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Abstract
Spinless systems exhibit unique topological characteristics compared to spinful ones, stemming
from their distinct algebra. Without chiral interactions typically linked to spin, an intriguing yet
unexplored interplay between topological and structural chirality may be anticipated. Here we
discover spinless topological chiralities solely from structural chiralities that lie in the 3D
spatial patterning of structureless units, exemplified using two types of twisted graphite systems.
In a 3D screw twisted structure without periodicity in all directions, we find a chiral Weyl
semimetal phase where bulk topology and chiral surface states are both determined by the screw
direction. And in a 3D periodic structure formed with layer-alternating twist angle signs, a
higher-order Dirac semimetal with chiral hinge states is discovered. Underlying these novel
topological states is the intervalley Umklapp scattering that captures the chirality of the twisted
interfaces, leading effectively to a sign-flipped chiral interlayer hopping, thereby introducing
π-flux Z2 lattice gauge field that alters the symmetry algebra. Our findings point to a new
pathway for engineering topological chirality through patterning twisted arrays of featureless
units, which can expand the design principles for topological photonics and acoustics.

Keywords: Z2 gauge field, topological chirality, spinless chiral Weyl semimetal,
higher-order Dirac semimetal, intervalley Umklapp scattering

1. Introduction

Chirality, a fundamental concept across physics, chemistry,
and biology [1–3], describes the geometric property of objects
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that cannot be superimposed onto their mirror images. In
chemistry and biology, chirality typically pertains to the struc-
tures seen in molecules or proteins that break all the mir-
ror, inversion, or other roto-inversion symmetries. In phys-
ics, the concept of chirality also takes into account particles’
internal quantum degrees of freedom, such as spin, which
transform under spatial operations. Chirality plays a key role in
the topological characterization of materials [4–10], describ-
ing momentum space electronic structures within the crystal
bulk as well as on surfaces and edges. Nontrivial topological
chirality often emerges from chiral interactions, such as spin–
orbit couplings (SOCs) [11, 12]. Examples of this include
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the chiral surface states in topological insulators (TIs) [13–
15], and the intrinsic chirality of Weyl fermions in topological
semimetals [16–22]. Additionally, there are instances where
the interplay of SOC and structural chirality leads to a correl-
ation between structural and topological chirality [23–27].

Spinless systems constitute another important context for
investigating topological phases of matter, e.g. light ele-
ment crystals with negligible SOC. Artificial crystals such
as photonic and acoustic ones are generically spinless as
well, although effective SOC and topological chirality can
be tailored through complex design of elementary units fea-
turing pseudospins [28–30]. Spinless systems exhibit distinct
topological properties due to their adherence to different sym-
metry algebra [31–34]. For example, spinless systems obey
the algebra of time reversal (TR) symmetry T2 = 1, whereas
spinful systems follow T2 =−1, leading to different topolo-
gical classifications [34–37]. Moreover, TR symmetric spin-
less systems inherently possess Z2 gauge fields, i.e. the hop-
ping amplitudes being real numbers with either positive or
negative values. Notably, the Z2 gauge fields with π flux can
lead to design of novel topological phases such as 2D Möbius
insulators [38–40], Klein bottle insulators [41], higher-order
topological semimetals [34, 42], and mirror Chern insulat-
ors [43, 44]. In reality, π-flux Z2 gauge fields and other forms
of chiral interactions can be highly nontrivial to realize with
only spinless orbitals. In the absence of chiral interactions, the
manifestation of topological chirality necessitates an altern-
ative cause of chiral symmetry from the spatial patterning
of spinless units. This possibility, however, has seldom been
explored.

Here we show a new pathway to engineer π-flux Z2 gauge
field and topological chirality in spinless systems by exploit-
ing intervalley Umklapp scattering in twisted 3D structures.
Using graphite (or 3D graphene) as an example, topological
chiralities purely from structural chiralities are demonstrated
in two types of twisted patternings. Type-I patterning has
adjacent graphene layers all twisted with the same commen-
surate angle, forming a 3D helical structure lacking trans-
lational symmetry in all directions that needs a generalized
Bloch theorem to describe. It features a unique 3DWeyl semi-
metal phase, with the bulk topology as well as chiral sur-
face states solely determined by the screw direction. Type-
II structure has alternating signs of twist angles for adja-
cent interfaces and features a higher-order Dirac semimetal
phase with chiral hinge states. Underlying these novel topolo-
gical states is a sign-flipped chiral interlayer hopping, effect-
ively realized by the intervalley Umklapp process that nat-
urally captures the chirality of the interface. Notably, such
coupling introduces π-flux Z2 lattice gauge field that alters
the symmetry algebra, giving rise to the observed topo-
logical chirality. Our findings unveil a novel approach to
achieve varieties of topological chirality-based functionalit-
ies through patterning twisted arrays of featureless units, sug-
gesting new design principles for topological photonics and
acoustics.

2. Results

The results are organized as follows. We start with the spin-
less chiralWeyl semimetal phase, by first presenting a descrip-
tion based on a simplified model with effective chiral inter-
layer hopping on an untwisted hexagonal lattice. The project-
ive symmetry algebra and the crucial role played by the π-flux
Z2 gauge field are analyzed. We then establish the equivalence
between the artificial chiral interlayer hopping in the untwis-
ted structure and the realistic intervalley Umklapp coupling
at commensurately twisted interfaces. This sets the ground
for the realization of the spinless chiral Weyl semimetal in a
3D helical structure of the twisted graphite lattice, for which
we develop an atomistic Slater–Koster tight-binding (SKTB)
calculation based on a generalized Bloch theorem with screw
rotational symmetry. Next, as another example of topological
chirality from structural chirality, we present the realization of
a higher-order Dirac semimetal phase with chiral hinge states
in a 3D periodic structure with alternating signs of twist angles
for adjacent interfaces. Lastly, we discuss the robustness of the
topological properties against possible forms of disorders.

2.1. Sign-flipped interlayer hopping and spinless chiral Weyl
semimetal

To break all the in-plane mirror symmetries while preserving
in-plane rotational symmetries and TR symmetry on an
untwisted hexagonal lattice with an infinite number of layers in
the z-direction (figure 1(a)), an effective sign-flipped interlayer
hopping should be introduced (figure 1(f)). This chiral inter-
layer hopping can exhibit two distinct configurations along the
z direction, both shown in figure 1(b) labeled as type-I and
type-II. We will focus on the type-I configuration in this part,
and discuss the case of type-II later. In the Bloch basis of
(ψA,ψB)

T, the simplified tight-binding (sim-TB) model with
the effective chiral interlayer hopping reads,

H3D
I

(
k∥,kz

)
= χ1

(
k∥

)
σx+χ2

(
k∥

)
σy+ 2cos(kzd)Mσ0

+ 2isin(kzd)ζλ
(
k∥

)
σz,

(1)

where k∥ = (kx,ky), and σi are Pauli matrices acting on the
A and B sublattices. The first line is just the standard 3D
AAA graphite model. Here χ1 + iχ2 = t1

∑3
i=1 e

ik∥·δi , where
δ1 =

1
3a1 +

2
3a2,δ2 =− 2

3a1 −
1
3a2,and δ3 =

1
3a1 −

1
3a2 are

the nearest-neighbor intralayer hopping vectors with hopping
amplitude t1. The second line describes a chiral interlayer hop-
ping, whereλ(k∥) = 2iλ0

∑3
i=1 sin(k∥ ·di ) (d1 = a1, d2 = a2,

and d3 =−a1 − a2), and ζ =+ or −. With C2zT in spinless
systems, only real hopping amplitudes are permitted.

Figure 1(d) shows the band structures with and without
chiral interlayer hopping. Note that the chiral interlayer hop-
ping differs for the A and B sublattices, resulting in the split-
ting of sublattice degeneracy along the H–K paths. Thereby
leads to the emergence of Weyl nodes located at the corners
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Figure 1. Topolocal chirality from sign-flipped interlayer hopping
on an untwisted hexagonal lattice. (a) The hexagonal lattice with
infinite numbers of layers in the z-direction, with solid and hollow
dots representing A and B sublattices, respectively. (b) Side view of
the lattice illustrating the chiral interlayer hopping in two possible
configurations, with solid and dashed lines indicating positive and
negative hopping amplitudes, respectively. (c) Corresponding
Brillouin zone. (d) Bulk band structures without and with the chiral
interlayer hopping λ (in type-I configuration). A finite λ introduces
a splitting along the H–K path. (e) Low-energy band structure along
the H–K path marked in (c), with red and blue lines indicating
Chern numbers, C= 1 and C=−1, respectively. The labels
indicate the eigenvalues of My. The P1 and P2 points are connected
by C2zT, exhibiting oppositeMy eigenvalues. (f) Schematic figure
showcasing the invariance under the proper mirror symmetry
My = GMy. The signs on the right figures specify the gauge
transformation G. The red and green lines form closed hopping
loops that enclose π-flux.

of the 3D Brillouin zone (BZ) (figure 1(c)). We find that these
bulkWeyl nodes are topologically nontrivial. And at each fixed
kz, the effective 2D subsystem corresponds to the topological
Haldane model [45], except for kz = 0 and kz =±π/d.

To begin, assume ζ =+ for simplicity, for a given kz, a
reduced 2D subsystem are denoted byH(k∥,kz), the interlayer
hopping can be described as second nearest neighbor hopping
with a complex hopping coefficient of 2isin(kzd)λ0. When
kz = 0 or ±π/d, the Hamiltonian simplifies to H(k∥,0) =
2Mσ0 +χ1(k∥)σx+χ2(k∥)σy or H(k∥,±π/d) =−2Mσ0 +
χ1(k∥)σx+χ2(k∥)σy. These are just the 2D graphene model
with an overall energy shift of ±2M. At kz = π/(2d), cor-
responding to a 2D kx - ky plane containing the P2 point in
figure 1(c), the next nearest neighbor hopping coefficient
becomes 2iλ0, akin to the magnetic flux in the Haldane
model. Hence it exhibits a nontrivial topological charge of
C=+1. We find that any 2D subsystem with π/d> kz > 0

is topologically nontrivial with C=+1. And any 2D subsys-
tem with −π/d< kz < 0 features a reversed chiral charge of
C=−1. This can be verified for kz =−π/(2d), where the
next nearest neighbor hopping coefficient becomes −2iλ0.
Therefore, kz acts as a tuning parameter for the chiral topolo-
gical phase, and the critical points, namely the H and K points,
must exhibit band crossing points with opposite chirality.

Initially, we simplify the analysis by considering ζ =+.
Symmetry analysis reveals that both ζ =+ and ζ =− are
allowed, and interestingly, the band structures are identical
for both cases. Now, let us explore the effects of ζ. On one
hand, from symmetry perspective, we find: MyHI(ζ)M−1

y =
HI(−ζ), where My represents a vertical mirror reflection per-
pendicular to the xz-plane. It implies that reversing the sign
of ζ is equivalent to a spatial mirror reflection. On the other
hand, ζ represents the sign of the effective next nearest neigh-
bor hopping coefficient, and thus the sign of the chiral topo-
logical charge. In other words, flipping the sign of ζ alters the
chirality of all the Weyl points. This is the unique character-
istic of a spinless chiral Weyl semimetal.

2.2. Projective symmetry algebra of the chiral Weyl
semimetal phase

Breaking spatial in-plane mirror symmetries results in a sign-
flipped interlayer hopping, which assigns the lattice gauge
field to certain π-flux Z2 gauge field. Usually, the symmetries
with π-flux Z2 gauge field should follow a projective algebra,
which fundamentally alters the algebraic structure of the sym-
metry group [34, 38, 42]. In the following, we will ascertain
the symmetry condition of the underlying chiral Weyl semi-
metal phase and elucidate the crucial role played by the π-flux
Z2 gauge field.

First, we focus on symmetry along the H–K path as shown
in figure 1(c), where the nontrivial band splitting occurs.
Along this path, the intralayer terms become zero. Although
the model is not invariant under spatial mirror reflection
My, it can be transformed into an equivalent configuration
(i.e. another gauge choice) by applying a Z2 gauge trans-
formation G. This transformation involves assigning a sign
of +1 or −1 to each basis at each site. Consequently, the
gauge-connection configuration becomes invariant under the
so-called propermirror operator,My = GMy, which is a com-
bination of the gauge transformation and the spatial mirror
reflection. Since both My and G are real matrices, it follows
that [My,C2zT] = 0. Moreover, My reverses the signs at all
sites for G, indicating {G,My}= 0. Additionally, we have
M2
y = G2 = 1. Therefore, we can deduceMy = σx, G= σz, and

My = GMy = iσy. This leads to the following algebraic rela-
tions:

[C2zT,My] = 0, M2
y =−1. (2)

Next, the momentum-space Hamiltonian H(kz) along My-
invariant path, specifically the H-K path as shown in
figure 1(c), can be represented as a block diagonal form:

H (kz) =

[
h+ (kz) 0

0 h− (kz)

]
, (3)
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where h+(kz) and h−(kz) denote the Hamiltonian in the
mirror-even (+i) and mirror-odd (−i) subspaces respectively.
C2zT exchanges the two eigenspaces of My. For My |ψ±⟩=
±i |ψ±⟩, one can show from the commutation relation and the
anti-unitary nature of C2zT thatMyC2zT |ψ±⟩=∓iC2zT |ψ±⟩.
Then, we must have uh∗+(kz)u

† = h−(−kz), where u is a unit-
ary matrix determined by C2zT. In other words, C2zT trans-
forms |ψ±,±kz⟩ into |ψ∓,∓kz⟩. For a given kz, the gapped
2D subsystem H(k∥,kz) can also be divided into two non-
crossing parts, denoted as H±(k∥,kz), each of which are
evolved from h±(kz) on the high symmetry path. The 2D
subsystems H+(k∥,kz) and H−(k∥,−kz), which are related
by C2zT, must possess opposite Chern numbers, since C2zT
reverses the Chern number. Figure. 1(e) illustrates the dis-
tribution of My eigenvalues and Chern numbers along My-
invariant paths. Each blockH± can exhibit a nontrivial Chern
number, and C2zT connects them.

In the above analysis, we see that the exchange of the
eigenspace of My by C2zT is crucial for the nontrivial chiral
topology. In a scenario where M2

y =+1, which is typical for
most spinless systems without π-flux Z2 gauge field, C2zT
would preserve the eigenspaces of My. This preservation
occurs because the eigenvalues ± of My are real numbers
that commute with C2zT. Even though we can still writeH(k)
in the block diagonal form for eigenspaces of ±1, the states
|ψ±,±kz⟩ are related to |ψ±,∓kz⟩ by C2zT. As a result, they
each must have a zero Chern number. Breaking all the spatial
in-plane mirror symmetries is necessary to fulfill M2 =−1,
whereas the proper mirror symmetry is restored by introdu-
cing a Z2 gauge transformation.

2.3. Realization though intervalley Umklapp scattering

The key challenge of realizing such spinless topological phase
lies in the coexistence of both positive and negative hoppings.
While some strategies have been proposed to manipulate the
sign of coupling in lattice models [34, 46], there remains a
dearth of realistic electronic examples that exhibit topological
states related to π-flux Z2 gauge field. For the 3D chiral Weyl
semimetalmodel concerned, the role of the negative hopping is
to break all the mirror symmetries upon the interlayer hybrid-
ization between the massless Dirac cones. We note that the
symmetry breaking role can be alternatively played by a twis-
ted interface, which may imprint its structural chirality to the
electronic coupling.

There has been extensive literature on small angle twist
regime concerning the formation of flat minibands through
interlayer hybridization between modestly displayed Dirac
cones at the first BZ corners [47], where only intravalley
channels need to be considered for the interlayer hopping (cf
appendix C). In the scenario of large twist angles, however, the
Dirac points from the same valley of adjacent layers get widely
separated in momentum space (cf figure 2(a)), so that intraval-
ley channel can only hybridize states far away from the Dirac
points (where Dirac cones from adjacent layers intersect, cf
figure 2(b)). Low-energy sector near the Dirac points is negli-
gibly affected by intravalley channels due to the large energy
detuning of states that can be coupled [48]. Nonetheless, at

θ = 21.8◦, opposite valleys from adjacent layers align in the
second BZ [49], and consequently the intervalley Umklapp
channel dominates the layer hybridization in the low-energy
sector (cf appendix C).

To examine whether such intervalley Umklapp interlayer
hybridization can capture the structural chiral symmetry and
lead to the desired topological chirality, we consider twis-
ted bilayer graphene (tBG) with twist angle θ = 21.8◦ (cf
figure 2(c)). In the absence of interlayer coupling, the Dirac
cones at the corners of the BZ from each layer can be fol-
ded to either Km or K ′

m corner of the moiré BZ (mBZ) (see
figure 2(a)). We analyze the change of electronic structure by
the intervalley Umklapp interlayer hopping at one of the mBZ
corners, comparing with the consequence of the artificial sign-
flipped interlayer hopping on the untwisted bilayer structure
of AA-stacking (cf figure 1(b)). We note that the sign-flipped
interlayer hopping changes the AA-stacked bilayer from a
nodal line semimetal to a second-order TI (SOTI), by opening
a topological energy gap. The SOTI phase is characterized by a
nontrivial real Chern number (RCN) νR [31, 50, 51], as well as
layer-resolved corner states whose real-space chirality is dir-
ectly controlled by the parameter ζ (see details in appendix D).

We calculate the electronic structure of tBG at θ = 21.8◦,
using both density functional theory (DFT) and the atomistic
SKTB model [52]. Results are shown in figure 2(d). The inter-
layer coupling by twisting indeed opens a narrow gap of ∼
2.4meV near K point, which is consistent with [53]. Next,
we investigate the bulk topological invariant and the bulk-
boundary correspondence. To study the bulk band topology,
we directly compute the RCN νR counting all 56 occupied
bands. We define nki+ (nki−) as the number of occupied bands
with positive (negative) C2z eigenvalues at ki. Results show
that nM− = 30 at the M point and nΓ− = 24 at the Γ point,
indicating a nontrivial RCN νR = 1 (see equation (D.1) in the
appendix D). This RCN is consistent with that of the sim-
plified bilayer TB model. Furthermore, we employ the atom-
istic SKTB model to demonstrate topological corner states in
a large flake of tBGwith open boundary condition while main-
taining the C6z symmetry. We observe localized corner states
(cf figure 2(e)), with layer-resolved chirality determined by the
sign of twist angle (see comparison of charge distribution for
θ =−21.8◦ in figure F1 in appendix F. These corner states
also fully resemble those in the simplified bilayer TB model
with artificial sign-flipped interlayer hopping. Additionally,
we find that the parameter ζ in the simplified bilayer TB
model signifies the structural chirality in tBG. Symmetry ana-
lysis as well as the correspondence between ζ and the R-
or L-structure are provided in appendix F. Overall, the sym-
metry, dispersion, and topology of the low-energy physics
in tBG at θ = 21.8◦ due to intervalley Umklapp interlayer
hopping are shown to be equivalent to those of the simpli-
fied bilayer model due to the artificial sign-flipped interlayer
hopping.

In the following sections 2.4 and 2.5, the atomistic SKTB
calculations are performed in two types of 3D structures
with adjacent layers twisted by 21.8◦ (or −21.8◦), to expli-
citly demonstrate the topological consequences of intervalley
Umklapp scattering.
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Figure 2. (a) Extended zone scheme at θ = 21.8◦. Solid (hollow) dots denote K (K ′) points of the monolayers, and the red (blue) color
denotes the top (bottom) layer. Km and K ′

m denotes the two moiré Brillion zone (mBZ) corners. Top layer Kt valley and bottom layer K ′
b

valley get folded to Km mBZ corner. (b) Layer hybridization by intravalley channel is quenched in the neighborhood of Dirac points.
Instead, in this low energy sector, layer hybridization is dominated by the intervalley Umklapp process. (c) tBG with θ = 21.8◦, belonging
to the chiral point group D6. The red and blue dots represent carbon atoms in the top and bottom layers, respectively. The green and orange
shades highlight a subset of vertically aligned carbon atoms, which are linked in a chiral manner by other carbon atoms, reminiscent of the
simplified model introduced in section 2.1 (cf figure 1). (d) Band structure of θ = 21.8◦ tBG. Red solid lines are from DFT calculations, and
blue dashed lines are the fitting using the atomistic SKTB model (see appendix (B). This band structure can be well reproduced by the
sim-TB model with the artificial chiral hopping (green dashed lines). (e) Topological corner states in the θ = 21.8◦ tBG, with red and blue
indicating distribution in the top and bottom layers, respectively. (f) Alignment of the Dirac points at a deviated angle θ = 21◦. Given the
proximity of K from top and K ′ from bottom layer on the C2 circle, intervalley Umklapp scattering still dominates in low-energy sector. (g)
Topological corner states from atomistic SKTB calculations at θ = 21◦, essentially unchanged compared to the θ = 21.8◦ case.

2.4. 3D helical graphite as a chiral Weyl semimetal

We further substantiate the role of the Umklapp interlayer hop-
ping in 3D twisted structures, as a means to introduce π-flux
Z2 gauge field and topological chirality. To realize the 3D
chiral Weyl topological semimetal phase in 3D moiré struc-
tures, the required sign-flipped interlayer hopping in the type-
I sequence should be achieved in a helical graphite where all
adjacent interfaces are twisted by the same angle. Namely,
one could start with a AAA stacking graphite then rotate each
layer by an angle of nθ around a common hexagon cen-
ter, where n represents the layer number. Previous studies
have explored the electronic structures of this 3D stacking
in the small angle limit [54–57]. However, those approaches
neglected the intervalley Umklapp processes, rendering them
inadequate for describing the physics here at θ = 21.8◦.

The 3D helically twisted structure breaks translational sym-
metry in all spatial directions. Nevertheless, one can define
effective crystal momenta in all three directions, which con-
stitutes a 3D parameter space that resembles the BZ. First,
we notice that the system is invariant under a screw rotational
operation, i.e. [T̂,H] = 0, T̂≡ R̂T̂, where R̂ rotates each layer
by θ, and T̂ translates it along the out-of-plane z direction by
the interlayer distance d. T̂ has the same algebraic symmetry
as the translation operation in periodic structures that underlies

the Bloch theorem, which allows us to directly write a gener-
alized Bloch wavefunction

ψkz (r) =
1√
N

∑
j

eikz( jd)
(
R̂
)j(

T̂
)j
ϕ0 (r) , (4)

where the quantum number kz represents an effective out-
of-plane crystal momentum, and the wavefunction compon-
ent of the jth layer has been written as ϕj = (R̂)j(T̂)jϕ0(r),
r being electron’s position vector in-plane. The layer wave-
function ϕ0(r) is to be solved from the Schrödinger equation
Ĥkzϕ0(r) = Eϕ0(r), where the kz parameterized Hamiltonian
reads,

Ĥkz ≡

 1√
N

∑
j′

e−ikz( j ′d)R̂−j ′ T̂−j ′

 Ĥ
 1√

N

∑
j

eikz( jd)R̂jT̂j

 .
(5)

We note that while each interface has a commensurate inter-
layer atomic registry, the in-plane periodicity of the interfaces
is not aligned, with adjacent ones all having a 21.8◦ relative
rotation. So, this 3D helical stacking does not have in-plane
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Figure 3. Chiral Weyl semimetal in type-I stacking. (a) Illustration
of the 3D twisted structure with a constant twist angle θ between
successive layers. (b) The corresponding generalized 3D BZ. (c)
Low-energy band structure. The Chern numbers of each band (red
bands: C= 1, blue bands: C=−1). (d) Schematic of spinless
helical surface states (marked by a white cross in panels (e) and (f)).
(e), (f) Edge spectra for the 2D subspace with kz =∓0.25 (2π/d).

translational symmetry. Still, we can introduce effective in-
plane crystal momentum kx and ky in solving ϕ0(r). With inter-
layer hopping between adjacent layers only, the kz parameter-
ized Hamiltonian reduces to,

Ĥkz = Ĥ+ e−ikzdĤR̂−1T̂−1 + eikzdĤR̂T̂. (6)

With the 21.8◦ rotation operator R̂ introducing
√
7×

√
7moiré

periodicity at each interface, the three terms of Ĥkz together
have a 7× 7 periodicity in-plane, from which we can define
an effective in-plane crystal momentum kx and ky to charac-
terize the layer wavefunction ϕ0(r) (cf appendix E). Together
with kz, these are the good quantum numbers characterizing
the eigenstates of the full Hamiltonian, which span a 3D para-
meter space of a hexagonal prism shape, i.e. a generalized BZ
as shown in figure 3(b). Detailed derivation of the atomistic
SKTB model for the twisted structures based on a generalized
Bloch theorem is provided in appendix E.

By employing the atomistic SKTB method based on a gen-
eralized Bloch theorem, we obtain the band structure of the 3D
twisted graphite, as shown in figure 3(c). One observes that the
valence and conduction bands touch at H and K points, which
are Weyl nodes with a quantized chiral charge |C|= 1. Next,
we examine the topological properties of the 2D subsystem
H(kx,ky) for any fixed value of kz. For kz = 0.25 (2π/d), a size-
able gap ∼ 0.128eV is observed, which is significantly larger
than that in 2D tBG. Additionally, we observed a topological
chiral edge mode in figure 3(f), indicating C=+1. Further
calculations demonstrated thatC=+1 remains for kz > 0 sub-
systems, while C=−1 for kz < 0 subsystems, as illustrated in
figure 3(e). Note that if we trace the in-gap chiral states marked
by white crosses in figures 3(e) and (f), topological helical sur-
face states emerge, as shown in figure 3(d). The above demon-
stration applies to the R-handed 3D helical structure. The L-
handed structure features reversed Chern numbers, and mirror

Figure 4. Higher-order topological Dirac semimetal in type-II
stacking. (a) Illustration of the 3D alternating twisted structure. (b)
The corresponding BZ. (c) Schematic of spinless hinge states
(marked by crosses in panel (e)). (d) Low-energy band structure,
showing the characteristics of a 3D higher-order Dirac semimetal.
(e) Spectrum for a sample with tube-like geometry as illustrated in
(c). The yellow color indicates the in-gap topological hinge bands.
The spatial distribution for the states marked by the crosses is shown
in (c). (f) Schematic of inhomogeneity in the interlayer distances
introduced to the structure, which breaks the Mz mirror symmetry.
(g) Low-energy band structure for the type-II stacking with
dimerized interlayer distances: d= 3.35Å, ∆d= 0.2Å. The Dirac
point at the H becomes gapped, converting the system into a
second-order topological insulator, whereas the topological hinge
states remains largely unchanged (cf (c)).

reflected helical surface states. These are the characteristics of
a chiral Weyl semimetal [23, 25, 27], and are consistent with
the results from the simplified model with the artificial sign-
flipped interlayer hopping (cf equation (1)).

2.5. 3D alternating twisted graphite as a higher-order Dirac
semimetal

The type-II model shown in figure 1(b) can be realized by
another type of 3Dmoiré structures, i.e. the alternating twisted
graphite as shown in figure 4(a). In this case, there is bilayer
periodicity in z direction, and

√
7×

√
7 periodicity in the x− y

plane, where the conventional Bloch theorem is applicable.
The crystal structure belongs to the hexagonal space groupNo.
192. It preserves the same rotational symmetry as graphene,
e.g. C2z, C6z with respect to z-axes. Furthermore, spatial inver-
sion symmetry P and TR symmetry T are both kept.

The low-energy bulk band structure of 3D type-II twisted
graphite is shown in figure 4(d), from which one observes a
direct band gap ∼ 26.2meV near K (also K ′). For 2D tBG,
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Figure 5. Topological robustness against C2z-breaking
perturbations. (a) Phase diagram of the atomistic SKTB model for
3D helically twisted graphite. (b)–(d) Bulk and edge spectra for
points A, B and C in (a). (b) Topological nontrivial with C=−1, (c)
topological trivial with C= 0, (d) topological nontrivial with
C=+1. Note that red and blue lines in edge spectra indicate the
edge states from different edges.

the direct band gap is about ∼ 2.4meV, which indicates that
interlayer coupling between 2D tBG significantly increases
the band gap for 3D tBG. Furthermore, one observes a four-
fold degenerate Dirac point at H-point. Each mBZ contains
two Dirac points. Remarkably, this is a higher-order topolo-
gical Dirac semimetal [58, 59], with topological hinge states
as shown in figure 4(c) and (e), and our calculations are con-
sistent with [59].

The higher-order Dirac semimetal state can be explained by
the type-II model, which takes the form

H3D
II =Mτxσ0 +Mcos [kz · (2d)]τxσ0 −Msin [kz · (2d)]τyσ0

+ ζλ
(
k∥

)
{τxσz+ cos [kz · (2d)]τxσz− sin [kz · (2d)]τyσz}

+χ1
(
k∥

)
τ0σx+χ2

(
k∥

)
τ0σy,

(7)

where τ i are the Pauli matrices acting on the layer index.
Also, we take ζ =+ for simplicity. When kz = 0, H3D

II =
χ1(k∥)τ0σx+χ2(k∥)τ0σy+ 2[Mτxσ0 +λ(k)τxσz], represent-
ing a reduced 2D bilayer model with enhanced interlayer
coupling, which describe a SOTI with a larger band gap and
chiral topological corner states. When kz = π/(2d), H3D

II =
χ1(k∥)τ0σx+χ2(k∥)τ0σy, representing a decoupled bilayer
graphene system. For kz ∈ (0,π/(2d)), the system retains its
2D SOTI nature with corner states, thereby compromising the
topological hinge states.

2.6. Robustness against symmetry-breaking perturbations

Topological states in general exhibit robustness against weak
symmetry-breaking perturbations, provided that the bulk and
edge gaps remain unclosed. From figure 3, one observes that
the topological edge states emerge in a large gap of∼ 0.128 eV
at kz =±0.25(2π/d), suggesting robustness of the topological
properties. Based on the atomistic SKTB model for 3D twis-
ted structures, we explore below various symmetry-breaking
perturbations to examine their impact on the topological state.

Figure 6. Shift of Weyl point in the type-I twisted structure under
uniaxial strain. Top row: energy gap contour plots for the
conduction and valence bands at each k-point in the BZ at kz = 0
plane. The white hexagon indicates the first BZ of unstrained
structure at kz = 0 plane. Bottom row: edge spectra of different
structures at kz =+0.25(2π/d). From left to right: structures under
0%, 2%, and 5% uniaxial strain, respectively.

To begin, we consider a C2z−breaking staggered poten-
tial termHs = (∆s/2)

∑
i,α ξi c

†
iαciα, with ξi =±1 for the two

sublattices in each layer. For the example of the type-I helic-
ally twisted structure, our investigation reveals a phase dia-
gram as a function of this perturbation strength (cf figure 5),
reminiscent of the renowned topological Haldane model [45].
Here the horizontal axis is kz, playing the role of the artificial
magnetic flux in the original Haldane model. From figure 5,
one finds that, to completely disrupt this topological state, an
extraordinarily strong staggered potential exceeding 0.25 eV
is needed.

Next, we explore the impact of uniaxial strain that breaks
the C3z rotational symmetry, also on the example of type-I
stacking. For each layer, we fix lattice vector a1 and vary the
length of a2, and the screw rotational symmetry is retained.
This perturbation does not gap the Weyl points but rather dis-
places the Weyl points away from the BZ corners on the kx - ky
plane at kz = 0, as shown in the top row of figure 6. The topolo-
gical Chern numbers and edge state’s chirality on other gapped
kx – ky planes at finite kz remain unaffected. Notably, Weyl
points persist in pairs and can only be eliminated through pair
annihilation. Due to their large separation at opposite corners
of the mBZ, these points are difficult to eliminate by C3z-
breaking perturbations, even with a uniaxial strain as large as
5% (see figure 6(e) and (f)).

Furthermore, we introduce random in-plane distortions to
the type-I twisted structure, where the screw rotational sym-
metry is still preserved and Ĥkz in equation (6) retains the
7× 7 in-plane periodicity, so that eigenfunctions can still be
characterized by the effective crystal momentum, allowing
the examination of the robustness of bulk band structures
against such distortion. All other spatial symmetries are des-
troyed, as shown in figure 7(a) where all atoms have been ran-
domly shifted by a magnitude of 0.14Å in 7× 7 periodic cell.
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Figure 7. (a) In-plane distortion where atoms are randomly moved
by a magnitude of 0.14Å in a 7× 7 periodic cell (cf equation (6)).
(b) Energy gap contour plots for the conduction and valence bands
at each k-point in the Brillouin zone. The white hexagon indicates
the first BZ at kz = 0 plane. (c) Edge spectra at kz =+0.25(2π/d).

Remarkably, the Weyl points and topological edge states per-
sist (cf figure 7(b)–(c)). In conclusion, the chiral topological
Weyl semimetal phase presents robustness against sizable per-
turbations due to the significant size of the nontrivial topolo-
gical band gap and the large separation between Weyl points
of opposite chiralities.

The impact of inhomogeneity in the interlayer spacing has
also been examined. This is computationally overwhelming
in type-I stacking, but feasible for atomistic SKTB calcula-
tion in the type-II stacking. For the 3D alternating twisted
graphite, we have considered dimerized interlayer distances
(see figure 4(f)) with d= 3.35Å, ∆d= 0.2Å, which breaks
Mz mirror symmetry. We observe that the Dirac point at the
H corner becomes gapped (see figure 4(g)), which converts
the type-II system from a 3D higher-order Dirac semimetal to
a second-order topological insulator, whereas the topological
hinge states remain largely unchanged.

Lastly, we also find the topological properties to be robust
against twist angle deviation from 21.8◦. Figures 2(f) and (g)
shows the case of a twist angle θ = 21◦. Intervalley Umklapp
scattering is still the dominating channel for layer hybridiza-
tion in the low energy sector. And our atomistic SKTB calcu-
lation for a 21◦ twisted bilayer shows the topological corner
states are well retained (cf figure 2(g)). This points to the
robustness of the spinless topological chirality, as such corner
states at an individual interface form the basis of the hel-
ical surface states in type-I (cf figure 3(d)) and hinge states
(figure 4(c)) in type-II 3D twisted stacking.

3. Discussion

In conventional topological phases, the energy window where
nontrivial topological properties can be utilized is typically
determined by the spin–orbit coupling of limited strength.
In contrast, the spectral windows in the spinless topological
phases here correspond to interlayer hopping amplitudes. For
instance, in chiral topological semimetals, Fermi surfaces with
a nontrivial Chern number can form at any energy between
the highest and lowest Weyl nodes in a set of connected
bands [23]. For the spinless chiral Weyl semimetal here,
this energy window corresponds to the strength of non-chiral
part of interlayer hopping, represented by M in equation (1),
whereas the splitting between bands of opposite Chern number

is determined by the strength of chiral part of interlayer hop-
ping, represented by λ0 in equation (1). The topologically non-
trivial spectral window of ∼ 0.8 eV is indicated by the dashed
gray area in figure 3(c).

We note that previous studies have delved into the elec-
tronic characteristics of various multilayer or 3D twisted
graphite systems [54–57]. These studies, however, are all in
the small angle twist limit though, and the key mechanism
we explore here, the intervalley Umklapp scattering, has been
neglected (and is negligible, as elaborated in appendix C) in
addressing the low energy physics in small angle twist sys-
tems. In contrast, in the large-angle twisted regime such as
the 21.8◦ case explored here, we have demonstrated the cru-
cial role of the intervalleyUmklapp scattering in the interlayer
hopping that determines the low-energy physics, which under-
lies the two concrete examples of spinless topological chirality
arising solely from structural chirality in three dimensions.

The realization of these spinless topological phases in 3D
graphene systems are promised by recent progresses on chem-
ical vapor deposition (CVD) growth of twisted van der Waals
structures. An origami-kirigami approach has enabled CVD
growth of double-helix structure with arbitrary twist angles
that remain uniform across hundreds of graphene layers [57,
60]. Away from the screw dislocation, such dual-helical spiral
exhibits a 3D periodic structure that just corresponds to the
type-II alternating twisted graphite. This may readily allow
the exploration of the higher-order Dirac semimetal phase,
which has not been observed in realistic electronic materi-
als. The growth of continuously twisted super-twisted spirals
on non-Euclidean surfaces has also been reported [61], shed-
ding light on the realization of the type-I 3D helical graph-
ite. Moreover, with twistronics expanding into the realms of
photonics and acoustics [62–67], our finding points to new
pathways of designing topological chirality from twisted spa-
tial patterning of featureless units (orbitals) in these artificial
systems.
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Appendix A. The first-principles calculations

The first-principles calculations were carried out based on the
DFT, as implemented in the Vienna ab initio simulation pack-
age [68, 69]. The ionic potentials were treated by using the
projector augmented wave method [70]. The band structure
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results presented in the main text are based on the HSE06
approach [71]. The energy cutoff of the plane-wave was set to
500 eV. The energy convergence criterion in the self-consistent
calculations was set to 10−6 eV. A Γ-centeredMonkhort–Pack
k-point mesh with a resolution of π ×0.03Å−1 was used for
the first Brillouin zone sampling.

Appendix B. The atomistic SKTB model of graphite

The atomistic SKTB model [52] of graphite is given by

H=−
∑
⟨i,j⟩

t(di j)c
†
i cj+ h.c., (B.1)

where c†i and cj denote the creation and annihilation operators
for the orbital on site i and j, respectively, dij symbolizes the
position vector from site i to j, and t(di j) represents the hop-
ping amplitude between sites i and j. We adopt the following
approximations:

−t(d) = Vppπ

[
1−

(
d · ez
d

)2
]
+Vppσ

(
d · ez
d

)2

Vppπ = V 0
ppπ exp

(
−d− a0

δ0

)
Vppσ = V 0

ppσ exp

(
−d− d0

δ0

)
.

(B.2)

In the above, a0 ≈ 1.42Å is the nearest-neighbor distance
on monolayer graphene, d0 ≈ 3.35Å represents the inter-
layer spacing, V 0

ppπ is the intralayer hopping energy between
nearest-neighbor sites, and V 0

ppσ corresponds to the energy
between vertically stacked atoms on the two layers. Here
we take V 0

ppπ ≈−4.32 eV, V 0
ppσ ≈ 0.78 eV, and δ0 =

0.45255Å to fit the dispersions of tBG from DFT result.
Hopping for d> 6Å is exponentially small and thus neglected
in our calculation.

Appendix C. Difference between the physics of
small-angle and large-angle twisted regimes

The interlayer hopping at a twisted interface can be generally
described as follows [72]:

T(k1,k2) =
1
S

∑
Gt,Gb

t12 (k1 +Gt)e
i(Gt−Gb)Rδk1+Gt,k2+Gb .

(C.1)

Electrons can tunnel between two states from top and bottom
layer with momentum k1 and k2 respectively only if the recip-
rocal lattice vectors Gt and Gb of each layer exist such that

k1 +Gt = k2 +Gb ⇒∆G= k1 −k2 =Gb−Gt =Gm,
(C.2)

where Gm is the reciprocal lattice of the commensuration
supercell. This is the so-called generalized Umklapp condi-
tion. Note that Umklapp processesmanifest themselves in both

Figure C1. Umklapp assisted interlayer coupling across a twisted
interface. (a) Schematic figure showing monolayer Dirac points in
extended zone scheme, in small twist angle regime. Solid (open)
dots denote K (K ′) points of the monolayers, and red (blue) color
denote top (bottom) layer. (b) Schematic figure showing the
intravalley Umklapp process. (c) Umklapp process in the vicinity of
the C0 circle. States from the two layers couple when k1 − k2 = 0,
G2
m, −G1

m. The purple dashed line marks a moiré unit cell in the
reciprocal space. Umklapp scattering manifests in a way that a state
near the tip of the Dirac cones in one layer are coupled to multiple
states of the adjacent layer, aiding layer hybridized electronic states
to capture the moiré pattern periodicity. (d) Schematic figure
showing monolayer Dirac points for θ = 21.8◦, where K points of
top layer overlap with K ′ points of bottom layer on C2 circle
(enclosed by dotted green circles). (e) Illustrations depict the
interlayer hybridization effect at this large twist angle. Red (blue)
color denote top (bottom) layer, while solid (dashed) lines represent
bands from their K (K ′) valleys. Km and K ′

m denote the two mBZ
corners. Top layer Kt valley and bottom layer K ′

b valley get folded
to Km mBZ corner where they become degenerate, and intervalley
Umklapp process opens a hybridization gap at the Dirac point.

small and large angle twisted regimes for tBG [48, 49, 73–78],
displaying inherent distinctions which will be discussed as fol-
lows. The Umklapp assisted interlayer hopping can be illus-
trated on the extended zone scheme as shown in figure C1(a),
where twisting moves the Dirac points from adjacent layers
relative to each other on concentric circles. We focus on the
low energy sector near the Dirac points (denoted by the solid
and empty dots), where the effect of interlayer coupling is sig-
nificant only when the following two conditions are both satis-
fied: (i) a Dirac point from a layer (blue) is close enough to one
from an adjacent layer (red) in the extended zone scheme, so
that equation (C.2) can be satisfied in the vicinity of the Dirac
points; (ii) condition (i) shall be satisfied not too far away from
the origin, i.e. on the first several concentric circles, because
t12(k) decays fast with |k|.

In the small angle twisted regime (figure C1(a)), the two
conditions are satisfied on circles C0 and C1, for the intravalley
coupling (i.e. between solid dots, and between empty dots).
One can therefore decouple the two valleys, keeping only the
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Figure C2. Band structures for tBG at twist angle (a) θ = 21.8◦ and
(b) θ = 13.2◦.

leading terms in equation (C.1). This underlies the interlayer
coupling for the continuummodels in tBG and t-TMDs, which
can be written as [79]:

T(R) = t0 ·
(
eiK1R + eiK2R + eiK3R

)
+ t1

·
(
e−2iK1R + e−2iK2R + e−2iK3R

)
+ c.c. (C.3)

Here, with t0 = t12(GK), t1 = t12(2GK)(GK = 4π/3a0, a0 is the
lattice constant of monolayer), we defineK1 =Kt−Kb,K2 =
Ĉ3K1, K3 = Ĉ−1

3 K1 as shown in figure C1(c). Considering
only t0 terms in equation (C.3) is the first harmonic approxima-
tion adopted in many continuum model studies, including that
in the reference [56]. In this context, only the intravalley chan-
nels are considered for the interlayer coupling, and Umklapp
scattering manifests in a way that a state near the tip of the
Dirac cones in one layer are coupled to multiple states of the
adjacent layer, aiding layer hybridized electronic states to cap-
ture the moiré pattern periodicity. For instance, as shown in
figure C1(c), interlayer hybridization between states k1 and k2
can occur under the condition k1 −k2 =Gt−Gb =G2

m. This
Umklapp process fold the hybridized states from the P point
near K3 vector to k1 point within the mBZ.

In the scenario of large twist angles, the Dirac points from
the same valley of adjacent layers get widely separated on
the first few circles (cf figure C1(d)). So intravalley inter-
layer hopping can now only hybridize states far away from the
Dirac points, where Dirac cones from adjacent layers inter-
sect (figure C1(e)), and their effects on the low-energy sec-
tor near the Dirac points become negligible due to the energy
detuning between states that can satisfy the Umklapp condi-
tion equation (C.2). Nonetheless, with the increase of θ, oppos-
ite valleys from adjacent layers can approach each other in
outer circles, and the larger θ is, the closer to the origin this
can happen. For instance, at commensurate angle θ = 13.2◦,
Kt and K ′

b overlap on C4 circle, while at θ = 21.8◦, Kt and
K ′
b overlap on C2 circle. This means that, in the low energy

sector, interlayer coupling through the intervalley Umklapp
channels becomes more and more important with the increase
of θ, reaching the maximal effect in the vicinity of θ = 21.8◦.
It is such intervalley Umklapp process that captures the struc-
tural chiral symmetry, underlying the topological chirality dis-
cussed in the main text.

In figure C2, we show the calculated electronic struc-
tures for twist angle θ = 13.2◦ and θ = 21.8◦. One find that,
in the low energy sectors, intervalley Umklapp coupling
opens hybridization gap at the Dirac point: at θ = 13.2◦ the

hybridization gap is only∼ 0.1meV, but rapidly increase to∼
1meV at θ = 21.8◦.

Appendix D. Simplified bilayer model with effective
chiral interlayer hopping

For spinless systems with PT symmety, the topology of a 2D
insulator is characterized by a Z2 RCN νR, also known as the
second Stiefel–Whitney number [31, 50, 51]. In 2D systems,
when both the PT and P (or C2z) symmetries are maintained,
calculating the RCN becomes easier and intuitive. One can
count the parity eigenvalues of the valence bands at the four
inversion-invariant momenta points Γi and apply the formula

(−1)vR =
4∏

i=1

(−1)
⌊(

n
Γi
−/2

)⌋
, (D.1)

to obtain the RCN νR [31, 51], where nΓi
− represents the num-

ber of minus parities in the valence band at Γi. The presence of
a nontrivial RCN νR = 1 in two copies of graphene suggests
that creating a gap in the spectrum of bilayer graphene, such
as AA-stacked bilayer graphene, holds potential for generating
real Chern insulator states.

The simplified bilayer model is therefore constructed by
introducing an effective chiral interlayer coupling on top of an
AA-stacked bilayer graphene lattice. As discussed in the main
text, theHamiltonian in the Bloch basis of (ψtA,ψtB,ψbA,ψbB)T

reads:

H2D
TB (k) = χ1 (k)τ0σx+χ2 (k)τ0σy+Mτxσ0 + ζλ(k) iτyσz,

χ1 + iχ2 = t1

3∑
i=1

eik·δi ,

λ(k) = 2iλ0

3∑
i=1

sin(k ·di) . (D.2)

Here, t and b denote the layer index, A and B denote the
sublattice index, and τ i and σi are the Pauli matrices acting
on the layer and sublattice index, respectively. The nearest-
neighbor intralayer hopping vectors within one layer are given
by δ1 =

1
3a1 +

2
3a2, δ2 =− 2

3a1 −
1
3a2, and δ3 =

1
3a1 −

1
3a2.

The next-nearest interlayer hopping vectors d1 = a1, d2 = a2,
and d3 =−a1 − a2 are also included, with ζ =+(−). Take
ζ =+ for simplicity. The Hamiltonian obeys following sym-
metries {C2z,C3z,T,S}(S =−τz⊗σz is the sublattice sym-
metry, which often emerges in carbon allotropes [80]). The
sign-flipped interlayer hopping breaks all the mirror symmet-
ries and spatial inversion symmetry, opening an energy gap
in AA-stacked bilayer graphene and transforming it to a real
Chern insulator.

The band structures with and without the chiral interlayer
hopping term are shown in figure D1(b), revealing the gap-
ping of nodal points. Remarkably, within the bulk band gap,
a pair of gapped edge bands is observed for generic zigzag
edges, as depicted in figure D1(c). Next, we investigate the
presence of corner states, a key characteristic of a 2D SOTI, we
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Figure D1. Second-order topological insulator states in the
simplified bilayer model with effective chiral interlayer hopping.
Solid and dashed lines denote positive and negative hopping
amplitudes, respectively. (a) Schematic figure of the AA-stacked
bilayer graphene and (b) corresponding band structure. Here,
t1 =−0.91 eV, M=−0.2t1, λ0 = 0.02t1. (c) Projected spectra for
zigzag edge. (d) Energy spectrum of the hexagonal-shaped nanodisk
shown in the inset. Energy levels are plotted in ascending order. The
inset also shows the charge distribution of the states marked in red
in the spectra.

analyze the energy spectrum of a nanodisk as a 0D geometry.
Specifically, we consider a hexagonal nanodisk, as illustrated
in figure D1(d). The resulting discrete energy spectrum, plot-
ted in figure D1(d), reveals the existence of six zero-energy
states within the bulk band gap. Note that these corner states
exhibit a distinctive feature compared to those observed in
other SOTIs. In this case, the corner states are layer-resolved,
manifesting a chiral nature. Furthermore, this strucrual chiral-
ity of corner states can be directly tuned by ζ.

Appendix E. Atomistic SKTB method for the twisted
structures based on a generalized bloch theory

For an N-layered AA-stacked system as shown in figure E1(a),
the system has a translational symmetry along z-direction. The
wavefunction of the nth layer is ϕn(r), where r is the position
vector in-plane. Then the translation operator Tl is defined as
Tlϕn = ϕn+l. ψ is the wavefunction of the system, which is a
linear combination of a set of ϕ. Based on Bloch theorem, it
can be known that the eigenvalues of T1 forψ are ei

2π
Nd md, where

m=−N
2 ,

N
2 + 1, . . . , N2 , d is the interlayer spacing. The Bloch

wavefunction is thus given by

ψ =
1√
N

N∑
n

ei
2πmn
N ϕn =

1√
N

N∑
n

einkmdϕn, (E.1)

where km = m 2π
Nd .

For an N-layered helical stacking system as shown in
figure E1(b), the structure exhibits a screw rotational sym-
metry, denoted as Tl, which consists of an in-plane lθ rota-
tion followed by an out-of-plane translation of ld. We have

Figure E1. Schematics of two stacking configurations: (a)
conventional translational invariant stacking, (b) helical stacking
with screw rotational symmetry.

Tlϕj = ϕj+l and [Tl,H] = 0. The wavefunction of the jth layer
is ϕj = (R̂)j(T̂)jϕ0, where R̂ (T̂) is a rotation (translational)
operation, and its superscript indicates how many times the
operation has been performed. One notice that a group of {Tl}
is isomorphism to a group of {Tl}. Therefore, the eigenstates
of T1 for ψ can be directly obtained by ei

2π
Nd md. Thus the gen-

eralized Bloch wavefuction of the system is given by

ψkz (r) =
1√
N

∑
j

eikz( j d)
(
R̂
)j(

T̂
)j
ϕ0 (r) , (E.2)

where the quantum number kz represents an effective out-
of-plane crystal momentum, and the wavefunction compon-
ent of the jth layer has been written as ϕj = (R̂)j(T̂)jϕ0(r).
The layer wavefunction ϕ0(r) is to be solved from the
Schrodinger equation Ĥkzϕ0(r) = Eϕ0(r), where the kz para-
meterized Hamiltonian reads,

Ĥkz ≡

 1√
N

∑
j′

e−ikz( j ′d)R̂−j ′ T̂−j ′

 Ĥ
 1√

N

∑
j

eikz( jd)R̂jT̂j

 .
(E.3)

We note that while each interface has a commensurate inter-
layer atomic registry, the in-plane periodicity of the interfaces
is not aligned, with adjacent ones all having a 21.8◦ relative
rotation. So, this 3D helical stacking does not have in-plane
translational symmetry. Still, we can introduce effective in-
plane crystal momentum kx and ky in solving ϕ0(r). With inter-
layer hopping between adjacent layers only, the kz parameter-
ized Hamiltonian reduces to,

Ĥkz = Ĥ+ e−ikzdĤR̂−1T̂−1 + eikzdĤR̂T̂. (E.4)

With
√
7×

√
7 moiré periodicity at each interface, Ĥkz there-

fore has a 7× 7 periodicity in-plane, from which we can
define an effective in-plane crystal momentum k∥ = (kx,ky).
Therefore, we define the Bloch function by considering a
three-layer moiré periodicity, given by

ϕ0
(
k∥

)
=

1√
N1/X

1√
N2/X

∑
RS
l

eik∥R
S
lDm,Ri,j , (E.5)

where m represents the A and B sublattices, Ri,j denotes the
indices of the original graphene unit cell,Ri,j = ia1 + ja2 with
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Figure E2. Results from atomistic SKTB calculations for 3D twisted graphite. Band structures of 3D twisted graphite in (a) type-I stacking
and (b) type-II stacking. The yellow dashed circles indicate the specific regions of focus discussed in the main text. The inset in (a) shows
the fitting of the simplified TB model with chiral interlayer hopping (red dashed lines). The coordinates of high symmetry points in 3D BZ
are given by Γ(0,0,0),M(0,1/2,0), K(1/3,1/3,0),A(0,0,1/2), L(0,1/2,1/2), and H(1/3,1/3,1/2) in reciprocal lattice.

i, j = 0,1,2 · · ·X− 1 (X= 7 for θ = 21.8◦). RS
l represents the

supercell defined by the three-layer moiré lattice. Dm,Ri,j =
Dm(rm−Ri,j) represents the Wannier function of the m sub-
lattice at the Ri,j unit cell. Similarly, we have a parameterized
Hamiltonian of the form

Ĥkz,k∥ =
X2

N1N2

∑
l,l ′

[
e−ik∥R

S
l′ Ĥkze

ik∥R
S
l + eik∥(R

S
l−RS

l′)

× e−ikzdĤR̂−1T̂−1 + eik∥(R
S
l−RS

l′)eikzdĤR̂T̂
]
. (E.6)

The full band structures of 3D graphite in type-I and type-II
stacking from the atomistic SKTB calculations are shown in
figure E2.

Appendix F. Comparison of results from atomistic
SKTB model and the simplified TB model with
effective chiral interlayer hopping

The sim-TB model with effective chiral interlayer hopping
utilized in sections 2.1 and 2.2 effectively captures the low-
energy physics of both bilayer and 3D twisted graphite. In the
following, we delve into a comparative analysis of these two
models in bilayer, trilayer, and multilayer systems.

First, consider bilayer system, we find that the parameter ζ
in the bilayer model represents the structural chirality in tBG.
The band structures of the AA-stacked bilayer model are the
same for ζ =+(−), and the band structures of the two enan-
tiomers in tBG are also identical. This naturally suggests a
connection between the structural chirality and the paramet-
ers ζ, which we will establish as follows. Firstly, we note that
this relationship also holds for 2D systems:MyH2D(ζ)M−1

y =

H2D
TB(−ζ). This implies that reversing the sign of ζ is equival-

ent to a spatial mirror reflection. Then, we can establish a clear
correspondence between ζ and the R- or L-structure. To do so,
we conduct a comprehensive comparison of the band geomet-
ric quantity and the distribution of corner states obtained from
the AA-stacked bilayer model and the SKTB method [52] for
different handednesses. The comparison of energy bands and
distribution of topological corner states from the SKTBmodel
and AA-stacked bilayer model is depicted in figure F1. The
color coding denotes k-space vorticity ωn(k), which serves as
a band geometric quantity of layer current, as expressed in the
form [81]

ωn (k) = h̄Re
∑
n1 ̸=n

[
vnn1 (k)× vsysn1n (k)

]
z

εn (k)− εn1 (k)
, (F.1)

where n and k represent the band index and crystal momentum,
respectively. The term vsysn1n(k) = ⟨un1(k)| 12{v̂, P̂

sys}|un(k)⟩
involves the operator P̂sys = (1+ l̂z)/2, with l̂z = diag(1,−1).
This operator helps to distinguish between the two enan-
tiomers as it carries information about the layer degree. The
results obtained from both methods are consistent, as shown
in figure F1. Additionally, it can be observed that a positive
value of ζ in the AA-stacked bilayer model corresponds to a
R-handed structure, whereas a negative value of ζ corresponds
to a L-handed structure.

Figure F2 further illustrates the comparison of the simpli-
fied TBmodel and atomistic SKTB calculations of type-I twis-
ted structures, for the cases of trilayer and 3D bulk with infinite
numbers of layers. The sim-TB model can indeed capture the
low-energy physics of twisted structures from few layer limit
to 3D bulk.
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Figure F1. Comparison of results from atomistic SKTB model and the simplified bilayer TB model with chiral interlayer hopping. The
lattice structure of tBG with a commensurate twist angle of θ = 21.8◦ is shown in (a1) and (a2), corresponding to R-handed and L-handed
configurations, respectively. Low-energy band strucures from the a-SKTB model (b) and the simplifield bilayer TB model (c), color coding
denotes k-space vorticity ωn(k). The inset shows the charge distribution of topological corner states. The top row and bottom row are mirror
images of each other.

Figure F2. Comparison of band structures using the simplified TB (sim-TB) model with effective chiral interlayer hopping on an untwisted
hexagonal lattice (see section 2.1) and the atomistic SKTB model for twisted stacking. The top row displays band structures for the
atomistic SKTB model from bilayer (a) to trilayer (b) to infinite layers (c). The bottom row illustrates band structures for the sim-TB model
from bilayer (d) to trilayer (e) to infinite layered systems (f).

Appendix G. From surface states to corner states
at few layer limit

At finite thickness. The topological helical type surface states
in type-I and hinge type surface states in type-II structure
persist, subject to the finite size effect in the z direction.
In the infinite layer limit, the helical/hinge surface states
characterized by the kz quantum number are running waves

(cf figure G1(a) and (b)). With finite number of layers, the
finite size effect in z direction will hybridize waves running
in the +z and −z directions into standing waves, and both the
bulk states and the surface states can become gapped at small
enough thickness. The ultimate thin limit of both twisted struc-
tures is the twisted bilayer, where the surface state manifests as
the corner states in this extreme finite size limit (cf figure 2(c)–
(e)). In figure G1, we show corner states of trilayer structures,

13
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Figure G1. (a),(b) Energy spectra with opend boundary condition in x− y plane and periodic boundary condition in z direction for (a) type-I
and (b) type-II stacking. The yellow color indicates the spatial profile of helical/hinge topological surface states. (c) and (d) show the
topological corner states for trilayer twisted structures of the two types. The spectrum in part (a) has used the simplified tight-binding model
(cf section 2.1). (b),(c),(d) are from the atomistic SKTB calculations of the twisted structures.

where difference between the type-I and type-II twisted stack-
ing develop. And increasing the number of layers will allow
experimental demonstration of how these corner states gradu-
ally develop into helical and hinge type respectively in the two
types of twisted stacking.
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