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We will report here a critical inspection of the Penrose conjecture according to which the
gravitational entropy should be quantified via the Weyl curvature, with the Clifton-Ellis-
Tavakol entropy being one specific realization of this proposal. In fact, we will show that
in some exact inhomogeneous and anisotropic cosmological models which arise as exact
solutions in general relativity with either closed and open topologies, the Clifton-Ellis-
Tavakol gravitational entropy is increasing in time despite the decrease of the magnitude
of the Weyl curvature: this is possible thanks to the growth of the spatial shearing effects.
The matter content driving the dynamics of this class of models comes in the form of a
stiffened fluid which can be relevant in the early universe. We choose the values of the free
parameters entering the metric tensor consistently with the holographic principle and the
second law of thermodynamics. Our study can be of interest in light of the modeling of
the formation of some primordial structures, like the Large Quasar Groups, as suggested
by the growth of gravitational entropy, and whose existence cannot be accounted for by
standard perturbation methods over a homogeneous background.
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1. Introduction

Our Universe contains a plethora of different astrophysical structures with different
sizes such as galaxies, clusters of galaxies, filaments, voids,... The formation process
for cosmic structures of sizes smaller than 150 Mpc, which is the length scale above
which the universe is considered to be homogeneous,! can be described with pertur-
bation schemes applied to a homogeneous background as the Friedman-Lemaitre-
Robertson-Walker one.?? However, there is observational evidence of the existence

of astrophysical structures like the one known as the “axis of evil”*

which challenge
the Copernican principle because they come with an alignment of matter along a
preferred direction and their sizes are larger than 150 Mpc. Other examples are the
Large Quasar Groups with sizes in the range of 70-350 Mpc.> ® Accounting for their
existence by means of perturbation methods is problematic because the cosmic ma-
terial would not cluster quickly enough for forming a bound system of this size: this
is one among few other open questions affecting the standard model of cosmology.'2
Inhomogeneous cosmology may offer an alternative route for developing theoretical
frameworks which can describe the evolution of matter perturbations undergoing
a local collapse which can lead to the formation of an astrophysical structure. For
example, in a dust Szekeres spacetime the density contrast grows eight times quicker
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than in the linear perturbation regime making the process of formation of astro-
physical structures more efficient.'® There is also observational evidence of exotic
astrophysical structures with non-standard size which should have formed in the
early universe, as a supermassive black hole at redshift z ~ 10,%!° and the Huge
Quasar Group at redshift z ~ 1.27,!! whose existence cannot be explained by invok-
ing effects played by an inhomogeneous spacetime supported by dust (which can be
interpreted as pressureless dark matter). Therefore, the issue becomes to provide an
appropriate theoretical framework in which spatial shear effects and tidal effects can
trigger a local collapse in an overall expanding background supported by a matter
content consistent with the early stages of evolution of the universe.

In the primordial universe shearing effects may play an important role, as com-
pared to the one of the matter content, even though they are almost negligible at
the present day.'* Moreover, it has been argued that in early cosmic epochs the
matter content may come in the form of a stiff fluid®,'>'? which is the effective
hydrodynamical realization of a massless scalar field according to the canonical for-

malism.?% 2! More in detail, in'® 19

it has been argued that the early universe should
be filled with cold baryons which fulfill the equation of state p = p, and that if cos-
mic matter is described as a relativistic self-gravitating Bose-Einstein condensate,
then the cosmic evolution would experience a stiff-matter dominated era. Indeed
the development of specific algorithms for integrating the Einstein field equations
when the matter content is a stiff fluid has received attention in the literature;?2-28
then a number of exact and analytical solutions expressible in terms of elementary
functions has been found obeying to a variety of symmetry groups,?® 32 just to
mention a few examples.

One specific solution to the Einstein equations that we have adopted in our own

research,3® and which was found and investigated from the mathematical perspec-

tive by a number of different authors,3* 38 reads as (see also page 261 in3%):
2 _ ™2 o dr? 2 [€ 2, a2 2
ds? = — (5) A+ g b [5 +h(t)} (d6? + sin? dg?), (1)

where the “generalized scale factor” can either be

h(t) = Asin(t) + B cos(t) it  e=-1, (2)
h(t):—<;)2+2At+B TR— (3)
h(t) = Ae' + Be™! it  e=1, (4)

according to the topology of the spacetime. We can note that the model (1) depends
on three free parameters A, B, and C, and that only its angular part, and not the

2A stiff fluid is a perfect fluid, e.g. it is fully described by its adiabatic pressure p and energy
density p, whose equation of state in natural units is p = p, and with matter-energy tensor

TH, = diag[-p, p, p, pl.
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radial one, is expanding. The spacetime is supported by a fluid obeying to a stiffened
equation of state
3C

pP=p+ - (5)
which reduces to the case of a stiff fluid, i.e. of a massless scalar field, in the limit
of C' — 0. Thus, this latter parameter, which does not affect directly the time
evolution of the generalized scale factor h(t) as we can appreciate from (2)-(3)-
(4), would instead make the cosmic fluid pressure to be non-zero but equal to a
constant in an empty space for which p = 0; more in general th equation of state
(5) can be written in the form p = w(p)p in which the density-dependent equation of
state parameter can be interpreted as a chameleon field.*?4! The Hubble function,
invariant shear, cosmic energy density and Weyl curvature of the spacetime (1) are
given by

_ 4k
0 ©)
) 4h(t)? _ 3H?
7 T 3(cr2n)? T 4 Q
(R4 18C) €+ RA+6CT*(e + 2h(t))?
O Tl R=-2 r2(e+ 2h(t))? ’ (®)
Uy = R+e€ )

3r2(2h(t) +€)2”
where an overdot denotes a derivative with respect to the cosmic time. In the com-

putation of the latter quantity we have applied the Newman-Penrose formalism,*?
and the following notation has been introduced:

R=4(A>+B? for e=-1, (10)
R =4(4A>+B)  for €=0,
R = —-16AB for e=1.

Since we have a nonzero Weyl scalar ¥y, some tidal forces are present in the cos-
mological model (1),*® and they can trigger a local gravitational collapse whose
evolution then experiences the non-standard spatial shearing effects described by
o2, potentially taming the previously mentioned problems of accounting for the
existence of some astrophysical structures observed in the early universe. For ex-
ploring this topic, in our research®® we have computed the gravitational entropy
for the cosmology (1) by following the Clifton-Ellis-Tavakol proposal,** in which
we have implemented some numerical values for the free parameters A, B, and C
which are consistent with the thermodynamical requirements formulated through
the cosmological holographic principle and the second law of thermodynamics. We
have obtained that the gravitational entropy can be increasing even in the time
intervals in which the strength of the Weyl curvature is decreasing, and therefore
we have claimed that Thermodynamics of shearing massless scalar field spacetimes
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is inconsistent with the Weyl curvature hypothesis according to which the confor-
mal curvature can be adopted as a measure for the gravitational entropy.*> Our
result is due to the effects played by the spatial shear which accounts for the spatial
anisotropies.

This MG16 conference proceeding is organized as follows: in Sect. 2 we impose
the holographic principle and the second law of thermodynamics to the spacetime
(1) showing how they can set some constraints on the behavior of various relevant
physical quantities. In Sect. 3 we introduce the Clifton-Ellis-Tavakol entropy, dis-
cuss its importance in the modeling of the formation of astrophysical structures,
and report on our specific results for the spacetime under investigation. In Sect. 4
we formulate the two messages that according to us the reader should take at home
regardless the technicalities involved in this project. Finally in Sect. 5 we put our
research into the larger perspective of the studies of gravitational entropy in inho-
mogeneous cosmology.

2. Imposing the thermodynamical requirements

According to the cosmological holographic principle, as formulated by Bousso, the
matter entropy S, inside a region bounded by a “horizon” should be smaller than
the area Ag of the horizon itself, or more precisely S,, < AH/4.46 We can see that

47,48 constitutes

the celebrated Bekenstein-Hawking entropy for static black holes
the limiting case of this more general principle. For a dynamical spacetime we
consider appropriate to work with the dynamical apparent horizon as the boundary

of the region we are interested in; by introducing the areal radius

F:m/%—kh(t), (11)

the location 7z of the dynamical apparent horizon is such that*®

||V#||2_;, =0. (12)

T=Tp

In a time-evolving configuration, the dynamical apparent horizon is not the unique
choice for the boundary of the region to which the cosmological holographic princi-
ple can be imposed; however in the homogeneous and isotropic Friedman universe
assuming the space to be filled with some form of dark energy the first and sec-
ond law of thermodynamics have been shown to hold for the dynamical apparent
horizon, but not if one works with the cosmic horizon,?® providing a motivation for
choosing our route.? 52

Since the fluid energy density should be non-negative all along the time evolu-
tion of the system, we found that C should be non-positive; under this restriction,
equation (12) admits a solution only for the topology ¢ = 1. Setting the parameters
A and B to be positive guarantees both a well-defined cosmic energy density and the
existence of a solution for the equation determining the location of the dynamical
apparent horizon. Taking into account that Ay = 477% and that S, = afy;, with
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« an overall proportionality constant, it can be seen after some computations that
the holographic principle is further constraining the value of C| i.e. of the deviations
of the equation of state of the cosmic matter from a stiff fluid. The cosmological
consequences of these restrictions on the values of the arbitrary model parameters
are:

o If we compute the deceleration parameter as in,> it would be negative;

e Since € + 2h(t) # 0, there would be no initial singularity in this cosmology
because there would not exist a time tp at which the energy density (8)
would diverge.

On the other hand, imposing the second law of thermodynamics to the matter
content would require S,,, > 0, which can be translated into the equivalent condition
dgf > (. After some algebraic manipulations, we could recast this condition as Aef—
Be™! > 0; thus, the cosmological consequences within the model (1) of imposing

the second law are:

e The lower limit on the size of the universe h(t) > 2Be! is established;
e The lower limit on the age of universe ¢ > 1 1n £ is established;
e The Weyl curvature ¥y is a time-decreasing quantity.

3. Computing the gravitational entropy

Y

“Entropy” can be naively regarded as a measure of the disorder within a system
(as related to the existence of an arrow of time), or as a quantification of the
number of different microscopic realizations compatible with the same macroscopic
system (statistical entropy). Therefore, in cosmology, as astrophysical structures
form in one specific spatial regions rather than in others with the whole universe
remaining homogeneous on large enough length scales, the gravitational entropy
should increase. Since when an observer looks at the universe from its location it may
or may not detect an astrophysical structure, the growth of gravitational entropy
should be accompanied by an increase of the spatial anisotropy. One specific way
of computing the density sgrav of gravitational entropy in Petrov type D spacetime,
as for example (1), is due to Clifton-Ellis-Tavakol*4:

Tyravbgray = —dV (wg:w + (;meW) . (13)
grav

The ingredients of this formula are the following:

e The temperature of the free gravitational field defined as
[uapl®n®| T

7T 8mV/Cr? + ¢’
where u® is the matter-comoving observer four-velocity, and [* and n® are
part of the null coframe containing the dt and dr contributions.

Tgrav -

(14)
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e The volume element

72 sin 0(e + 2h(t))
2V/Cr? + ¢

o The shear tensor o, which describes the rate of distortion of a given region

with fixed volume during the cosmic evolution.
e The gravitational energy defined in terms of the Weyl curvature as:

v = drdfde . (15)

Parav 1= 16| Us]. (16)

e The gravitational anisotropic pressure also defined in terms of the Weyl
curvature as:

)
Wﬁffav = %(_xaxb + YaYb + Za2p + “a“b) ) (17)

in which x,, y., 24 constitute the spacelike vectors in the orthonormal base
for the metric (1).

e The gravito-electric tensor £, which accounts for tidal effects, which are
indeed necessary for having a gravitational collapse.

We have considered the approach (13) to be a sound proposal for computing the
gravitational entropy because, as pointed out in,** it delivers a non-negative entropy,
it is consistent with the Hawking-Bekenstein entropy of black holes, it provides a
vanishing entropy in and only in conformally flat spacetimes (as for example in
the homogeneous and isotropic Friedman-Lemaitre-Robertson-Walker universe in
which astrophysical structures cannot form due to the lack of any matter density
contrast), and it is related to the growth of anisotropies in the spacetime (as they
indeed increase during the structure formation phase).

Thus, it does not come as a surprise that the conjecture of a connection between
gravitational entropy and Weyl curvature has been regarded as a useful tool for the
description of the formation of astrophysical structures in various inhomogeneous
models. For example, in®* a relationship between the growth of gravitational entropy
and the amplitude of initial fluctuations of spatial curvature at the last scattering
time has been found, while the possible saturation of its value at a certain time has
been investigated in®® for the Lemaitre-Tolman-Bondi universe, in®®
eral for the class of silent universes for which the gravitomagnetic part of the Weyl
curvature vanishes, and in®’ for a perturbed Friedman spacetime. Furthermore, a

more in gen-

gravitational entropy quantified via the Weyl curvature is consistent with the gen-
eralized second law in the void Lemaitre-Tolman-Bondi universe,?® and the specific
Clifton-Ellis-Tavakol entropy has been shown to be a time increasing function in a
number of cosmological models.?”

Our explicit computations for the Clifton-Ellis-Tavakol gravitational entropy
delivered the result

647h(t)(1 — 16AB)
3(2h(t) + €)3r3

Tgravégrav =dV (18)
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Here we have restricted ourselves to the spacetime (4) because, as mentioned in
Sect. 2, it is the only case within (1) for which a thermodynamical investigation
based on the cosmological holographic principle was possible. Then, implementing
the constraints on the free parameters obtained from such analysis and those arising
from the second law of thermodynamics, we have found that a challenge to the
Weyl curvature conjecture proposed by Penrose®® is posed. In fact, the gravitational
entropy is increasing even when the gravito-electric curvature as measured by ¥,
in (9) is not, and thus the latter cannot be considered too naively as a measure of
the former.

4. Discussion

Quantifying the effects that the interactions between small-scale inhomogeneities
(e.g. galaxies, galaxy clusters, voids, filaments, etc...) have on the large-scale evo-
lution of the Universe is not a trivial task, and the debate in the literature about
their importance is still open.®! There exists in fact a range of completely different
claims from that they have no effects at all to the one that they can bring an en-
ergy budget which can be responsible for the observed accelerated expansion of the
universe without the need of a cosmological constant; see®? for a review of different
approaches and their predictions. Once endowed with a cosmological model formu-
lated in terms of a metric tensor solution of the field equations of the underlying
gravitational theory, it is necessary to investigate its physical applicability. Some
widely applied cosmological tests which can assess the suitability of a mathemati-
cal solution of the Einstein equations as a cosmological model rely on supernovae

data,%3 75 cosmic microwave background data,56:67

or baryon acoustic oscillations
data,® 69 and clearly require data-analysis skills. For example, the inhomogeneous
dust Lemaitre-Tolman-Bondi model has been shown to be in tension with the kine-

t79 although it is not with observations related to the

matic Sunyaev-Zel’dovich effec
luminosity distance of supernovae, without the need of dark energy but assuming
that the observer is located inside a giant void;”! more in general the development of
“model independent” tests for inhomogeneous cosmology constitutes a line of cur-
rent research.”? 7 However, in Sect. 2 we have explained how “theoretical” require-
ments can also be exploited for constraining the values of the free model parameters
and for extracting cosmological information about the model under investigation.
We had previously applied the same way of thinking to the Stephani cosmological
model by estimating the strength of spatial inhomogeneities, the matter abundance
and the size of the universe by imposing the cosmological holographic principle and
the second law of thermodynamics™ (however this latter spacetime is conformally
flat and therefore it does not offer any viable possibility for an investigation of the
gravitational entropy). Thus, the first take at home message from our research is:

e By working with solely pen and paper, we can constrain a given cos-
mological model known in terms of its metric tensor by imposing the
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thermodynamical requirements which follow from the cosmological holo-
graphic principle and the second law of thermodynamics.

In Sect. 3 we have mentioned that the Clifton-Ellis-Tavakol gravitational entropy is
increasing in time for the spacetime (1) although the Weyl curvature is not thanks
to the presence of a term given by shear tensor which is inserted by hands in its
formulation. The fact that spatial shearing effects are developing in the same time
interval in which the gravitational entropy is increasing is a fundamental consis-
tency check for the mathematical formula adopted for the latter. In fact, both these
quantities are expected to increase during the structure formation phase because
the universe is becoming anisotropic and inhomogeneous, with the former being
measured by the shear tensor while the latter can be regarded as an increase of
the level of “disorder” of the system which should be quantified via an appropriate
entropy quantity. Thus, our second take at home message, whose consequences will
be further explored in the next Sect. 5 is:

e Implementing the Weyl curvature conjecture according to which the Weyl
curvature should serve as a measure for the gravitational entropy is not as
simple as it may look like at a first sight and other ingredients may be nec-
essary in the construction of a mathematical formula for the gravitational
entropy.

5. Outlook

The search for an appropriate inhomogeneous cosmological model which can provide
a viable framework for addressing the issue of the formation of astrophysical struc-
tures with sizes larger than 150 Mpc (and which is also in agreement with other
datasets), and the formulation of an appropriate measure for the “gravitational
entropy” in the spirit of the Weyl curvature conjecture are two related problems.
Therefore, we consider appropriate to investigate various notions of gravitational
entropy as the following:

C/LV[IO’ crvee

S =
R, R#

(19)

where C),,,0 and Ry, are respectively the Weyl and Ricci tensor, and its
spatially integrated version

S = / dv's. (20)

This formula has arisen in the context of cosmologies exhibiting an
anisotropic singularity.”® However this proposal cannot be applied to vac-
uum spacetimes because of the vanishing of the Ricci tensor.
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e Eq. (19) but multiplied by the square root of the determinant of the spatial
metric h as suggested in”":

5 = Vi CueC

nvpo

—_— 21
o (21)
which would be something in between the two proposals of the previous
step.
e Applying a spatially averaging scheme and writing the entropy as”® ™
p
SVD<pln> , (22)
<p>I) D
where angular brackets denote an average over the spatial domain of interest
D.
e The Clifton-Ellis-Tavakol entropy that we have already talked about in
Sect. 3.

These inequivalent ways of computing the gravitational entropy should be applied
to the general line element describing a spherically symmetric dynamical spacetime
(see page 251 in3%)

ds? = —eE) a2 4 226 dr2 4 Y2 (¢t 1) (d6? + sin® Odp?) (23)

in a set of future projects. Intuitively, we expect that demanding the simultaneous
growth of shear, Weyl curvature and gravitational entropy would provide some in-
formation on the increasing/decreasing and concavity properties of the functions
v(t,r), A(t,r) and Y (¢,r), which then will be implemented into the Einstein equa-
tions for understanding which types of matter content permit to achieve this goal.

All the previously mentioned proposals for computing the gravitational entropy
are directly sensitive to the matter content of the spacetime. In fact in some of
them the energy density (Hosoya-Buchert-Morita) and possibly also the pressure
(Clifton-Ellis-Tavakol) appear explicitly; in other cases as in (19)-(20)-(21) they
are inserted via the Ricci tensor, which is connected to the matter content of the
universe as we can see from the Einstein equations written in the form

1
R,, =8m (Tw — 2gWT> . (24)

A more conservative proposal which has been formulated recently in the context of
black hole physics argues that it is possible to write the density s of gravitational
entropy just in terms of the frame component of the Weyl tensor W and of its
Newman-Penrose derivative DW as®°

DW
W |
The applicability of such formalism in inhomogeneous cosmology and in particular
the investigation of its relationship to the spatial anisotropies quantified by the
shear tensor would constitute a subject of future studies.

s = ‘ (25)
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