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Abstract 
Superconducting vortices with quarks on their ends provide a concrete picture for confinement 

in QCD. Explicit calculations with models of this type have been compared both with experimental 
data and with lattice simulations of QCD. However, these calculations have all been carried out 

in the approximation where the vortex line at the center of the QCD flux tube is a straight line 

connecting the quarks. In this talk, we show how consideration of fluctuations i n  the shape of the 

vortex leads to an anomaly free effective string theory describing these vortices, and we discuss its 

applications to hadron physics. 



Introduction 

1 this talk we will first review the dual superconductor mechanism of confinement. l ) We will then 
lOW how the theory of superconducting vortices can be expressed as an effective string theory. Finally, 
e show that this theory possesses features of old fashioned string theory, such as Regge trajectories, 
rid indicate the corrections due to the finite thickness of the vortices. 

Dual Superconductivity 

1 the dual superconductor model of confinement proposed by Nam bu, Mandelstam, and 't Hooft, l )  
1ng distance QCD i s  described by  an  effective dual theory, governed by a Lagrangian Leff ,  which i s  a 
rnction of dual potentials Cµ. and Higgs fields ¢ carrying monopole charge. The fields ¢ and C µ. couple 
1cally with a coupling constant g = 'bf , where e is the Yang-Mills coupling constant (tr = a5 ) . The 
Lonopole field ¢ develops a nonvanishing vacuurn expectation value ¢0 , which gives the dual gluon 
eld Cµ a mass Mc = gef>o. Dual potentials couple to electric color charge like ordinary potentials 
Juple to monopoles. The potentials Cµ thus couple to a qij pair via a Dirac string tensor G�v' which 
nonvanishing along a line L connecting the·qij pair. The Higgs field ¢ vanishes on L and approaches 

s vacuum value ¢0 at large transverse distances. A dual Meissner effect confines the electric color 
ux (Z3 flux) to a narrow tube (Abrikosov-Nielsen-Olesen vortex) 2l surrounding L. As a result, 
le energy of the qij pair increases linearly with their separation R, and the quarks are confined in 
adrons. For small R, the color field generated by the quarks expels the monopole condensate from 
le bulk of the region between them, and a Coulomb potential develops .  

Calculations with explicit models 3 )  of this type have been compared both with experimental data 
rid with Monte Carlo simulations of QCD . 4) To a very good approximation, the Abelian Higgs model 
,vith a suitable color factor) can be used to describe the flux tube along the z axis connecting the qij 
air .  The Euclidean Lagrangian Leff has the form 

'he Dirac string tensor G�v coupling the quarks to the dual potentials in ( 1 )  is given by 
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'he integration in (2) is over the surface xµ(er) swept out by the line L attached to the qij pair moving 
long world lines f1 and f2 . This surface is bounded by the loop r. ( See Fig. 1 )  
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Fig. 1: The Loop I' 

'he monopole field ¢ vanishes on the surface xµ( er) ,  parameterized by er",  a = 1 ,  2,  

(3 )  

'he  surface xµ = xµ( er) is the  location of  the  Abrikosov-Niel:!;en-Olesen vortex. The Landau-Ginzburg 
a.r<:Lrueter A/ g2 of the dual theory 5) is approxirnatt�ly equal to 1/2.  This corresponds to the border 



between a type I and type II superconductor. The monopole mass Mq, = V'f5..tf>o is the same as th• 
dual gluon mass Mc = M, the string tension is µ =  �1!'</>6, and the flux tube radius is a =  i}. 

Finally, we  note that recent studies 6 )  of  lattice QCD indicate that , a t  long distances, QCD is i i  
a sense equivalent to  a dual Abelian Higgs model with >./ g2 close to  1/2 .  

3 Contributions of Fluctuations of the Flux Tube to the Energy of a qij Pair 

All previous calculations 4) with the dual theory have been carried out in the classical approximation 
corresponding to a flat vortex sheet i"(a) .  Fluctuations in the shape of the flux tube at distancei 
greater than its radius a also contribute to the qij interaction. (see Fig. 1) To account for thesE 
contributions, we must express the Wilson loop of the dual theory Werr(f) as an integral over vorte) 
sheets. 7) The action S[Cµ, </>, G�v] of the dual theory is 

and the Wilson loop Werr(f) is 

(5 

The action ( 4) includes a gauge fixing term LGF, and S[Cµ, </>, G�v = OJ is the action in the absencE 
of a quark-antiquark pair. For brevity, we suppress the denominator of (5) in the rest of the paper. 

The integration in the numerator of (5) goes over all field configurations which include a vorte) 
sheet iµ(a) bounded by the loop r. We will carry out the integrations over Cµ and </> in the followin� 
way: 
( 1 )  We will first fix the location of a vortex sheet iµ(a),  and integrate only over field configuratiom 
for which tf>(i"(a)) = 0 .  
(2)  We will then integrate over all possible vortex sheets i"(a), so that Werr takes the form 

(6) 

In the rest of this talk we will show how to obtain the transformation from the field representation 
(5) to the string representation (6 ) ,  and will give the form of the action Serr and the meaning of the 
integration over all surfaces in (6) .  Akhmedov, Chernodub, Polikarpov, and Zubkov 7) have obtained 
the string representation of the Abelian Higgs model in the London limit ).. -> oo, where /<Pl is fixed. 
The work described here can be regarded as an extension of the results of this paper to the full Abelian 
Higgs model for all values of >. .  

4 Effective String Theory of Vortices 

To obtain to the string representation (6)  from the field representation (5),  we introduce into Eq. (5) 
the factor one written in the form, 

(7) 

Eq. (7) defines the Jacobian J[tf>]. Given </>, the integral (7) selects the surface xµ(a) on which </> 
vanishes. Inserting (7) into (5) yields 

(8) 



'he field integration in (8) is over all field configurations ¢(x") which contain a vortex, while the 
ltegral over all surfaces forces x" to lie on the surface ¢(x") = 0 .  We now reverse the order of the 
eld integrals and the string integral in (8). This gives 

(9) 

'he string integral in (9) is over all surfaces x"(O") ,  while the field integral is over only those field 
onfigurations ¢(xµ)  for which ¢(x1'( 0" ) )  = 0.  

Eq. (9)  has the form (6) ,  with Serr given by 

( 10 )  

'he o functions in ( 1 0 )  force ¢ t o  vanish on t h e  surface xµ.  Hence t h e  field integrations are over only 
1ose configurations which have a vortex at Xµ.  This di IT en; frorn the original field representation ( 5)  
f Werr(r), where the integrals are over all field configurations which contain a vortex on any sheet. 

To calculate Wetr we must then evaluate: 
l) J [¢] , Eq. (7) .  
2)  T h e  field integration in ( 1 0 )  determining Setr· 
�) The integration over all surfaces (9)  determining Weff· 

Evaluating the Jacobian J [¢] 

'he Jacobian 1[¢] in ( 1 0 )  is evaluated for field configurations which vanish on a specific surface x µ ( O" ) .  
'o distinguish t his  surface xµ( O") from t h e  integration variable in t h e  integral (7)  defining J [  ¢ ] ,  we 
�write ( 7) as 

( 1 1 ) 

here ¢(x µ ( u ) )  = 0. The integration over xµ defining the action (9) and the integrations defining the 
acobian in ( 1 1 )  must be carried out in the same way, since they are both determined by the definition 
f the integral over all surfaces specified in (7) .  From ( 1 1 )  we see that the Jacobian J [¢] is itself the 
Lverse of a "string theory," defined by the integration over all surfaces iiµ( T ). The representation 
J )  of the field theory Wilson loop is therefore a ratio of two string theories. String theories contain 
aomalies, 8) which must not be present in field theories ,7•9l .  Hence, in (9) ,  the anomalies of the two 
;ring theories must cancel. 

The o functions in ( 1 1 )  will select those surfaces iiµ(r)  which lie in the neighborhood of x µ ( O" ) .  
'o evaluate ( 1 1 ) ,  w e  separate ii µ ( r )  into components lying o n  the surface xµ(u)  a n d  components (of 
tagnitude p) lying along the normal to the surface. The integral over the normal components is 
etermined by the normal derivatives Bl<i>�a,p)l J of the magnitude of the Higgs field evaluated at the p p=O 
uface x µ .  The integral over the components of ii" lying on the surface corresponds to an integration 
ver coordinate reparameterizations u --> u(r) of the surface xµ(u) .  The resulting integral for l- 1 [¢] 
1n be written in the factorized form 

( 12 )  

here 

( 1 3) 

'he  product is over all points u on the worldsheet xµ(u) .  The quantity 1111 in ( 12)  is the integral 
ver the coordinate parameterizations u( T ) ,  given by 

( 14 )  

') Q  



where .,/§ is the square root of the determinant of the induced metric 9ab = 8axµfhxµ evaluated on 
the worldsheet ( 8a = a�a ) · 

Up to now, we have not specified how either the integral over a(r) in ( 14) or the integral over 
the parameterizations of the surface xµ( a) in (9)  is to be carried out. The only important thing is 
that they be done in a consistent way. We have carried out these integrations using the techniques of 
Polyakov . 8) The result for the integral ( 14) ,  which has the form of a two dimensional string theory, is: 

The quantity - v; is the two dimensional Laplacian on the surface xfL( a) , 

and 

2 1 a ab 1na - \7 er = - y1fj a9 y 9 b '  

6.FP =: exp {-4�� ; d2a�(8a ln ..j9)2 - µ  j d2a..j9} , 

( 15)  

( 16) 

( 17) 

is a Faddeev-Popov determinant arising from fixing the nonphysical parameterization degrees of free­
dom in ( 14 ) .  We have used the notation of Akhmedov et. al. 7) Eqs. ( 12) ,  ( 13 ) ,  and ( 14 )  then give 
J[¢] . All the dependence of J[¢] on the field ¢ is contained in h [¢] . 

6 Calculating the Field Integrals 

The dual theory is an effective theory describing the qq interaction at distances greater than the flux 
tube radius a. The only fluctuations at such distances are string fluctuations described by the integral 
(9)  over all surfaces xµ(a) .  The field integrations in ( 10) determining the effective string interaction 
must then be evaluated in the steepest descent approximation around the classical solution cz1ass, 
¢class . The boundary condition on this solution is ,pclass(xµ(a)) = 0. The action S evaluated at the 
classical solution is 

The fields ,pc!ass , cz1ass minimize the action for a fixed location of the vortex sheet xµ . 

( 18) 

The result of the steepest descent calculation of e-S," [xµ] around the solution ¢class , cziass is the 
following: 

e-s," [xµ] = J1 1Wl j DCµD¢*D¢e-5J. d¢Jo [Re¢(x1L(a) )] o [Im¢(xfL (a))] = e-5" .. ' Det-112[G-1 ]J11WJ , 
(19) 

where c-1 is the inverse Green's function determined by the quadratic terms in the expansion of the 
action about the classical solution. The 8 functions in ( 19) ,  which specify the location of the vortex, 
cause the field integration to produce a Jacobian which cancels J1- , so that only J11 appears on the 
right hand side of Eq. ( 19 ) .  In obtaining ( 19 ) ,  we have also divided by the integral over vacuum 
configurations appearing in the denominator of (5). 

The effect of the determinant of c-1 is to renormalize the parameters in 5c!ass . Short distance 
renormalization effects are cut off in the dual theory at the scale of the string radius a. These 
renormalizations are unimportant, as all the modes in c-1 have masses larger than a-1 . 

7 Parameterizing the Integral Over All Surfaces 

In order to carry out the integration Dxµ of e-5·" over all surfaces, it is convenient to choose particular 
coordinates. We select some fixed sheet xµ,  and define vectors nµA ,  A = 3, 4, normal to the sheet, 
which satisfy the equations 

(20) 



For points xµ. close to the sheet xi' we can write, 

(21 )  

Eq. ( 2 1 )  defines the  coordinate transformation xµ. -> a,  xi.  
We now use these coordinates to parameterize the surface xi'( a) .  Doing this will allow us to break 

up the integral ( 9 )  over x" into an integral over distinct surfaces and an integral over parameterizations 
of the surface xi'. For a given parameterization xi'( a) , we choose a reparameterization f (a) defined 
so that 

(22) 

Eq. (22) requires that the point xi' (!( a)) l ie on the line normal to the surface xµ. at the point xi'( a ) .  
The term nµ.A (a)xi(a) then represents the displacement of  the surface xi' from the  surface xi' . We 
can then write xi'( a) as 

(23) 

where i7( a) = 1-1 (a). This allows us to write the integration (9) over xi'( a )  as an integration over 
distinct surfaces ( labeled by xi)  and an integration over parameterizations i7( er) . The integral over 
ii'( er) produces a factor ClFpDet;;:- 1 [-v;J = J1l1 ,  which cancels the factor J1 1  in e-5011 , and we obtain, 

Wetr = j Dxie_sc1 ... [x"IDec1!2 [c-1 ] . (24) 

Eq. (24) gives the string representation of the Abelian Higgs model. 
The action Sclas•[xµ.] does not depend on the parameterization a( er) and hence is expressed in 

terms only of xµ. and xi via (23). This result (24) could also have been obtained by introducing a 
fixed surface xi' at an earlier stage and replacing the right hand side of Eq. (7) by the product of J .L [</>] 
and an integral over 'Dxi.  We have chosen a more general approach to obtain (24) ,  because we can 
also derive, from this approach, a string representation which does not contain a fixed surface ff l' .  

8 The Curvat ure Expansion 

To describe long distance fluctuations, we need sclass only for vortex sheets which have a radius of 
curvature Rp greater than the flux tube radius a.  The expansion of Sclass in the parameter a/ Rp is 
carried out by expanding Sclass in powers of the extrinsic curvature: 

(25) 

The nµ.A are normal vectors to the sheet xi', satisfying n: (er)80xµ. (er)  = 0. 
The lowest order term So in this expansion of (18) is the value of the action, evaluated at the 

solution <j>(o) ,C�O) of the approximate classical equations obtained by neglecting terms containing the 
curvature: 

(26) 

where µ = �11'</>5 is the string tension calculated for a flat vortex. Eq. (26) is the Nam bu-Goto action .  
As i s  well known, i t  gives rise to linear Regge trajectories with slope a' = 1/211'µ. Using the value 
a' :::::< .9(Gev)-2 for the slope of the p trajectory gives </>o :::::< 210MeV. 

The difference, 
8S = Sclass - So , 

evaluated to second order in the extrinsic curvature has the form, 

(27) 

(28) 

where (3 i s  called the rigidity. J O )  Eq. (27) gives an expression for (3 i n  terms of the Green's function 
c-1 evaluated at the fl at soln tion . Since sclass i s  the valne of the action at an exact solution of the 



equations of motion, and So is its value at an approximate solution, we must have j3 < 0. We have 
evaluated (27) explicitly in the limit g2 / ,\ -+ 0, and obtain j3 -+ -'Ir /2g2 • This result has been obtained 
previously in the London limit, where l</>I is fixed and a short distance cutoff is introduced. I I )  

Using the classical action ( 18 ) ,  omitting the factor Det-112[G-1] from (24) ,  and choosing x" to  be 
a fiat sheet, we obtain the following expression for the Wilson loop describing the string fluctuations 
of superconducting vortices, 

(29) 

The integration over x1 must be cut off at distances of the order of the string radius a .  (If we refrain 
from expanding scJass in powers of the extrinsic curva�ure, and use the exact classical action as in 
( 18 ) ,  such a cutoff might not be necessary, since the unexpanded classical action itself could damp out 
the short distance x1 fluctuations. )  

9 Conclusions 

( 1 )  The dual superconducting description of long distance QCD yields the effective string theory given 
by (24). This has an anomaly free action which, when expanded in powers of the extrinsic curvature, 
yields (29) ,  the Nambu-Goto action and a rigidity term which is negative. Thus, consequences of 
string models used to describe Regge trajectories and spectra of hybrid mesons can also be regarded 
as consequences of a dual superconducting description. 
(2)  Eq. (29) for Weff does not account for effects due to the boundaries of the string. However, as 
mentioned at the beginning of this talk, previous calculations 4) of the qq potential (with a straight 
line vortex) are applicable also at small quark-anti-quark separations, where a Coulomb potential 
develops. At these distances string fluctuations should not be important. We could then combine the 
previous calculations for a fiat vortex with the long distance contributions of string fluctuations to 
give a more complete treatment of the dual superconductor description of long distance QCD. 
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