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We investigate the predictions of the EAGLE and APOSTLE hydrodynamic simulations for
dark matter direct detection searches. We extract the dark matter density and velocity
distribution at the Solar position for a set of simulated galaxies which satisfy Milky Way
observational constraints, and use them to analyze current direct detection data. We find
that the local dark matter density of the Milky Way-like galaxies fall in the range of
0.41 — 0.73 GeV/cm3, and their dark matter velocity distributions fit well a Maxwellian
distribution with peak speed in the range of 223 — 289 km/s.

1 Introduction

The uncertainties in the dark matter (DM) distribution in our Galaxy leads to large uncertain-
ties in the interpretation of results from direct DM experiments. Direct DM searches aim at
measuring the small recoil energy of a target nucleus in the detector after the collision with a
DM particle arriving from the Milky Way (MW) halo. The DM density and velocity distribu-
tion in the Solar neighborhood are key astrophysical inputs in the calculation of direct detection
event rates.

In the Standard Halo Model (SHM), which is the most commonly adopted halo model in
the analysis of direct detection data, the DM halo is spherical and isothermal with an isotropic
Maxwell-Botzmann velocity distribution. The fiducial value of the local DM density is 0.3
GeV/cm3, and the peak speed of the local velocity distribution is assumed to be equal to the
local circular speed of 220 or 230 km/s. Since many of the assumptions of the SHM are not
valid, in this work which is based on [1], we extract the local DM distribution of MW-like
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Figure 1: Left: DM speed distributions (mean and 1o Poisson errors) in the Galactic rest frame
for two MW-like haloes with speed distributions closest to (red) and farthest from (blue) the
SHM Maxwellian (solid black line). Right: Time averaged halo integrals as a function of vy,
for the same two galaxies shown in the left panel, obtained from the mean velocity distributions
(solid colour lines) and the velocity distributions at +1c from the mean (shaded bands). In the
left and right panels, the best fit Maxwellian speed distributions and their corresponding halo
integrals are shown by dashed lines with matching colours for each galaxy, respectively.

galaxies from the EAGLE [2, 3] and APOSTLE [4, 5] high resolution hydrodynamic simulations
which include both DM and baryons, and study their implications for DM direct detection.
From the full set of galaxies in the simulations, we select 14 MW-like galaxies using a set of
criteria based on the observed MW kinematical data.

2 Dark matter density and velocity distribution

The event rate in direct detection experiments depends on the local DM density, p,, and the
DM velocity distribution in the detector rest frame, fyet(Vv,t). For the case of spin-independent

elastic scattering, the differential event rate can be written as,
dR pXA2031 9

- F (ER) n(vmina t)a

dEr  2myp3,

where Eg is the recoil energy of the nucleus with mass number A after the scattering with a
DM particle with mass m,, ogr is the spin-independent DM-nucleon scattering cross section,
Hyp is the reduced mass of the DM—nucleon system, and F'(ER) is a form factor. The minimum
speed required for the DM particle to deposit a recoil energy Er in the detector is vyin =

mAER/(2,uiA), where my4 is the nucleus mass, and g, 4 is the reduced mass of the DM

and nucleus. 7)(Vmin,t) is the halo integral, which together with p, contain the astrophysics
dependence of the recoil rate,

t
Wownot) = [ a0,
V>VUmim v

To determine the DM density and velocity distribution of the simulated MW-like galaxies
at the Solar position, we consider a torus aligned with the stellar disc, with a galactocentric
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Figure 2: The DAMA (at 90% CL and 30) and CDMS-Si (at 68% and 90% CL) preferred
regions, and the LUX and SuperCDMS (at 90% CL) exclusion limits in the m, — ogr plane for
two MW-like galaxies with smallest (shown in colour) and largest (shown in gray) local DM
density (left panel), and two galaxies with speed distributions closest to (shown in colour) and
farthest from (shown in gray) the SHM Maxwellian (right panel). For each galaxy, the shaded
exclusion band and the two adjacent allowed regions of the same colour are obtained from the
upper and lower 1o limits of the halo integral. The black exclusion limits and allowed regions
correspond to the SHM Maxwellian.

radius in the range of 7 — 9 kpc, and a height of |z| < 1 kpc with respect to the galactic plane.
For the 14 simulated MW-like galaxies, we find the average DM density in the torus is in the
range of 0.41 — 0.73 GeV /cm?®.

The local DM speed distribution in the Galactic rest frame is shown in the left panel of
Fig. 1 for two MW-like galaxies with speed distributions closest to and farthest from the SHM
Maxwellian (with a peak speed of 230 km/s). We fit a Maxwellian speed distribution with a
free peak speed (shown in dashed) to the DM speed distributions of the simulated galaxies,
and find the best fit peak speed in the range of 223 — 289 km/s. The right panel of Fig. 1
shows the time-averaged halo integrals for the same MW-like galaxies shown in the left panel.
The halo integrals obtained from the best fit Maxwellian speed distributions fall within the 1o
uncertainty band of the halo integrals of the simulated MW-like galaxies.

3 Implications for dark matter direct detection

To perform an analysis of direct detection data, we use the local DM density and velocity
distribution of our selected MW-like galaxies. We investigate how the exclusion limits set by
the LUX [6] and SuperCDMS [7] experiments, and the preferred regions set by the DAMA (8]
and CDMS-Si [9] experiments vary in the DM mass and spin-independent cross section plane.
The left panel of Fig. 2 shows the exclusion limits and allowed regions for the four direct
detection experiments obtained using the DM distribution of two MW-like galaxies with the
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smallest and largest local DM density. To show the effect of the velocity distribution on the
preferred regions and exclusion limits, in the right panel of Fig. 2, we show the results for the
two haloes with velocity distribution closest to and farthest from the SHM Maxwellian. The
shaded exclusion bands and the two adjacent preferred regions of the same colour are obtained
from the upper and lower 1o uncertainty limits of the halo integral. The exclusion limits and
allowed regions shown in black are obtained assuming a local DM density of 0.3 GeV/cm?, and
the SHM Maxwellian velocity distribution with peak speed of 230 km/s.

As can be seen from Fig. 2, the largest shift in the exclusion limits and preferred regions
for the simulated MW-like galaxies compared to the SHM is due to the variation of the local
DM densities of the simulated MW-like galaxies. The effect of the velocity distribution is
only important at lower DM masses, where the experiments probe larger v, values, and are
therefore sensitive to the high velocity tail of the DM velocity distribution.
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