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Abstract An alternative gravity theory that has attracted
considerable attention recently is the novel four-dimensional
Einstein—Gauss—Bonnet (4EGB) gravity. This idea was pro-
posed to bypass the Lovelock’s theorem and to permit non-
trivial higher curvature effects on the four-dimensional local
gravity. In this approach, the Gauss—Bonnet (GB) coupling
constant « is rescaled by a factor of «/(D — 4) in D dimen-
sions and taking the limit D — 4. In this article, we analyze
the effects of charge on static compact stars in the regularized
4D EGB gravity theory. Two classes of new exact solutions
are found for a particular choice of the gravitational poten-
tial and assuming a relationship between the electric field
intensity and the spatial potential. A graphical analysis indi-
cates that the matter and electromagnetic variables are well
behaved for specific values of the parameter space. Finally,
based on physical grounds appropriate bounds on the model
parameters we show that compact objects with the value of
adiabatic index y is consistent with expectations.

1 Introduction

In higher-dimensional gravity theories (HDG) i.e., D > 5
dimensions, the gravity action may be modified to include
higher order curvature terms while keeping the equations
of motion to second order, provided the higher order terms
appear in specific combinations. Among the HDG theories,
Lovelock gravity is one of the most natural generalizations
of Einstein’s general relativity (GR), introduced originally
by Lanczos [1], and rediscovered by David Lovelock [2,3].
More precisely, the standard argument for the uniqueness of
the Einstein field equation is based on Lovelock’s theorem,
the relevant statement being restricted to 4-dimensions. In
particular, the equations of motion of Lovelock gravity are
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quasi-linear and of second order with respect to the metric
and Ostrogradsky instability (ghost) is avoided.

EGB gravity involves the second order Lovelock poly-
nomial terms, appears in the low energy effective action of
heterotic string theory [4] and leads to ghost-free nontrivial
gravitational self-interactions [5]. For these reasons the role
of the GB contribution has been actively studied in recent
times. Moreover, EGB theory provides the simplest labora-
tory to study nontrivial higher curvature effects in dimensions
higher than 4. Note that the critical dimensions in Lovelock
theory are 2N + 1 and 2N 4 2 where N is the order of the
Lovelock polynomial [6]. For example, the cubic order terms,
N = 3 are only dynamic in dimensions 7 and 8. A principal
feature of Lovelock theory is that the Lovelock terms become
topological invariants and consequently do not contribute to
the gravitational dynamics when the spacetime dimension
equals to four. However, Glavan and Lin [7] proposed a novel
theory of EGB gravity which bypasses the conclusions of
Lovelock’s theorem and avoids Ostrogradsky instability in
4-dimensional spacetime. Their basic idea was to rescale the
GB coupling constant « — «/(D — 4) and then taking the
limit D — 4. The resultant theory is now dubbed as the
novel four-dimensional 4D EGB theory. With this rescaling,
authors in [7] have found a non-trivial black hole solution.

This idea evoked great interest amongst researchers and
was extensively investigated in many configurations such
as spherically symmetric and static black hole solutions
including their physical properties [8—14], charged black
hole [15,16], black holes coupled with magnetic charge and
nonlinear electrodynamics [17-19]. In this framework the
strong/ weak gravitational lensing by black holes [20-22],
quasi-normal modes [23-25], black hole shadows [26-28],
wormbholes and thin-shell wormholes [29,30] and some other
relevant works have also been investigated in [31]. Recently
a rotating generalization was reported in [32,33] using the
Newman—Janis algorithm. However, the Newmann—Janis
trick is not generally applicable in higher curvature theories
(see Ref. [34]). It is worthwhile noting that several criticisms
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against the Glavan—Lin proposal have emerged, including the
above limiting procedure being invalid [35-38]. The dimen-
sional regularization procedure discussed by Tomozawa [39]
dealt with this difficulty in a related context and it was shown
that a factor of » — 4 in his analysis actually cancelled off.
Lovelock’s theorem states that the only metric theory of grav-
ity in four dimensions admitting up to second order equations
of motion is general relativity. Additionally Lovelock’s poly-
nomial construction gives the most general tensorial theory
yielding second order equations of motion in any number of
spacetime dimensions. In the case of the 4D EGB proposi-
tion Gurses et al. [37,38] showed that a description in terms
of a covariantly-conserved rank-2 tensor in four dimensions
is not evident. Additionally through dimensional regulariza-
tion one part of the GB tensor always remains higher dimen-
sional. In other words, 4D EGB is well behaved in certain
highly-symmetric spacetimes such as static spherically sym-
metric spacetimes. Thus, it is worth investigating the various
applications of this 4 DEGB gravity and exploring its relevant
effects on gravitational dynamics.

In fact, this gravity theory has attracted significant atten-
tion of late that includes finding astrophysical solutions and
investigating their properties. Thus, the main motivation of
this paper is to study compact stars and their properties.
Lovelock theory and its special case EGB gravity are essen-
tially higher dimensional theories and some have questioned
whether investigations into higher dimensional stars are fruit-
ful exercises since extra dimensions are not physically acces-
sible. The procedure we are following herein does not suffer
this drawback. We can now study higher curvature effects
in a standard four dimensional setting. However, we has-
ten to add that experiments into modified theories of gravity
are often justified due to the inadequacy of general relativ-
ity to explain phenomena such as the observed accelerated
expansion of the universe without resorting to exotic matter
fields such as dark matter and dark energy. So if a modi-
fied theory is able to provide a cogent explanation for this
observed behaviour then it is natural to check the self con-
sistency of such a theory in other physically relevant areas
such as stellar distributions and galaxy formation. On these
grounds, this problem merits attention as did general relativ-
ity over the past century. Along these lines we may develop
insights into the composition and properties of neutron stars
(NSs), which are the remains of very massive stars (10-30
M) that ended their lives in supernova explosions [40,41].
Such compact objects (NSs or QSs) impose restrictions on the
equation of state (EoS) that is required to describe the mat-
ter content inside them. Additionally, strange stars and their
phenomenological properties have been extensively investi-
gated with different EoS in [42] (see Ref. [43,44] for more).
Moreover, in Ref. [45] the mass-radius relations are obtained
for realistic hadronic and for strange quark star EoS.

@ Springer

Several recent treatments, including the work of Hansraj
et al. [46], demonstrate new classes of exact solutions for 4D
EGB stars by prescribing the temporal potential to be pro-
portional to the stellar radius. The master field equations are
extremely complicated and ad hoc prescriptions on mathe-
matical grounds are made to obtain an exact solution. Note
that imposing a physical constraint such as an EoS renders
the problem totally intractable from a mathematical point of
view and an appeal to numerical techniques must be made.
Extending this work we would like to develop exact solu-
tions that may be used to describe the dynamics of charged
compact objects in strong gravitational fields such as is appli-
cable to neutron/quark stars (NS/QS). It is believed that if
such compact object exist in the Universe, they ought to
be made of chemically equilibrated strange matter, which
requires the presence of electrons inside them. At the same
time, substantial evidence suggests that matter acquires large
amounts of electric charge during an accretion process onto a
compact object or during the gravitational collapse [47,48].
Some studies have also concluded that Coulomb repulsion
will add up to the internal pressure of the system which cre-
ates an effective pressure and prevents further gravitational
collapse [49,50]. In order to see any appreciable effect on
the phenomenology of the compact stars, several efforts have
been made starting from Bekenstein [51]. He generalized the
Tolman—Oppenheimer—Volkoff (TOV) equations of hydro-
static equilibrium to the charged case, and discussed their
applicability. In the Maxwell-Einstein context, Ivanov [52]
and Sharma et al. [53] demonstrate that the presence of the
electric charge affects the values of redshifts, luminosities
and maximum mass of a compact objects.

Since then a substantial volume of work on relativistic
charged stars has emerged studying the impact of the elec-
tromagnetic field on the global physical behaviour of rela-
tivistic superdense stars [54—59]. Hansraj and Maharaj [60]
have obtained solutions for charged Finch—Skea stars; these
models are given in terms of Bessel functions and obey a
barotropic equation of state. We also mention the works of
De and Raychaudhuri [61], where the condition for a charged
star to reach equilibrium was established. Another important
factor that seems to have a significant role in the stellar mod-
elling is charged anisotropic solutions. For example, see the
works of [62-67].

Our aim here is to explore new classes of exact spheri-
cally symmetric charged fluid spheres, in the novel 4D EGB
gravity. From a mathematical perspective, the problem boils
down to solving a system of four partial differential equations
in six unknowns. Despite the fact that there is freedom to
choose two of the matter or geometrical variables a priori the
problem is more formidable than its Einstein counterpart. We
achieve some progress by introducing a relationship between
the space potential (effectively the energy density) and the
electric field intensity to facilitate the location of exact solu-
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tions. The paper is organized as follows: after a brief introduc-
tion in Sect. 1, we derive the equations of motion for charged
fluid sphere in Sect. 2. In particular, we explicitly generate
the set of equations governing the static spherically sym-
metric configuration in Schwarzschild-like coordinates and
expressed in the TOV form. In the same section we rewrite
the field equations as an equivalent set of differential equa-
tions employing a transformation which transforms the mas-
ter field equation to a linear second order ordinary differential
equation with improved prospects of integrating. On speci-
fying known physically well studied ansatze for superdense
stars and by assuming a relationship between the potential
and electric field intensity we determine a class of solutions
which contain a well known special case. The full dynamics
and geometry are now known and we are in a position to
examine the physical viability of our model in Sect. 3. Next
we analyze the physical properties of the model such as their
energy density, pressure, energy conditions, speed of sound
and adiabatic stability. Finally, we conclude by pointing out
some interesting features of our model in section Sect. 4.
Throughout the study we employ natural (geometrized) units
G = ¢ = 1 and the metric signature (—, +, +, +).

2 Basic construction of charged stellar model in 4D
EGB gravity

Before we start our discussion on 4D EGB gravity, we would
like to mention that the novel 4 D EGB theory [7] has received
several criticisms. Concerning these points, some criticisms
on the validity of taking the D — 4 limit have been raised
[68,69]. However, the authors in Ref. [37] (see [35,36] for
more) pointed out that in 4D spacetime the resulting equa-
tions of motion is not regular in general and there is no regular
action that reproduces the proposed regularized equations of
motion [70]. In fact, Kaluza—Klein-reduction approach of the
D — 4 limit leads to a particular class of scalar—tensor theo-
ries within the Horndeski family, see e.g. [71,72]. Analogous
approach was also employed in [73,74] by adding a counter
term in D-dimensions and then taking the D — 4 limit.

On the other hand, some proposals have been put for-
ward to circumvent the aforementioned shortcomings com-
ing from the novel 4D EGB gravity. Indeed, depending on
the choice of the“regularisation scheme”, many other theo-
ries have been offered with different number of degrees of
freedom and different properties. Following Ref. [75], the
treatment was found to be consistent by breaking the four-
dimensional diffeomorphism invariance (see also [76] in the
cosmological context). However, it is interesting to note that
the spherically symmetric 4D solutions still remain valid in
these regularized theories [43]. In fact, the black hole solu-
tions via rescaling procedure [7] still remains valid in these
regularized theories [73,77]. Thus it turns out that the spher-

ically symmetric solution obtained using any of these reg-
ularization methods will be the same form as the original
theory.

In this regard, the spherically symmetric charged star
solution itself is meaningful and worthy of study. Thus, we
decide to derive the equations of motion starting with sce-
narios based on the novel 4D EGB gravity. The action in
D-dimensional Gauss-Bonnet theory minimally coupled to
matter fields is given by,

1
Ty = —
T

aPx /75 [ R+ 5 en [ aPry el (1)

D

Here, R is the Ricci scalar which provides the general rela-
tivistic part of the action, and g is determinant of the metric
tensor g,,. The GB coupling constant « has dimension of
[length)?, and Einstein-Gauss—Bonnet Lagrangian given by

LGB = R*P° Ryypo — 4R™ Ry + R )

Here, the Lagrangian density £,, of matter depends only
on the metric tensor components g, and not on its deriva-
tives, we obtain

2 8(v/=8Lm)
V=g o s

Now, applying variation of the action (1) with respect to met-
ric g, leads to the following equations of motion

T;w = - (3)

o
Gpw + mH;w = 87TT;wa @

where G,,, and H,,,, are the Einstein tensor and the Lanczos
tensor with the following expressions

1
G/w = R/w - ER 8uv,
H, = Z(RR,“, — ZRMURGV - 2Rp,trv,0R0p

1
_R;umﬁRGpsu)_E 8uv EGB, (5)

with R the Ricci scalar, R, the Ricci tensor and R, the
Riemann tensor, respectively. As a result the above theory is
free from Ostrogradski instability and the static and spheri-
cally symmetric black hole solution was discovered [7].

Since we are interested in charged stars, we assume 7),, =
M, + E,, in (4) stands for the energy-momentum tensor,
which in this study is written as a sum of two terms,

MHV = (p + p)uuuv + Pg,w, and E”’V

1 1
=0 (F;;FW — ZgWFyﬂFW“) , (6)
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where M,,, is the energy—momentum tensor of a perfect fluid
in D dimension with p = p(r) is the pressure, p = p(r) is
the energy density of matter, and u,, is the fluid’s D-velocity.
The E,, is the electromagnetic energy—momentum tensor,
which is given in terms of the Faraday—Maxwell tensor F,,
described by F,, = V,A, — V, A, with V, representing
the covariant derivative, and A, the electromagnetic gauge
field. The latter satisfies the covariant Maxwell equations,
[(—g)'/?F*], = 4mj*(—g)'/? with j* stands for the elec-
tromagnetic D-current and g = det(g""”). Only the radial
component F 01 is non-zero, and the last equation is satisfied
if FOl = —F10,

To achieve the compact charged spheres we take the fol-
lowing static, spherically symmetric D-dimensional metric
ansatz as follows:

dslz) = =2 g 4 2 g2 4 rdeZD_g, @)

where d QzD_z is the metric on the unit (D — 2)-dimensional
sphere. The functions ®(r) and A(r) are depending on the
radial coordinate r, respectively.

Taking all of these into account and using the metric (7)
with stress tensor (6), in the limit D — 4, the non-zero
components of the field equations are

a(l —%e—ﬂ) _4)\’e—ﬂ - e—zk)]
r- r
20 1 1
e (7 — 72) + 5 =87p+ E? (8)
1 — =2\ 1— —2A
o 36 ) 4<I>’e_2)‘+( e )}
r L r
5 (29 1 1
+e ”<7+r—2>—r—2=8np—E2, )

872)» |:q)// + q)/z + 1 ((b/ . )»/)

r

Y <8a622)‘ B 1) ~ 2a(l —2672)‘)
r r
1 / / 7 2 /q 1 2A
x{;(@ ») 2(c1> +o c1>/\)+r—2(e 1
= 8p + E>. (10)
!
dror? = et (r2E> . (11)

In the above system the quantities E and o are the electric
field intensity and the proper charge density respectively and
primes denote differentiation with respect to r. Finally, Eqgs.
(8-11) are invariant under the transformation £ — —E,
o — —o. We observe that in the absence of the electric
field, i.e., with E(r) = 0, the above expression reduces to
the standard relation for isotropic perfect fluid in 4D EGB
gravity [46]. The proper charge density o appears explicitly
in the inhomogeneous Maxwell equation (11). It determines

@ Springer

the net electric charge within a sphere of radius r is given by

q(r) =4n /r o (r)e* " ridr, (12)
0

where the electric charge is connected to the electric field
through the relation E(r) = ¢(r)/r>. Finally, the conserva-
tion of the matter energy momentum tensor yields the fol-
lowing equation,

q dq

dp
Arrt dr’

dr

do
=-(b+p -+
r

do 1 , 2,
—(p+p—+—|EE' +-E°). (13)
dr = 4m r

At this stage we introduce the coordinate transformation
followed by Durgapal and Bannerji [78],
x=Cr?, e =Zx) and €*® = y?(x), (14)
where C is an arbitrary constant. The benefit of this trans-
formation is that the master nonlinear isotropy field equation
(10) is transformed to a linear differential equation and we
can profit from the vast knowledge on such equations. Under

the transformation (14), we are able to express the compo-
nents of the field Egs. (8—11), which yield

87p+ E? = %[4):(;8(2 -)-xZ
2x

—(Z-1DC2x+B(Z - 1))], (15)
87p— E> = L[rzxzy‘(x —B(Z-1)

2x2y

+y(Z -1)(2x + B(Z — 1))], (16)

0=p@x*Z0-2)5 +2x[2Z(Z - 1)
+xZ(1=32)]y — (1= Z)(Zx — Z + 1)y) +
x(4x%Z5 4+ 2x%Zy
2

. E
HZx=Z+1- =), (17)
2 z .
% = o B+ E)’ (18)

where dots denote differentiation with respect to the variable
x. The parameter 8 = 2« C, and here we measure in km?.
In the above we have a system of four equations with six
unknowns p, p, E, o, y and Z, respectively. Hence, to solve
the system, we are free to specify two of the six unknowns;
in this treatment we assume forms for Z and E. In general,
when the metric potential Z and the electric field intensity E
are specified then one can easily get the metric function y by
integrating (17). Next, we explain how we construct charged
compact stars with isotropic matter.



Eur. Phys. J. C (2021) 81:790

Page50f 12 790

3 Exact solutions

We now analyze the static and spherically symmetric (SSS)
field equations for a class of exact 4 D EGB models. It makes
sense to follow processes that have led to success in the stan-
dard theory of general relativity namely prescribing one of
the metric potentials and the electric field intensity. In this
case it turns out that even after prescribing a potential, it is
still nontrivial finding a suitable function for E to allow the
integration of the master isotropy equation. Rewriting the
isotropy equation (17) in the form

4°Z (x+B(1 = 2)) 3

2x (xZZ +B(2Z(Z - 1) +xZ(1 — 32))) j
2x2

+((ZX—Z+1)(x—ﬁ(1—Z))—E >y=0 (19)

offers a possible route to find rich classes of exact solution.
Connecting the electric field intensity E and the spatial metric
potential Z via

E?2  (Zx—Z+1)(x—B( —2))
c x2

(20)

results in the suppression of the y term thus effectively reduc-
ing the differential equation to first order and with better
prospects of finding exact solutions.

_ Cla—b)(Bla—b)(bx +3) = 6(bx + 1))

In our investigation we study the gravitational potential in
the form

14+ ax
1+ bx

zZ

, 2n

where a and b are constants with units in km~2. The cho-
sen form ensures that the metric function ¢?* is regular and
finite at the centre of the sphere for the wide range of val-
ues of parameters a and b. Since the potential Z contains
known physically acceptable uncharged and charged rela-
tivistic stars for particular values of ¢ and b i.e. whena = — %
and b = 1 we regain the uncharged dense neutron star of Dur-
gapal and Bannerji [78] and Tikekar super dense star model
[79] for the values a = —1, b = 7. On substituting (21) in
(19) and using (20) we obtain the function of y(r) which is

(2aB + 1)(a — b)3/? [ebxtag,
a’b(bx + 1)

y=a

N 2(bB(a — b))*%&, N Vax +1/bx + 1 N
2,
/B —a) @B — 1) a 2
(22)
where & = sinh™! (—ﬁﬁffxf) and & = tan”!
VbBlax+1) .
( TESNGET)] ﬁ)). Hence the complete solution of the field

equations (15) and (16) is then given by

8mp 2bx + 1)3 @3)
8p = 4a%bCci(aB — D/ax + 1
Vbeia — by + a?ber(aP — 1)/bx + 1+ abey(af — 1)v/ax + 1(bx + 1)
+C(a —b)(B(b —a)(bx — 1) +2bx +2) o
2(bx 4 1)3 ’
where £2 = ((a — b)(aB — Qap + 1),/%Lrtag, —

4 Physical models

4.1 Vaidya-Tikekar model

2a*B3*/bx + 1/(b —a)(af — 1)52), and the speed of
sound is given by

dp
a(bx + 1)¢3

—(bx + 1)( T Tax+ b

dp [azbzclx(a —b)(1 — ap)(bx + 1)*(¢1(—(a — b)) (aB — b + 2bx +2) — ()
tiax + 1/ —a) @ — D(—ap + b(B+x) + 1)

— s(a — b)(aB + 2b%x> — bB + 4bx +2) + %Qx(a —b)

X (—af +b(B +x) + 1)(baBx + 38 +x) —aB + 1)
+25(b — a)(aP — bB + 2bx +2) + Ca(a — b)(bx + 1) — w to— ;4>

* H / 2bx(b — a)(~xBb* — 4Bb + x(ap — 6)b + 4ap — 6), =
5
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where

o1 = a*b*erv/bx + 1Y/ (b — a)(ap — 1)
+a (2a2m (bB(a = b)*&

+ab*Vax + 1(bx + 1)/(b — a)(aB — 1) + b°/*(a — b)*?

abx +a
P $1>,

oo = 8a*b*civax + 1(bx + D2/ (b — a) (@B — 1),
&3 = bxvax + 1(—aB + b(B + x) + )20,

ta = HVax + 1@ —b(B+x)—1)

(aﬁ—bz 2 p(B +2x) — 1),

&5 = ¢iv/ax + 1(=ap +b(B +x) + D>,

(2ap + 1)y —(a —b)(ap — 1)

4.2 Finch-Skea model

Now we turn our attention to another physically admissible
ansatz, namely, Finch and Skea [80] which can be regained by
settinga = O and b = 1 in (21). This space-time geometry is
well behaved and satisfies all criteria of physical acceptability
by Delgaty and Lake [81]. The choice of Z is

1

Z = .
14+ x

(26)

On substituting (26) in (19) and using (20), we obtain the
solution

y=c <2ﬂ3/2n1 + %Jx FI(-38+x+ 1)) +c, (27

—(58% 4 3B + 40)x> + 3(8° + 582 — 58 — 20)x2
+(B — 10)x* 4+ (98* + 158> + 458% — 178 — 40)
x —10)) — 6cc1(B+x+1)

((x + (1287 = 168 + (2B + Dx* — 2(38°

+78 — Dx 4+ 1) 4+ 683,

VX +1(=-28+ (B +2)x +2))

—9c5/x + 1( — 282+ (B+2)x2

+(B* + B+ 4)x +2>]/

Vi+1B+x+ 1)@+ (B+6)x+6)n3,  (30)
where n3 = (2¢1(38% %1 +vx + 1(=3B+x+1)+3c2)*%.

5 Matching

At this stage the interior solution is smoothly connected to the
vacuum exterior Reissner—Nordstrom metric at the junction
surface with radius » = R. In this case the line element for
the star at the boundary (r = R) has the form

2
e (Caal Cey

) 2
~I—§\/CR2—+1(—3/3 +CR* + 1)) 1+ cz) dr®
+ (1 + CR2> dr? +r2de? +sin20d¢?), (1)

The metric (31) should be matched with the exterior line ele-
ment. Accordingly the arbitrary constant C may be expressed

where 7; = tan™! (—Vj%fl) With these assumptions we as 1
obtain the energy density and pressure using the expression c— L | — Z_M n Q_2 - 1 (32)
(15) and (16), are T R2 R R2 ’
3 2 6
Sy = CBEFD+E+600) 08)
2(x+ 1)3
c(2e1 (387 (x* = 1) + 383 2nim 4 B(x — T (x + 1D? — 10(x + 1)?) + 3¢
8rp = — (21 (=38% ( )+ 3B nim + B( )( ) ( )%) 2772)7 29)

20 + D72 (2¢1 (38321 + Vx + 1(=38 + x + 1)) + 3¢2)

in terms of the radius R and mass M of the sphere. Since,

where 2 = +/x + 1(—=B 4+ (8 + 2)x + 2), and the speed of e - )
the pressure vanishing at the boundary results in the following

sound is given by

relation
90 |~ 4ck 32 + D126 — 42 — 158 20 T
dp 1 m e = _g(,e(aez)2 (CR2) +1—10(CR*?V/(CR?) + 1
1

+(=4B* =118 +3)x* + 2B + Dx®

— (68> +8B>+288 —3)x + 1)
498303 Vx + 1(—282

+(B+2x>+ B2+ B+DHx +2)

+x 4+ D32 (—188% + 128° + 2567 — 68

+6B72(CRM)Kz + 671y

+3B52(C Ry — 385 %k2 — 3B2(CRY)V(CRY) + 1
+3B8%V/(CR?) + 1 —68(CR*)Y/(CR?) + 1
—78V(CR?) + 1 —20(CR%)

V(CR2 +1—-10V/(CRY) + 1) (33)
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Fig. 1 The pressure profile is plotted as a function of radius for Vidya—
Tikekar (VT) and Finch—Skea (FS) metric potential for 8 = 4 and
0, respectively. For left diagrams the chosen values are a = 7, b =

0.1, ¢y = 0.5, ¢ = 10, C = 0.05; and for right diagrams we con-
sider ¢ = —0.009, ¢, = —0.1, C = 10, respectively

T T T T T T T T T T T T
80
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x (Km) x (Km)

Fig. 2 Variation of energy density as a function of the radial coordinate x for compact star. The labels of the curves are the same as given in Fig. 1

q(x10%° Coulomb)
q(x10%° Coulomb)

x (Km)

x (Km)

Fig. 3 Variation of the electric charge ¢ as a function of the radial coordinate x inside the stellar interior

where k; = (=B + BCR?> + 2CR?> + 2) and k; = B
1 { JCRH+1 a=

tan 7 and using the condition in (31) we are

k1v/—2MR + Q% + R? 34)
8R (CR2 +1)°?

able to write ¢ as . . .
which settles the integration constants ¢ and c;.
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6 Physical properties of the spheres

We now proceed to analyse the physical viability of the
charged solutions obtained in this paper. We will show that
obtained solutions are physically reasonable. We utilise the
exact solution obtained in Sect. 4 for a graphical analysis.
The physical characteristics of the Vaidya—Tikekar ansatz are
displayed in the left panels of each of the figures while the
plots for Finch—Skea ansatz appear on the right. In the case
of left and right plots we have selected the parameters as fol-
lows after extensive empirical fine-tuning: ¢ = 7km™2, b =
0.1km~2, B = 4km?, ¢; = 0.5, ¢ = 10, C = 0.05 and
B = 4km?, ¢; = —0.009, ¢; = —0.1, C = 10, respec-
tively. In Figs. 1, 2, 3, 4 and 5 the EGB model (8 = 4)
together with its Einstein (8 = 0) are depicted. The software
package Mathematica (Wolfram [82]) was used to generate
plots for the matter variables.

(i) From Fig. 1 we observe that the pressure decreases
smoothly towards the surface layer of the star. Since,
the pressure vanishes at some finite distance which
identify the boundary of the star at x = 15 km and

@ Springer

(i)

(iii)

x (Km)

x = 1 km, respectively. This immediately suggests
that the model may represent a charged compact star.
Moreover, the effect of the higher curvature terms is
clear in each model. When the higher EGB terms are
switched off (@« = 0) the Einstein model is obtained
and it may be noted that there is a significant decrease
in the radius of the sphere. Evidently higher curvature
terms admit larger spheres by total volume.

As it is clear from the Fig. 2 that the density profile
is a monotonically decreasing function as one moves
from the stellar center towards the stellar boundary.
Figure 2, therefore, conveys an important message that
the model is regular and well-behaved at all interior
points of the star. Contrasting with the standard (o« =
0) sphere it may be observed that for the same radial
value there is a substantially higher density in both
variants of the model suggesting that higher curvature
effects admit more compact objects than their Einstein
versions.

The electric charge within the radius » can be obtained
by computing the volume integral of the charge den-
sity in Eq. (12). As a consequence of our definition
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Fig. 8 The three different forces, viz. gravitational force (Fy), hydrostatic force (F3,) and electric force (F,) are plotted against x

g (x) vanishes at the centre, remains continuous and
bounded in the interior of the star. Note that other
choices of E? in Eq. (20) generates different profiles
as indicated in different literature. Moreover, we see
that the electric charge is ¢ ~ 10?°Coulomb inside the
fluid sphere. It is worth mentioning that the Coulomb

repulsive force will add up to the internal pressure
of the system and the entire repulsive force will be
balanced by the gravitational force. We illustrate this
situation in Fig. 3 which is positive, continuous and
monotonically increasing for a certain region and then
decreasing towards the boundary. Compared to GR,
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(iv)

v)

(vi)

we see that the effect of net electric charge is higher
for EGB gravity due to the presence of GB coupling
constant «r, and consequently leads to the higher mass
of the compact stars.

The causality condition required that inside the static
configuration the speed of sound should be less than
the speed of light i.e., 0 < v2 = ¢ < 1. With the
use of Egs. (25) and (30) one can obtain an expression
for vf. Figure 5 shows the sound speed of electrically
charged compact stars. Thus, we argue that this crite-
rion is met everywhere inside the star. In addition, it
is noticeable that near the stellar centre there is about
a two-fold increase in the sound speed when the EGB
configuration is contrasted with the Einstein case. It
should be borne in mind that the sound speed squared
fiﬁ is exhibited. Moving towards the stellar surface we
find that the difference in sound speed decreases but
causality is never violated in all cases.

The variation of the mass-radius (M — R) relation-
ship for all configurations is portrayed in Fig. 5. For
both models it is observed that the compactification
decreases when the higher curvature EGB effects are
present. At the centre there is no difference however
as the boundary is approached the EGB and Einstein
cases appear to bifurcate uniformly to some maximum
separation on the boundary. Itis evident from the Fig. 5
that the maximum mass of compact stars can be much
larger than that in GR when the parameter « in EGB
gravity is positive. In fact, Ray et al. [83] have pointed
out that the charge can be as high as 10°° Coulomb to
bring in any significant effect on the M — R relation
of the stellar configuration. Moreover, the existence
of ultra-strong electric fields on the surfaces of quark
stars, which may lead to huge electric fields as high
as 10!° V/cm was inferred by [84]. Notice that com-
pact star model with Vaidya and Tikekar metric ansatz
are able to reach a higher mass about ~ 2M,, as can
be seen in Fig. 5 (left panel). Accumulated all the
above information our results provide circumstantial
evidence in favor of quark stars in EGB gravity. In
addition to this the M — R relationship is an indicator
of the equation of state. From both models it may be
observed that when higher curvature terms are active
the equation of state becomes more stiff. That is for
a given mass, the EGB models admit a larger radius.
Consequently a larger maximum mass would result
from the inclusion of the EGB effects. Alternatively
this means that for a change in density there is a larger
change in pressure when EGB models are compared
to their Einstein counterparts.

The energy conditions (ECs) are local inequalities,
depending on the energy momentum tensor, that cap-
ture the idea of energy should be positive for strange
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star. Our analysis require that the following energy
conditions, viz., (i) weak energy condition (WEC),
(ii) strong energy condition (SEC) and (iii) dominant
energy condition (DEC) hold true at each interior point
of the star. These conditions are equivalent to

EZ
NEC:p+p=>0, WEC:p+p >0, and ,o+8—0,
b4

(35)
E2
SEC:p+p >0, and p+3p+520,
E? E?
DEC:p+— >0, and p—p+ — >0, (36)
81 4

Variations of ECs for the charged fluid star are repre-
sented in Fig. 6 for our choice of parametric space. The
plot shows that ECs are obeyed everywhere, which
means that the ECs are satisfied for all values of x.
(iv) Our main result for the charged fluid sphere is the
adiabatic index (I') which is related to the thermody-
namical quantity. Addressing the instability problem
Chandrasekhar [85] introduced a criterion for dynam-
ical stability based on the variational method. To be
more specific, the expression for the adiabatic index

reads
d
= ptpadp , (37)
p dp

The Eq. (37) is a dimensionless quantity measuring
the stiffness of the EoS. This result has been extended
to include pressure anisotropy, viscosity and heat flow
by Herrera and co-workers [86,87]. It is notable that
for dynamical stability y should be more than 4/3
(i.e y > 1.33). For investigating its effects, we plot
Fig. 7 shows that our solution is stable against the
radial adiabatic infinitesimal perturbations.

(v) Asystemis considered to be in equilibrium, if the sum-
mation of all active forces on the system is Zero. This
can be achieved by formulating the modified TOV
equation given in Eq. (13), where the first term rep-
resents the hydrodynamic force (F},), the second term
is gravitational force (F) and the final term corre-
sponds to electric force (F,), respectively. For further
investigation, we plot Fig. 8. As one can see that the
equilibrium of the forces is achieved for our chosen
parametric values and confirms stability of the system.

7 Summary and discussion
Among the higher curvature gravitational theories, the

recently proposed novel 4D Einstein—Gauss—Bonnet grav-
ity has received intensive interest because the GB coupling
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constant could contribute to the Einstein’s field equations by
introducing a redefinition « — /(D — 4) in D dimension
and taking the limit D — 4. Motivated by this gravity the-
ory, in this work, we thoroughly investigate static and spheri-
cally symmetric compact charged spheres made of a charged
perfect fluid. Two new classes of exact solutions have been
reported. Utilizing the coordinate transformation (14), we
first convert the field equations in a different, but equivalent
form. This transformation has been successfully utilized in
the Einstein case to generate exact solutions.

After converting the master pressure isotropy equation we
obtained an exact solution by prescribing an ansatz for the
gravitational potential Z and by connecting the electric-field
intensity E with Z to simplify the master field equation. This
gravitational potential contained a number of interesting spe-
cial cases such as the Vaidya—Tikekar and Finch—Skea poten-
tials, and was used to find the structure of the second poten-
tial y. The simple form of the solutions found facilitate the
analysis of the physical features of a charged sphere. We
find that, in both the Vaidya—Tikekar and Finch—Skea cases,
models exist satisfying the elementary physical requirements
for representing a dense compact star through a graphical
approach. We have shown that in the presence of such an
adjustable parameter, it is possible to accommodate a large
class of charged solutions satisfy the usual requirements of
positivity of density and pressure, existence of a surface of
vanishing pressure, all the energy conditions being met, a
subluminal sound speed and equilibrium condition. We also
found that the maximum mass of a compact star can be much
larger than that in GR when the parameter « is positive in
4D EGB gravity. In summary, it is interesting to observe that
the 4D EGB theory admits physically palatable models con-
sistent with basic conditions in the case of static spherically
symmetric spacetimes.

Data Availability Statement This manuscript has no associated data or
the data will not be deposited. [Authors’ comment: This is a theoretical
study and the results can be verified from the information available.]
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