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Abstract: We present a novel, data-driven analysis of Galactic dynamics, using unsupervised
machine learning — in the form of density estimation with normalizing flows — to learn the
underlying phase space distribution of 6 million nearby stars from the Gaia DR3 catalog.
Solving the equilibrium collisionless Boltzmann equation, we calculate — for the first time
ever — a model-free, unbinned estimate of the local acceleration and mass density fields within
a 3 kpc sphere around the Sun. As our approach makes no assumptions about symmetries,
we can test for signs of disequilibrium in our results. We find our results are consistent with
equilibrium at the 10% level, limited by the current precision of the normalizing flows. After
subtracting the known contribution of stars and gas from the calculated mass density, we
find clear evidence for dark matter throughout the analyzed volume. Assuming spherical
symmetry and averaging mass density measurements, we find a local dark matter density
of 0.47 ± 0.05 GeV/cm3. We compute the dark matter density at four radii in the stellar
halo and fit to a generalized NFW profile. Although the uncertainties are large, we find a
profile broadly consistent with recent analyses.
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1 Introduction

Multiple lines of evidence indicate that the majority of matter in the Universe is dark — that
is, it does not interact with the known particles through electromagnetic or strong nuclear
interactions. Measurements of galaxy rotation curves [1–3], galaxy clusters [4, 5], the early
Universe [6], and gravitationally-lensed systems [7] cannot be explained without the addition
of new particles beyond the Standard Model. Despite a robust experimental program, dark
matter has resisted attempts to measure its particle physics interactions, and astrophysical
probes remain a vital window into its properties.

In this work, we employ a novel method to determine the dark matter density around
the Solar location within the Milky Way, one that has never before been applied to data.
Our method is fully data-driven, uses the measurements of stellar position x⃗ and velocities v⃗

made possible by the Gaia Space Telescope [8, 9], and is powered by modern, unsupervised
machine learning methods.

The phase space density f(x⃗, v⃗ ) of the population of stars within the Milky Way obeys
the collisionless Boltzmann equation:

∂f

∂t
+ vi

∂f

∂xi
= ∂Φ

∂xi

∂f

∂vi
. (1.1)

Here, Φ is the total gravitational potential, which can be related to the total mass density
ρ using the Poisson equation

4πGρ = ∇2Φ. (1.2)
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Assuming that the phase space density of the stars is in equilibrium ∂f/∂t = 0, the 3D
acceleration field −∂Φ/∂xi can be derived from knowledge of the stellar phase space density
f today. A further derivative of Φ then gives the total mass density ρ; the dark matter
density can then be calculated assuming knowledge of the baryonic components.

Measuring the stellar phase space density and its derivatives has traditionally been
difficult, given the relatively high dimensionality (six) of the data. Instead, measurements
of the local Galactic potential have used moments of the Boltzmann equation — the Jeans
equation — along with simplifying assumptions (axisymmetry, specific functional forms,
and/or small mixed radial and altitude “tilt” terms) which allows for relatively stable
calculation of numeric derivatives from stellar data binned in the position coordinates. We
refer to refs. [10–15] for recent examples of these techniques.

The modern machine learning method known as normalizing flows provides a new
approach to this problem that allows direct, unbinned access to the phase space density,
independent of symmetry assumptions. Normalizing flows (reviewed in ref. [16]) are a class
of unsupervised deep learning algorithms that are sufficiently expressive to allow accurate
modeling of the phase space density of high-dimensional data. Using normalizing flows,
refs. [17–19] directly solved the Boltzmann equation for synthetic mock stellar data drawn
from smooth analytic simulations of a galaxy [20, 21]. In ref. [22], we demonstrated this
approach on a fully-cosmological N -body simulation of a Milky Way-like galaxy, including
realistic Gaia-like measurement errors and the impact of departures from symmetry and
lack of equilibrium.

Here, we apply the algorithm developed in ref. [22] to Gaia Data Release 3 (DR3) [23]
itself. Using a population of stars within 4 kpc of the Sun for which full kinematic solutions are
available, we measure the gravitational acceleration and total density everywhere within 3 kpc
of the Solar location except in regions near the disk where dust extinction is significant. We also
estimate the total uncertainty on our acceleration and density measurements throughout this
region. At each location, these uncertainties include statistical uncertainty, Gaia measurement
uncertainty, and an estimate of fit uncertainty from the normalizing flows. As the flow is
extremely expressive, our errors should encompass a fuller range of possible shape variations
of the density profile consistent with data, compared to many other approaches that fit the
profile to a (perhaps overly-restrictive) functional form. Using existing measurements of
the baryon density, we find clear evidence of a non-baryonic component to the mass density
throughout the Solar neighborhood.

Though these measurements do not rely on any assumptions of symmetry within the data,
imposing spherical symmetry on the dark matter density allows us to average measurements
at different locations and reduce errors. Under this additional assumption, we find a dark
matter density of 0.47 ± 0.05 GeV/cm3 at the Sun’s distance from the Galactic Center. We
also fit our density measurements to a generalized Navarro-Frenk-White (NFW) [24, 25]
profile, though with considerable uncertainties on the best-fit parameters.

Future data releases from Gaia will increase the number of stars with full kinematic
information by a factor of ∼ 3 [26], as well as decreasing the proper motion measurement
errors by ∼ 2 [23, 27]. Combined with anticipated improvements in understanding the error
model and quantifying dust extinction, the accuracy of the dark matter density measurements
obtained using this method can be greatly increased in the near future.
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In section 2, we introduce the Gaia DR3 dataset used to train our normalizing flows.
Section 3 contains the core results from our analysis: here we show our estimates of the phase
space density using normalizing flows, followed by the calculations of accelerations and mass
density using the collisionless Boltzmann equation. Additionally, we investigate evidence for
departures from equilibrium in the data and perform self-consistency checks. In section 4 we
discuss our results and future directions for flow-based modeling of Galactic dynamics.

2 Gaia DR3

The Gaia space telescope [9, 23] has revolutionized precision astrometry. As of its third data
release (DR3), Gaia has measured the full 6D kinematics of nearly 33 million stars [26]. This
unprecedented volume of data, combined with state-of-the-art density estimation techniques,
allows for robust mapping of the Milky Way’s phase space density.

For those stars with full kinematic information, the angular positions (α, δ), proper
motions on the sky (µ∗

α, µδ), and parallax ϖ are measured by the Gaia photometer while
the radial velocity Vrad and apparent magnitude GRVS are measured by the Gaia RVS
spectrometer. In regions with little dust extinction, nearly 100% of stars with apparent
magnitude brighter than GRVS = 14 are expected to have 6D kinematics in Gaia DR3 [26].
In addition to a maximum apparent magnitude, the Gaia RVS spectrometer also has a
minimum apparent magnitude due to saturation [28]. Stars brighter than GRVS ≈ 3 are not
included in the dataset used for this analysis.

In terms of GRVS and the parallax-derived distance (d/kpc) = (1 mas/ϖ), the absolute
magnitude MG is

MG = GRVS − 5 log10(d/kpc) − 10. (2.1)

In this analysis, we do not use other spectral information (such as BP − RP color).
Given the approximate axisymmetry of the baryonic disk of the Galaxy and the approxi-

mate spherical symmetry of the dark matter distribution, it is useful to consider the data in
both spherical and cylindrical coordinates, as well as Galactocentric Cartesian coordinates.
The three coordinate systems we use are shown in figure 1 and are defined as follows:

1. Our Cartesian coordinate system places the x–y plane in the Galactic disk, with x = 0
at the Galactic center and the Sun along the +x axis. The +z axis (perpendicular to
the disk) is oriented so that the net rotation of the disk stars in the −y direction.

2. The cylindrical coordinate system (R, ϕ, z) uses the same z axis as the Galactocentric
Cartesian coordinates. The Sun is located at ϕ = 0, with positive ϕ increasing towards
the +y axis.

3. The spherical coordinate system (r, θ, ϕ) has the same ϕ angle as the cylindrical
coordinates, and measures +θ relative to +z axis, with the Galactic disk at θ = π/2.
We define the polar arc length above or below the Galactic disk at the Solar radius
(along the θ direction) as s ≡ r⊙ × (π/2 − θ), with r⊙ = 8.122 kpc.

From the fundamental kinematic properties (parallax, angular position, etc.) measured
by Gaia, the positions and velocities in these three coordinate systems can be obtained, using
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Figure 1. Schematic representation of the Solar location (red dot) relative to the Galactic Center
(black dot). The 4 kpc observation volume is shown as a transparent grey sphere. The three coordinate
systems used in this work are shown: the Galactocentric Cartesian coordinates (x, y, z), the spherical
coordinates (r, θ, ϕ), and the cylindrical coordinates (R, ϕ, z). The lines through the observational
volume with low dust extinction along which we measure accelerations and mass densities are shown
in color. In orange, we show two lines at z = +1.5 kpc, one varying r and another ϕ. The two
corresponding lines at z = −1.5 kpc are shown in purple. The line parameterized by polar arclength
s = r⊙ × (π/2 − θ) passing through the Solar location is shown in green.

the parallax to calculate distance and assuming a Galactocentric Solar position and velocity
of (8.122, 0.0, 0.0208) kpc [29, 30] and (−12.9, −245.6, 7.78) km/s [29, 31, 32], respectively.

2.1 Tracer population selection

To extract the accelerations from the derivatives of stellar phase space density using the
Boltzmann equation, the population of stars in question must be complete, unbiased, and in
dynamic equilibrium. These conditions are not satisfied by the full Gaia 6D dataset, which
is complete in observed (but not absolute) magnitude. Stars which are intrinsically dim
but nearby are included, while intrinsically dim but more distant stars were not observed
and thus are absent.

We first remove from our analysis dataset stars without spectroscopic or photometric
magnitudes, as well as stars with large relative parallax errors (3σϖ > ϖ).1 Of the 31,532,490
stars in Gaia DR3 with full 6D kinematic solutions available within 10 kpc, 29,855,114 stars

1This parallax error selection for the dataset quality control has the potential to bias the learned stellar
number density, as further stars tend to have larger relative parallax errors. Nevertheless, the fraction of stars
removed solely due to this selection criterion is at most 1.5% within the fiducial volume of our analysis, and
the statistical uncertainty of flow-learned number density is about 1% around the Sun and about 4% on the
boundary of the fiducial volume; hence, the bias is insignificant. We discuss the effect of the relative parallax
error selection in appendix B. The explicit correction of this subleading bias in number density is beyond the
scope of this paper, and we will leave it for future studies.
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Figure 2. Density plots of the stars with full 6-dimensional kinematic information available from
Gaia within 4 kpc of the Solar location in the x–y (top row) and x–z (bottom row) planes. The
left column shows all 24,789,061 fully-characterized stars. The middle column shows the 5,811,956
remaining stars after applying the selection criteria described in the text. The right column applies
the additional requirement of |z| > 1 kpc, resulting in 470,702 stars.

remain after these cuts. We further remove 13 abnormally fast stars, with speeds higher
than 1000 km/s relative to the Galactic rest frame. Within 4 kpc of the Sun, 24,789,061 stars
remain, their position-space distributions are shown in the left column of figure 2, and their
color-magnitude diagram (BP − RP versus MG) is shown in figure 3.

In order to correct for the bias in the dataset towards stars with low observed magnitude,
we require that every star in our restricted sample be bright enough to have been observed
by Gaia regardless of its position within a sphere around the Sun. We set this sphere to be
4 kpc in radius, both to limit fractional parallax errors (which grow with distance), as well
as to allow a sufficiently large number of stars to pass the completeness criteria. That is,
we require that the absolute magnitude MG of every star in our sample be bright enough
that, if the star were located at 4 kpc, it would have an observed magnitude GRVS < 14 and
thus be above the completeness limit of the Gaia RVS spectrometer:

MG < 14 − (5 log10 4 + 10). (2.2)

This selection criterion is shown as the white dashed line in figure 3. Applying this selection
removes 63.6% of the stars in the sample with distance < 10 kpc, leaving 10, 876, 430. Note
that we place this selection criterion on the magnitude without extinction-correction as the
analysis of this paper will focus on the regions with less dust extinction. This approach also
helps mitigate issues arising from the non-uniform availability of dust extinction corrections
from Gaia across the 4 kpc sphere centered on the Sun. As a result of this non-uniformity,
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Figure 3. Absolute magnitude MG and color BP − RP of all 24,789,061 stars within 4 kpc of the
Sun with 6-dimensional kinematic information measured by Gaia. The horizontal dashed white line
denotes the magnitude completeness criteria eq. (2.2). All 5,811,956 stars above the dashed white line
are bright enough to be observable for Gaia regardless of position in the 4 kpc sphere. The visible
peak in the white box is the red clump. All features in the space of uncorrected MG and BP − RP

will appear to be smeared towards the bottom-right of this figure, as dust extinction both dims and
reddens stars. While a fraction of red clump stars are smeared beyond the magnitude cut threshold,
all of these stars reside in the disk and will not significantly influence solutions to the CBE in the
stellar halo.

correcting for extinction induces additional spurious position-dependent suppression factors
in the derived phase space density, depending on the availability of this information. In the
future, these corrections may be more uniformly available, and future versions of Gaia itself
and combined catalogs like StarHorse [33] would likely improve this analysis.

Due to the saturation limit GRVS ≈ 3, the closest star to the Sun in our final dataset is
30.4 pc away, and there are somewhat fewer stars within 50 pc in the analysis than would
otherwise be expected. Figure 4 shows the cumulative histogram of distance to a star, d,
clearly revealing a small central hole where no stars are selected below d < 30 pc.

This scale of 30 pc is much smaller than the vertical length scale of the Milky Way’s
thin disk so we compare the histogram to a uniform distribution in order to understand the
effect of the saturation limit in the hole’s shape qualitatively. The red line is the cumulative
histogram of the uniform distribution with the same cumulative count at d = 200 pc. The
deviation from uniform distribution begins below 80 pc.

We find that the normalizing flows, introduced in section 3.1, do not greatly suppress
the phase space density of stars near the Solar location. The cumulative histogram of
flow-generated stars, shown as the gray dotted line in figure 4, more closely resembles
the uniform distribution than the histogram of selected stars. This hole in the dataset is
effectively smoothed out. This smoothing is mainly due to the spectral bias of multilayer
perceptrons [34]: multilayer perceptrons prioritize learning low-frequency features. While
more expressive density estimation models [35, 36] and augmenting inputs with Fourier
features [37] could enable complete learning of small-scale features, our focus is on estimating
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Figure 4. The cumulative histogram of distance to a star, d. Black points are the cumulative counts
of selected stars given d, with error bars indicating 1σ statistical uncertainty. The red line represents
the expected cumulative histogram for a uniform distribution, normalized to match the observed
cumulative count at d = 200 pc. The gray dashed line shows the expected cumulative histogram of the
flow-generated dataset, normalized to match the observed cumulative count at d = 200 pc. The lower
panel shows the pull distributions, i.e., the difference between the uniform distribution histogram and
the corresponding histogram divided by the 1σ statistical uncertainty of the dataset.

mass density averaged over a volume with length scale O[0.1] kpc using the same local mass
density estimation setup developed using an N -body simulated galaxy [22]. We employ this
selected stellar population with a central hole, and the flows will smooth it out implicitly.

For our final analysis, we require the measured distance of stars from the Sun to be less
than 4 kpc, leaving 5,811,956 stars. The larger dataset (including stars out to 10 kpc) will
be used when quantifying the impact of measurement errors on our final results, as we will
discuss below. In the middle column of figure 2, we show the stellar number density as a
function of Galactocentric position after selecting on bright stars eq. (2.2). The observational
bias causing the stellar densities to be higher near the Sun is suppressed after the selection
and the number density of stars is (correctly) seen to be rising towards the Galactic center.

Despite this completeness cut on magnitude, incompleteness due to crowding and dust
remains in select regions of the sky. In general, the effects of crowding are expected to be
minimal for GRVS < 15 (ref. [38]). However, our population of tracer stars is suppressed in
the direction of Baade’s Window, an extremely crowded field towards the Galactic center
that is challenging for the Gaia RVS (ref. [39]).

Within the dust-filled disk, significant density variations remain after the application of
eq. (2.2). This is most obviously seen as a triangular wedge of apparent low stellar density
towards the Galactic center at |z| ∼ 0, but striations can also be seen in other directions within
the disk. These features are primarily in the disk (|z| ≲ 1 kpc) and largely trace known dust
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Figure 5. Stellar number density from Gaia data (left) and MAF-learned number density (right) n(⃗r)
on Galactic longitude (ℓ) and latitude (b) planes at a distance (top) 1 kpc, (center) 2 kpc, and (bottom)
3 kpc. The stellar number densities are obtained by directly counting the number of stars within
0.1 kpc from the center of the pixel. The MAF-learned number densities are described in section 3.
The Ks-band extinction maps at a given distance (obtained from the dustmaps package [40]) are
shown as contours. The maps are Gaussian-kernel smoothed with a bandwidth of 8◦. We show four
extinction value contours from white to blue: 0.15, 0.3, 0.45, and 0.60.

features, as can be seen in the left-hand column figure 5, where we overlay extinction maps
of dust [40] with the observed number density of stars after the magnitude selection criterion
has been applied. For this comparison, we stitch together two three-dimensional maps:
bayestar19 [41] covering declination > 30◦, and marshall [42] covering b ∈ [−10◦, 10◦] and
ℓ ∈ [−100◦, 100◦]. For the position not covered by either 3D dust maps, we use a 2D dust map
SFD [43] for distances d > 1.0 kpc. The regions of low stellar density match the known dust
clouds, including the Serpens-Aquila rift, the Rho Ophiuchi cloud complex, Lupus, the Dark
River, Pipe Nebula, the Northern Coalsack, and the Vela molecular ridge. In the right column
of figure 2, we show the stars after the magnitude selection eq. (2.2) with the additional
requirement of |z| > 1 kpc. Neither the effects of crowding nor dust are visible outside the disk.

Although the effects of dust occlusion are greatest inside the disk (|z| ≲ 1 kpc), one notable
exception is in the neighborhood closest to the Sun: for the stars nearest to us, dust does
not have enough opportunity to accumulate along the sight-lines, and so extinction remains
relatively low. As a result, measurements of phase space density along lines perpendicular
to the disk and passing through the Solar location should be reliable and mostly unaffected
by dust. This is seen in figure 6, where we show the binned stellar densities as a function
of s and azimuthal angle ϕ, along with contours of dust extinction.
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Figure 6. Stellar number density from Gaia data (left) and MAF-learned number density (right)
as a function of s and r⊙ · ϕ, at r = r⊙ = 8.122 kpc. The stellar number densities are obtained by
directly counting the number of stars within 0.1 kpc from the center of the pixel. The left-hand plot
contains 206,852 stars. The MAF-learned number densities are described in section 3. We overlay the
contour plot of three dimensional Ks band extinction map obtained from the dustmaps package [40].
The map is Gaussian-smoothed with a bandwidth 0.2 kpc. The dashed black contour is an extinction
of 0.05, and the four contours from white to blue are extinction values of 0.15, 0.3, 0.45, and 0.60.

The magnitude selection results in a sample of tracer stars that is unbiased by apparent
magnitude within 4 kpc, and thus complete in absolute magnitude (modulo the effects of dust
and crowding). Roughly 69% of these stars belong to the red clump, a sizable sub-population
of the red giant branch (RGB) that is tightly clustered in the color-magnitude diagram
(indicated by a white rectangle in figure 3). Red clump stars are typically between 1–4 Gyrs
old [44]. Older stellar populations are preferred for kinematic studies of the Milky Way,
as they have had sufficient time to equilibrate over the Galaxy’s dynamic timescales [45].
Stars from the red clump meet this criteria, and have been used in a recent precision Jeans
analysis of the Solar neighborhood [11].

In principle, the percentage of the sample composed of red clump stars could be increased
by selecting based on extinction-corrected color in addition to MG. However, similar to
extinctions for the Gaia RVS spectrometer, extinction-corrected colors are not uniformly
available across the sky. Using corrected colors would lead to selection effects in the phase
space density and errors in the solution to the Boltzmann equation. While we expect this
to be less of an issue in future data releases from Gaia, for this analysis we do not apply
color selection criteria.

We will apply our normalizing flow algorithm to the complete, unbiased dataset within
4 kpc, but with the knowledge that gravitational accelerations or mass densities within the
disk far from the Sun are not reliable due to dust extinction. In figure 1, we show the
dust-avoiding lines along which we measure accelerations and mass densities.

2.2 Measurement errors

Gaia DR3 provides measurement errors in the form of Gaussian standard deviations for the
measured quantities of angular position, parallax, proper motion, RVS, and GRVS. In the
left and center panels of figure 7, we show histograms of the kinematic errors for all stars
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Figure 7. Left and Center: 1σ standard deviations (as reported by Gaia DR3) of the measured
kinematic parameters for stars passing the distance, magnitude, and parallax error selections of
section 2.1. Errors are shown for parallax ϖ (left plot, lower axis), radial velocity vrad (left plot, upper
axis), angular ICRS position (α, δ) (center plot, lower axis), and ICRS proper motion (µα, µδ) (center
plot, upper axis). We discard stars with relative parallax errors larger than 1/3. Stars with radial
velocity uncertainties larger than 40 km/s are not included in Gaia DR3 [26]. Right: median standard
deviation in Cartesian position (blue line, left vertical axis) and velocity (yellow line, right vertical
axis) as a function of stellar distance d. The 16th and 84th percentiles of these standard deviations
are shown as asymmetric bands around the central median value.

within 4 kpc which pass the selection criteria described in section 2.1. Propagating the errors
from the angular positions, proper motions, parallax, and RVS measurements results in a
covariance matrix for the measurement errors in the Cartesian coordinates used for training
the normalizing flows. The median standard deviation in the distance and speed of stars
perturbed by the Cartesian error model is shown in the right panel of figure 7.

The parallax and RVS measurements contribute the dominant sources of error to the
kinematic solutions. In particular, parallax errors in some cases can be larger than the
measured parallax; this often results in negative parallaxes when varying within errors.
Considerable literature exists on the conversion of parallax to distance, including the impact
of measurement errors [46–50]. We note that Gaia also provides a secondary distance estimate
distance_gspphot, which is inferred from a Markov Chain Monte Carlo algorithm that
uses spectra from the BP and RP bands, apparent G magnitude, and parallax ([51, 52]).
Unfortunately, the availability of distance_gspphot (as well as other data products from
this fit) is not uniform across the sky. Given this limitation, we find the most uniform
reliable distance estimate to be the inverse parallax after stars with large relative parallax
errors are removed.

Our error propagation procedure follows the outline of ref. [22]: we generate multiple
variations of the original dataset after varying every star’s kinematic features within their
Gaussian errors, using the correlation matrix given the errors provided by Gaia DR3 converted
into Cartesian coordinates. For each varied iteration of the data, we calculate first the phase
space density, then the gravitational acceleration and mass density (using the algorithms
described in section 3). The variations of these quantities over multiple error-smeared datasets
provide an estimate of the impact of measurement errors on the derived quantities. In order
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to avoid the edge effect of stars migrating out of the 4 kpc-radius sphere when errors are
applied without a corresponding inward migration of more distant stars, for each variation of
the dataset we apply the error-smearing to stars in the 10 kpc-radius sphere. After applying
the errors to the larger dataset, we select those stars whose error-smeared distances place
them within 4 kpc of the Sun.

3 Accelerations and mass densities from normalizing flows

The techniques used in this work to calculate accelerations and mass density from the CBE
using a flow-derived phase space density are described fully in ref. [22]. We describe each
component of our analysis briefly here, and present results using Gaia DR3.

3.1 Phase space densities

To determine the gravitational accelerations −∇⃗Φ from the collisionless Boltzmann equation
applied to a stellar population, we must first determine the phase space density f(x⃗, v⃗ ) for that
population. We accomplish this using normalizing flows, an unsupervised machine-learning
technique for density estimation. Normalizing flows are based on invertible transformations
of a simple base distribution (such as standard normal distribution) into a more complicated
distribution. As long as the transformation is expressive enough, normalizing flows are able to
model a variety of distributions so that this model can be used as a free-form density estimator.
This expressivity is generally achieved using neural networks with bijective constraints.

We use two normalizing flows to model the stellar number density n(x⃗) and the conditional
velocity distribution p(⃗v |x⃗) separately:

f(x⃗, v⃗ ) = n(x⃗)p(⃗v |x⃗). (3.1)

Note that the estimation of p(⃗v |x⃗) requires conditional density estimation; this is easily
implemented in the normalizing flows architecture by simply making the transformation
conditioned on the position vector x⃗. In addition to increasing the accuracy of the overall
phase space density, this decomposition is also helpful for solving the Boltzmann equation.
In both cases, the loss functions Lx and Lv for training the density models n(x⃗) and p(⃗v |x⃗)
are the negative log-likelihoods of the data:

Lx = − 1
N

N∑
i=1

log n(x⃗i) (3.2)

Lv = − 1
N

N∑
i=1

log p(⃗vi|x⃗i), (3.3)

where N is the size of an input dataset.
In this work, we implement the normalizing flows using the Masked Autoregressive Flow

(MAF) [53] architecture as the transformation model. GELU activation [54] is used in order
to model a smooth differentiable transformation. We use the ADAM optimizer [55] to train
the flows. We construct a validation dataset using 20% of the stars, randomly selected.
Early stopping with a patience of 50 epochs is used, and we select the model with the lowest
validation loss. For the central values, we use Monte Carlo cross-validation and ensemble
averaging in order to fully utilize the dataset and reduce noise in our density estimation.
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Figure 8. Normalized histograms of (top) position components and (bottom) velocity components
for selected stars in Gaia DR3 (downsampled to 20% of the original size). The red lines are the
histograms for synthetic stars sampled from the normalizing flows. The error bars are the 1σ statistical
uncertainty. Below the main plots, we show the pull distributions, i.e., the difference between Gaia
and MAF histograms divided by the 1σ statistical uncertainty.

That is, we prepare 100 different random splits of training and validation datasets and train
a MAF for each. The density is estimated by ensemble averaging the probabilities given
by each of the MAFs. All the neural networks are implemented using PyTorch [56] and
nflows [57]. The details of our neural network architectures and data preprocessing prior
to training are identical to those described in ref. [22].

In figure 8, we plot one-dimensional histograms of the selected data compared to the
density estimated by the normalizing flows. Black markers are the histogram of selected stars
randomly downsampled to 20% of the original size (this matches the size of the randomly-
selected validation dataset). Red lines are the histograms of synthetic stars generated by
sampling from the MAFs. For this figure, we upsample from the MAF to 100 times the
size of the Gaia dataset.

The small deviations near the Solar location in x and y histograms are due to dust
extinction in the disk (as seen in figures 2 and 5). Along lines of sight with significant dust,
there are sharp falloffs in the apparent stellar density which do not reflect the true density of
stars. The MAFs are constrained to be smooth functions, and as a result, they have difficulties
modeling such discontinuities, and the quality of density estimation may degrade. The bump
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in the x histogram is mainly due to dust clouds in Cygnus (ℓ ∼ 75◦) and Vela (ℓ ∼ −95◦),
while the bump in the y histogram is due to dust clouds closer to the Galactic center.

The right-hand column of figure 5 shows the estimated number density n(⃗r) on the
Galactic longitude and latitude (ℓ, b) planes at different distances d from the Sun, again
with the dust map overlaid. Comparing to the observed binned number densities (left
column of figure 5), we can see that the MAF is correctly learning the overall density scales
and substructures visible in the stellar counts within the disk, though detailed comparison
suggests that the MAF may have difficulty replicating the small-scale sharp features of the
dust. MAFs are known to generate spurious “wrinkles” around sharp edges or topologically
non-trivial structures within data [58]. Though the wrinkles in density themselves are small,
numerical artifacts will be amplified in density derivative estimations, resulting in biases in the
acceleration and mass density estimations. As previously mentioned, we avoid low-|z| regions
which are far from the Solar location to minimize the effects of dust on our measurements
of the acceleration and mass density fields. Density estimators that improve over the MAF
results are available [36, 59–61], but are computationally expensive for the density derivative
estimations; we leave studies of such architectures for future work.

3.2 Accelerations

Using the learned phase space density, we estimate the acceleration field a⃗ = −∇⃗Φ by solving
the collisionless Boltzmann equation. As observed in refs. [18, 22], since Φ is a function of
position only, we can approximately solve the Boltzmann equation for the acceleration by
the least squares method using generated velocity samples at a given x⃗ and minimizing the
residual ∂f/∂t. That is, at a given position x⃗, we calculate the accelerations from the trained
MAFs by finding the value of a⃗(x) that minimizes the following mean square error (MSE):

La =
∫

d3v⃗ p(⃗v |x⃗)
∣∣∣∣vi

∂f

∂xi
+ ai(x⃗) ∂f

∂vi

∣∣∣∣2 . (3.4)

We evaluate this integral by quasi-Monte Carlo integration [22] and minimize it analytically to
determine the best-fit acceleration value. For each position, we sample 10,000 velocities with
|⃗v | < 600 km/s in order to obtain a stable acceleration solution with small statistical errors.

Given that eq. (3.4) is highly overconstrained, the residual ∂f/∂t is not guaranteed to
be zero. However, our minimization procedure follows (in spirit) the approximation typically
made in density measurements based on the Boltzmann equation, which assume the phase
space density f is in equilibrium (∂f/∂t = 0). Within the Milky Way this assumption would
imply an axial and z-symmetric potential (and thus mass density and acceleration fields
which respect these symmetries). There is evidence that the Milky Way is not in dynamic
equilibrium [62–64]. As we do not enforce these symmetries in our acceleration calculation
and since our MSE minimization can result in residual non-zero ∂f/∂t, we can perform
closure tests to estimate the amount of deviation from equilibrium and validate whether the
accelerations are derived in a self-consistent manner. We discuss this in detail in section 3.3.

In table 1, we show the estimated acceleration at the Solar location, averaged over a ball
centered at the Sun and with a radius 100 pc.2 The measured radial acceleration at the Solar

2Recall that our data has a small void at the Solar location with radius ∼ 50 pc, due to the Gaia lower
limit on the apparent magnitude. Although our normalizing flows have smoothed out this region, we apply
this averaging in order to suppress any artifacts from the interpolation.
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Gaia EDR3 [65] This work

ax (10−10 m/s2) −2.32 ± 0.16 −1.94 ± 0.22
ay (10−10 m/s2) 0.04 ± 0.16 0.08 ± 0.08
az (10−10 m/s2) −0.14 ± 0.19 −0.06 ± 0.08
|⃗a| (10−10 m/s2) 2.32 ± 0.16 1.94 ± 0.22

Table 1. Galactic acceleration at the Solar location a⃗⊙ in Cartesian coordinates, calculated by
averaging the solution to the Boltzmann equation within a 100 pc sphere centered on the Sun. We list for
comparison the acceleration at the Solar location obtained from Gaia DR3 quasar measurements [65].

location is (1.94±0.22)×10−10 m/s2; the other components are negligible in comparison. The
error includes measurement and statistical errors estimated by resampling and bootstrapping,
the variation from multiple independent trainings of the MAFs, and the standard deviation
of the estimated acceleration within the 100 pc ball.

Our result agrees with the acceleration measurement of Gaia EDR3 [65] within 2σ.
This latter measurement is obtained from the proper motion of quasars caused by secular
aberration due to the orbital motion of the Solar system in the Milky Way. Differences
between these two measurement techniques may indicate local disequilibrium in the Solar
neighborhood, as we discuss in section 3.3. In the future, the dataset available to Gaia DR4
or DR5 may be sufficient to resolve any differences at a statistically significant level.

In figure 9, we show the estimated accelerations in spherical coordinates (ar, aθ, aϕ),
measured along curves of r, ϕ, and s = r⊙ · (π/2 − θ) through the volume around the Sun
(avoiding regions of significant dust where the MAF-based acceleration estimate may be
inaccurate). The orientations of these measurement curves within the Galaxy are summarized
in figure 1, and we describe them further here:

• Accelerations as a function of r are measured along lines passing through (x, y, z) =
(8.122, 0, ±1.5) kpc — that is, through points 1.5 kpc above (towards Galactic North)
and below (towards Galactic South) the Galactic disk at the Solar location.

• Accelerations as a function of ϕ are calculated along curves located 1.5 kpc North and
South of the Solar location passing through (x, y, z) = (7.982, 0, ±1.5), constrained so
that r = r⊙ along the curve. These 1.5 kpc offsets above and below the disk are chosen
to avoid the dominant sources of dust extinction and resulting wrinkles in the MAF
number densities, as seen in figures 2 and 5.

• We measure accelerations as a function of the polar arc s passing through the Solar
location. These are only acceleration measurements we make closer to the disk than
|z| = 1.5 kpc. Sight-lines to this arc pass through the disk only near to the Earth, where
extinction is less of a concern (see figure 6). For accelerations within 150 pc of the
Sun, we average over a sphere (as in table 1) to smooth over dust within the disk. No
averaging is applied to points further away.

3.3 Testing equilibrium

Our method’s flexibility and lack of imposed symmetry allows us to perform self-consistency
checks that are not usually possible with previous approaches for measuring acceleration
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Figure 9. Accelerations ar (top row), aθ (middle row), and aϕ (bottom row) as a function of
spherical radius r (left column), polar arclength s = r⊙ × (π/2 − θ) (middle column), and azimuthal
arclength (r2

⊙ − z2)1/2 × ϕ (right column). Radial and azimuthal measurements are taken along lines
off-set from the Galactic midplane, at z = 1.5 kpc (yellow lines, labeled “North”) and z = −1.5 kpc
(purple lines, labeled “South”). See figure 1 for the orientation of these measurement lines within the
Galaxy. The inner dark bands and outer light bands denote 1σ and 2σ uncertainties respectively.
Subpanels in the top and middle rows show the fractional difference between the North and South
measurements (appropriately mirrored for aθ). Subpanels in the bottom row show the ratio of aϕ to
the magnitude of a⃗.

and mass density based on the Boltzmann equation or its moments. We consider two such
checks here.

First, we note that the acceleration field calculated using the MAF minimizes ∂ ln f/∂t

at each point in space. The MAF-derived acceleration a⃗(x⃗) represents the solution most
consistent with equilibrium based on samples from p(⃗v |x⃗). In a perfectly equilibrated system,
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Figure 10. Distribution of ∂ ln f/∂t at the Solar location using the MAF-derived Solar acceleration
a⊙ (blue) and the Gaia EDR3 quasar-derived measurement of a⊙ (orange).

∂f/∂t ≡ 0 for all v⃗ where p(⃗v |x⃗) > 0. However, since the Milky Way is not in perfect
equilibrium at any given location x⃗, the three degrees of freedom in a⃗(x⃗) are unlikely to
find a perfect solution for the thousands of sampled velocities from p(⃗v |x⃗). The residual
∂ ln f/∂t from this fit allows us to quantify how much the equilibrium assumption deviates
for the local Milky Way at any given x⃗.

We test this at the Solar location by sampling 106 velocities from the MAF model of
p(⃗v |x⃗⊙) and computing the corresponding phase-space gradients. We calculate the acceleration
a⃗⊙ most consistent with equilibrium (identical to the Solar acceleration given in table 1), and
examine the residual ∂ ln f/∂t. The resulting distribution of ∂ ln f/∂t, shown in figure 10,
peaks at zero as expected, with a full width at half maximum (FWHM) of 0.13 Myr−1. The
width of this distribution, given the units of ∂ ln f/∂t, can be interpreted as a dynamical
time tdyn = 1/

√
|(∂ ln f/∂t)2|v, which is large when ∂ ln f/∂t is small. For the MAF-derived

a⃗⊙, we find tdyn = 8.0 Myr. Since this estimate of a⃗⊙ minimizes ∂ ln f/∂t by construction,
this value represents the maximum possible tdyn for any solution of a⃗⊙.

To interpret the significance of tdyn, we compare our MAF-derived a⃗⊙ to previous
estimates of the Solar acceleration. Ref. [65] used the proper motions of distant extragalactic
quasars from Gaia EDR3 to estimate a⃗⊙. By replacing our MAF solution for a⃗⊙ with the
EDR3 value in the CBE while keeping the same phase-space gradients, we can assess the
consistency of the EDR3 solution with the equilibrium assumption. Interestingly, as shown
in figure 10, this independent estimate of a⃗⊙ is also consistent with ∂ ln f/∂t = 0. The
central value of ∂ ln f/∂t does not shift significantly despite the ∼ 20% difference between
the two estimates of a⃗⊙. However, we observe a clear shift in the widths of each distribution:
the FWHM for the EDR3 solution is 0.16 Myr−1. This corresponds to a dynamical time of
tdyn = 6.4 Myr, 20% shorter than tdyn from the MAF-derived a⃗⊙.

Second, we note that departures from axisymmetry in the rotating Milky Way, would
presumably imply disequilibrium. In the absence of measurement errors or disequilibrium
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and assuming maximally expressive MAFs, the northern (z > 0) and southern (z < 0)
measurements of ar should be equal, and the aθ values should be equal up to a negative
sign. If the system respects axisymmetry, aϕ should be zero. In the subpanels of figure 9,
we show the deviations from North-South symmetry for ar and aθ over the magnitude of
the acceleration, as well as aϕ/|⃗a|. As can be seen, these measures of disequilibrium and/or
departure from axisymmetry are at most 10%, suggesting that the system is in equilibrium
at least to this level.

To summarize, under these closure tests, we find that our assumption of equilibrium
in the analysis of the Boltzmann equation is good to within the ∼ 10% level, as quantified
by deviations from axisymmetry and north-south reflection symmetry in the measured
accelerations. Using an independently determined acceleration at the Solar location [65],
we also find closure (self-consistency) of our equilibrium assumption to within the level of
precision of the MAF density estimation. In the future, larger datasets, better control of
errors, and more expressive normalizing flow architectures may allow tighter distributions of
∂ ln f/∂t, allowing statistically significant measures of equilibrium and axisymmetry.

3.4 Mass densities

Given an acceleration calculated at every point in the volume around the Sun, the total
mass density ρ can be calculated using the Poisson equation in eq. (1.2). This requires
taking an additional numeric derivative of Φ. Again following the algorithm of ref. [22],
we calculate the second derivative of Φ at position x⃗ by convolving the accelerations over
a truncated Gaussian kernel K centered at x⃗:

4πG ρ ∗ K = (∇2Φ) ∗ K. (3.5)

Here ∗ indicates convolution with the kernel. The Gaussian kernel is truncated at |x⃗/h⃗| = 2
where h⃗ = (0.5, 0.5, 0.2) kpc. This ellipsoidal kernel averages the mass density at scales below
h⃗, and thus we are not sensitive to density fluctuations at scales smaller than this. We draw
3,200 points to calculate the mass density at each x⃗, again using quasi-Monte Carlo sampling.

With the total mass density calculated at a point, we can then extract the dark matter
mass density using a model for the baryonic components of the Milky Way. The details of
our baryonic model are discussed in appendix A. Briefly, we model the baryonic components
of the Galaxy at the Solar cylindrical radius with 15 components (ten stellar and five gas
components) as per ref. [66], with refinements from refs. [67, 68]. Each component has
an exponential or Gaussian suppression as a function of height |z| off of the disk and an
exponential in radial distance from the Galactic center — note that all these baryonic
components assume axial symmetry. The parameters of each model can be found in table 3.
Baryons dominate the mass density within |z| ∼ 0.5 kpc of the disk.

In table 2, we report the total mass density, the baryonic density, and the inferred dark
matter density calculated at the Solar location, using a single averaging kernel centered
at the Sun.

In figure 11, we show the total mass density ρ, the modeled baryonic mass, and the
dark matter mass density as a function of arc length s above and below the disk from the
Solar location at ϕ = 0. Due to the finite kernel size, we cannot calculate densities at the
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Density (10−2 M⊙/pc3) (GeV/cm3) χ2
ν

ρ⊙ 6.17 ± 0.20 2.34 ± 0.08
ρb,⊙ 5.34 ± 0.42 2.03 ± 0.16

ρDM,⊙ 0.83 ± 0.47 0.32 ± 0.18

ρDM(r = r⊙) 1.18 ± 0.14 0.47 ± 0.05 1.38

Table 2. MAF-estimated densities at the Solar location or averaged at the Solar radius r⊙. The dark
matter density is the difference between the total mass density ρ⊙ and the baryonic mass density
(obtained from the model described in appendix A). The averaged mass density at r = r⊙ is the
weighted average of the dark matter mass density evaluated at 15 independent points at r = r⊙ (as in
figure 11) and subtracting the baryonic mass density in that region.
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Figure 11. Top: independent measurements of total mass density as a function of polar arclength s,
for three values of ϕ: ϕ = 0 (black circles), ϕ = +0.209 (blue triangles), and ϕ = −0.209 (red squares).
Points at nonzero ϕ have been offset for visibility. Horizontal error bars indicate the 1σ width of the
kernel in the s-direction. The mass density at ϕ = 0 for s values with overlapping kernels is shown in
the black curve (note that due to kernel overlap these measurements are correlated at length scales of
∼ 0.4 kpc). The baryonic mass density model is shown with the blue curve. Dark and light bands
represent 1σ and 2σ uncertainties, respectively. Bottom: independent measurements of dark matter
mass density as a function of s and ϕ, obtained by subtracting the baryonic density in the top panel
from the corresponding total mass density. The best-fit value of ρDM(r = r⊙) = 0.47 ± 0.05 GeV/cm3

is shown as a horizontal black line enclosed by green and yellow bands denoting the 1σ and 2σ

uncertainties, respectively.
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edge of the 4 kpc sphere centered on the Sun, and (as errors increase at larger distances)
we instead show densities only up to s = 3 kpc.

The curve in figure 11 is created from mass densities sampled with kernel centers more
densely packed than the kernel size. As a result, neighboring density values are correlated.
This smooths the resulting curve as a function of s, and statistical fluctuations in individual
uncorrelated measurements appear as extended bumps. This effect is also the likely source
of the slight off-set in the peak in the total mass density from s = 0.

The mass densities at 15 points at the Solar radius r⊙ with independent, non-overlapping
kernels3 are indicated in figure 11. We use these 15 independent measurements of the total
mass density at r⊙ to obtain 15 independent estimates of the dark matter density at the
Solar radius after subtracting the baryonic density profile. We find that these 15 independent
measurements of the dark matter density are consistent with a constant value (χ2

ν = 1.38),
with a slight fluctuation below the average value at the Solar location and two more significant
upwards fluctuations at s ≈ −1.6 kpc and s ≈ 1.25 kpc. Assuming a spherically symmetric
dark matter distribution, we report the average dark matter density at the Solar radius
in table 2. Note that the assumption of a spherically symmetric dark matter profile is an
imposition of a symmetry assumption that has not been used elsewhere in this analysis so far.

In figure 12, we compare our result for ρDM(r = r⊙) with a set of recent measurements
from the last decade that use a variety of methods. As can be seen, our result is consistent with
the previous literature, with competitive and comprehensive error bars. Our errors contain
both statistical and measurement uncertainties in the calculation of the total mass density,
as well as the reported uncertainties for our baryonic density model described in appendix A.

If we again assume spherical symmetry, we can further investigate the dependence of
the dark matter mass density on spherical radius r. We show in figure 13 the dark matter
mass densities evaluated at various Galactocentric radii r, along z = ±1.5 kpc off-sets from
the disk (and at different values of ϕ). Considering independent measurements over a range
of r values within the 4 kpc observational sphere, we fit the measured ρDM as a function
of r to the generalized NFW profile

ρDM(r) = ρ0(
r
rs

)β (
1 + r

rs

)3−β
, (3.6)

with free parameters ρ0, rs, and β (in the standard NFW, β = 1). In performing our fit, we
adopted a truncated Gaussian prior for β centered at 2 with a width of 2. We adopt a flat
prior for rs within [0, 20], and a truncated Gaussian prior centered at 40 × 10−2 M⊙/pc3 with
a width of 80 × 10−2 M⊙/pc3 for ρ0 in the range [0, 200] × 10−2 M⊙/pc3. This choice of priors
restricts the model space to a physically realistic domain: the Gaussian prior for ρ0 prevents
arbitrarily large density parameters, leading to extremely small values of the scale radius rs.

We show the posterior distribution for ρ0, rs, and β in figure 14 with median values and
16-th and 84-th percentile uncertainties of ρ0 = 30.1+64.4

−25.1 × 10−2 M⊙/pc3, rs = 3.5+5.4
−1.4 kpc,

3As MAFs are highly expressive models with a very large number of parameters, it is reasonable to assume
that points in space separated at sufficiently large length scales are described by unique model parameters and
are not correlated. For all practical purposes, if the averaging kernels of two mass density estimates do not
overlap, the two estimates are independent measurements.
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Figure 12. Our averaged measurement of the dark matter density at the Solar radius (top line),
compared to recent measurements [10–15, 66–93] of the density of dark matter at or near the Solar
location ρDM,⊙. See [94] for a detailed review of most of these measurements and their techniques.
Our measurement of ρDM(r = r⊙) = 1.38 ± 0.13 × 10−2 M⊙/pc3 = 0.47 ± 0.05 GeV/cm3 is consistent
with the existing literature of measurements of ρDM,⊙.

and β = 1.0+1.2
−0.7. The best fit model is ρ0 = 23.5 × 10−2 M⊙/pc3, rs = 3.6 kpc, and β = 1.1.

This is broadly in agreement with other recent fits to the dark matter density profile (e.g.,
refs. [68, 95]). We plot our best-fit profile in figure 13. We note that — given the range of
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Figure 13. Dark matter mass densities measured at 12 independent points as a function of Galactic
spherical radius r. Orange points were evaluated at z = +1.5 kpc, purple points were evaluated at
z = −1.5 kpc. The average dark matter density at the Solar radius r⊙ is shown as a red star. The
maximum likelihood fit to a generalized NFW profile is shown in a solid black line, with 1σ and 2σ

variance across the posterior distribution of models explored in figure 14 shown as green and yellow
error bands, respectively. A recent fit [95] to a standard NFW profile to the rotation curve of the
Milky Way is shown as a dashed black line.

complete data available from Gaia, measurement errors, and dust extinction — our dataset
does not extend to the low-r regime, and so does not yet provide significant discriminating
power between different models of dark matter density profiles.

4 Discussion

Using normalizing flows to model the phase space density of bright stars within Gaia DR3,
we have — for the first time — measured the gravitational acceleration and mass density
within the local volume of the Milky Way without assumption of functional form or symmetry.
The resulting acceleration and mass density maps across a three dimensional volume around
the Sun provide a unique window into Galactic structure and dynamics.

We report the acceleration at the Solar location, with ar = (1.94±0.22)×10−10 m/s2. This
is within 2σ of recent measurements of the acceleration using quasars [65]. Deviations from
axisymmetry and the assumptions of equilibrium are found when comparing the measurements
in the Galactic North and South. Though at this time the statistical and systematic errors on
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Figure 14. The posterior distribution for a fit to a generalized NFW profile eq. (3.6). The median
values of each parameter are shown above the marginalized 1D histograms, with the 16th and 84th

percentile values shown as error bounds. The maximum likelihood model is shown in black.

our MAF-derived accelerations are too large to draw confident conclusions about departures
from equilibrium, our method allows us to test assumptions of equilibrium and symmetry
in a way that has not been previously possible.

Without assuming any symmetries, our measurement of dark matter at the Solar location
is ρDM,⊙ = 0.32 ± 0.18 GeV/cm3. This large uncertainty can be significantly reduced with
the further imposition of spherical symmetry — allowing the averaging of measurements
at different locations. Under this assumption, we find a dark matter density at the Solar
radius of 0.47 ± 0.05 GeV/cm3, in agreement with previous measurements using a variety
of other techniques. Recall that our density measurements encompass a wide range of
possible dark matter density profiles due to the expressivity of the MAF; this variation is
fully incorporated into our error budget.

We fit sampled points of our dark matter density profile to a generalized NFW profile, and
find a preference for a relatively small scale radius rs consistent with a recent measurement
of the Milky Way’s rotation curve [68]. However, our current range of reliable data does
not yet extend deep into the central region of the Galaxy, and so our statistical preference
for this value of rs is not high.

These machine-learning assisted measurements of Galactic acceleration and mass density
are expected to improve significantly in the near future. Gaia DR4 and DR5 are expected
to expand the number of stars with full six-dimensional kinematics by a factor of three [26],
with an associated decrease in statistical errors in our determination of the phase space
density. Measurement errors are likewise expected to improve by a factor of two [23, 27],
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and improvements in our analysis technique to correct for the bias introduced by these
errors are possible.

Dust extinction is a major limitation in applying our algorithm to regions close to the
disk or toward the Galactic center. An improved understanding of the effects of dust on the
measured Gaia stellar features which are uniform across the sky will allow greater accuracy
in our measurements of phase space, acceleration, and mass density. Indeed, normalizing
flows may play a role in data-driven modelling of dust extinction, which we will pursue
in future work.

Overall, we can expect improvements in architecture, analysis, data quantity, and data
quality to allow great advances over these first results. In addition to greatly improved
precision and better constraints on the density profile, future analyses based on these
techniques may be able to directly probe the departures from equilibrium within the Milky
Way, especially when combined with other measurements of local acceleration, such as those
based on quasars [65], pulsars [96], or binary systems [97].
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A Baryon mass model

In order to estimate the local density field of dark matter ρDM(x⃗) given the total density
field ρ(x⃗), we must estimate the local distribution of baryonic mass density ρb(x⃗) in the
Milky Way. We follow refs. [15, 67, 88, 92, 96, 98–100] and base our model for ρb(x⃗) in the
Solar neighborhood on the work of ref. [66] (hereafter referred to as the McKee model), an
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Population Σ0,i (M⊙/pc2) hz,i (kpc) hR,i (kpc) ρ0,i (10−2 M⊙/pc3) Refs.

Gas 13.66 ± 1.32 4.064 ± 0.577
HICNM 6.21 ± 1.24 0.127 18.24 2.759 ± 0.552 [66, 68]
H2 1.00 ± 0.3 0.105 2.57 0.537 ± 0.161 [66, 68]
HIWNM,1 2.51 ± 0.25 0.318 18.24 0.445 ± 0.045 [66, 68]
HIWNM,2 2.14 ± 0.21 0.403 18.24 0.266 ± 0.027 [66, 68]
HII 1.80 ± 0.1 1.590 2.50 0.057 ± 0.003 [66]

Stars 28.2 ± 2.42 3.730 ± 0.303
M Dwarves 17.30 ± 2.3 0.400 2.35 2.163 ± 0.287 [66, 68]
5 < MV < 8 5.80 ± 0.58 0.400 2.35 0.725 ± 0.072 [66, 68]
4 < MV < 5 2.20 ± 0.22 0.384 2.35 0.286 ± 0.029 [66, 68]
MV < 3 0.50 ± 0.05 0.140 2.35 0.179 ± 0.018 [66, 68]
3 < MV < 4 0.80 ± 0.08 0.236 2.35 0.169 ± 0.017 [66, 68]
Brown Dwarves 1.20 ± 0.40 0.400 2.35 0.150 ± 0.050 [66, 68]
Giants 0.40 ± 0.04 0.344 2.35 0.058 ± 0.006 [66, 68]

Compact Objects 5.2 ± 0.80 0.607 ± 0.093
White Dwarves 4.90 ± 0.80 0.430 2.35 0.570 ± 0.093 [66, 68]
Neutron Stars 0.20 ± 0.05 0.400 2.35 0.025 ± 0.006 [66, 68]
Black Holes 0.10 ± 0.02 0.400 2.35 0.013 ± 0.003 [66, 68]

Total 47.06 ± 2.87 8.4 ± 0.66

Table 3. All parameters of the baryonic mass model used in this work, as well as their respective
references. Σ0,i is the surface density of each baryonic component at the Solar radius R = r⊙ =
8.122 kpc. hz,i is the scale height, indicating how far above and below the midplane each component
extends. As in ref. [66], some values of hz,i are a weighted average of two scale heights, representing
an “effective” scale height. ρ0,i = ρ(z = 0)i, where ρ(z = 0)i is the volume mass density of each
component in the midplane. ρ(z = 0)i is computed from Σ0,i and hz,i via ρ(z)i = (1/2)∂Σ(z)i/∂z

and by assuming a form for Σ(z). For an exponential mass profile, Σ(z)i = Σ0,i(1 − exp(−|z|/hz,i)).
hR,i is the exponential scale radius of each component, capturing the first-order radial behavior of
baryonic mass density (ignoring detailed features such as spiral arms or clouds).

extensive compilation of estimates of the surface mass densities of gas, stars, and compact
objects in the Solar neighborhood.

The McKee mass model is broken into 15 components: five types of gas, seven stellar
populations, and three populations of compact objects. Each component is described in
table 3. The McKee model draws on a collection of pre-Gaia star counts and gas surveys.
Recent updates using Gaia data [68, 101] have not substantially altered the model. The stellar
bulge and halo do not significantly contribute to the mass density in the Solar neighborhood,
and so they are not independently modelled. However, this model does include halo stars
within the disk.

The McKee model characterizes the surface densities Σ0,i and effective scale heights
hz,i, as well as the functional form for the number density as a function of z, for each
component. Assuming direct proportionality between number and mass density — i.e.,
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assuming no chemical evolution of each component as a function of z — we can model each
mass density in the same way as the number density. All but 12 components were fit to
an exponential mass density profile

ρexp,i(x⃗) = Σ0,i

hi
e−|z|/hie−(R−r⊙)/hR . (A.1)

The remaining three components (H2, HICNM, and HIWNM,1) were fit to the following
Gaussian mass density profile

ρgauss,i(x⃗) = Σ0,i√
πhi

e−|z|2/h2
i e−(R−r⊙)/hR . (A.2)

We supplement each component of the McKee model with a radial scale length hR,i, informed
by the baryonic model used in ref. [68]. Stellar populations were assigned a scale radius
of 2.35 kpc, all HI gasses were assigned a large scale radius of 18.24 kpc, and H2 gas was
assigned hR = 2.57 kpc. HII gas was assigned an arbitrary scale radius of 2.5 kpc. Due to
its overall small contribution to the surface density, uncertainty in this scale length does
not have a significant effect on the mass density. It should also be emphasized that the
precise details of the baryonic radial profile are insignificant for |z| > 500 pc and for all R

within our observational window.
Values and uncertainties (when available) for Σ0,i, hz,i, hR,i, and the corresponding

ρ0,i ≡ ρi(z = 0) for all 15 components are given in table 3. We follow ref. [67] in assigning
10% uncertainties to any unreported surface density errors in the McKee model. In total, we
expect approximately 8% uncertainty in the baryonic mass density at the Solar location ρb,⊙.
We do not follow ref. [66] in inflating this uncertainty to 15%, although we agree that the
systematic uncertainties in the original error model are likely underestimated.

As discussed in ref. [94], de-projecting the McKee model out of the plane into a volume
density ρb(z) comes with systematic uncertainties. Based on comparisons to the MWPoten-
tial2014 Milky Way mass model implemented in the galpy library, our de-projection of the
McKee model does not deviate significantly from other standard baryonic mass distributions.
Additionally, these systematic uncertainties become subdominant to our other measurement
and statistical uncertainties of ρ(z) for |z| > 500 pc, where ρb is greatly sub-dominant to
ρDM. Only the estimate for the dark matter density at the Solar location ρDM,⊙ is signifi-
cantly affected by our choice and interpretation of the McKee model, as the Solar System
is located near the midplane.

Finally, when evaluating the baryonic mass density at a particular point, we convolve our
estimate for ρb(x⃗) over the same quasi-random Gaussian kernel used to estimate ρ(x⃗). The
convolved baryonic mass density profile ρb(x⃗) ∗ K is comparable to ρb(x⃗) everywhere except
for the disk, where the peak at z = 0 is widened and shortened due to this convolution. As a
result, if the vertical profile falls off too quickly with z, ρb(z = 0) ∗ K will be underestimated.
This introduces systematic uncertainty in the estimate of ρb ∗ K for |z| ≲ 500 pc in the disk,
compared to |z| ≳ 500 pc in the more robust halo region.

B Effect of parallax error selection

As distant stars tend to have larger relative parallax errors, selecting stars with small relative
parallax errors for the dataset quality control may introduce bias in the number density
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Figure 15. (Left) Distance vs. galactic latitude histogram of the stars removed by parallax error
selection and passing all the other criteria. (Right) The same histogram as the left but with an
additional criterion, |z| > 1.5 kpc, to focus on the analysis region away from the disk.

Distance (kpc) [1.5, 2.0] [2.0, 2.5] [2.5, 3.0] [3.0, 3.5] [3.5, 4.0]

Discarded fraction (%) 0.95 0.96 1.28 1.33 1.38

Table 4. Fraction of removed stars by the parallax error selection for each bin of the distance. We
only consider stars with |z| > 1.5 kpc and passing all the other selection criteria except the parallax
error selection.

estimation. This appendix qualitatively assesses the significance of bias due to the parallax
error selection, σϖ/ϖ < 1/3.

The distribution of stars removed solely due to the selection criterion is shown in figure 15.
The high parallax error stars are either far away or close to the Milky Way’s disk due to
difficulties in measurement. The distance vs. galactic latitude histogram on the left histogram
of figure 15 clearly shows this tendency. We can see two regions free from the parallax error
selection effect. One is the nearby region with a distance of less than 0.5 to 1.0 kpc, as the
parallax of a star here is generally large. The other is the direction perpendicular to the
disk, |b| ∼ 90◦. This region is less crowded and dust-free; hence, the parallax of stars here
can be measured more precisely than that of the stars close to the disk. Since the analysis
performed in this paper primarily focuses on these regions, we are mainly free from bias
due to the bulk of the discarded stars.

However, the tail of the distribution extends to high galactic latitudes, potentially
introducing bias in the analysis region away from the disk (|z| > 1.5 kpc), which is illustrated
as a region covered by orange and purple lines in figure 1. The right histogram of figure 15
shows the distribution of the discarded stars with |z| > 1.5 kpc. As distance increases along
a line with a fixed z value, the galactic latitude decreases, and the number of discarded
stars increases.

Table 4 shows the fraction of the stars discarded by the parallax selection among the stars
that passed all the other selection criteria. The ratio is 0.95% at a distance of 1.5 kpc and
increases to 1.38% at 3.5 kpc. The cumulative histogram of the parallax over error (ϖ/σϖ) in
figure 16 shows a more detailed response of these fractions over the change of the threshold
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fraction in table 4 given ϖ/σϖ selection threshold.
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Figure 17. Normalized histograms of position components for selected stars in Gaia DR3 (down-
sampled to 20% of the original size). The red lines are the histograms for synthetic stars sampled
from the normalizing flows. The error bars are the 1σ statistical uncertainty. Below the main plots,
we show the relative difference between Gaia and MAF, i.e., the difference between Gaia and MAF
histograms divided by the MAF histogram.

value. Consequently, there is a potential bias of at most 1.5% in number density estimation
due to this parallax error selection. The increase in this fraction with distance may introduce
a small bias in the density derivative estimation needed for solving the Boltzmann equation.

Nevertheless, the fraction is smaller than the statistical uncertainty of MAF. Figure 17
again shows the one-dimensional histograms of the position components for the selected
stars, and each figure’s bottom panel shows the relative difference between Gaia and MAF
histograms. We can see that the difference is about 2% in the Solar neighborhood and
increases to about 4% at the boundary of the fiducial volume. Since this statistical variation
is larger than the discarded fractions overall, we may safely ignore the effect of bias for
the analysis within this paper.
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