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We will report here a critical inspection of the Penrose conjecture according to which the

gravitational entropy should be quantified via the Weyl curvature, with the Clifton-Ellis-

Tavakol entropy being one specific realization of this proposal. In fact, we will show that
in some exact inhomogeneous and anisotropic cosmological models which arise as exact

solutions in general relativity with either closed and open topologies, the Clifton-Ellis-

Tavakol gravitational entropy is increasing in time despite the decrease of the magnitude
of the Weyl curvature: this is possible thanks to the growth of the spatial shearing effects.

The matter content driving the dynamics of this class of models comes in the form of a

stiffened fluid which can be relevant in the early universe. We choose the values of the free
parameters entering the metric tensor consistently with the holographic principle and the

second law of thermodynamics. Our study can be of interest in light of the modeling of
the formation of some primordial structures, like the Large Quasar Groups, as suggested

by the growth of gravitational entropy, and whose existence cannot be accounted for by

standard perturbation methods over a homogeneous background.

Keywords: Exact solution; stiff matter; gravitational entropy.

1. Introduction

Our Universe contains a plethora of different astrophysical structures with different

sizes such as galaxies, clusters of galaxies, filaments, voids,... The formation process

for cosmic structures of sizes smaller than 150 Mpc, which is the length scale above

which the universe is considered to be homogeneous,1 can be described with pertur-

bation schemes applied to a homogeneous background as the Friedman-Lemâıtre-

Robertson-Walker one.2,3 However, there is observational evidence of the existence

of astrophysical structures like the one known as the “axis of evil”4 which challenge

the Copernican principle because they come with an alignment of matter along a

preferred direction and their sizes are larger than 150 Mpc. Other examples are the

Large Quasar Groups with sizes in the range of 70-350 Mpc.5–8 Accounting for their

existence by means of perturbation methods is problematic because the cosmic ma-

terial would not cluster quickly enough for forming a bound system of this size: this

is one among few other open questions affecting the standard model of cosmology.12

Inhomogeneous cosmology may offer an alternative route for developing theoretical

frameworks which can describe the evolution of matter perturbations undergoing

a local collapse which can lead to the formation of an astrophysical structure. For

example, in a dust Szekeres spacetime the density contrast grows eight times quicker
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than in the linear perturbation regime making the process of formation of astro-

physical structures more efficient.13 There is also observational evidence of exotic

astrophysical structures with non-standard size which should have formed in the

early universe, as a supermassive black hole at redshift z ∼ 10,9,10 and the Huge

Quasar Group at redshift z ∼ 1.27,11 whose existence cannot be explained by invok-

ing effects played by an inhomogeneous spacetime supported by dust (which can be

interpreted as pressureless dark matter). Therefore, the issue becomes to provide an

appropriate theoretical framework in which spatial shear effects and tidal effects can

trigger a local collapse in an overall expanding background supported by a matter

content consistent with the early stages of evolution of the universe.

In the primordial universe shearing effects may play an important role, as com-

pared to the one of the matter content, even though they are almost negligible at

the present day.14 Moreover, it has been argued that in early cosmic epochs the

matter content may come in the form of a stiff fluida,15–19 which is the effective

hydrodynamical realization of a massless scalar field according to the canonical for-

malism.20,21 More in detail, in18,19 it has been argued that the early universe should

be filled with cold baryons which fulfill the equation of state p = ρ, and that if cos-

mic matter is described as a relativistic self-gravitating Bose-Einstein condensate,

then the cosmic evolution would experience a stiff-matter dominated era. Indeed

the development of specific algorithms for integrating the Einstein field equations

when the matter content is a stiff fluid has received attention in the literature;22–28

then a number of exact and analytical solutions expressible in terms of elementary

functions has been found obeying to a variety of symmetry groups,29–32 just to

mention a few examples.

One specific solution to the Einstein equations that we have adopted in our own

research,33 and which was found and investigated from the mathematical perspec-

tive by a number of different authors,34–38 reads as (see also page 261 in39):

ds2 = −
(r
2

)2

dt2 +
dr2

ϵ+ Cr2
+ r2

[ ϵ
2
+ h(t)

]
(dθ2 + sin2 θdϕ2), (1)

where the “generalized scale factor” can either be

h(t) = A sin(t) +B cos(t) if ϵ = −1 , (2)

h(t) = −
(
t

2

)2

+ 2At+B if ϵ = 0 , (3)

h(t) = Aet +Be−t if ϵ = 1 , (4)

according to the topology of the spacetime. We can note that the model (1) depends

on three free parameters A, B, and C, and that only its angular part, and not the

aA stiff fluid is a perfect fluid, e.g. it is fully described by its adiabatic pressure p and energy

density ρ, whose equation of state in natural units is p = ρ, and with matter-energy tensor

Tµ
ν = diag[−ρ, p, p, p].
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radial one, is expanding. The spacetime is supported by a fluid obeying to a stiffened

equation of state

p = ρ+
3C

4π
. (5)

which reduces to the case of a stiff fluid, i.e. of a massless scalar field, in the limit

of C → 0. Thus, this latter parameter, which does not affect directly the time

evolution of the generalized scale factor h(t) as we can appreciate from (2)-(3)-

(4), would instead make the cosmic fluid pressure to be non-zero but equal to a

constant in an empty space for which ρ = 0; more in general th equation of state

(5) can be written in the form p = ω(ρ)ρ in which the density-dependent equation of

state parameter can be interpreted as a chameleon field.40,41 The Hubble function,

invariant shear, cosmic energy density and Weyl curvature of the spacetime (1) are

given by

H =
4ḣ(t)

3(ϵ+ 2h(t))r
, (6)

σ2 =
4ḣ(t)2

3(ϵ+ 2h(t))2r2
=

3H2

4
, (7)

ρ = −c2(R+ 18C)

16πG
, R = −2

ϵ+R+ 6Cr2(ϵ+ 2h(t))2

r2(ϵ+ 2h(t))2
, (8)

Ψ2 = − R+ ϵ

3r2(2h(t) + ϵ)2
, (9)

where an overdot denotes a derivative with respect to the cosmic time. In the com-

putation of the latter quantity we have applied the Newman-Penrose formalism,42

and the following notation has been introduced:

R = 4(A2 +B2) for ϵ = −1 , (10)

R = 4(4A2 +B) for ϵ = 0 ,

R = −16AB for ϵ = 1 .

Since we have a nonzero Weyl scalar Ψ2, some tidal forces are present in the cos-

mological model (1),43 and they can trigger a local gravitational collapse whose

evolution then experiences the non-standard spatial shearing effects described by

σ2, potentially taming the previously mentioned problems of accounting for the

existence of some astrophysical structures observed in the early universe. For ex-

ploring this topic, in our research33 we have computed the gravitational entropy

for the cosmology (1) by following the Clifton-Ellis-Tavakol proposal,44 in which

we have implemented some numerical values for the free parameters A, B, and C

which are consistent with the thermodynamical requirements formulated through

the cosmological holographic principle and the second law of thermodynamics. We

have obtained that the gravitational entropy can be increasing even in the time

intervals in which the strength of the Weyl curvature is decreasing, and therefore

we have claimed that Thermodynamics of shearing massless scalar field spacetimes
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is inconsistent with the Weyl curvature hypothesis according to which the confor-

mal curvature can be adopted as a measure for the gravitational entropy.45 Our

result is due to the effects played by the spatial shear which accounts for the spatial

anisotropies.

This MG16 conference proceeding is organized as follows: in Sect. 2 we impose

the holographic principle and the second law of thermodynamics to the spacetime

(1) showing how they can set some constraints on the behavior of various relevant

physical quantities. In Sect. 3 we introduce the Clifton-Ellis-Tavakol entropy, dis-

cuss its importance in the modeling of the formation of astrophysical structures,

and report on our specific results for the spacetime under investigation. In Sect. 4

we formulate the two messages that according to us the reader should take at home

regardless the technicalities involved in this project. Finally in Sect. 5 we put our

research into the larger perspective of the studies of gravitational entropy in inho-

mogeneous cosmology.

2. Imposing the thermodynamical requirements

According to the cosmological holographic principle, as formulated by Bousso, the

matter entropy Sm inside a region bounded by a “horizon” should be smaller than

the area AH of the horizon itself, or more precisely Sm ≤ AH/4.46 We can see that

the celebrated Bekenstein-Hawking entropy for static black holes47,48 constitutes

the limiting case of this more general principle. For a dynamical spacetime we

consider appropriate to work with the dynamical apparent horizon as the boundary

of the region we are interested in; by introducing the areal radius

r̃ = r

√
ϵ

2
+ h(t) , (11)

the location r̃H of the dynamical apparent horizon is such that49

||∇r̃||2r̃=r̃H = 0 . (12)

In a time-evolving configuration, the dynamical apparent horizon is not the unique

choice for the boundary of the region to which the cosmological holographic princi-

ple can be imposed; however in the homogeneous and isotropic Friedman universe

assuming the space to be filled with some form of dark energy the first and sec-

ond law of thermodynamics have been shown to hold for the dynamical apparent

horizon, but not if one works with the cosmic horizon,50 providing a motivation for

choosing our route.51,52

Since the fluid energy density should be non-negative all along the time evolu-

tion of the system, we found that C should be non-positive; under this restriction,

equation (12) admits a solution only for the topology ϵ = 1. Setting the parameters

A and B to be positive guarantees both a well-defined cosmic energy density and the

existence of a solution for the equation determining the location of the dynamical

apparent horizon. Taking into account that AH = 4πr̃2H and that Sm = αr̃3H , with
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α an overall proportionality constant, it can be seen after some computations that

the holographic principle is further constraining the value of C, i.e. of the deviations

of the equation of state of the cosmic matter from a stiff fluid. The cosmological

consequences of these restrictions on the values of the arbitrary model parameters

are:

• If we compute the deceleration parameter as in,53 it would be negative;

• Since ϵ+ 2h(t) ̸= 0, there would be no initial singularity in this cosmology

because there would not exist a time tB at which the energy density (8)

would diverge.

On the other hand, imposing the second law of thermodynamics to the matter

content would require Ṡm > 0, which can be translated into the equivalent condition
dr̃H
dt > 0. After some algebraic manipulations, we could recast this condition as Aet−
Be−t > 0; thus, the cosmological consequences within the model (1) of imposing

the second law are:

• The lower limit on the size of the universe h(t) > 2Be−t is established;

• The lower limit on the age of universe t > 1
2 ln

B
A is established;

• The Weyl curvature Ψ2 is a time-decreasing quantity.

3. Computing the gravitational entropy

“Entropy” can be naively regarded as a measure of the disorder within a system

(as related to the existence of an arrow of time), or as a quantification of the

number of different microscopic realizations compatible with the same macroscopic

system (statistical entropy). Therefore, in cosmology, as astrophysical structures

form in one specific spatial regions rather than in others with the whole universe

remaining homogeneous on large enough length scales, the gravitational entropy

should increase. Since when an observer looks at the universe from its location it may

or may not detect an astrophysical structure, the growth of gravitational entropy

should be accompanied by an increase of the spatial anisotropy. One specific way

of computing the density sgrav of gravitational entropy in Petrov type D spacetime,

as for example (1), is due to Clifton-Ellis-Tavakol44:

Tgravṡgrav = −dV σµν

(
πµν
grav +

(ρ+ p)

3ρgrav
Eµν

)
. (13)

The ingredients of this formula are the following:

• The temperature of the free gravitational field defined as

Tgrav =
|ua;bl

anb|
π

=
r

8π
√
Cr2 + ϵ

, (14)

where ua is the matter-comoving observer four-velocity, and la and na are

part of the null coframe containing the dt and dr contributions.
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• The volume element

dV =
r2 sin θ(ϵ+ 2h(t))

2
√
Cr2 + ϵ

drdθdϕ . (15)

• The shear tensor σµν which describes the rate of distortion of a given region

with fixed volume during the cosmic evolution.

• The gravitational energy defined in terms of the Weyl curvature as:

ρgrav := 16π|Ψ2| . (16)

• The gravitational anisotropic pressure also defined in terms of the Weyl

curvature as:

πgrav
µν :=

|Ψ2|
16π

(−xaxb + yayb + zazb + uaub) , (17)

in which xa, ya, za constitute the spacelike vectors in the orthonormal base

for the metric (1).

• The gravito-electric tensor Eµν which accounts for tidal effects, which are

indeed necessary for having a gravitational collapse.

We have considered the approach (13) to be a sound proposal for computing the

gravitational entropy because, as pointed out in,44 it delivers a non-negative entropy,

it is consistent with the Hawking-Bekenstein entropy of black holes, it provides a

vanishing entropy in and only in conformally flat spacetimes (as for example in

the homogeneous and isotropic Friedman-Lemâıtre-Robertson-Walker universe in

which astrophysical structures cannot form due to the lack of any matter density

contrast), and it is related to the growth of anisotropies in the spacetime (as they

indeed increase during the structure formation phase).

Thus, it does not come as a surprise that the conjecture of a connection between

gravitational entropy and Weyl curvature has been regarded as a useful tool for the

description of the formation of astrophysical structures in various inhomogeneous

models. For example, in54 a relationship between the growth of gravitational entropy

and the amplitude of initial fluctuations of spatial curvature at the last scattering

time has been found, while the possible saturation of its value at a certain time has

been investigated in55 for the Lemâıtre-Tolman-Bondi universe, in56 more in gen-

eral for the class of silent universes for which the gravitomagnetic part of the Weyl

curvature vanishes, and in57 for a perturbed Friedman spacetime. Furthermore, a

gravitational entropy quantified via the Weyl curvature is consistent with the gen-

eralized second law in the void Lemâıtre-Tolman-Bondi universe,58 and the specific

Clifton-Ellis-Tavakol entropy has been shown to be a time increasing function in a

number of cosmological models.59

Our explicit computations for the Clifton-Ellis-Tavakol gravitational entropy

delivered the result

Tgravṡgrav = dV
64πḣ(t)(1− 16AB)

3(2h(t) + ϵ)3r3
. (18)
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Here we have restricted ourselves to the spacetime (4) because, as mentioned in

Sect. 2, it is the only case within (1) for which a thermodynamical investigation

based on the cosmological holographic principle was possible. Then, implementing

the constraints on the free parameters obtained from such analysis and those arising

from the second law of thermodynamics, we have found that a challenge to the

Weyl curvature conjecture proposed by Penrose45 is posed. In fact, the gravitational

entropy is increasing even when the gravito-electric curvature as measured by Ψ2

in (9) is not, and thus the latter cannot be considered too naively as a measure of

the former.

4. Discussion

Quantifying the effects that the interactions between small-scale inhomogeneities

(e.g. galaxies, galaxy clusters, voids, filaments, etc...) have on the large-scale evo-

lution of the Universe is not a trivial task, and the debate in the literature about

their importance is still open.61 There exists in fact a range of completely different

claims from that they have no effects at all to the one that they can bring an en-

ergy budget which can be responsible for the observed accelerated expansion of the

universe without the need of a cosmological constant; see62 for a review of different

approaches and their predictions. Once endowed with a cosmological model formu-

lated in terms of a metric tensor solution of the field equations of the underlying

gravitational theory, it is necessary to investigate its physical applicability. Some

widely applied cosmological tests which can assess the suitability of a mathemati-

cal solution of the Einstein equations as a cosmological model rely on supernovae

data,63–65 cosmic microwave background data,66,67 or baryon acoustic oscillations

data,68,69 and clearly require data-analysis skills. For example, the inhomogeneous

dust Lemâıtre-Tolman-Bondi model has been shown to be in tension with the kine-

matic Sunyaev-Zel’dovich effect70 although it is not with observations related to the

luminosity distance of supernovae, without the need of dark energy but assuming

that the observer is located inside a giant void;71 more in general the development of

“model independent” tests for inhomogeneous cosmology constitutes a line of cur-

rent research.72–74 However, in Sect. 2 we have explained how “theoretical” require-

ments can also be exploited for constraining the values of the free model parameters

and for extracting cosmological information about the model under investigation.

We had previously applied the same way of thinking to the Stephani cosmological

model by estimating the strength of spatial inhomogeneities, the matter abundance

and the size of the universe by imposing the cosmological holographic principle and

the second law of thermodynamics75 (however this latter spacetime is conformally

flat and therefore it does not offer any viable possibility for an investigation of the

gravitational entropy). Thus, the first take at home message from our research is:

• By working with solely pen and paper, we can constrain a given cos-

mological model known in terms of its metric tensor by imposing the
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thermodynamical requirements which follow from the cosmological holo-

graphic principle and the second law of thermodynamics.

In Sect. 3 we have mentioned that the Clifton-Ellis-Tavakol gravitational entropy is

increasing in time for the spacetime (1) although the Weyl curvature is not thanks

to the presence of a term given by shear tensor which is inserted by hands in its

formulation. The fact that spatial shearing effects are developing in the same time

interval in which the gravitational entropy is increasing is a fundamental consis-

tency check for the mathematical formula adopted for the latter. In fact, both these

quantities are expected to increase during the structure formation phase because

the universe is becoming anisotropic and inhomogeneous, with the former being

measured by the shear tensor while the latter can be regarded as an increase of

the level of “disorder” of the system which should be quantified via an appropriate

entropy quantity. Thus, our second take at home message, whose consequences will

be further explored in the next Sect. 5 is:

• Implementing the Weyl curvature conjecture according to which the Weyl

curvature should serve as a measure for the gravitational entropy is not as

simple as it may look like at a first sight and other ingredients may be nec-

essary in the construction of a mathematical formula for the gravitational

entropy.

5. Outlook

The search for an appropriate inhomogeneous cosmological model which can provide

a viable framework for addressing the issue of the formation of astrophysical struc-

tures with sizes larger than 150 Mpc (and which is also in agreement with other

datasets), and the formulation of an appropriate measure for the “gravitational

entropy” in the spirit of the Weyl curvature conjecture are two related problems.

Therefore, we consider appropriate to investigate various notions of gravitational

entropy as the following:

•

S =
CµνρσC

µνρσ

RµνRµν
(19)

where Cµνρσ and Rµν are respectively the Weyl and Ricci tensor, and its

spatially integrated version

S̃ =

∫
dV S . (20)

This formula has arisen in the context of cosmologies exhibiting an

anisotropic singularity.76 However this proposal cannot be applied to vac-

uum spacetimes because of the vanishing of the Ricci tensor.
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• Eq. (19) but multiplied by the square root of the determinant of the spatial

metric h as suggested in77:

S =
√
h
CµνρσC

µνρσ

RµνRµν
, (21)

which would be something in between the two proposals of the previous

step.

• Applying a spatially averaging scheme and writing the entropy as78,79

S = VD

〈
ρ ln

ρ

⟨ρ⟩D

〉
D

, (22)

where angular brackets denote an average over the spatial domain of interest

D.

• The Clifton-Ellis-Tavakol entropy that we have already talked about in

Sect. 3.

These inequivalent ways of computing the gravitational entropy should be applied

to the general line element describing a spherically symmetric dynamical spacetime

(see page 251 in39)

ds2 = −e2ν(t,r)dt2 + e2λ(t,r)dr2 + Y 2(t, r)(dθ2 + sin2 θdϕ2) (23)

in a set of future projects. Intuitively, we expect that demanding the simultaneous

growth of shear, Weyl curvature and gravitational entropy would provide some in-

formation on the increasing/decreasing and concavity properties of the functions

ν(t, r), λ(t, r) and Y (t, r), which then will be implemented into the Einstein equa-

tions for understanding which types of matter content permit to achieve this goal.

All the previously mentioned proposals for computing the gravitational entropy

are directly sensitive to the matter content of the spacetime. In fact in some of

them the energy density (Hosoya-Buchert-Morita) and possibly also the pressure

(Clifton-Ellis-Tavakol) appear explicitly; in other cases as in (19)-(20)-(21) they

are inserted via the Ricci tensor, which is connected to the matter content of the

universe as we can see from the Einstein equations written in the form

Rµν = 8π

(
Tµν − 1

2
gµνT

)
. (24)

A more conservative proposal which has been formulated recently in the context of

black hole physics argues that it is possible to write the density s of gravitational

entropy just in terms of the frame component of the Weyl tensor W and of its

Newman-Penrose derivative DW as80

s =
∣∣∣DW

W

∣∣∣ . (25)

The applicability of such formalism in inhomogeneous cosmology and in particular

the investigation of its relationship to the spatial anisotropies quantified by the

shear tensor would constitute a subject of future studies.
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