇒ {Dirac, Dirac}

176 M. Wiebusch / Computer Physics Communications 195 (2015) 172–190

Table 1
Pre-defined tensors and tensor-valued functions.

Symbol Tensor signature Description

Ga {Lorentz, Dirac, Dirac} The Dirac matrix γ µ .
GI {Dirac, Dirac} The identity matrix 1.
G5 {Dirac, Dirac} The matrix γ5 .
PL {Dirac, Dirac} (1− γ5)/2.
PR {Dirac, Dirac} (1+ γ5)/2.
Gs[p]a {Dirac, Dirac} The contraction γ µpµ ≢ p.
GSig {Lorentz, Lorentz, Dirac, Dirac} The matrix σµν

=
i
2 (γ µγ ν

− γ νγ µ).
USp[p]a {FermionHelicity, Dirac} The Dirac spinor u(p).
VSp[p]a {FermionHelicity, Dirac} The Dirac spinor v(p).
Pol[p]a {VectorPolarization, Lorentz} The massless polarisation vector ϵµ(p).
MPol[p]a {MassiveVectorPolarization, Lorentz} The massive polarisation vector ϵµ(p).
Dim {} Symbol representing the dimension of Minkowski space.
Eta {Lorentz, Lorentz} The metric tensor ηµν

≡ gµν in Dim dimensions with ‘‘mostly minus’’ signature.
EtaHat {Lorentz, Lorentz} The (Dim − 4)-dimensional part of the metric tensor.
Eps {Lorentz, Lorentz, Lorentz, Lorentz} The Levi-Civita tensor ϵµνρσ .
Den[p, m]a {} The propagator denominator 1/(p2 − m2).
ColorT {ColorAdjoint, ColorFundamental,

ColorFundamental}
The SU(3) generator T a .

ColorF {ColorAdjoint, ColorAdjoint, ColorAdjoint} The SU(3) structure constants f abc .
ColorDelta {ColorFundamental, ColorFundamental} The identity matrix for colour indices.
GluonDelta {ColorAdjoint, ColorAdjoint} The identity matrix for adjoint colour indices.
a pmust be an expression with tensor signature {Lorentz}.

Attaching the full list of indices turns Ga into a scalar, i.e. into an object with empty tensor signature. By attaching an incomplete list of
indices you reduce the rank of the tensor, removing elements from its tensor signature from the left. The full set of pre-defined tensors
provided by HEPMath is summarised in Table 1.

You can form linear combinations of tensors with the same tensor signature and use them in the same way as you would use a tensor
symbol. For example

HEPTensorSignature[a GI + b G5]
⇒ {Dirac, Dirac}
HEPTensorSignature[(a GI + b G5)[al, bt]]
⇒ {}

(See Table 1 for an explanation of GI and G5.) If you try to add two tensors with different tensor signature or multiply two tensors
HEPMath will complain.

HEPTensorSignature[a Ga + b G5]
⇒ HEPTensorSignature::conflict:

Incompatible tensors in tensor expression b G5 + a Ga.
⇒ $Aborted
HEPTensorSignature[GI G5]
⇒ HEPTensorSignature::conflict:

Incompatible tensors in tensor expression GI G5.
⇒ $Aborted

Implicit summation over repeated indices is understood and fully supported by HEPMath. You can get a summary of the free and
contracted indices in an expression with the Indices function.

Indices[Ga[mu, al, bt] Ga[mu, bt, ga]]
⇒ {{al -> Dirac, ga -> Dirac}, {bt -> Dirac, mu -> Lorentz}}

The first list holds the free indices of the expression and the second list the contracted indices. Note how the types of the indices are
inferred from their position in the index list. You can also use the Indices function to find out if an expression is well-formed:

Indices[Ga[mu, al, al] Ga[mu, al, al]]
⇒ Indices::mult: Index repeated more than twice in product

Ga[mu, al, al] Ga[nu, al, al].
⇒ $ Aborted

HEPMath provides a few index-free notations for contractions between tensors and functions for switching between indexed and
index-free notation. Try evaluating the following expressions:

DiracContract[Ga[mu, al, bt] Ga[nu, bt, ga]]
⇒ (Ga[mu] . Ga[nu])[al, ga]
DiracContract[Ga[mu, al, bt] Ga[nu, bt, al]]
⇒ DiracTr[Ga[mu] . Ga[nu]]

As you see, Mathematica’s dot operator (Dot) can be used to contract Dirac matrices. More generally, it will contract tensors with at
most two indices of the same type in the obvious way. The expression Ga[mu].Ga[nu] has tensor signature {Dirac, Dirac} and

M. Wiebusch / Computer Physics Communications 195 (2015) 172–190 177

can therefore be indexed with two Dirac indices. (Feel free to verify this with HEPTensorSignature.) DiracTr represents the trace
over Dirac indices and can be applied to any object with tensor signature {Dirac, Dirac}. If you prefer to have all indices written out
explicitly you can undo the effect of DiracContractwith

ExplicitIndices[(Ga[mu] . Ga[nu])[al, ga]]
⇒ Ga[mu, al, $3] Ga[nu, $3, ga]

Note how HEPMath generates unique symbols for the dummy indices.
The Dirac trace can be calculated with the CalcDiracTraces function.

CalcDiracTraces[DiracTr[Ga[mu] . Ga[nu]]]
⇒ 4 Eta[mu, nu]

The symbol Eta represents the metric tensor ηµν
≡ gµν in D ≡ Dim dimensions with the ‘‘mostly minus’’ signature. The

CalcDiracTraces function computes any occurrence of DiracTr[...] in its argument and substitutes the result. Occurrences of
γ5 matrices (represented by G5, see Table 1) are handled the same way as in TRACER, i.e. by letting the (D − 4)-dimensional part of γ µ

commutewith γ5. The option AntiCommutingG5 lets you use a completely anti-commuting γ5 instead:

CalcDiracTraces[DiracTr[Ga[mu].G5.Ga[nu].G5]]
⇒ -4 Eta[mu, nu] + 8 EtaHat[mu, nu]
CalcDiracTraces[DiracTr[Ga[mu].G5.Ga[nu].G5], AntiCommutingG5->True]
⇒ -4 Eta[mu, nu]

The symbol EtaHat represents the (D− 4)-dimensional part of the metric tensor. You can check the dimension of Eta and EtaHatwith
the LorentzContract function:

LorentzContract[Eta[mu,mu]]
⇒ Dim
LorentzContract[EtaHat[mu,mu]]
⇒ -4 + Dim

The Levi-Civita tensor is represented by the symbol Eps. Its indices live in 4 dimensions.

LorentzContract[Eps[mu, nu, ro, sg] EtaHat[sg, lm]]
⇒ 0

You can use the SortEps function to bring the arguments of Eps in canonical order (as defined by Mathematica’s OrderedQ function):

SortEps[a Eps[nu, mu, ro, sg] + b Eps[mu, nu, ro, nu]]
⇒ -a Eps[mu, nu, ro, sg]

3.2. Lorentz vectors and Dirac spinors

Playing with the pre-defined tensors of HEPMath is nice, but for an actual calculation you also need to be able to define your own
tensors. At the very least you will need symbols that represent Lorentz vectors. To tell HEPMath that a certain symbol represents a Lorentz
vector you have to declare it.

DeclareLorentzVectors[p]
DeclareLorentzVectors[p, k, q]
DeclareLorentzVectors[{p, k, q}]

These commands tell HEPMath that the symbols p, k, and q represent real, D-dimensional Lorentz vectors. The arguments of
DeclareLorentzVectors can be arbitrary patterns. Any expression matching one of these patterns will be recognised as a Lorentz
vector. For example

DeclareLorentzVectors[_p]

makes any expression of the form p[something] a Lorentz vector.
Complex and/or four-dimensional Lorentz vectors can be declared with the functions

Declare4DLorentzVectors
DeclareComplexLorentzVectors
DeclareComplex4DLorentzVectors

Similar to DiracContract the LorentzContract function can be used to eliminate unnecessary occurrences of Eta and to write
contractions between Lorentz vectors in index-free form.

LorentzContract[Eta[mu, nu] p[nu]]
⇒ p[mu]
LorentzContract[k[mu] p[mu]]
⇒ SDot[k, p]

178 M. Wiebusch / Computer Physics Communications 195 (2015) 172–190

The last expression is equivalent to k.p but holds the additional information that the product is symmetric. (The SDot symbol has the
attribute Orderless.) Although mostly used for products of Lorentz vectors, SDot is more general and can represent the full contraction
of any two tensors with the same tensor signature.

ExplicitIndices[SDot[Eta, EtaHat]]
⇒ Eta[$3, $4] EtaHat[$3, $4]

The full contraction of a tensor with itself is represented by the Sqr function:

SDot[p, p]
⇒ Sqr[p]
ExplicitIndices[Sqr[p]]
⇒ p[$3]^2

Note that HEPMath is aware that the index $3 in p[$3]ˆ2 is contracted.

Indices[p[$3]^2]
⇒ {{}, {$3 -> Lorentz}}

The distinguishing feature of four-dimensional Lorentz vectors is that their contractions with EtaHat vanish:

Declare4DLorentzVectors[p];
LorentzContract[EtaHat[mu, nu] p[nu]]
⇒ 0

HEPMath also defines a few ‘‘tensor-valued functions’’, i.e. symbols which become a tensor only when they are applied to something
else. For example, Dirac spinors u(p) and v(p) associated with a four-momentum p can be represented by USp[p] and VSp[p],
respectively.

DeclareLorentzVectors[p];
HEPTensorSignature[USp[p]]
⇒ {FermionHelicity, Dirac}
HEPTensorSignature[VSp[p]]
⇒ {FermionHelicity, Dirac}

Note that the helicities of the spinors are represented by the first indexwhose type is FermionHelicity. Polarisation vectors ofmassless
or massive vector bosons can be represented by Pol and MPol in an analogous way.

DeclareLorentzVectors[p];
HEPTensorSignature[Pol[p]]
⇒ {VectorPolarization, Lorentz}
HEPTensorSignature[MPol[p]]
⇒ {MassiveVectorPolarization, Lorentz}

Contractions of Lorentz vectors with the Levi-Civita tensor are represented by EpsDot. It takes up to four Lorentz vectors as arguments
and its tensor signature depends on the number of supplied arguments.

DeclareLorentzVectors[k,l,p,q];
LorentzContract[Eps[mu, nu, ro, sg] k[mu] l[nu] p[ro] q[sg]]
⇒ EpsDot[k, l, p, q]
LorentzContract[Eps[mu, nu, ro, sg] k[mu] l[nu] p[ro]]
⇒ EpsDot[k, l, p][sg]
LorentzContract[Eps[mu, nu, ro, sg] k[mu] l[nu]]
⇒ EpsDot[k, l][ro, sg]
LorentzContract[Eps[mu, nu, ro, sg] k[mu]]
⇒ EpsDot[k][mu, ro, sg]

As for Eps, you can use the SortEps function to bring EpsDot expressions in canonical order.

SortEps[a EpsDot[p, q][nu, mu] + b EpsDot[q, p][mu, nu] +
c EpsDot[p, p][mu, nu] + d EpsDot[p, q][mu, mu]]

⇒ -a*EpsDot[p, q][mu, nu] - b*EpsDot[p, q][mu, nu]
SortEps[EpsDot[l, k, p, q]]
⇒ -EpsDot[k, l, p, q]

3.3. Conjugation

Complex conjugation is represented in HEPMath by the function CC. Unlike Mathematica’s Conjugate function it will automatically
distribute itself over sums and products and it will automatically disappear when acting on a symbol that has been declared as real. To
declare a symbol as real you can use the DeclareReal function.

M. Wiebusch / Computer Physics Communications 195 (2015) 172–190 179

DeclareLorentzVectors[p];
DeclareComplexLorentzVectors[e];
DeclareReal[r];
CC[c p[mu] + r e[mu]]
⇒ CC[c] p[mu] + r CC[e][mu]

Note that in the second term CC is applied to the vector e, not the indexed vector e[mu].
The ‘bar’ notation for Dirac spinors andmatrices is represented by the function Bar. Like CC it distributes itself over sums and products.

The relationship between complex conjugation and bar conjugation is fully implemented:

Bar[r USp[p][s] + c VSp[p][s]]
⇒ r Bar[USp[p]][s] + CC[c] Bar[VSp[p]][s]
CC[Bar[USp[p]][s].PL.Gs[p].PR.Gs[e].G5.VSp[p][s]]
⇒ Bar[VSp[p]][s].(-G5).Gs[CC[e]].PL.Gs[p].PR.USp[p][s]

Note that I attached an explicit spin index s to the Dirac spinors above, but suppressed the Dirac indices.

3.4. Colour algebra

SU(3) generators T a and structure constants f abc are represented in HEPMath by the ColorT and ColorF tensors, respectively. The
index types for the fundamental and adjoint SU(3) representation are called ColorFundamental and ColorAdjoint. The identity
matrices in these two index spaces are called ColorDelta and GluonDelta, respectively. There is no equivalent for DiracContract
or LorentzContract, but you can remove unnecessary appearances of identity matrices (in any index space) with the HEPContract
function.

HEPContract[ColorDelta[i, j] ColorT[a, j, k]]
⇒ T[a, i, k]
HEPContract[GluonDelta[a, b] ColorF[b, c, d]]
⇒ ColorF[a, c, d]

Traces over fundamental colour indices are represented by the ColorTr function, and the hermicity of the SU(3) generators is
implemented consistently.

CC[ColorT[a, i, j]]
⇒ T[a, j, i]
CC[ColorTr[ColorT[a].ColorT[b].ColorT[c]]]
⇒ ColorTr[ColorT[c] . ColorT[b] . ColorT[a]]

4. Algebraic manipulations

In Section 1 described the building blocks which HEPMath provides in order to build expressions representing Feynman amplitudes.
Now it is time to learn how to put them together and manipulate them. To do this you first need to know which kind of constructs
are ‘‘understood’’ by the HEPMath system. HEPMath follows a design principle which I call substitution invariance and which can be
summarised by the following statement: substituting valid expressions by other valid expressions with the same tensor signature in valid
expressions must yield valid expressions. What this means is simple. Take the expression p[mu] which represents a Lorentz vector p with
an index mu attached to it. Whenwe replace p (a valid expression with tensor signature {Lorentz}) by the sum k+q of two other vectors
(also a valid expression with tensor signature {Lorentz}) we get (k+q)[mu]. So, by substitution invariance (k+q)[mu] must be a
valid expression if p[mu] is valid. The importance of substitution invariance is evident when you imagine some complicated expression
in which you want to substitute p by k+q. The vector p can appear in various forms: p[mu], Sqr[p], Gs[p], USp[p][s], etc. Writing
a separate replacement rule for each of these cases is very error-prone and likely to make your code extremely hard to read. Therefore,
HEPMath must be able to handle whatever expressions arise from the single substitution p ->k+q.

The main consequence of substitution invariance is that the following ‘‘funny’’ expressions must be valid:

• composite heads: (a k + b q)[mu],
• multiple index lists: Ga[mu][al, bt].

Standard Mathematica functions for algebraic manipulations such as Expand or Collect obviously do not know what to do with these
expressions. HEPMath therefore complements Mathematica’s library of symbolic manipulation functions with functions that can handle
tensor expressions, including the ‘‘funny’’ ones above. In addition it implements several ‘‘HEP-specific’’ functions which are frequently
needed in High Energy Physics computations. This section describes both types of functions, starting with the basic ones. Some of the
functions have already been mentioned in Section 3, but I list them here again for completeness.

4.1. Expanding and collecting

HEPExpand mimicsMathematica’s Expand function. Like Expand it takes a pattern as an optional second argument. All sub-expressions
which are free of this pattern are not expanded. However, unlike Expand, HEPExpand’s default behaviour is to leave sub-
expressions alone which do not contain any HEPTensors.

180 M. Wiebusch / Computer Physics Communications 195 (2015) 172–190

DeclareLorentzVectors[p, q];
HEPExpand[((a + b) (p + q))[mu]]
⇒ (a + b) p[mu] + (a + b) q[mu]
HEPExpand[(a (p + q))[mu], p]
⇒ a p[mu] + (a q)[mu]

Note how in the second case the factor a has not been pulled out of the head of the expression (a q)[mu] since this expression
does not contain p. Needless to say, HEPExpand operates correctly on traces and index-free contractions such as Gs, Sqr, SDot
and Dot.

HEPExpand[Bar[USp[p]][s].(Gs[p + q] + m GI).VSp[q][s]]
⇒ m Bar[USp[p]][s] . GI . VSp[q][s] +

Bar[USp[p]][s] . Gs[p] . VSp[q][s] +
Bar[USp[p]][s] . Gs[q] . VSp[q][s]

HEPExpand[DiracTr[Ga[mu].(a GI + b G5).Ga[nu]]]
⇒ b DiracTr[Ga[mu] . G5 . Ga[nu]] + a DiracTr[Ga[mu] . GI . Ga[nu]]
HEPExpand[Sqr[p + q]]
⇒ 2 SDot[p, q] + Sqr[p] + Sqr[q]

PullScalars Sometimes you justwant to pull scalar factors from the heads of indexed expressions or linear functions likeSDotwithout
expanding everything. HEPMath gives you the function PullScalars to do that.

PullScalars[(a (p + q))[mu]]
⇒ a (p + q)[mu]
PullScalars[DiracTr[Gs[a (p + q)].Gs[Sqr[p] q]], _Sqr]
⇒ DiracTr[Gs[a (p + q)] . Gs[q]] Sqr[p]

The optional second argument can be any Mathematica pattern. Only scalars matching the pattern are pulled out.
SortEps was alreadymentioned in Section 3.2. It uses anti-symmetry of the Levi-Civita tensor to put the arguments of Eps and EpsDot

expressions in canonical order.
HEPCollect Factorising expressions in HEPMath is complicated by the fact that tensor expressions can be put together with more

operators than addition and multiplication. Just remember the different forms in which a Lorentz vector can appear: p[mu],
Sqr[p], SDot[p, q], etc. The HEPCollect function implements a behaviour similar to FORM’s bracket statement.
HEPCollect[expr, p] goes through each term in expr and finds the factors which contain p. It then introduces one level of
brackets, combining those terms which have the same set of p-dependent factors. The second argument p can be a Mathematica
pattern, in which case all factors which are not free of this pattern are pulled out.

expr = SDot[p, q] a1 + SDot[p, q] a2 +
Sqr[p] b1 + Sqr[p] b2 +
SDot[p, q] Sqr[p] c1 + SDot[p, q] Sqr[p] c2;

HEPCollect[expr, p]
⇒ (a1 + a2) SDot[p, q] + (b1 + b2) Sqr[p] +

(c1 + c2) SDot[p, q] Sqr[p]
HEPCollect[expr, q]
⇒ b1 Sqr[p] + b2 Sqr[p] +

SDot[p, q] (a1 + a2 + c1 Sqr[p] + c2 Sqr[p])
By default HEPCollect automatically renames contracted indices to minimise the number of generated terms:

HEPCollect[p[mu] k[mu] + p[nu] q[nu], p]
⇒ p[mu] (k[mu] + q[mu])

You can disable this feature (e.g. for performance reasons) by setting the option CombineTensorStructures to False.
HEPCollectListed A common use-case for functions like HEPCollect is the task of isolating different colour or Lorentz structures in

an expression and extracting the coefficients of these structures. Typically you thenwant to perform some operations only on the
structures or only on the coefficients. The function HEPCollectListed is made for this purpose since it returns the structures
and coefficients as a pair of lists.

expr = a Eta[mu, nu] + b Sqr[p] Eta[mu, nu] + c p[mu] p[nu];
terms = HEPCollectListed[expr, mu|nu]
⇒ {{Eta[mu, nu], p[mu] p[nu]}, {a + b Sqr[p], c}}

In fact, the HEPCollect function is simply implemented as
HEPCollect[expr_, patt_] := Dot @@ HEPCollectListed[expr, patt]

Pairs of lists as returned by HEPCollectListed can be processed further with the HEPCoefficient, HEPSelectTerms, and
HEPGroupTerms functions.

HEPCoefficient can be used to extract the coefficient of a specific term. Continuing the example above, we can extract the coefficient
of the Eta[mu, nu] term with

HEPCoefficient[terms, Eta[mu, nu]]
⇒ a + b Sqr[p]

You can use patterns to identify the desired term:
HEPCoefficient[terms, _Eta]
⇒ a + b Sqr[p]

However, you will receive an error message if the pattern matches more than one term.
HEPSelectTerms Similar to Mathematica’s Select function you can use HEPSelectTerms to filter out those terms for which a given

function returns True:

M. Wiebusch / Computer Physics Communications 195 (2015) 172–190 181

HEPSelectTerms[terms, Head[#] === Eta &]
⇒ {{Eta[mu, nu]}, {a + b Sqr[p]}}

The result is of the same form as the results of HEPCollectListed.
HEPGroupTerms If you want to split the terms into two sets according to some criterium you can do that with the HEPGroupTerms

function. It returns a list of two expressions of the form returned by HEPCollectListed.
HEPGroupTerms[terms, Head[#] === Eta &]
⇒ {{{Eta[mu, nu]}, {a + b Sqr[p]}},

{{p[mu] p[nu]}, {c}}}

In addition to the above-mentioned ‘‘generic’’ tensor manipulation functions HEPMath also provides a few functions which are specific
to Lorentz vectors and Dirac matrices.

DiracSubstitute replaces occurrences of PL, PR and GSig[mu, nu] by their definitions in terms of GI, G5 and Ga[mu].
DiracExpand can be used to expand composite factors in DiracTr expressions:

DiracExpand[DiracTr[(Gs[p] + m GI).PL]]
⇒ (-1/2) m DiracTr[G5] + (1/2) m DiracTr[GI] -

(1/2) DiracTr[Gs[p].G5] + (1/2) DiracTr[Gs[p]]
It is defined as

DiracExpand[expr_] :=
DiracContract[HEPExpand[DiracSubstitute[expr], Gs|Ga|GI|G5]]

PullVectors is similar to PullScalars but extracts Lorentz vectors from index-free contractions like Gs[p] or SDot[p, q]. Such
an operation is often needed in reduction algorithms for loop integrals.

PullVectors[DiracTr[(Gs[p] + m GI).(SDot[p, q] G5)], p]
⇒ DiracTr[(GI m) . G5] p[$3] q[$3] +

DiracTr[Ga[$4] . G5] p[$4] p[$5] q[$5]
The optional second argument can be any Mathematica pattern. Only vectors matching the pattern are pulled out.
PullVectors[expr, p] expands expr in p, i.e. it calls HEPExpand[expr, p].

4.2. Index manipulations and substitutions

JoinIndexLists can be used to join multiple index lists.
JoinIndexLists[USp[p][s][al] + G5[al][bt] VSp[q][s][bt]]
⇒ USp[p][s, al] + G5[al, bt] VSp[q][s, bt]

HEPContract Identity tensors such as Eta (for Lorentz indices), GI (for Dirac indices) or ColorDelta (for colour indices) can be
eliminated with the HEPContract function. Full contractions of identity tensors with themselves are replaced by the correct
dimension.

HEPContract[Eta[mu][nu] p[nu]]
⇒ p[mu]
HEPContract[Ga[mu].GI.Ga[nu]]
⇒ Ga[mu] . Ga[nu]
HEPContract[a Eta[mu, mu] + b GI[al, al] + c ColorDelta[i, i]]
⇒ 4 b + 3 c + a Dim

Note that HEPContract invokes JoinIndexLists.
LorentzContract, DiracContract were already mentioned in Section 3. They invoke HEPContract and then perform additional

replacements specific to the built-in tensors.
ExplicitIndices replaces index-free notations like SDot[p, q] with explicit index contractions. It only works on expressions

without suppressed indices.
ExplicitSlash writes the contraction Gs[p]with explicit indices. This function also works on expressions with suppressed indices:

ExplicitSlash[Gs[p]]
⇒ Ga[$3] p[$3]

HEPMultiply When dealing with tensor expressions name clashes between contracted indices are a common problem. Consider the
expressions p[mu] k[mu] and q[mu] k[mu]. By themselves they are absolutely fine, but if you want to multiply them you
have to re-name the contracted index mu in one of them. For complicated expressions the Indices function mentioned in
Section 3 can help you find all contracted indices. Alternatively, you can let HEPMath do the renaming automatically by using
the HEPMultiply function. It replaces contracted indices in all its arguments by unique symbols and then multiplies them.

HEPMultiply[p[mu] k[mu], q[mu] k[mu]]
⇒ k[$3] k[$4] p[$3] q[$4]

A common application is squaring a Feynman amplitude.
squaredme = HEPMultiply[amp, CC[amp]]

HEPReplaceAll Another case where name clashes between contracted indices can occur are substitutions. Take the expression a
p[mu] k[mu]. Replacing a with q[mu] k[mu] using Mathematica’s ReplaceAll function (also known as the /. operator)
will give you an invalid expression. HEPMath can take care of this if you use the HEPReplaceAll function instead.

HEPReplaceAll[p[mu] k[mu] a, a -> q[mu] k[mu]]
⇒ k[mu] k[$3] p[mu] q[$3]

ReplaceIndices If you simply want to replace all contracted indices in an expression with unique symbols you can use the
ReplaceIndices function.

182 M. Wiebusch / Computer Physics Communications 195 (2015) 172–190

ReplaceIndices[p[mu] k[mu]]
⇒ p[$3] k[$3]

HEPSetZero Setting a tensor variable to zero, either globally or by replacement rules, can lead ill-formed expressions. For example,
the replacement p ->0 transforms the expression p[mu] k[mu] into the somewhat undesirable result 0[mu] k[mu].
Unfortunately there is no way to tell Mathematica to automatically simplify such expressions to zero. HEPSetZero[expr,
p] sets the tensor p to zero inside the expression exprwithout generating ill-formed expressions and returns the result:

HEPSetZero[Sqr[k] + p[mu] k[mu], p]
⇒ Sqr[k]

The second argument can also be a pattern, in which case all tensors matching that pattern are set to zero.

4.3. Tensor derivatives

Derivatives with respect to tensor variables can be computed with the HEPD function. It mimicks the behaviour of Mathematica’s D
function.

HEPD[expr, t[i1,. . . ,in]]

returns the derivative of expression expr with respect to the tensor variable t with indices i1 ,. . . ,in . This derivative would usually be
denoted

∂expr

∂ti1···in
.

The index list must be complete, i.e. the expression t[i1,. . . ,in] must have tensor signature {}. The indices i1 ,. . . ,in of the
derivative must be different from any contracted indices in expr . They can, however, be the same as an external index of expr , in which
case the derivative index is contracted with the external index of expr . They can also be contracted with each other. Higher derivatives
can be computed by simply adding arguments to HEPD

HEPD[expr, t[i1,. . . ,in], r[j1,. . . ,jm], . . .]

The HEPD function can handle sums, products, powers, and index-free contractions (via SDot and Sqr) of arbitrary tensor expressions.
More complicated constructs such asGs orDiracTr are currently not supported. (But you can always useExplicitIndices to obtain an
expression that HEPD can handle.) When HEPD encounters an expression it cannot differentiate it returns a HEPDerivative expression:

HEPD[Gs[p][al, bt], p[mu]]
⇒ HEPDerivative[Gs[p][al, bt], p[mu]]

Thus, tensor derivatives of user-defined functions can be set by specifying rules for HEPDerivative.

4.4. Simplification of colour structures

To simplify colour structures and compute colour factors you can use the ColorReduce function. It replaces occurrences of ColorF
with appropriate traces over the generators T a and then applies the identity

T a
ij T

b
kl =

1
2δilδkj −

1
6δijδkl.

Note that it only operates on expressions with no suppressed colour or gluon indices.

ColorReduce[ColorF[a, b, c]]
⇒ (-2 I) ColorTr[ColorT[a] . ColorT[b] . ColorT[c]] +

(2 I) ColorTr[ColorT[a] . ColorT[c] . ColorT[b]]
ColorReduce[(ColorT[a].ColorT[a])[i, j]]
⇒ (4/3) ColorDelta[i, j]
ColorReduce[ColorT[a].ColorT[a]]
⇒ ColorReduce::nosup: ColorReduce only works on expressions

without suppressed ColorFundamental and ColorAdjoint indices.
⇒ ColorT[a] . ColorT[a]
ColorReduce[ColorF[a, b, c] ColorF[a, b, c]]
⇒ 24

4.5. Polarisation sums

The summation of a squared amplitude over the polarisations of external fermions or vector bosons can be done analytically with the
FermionPolarizationSums and VectorPolarizationSums functions, respectively. The FermionPolarizationSums function
uses the formulae

s

u(p, s)ū(p, s) ≠ p + m,

s

v(p, s)v̄(p, s) ≠ p − m.

Themasses associatedwith the externalmomenta are specified in the second argument by a rule or a list of rules. Here are some examples:

M. Wiebusch / Computer Physics Communications 195 (2015) 172–190 183

FermionPolarizationSums[Bar[USp[p]][s] . Ga[mu] . USp[p][s], p -> m]
⇒ DiracTr[(GI*m + Gs[p]) . Ga[mu]]
FermionPolarizationSums[Bar[USp[p]][s, al] USp[p][s, bt], p -> m]
⇒ (GI*m + Gs[p])[al, bt]
FermionPolarizationSums[
Bar[USp[p]][r].VSp[k][s] Bar[VSp[k]][s].USp[p][r],
{p -> m, k -> 0}]

⇒ DiracTr[(GI*m + Gs[p]) . Gs[k]]

Note that you can use patterns in the rules specifying the masses.

DeclareLorentzVectors[_q];
FermionPolarizationSums[
Bar[USp[q[1]]][s] . Ga[mu] . USp[q[1]][s], q[n_] -> m[n]]

⇒ DiracTr[(Gs[q[1]] + GI*m[1]) . Ga[mu]]

If the mass associated with a certain external momentum is not specified the corresponding spinors are left alone.

FermionPolarizationSums[
Bar[USp[p]][r].VSp[k][s] Bar[VSp[k]][s].USp[p][r], k -> 0]

⇒ Bar[USp[p]][r] . Gs[k] . USp[p][r]

The function VectorPolarizationSumsworks in a similar way. It applies the formulae
s

ϵ∗

µ(k, s)ϵν(k, s) = −gµν +
kµkν

m2
for massive particles,


s

ϵ∗

µ(k, s)ϵν(k, s) = −gµν −
n2kµkν

(n · k)2
+

nµkν + nνkµ

n · k
for massless particles.

The polarisation sum for massless vector bosons depends on a gauge vector nwhich must satisfy n · ϵ(k, s) = 0 and n · k ≠ 0. The masses
of massive vector bosons and the gauge vectors of massless gauge bosons can be passed to VectorPolarizationSums as a list of rules,
similar to the Fermion case:

VectorPolarizationSums[CC[MPol[k]][s, mu] MPol[k][s, nu], k -> m]
⇒ -Eta[mu, nu] + (k[mu]*k[nu])/m^2
DeclareLorentzVectors[n];
VectorPolarizationSums[CC[Pol[k]][s, mu] Pol[k][s, nu], k -> n]
⇒ -Eta[mu, nu] + (k[nu]*n[mu] + k[mu]*n[nu])/SDot[k, n] -
(k[mu]*k[nu]*Sqr[n])/SDot[k, n]^2

As in the case of FermionPolarizationSums you can use patterns in the second argument and polarisation vectors are left alone if no
mass or gauge vector are specified for the external momentum.

You can apply an arbitrary function to the denominators of massless polarisation sums with the PostProcess option. This is useful
for performing simplifications specific to your choice of the gauge vector. For example, if you have chosen n so that n · k = 1 you could
implement this with

VectorPolarizationSums[CC[Pol[k]][s, mu] Pol[k][s, nu], k -> n,
PostProcess -> ((# /. SDot[k, n] -> 1)&)]

⇒ -Eta[mu, nu] + k[nu]*n[mu] + k[mu]*n[nu] - k[mu]*k[nu]*Sqr[n]

4.6. One-loop integrals

A common technique in the computation of one-loop amplitudes is to express the loop integrals in terms of Passarino–Veltman (tensor)
functions. In HEPMath this step is automated with the PaVeIntegrate function. Its syntax is

PaVeIntegrate[expr, l, muR]

where expr is the expression to integrate, l is the loopmomentum to integrate over and muR is the renormalisation scale. This computes
the integral

(2πmuR)4−D


dDl expr

where D ≡ Dim is the dimension of Minkowski space. Propagator denominators in expr must be represented by Den expressions (see
Table 1).PaVeIntegrate invokesPullVectors[expr, l] and then replaces products of loopmomenta and propagator denominators
with the correct linear combinations of Passarino–Veltman one-loop tensor integrals. These integrals are represented as follows:

PaVe[n,muR,irpow][indices][invariants]

184 M. Wiebusch / Computer Physics Communications 195 (2015) 172–190

wheren is the number of external legs (or propagator denominators) of the integral,muR the renormalisation scale,indices the sequence
of indices identifying the tensor integral and invariants the sequence of kinematic invariants specifying the external momenta and
internal masses. Currently only integrals with up to four propagator denominators are supported. The argument irpow denotes the
negative power of the infrared regulator ϵIR in dimensional regularisation. Its possible values are 0, 1 and 2.

For example, the two-point rank two tensor integral can be computed as follows:

DeclareLorentzVectors[l, p];
DeclareReal[m0, m1];
PaVeIntegrate[l[mu] l[nu] Den[l, m0] Den[l+p, m1], l, muR]
⇒ I*Pi^2*(Eta[mu, nu]*(Div*((m0^2 + m1^2)/2 - Sqr[p]/12) +

PaVe[2, muR, 0][0, 0][Sqr[p], m0^2, m1^2]) +
p[mu]*p[nu]*(Div/3 + PaVe[2, muR, 0][1, 1][Sqr[p], m0^2, m1^2]))

The symbol Div represents the UV divergence

Div =
2

4 − Dim
− γE + ln(4π)

where γE is the Euler constant. The tensor integral

PaVe[2, muR, 0][1, 1][Sqr[p], m0^2, m1^2]

would usually be denoted as B11(p2,m2
0,m

2
1) with the dependence on muR implicit. For the indices and order of arguments of the tensor

integrals HEPMath uses the same conventions as LoopTools, and I refer the reader to the LoopTools manual for details.
By default PaVeIntegrate only returns the IR finite part of the integral. If you set the option IRDivergentParts to True the result

will be given as a power series in IRDiv, which represents the IR divergence 1/ϵIR.

PaVeIntegrate[Den[l, 0] Den[l+p, 0], l, muR, IRDivergentParts->True]
⇒ I*Pi^2*(Div + PaVe[2, muR, 0][0][Sqr[p], 0, 0] +

IRDiv*PaVe[2, muR, 1][0][Sqr[p], 0, 0] +
IRDiv^2*PaVe[2, muR, 2][0][Sqr[p], 0, 0])

4.7. Feynman parametrisation of multi-loop integrals

The standard method for the (analytic) computation of one-loop or multi-loop integrals is to trade the integral over the loop momenta
for an integral over Feynmanparameters. InHEPMath you cando this transformation automaticallywith theFeynmanIntegrate function.
It only works for scalar integrals, i.e. for integrals without any loop momenta appearing in the numerator. This means that before using
FeynmanIntegrate you need to cancel any appearances of loop momenta in the numerator against the propagator denominators. The
DenCancel function can help you with that. It will cancel any squaredmomenta in the numerator against propagator denominators with
the same momentum. However, it cannot (yet) eliminate scalar products between loop and external momenta or between different loop
momenta from the numerator. The syntax is

DenCancel[expr, patt]

This will cancel squares of momenta in expr which are not free of the pattern patt against propagator denominators (Den expressions)
with the same momentum. If you omit the second argument it will try to cancel all squared momenta. Note that the sign ambiguity of the
arguments of Sqr and Den is automatically taken care of:

DenCancel[Sqr[-l] Den[l, m], l]
⇒ 1 + m^2 Den[l, m]

The syntax of FeynmanIntegrate is

FeynmanIntegrate[expr, {l1, . . . , lL}, x, muR, del]

where expr is the integrand expression, {l1, . . . , lL} is the list of loopmomenta, muR is the renormalisation scale, and del is the
symbol used for the infinitesimal imaginary part of the propagators. The argument x is the head used to generate the Feynman parameters
x[1], x[2], etc. You can omit the del argument, in which case it is set to zero. FeynmanIntegrate computes the integral

(2πmuR)L(4−Dim)


dDiml1 · · ·


dDimlL expr ,

where L is the number of loop momenta. The resulting Feynnman integrals are of the form

G(D)

 1

0
dx1 · · ·

 1

0
dxnδ(1 − x1 − · · · − xn)M(x)F (x)α(D)U(x)β(D), (1)

where G(D) is a pre-factor involving Gamma functions and the space–time dimension D(≡ Dim), M(x) is a monomial in the Feynman
parameters xi originating from denominators raised to some power, F (x) and U(x) are polynomials in the xi and α(D) and β(D) are
powers depending on D. In HEPMath these integrals are represented by FeynmanIntegral expressions, which have the following form:

FeynmanIntegral[{G(D), M(x⃗), F (x⃗)α(D), U(x⃗)β(D)},
{x1, . . . , xn}]

M. Wiebusch / Computer Physics Communications 195 (2015) 172–190 185

The first thing you usuallywant to dowith these integrals is integrate out the delta function by eliminating one Feynman parameter. (Since
youmaywant to have a say in which Feynman parameter gets eliminated HEPMath does not do this automatically.) This can be done with
the EliminateFeynmanParameter function:

EliminateFeynmanParameter[f, x[i]]

integrates the delta function by eliminating the i -th Feynman parameter. If you drop the second argument the parameter is chosen
automatically. The argument f must be a FeynmanIntegral expression, so you will typically use a replacement rule like

expr = expr /. f_FeynmanIntegral :> EliminateFeynmanParameter[f]

The expressions returned by EliminateFeynmanParameter still contain integrals over the remaining Feynman parameters. These
integrals are represented by HEPIntegral expressions. HEPIntegral has the same syntax as Mathematica’s Integrate function, but
it does not attempt to compute the integrals. It is just a container for intermediate expressions which you will need to manipulate further
to compute the integrals. However, you can expand HEPIntegral expressions with HEPExpand.

5. User-defined tensors and linear functions

Pre-defined tensors such as Ga or Eps are actually just examples of HEPMath’s capability of integrating arbitrary tensors and index
types in Mathematica. To see how this works let us try to add the notion of Weyl spinors to HEPMath. Note that the code in this section is
just an example. Weyl spinors are (currently) not included in HEPMath.

First we have to add an index type which represents Weyl spinors. (For simplicity we will not distinguish between dotted, undotted,
raised and lowered indices.) New index types can be declared with the DeclareIndexType function:

DeclareIndexType[Weyl, 2, WI]

This introduces a new index type called Weylwith index dimension 2. It also tells HEPMath that the identity matrix in the space of Weyl
spinors is represented by WI. Note that HEPContract immediately knows what to do with WI:

HEPContract[WI[aa, bb] WI[bb, cc]]
⇒ WI[aa, cc]
HEPContract[WI[aa, aa]]
⇒ 2

Next we introduce the σµ and σ̄µ matrices and the anti-symmetric tensor in Weyl-space:

DeclareHEPTensor[{WSig, WSigBar}, {Lorentz, Weyl, Weyl}]
DeclareHEPTensor[WEps, {Weyl, Weyl}]

Functions like HEPTensorSignature, Indices, ExplicitIndices or HEPExpand now accept the new objects as first-class citizens.

DeclareLorentzVectors[p];
HEPTensorSignature[p.WSig]
⇒ {Weyl, Weyl}
Indices[WSig[mu, aa, bb] WSigBar[mu, bb, cc]]
⇒ {{aa -> Weyl, cc -> Weyl}, {bb -> Weyl, mu -> Lorentz}}
ExplicitIndices[(p.WSig)[aa,bb]]
⇒ p[$3]*WSig[$3, aa, bb]
HEPExpand[(p.(a WSig + b WSigBar))[aa,bb]]
⇒ a*(p . WSig)[aa, bb] + b*(p . WSigBar)[aa, bb]

Wemay also want to tell HEPMath that WEps is real.

DeclareReal[WEps];
CC[WEps[aa, bb]]
⇒ WEps[aa, bb]

Note that there is currently no general way to declare a tensor as anti-symmetric. To exploit this property you will have to write your own
simplification function.

Traces over Dirac and colour indices are represented by DiracTr and ColorTr, respectively, and we may want to have a similar
notation for Weyl indices. We therefore introduce a new symbol WeylTr which represents a trace over Weyl indices. There are two
properties of WeylTrwhich HEPMath needs to know about: the trace is linear and real holomorphic, meaning that the complex conjugate
of a trace is the same as the trace of the complex conjugate of its argument. These two properties can be declared separately with

DeclareLinear[WeylTr];
DeclareRealHolomorphic[WeylTr];
HEPExpand[WeylTr[(a WSig + b WSigBar)[mu]]]
⇒ a*WeylTr[WSig[mu]] + b*WeylTr[WSigBar[mu]]
CC[WeylTr[WSig[mu] + p[mu] WEps]]
⇒ WeylTr[WEps*p[mu] + CC[WSig][mu]]

186 M. Wiebusch / Computer Physics Communications 195 (2015) 172–190

Note that declaring a function as linear means that it is linear in all its arguments. DeclareLinear[WeylTr] not only instructs
HEPExpand how to operate on WeylTr expressions, it also tells HEPMath that WeylTr ‘‘exports’’ any free or contracted indices appearing
in its argument:

Indices[WeylTr[p[mu] WSig[mu].WSigBar[nu]]]
⇒ {{nu -> Lorentz}, {mu -> Lorentz}}

If a function is not declared as linear HEPMath will simply ignore any indices appearing in its arguments:

Indices[somefunc[p[mu] WSig[mu].WSigBar[nu]]]
⇒ {{}, {}}

6. Interfaces

In cases where many different tools are used in the same project the development of interfaces between these tools can take a
substantial amount of time. With its consistent implementation of High Energy Physics notations in Mathematica, HEPMath is the ideal
environment for combining different tools related to High Energy Physics. HEPMath currently provides interfaces to FeynArts, LoopTools
and LHAPDF, but I hope that this list will get longer in the future. This section describes the interfaces currently present in HEPMath.

6.1. FeynArts

The FeynArts interface of HEPMath (obviously) requires a working FeynArts installation. HEPMath was tested with FeynArts version
3.8. To use FeynArts from within HEPMath you must not load the FeynArts context directly. Instead you call

Needs["HEPMath‘FeynArts‘"]

This will give you access to all FeynArts functions and symbols, but it moves some of the FeynArts symbols to a different context in order
to avoid name clashes with HEPMath.

After loading the FeynArts interface you can then use FeynArts in the same way as described in the FeynArts manual, except for one
small difference: if you need access to symbols defined in your FeynArts model file you must initialise the model before these symbols
are mentioned. The reason is that HEPMath tweaks FeynArts2 so that it does not load models into the global context but in the context
HEPMath‘FeynArts‘Model instead. This way the global context does not get polluted and name clashes between symbols in themodel
file and HEPMath symbols can be avoided. To make sure that all symbols from the model file end up in HEPMath‘FeynArts‘Model and
not Global‘ you have to initialise the model before using any of its symbols. Here is an example of what can go wrong:

Needs["HEPMath‘"];
Needs["HEPMath‘FeynArts‘"];
(* InitializeModel["SM"]; *)
SetOptions[InsertFields, Model -> "SM",

InsertionLevel -> {Particles},
Restrictions -> NoLightFHCoupling];

process = {S[1]} -> {F[4, {3}], -F[4, {3}]};
topos = CreateTopologies[0, 1 -> 2];
ins = InsertFields[tops, process];
amp = CreateFeynAmp[ins];
⇒ InitializeModel::badrestr:

Warning: Global‘NoLightFHCoupling is not a valid model
restriction.

Removing the comments around InitializeModel["SM"]; gets rid of the warning and everything will run smoothly.
To manipulate the amplitude amp from the example above in HEPMath you first have to convert it to HEPMath notation. For the model

files included in the FeynArts distribution this can be done with the ConvertFeynAmp function. Continuing the example above you can
call

{cfg, amp} = ConvertFeynAmp[amp];
cfg
⇒ {Mass[Incoming, 1] -> MH, Mass[Outgoing, 1] -> MT,

Mass[Outgoing, 2] -> MT, Indices[Incoming, 1] -> {},
Indices[Outgoing, 1] -> {Index[Colour, 2]},
Indices[Outgoing, 2] -> {Index[Colour, 3]}}

amp
⇒ I*ColorDelta[Index[Colour, 2], Index[Colour, 3]]*

Bar[USp[FourMomentum[Outgoing, 1]]][Polarization[Outgoing, 1]] .
((-I/2*EL*MT*PL)/(MW*SW) - (I/2*EL*MT*PR)/(MW*SW)) .
VSp[FourMomentum[Outgoing, 2]][Polarization[Outgoing, 2]]

2 Not permanently. The FeynArts source files are not modified and loading FeynArts without HEPMath will give you the usual behaviour.

M. Wiebusch / Computer Physics Communications 195 (2015) 172–190 187

cfg is a list which holds information about the masses and indices of the external particles and amp is an expression which represents
the Feynman amplitude. Polarization[Outgoing, 1] denotes the spin polarisation index of the first outgoing particle (i.e. the top
quark). Note that the FourMomentum expressions are recognised as Lorentz vectors by HEPMath.

HEPTensorSignature[FourMomentum[Outgoing, 1]]
⇒ {Lorentz}

Thus the expression amp can be directly manipulated with the HEPMath functions described in Section 4. To make intermediate results
easier to read I usually introduce some shorthands like

DeclareLorentzVectors[_k, _p];
amp = amp /. {FourMomentum[Incoming, n_] -> k[n],

FourMomentum[Outgoing, n_] -> p[n],
FourMomentum[Internal, n_] -> l[n],
Polarization[Incoming, n_] -> sg[n],
Polarization[Outgoing, n_] -> lm[n],
Index[Gluon, n_] -> a[n],
Index[Colour, n_] -> i[n],
Index[Lorentz, n_] -> mu[n]}

⇒ I*ColorDelta[i[2], i[3]]*Bar[USp[p[1]]][lm[1]] .
((-I/2*EL*MT*PL)/(MW*SW) - (I/2*EL*MT*PR)/(MW*SW)) .
VSp[p[2]][lm[2]]

but this is purely a matter of taste.
The function ConvertFeynAmp should work for amplitudes generated with one of the model files shipping with FeynArts. However,

since FeynArts does not really define the set of kinematic objects which are allowed to appear in model files (and thus in expressions
returned by CreateFeynAmp) it is not possible to write a conversion function that is guaranteed to work with any model file. If you have
a model file that is not supported by HEPMath and you think it should be feel free to let me know.

6.2. LoopTools

The LoopTools package [2] allows you to evaluate one-loop tensor integrals numerically. If you enabled the LoopTools interface during
the installation you can load it in your Mathematica session with

Needs["HEPMath‘LoopTools‘"]

The PaVe expressions introduced in Section 4.6 will now evaluate to numbers when you call them with numeric arguments.

PaVe[2,1.0,0][0][10.0, 1.0, 2.0]
⇒ 0.622592 + 2.0116 I

If you want to generate numerical code which calls functions from LoopTools you also need the LoopTools interface installed.

6.3. LHAPDF

The LHAPDF library is a common C++ interface for a large number of parton distribution functions (PDFs). HEPMath provides a simple
interface to LHAPDF which lets you load PDF sets and evaluate PDFs numerically in Mathematica. As in the case of LoopTools you need to
enable the LHAPDF interface during installation to use it in Mathematica, and also to generate code which calls LHAPDF functions.

You can load the interface with

Needs["HEPMath‘LHAPDF‘"]

To load a specific PDF set you call, for example,

pdfid = LHAPDFOpen["cteq6l1", 0]

The first argument identifies the collection of PDFs you want to use and the second argument is the number of the desired PDF set within
that collection. The function loads the PDF set into Mathematica and returns the ‘‘LHAPDF-ID’’, a number which uniquely identifies that
set. If you know that number you can also load the set with

LHAPDFOpenID[pdfid]

To get the number of PDF sets in a given collection (and thus the allowed range of values for the second argument of LHAPDFOpen) you
can call

LHAPDFMembers["cteq6l1"]
⇒ 1

The cteq6l1 collection only contains one set.
Once you have loaded the PDF set you want and stored its ID in pdfid you can evaluate the PDF with

188 M. Wiebusch / Computer Physics Communications 195 (2015) 172–190

LHAPDF[pdfid, pid, x, Q]

Here pid is the PDG code of the parton, x is the momentum fraction and Q the factorisation scale. To get a list of PDG codes of the partons
included in the PDF set call

LHAPDFFlavors[pdfid]

To compute the value of αs associated with the PDF set at the scale Q use

LHAPDFAlphaS[pdfid, Q]

When you are done with the PDF set remember to close it with

LHAPDFClose[pdfid]

7. Code generation

More often than not the result of an analytical calculation cannot be simplified to a digestible form, and typically some extensive
numerical procedure needs to be applied to the result. For cross sections this procedure is usually the phase space integration. In other cases
one might want to include the result in a fit where the computed quantity contributes to a χ2 function which is minimised numerically.

Of course Mathematica is perfectly capable of doing numerical calculations. The efficiency of these calculations can be significantly
increased with Mathematica’s Compile function, which compiles Mathematica expressions into byte-code. With the recently added
support for native compilation targets the performance is actually comparable to hand-written C code. However, due to the limited
availability of Mathematica licenses at most institutes one needs a different solution when the numerical computation is to be parallelised
and run on a computer cluster.

The conventional approach is to use Mathematica’s CForm or FortranForm functions to convert expressions into C or Fortran code
snippets which are then pieced together and compiled outside Mathematica. The disadvantages of this approach are that it is not very
general and that any code optimisation which is beyond the compiler’s capabilities must be implemented by the user (or by the package
providing the code generation functionality, as in the case of FormCalc). SinceMathematica version 8 there is actually a viable alternative. If
the function only uses a certain subset of compilableMathematica functions the byte-code generated byMathematica’s Compile function
can now be exported to C code. Compile does a rather decent job at optimising large expressions, and since the C code is generated from
byte-code rather than Mathematica expressions it benefits from the optimisation done by Compile. This method of generating code is
not only efficient but also very flexible. You can first use Mathematica to write, test and compile a function which does exactly what you
want, and then put the compiled function into a shared library which you can link with the rest of your code. The code generation system
implemented in HEPMath is based on this strategy.

Mathematica’s code generation from byte-code currently has a major shortcoming: it is not possible for the generated code to call
functions from other libraries. HEPMath provides a workaround for this by post-processing the generated code. As a result the code
generated by HEPMath can call any external function which is interfaced to Mathematica via the LibraryLink interface.

HEPMath provides a function HEPCompile which mirrors the behaviour of Mathematica’s Compile function but guarantees the
correct treatment of symbols introduced by HEPMath. The use of HEPCompile is best explained by examples:

Needs["HEPMath‘Compile‘"];
expr = x^2 + y^2;
cf1 = HEPCompile[{{x, _Real}, {y, _Real}},
HEPEvaluate[expr] + 1.0];

cf1[1.0, 1.0]
⇒ 3.

The first argument to HEPCompile specifies the names and types of arguments to the function. Its syntax is identical to the one used
in Compile. The second argument is the function body. Like Compile, HEPCompile does not evaluate the function body. (It has the
attribute HoldAll.) However, since you usually want to use HEPCompile to compile large expressions and you probably do not want to
type them in by hand you can selectively evaluate parts of the function body with HEPEvaluate. Wrapping HEPEvaluate around an
expression inside a HEPCompile function body instructs HEPCompile to substitute the evaluation of that expression before compilation.
The body of the above function is therefore xˆ2 + yˆ2 + 1.0 and thus evaluates to 3.0 when called with x=y=1.0.

HEPCompile can also handle function bodies that depend on Lorentz vectors and contain one-loop integrals. In the function body of
HEPCompile Lorentz vectors are represented by lists of four numbers (the first element being the time component). However, before
injecting symbolic expressions which contain Lorentz vectors or PaVe expressions in a function body some additional manipulations are
necessary. You can let HEPCompile do these manipulations automatically by wrapping HEPPrepare around the relevant parts of the
function body:

DeclareLorentzVectors[p];
b0 = PaVe[2, 1.0, 0][0][Sqr[p], m^2, m^2];
cf2 = HEPCompile[{{p, _Real, 1}, {m, _Real}},
HEPPrepare[b0]];

cf2[{5.0, 0.0, 0.0, 0.0}, 2.0]
⇒ -0.218071 + 1.88496 I

In addition to HEPEvaluate, HEPPrepare and the compilable functions supported by Compile (call Mathematica’s undocumented
function Compile‘CompilerFunctions[] for a list) you can use the following expressions inside a HEPCompile body:

M. Wiebusch / Computer Physics Communications 195 (2015) 172–190 189

• Pol[p][s] and MPol[p][s] return the polarisation vectors of amassless andmassive vector bosonwithmomentum p and helicity
s . The argument p and the return values are lists of four numbers and s must be an integer which can be −1 or 1 for Pol and −1, 0
or 1 for MPol.

• LHAPDFOpenID, LHAPDF, LHAPDFAlphaS and LHAPDFClosewith their correct argument lists.
• KineticLambda[x,y,z] represents the kinetic function λ(x, y, z) = x2 + y2 + z2 − 2(xy + zy + zx).
• TwoBodyDecay[q, m1, m2, theta, phi] can be used for constructing phase space parametrisations. It returns a pair of Lorentz

vectors (i.e. lists of four numbers) which are the momenta of the decay products of a particle with four momentum q decaying into
two particles with masses m1 and m2 . The arguments theta and phi are polar and azimuthal angles in the rest frame of the decaying
particle.

Once you have compiled all the functions you need you can export themwith theHEPCodeGenerate function. Itmirrors the behaviour
of Mathematica’s CCodeGenerate function but should only be used on compiled functions generated with HEPCompile. To export the
functions cf1 and cf2 from the examples above to a library called myfuncs execute

modules = HEPCodeGenerate[{cf1, cf2}, {"f1", "f2"}, "myfuncs",
TargetDirectory->"build"]

⇒ {"build/myfuncs.c", "build/myfuncs_f1.c", "build/myfuncs_f2.c"}

This puts a number of files in the directory build and returns a list with the names of the C source files it generated. Make sure the
directory build exists before you run this. Youwill also find a file called myfuncs.py in that directory. This is the pythonwrapper which
will allow you to call your functions from Python. But first you have to compile the sources into a shared library. You can do this directly
from Mathematica by using the CCompilerDriver package:

Needs["CCompilerDriver‘"];
CreateLibrary[modules, "_myfuncs",
"TargetDirectory" -> "build",
"Debug"->True, "Libraries"->{"WolframRTL", "dl"},
"ShellCommandFunction"->Print]

The advantage of this method is that all the flags needed to compile against the Wolfram run-time library will be set automatically
by Mathematica. You can also do this manually, e.g. in a makefile. In that case simply copy the flags from the output generated by the
CreateLibrary call above. Note that the first argument to CreateLibrary is the list of modules returned by HEPCodeGenerate. The
second argument is the name of your library (without the extension). If you want to use the Python interface this should always be the
name specified in HEPCodeGenerate preceded by an underscore. Also note that you have to specify the Wolfram run-time library and
the dl library in the "Libraries" option. The latter is needed for external calls to other libraries, e.g. to LoopTools.

If everything worked you should now have a file _myfuncs.so in your build directory. To use this library you first have to make
sure that the Wolfram run-time library is found by your linker. This can be accomplished by adding the location of libWolframRTL.so
to your LD_LIBRARY_PATH variable. On my system this location is

/usr/local/Wolfram/Mathematica/9.0/SystemFiles/Libraries/Linux-x86-64

but it might be somewhere else on yours. When this is done you can go into the build directory, open a Python session and run

>>> import myfuncs
>>> myfuncs.f1(1.0, 1.0)
3.0
>>> myfuncs.f2([5.0, 0.0, 0.0, 0.0], 2.0)
(-0.21807097779182483+1.8849555921538759j)

The Lorentz vectors can be passed as lists or as numpy arrays. If your function would return a list or a matrix in Mathematica this will also
become a numpy array in Python.

To have the myfuncsmodule available in all your Python sessions just move the files myfuncs.py and _myfuncs.so to some place
where Pythonwill find them (e.g. a directory listed in yourPYTHONPATH variable). Justmake sure that thewrappermodule (myfuncs.py)
and the library (_myfuncs.so) are always kept in the same directory.

8. Performance

HEPMath is mainly a convenience tool with a very broad range of applications. Its performance (in terms of speed) was not a major
concern during its development and cannot be quantifiedwith a single or even a few benchmark calculations. However, to give you at least
a rough idea of its speed I use the analytical computation and the numerical evaluation of the squared matrix element for the Standard
Model process gg → Hg as benchmarks. The corresponding Mathematica script can be found under examples/gg-gH-SM.m in the
source distribution. I compare the performance of HEPMath with FormCalc [2,30–35] and MadLoop [21]. The results are summarised in
Table 2. The second column holds the real time (in seconds) needed for the analytical computations, code generation and compilation.
The third column holds the real time (in milliseconds) needed for one evaluation of the squared matrix element. This was obtained by
averaging 1000 evaluations. The tests were run on an Intel R⃝ CoreTM i5 CPU 760 at 2.8 GHz.

We see that FormCalc beats both tools in both stages of the computation. FormCalc’s matrix element evaluations (at least for this
process) are faster by an order of magnitude. The performance of HEPMath is similar to that of MadLoop. HEPMath’s code generation
procedure is slower than that of MadLoop by about a factor of 3, but the numerical evaluation of the squared matrix element is slightly
faster.

190 M. Wiebusch / Computer Physics Communications 195 (2015) 172–190

Table 2
Comparison of the performances of HEPMath, FormCalc [2,30–35], and Mad-
Loop [21] for the SM process gg → Hg on an Intel R⃝ CoreTM i5 CPU 760 at 2.8 GHz.

Tool Code generation Matrix element evaluation

FormCalc 4.7 s 1.8 ms
MadLoop 10.2 s 24.4 ms
HEPMath 34.3 s 17.8 ms

9. Conclusions

This concludes our tour of the Mathematica package HEPMath. Its goal is not to implement a particular computational algorithm or
set of algorithms but to make the implementation of symbolic computations related to High Energy Physics easier. It accomplishes this
with two features which set it apart from similar public codes: a consistent and extensible integration of tensors and index contractions
in the Mathematica language and a flexible mechanism for generating numerical code which allows the direct transition between two
high-level programming languages: Mathematica and Python. In addition it provides seamless interfaces to three popular tools: FeynArts,
LoopTools and LHAPDF. It still lacks some of the more advanced features present in other packages like the Passarino–Veltman reduction
to scalar integrals or the automatic computation of renormalisation constants. I hope to remedy this situation in future releases. HEPMath
was recently used for a computation of Higgs + jet cross sections in the presence of effective dimension six operators [37].

Acknowledgements

I would like to thank Ulrich Nierste, Stefan Schacht and Wolfgang Noll for helpful comments and beta-testing, and Olivier Mattelaer
for help with the performance comparison with MadLoop.

References

[1] T. Stelzer, W. Long, Comput. Phys. Commun. 81 (1994) 357–371. arXiv:hep-ph/9401258 [hep-ph].
[2] T. Hahn, M. Perez-Victoria, Comput. Phys. Commun. 118 (1999) 153–165. arXiv:hep-ph/9807565 [hep-ph].
[3] F. Yuasa, J. Fujimoto, T. Ishikawa, M. Jimbo, T. Kaneko, et al., Prog. Theor. Phys. Suppl. 138 (2000) 18–23. arXiv:hep-ph/0007053 [hep-ph].
[4] A. Kanaki, C.G. Papadopoulos, Comput. Phys. Commun. 132 (2000) 306–315. arXiv:hep-ph/0002082 [hep-ph].
[5] M. Moretti, T. Ohl, J. Reuter, arXiv:hep-ph/0102195 [hep-ph].
[6] F. Krauss, R. Kuhn, G. Soff, J. High Energy Phys. 0202 (2002) 044. arXiv:hep-ph/0109036 [hep-ph].
[7] CompHEP Collaboration, E. Boos, et al., Nucl. Instrum. Methods A534 (2004) 250–259. arXiv:hep-ph/0403113 [hep-ph].
[8] A. Cafarella, C.G. Papadopoulos, M. Worek, Comput. Phys. Commun. 180 (2009) 1941–1955. arXiv:0710.2427 [hep-ph].
[9] W. Kilian, T. Ohl, J. Reuter, Eur. Phys. J. C71 (2011) 1742. arXiv:0708.4233 [hep-ph].

[10] J. Alwall, P. Demin, S. de Visscher, R. Frederix, M. Herquet, et al., J. High Energy Phys. 0709 (2007) 028. arXiv:0706.2334 [hep-ph].
[11] T. Gleisberg, S. Hoeche, F. Krauss, M. Schonherr, S. Schumann, et al., J. High Energy Phys. 0902 (2009) 007. arXiv:0811.4622 [hep-ph].
[12] A. Belyaev, N.D. Christensen, A. Pukhov, Comput. Phys. Commun. 184 (2013) 1729–1769. arXiv:1207.6082 [hep-ph].
[13] A. Semenov, Nucl. Instrum. Meth. A389 (1997) 293–294.
[14] A. Semenov, Comput. Phys. Commun. 180 (2009) 431–454. arXiv:0805.0555 [hep-ph].
[15] N.D. Christensen, C. Duhr, Comput. Phys. Commun. 180 (2009) 1614–1641. arXiv:0806.4194 [hep-ph].
[16] N.D. Christensen, P. de Aquino, C. Degrande, C. Duhr, B. Fuks, et al., Eur. Phys. J. C71 (2011) 1541. arXiv:0906.2474 [hep-ph].
[17] F. Staub, Comput. Phys. Commun. 181 (2010) 1077–1086. arXiv:0909.2863 [hep-ph].
[18] A. Alloul, N.D. Christensen, C. Degrande, C. Duhr, B. Fuks, Comput. Phys. Commun. 185 (2014) 2250–2300. arXiv:1310.1921 [hep-ph].
[19] F. Staub, Comput. Phys. Commun. 185 (2014) 1773–1790. arXiv:1309.7223 [hep-ph].
[20] S. Alioli, P. Nason, C. Oleari, E. Re, J. High Energy Phys. 1006 (2010) 043. arXiv:1002.2581 [hep-ph].
[21] V. Hirschi, R. Frederix, S. Frixione, M.V. Garzelli, F. Maltoni, et al., J. High Energy Phys. 1105 (2011) 044. arXiv:1103.0621 [hep-ph].
[22] F. Cascioli, P. Maierhofer, S. Pozzorini, Phys. Rev. Lett. 108 (2012) 111601. arXiv:1111.5206 [hep-ph].
[23] Z. Bern, L. Dixon, F. Febres Cordero, S. Höche, H. Ita, et al., J. Phys. Conf. Ser. 523 (2014) 012051. arXiv:1310.2808 [hep-ph].
[24] J. Alwall, R. Frederix, S. Frixione, V. Hirschi, F. Maltoni, et al., J. High Energy Phys. 1407 (2014) 079. arXiv:1405.0301 [hep-ph].
[25] J. Kublbeck, M. Bohm, A. Denner, Comput. Phys. Commun. 60 (1990) 165–180.
[26] T. Hahn, Comput. Phys. Commun. 140 (2001) 418–431. arXiv:hep-ph/0012260 [hep-ph].
[27] LHAPDF, http://lhapdf.hepforge.org.
[28] J. Vermaseren, arXiv:math-ph/0010025 [math-ph].
[29] M. Jamin, M.E. Lautenbacher, Comput. Phys. Commun. 74 (2) (1993) 265–288.
[30] T. Hahn, Nucl. Phys. Proc. Suppl. 116 (2003) 363–367. arXiv:hep-ph/0210220 [hep-ph].
[31] T. Hahn, Nucl. Phys. Proc. Suppl. 135 (2004) 333–337. arXiv:hep-ph/0406288 [hep-ph].
[32] T. Hahn, eConf C050318 (2005) 0604. arXiv:hep-ph/0506201 [hep-ph].
[33] T. Hahn, M. Rauch, Nucl. Phys. Proc. Suppl. 157 (2006) 236–240. arXiv:hep-ph/0601248 [hep-ph].
[34] T. Hahn, J. Illana, Nucl. Phys. Proc. Suppl. 160 (2006) 101–105. arXiv:hep-ph/0607049 [hep-ph].
[35] T. Hahn, Comput. Phys. Commun. 178 (2008) 217–221. arXiv:hep-ph/0611273 [hep-ph].
[36] R. Mertig, M. Böhm, A. Denner, Comput. Phys. Commun. 64 (3) (1991) 345–359.
[37] D. Ghosh, M. Wiebusch, arXiv:1411.2029 [hep-ph].

http://arxiv.org/hep-ph/9401258
http://arxiv.org/hep-ph/9807565
http://arxiv.org/hep-ph/0007053
http://arxiv.org/hep-ph/0002082
http://arxiv.org/hep-ph/0102195
http://arxiv.org/hep-ph/0109036
http://arxiv.org/hep-ph/0403113
http://arxiv.org/0710.2427
http://arxiv.org/0708.4233
http://arxiv.org/0706.2334
http://arxiv.org/0811.4622
http://arxiv.org/1207.6082
http://refhub.elsevier.com/S0010-4655(15)00164-2/sbref13
http://arxiv.org/0805.0555
http://arxiv.org/0806.4194
http://arxiv.org/0906.2474
http://arxiv.org/0909.2863
http://arxiv.org/1310.1921
http://arxiv.org/1309.7223
http://arxiv.org/1002.2581
http://arxiv.org/1103.0621
http://arxiv.org/1111.5206
http://arxiv.org/1310.2808
http://arxiv.org/1405.0301
http://refhub.elsevier.com/S0010-4655(15)00164-2/sbref25
http://arxiv.org/hep-ph/0012260
http://lhapdf.hepforge.org
http://arxiv.org/math-ph/0010025
http://refhub.elsevier.com/S0010-4655(15)00164-2/sbref29
http://arxiv.org/hep-ph/0210220
http://arxiv.org/hep-ph/0406288
http://arxiv.org/hep-ph/0506201
http://arxiv.org/hep-ph/0601248
http://arxiv.org/hep-ph/0607049
http://arxiv.org/hep-ph/0611273
http://refhub.elsevier.com/S0010-4655(15)00164-2/sbref36
http://arxiv.org/1411.2029

	HEPMath 1.4: A mathematica package for semi-automatic computations in high energy physics
	Introduction
	Installation
	Building blocks for Feynman amplitudes
	Tensors and Dirac-algebra
	Lorentz vectors and Dirac spinors
	Conjugation
	Colour algebra

	Algebraic manipulations
	Expanding and collecting
	Index manipulations and substitutions
	Tensor derivatives
	Simplification of colour structures
	Polarisation sums
	One-loop integrals
	Feynman parametrisation of multi-loop integrals

	User-defined tensors and linear functions
	Interfaces
	FeynArts
	LoopTools
	LHAPDF

	Code generation
	Performance
	Conclusions
	Acknowledgements
	References

