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Abstract

In this paper, a (2+1)-dimensional sine-Gordon equation and a sinh-Gordon equation are derived from 
the well-known AKNS system. Based on the Hirota bilinear method and Lie symmetry analysis, kink wave 
solutions and traveling wave solutions of the (2+1)-dimensional sine-Gordon equation are constructed. The 
traveling wave solutions of the (2+1)-dimensional sinh-Gordon equation can also be provided in a similar 
manner. Meanwhile, conservation laws are derived.
© 2020 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.

1. Introduction

It is well-known that the classical (1 + 1)-dimensional sine-Gordon (sG) equation

utt = uxx + sinu (1)

or equivalent form
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uxt = sinu (2)

appears in many scientific fields [1,2,12,5–7,34], such as quantum-field and differential geom-
etry theory [1,2,12,10,24,5–7]. Many mathematicians and physicists studied this well-known 
equation from different aspects. The authors in [2] discussed the sG equation through using 
the inverse scattering method. Leibbrandt [12] studied solutions of the sine-Gordon equation in 
higher dimensions. Klein [10] considered geometric interpretation as surfaces of constant nega-
tive curvature. Rubinstein [24] presented a model of field theory and studied in detail. Gu and Hu 
[5] provided explicit solutions to the intrinsic generalization for the wave and sine-Gordon equa-
tions, and Hu [7] investigated the relationship between soliton and differential Geometry through 
the sG equation. In [25], the authors studied symmetry groups of the intrinsic generalized wave 
and sine-Gordon equations. A quantum-mechanical system is constructed over a Fock space of 
particles in [31] based on N-soliton solutions.

In paper [35], one of the authors derived a (2+1)-dimensional KdV and mKdV equation from 
positive case. This paper is the continuation of that one. In this paper, from the extend AKNS 
system, we derive a (2+1)-dimensional sine-Gordon equation as well as a (2+1)-dimensional 
sinh-Gordon equation. Kink wave solutions and their interactional wave propagation are con-
structed for the (2+1)-dimensional sine-Gordon equation. Furthermore, Lie symmetries approach 
is employed to reduce the (2+1)-dimensional sine-Gordon and sinh-Gordon equations so that 
their traveling wave solutions are obtained.

2. Derivation of (2+1)-dimensional sine-Gordon and sinh-Gordon equations

It is well-known that the AKNS system [1] is one of the classical well-known integrable 
systems from which a great many of nonlinear evolution equations can be derived, such as the 
famous KdV equation, the MKdV equation, the nonlinear Schrödinger equation (NLS), the Burg-
ers equation, the (1+1)-dimensional sine-Gordon equation, etc. Based on the AKNS system, let 
us consider the following (2+1)-dimensional zero curvature equation [1,33,11,34,35],

Xt − Xx + Tx − Ty + [X,T ] = 0, (3)

where [X, T ] = XT − T X,

X =
(

−iζ q

r iζ

)
, T =

(
A B

C D

)
. (4)

Here in Eq. (4), i2 = −1, ζ is an eigenparameter independent of time t (i.e. ζt = 0), q, r are 
two potential functions of x, t , and A, B, C, D are the functions to be determined. Substituting 
Eq. (4) into Eq. (3) leads to the following equations⎧⎪⎪⎪⎨

⎪⎪⎪⎩

Ax − Ay = rB − qC,

Bx − By = qx − qt + 2iBζ + Aq − qD,

Cx − Cy = rx − rt − 2iCζ + rD − rA,

Dx − Dy = qC − rB.

(5)

From the first and the last equations, we can choose D = −A. Hence, Eq. (5) becomes⎧⎪⎨
⎪⎩

Ax − Ay = rB − qC,

Bx − By = qx − qt + 2iBζ + 2Aq,

C − C = r − r − 2iCζ − 2rA.

(6)
x y x t
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In order to solve for A, B, C, let us target at expanding A, B, C in the form of truncated power 
series with regard to the eigenvalue ζ . Since the positive cases have already been studied in the 
literature, here in our paper we do the negative case. The negative order of integrable equations 
originated from the work in [15,16], and thereafter some interesting integrable equations with the 
properties of generalized Lax representations and algebraic structure were developed from the 
negative hierarchy [32,17,19,21,22]. The negative case may generate some new equations which 
have different physical meanings [18,20,23].

Therefore let us try employing the following expansions

A =
∑

an(x, y, t)ζ−n, B =
∑

bn(x, y, t)ζ−n, C =
∑

cn(x, y, t)ζ−n. (7)

Substituting Eq. (7) into Eq. (6), it immediately generates⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

anx − any = rbn − qcn,

bn−1,x − bn−1,y = 2ibn + 2qan−1,

cn−1,x − cn−1,y = −2icn − 2ran−1,

qx − qt = bnx − bny − 2anq,

rx − rt = cnx − cny + 2anr.

(8)

In the special case n = 1, we have

A = a1(x, y, t)ζ−1, B = b1(x, y, t)ζ−1, C = c1(x, y, t)ζ−1, (9)

and ⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

a1x − a1y = rb1 − qc1,

b1x − b1y = 2a1q,

qx − qt = −2ib1,

c1x − c1y = −2a1r,

rx − rt − 2ic1 = 0.

(10)

Eq. (10) admits the following special solutions:⎧⎪⎪⎨
⎪⎪⎩

a1 = i
4 cosu,

b1 = c1 = i
4 sinu,

q = −r = ux−uy

2 ,

(11)

and subsequently yields the following (2+1)-dimensional sine-Gordon equation

uxx − uxy − uxt + uyt = sinu. (12)

In a similar way, we may select the following special solutions of Eq. (10)⎧⎪⎪⎨
⎪⎪⎩

a1 = i
4 coshu,

b1 = −c1 = i
4 sinhu,

q = r = ux−uy

2 ,

(13)

to get the (2+1)-dimensional sinh-Gordon equation below

uxx − uxy − uxt + uyt = sinhu. (14)
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Remark.

1. One may obtain other integrable (2+1)-dimensional equations through choosing different 
solutions of Eq. (10). Here in our paper, we just focus on those which have physical applica-
tions.

2. Under the transformation ξ = x + y + t, η = y, τ = t , Eq. (12) and Eq. (14) equivalent to 
Eqs. Uητ = sinU and Uητ = sinhU , this is just the case of (1+1)-dimensional.

3. Multi-kink wave solutions

Let us consider the following transformation [4]

u(x, y, t) = 2i ln
f ∗

f
, (15)

where f ∗ is the complex conjugate of function f . Since sinu = eiu−e−iu

2i
, substituting Eq. (15)

into Eq. (12) yields

2

(
f ∗

xxf
∗ − f ∗

x f ∗
x

(f ∗)2 − fxxf − fxfx

f 2

)
− 2

(
f ∗

xyf
∗ − f ∗

y f ∗
x

(f ∗)2 − fyxf − fyfx

f 2

)

−2

(
f ∗

txf
∗ − f ∗

t f ∗
x

(f ∗)2 − ftxf − ftfx

f 2

)
+ 2

(
f ∗

tyf
∗ − f ∗

t f ∗
y

(f ∗)2 − ftyf − ftfy

f 2

)

= 1

2

(
(f ∗)2 − f 2

(f ∗)2 − f 2 − (f ∗)2

f 2

)
, (16)

which implies the following bilinear forms [8]

DxDxf · f − DyDxf · f − DtDxf · f + DtDyf · f = f 2 − (f ∗)2

2
, (17)

where the operator D is defined by

Dn1
x1

· · ·Dnl
xl

f · g =
(
∂x1 − ∂x′

1

)n1 · · ·
(
∂xl

− ∂x′
l

)nl

f (x1, · · ·xl) g
(
x′

1, · · ·x′
l

) |x′
l=x1,···x′

l=xl
.

(18)

Let us assume that f can be expanded in the power of ε as follows,

f = 1 + εf (1) + ε2f (2) + · · · . (19)

Substituting Eq. (19) into Eq. (17), we have

coefficients (ε) :
f (1)

xx − f (1)
yx − f

(1)
tx + f

(1)
ty = 1

2

(
f (1) − (f (1))∗

)
, (20)

coefficients (ε2) :
2
(
f (2)

xx − f (2)
yx − f

(2)
tx + f

(2)
ty

)
= −

(
DxDxf

(1) · f (1) − DyDxf
(1) · f (1) − DtDxf

(1) · f (1) + DtDyf
(1) · f (1)

)
+f (2) − f (2∗) + 1

(
(f (1))2 −

(
(f (1))(∗)

)2
)

, (21)

2
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coefficients (ε3) :
2
(
f (3)

xx − f (3)
yx − f

(3)
tx + f

(3)
ty

)
= −2

(
DxDxf

(1) · f (2) − DyDxf
(1) · f (2) − DtDxf

(1) · f (2) + DtDyf
(1) · f (2)

)
+f (3) − f (3∗) + (f (1))(f (2)) − (f (1))∗(f (2))∗, (22)

· · · .

In order to get some exact solutions, let us set up

f (1) = ieξ1 , ξ1 = c1t + k1x + l1y, (23)

with the following constraint condition

k2
1 − k1c1 − k1l1 + l1c1 = 1. (24)

Then, we have

f1(x, y, t) = 1 + ieξ1 , (25)

which gives us the following single kink wave solution

u = 2i ln
1 + ieξ1

1 − ieξ1
= 4 arctan eξ1 . (26)

Because of its linearity, Eq. (20) admits the following solutions

f (1) = ieξ1 + ieξ2 , ξ1 = c1t + k1x + l1y, ξ2 = c2t + k2x + l2y, (27)

where cj , kj , lj (j = 1, 2) are constants. Apparently, substituting Eq. (27) into Eq. (21) produces

f (2) = −eξ1+ξ2+A12, (28)

where

eA12 = (k1 − k2)(l1 − l2) + (c1 − c2)(k1 − k2) − (k1 − k2)
2 − (c1 − c2)(l1 − l2)

(k1 + k2)2 − (k1 + k2)(l1 + l2) − (c1 + c2)(k1 + k2) + (c1 + c2)(l1 + l2)
. (29)

That is to say,

f2(x, y, t) = 1 − eξ1+ξ2+A12 + ieξ1 + ieξ2 . (30)

Therefore, two kink wave solution is given by

u = 4 arctan
eξ1 + eξ2

1 − eξ1+ξ2+A12
. (31)

Adopting the same procedure shown above, we could obtain a 3-kink wave solution

u = 2i arctan
eξ1 + eξ2 + eξ3 − eξ1+ξ2+ξ3+A12+A13+A23

1 − (eξ1+ξ2+A12 + eξ1+ξ3+A13 + eξ2+ξ3+A23)
, (32)

where

eAij = (ki − kj )(li − lj ) + (ci − cj )(ki − kj ) − (ki − kj )
2 − (ci − cj )(li − lj )

(ki + kj )2 − (ki + kj )(li + lj ) − (ci + cj )(ki + kj ) + (ci + cj )(li + lj )

(i < j, i, j = 1,2,3). (33)



6 G. Wang et al. / Nuclear Physics B 953 (2020) 114956
Repeated the similar procedure N times, we can construct N -kink wave solution:

u = 2i ln

∑
μ=0,1

exp
( N∑

i=1

μi(ξi − i
π

2
) +

N∑
1≤i<j

μiμjAij

)

∑
μ=0,1

exp
( N∑

i=1

μi(ξi + i
π

2
) +

N∑
1≤i<j

μiμjAij

) . (34)

4. Determinant representation of the N -kink wave solution

The N -kink wave solution could be represented in the terms of determinants. Let us consider 
the following determinant associated with a parameter λ

p(λ) = det

(
λδij + 4AiBi

(Ai + Aj)(Bi + Bj )
e

ξi+ξj −iπ

2

)
, (35)

where δij is a characteristic function

δij =
{

0 i �= j

1 i = j
; (36)

and Ai = ci − ki , Aj = cj − kj , Bi = ki − li , Bj = kj − lj . Apparently, p(λ) is a N -th degree 
polynomial. So, let

p(λ) = λN + a1λ
N−1 + a2λ

N−2 + . . . + aN, (37)

where a1, a2, ..., aN are N coefficients. Obviously,

aN = p(0) =

∣∣∣∣∣∣∣∣∣∣∣

eξ1− iπ
2 4A1B1

(A1+A2)(B1+B2)
e

ξ1+ξ2−iπ

2 · · · 4A1B1
(A1+AN )(B1+BN )

e
ξ1+ξN −iπ

2

4A2B2
(A2+A1)(B2+B1)

e
ξ2+ξ1−iπ

2 eξ2− iπ
2 · · · 4A2B2

(A2+AN )(B2+BN )
e

ξ2+ξN −iπ

2

.

.

.
.
.
.

.

.

.

4AN BN

(AN +A1)(BN +B1)
e

ξN +ξ1−iπ

2 4AN BN

(AN +A2)(BN +B2)
e

ξN +ξ2−iπ

2 · · · eξN − iπ
2

∣∣∣∣∣∣∣∣∣∣∣
(38)

= (−4i)NA1B1A2B2 · · ·ANBNeξ1+ξ2+···ξN (39)

×

∣∣∣∣∣∣∣∣∣∣∣

1
4A1B1

1
(A1+A2)(B1+B2)

· · · 1
(A1+AN)(B1+BN)

1
(A2+A1)(B2+B1)

1
4A2B2

· · · 1
(A2+AN)(B2+BN)

...
...

...

1
(AN+A1)(BN+B1)

1
(AN+A2)(BN+B2)

· · · 1
4ANBN

∣∣∣∣∣∣∣∣∣∣∣
(40)

= (−4i)NA1B1A2B2 · · ·ANBNeξ1+ξ2+···ξN

(
1

4A1B1

N∏ (Ai − Aj)(Bi − Bj )

(Ai + Aj)(Bi + Bj )

)
(41)
i=2
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×

∣∣∣∣∣∣∣∣∣∣∣

1 1
(A1+A2)(B1+B2)

· · · 1
(A1+AN)(B1+BN)

0 1
4A2B2

· · · 1
(A2+AN)(B2+BN)

...
...

...

0 1
(AN+A2)(BN+B2)

· · · 1
4ANBN

∣∣∣∣∣∣∣∣∣∣∣
(42)

= · · · · · · (43)

= (−4i)NA1B1A2B2 · · ·ANBNeξ1+ξ2+···ξN

×
⎛
⎝ 1

4NA1B1A2B2 · · ·ANBN

N∏
1≤i<j

(Ai − Aj)(Bi − Bj )

(Ai + Aj)(Bi + Bj )

⎞
⎠ (44)

= (−i)Neξ1+ξ2+···ξN

N∏
1≤i<j

(Ai − Aj)(Bi − Bj )

(Ai + Aj)(Bi + Bj )
. (45)

Repeating the above procedure, we shall obtain

aN = p(0),

aN−1 = p′(0),

aN−2 = 1
2p′′(0),

· · · ,

(46)

where ′ stands for dp(λ)
dλ

.
Comparing all the coefficients (46) with the numerator of (34), we can readily find that

∑
μ=0,1

exp
( N∑

i=1

μi(ξi − i
π

2
) +

N∑
1≤i<j

μiμjAij

)
= aN + aN−1 + aN−2 + · · · + a1 = p(1),

(47)

and

u = 2i ln
det

(
λδij + 4AiBi

(Ai+Aj )(Bi+Bj )
e

ξi+ξj −iπ

2

)

det

(
λδij + 4AiBi

(Ai+Aj )(Bi+Bj )
e

ξi+ξj +iπ

2

) , (48)

where δij is defined in (36).

5. Interaction of kink waves

Now, let us consider the two-kink wave solution

u = 2i ln
1 − eξ1+ξ2+A12 − i(eξ1 + eξ2)

1 − eξ1+ξ2+A12 − i(eξ1 + eξ2)

where

ξj = cj t + kjx + lj y, k2 − kj cj − kj lj + lj cj = 1, j = 1,2,
j
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and investigate the interaction of two-kink waves solutions. Without loss of a generality, let us 

assume that k1 = mk2, l1 = ml2, where m is a non-zero real number, then c1 = k2
1−k1l1−1
k1−l1

and 

c2 = m2k2
1−m2k1l1−1
m(k1−l1)

. Obviously, ξ2 can be rewritten in terms of ξ1, that is,

ξ2 = mξ1 − m − 1

m(k1 − l1)
t. (49)

Therefore, in the obit of constant ξ1, when t → −∞ both eξ1+ξ2+A12 and eξ1 are approaching 0
and

u ∼ 2i ln
1 − ieξ1

1 + ieξ1
= 4 arctan eξ1 . (50)

When t → ∞, apparently ieξ1 , eξ1+ξ2+A12 and eξ2 are dominant terms. Hence, we have

u ∼ 2i ln
eξ1+ξ2+A12 − ieξ1

eξ1+ξ2+A12 + ieξ1
= 4 arctan e−(ξ1+A12). (51)

Adopting the similar procedure as above and playing the same scenario in the obit of constant 
ξ2, we then know that ξ1 can be rewritten by ξ2 as

ξ1 = ξ2

m
+ 1 − m2

m2(k1 − l1)
t. (52)

Therefore, in the obit of constant ξ2, when t → −∞ and t → ∞, we obtain the following two 
asymptotic formulations

u ∼ 2i ln
eξ1+ξ2+A12 − ieξ2

eξ1+ξ2+A12 + ieξ2
= 4 arctan e−(ξ2+A12) (53)

and

u ∼ 2i ln
1 − ieξ2

1 + ieξ2
= 4 arctan eξ2 , (54)

respectively.
In light of the above asymptotic analysis, we can conclude that when the kink waves travel 

alone with the x-axis, the one on the left travels faster and interacts with the one on the right. 
After their interactions, two kink waves interchange their position.

6. Lie symmetries analysis and traveling wave solutions of the (2+1)-dimensional 
sine-Gordon equation (12)

Obviously, the following simple transformation

v = eiu, (55)

sends

sinu = v − v−1

2i
, cosu = v + v−1

2
, (56)

and

u = arccos
v + v−1

. (57)

2
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Substituting Eqs. (55) and (56) into Eq. (12) leads Eq. (12) to the following equation

−i
vxxv − v2

x

v2 + i
vxtv − vxvt

v2 + i
vxyv − vxvy

v2 − i
vyt v − vyvt

v2 = v − v−1

2i
, (58)

which can be reduced to

2
(
vxxv − v2

x − vxtv + vxvt − vxyv + vxvy + vytv − vyvt

)
− v3 + v = 0. (59)

As per the Lie group method shown in [13,14,3,9,26,29,30,27,28], Eq. (59) has the following 
vector fields,

V = ξt (x, y, t, u)
∂

∂t
+ ξx(x, y, t, u)

∂

∂x
+ ξy(x, y, t, u)

∂

∂y
+ ξu(x, y, t, u)

∂

∂u
. (60)

Then a direct but lengthy computation generates the following results

ξt = (x + y)F2 + F3, ξx = (−x − 2y)F2 + F4, ξy = yF2 + F1, ηv = 0, (61)

where F1, F2, F3, F4 are arbitrary functions of x, y, t . Thus, Eq. (59) has the following symme-
tries

V1 = ∂

∂t
,V2 = ∂

∂x
,V3 = ∂

∂y
,V4 = (x + y)F2

∂

∂t
+ (−x − 2y)F2

∂

∂x
+ yF2

∂

∂y
, (62)

the first three of which are apparently the basic geometry symmetries. It is clear that Eq. (59)
definitely has traveling wave solutions. Substituting the traveling wave setting v(ξ) = f (k1x +
k2y − k3t) into Eq. (12) yields the following ordinary differential equation

Af ′′f − Af ′ 2 − f 3 + f = 0, (63)

where A = 2k2
1 + 2k1k3 − 2k1k2 − 2k2k3. Let us assume that Eq. (63) admits special solutions in 

the form of

f = a0 + a1φ + a2φ
2, (64)

where a0, a1, a2 are constants and φ satisfies the following well-known Riccati equation

φ′ = R + φ2, (65)

with the following solutions:

φ = −√−R tanh
√−Rξ, φ = −√−R coth

√−Rξ, R < 0 (66)

and

φ = √
R tan

√
Rξ, φ = −√

R cot
√

Rξ, R > 0. (67)

Substituting Eqs. (64) and (65) into Eq. (63), we have

a2 = ± 1

R
, A = ± 1

2R
, a0 = a1 = 0. (68)

So, we obtain the traveling wave solutions of the (2+1)-dimensional sine-Gordon equation 
(12):

u = arccos
v + v−1

. (69)

2
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Case i) when R < 0,

v = ∓ tanh2
√−Rξ, v = ∓ coth2

√−Rξ, (70)

and

u = arccos
[∓(cosh(4

√−Rξ) − 3)

2 sinh2(2
√−Rξ)

]
(71)

where ξ = k1x + k2y − k3t .
Case ii) when R > 0,

v = ± tan2
√

Rξ, v = ± cot2
√

Rξ, (72)

and

u = arccos
[±(cos(4

√−Rξ) − 3)

2 sin2(2
√−Rξ)

]
(73)

where ξ = k1x + k2y − k3t .

Remark. Let

v = eu, (74)

then

sinhu = v − v−1

2
, coshu = v + v−1

2
, (75)

and

u = arccosh
v + v−1

2
. (76)

Substituting Eqs. (74) and (76) into the (2+1)-dimensional sinh-Gordon equation (12) yields the 
same equation as Eq. (59)

2
(
vxxv − v2

x − vxtv + vxvt − vxyv + vxvy + vytv − vyvt

)
− v3 + v = 0. (77)

So, just substituting (62) and (64) into

u = arccosh
v + v−1

2
=

⎧⎪⎪⎨
⎪⎪⎩

arccosh
[∓(cosh(4

√−Rξ)−3)

2 sinh2(2
√−Rξ)

]
, R < 0

arccosh
[±(cos(4

√−Rξ)−3)

2 sin2(2
√−Rξ)

]
, R > 0

, (78)

which is the exact traveling wave solutions of the (2+1)-dimensional sinh-Gordon equation (14), 
with ξ = k1x + k2y − k3t .

7. Conservation laws

Below, we present the multipliers Q with the corresponding conserved forms T tdxdy +
T ydxdt + T xdydt (where (T t , T x, −T y) is the conserved vector). The computed multipliers 
are up to first order in derivatives of u. Given here, there are infinitely many as all functions 
fi(x + y + t), i = 1, 2, 3, of Eq. (12) viz.,
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Q = [(x + t)uy − (2t + x)ux + tut )]f1(x + y + t)

+ (ut − uy)f2(x + y + t) + (ux − uy)f3(x + y + t) + kuy,

where k is a constant.
We construct the conserved forms for some special cases in which the term T tdxdy leads to 

the ‘conserved density’.

1. Q1 = ux :

[ 1
4uxuy − 1

4ux
2 − 1

4uuxy + 1
4uuxx]dxdy

+[− 1
4utux + 1

4ux
2 + 1

4uuxt − 1
4uuxx]dxdt

+[−1 − 1
4utux − 1

4uxuy + 1
2ux

2 − 1
4uuxt − 1

4uuxy + 1
2uuyt + cosu]dydt.

2. Q2 = uy :

[ 1
4uy

2 − 1
4uxuy − 1

4uuyy + 1
4uuxy]dxdy

+[1 − 1
4utuy + 1

4uxuy − 1
4uuyt + 1

4uuxy − 1
2uuxx + 1

2uuxt − cosu]dxdt

+[− 1
4utuy − 1

4uy
2 + 1

2uxuy + 1
4uuyt + 1

4uuyy − 1
2uuxy]dydt.

3. Q3 = ut :

[−1 + 1
4utuy − 1

4utux + 1
4uuyt − 1

4uuxt + 1
2uuxx − 1

2uuxy + cosu]dxdy

+[− 1
4ut

2 + 1
4utux + 1

4uutt − 1
4uuxt ]dxdt

+[− 1
2ut

2 + 3
4utux + 1

2uutt − 3
4uuxt − 1

4utuy + 1
4uuyt ]dydt.

For the following special cases, we only present the conserved density component of the 
conserved form, T t due to the cumbersome nature of it.

4. Q4 = (x + y + t)(ux − uy):

1
2uxuyx − 1

4uy
2x + 1

2uyyux − 1
4yuy

2

+ 1
2uxuyt − 1

4uy
2t − 1

4ux
2x − 1

4yux
2 − 1

4ux
2t

− 1
2uxuxy − 1

2uyuxy − 1
2utuxy + 1

4uuyyx

+ 1
4uuyyy + 1

4uuyyt + 1
4uxuxx + 1

4uyuxx + 1
4utuxx.
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5. Q5 = (x + y + t)(ut − uy):

−x − t − y + 1
4uxuyx + 1

4uyyux + 1
4uxuyt − 3

4uxuxy

− 3
4uyuxy − 3

4utuxy + 1
4uuyyx + 1

4uuyyy

+ 1
4uuyyt + 1

2uxuxx + 1
2uyuxx + 1

2utuxx

− 1
4uy

2x − 1
4yuy

2 − 1
4uy

2t + y cosu + x cosu + t cosu − 1
4utuxt

+ 1
4utuyt − 1

4uyuxt − 1
4uxuxt − 1

4utuxt

+ 1
4utuyx − 1

4utuxx − 1
4utyux + 1

4utyuy

+ 1
4uxuyt + 1

4uyuyt + 1
4utuyt .

6. Q6 = −uyx − uyt + 2 uxt + uxx − tut :

−t + 1
4uy

2x + 1
4uy

2t + 1
4ux

2x + 1
2ux

2t

+ 1
4uuy − 1

4uux − 1
2uxuyx + t cosu

− 3
4uxuyt − 1

4uuyyx − 1
4uuyyt − 1

4uxuxx

+ 1
4utuyt − 1

4utuxt − 1
4utuxt + 1

4utuyt

+ 1
2uxuxy + 1

4utuxy.

8. Conclusions

In this paper, under the extended Lax pair (3) for the (2+1)-dimensions, we derived a 
(2+1)-dimensional sine-Gordon and a (2+1)-dimensional sinh-Gordon equation. Kink wave so-
lutions, multi-kink wave interactions, and traveling wave solutions are derived. At last, some con-
servation laws are presented for some special cases. In this paper, we got the (2+1)-dimensional 
sin-Gordon equation and sinh-Gordon equation. Conservation laws and kink wave solutions are 
derived, these results also provides a good basis for the effectiveness of some numerical meth-
ods, such as invariant discretization schemes [36,37], structure-preserving method [38–45] and 
so on. It is worth mention that, at this point, there are some issues need to be studied further, such 
as nonlocal symmetry, symmetry reductions, more exact solutions as well as their versions with 
variable coefficients. They will be reported in future works.
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