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one more free parameter would be reduced. Then only 4 of the 21 Weinberg operator models
and 100 of the 174 seesaw models agree with the experimental data on lepton masses and
mixing parameters. Furthermore, we perform a detailed numerical analysis for two example
models for illustration.
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1 Introduction

The vast majority of free parameters in Standard Model (SM) arise from the flavor sector,
including the masses, mixing angles and CP violation phases of quarks and leptons [1].
There are huge hierarchies among the quark masses, for example, the top quark is about
five orders of magnitude heavier than the up quark. The quark flavor mixing described by
the Cabibbo-Kobayashi-Maskawa (CKM) matrix also exhibits a hierarchical pattern, and
all the three quark mixing angles are small. The mass hierarchies in the lepton sector is
more dramatic. The neutrinos have a tiny mass and its absolute mass scale is of the order
of eV which is approximately nine orders of magnitude smaller than the tau lepton mass.
The neutrino oscillation experiments show that the lepton mixing differs significantly from
quark mixing. The solar mixing angle 612 and the atmospheric mixing angle o3 are large,
while the reactor angle 613 is much smaller and similar in magnitude to the Cabibbo angle
which is the largest quark mixing angle.

The above peculiar flavor structure calls for a dynamical explanation, and lots of effort
has been devoted to search a fundamental principle governing the flavor sector of SM. It was
found that the large lepton mixing angles can be understood by extending the SM with a
non-abelian discrete flavor symmetry [2—6]. In the past years, the flavor symmetry based on
the modular group opened up a new promising approach to address the flavor structure of
SM [7]. In this paradigm, the three generations of quarks and leptons transform non-trivially
under the modular symmetry, and Yukawa couplings are assumed to be modular forms of level
N which are holomorphic functions of the complex modulus 7 and non-trivially transform
under the action of the modular group. The modular flavor symmetry is formulated in
the framework of supersymmetry to ensure the holomorphicity of the Yukawa couplings as
functions of 7 [7-10]. The modular symmetry provides a novel origin of the discrete flavor
symmetry, and the inhomogeneous (homogeneous) finite modular group I'y (I'y) plays the



role of flavor symmetry and it is isomorphic to the (double covering of) permutation group
for N <5 eg., 'y =S I's =2 Ay, 'y = Sy, I's = A5 [11]. The modular flavor symmetry has
been intensively studied to explain the quark and lepton flavor structure in the literature,
please see the recent reviews of the modular flavor symmetry [12, 13] and references therein.
In the minimal modular invariant model to date, the experimental data of all lepton masses
and mixing angles can be described in terms of only six free real parameters including R(7)
and (7) [14, 15], and fourteen parameters are invoked to accommodate the masses and
mixing parameters of both quarks and leptons [15], in which the complex modulus 7 is a
portal so that the flavor observables in quark and lepton sectors are strongly correlated [16].
It is notable that modular symmetry models exhibit a universal behavior in the vicinity of
fixed points, independently from details of the models [17, 18]. The universality also holds
true in multiple moduli models and the same universal scaling behavior as the single moduli
case is found [19]. The small departure of the modulus from the fixed points can produce the
quark and lepton mass hierarchies [20-29]. Moreover, it was shown that the invariance under
the modular group offers an axion-less solution to the strong CP problem [30-33], and the
modulus 7 can play the role of inflaton in the early Universe [34, 35].

The modular symmetry is ubiquitous in higher dimensional theories such as superstring
theory. For instance, the complex modulus 7 parameterizes the shape of the torus in torus
or its orbifold compactification, and the modular symmetry is the geometrical symmetry of
the compact space. The top-down approach generally gives rise to both traditional flavor
symmetry and modular symmetry. This leads to the idea of eclectic flavor group which is
the nontrivial product of the traditional flavor symmetry and modular symmetry [36—43].
The traditional flavor symmetry severely restricts the Kéhler potential such that plenty of
terms compatible with modular symmetry [44] are suppressed and the flavor universal Kéhler
potential can be produced at leading order. However, one has to reintroduce the notorious
flavon fields besides the modulus to break the traditional flavor symmetry. The eclectic flavor
group combined the advantages of modular symmetries and traditional flavor symmetries,
and some predictive models with eclectic flavor symmetry have been proposed [45-49].

Recently the non-holomorphic formulation of the modular flavor symmetry has been
developed in ref. [50], and lepton flavor models based on the finite modular group I's = Ay
have been built. The modular invariance is inherited while the assumption of holomorphicity
is superseded by the harmonic condition. As a consequence, the Yukawa couplings are
polyharmonic Maaf} forms of level N, and supersymmetry is not a requisite anymore. Although
the modular weights of non-vanishing modular forms are non-negative,! the weights of
polyharmonic Maafl forms can be negative integers. Moreover, there exist non-holomorphic
polyharmonic Maafl forms apart from the known holomorphic modular forms at weight one
and weight two. This formalism can be extended to consistently include generalized CP
(gCP) symmetry which constrains the phases of the coupling constants, thus the predictive
power of the modular invariant models are improved further, as in the supersymmetric
modular flavor symmetry [51].

The non-holomorphic modular invariant approach to the flavor problem has been explored
at levels N = 3 [50, 52] and N = 4 [53], and some viable lepton flavor models were constructed.

!The modular form of weight zero is a constant which is 7-independent.



In the present work, we shall consider the level N = 5 finite modular group I's = As in
the framework of non-holomorphic modular flavor symmetry. The three generations of the
left-handed (LH) leptons are assigned to an irreducible triplet of As, and right-handed (RH)
leptons are invariant or transform as an irreducible triplet. The non-vanishing polyharmonic
Maafl forms transforming under I'y require even integer weights. Utilizing the level 5
polyharmonic Maafl forms with weights k& = 44,42, 0, we construct all possible lepton
models invariant under the As modular symmetry. We consider the most economical modular
invariant lepton models, no flavon other than 7 is introduced and the light neutrino masses are
generated through the Weinberg operator or the type-I seesaw mechanism. Furthermore, the
corresponding predictions for lepton mixing parameters and neutrino masses are discussed.

The remaining parts of this paper are organized as follows. We review the concept of
modular group and the framework of non-holomorphic modular flavor symmetry in section 2.
We construct the non-holomorphic lepton flavor models based on the finite modular group
I's & As in a systematical way, and the phenomenological predictions for the lepton mixing
angles, CP violation phases and neutrino masses are studied in section 3. Two example models
are presented and a thorough numerical analysis is performed to discuss their phenomenology
in section 4. Finally we summarize the results and draw the conclusion in section 5. The
irreducible representations and the related Clebsch-Gordan (CG) coefficients are given in
appendix A, they are indispensable elements when constructing As flavor symmetry models.

2 Non-holomorphic modular flavor symmetry

In this section, we shall give a brief review of the non-holomorphic modular flavor symmetry.
The homogeneous modular group I' = SL(2,7) is the group of two-by-two matrices with
integer entries and unit determinant,

SL(2,2) = {(‘c‘ Z)

The modular group can be generated by two matrices

S:(o 1), T:(l 1). (2.2)
-1 0 01

One can check immediately that S and T satisfy the following relations

a,bc,d e, ad—bc:l}. (2.1)

§?=—1, S'=(ST)=1, S°T=T5?, (2.3)

which implies (T'S)? = 1, where 1 refers to the two-dimensional unit matrix. The modular
group acts on the complex upper half plane H = {7 € C|J(7) > 0} by linear fractional

transformation
at +b a b
=—, = e SL(2,7). 2.4
T +d 7 <c d) (2.2) (24)
The actions of the generators .S and T on the complex modulus 7 read as
1
St =——, Tr=71+1. (2.5)
T



By applying the modular 7" transformation in succession, one can map any value of modulus
7 in the upper half plane into the region —1/2 < R(7) < 1/2, and it can be further mapped
into the fundamental domain,

'D:{TE/H‘—;S%(T)S;, |T|Zl}. (2.6)

Each point in the upper half plane can be mapped into the fundamental domain D by
some modular transformation, nevertheless no two points in the interior of D are related
under modular group. Let N be a positive integer, the principal congruence subgroup of
level N is the subgroup

I(N) = {(Z Z) € SL(2,2), (Z Z) = ((1) 2) (mod N)} . (2.7)

Obviously we see I'(1) = I". The quotients I'y = I'/ £ I'(/V) isomorphic to the permutation
groups S3, A4, Sy and As for N = 2, 3, 4 and 5 respectively [11]. Moreover, the quotients
Iy = T'/T(N) are double covering groups of I'y [54].

The modular flavor symmetry is originally formulated in the framework of supersymmetry,
in which modular symmetry and supersymmetry constrain the Yukawa couplings to be
holomorphic modular forms [7]. Recently the formalism of the non-holomorphic modular
flavor symmetry was proposed and supersymmetry is unnecessary in principle [50]. The
modular invariant Lagrangian is built from matter fields and polyharmonic Maafl forms of
level N. The polyharmonic Maafl forms Y (7) of weight k at level N are functions of the
complex modulus 7, and their transformation under the modular symmetry is

Y (1) = Y(y7) = (et + )*Y (1), 7= (Z 2) e'(N). (2.8)

Moreover, they have to satisfy the following Laplacian condition and proper growth con-
dition [50],

Y(r) =0(y") asy — +oo, uniformly in x, (2.9)

where « is some real parameter and 7 = x + iy, and the Laplacian condition can be
equivalently expressed as O {yk(“);Y(T)} = 0. The polyharmonic Maafl form Y () can
contain both holomorphic part and non-holomorphic part, and its Fourier expansion is of
the following form

+o0o +o0o
Y(r)= Z chah + cgylflC + Z ¢, I'(1 —k,4mny/N) ¢N", qn = eZW/N, (2.10)
n=0 n=1
where T'(s, z) is the incomplete gamma function:

+00
T(s,2) = / et dt (2.11)



z

It is straightforward to determine I'(1,z) = e *. For other integer values of s, one can
obtain the analytical expression of the incomplete gamma function by using the following

recursion relation,
I(s+1,z) =sl(s,2)+2°e . (2.12)

It is known that the modular weights of modular forms are non-negative integers, while
the modular weights of polyharmonic Maafl forms can be generic integers which can be
positive, negative or zero. Note that the product of two polyharmonic Maafl forms of weights
k and k' generally is not a weight k + &’ polyharmonic Maaf3 form, because the Laplacian
condition could be spoiled for k, k" < 0. The weight k& polyharmonic Maaf$ forms of level NV
can be lifted from the weight 2 — k& modular forms of level N [50]. The non-holomorphic
part is vanishing at weights k£ > 3 while there exist non-holomorphic polyharmonic Maafl
forms at weights k < 2. The weights k polyharmonic Maafl forms of level N are invariant
up to the automorphic factor (c¢r + d)* under I'(V), nevertheless they transform under the
finite modular group I"y for generic integer k and I'y for even k. One can choose a basis
in which this transformation is described by irreducible representations of Iy (or I'y for
even k), so that the polyharmonic Maaf} forms of weight & and level N can be arranged
into irreducible multiplets of Iy (or I'y) [50].

The modular symmetry can strongly constrain the Yukawa couplings and the fermion
mass structure. The transformation property of the matter field is fully specified by its
modular weight and its transformation under the finite modular group I'y or I'y. To be
more specific, adopting the two-component spinor notation, the Weyl spinors 1, ¢ and the
Higgs field H transform under the modular group as

(@) = (er +d) " py(V)(),
(@) = (o1 4 d) 7 pye ()0 (),
H(z) — (et +d) " py(v)H(z), (2.13)

where the modular weights ky, kye, kg are integers, py (), pype(y) and pp(7y) are unitary
representations of I'y (or I'y). Then the Yukawa interaction can be written as

Ly = —Y®™) () H + h.c. (2.14)

where the Higgs field H should be its complex conjugate H* for the down-type quarks and
charged leptons, and we drop the gauge indices. Requiring modular invariance of the above
Lagrangian, the field coupling Y *v)(7) should be a multiplet of weight ky and level N
polyharmonic Maaf3 forms, and its modular transformation is given by

Y (r) = Y (y7) = (er + ) py (7)Y ) (7), (2.15)

where py is a representation of Iy, (or I'y for even ky), and the modular weight ky and
the representation py should obey the following conditions

ky = kye +ky + kp, PY & pye Q py @ pg S 1. (2.16)



Weight | Polyharmonic Maafl forms Y,n(k)

—4 —4 —4 -4
— 4| oy v v

k=—2| Y2, v vy v

k=0 v v, v

k=2 2 v v v

4 4 4 4 4 4
k=4 | Y v vy v vy v

Table 1. Polyharmonic Maaf} form multiplets of level 5 and weights k = +4, £2, 0, where the subscript
7 denotes the transformation property under finite group As. Here Ys(f) and Yé}c} stand for two linear
independent quintuplets of Maafl forms at weight 4. The explicit forms of these polyharmonic Maafl
form multiplets can be found in ref. [50].

The gCP symmetry can be consistently included in the above framework of non-holomorphic
modular symmetry [50]. It acts on a field multiplet ¢(z) as ¢(x) — X,¢*(xp) with zp =
(t,—x). It turns out that the gCP transformation has the canonical form X, = 1, in the
basis where both modular generators S and T are represented by unitary and symmetric
matrices [51]. As a result, the gCP invariance enforces the coupling constants accompanying
each invariant singlet in the Lagrangian to be real. In the present work, we consider the
finite modular group I's = Aj of level N = 5. We shall employ the representation basis for
the As generators .S and 7" shown in appendix A. One see that T is represented by diagonal
matrices in different As irreducible representations, and the representation matrices of S are
real and symmetric. Hence the gCP symmetry amounts to requiring real couplings in our
case. In the framework of non-holomorphic modular flavor symmetry, modular invariance
constrains the Yukawa couplings to be polyharmonic Maafl forms of level 5. The explicit
forms of their Fourier expansion have been presented in ref. [50]. Here we do not show these
lengthy expressions and only summarize the polyharmonic Maafl form multiplets of level
N = 5 and weights k£ = 44,42, 0 in table 1.

3 General model building

In this section, we shall perform a systematic classification of all minimal lepton mass models
based on the finite modular symmetry I's = As. It is realized from non-supersymmetric
case with the polyharmonic Maafl forms of level N = 5 which can be decomposed into the
irreducible multiplets of the finite group As [50], as is shown in table 1. In the present work,
neutrinos are assumed to be Majorana particles and their masses are considered to arise from
the Weinberg operator or the type I seesaw mechanism with three RH neutrinos. No flavon
other than complex modulus 7 will be introduced, and the modular symmetry is broken
when 7 obtains a vacuum expectation value. The Higgs doublet field H is assumed to be As
singlet with vanishing modular weight. We assume that the three generations of LH lepton
doublets L = (L1, Lo, L3)T with weight k7, and the three RH neutrinos N¢ = (N§{, N§, N§)T



Cases C1(C1) 2 (C3) C5(C3) | Cu(Cy) | C5(Cp)
(k1 + kp, ko + kp ks + k) | (—4,-2,0) | (—4,-2,2) | (—4,—-2,4) | (—=4,0,2) | (—4,0,4)

Cases Cs (C§) C7(C7) Cs (Cg) | Cy(Cy) | C1o(Cyp)
(ki + kpo ko + ko ks + k) | (—4,2,4) | (=2,0,2) | (=2,0,4) | (—2,2,4) | (0,2,4)

Table 2. The 20 different possible cases for the assignments that the LH lepton fields L transform
as a triplet under As and the RH charged leptons are As singlets. The ten cases C; (C!) are for
assignment L ~ 3 (L ~ 3’) and Ef 53 ~ 1 with different modular weights, and the corresponding
charged lepton mass matrices take the form in eq. (3.2) (eq. (3.4)).

with weight by in the type I seesaw models transform as triplet 3 or 3’. The three RH
charged leptons EY , 5 are assigned to singlet 1 or a triplet 3 or 3’ under A5 modular group.
For the former assignment, they are distinguished by their modular weights k12 3. For the
latter assignment, the modular weight of E¢ = (E¥, ES, E)T is denoted as kg. For each
representation assignment, there are in principle infinitely possible weight assignments for
lepton fields, and the number of independent couplings of the charged lepton mass terms
and neutrino mass terms generally increases with the weight of the involved modular forms.
We shall consider the polyharmonic Maafl forms of even weight kK = —4 to k = 4, and
employ potentially the lowest weight modular forms as much as possible in order to reduce
free parameters.

3.1 Charged lepton sector

Firstly, let us consider the assignments that the three RH charged leptons are all singlet 1 of
As. Then if the LH lepton fields L are embedded into the triplet 3 (or 3’), modular form
multiplet in the representation 3 (or 3’) should be invoked in the charged lepton mass terms.
As a consequence, there are only two different assignments for lepton fields and we will list
the Lagrangian and charged lepton mass matrices for the two cases in the following.

The Lagrangian for the charged lepton Yukawa coupling reads as

—L.=a (EfLY'?,(kl—’_kL)H*) 1+B (EgLY?,(k2+kL)H*> 1+7 (EgLYék3+kL)H*)l+h.C. :

(3.1)
where Y?,(kﬁ]% ) (i =1,2,3) stand for level 5 polyharmonic Maaf forms transforming as 3
under As up to automorphy factor. Notice that if there are several linearly independent
polyharmonic Maafl form multiplets in the same representation 3 at a given weight k; + kr,,
their contributions to the Lagrangian are of similar form which can be straightforwardly
read out from the general results in the following. Guided by the principle of minimality
and simplicity, the polyharmonic Maafl forms of those weights which only involve one
independent triplet polyharmonic Maafl form in the representation 3 are imposed in the
charged lepton sector. From table 1, we find that the possible values of the modular
weights k;+kr, are £4,+2 and 0. Notice that any two rows of a charged lepton mass matrix



should not be proportional to each other, otherwise at least one charged lepton would
be massless. Furthermore, the permutations of any two rows of the charged lepton mass
matrix amounts a redefinition of the RH charged lepton fields, and thus the predictions
for charged lepton masses and lepton mixing matrix are unchanged. Without loss of
generality, we take k1 + kr, < ko + kr < k3 + k. In the end, we find there are totally 10
possible charged lepton mass matrices from the 10 possible independent assignments of
the values of k; + kr,. The 10 cases are labelled as C; (j = 1,2,---,10) and summarized
in table 2. The three terms in eq. (3.1) have similar form, and they contribute to three
rows of the charged lepton mass matrix, respectively. We can read out the charged lepton
mass matrices for the 10 cases as follows

OéY;g(ﬁ1+kL) ay3(ké1+k‘L) ay3(1€21+kL)

Me(ky +kp, ko +kr, k3 + kr) = BY?fﬁQJF’“L) ﬁyg(gﬁm) BY;:,(,]?%L) v, (3.2)
ka+k ks +k ks +k
,YY?’(713+ L) 'YY?,(733+ L) 'YY3,(,23+ L)

where the charged lepton mass matrix M, is given in the right-left basis E° M, L with
v = (H), and we denote Y3(ki+kL) = (YS(,karkL), Y3(’k2i+kL), Yé§i+kL))T. For all the 10 cases,
the phases of all the three couplings «, § and v can be absorbed into the RH charged
leptons EY, E5 and EY respectively, and they can be taken to be real.

(11) L ~ 3/ and EiQ,g ~ 1

Similarly, the charged lepton mass terms of the Lagrangian are

—Lo=a (BiLYy TH") +8(ESLYy T HY) 4y (BSLYy T HY) e

(3.3)
and the corresponding lepton mass matrix takes the following form
Ys(,ki"rk’L) OéY3(,k§+kL) QY3(,k§+kL)
Me(ky + ko ko + ki, ks + ) = | BYy2 ) gyfathe) - gyfethe) o 0 (3.4)
,yy3(,kﬁ+kL) Y3(/]fg+kL) Y&'(']f?2’+kL)

where k; + kr = +4, 12, 0 with k1 + kr, < ko + kr, < k3 + kr, and parameters «, § and
~ can be taken to be real. There are also 10 independent weight assignments which are
labelled as C’]’- (j=1,2,---,10) and are given in table 2.

In the following, we proceed to consider the assignments that the three RH charged
leptons E° also transform as a triplet 3 or 3’ under A;. Note that LE® decomposes as
33=183,4855,323 =183, ®550r 303 =435, using the CG coeflicients
shown in table 11, we can write out the modular invariant charged lepton mass terms and
extract the mass matrix for each assignment as following.

(iii) L ~ 3 and E° ~ 3
In this case, the most general Lagrangian L. for the charged lepton masses is given by:

—Lo = o (B LY H) 4 (BOLYy T EY) oy (BLYg T ) b,
(3.5)



where the coupling « is real, and the couplings 8 and ~ are generally complex in the case
that gCP symmetry isn’t considered. If the modular group As is extended to combine
with the gCP symmetry, all the couplings are further constrained to be real in our working
basis. For the simplest weight assignment w = kg + kr, = —4, -2, 0, 2, the charged lepton
mass matrix reads as,

PR RV B R R P RY TS
Mo(w) = | BY{Y — /3yviY \/éfyyg;;‘;) a¥ — gy — Ay | v
—BY38) — V3 av{ 4 By — 4viY V6rYsy

(3.6)
Note that the above mass matrix involves two more parameters than Cj(CJ‘) in table 2
when gCP symmetry is not imposed. Generally one needs to tune the values of couplings
a, (B, v to reproduce the charged lepton mass hierarchy for this type of assignment,

L~38 and E¢~ 3

Similar to previous case, the charged lepton Lagrangian invariant under the A5 modular
symmetry reads as

_ﬁe —a (EcLyl(kE-i—kL)H*)l + /3 (ECLY?’(lkE-i-kL)H*)l + (ECLYS(kE+kL)H*)1 + hee. ,

(3.7)
which leads to the following charged lepton mass matrix
a +27Y5, 3'3 3y 54 p 3' 2~ ’Y 5,3
M, (w) = \fnys 4 f’yYé%} aYy (w) ﬁY , yYéﬁ)) v,
mf(“’ V3 7Y5§‘;) V™ + gy “’) — Y NG yygjg
(3.8)

with the modular weight w = kg + k.

L~38and E°~ 3

From the multiplication rule 3®3’ = 4® 5, we find that the modular invariant Lagrangian
L. for the charged lepton masses can be written as:

—Le=a (ELY " kL)H*>1 + 8 (Eery,s kL)H*)l +he.. (3.9)

When the modular weight w = kg + kr, is taken to be —4, —2, 0 and 2, the charged lepton
mass matrix is given by

VI vy vy
M, (w) = y;> fy w2y | v, (3.10)
vl vy — oy

which only involves one real input parameter «. The reason is that there is no quartet
modular form at these modular weights. It turns out to be very difficult to accommodate



the three charged lepton mass with only one coupling «. For kg + kr, = 4, the charged
lepton mass matrix is given by

\/§a1Y5(?)1 "’\/30421/5(?},1 alYE,(?,)5+O‘2Y5(2,5 a1Y5(%+a2Y5(}1}72
M. = ale(?zﬁ'O‘?Yé?}A _\@alyﬁ,):s_\@a?}%(?},z _\/Ealys(?,)s)_\/ﬁwys(ﬁ,s)
1 Ys(??g +042Y5(}1},3 —\@alyzf?,)z - \@0423”5(2,2 —V2a Ys(}l,)z; - \/50425/5(2,4
0 vavy) vav()
+8 | —veysy —viy v | |v. (3.11)
—vayy Yff vy

where parameter 1 can taken to be real, while parameters ao and § are generally complex.
This mass matrix also involves more input parameters than the mass matrices of C;(C7)
in table 2.

(vi) L ~3 and E€~ 3

For this assignment, the charged lepton mass matrices are the transpose of those in
case (v).

In general, the viable charged lepton mass matrices for triplet RH charged lepton
assignment involve more free parameters than those for three singlet RH charged leptons
when gCP symmetry is not imposed. Hence we shall analyze the scenario that the three
RH charged leptons are Aj singlets in the following.

3.2 Neutrino sector

In the present work, the neutrinos are assumed to be Majorana particles. The light neutrino
masses are described by the effective Weinberg operator or arise from the type I seesaw
mechanism. Let us first consider that the general form of the modular invariant Majorana
neutrino mass terms are described by Weinberg operator. Under the assumption that the
LH lepton doublets L transform as a triplet 3 or 3’ under As, the LL decomposes as
33=1934D550r3 @3 =1® 3, ®5g, and the anti-symmetric contractions (LL)g,
for L ~ 3 and (LL);,,;1 for L ~ 3’ are vanishing. Thus the singlet polyharmonic Maaf} form

Y1(2kL) Y(QkL) .

or the quintuplet Maafl form Yy is necessary to obtain nonzero neutrino masses.

Then the most general modular invariant Lagrangian for neutrino masses can be written as
i (2kL) 92 (2k1)
Lo =35 (LLHBEY) + o (LLHEYZ™) +he.. (3.12)

For the sake of simplicity, we are concerned with the modular weight k;, = —2,—1,0,1. Then
there are 8 independent cases differing in the representation assignment and weight of L,
and they are labelled as W; and W/ (i = 1,2,3,4) for L ~ 3 and L ~ 3’ respectively, as
summarized in table 3. Applying the decomposition rules of the finite modular group As given

,10,



Weinberg operator

Cases | Wh(Wy) | Wa(W3) | Wa(W3) | Wa(Wy)

kL —9 1 0 1
Seesaw

Cases | D1 (D]) | Do (D%) | D3 (D5) | Dy(D))
kr +kn —4 -2 0 2

Cases | Ni(N7) | Na(N3) | N3(N%) | Na(Ny)
kn -2 —1 0 1

Table 3. The values of the modular weights k;, and kx of the LH lepton L and RH neutrinos N°€.
The cases W;(W/) are for the assignment L ~ 3 (3’) with different value of &z, and the light neutrino
masses are described by the Weinberg operator. The Majorana mass terms of N;(N]) are for the
assignment N¢ ~ 3 (3’) with different weight kx, and the Dirac mass terms of D; (D}) correspond to
the assignments (L, N°¢) ~ (3,3") ((L, N¢) ~ (3, 3)) with different weight ky, + k. The light neutrino
mass matrices of W;(W/) are given in eq. (3.13). The Majorana mass matrices of cases N;(N]) can
be obtained from My in egs. (3.15), (3.16). The Dirac mass matrices for cases D; (D)) are shown in
eq. (3.17).

in table 11, we find that £, in eq. (3.12) gives rise to the following light neutrino mass matrices

M, (kL) = A —\/§Q2Y5(,5 2 \/6923/5(,4 2 91Y1( Q. 92Y5(,1 2 J
V3 y(2kL) y(2kr) _ o y-(2k1) NG y.(2kL)
G215 o g1ty 92Xy 92¥5 3
P glyl(QkL)Jngz]}/;ikL) _\/§g2Y5(%kL) _\f@YS(?L)k
My (ki) = — VB Y VBpYar g - gy | (3.13)
3 y(2kL) y.(2ko) _ o y(2ke) V6 y.(2kL)
g2¥s5 3 g1l 9215 9215 5

for L ~ 3 and L ~ 3’ respectively, where the phase of parameter g; can be set to be zero,
while the phase of go can not be removed by a field redefinition. Both ¢; and g would
be real if gCP symmetry is included.

When the neutrino masses are generated by the type I seesaw mechanism, the three RH
neutrinos N¢ are assigned to triplet 3 or 3’ of As. Then the Lagrangian for the neutrino
masses can be generally written as

(& h (& (&
L, = ;g (NeLy i)+ %: A (NeN“Y,2E)) 4 he, (3.14)

YT(lkL—i-kN) Y(2kN)

where the polyharmonic Maafl form multiplets and Yy, are required to ensure
modular invariance, and the explicit forms of them are determined by the weights and
representation assignments of L and N¢. Similar to the Weinberg operator in eq. (3.12), the
representation ro can be 1 and 5 of As5. We are concerned with the models with minimal

number of parameters, consequently we focus on the low weights ky = —2,—1,0,1. Then
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the 8 possible assignments of N¢ and its weight are labelled as N; and N} (i = 1,2,3,4)
which are summarized in table 3, and the corresponding mass matrices for the Majorana
neutrinos N¢ are given by

Y o YY) /Bho Y —V/BhaYay™)
My (kn)=A —V/BhaYau) V6hs y(%N MY hYaat) | (3.15)
—\Bha Y2 lel(QkN)—h Yo eh YS%N)

for N¢ ~ 3 and

YN 12hY Y By —VBho Y
My(ky)=A —BhaY 2] V6 hQY(%N) MY —nYa it | (3.16)
_\/§h2Y5(,23kN) hlyl(QkN) h Y5(21kN) thY QkN)

for N¢ ~ 3.
The Dirac neutrino mass terms are similar to the charged lepton mass terms discussed

in cases (iii) to (vi) of section 3.1. Firstly, let us consider the assignments that L and N°

transform as different triplets of As, then Y,«(f LHEN) hust be quartet 4 or quintuplet 5. When

the modular weight w = kr, + ky takes the values of —4, —2, 0 and 2, only the quintuplet
Maaf form Y5(kL+kN ) contributes to the Dirac neutrino mass matrix reading as

\/§Y5(,Ul]) Yé? Yég)
Mp(w) =g Yé? —\/§Y5(f§) —\/§Y5(f5”) v, for (L,N°) ~ (3,3,
W vy —vary
VA vy vy

Mp(w)=g| Yi¥ v) V2V —V2ves) | v, for (L,N°) ~(8,3), (3.17)
Y5(f§) —\@Yég) _\@YS(ji)

which depend on a unique overall coupling g. The 8 possible Dirac neutrino mass matrices in

eq. (3.17) correspond to the 8 possible independent cases D; and D; listed in table 3.

If both L and N¢ are assigned to a same triplet 3 (or 3’) of As, the polyharmonic Maa$l
form Yr(f LHEN) can be As singlet 1, triplet 3 (or 3’) and quintuplet 5. Since all these three
modular multiplets are present at every modular weight, the Dirac neutrino mass matrix
involves at least three couplings and the corresponding Dirac neutrino mass matrix is given by

gly(w)+293y5(lf) 92Y33 \fg3Y55 92Y32 \[93Y52
Mp(w)= g2Y33 fggYé%’ fngsA g1¥7" )—92Y3(,1)—93Y5(,1) v,
—92Y3(,2 \[93Y5,2 91Y1(w)+92Y3(ﬁ))—93Y5(ﬁ]) \/6935/5(};)
(3.18)
for L, N ~ 3 and
g1Y(w)+293Y(w) —QQY w) fgsy Y(w \/>g3y(w)
Mp(w)= ng, \[ggY54 fgsym) 91Y1( )*gzy( ) 93Y5( W .
QQY \/> Y Y( )+ Y( ) Y( w) \/> Y
3' 393 53 g1ty 92311 —93¥5 1 693 5,5
(3.19)
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Observable bf £ 1o 30 region Observable bf + 1o 30 region
sin?@13 | 0.0221513:99936 | [0.02030, 0.02388] 1?—?5’&2 2.51370:0%8 | [2.451,2.578]
sin? 012 0.3081001% 0.275, 0.345] ﬁfjgi 0.029870-99079 | [0.0268,0.0328]
sin? O3 0.47075:01% [0.435,0.585] me/my, 0.004737 —
Scp/m 117870334 0.689, 2.022] my/m, 0.05882 —
o 7.497019 [6.92,8.05] me/MeV | 0.469652 -

Table 4. The global best fit values, 1o ranges and 30 ranges for mixing parameters and lepton mass
ratios, where the experimental data and errors of the lepton mixing parameters and neutrino masses
for NO neutrino mass spectrum are obtained from NuFIT 6.0 with Super-Kamiokande atmospheric
data [55]. The 1o error of the charged lepton mass ratios are taken to be 0.1% of their central values
in x? function.

for L, N¢ ~ 3’ with w = k1, + ky = —4, 2,0, 2, respectively. We shall not consider these
cases in the following, since we are only interested in the models with less free parameters.

In short, we have obtained 8 minimal cases labelled as W; and W, when neutrino masses
are generated by the Weinberg operator, and 32 minimal combinations D; — N} and D; — N;
with 7,7 = 1,2,3,4 are obtained if neutrino masses are generated by seesaw mechanism.
The values of the modular weights k7, and ky for each case are listed in table 3. All these
resulting light neutrino mass matrices contain 3 real input parameters besides the complex
modulus 7 in the case of without gCP symmetry. One more real parameter would be reduced
if gCP symmetry is imposed.

3.3 Numerical results

In short, taking into account the possible structures of the models with the charged lepton
mass matrices summarized in table 2 and neutrino mass matrices summarized in table 3,
we find that there are a total of 400 minimal non-supersymmetric lepton models based on
the finite modular symmetry As: 80 different models C; — W; and C] — WJ/ in which the
neutrino masses are described by the effective Weinberg operator, and 320 different models
C; — Dj — Nj, and C] — D, — Ny, in which neutrinos gain masses via type I seesaw mechanism,
where ¢ = 1,2,--- ,10 and j,k = 1,2,3,4. In each model, the modular weight assignments
of the matter fields can be fixed uniquely. Here we do not show them. It is notable that
coupling constants «, § and < in the charged lepton mass matrices can be taken to be
positive. If the neutrino masses are generated by the effective Weinberg operator, the light
neutrino mass matrices have two independent real parameters |g2/g1], arg(g2/g1) besides the
overall factor gjv?/A and the modulus 7. If the light neutrino masses originate from the
type I seesaw mechanism, the light neutrino mass matrices for all models are determined by
|ha/h1| and arg(hz/h1) up to an overall factor g?v?/(h1A) and the modulus 7. Hence the
number of independent real free parameters of all the 400 models is eight in the case without
gCP symmetry. If gCP symmetry compatible with As is imposed, all couplings are further
constrained to be real in our working basis and the number of free parameters reduces to seven.
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In the following, we shall perform a comprehensive numerical analysis for all the 400
models both with and without gCP symmetry. In order to quantitatively assess how well
a model can describe the current experiment data, we define a x? function to estimate the
goodness-of-fit of a set of chosen values of the input parameters,

x2=z7:<3_0i>2, (3.20)

i=1 i

where O; and o; represent the global best values and 1o deviations respectively of the following
seven dimensionless observable quantities for normal ordering (NO) neutrino masses:

.2 .2 .2 2 2
Me/My, My/my, sin”6ia, sin”6i3, sin”6a3, dcp, Ams/Ams, (3.21)

where the contribution of the Dirac phase dcp is also included in the x? function. The
global best fit values and 1o uncertainties are summarized in table 4. P; in eq. (3.20) are the
theoretical predictions for the above seven physical observable quantities, and they depend
on the values of the following six dimensionless input parameters

Rr, S71, B/a, v/a, |g2/q| (or |he/hi]), arg(ge/g1) (or arg(he/h1)) ,  (3.22)

for Weinberg operator (seesaw) models. When gCP symmetry is included, the phase pa-
rameters arg(ge/g1) and arg(ha/hy) are equal to 0 or m. Note that the overall parameters
av of charged lepton mass matrices and gjv?/A (or g?v?/(hiA)) of light neutrino mass
matrices are determined by the measured electron mass and the solar neutrino mass square
difference Am3,, respectively.

For each set values of the input parameters, we can obtain the predicted values of lepton
masses, mixing parameters and the corresponding x2. Then we can find out the lowest >
by extensively scanning the parameter space. Here it is sufficient to limit the modulus 7 in
the fundamental domain D = {7 € H||R(7)| < 1/2,|r| > 1}. When we scan over the input
parameter space of the 80 Weinberg operator models and the 320 seesaw models without gCP
symmetry, we find that 21 Weinberg operator models and 174 seesaw models which contain
76 models C; — Dj — Nj and 98 models C; — D, — N, can accommodate the experimental
data, and all the fitting results for input parameters and predictions for mixing angles, CP
violation phases, neutrino masses, the effective mass mgg in neutrinoless double beta decay
(OvBB-decay) and the kinematical mass mg in beta decay of these models are summarized in
tables 5, 7 and 9, respectively. When the finite modular group As is extended to combine
with the gCP symmetry, only 4 of the 21 viable Weinberg operator models, 48 of 76 seesaw
models C; — Dj — Ny and 52 of 98 seesaw models C] — D, — Ny can give results in agreement
with the experimental data on mixing parameters and lepton masses. The best fit values
of the input parameters and the observable quantities of them are listed in table 6, table 8
and table 10, respectively. Henceforth we focus on the predictions of models that give the
three mixing angles 013, 612, 023, the Dirac CP phase dcp and Am3,/m3, in their 3o ranges
of global data analysis [55], the mass ratios me/my, m,/m, in the experimentally favored
intervals shown in table 4, and the three neutrino mass sum below the current most stringent
limit >~ m, < 120meV from Planck + lensing + BAO [58].
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Figure 1. The best fit values of 7 for the 21 (4) viable Weinberg operator models C; — W} and
C; — W/, and the 174 (100) viable seesaw models C; — D; — N;, and C] — D — Nj in the case of
without (with) gCP symmetry.
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In all these models, the modulus 7 is treated as an extra free parameter, varied to
maximize the agreement between data and theoretical predictions. The best fit values of the
complex 7 in the fundamental domain of SL(2, Z) for all the 195 (104) viable models without
(with) gCP are displayed in figure 1. It is obvious that the VEV of 7 is not preferred to lie in
the vicinity of modular fixed points. Furthermore, we can pin down the minimal value of y?
for each model relevant to three lepton mixing angles, three CP violation phases, the three
neutrino mass sum ) m,, the effective mass in Ov33-decay mgs and the kinematical mass in
beta decay mg. The results are shown in figure 2 and figure 3. From figure 2, we find that the
best fit values of the three mixing angles and Dirac CP phase of the most viable models are
predicted to lie in their experimentally allowed 1o regions [55]. These models can agree with
the experimental data very well. In principle, if a very precise measurement of the lepton
mixing parameters and neutrino masses is derived from the forthcoming neutrino oscillation
experiments and cosmic surveys, these data combined with a very accurate determination
of mgg might provide a good opportunity for probing different modular models. The next
generation medium baseline reactor neutrino experiment JUNO [56] can make very precise
measurement of the solar angle 615. The prospective 30 range of sin? f5 after 6 years of
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Figure 2. The results of the best fit values of the minimum value of x2, the three lepton mixing
angles and three CP violation phases for all 195 (104) viable models without (with) gCP. The red
dashed lines in the first four panels represent the best fit values, and the light blue bounds represent
the 1o and 30 ranges from NuFIT 6.0 with Super-Kamiokande atmospheric data [55]. The lighter
green band in the panel of sin? f5 is the prospective 3o range after 6 years of JUNO running [56]. The
lighter green regions in the panels of sin? fo3 and dcp are the resolution in degrees after 15 years of
DUNE running [57] for true values of them corresponding to their best fit values given by NuFIT 6.0.
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Figure 3. The best fit values of the minimum value of x?, the effective mass in Ov33-decay
mgg, the kinematical mass in beta decay mg and the three neutrino mass sum ) m,. In the
panel of the neutrino mass sum »_ m,, the vertical bands indicate the current most stringent limit
> m, < 120meV from the Planck + lensing + BAO [58], the next generation experiments sensitivity
ranges »_.m, < (44 — 76) meV of Euclid+CMB-S4+LiteBIRD [59], and the dashed line represents the
limitation of the normal mass ordering (> m, > 57.75meV). In the panel of the kinematical mass in
beta decay mg, the gray region represents Project 8 future bound (mg < 0.04meV) [60]. In the panel
of the effective Majorana mass mgg, the vertical bands indicate the latest result mgg < (28 —122) meV
of KamLAND-Zen [61], and the next generation experiments sensitivity ranges mgg < (9 — 21) meV
from LEGEND-1000 [62] and mgg < (4.7 — 20.3) meV from nEXO [63].

,17,



JUNO running are displayed in figure 2. Critical tests of the viability of these models will
be provided by the planned high-precision measurements of fo3 and dgp at the future long
baseline experiments DUNE [57] and T2HK [64]. After 15 years of DUNE running, the
resolution in degrees of them are plotted in figure 2. We see that the synergy between JUNO
and long baseline neutrino experiments DUNE and T2HK will be extremely powerful for
testing a large number of these modular models.

From figure 3, we find that the predictions for the neutrino mass sum ) m, in most
of the viable models can be tested by the next generation experiments sensitivity ranges
> my, < (44 — 76) meV of Euclid+CMB-S4+LiteBIRD [59]. The best fit values of mg in all
viable models are below the Project 8 future bound 0.04eV [60]. The predictions for mgg
in almost all viable models are compatible with the latest result mgg < (28 — 122) meV of
KamLAND-Zen [61], and most of the viable models can be tested by the next generation
experiments such as LEGEND-1000 [62] which aims to improve the sensitivity to mgg < (9 ~
21) meV and nEXO [63] which expects to achieve mgg < (4.7 ~ 20.3) meV. The relationship
between the best fit values of the lightest neutrino mass m; and mgg in each viable model
are also displayed in figure 3.

4 Typical models

From the discussion above, we see that the non-holomorphic As modular models are quite
predictive, particularly models with gCP symmetry. The reason is that the number of input
parameters is less than the number of observable quantities. Hence the free parameters,
mixing parameters and neutrino masses are generally correlated with each other. In order to
show the predictions of non-holomorphic A5 modular invariant models, we shall give detailed
numerical results of Weinberg operator model C) — W and seesaw model C§ — D} — N as
examples for illustration. The assignments of the two models are

L~3, Efo3~1, kr =1, ki = -5, ko = —3, ks=1, (4.1)
and

N€¢~ 3, L~3, 123~ 1, kny =k =k = -2, ko =4, ks =6.

(4.2)
For the two example models without gCP and with gCP, the best fit values of the free
parameters, the neutrino masses and mixing parameters are summarized in tables 5, 6, 9
and 10, respectively. After we comprehensively scan the parameter space of each model, and
require all the observables lie in their experimentally preferred 3o regions, some interesting
correlations among the input parameters and observables for the two example models are
obtained. For model C% — Wj, there are six independent and disconnected regions compatible
with experiment data in the parameter space, and the corresponding correlations among
input parameters and observables are plotted in figure 4, where the results without gCP and
with gCP are displayed in green and red, respectively. When gCP invariance is required
in the model, all couplings are real and R7 is the unique source of CP violation. As a
consequence, the three CP violation phases and the allowed regions of the input parameters
are constrained to lie in narrow ranges in figure 4. We find that the predicted ranges of the
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,19,



atmospheric mixing angle sin? fa3 and the Dirac CP violation phase dcp are [0.4502,0.5134]
and [1.33677,1.3997], respectively. These predictions may be tested at future long-baseline
experiments DUNE [57] and T2HK [64], and at the discussed ESSvSB experiment [65]. The
possible values of the sum of neutrino masses Y m,, lie in the interval [112meV, 120 meV]
which is below the current most stringent limit > m, < 120meV from the Planck + lensing
+ BAO collaboration [58], and the allowed range of the effective Majorana neutrino mass
mpgg is [21.39meV, 24.79 meV] which may be tested by the KamLAND-Zen experiment [61],
and future large-scale Ov33-decay experiments, such as LEGEND-1000 [62] and nEXO [63].
Furthermore, the two Majorana CP violation phases are predicted to be in narrow regions
ag1 € [1.4737,1.5497] and a3 € [0.58217,0.68327].

After we perform an extensive numerical scan over the parameter space of the seesaw
model C§ — D] — Ny, the numerical results are obtained. We find that the allowed regions
of the ratio 8/« are [1.189,2.899], [17.32,49.30], [0.00245,0.00314] and [0.0255, 0.0386], and
the corresponding viable regions of the ratio v/« are [12.68,32.36], [0.636,1.938], [1.43,1.78]
and [0.000349, 0.000476], respectively. Note that hierarchical values of the parameters «,
B and ~ are unnecessary to obtained the charged lepton mass hierarchies. This appears
to be a lucky coincidence in this model. We display allowed region of the modulus 7 and
the correlations among different observables in figure 5. From figure 5, we find that the
atmospheric angle sin?#y3 are strongly correlated with the solar angle sin? ;5 when gCP
symmetry consistent with non-holomorphic modular symmetry is imposed. It can be tested
by JUNO experiment [56] in combination with DUNE [57] or T2HK [64]. Moreover, the
three CP violation phases are all restricted to the narrow intervals 0.93397 < dcp < 1.0667,
0.97497 < a9 < 1.0267 and 0.91147 < ag; < 1.0877. Hence model can be tested at
future long baseline neutrino oscillation experiments DUNE [57] or T2HK [64]. The neutrino
mass sum »_m, and mgg are found to lie in narrow intervals [66.87 meV,75.21 meV] and
[0.8438 meV, 0.9706 meV], respectively. The prediction for the former is compatible with
the upper bound on neutrino mass sum from Planck + lensing + BAO [58] and may be
tested by Euclid+CMB-S4+LiteBIRD [59], and the prediction for latter is much below the
current most stringent limit from the KamLAND-Zen [61], and next generation Ov33-decay
experiments LEGEND-1000 [62] and nEXO [63].

5 Conclusion

Modular symmetry is a promising approach for predicting both the hierarchical masses
and flavor mixing parameters of fermions [7]. In the present work, we have performed a
comprehensive analysis of lepton models based on I's = As modular flavor symmetry in the
framework of non-supersymmetric [50], and all the simplest lepton models without any other
flavon except 7 have been constructed. In these models, the neutrinos are assumed to be
Majorana particles. They are considered gaining masses via either the Weinberg operator
or the type I seesaw mechanism. For all these models, the LH lepton doublets L and the
three RH charged leptons EY , 5 are assigned to a triplet and singlet 1 of A5 respectively, and
the RH neutrinos N¢ transform as triplet 3 or 3’ for seesaw models. The Yukawa couplings
come from the polyharmonic Maafl forms of weights kK = +4,+2, 0 and level 5. Then 80
independent minimal Weinberg operator models and 320 independent minimal seesaw models
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Figure 5. The experimentally allowed values of the complex modulus 7 and the correlations between
lepton mixing parameters in the model C§ — D7 — Ny with (red) and without (green) gCP symmetry.
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are obtained, and the corresponding charged lepton and neutrino masses matrices are shown
in table 2 and table 3, respectively. All the 400 models depend on six real dimensionless
free parameters (including the real and imaginary parts of 7) in eq. (3.22) and two overall
parameters in the case of without gCP symmetry. It is known that the gCP symmetry can
be consistently combined with the non-holomorphic modular flavor symmetry [50]. When the
non-holomorphic modular flavor symmetry is extended to combine with the gCP symmetry,
all coupling constants are enforced to be real in our working basis.

After performing an exhaustive numerical analysis for all the 400 models, we find
out 21 simplest phenomenologically viable Weinberg operator models and 174 simplest
phenomenologically viable seesaw models in the case of without gCP symmetry. The best fit
values of input parameters, lepton mixing angles, CP violation phases, neutrino masses, the
OvpBp-decay effective Majorana mass and the kinematical mass in beta decay are listed in
tables 5, 7 and 9. We find that the most viable models agree with the experimental data very
well, in which all mixing parameters are predicted to lie in their experimentally allowed 1o
regions. When gCP symmetry is imposed, then one more free parameter would be reduced for
all the 195 viable models. As a consequence, only 4 of the 21 viable Weinberg operator models
and 100 of the 174 viable seesaw models can accommodate the experimental data in lepton
sector, as shown in tables 6, 8 and 10. The future medium baseline reactor neutrino oscillation
experiments should measure the solar mixing angle sin? f1, with very good precision. A high
precision determination of the atmospheric mixing sin? fo3 and the Dirac CP phase dcp can
be performed by the next generation long baseline neutrino experiments DUNE and T2HK.
We find that the synergy between the forthcoming neutrino experiments JUNO and DUNE
(or T2HK) will be extremely powerful for testing a large number of these viable modular
models, particularly viable models with gCP symmetry. Additional important tests of the
models will be provided by precision measurements of the neutrino mass sum »_ m, from
the next generation experiments Euclid+CMB-S4+LiteBIRD and the effective mass mgg
from the future large-scale Ov3-decay experiments LEGEND-1000 and nEXO. Then the
number of viable models will further be reduced.

Guided by the analysis of viable models, we present detailed numerical results of Weinberg
operator model C — W} and seesaw model Cf — D] — N; as examples for illustration. The
result predictions for lepton mixing parameters, neutrino masses and the Ov35-decay effective
mass of the two models are obtained. When gCP symmetry is imposed, the allowed regions
of the input parameters and mixing parameters are constrained to lie in narrow ranges,
and some interesting correlations among the input parameters and observables for the two
example models are obtained. These correlations could be tested by the next generation
neutrino experiments. The Weinberg operator model C}, — W can be tested by the future
large-scale Ovf3-decay experiments LEGEND-1000 and nEXO.
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Models Best fit results for 8 viable models C; — W; without gCP
figy | Rr) | S(0) | Ble v/ lg2/91 | arg(ga/g1)/m| ow/MeV| (g1v?/A)/meV| i
{1,1} | —0.115 1.18 489.1 8.29 0.441 0.296 6.74 67.4 2.20
{1,3} | —0.190 1.27 11.4 0.00448 0.725 0.170 242.8 27.1 18.3
{2,1} | —0.348 1.11 10.3 0.000907 0.246 0.151 362.9 116.8 7.11
{2,3} | —0.190 1.27 11.4 0.00149 0.545 0.276 242.8 36.0 18.3
{3,1} 0.469 1.01 0.00517 3.26 0.464 1.95 581.0 139.0 4.55
{5,1} | —0.500 | 1.01 | 0.000625| 3.28 0.468 2.00 580.0 138.2 4.89
{6,1} | —0.500 | 1.01 | 0.000801| 3.28 0.468 2.00 580.0 137.9 4.91
{8,1} | —0.115 1.18 0.0169 | 0.00177 0.441 0.296 3295. 67.4 2.15
{i,7} | sin? @13 sin® 012 |sin® O23 | Scp /7| az1/7 | asi/7 | m1/meV | ma/meV | ms/meV| mgg/meV | mg/meV
{1,1} | 0.02193| 0.307 | 0.470 | 1.38 1.50 1.45 30.1 31.3 58.4 21.4 314
{1,3} | 0.02228| 0.293 | 0.459 | 1.76 | 1.09 | 0.775 15.9 18.0 52.3 5.65 18.1
{2,1} | 0.02207| 0.317 | 0.502 | 1.45 1.15 | 0.797 30.2 314 58.2 13.7 314
{2,3} | 0.02228| 0.293 | 0.459 | 1.76 1.11 | 0.773 28.5 29.8 57.4 11.4 29.9
{3,1} | 0.02203| 0.309 | 0.438 | 1.08 1.18 | 0.201 16.1 18.3 51.9 7.84 18.3
{5,1} | 0.02213| 0.309 | 0.437 | 1.02 1.02 | 0.0289 16.0 18.1 52.0 6.47 18.2
{6,1} | 0.02217| 0.310 | 0.437 | 1.02 1.01 | 0.0236 16.0 18.1 52.0 6.42 18.2
{8,1} | 0.02196| 0.307 | 0.470 | 1.38 | 1.50 1.45 30.1 31.3 58.3 214 314
Models Best fit results for 13 viable models C; — W, without gCP
{i.g} | R(m) | S0 | Bla V/a lg2/g1| | arg(g2/g1)/m | aw/MeV | (g10°/A)/meV|  xiin
{1,1} 0.429 0.992 104.8 4007. 0.548 1.86 2.55 124.2 4.14
{2,4} 0.405 1.10 8.53 0.00875 0.182 1.23 361.8 107.5 0.00695
{3,1} | —0.0883| 1.13 | 0.000770| 0.0528 0.499 0.312 4688. 75.6 8.87
{4,1} | —0.110 1.16 0.00650 | 0.0328 0.964 1.74 4271. 42.4 0.545
{5,1} | 0.0338 1.20 37.7 49.3 0.670 1.72 31.9 47.3 0.0850
{5,4} 0.402 1.24 127.9 325.2 0.252 1.25 4.76 86.4 0.461
{6,1} | —0.110 | 1.16 0.0328 | 0.00108 0.964 1.74 4271. 42.3 0.542
{6,2} | —0.350 | 1.09 161.7 8.39 0.288 1.28 10.2 150.1 10.9
{7,1} | —0.0846| 1.15 1741. 39.6 0.899 1.72 3.28 47.8 2.93
{8,1} | 0.0341 1.20 397.1 518.3 0.670 1.72 3.03 47.3 0.0778
{8,4} 0.402 1.24 183.0 465.1 0.252 1.25 3.33 86.4 0.461
{10,1} | —0.0845| 1.15 0.0227 | 0.000796 0.899 1.72 5707. 47.8 2.93
{10,2} | —0.352 1.09 304.1 15.9 0.299 1.28 5.43 144.0 10.7
{i,5} | sin® 13| sin® 612 |sin® O23 |Scp/m| ao1/m | asi/m | m1/meV| ma/meV | ms/meV| mgg/meV | mg/meV
{1,1} | 0.02212| 0.308 | 0.473 | 1.47 | 0.108 | 1.99 9.32 12.7 50.7 8.87 12.8
{2,4} | 0.02215| 0.308 | 0.470 | 1.16 1.65 | 0.122 25.5 26.9 55.9 23.3 27.0
{3,1} | 0.02262| 0.312 | 0.442 | 0.835| 1.98 1.59 29.8 31.0 59.0 30.8 31.1
{4,1} | 0.02218| 0.308 | 0.470 | 1.28 | 0.149 | 0.218 16.7 18.8 52.5 17.0 18.9
{5,1} | 0.02218| 0.308 | 0.469 | 1.22 | 0.206 | 0.323 21.1 22.8 54.1 21.2 22.8
{5,4} | 0.02215| 0.308 | 0.469 | 1.02 | 0.0196| 0.0998 29.5 30.8 57.9 30.5 30.8

Table 5. The best fit values of the input parameters, three mixing angles 612, 613, 023, Dirac CP
violation phase dcp, Majorana CP violation phases a2, as3q, three light neutrino masses mg 2 3, the
effective mass mgs in OvB3-decay and the kinematical mass mg in beta decay at the minimum values
of x* for viable models C; — W; and C; — W} which are labelled as {i,7} in the case of without gCP
symmetry. The best fit values of the charged lepton mass ratios me/m, and m,/m, are both the
global best fit values of them, i.e. m./m, = 0.004737 and m,/m, = 0.05882. The best fit values of
the mass sum Y m, and Am3;/Am%, can be easy obtained from the three neutrino masses. In the

following tables, we would not show them as the same reason (continues . ...).
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{6,1} | 0.02218| 0.308 | 0.470 | 1.28 | 0.149 | 0.217 16.7 18.8 52.5 17.0 18.9
{6,2} | 0.02212| 0.308 | 0.439 | 1.40 | 1.83 | 0.453 30.6 31.8 57.3 30.2 31.8
{7,1} | 0.02215| 0.308 | 0.470 | 1.43 | 0.180 | 0.440 18.9 20.8 53.3 18.6 20.9
{8,1} | 0.02218| 0.308 | 0.469 | 1.22 | 0.205 | 0.322 21.1 22.8 54.1 21.2 22.9
{8,4} | 0.02215| 0.308 | 0.469 | 1.02 | 0.0196| 0.0998 29.5 30.8 57.9 30.5 30.8
{10,1} | 0.02215| 0.308 | 0.470 | 1.43 | 0.180 | 0.440 19.0 20.8 53.3 18.6 20.9
{10,2} | 0.02201| 0.308 | 0.443 | 1.40 | 1.83 | 0.440 30.7 31.9 57.2 30.2 31.8

Table 5. The best fit values of the input parameters, three mixing angles 612, 613, 623, Dirac CP
violation phase dcp, Majorana CP violation phases g1, as31, three light neutrino masses mg 2 3, the
effective mass mgg in OvB3-decay and the kinematical mass mg in beta decay at the minimum values
of x* for viable models C; — W; and C; — W} which are labelled as {i,7} in the case of without gCP
symmetry. The best fit values of the charged lepton mass ratios m./m, and m,/m, are both the
global best fit values of them, i.e. m./m, = 0.004737 and m,/m, = 0.05882. The best fit values of
the mass sum Y m, and Am3;/Am%, can be easy obtained from the three neutrino masses. In the
following tables, we would not show them as the same reason.

Models Best fit results for 3 viable models C; — W; with gCP

{i,5} | R(r) [7)| B/ | ~v/a | g2/g1 |av/MeV|(g1v*/A)/meV Xanin

{1,3} |-0.190| 1.27 | 11.4 |0.00448| 0.842 242.8 23.3 18.3

{2,3} |-0.190| 1.27 | 11.4 |0.00149| 0.842 242.8 23.3 18.3

{8,1} |—0.499| 1.01 [0.00511| 3.28 | 0.468 | 579.9 138.1 4.90

{i,j} |sin? 03 |sin? 015 |sin? O3 |6cp /7|2 /7| a3y /7 M1 /meV |my/meV | ms3/meV mgg/meV |mg/meV
{1,3} 10.02228| 0.293 | 0.459 | 1.76 | 1.15 | 1.03 7.87 11.7 50.4 3.58 11.8
{2,3} 10.02228| 0.293 | 0.459 | 1.76 | 1.15 | 1.03 7.87 11.7 50.4 3.58 11.8
{3,1} |0.02213| 0.309 | 0.437 | 1.02 | 1.01 |0.0243| 16.0 18.1 52.0 6.46 18.2
Model Best fit values for the viable model C4 — W, with gCP

{i,j} | ®(r) |S(7)| B/ | y/a | g2/g1 |av/MeV|(g1v?/A)/meV Ximin

{2,4} | 0.317 [0.951| 368.3 10.8 [—0.0356| 104 436.7 2.07

{i,5} [sin? 013 |sin? O12|sin? fa3 |6cp /7| Qo1 /7| 31 /7 |ma /meV | ma/meV | m3/meV |mgs/meV |mg/meV
{2,4} 10.02200| 0.308 | 0.480 | 1.37 | 1.51 | 0.635| 28.6 29.9 57.4 22.9 29.9

Table 6. The best fit values of the input parameters, lepton masses and mixing parameters at the
minimum values of x? for viable models C; — W; and C} — Wj’ with gCP symmetry.

Models Best fit results for 76 viable models C; — D; — N{C without gCP

ikt | %) [ St | Bla | /e[ ha/ml] agtha/m)/x] ao/MeV] (g20?/(aA)/mV]
{1,1,1} 0.289 1.28 829.6 19.7 1.01 1.97 3.27 47.0 10.3
{1,1,2} 0.465 1.09 1237. 17.2 2.54 0.640 3.15 428.0 0.288
{1,1,3} | —0.0397| 1.17 323.0 5.23 0.949 0.0132 10.5 159.6 0.508
{1,1,4} | —0.326 | 1.11 10.6 0.00156 0.897 0.308 352.7 331.1 0.680
{1,3,1} | —0.267 | 1.29 781.0 19.7 0.928 0.0158 3.34 69.1 0.170
{1,3,2} 0.415 1.08 9.44 0.00101 2.58 1.06 415.2 163.0 0.155
{1,3,4} 0.330 1.13 68.1 237.8 0.586 0.414 3.50 70.0 0.716
{2,1,1} | —0.225| 1.15 11.7 0.00107 0.397 1.78 298.4 63.5 10.7

Table 7. The best fit values of the input parameters, neutrino masses and mixing parameters at the
minimum values of x? for viable models C; — D; — N}, which are labelled as {i,, k}. In this table,
the gCP symmetry compatible with As is not imposed (continues. . .).
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{2,1,4} | —0.326 | 1.13 | 0.000269 0.0142 0.304 1.81 4719. 71.7 1.64
{2,2,2} | —0.450 | 1.03 0.00175 1.11 1.45 0.0100 749.2 234.2 15.3
{2,3,1} 0.389 1.44 143.1 1177. 1.57 1.80 1.02 125.2 1.66
{2,3,2} | 0.0751 1.47 0.0129 12.2 0.881 0.154 100.6 63.6 0.258
{2,3,3} 0.329 1.00 93.9 279.8 1.31 0.929 2.91 21.6 6.64
{3,1,1} 0.125 1.24 708.3 33.8 0.934 1.99 4.14 58.9 0.253
{3,1,2} | —0.160 | 1.09 0.0506 0.000533 | 0.837 0.0656 4875. 154.9 0.0665
{3,1,3} | 0.0193 1.16 448.2 14.1 0.924 0.0147 7.65 170.0 0.328
{3,14} | —0.326 | 1.11 10.6 0.00448 0.897 0.308 352.7 331.0 0.681
{3,3,1} | —0.0855| 1.27 710.5 38.0 0.874 0.0266 3.87 69.9 1.50
{3,3,2} 0.415 1.08 9.44 0.00329 2.57 1.06 415.3 162.9 0.155
{3,3,4} | —0.317 | 1.07 79.8 404.5 0.457 1.55 4.23 63.5 0.121
{4,1,1} | —0.385 | 1.54 14.1 340.2 0.976 1.99 3.76 27.2 0.513
{4,1,2} | —0.0401| 1.60 16.9 417.2 0.857 1.99 3.19 13.4 0.0185
{4,1,4} | —0.326 | 1.13 | 0.000630 0.0142 0.304 1.81 4719. 71.7 1.64
{4,2,1} | —0.110 | 1.07 0.0596 0.000279 | 0.866 0.000609 4778. 44.5 24.8
{4,2,2} | —0.473 | 1.13 2.53 46.5 1.16 1.96 19.8 130.3 2.80
{4,2,3} | —0.114 | 1.09 24.7 1.56 0.916 2.00 33.8 210.8 0.0859
{4,3,2} | —0.112 | 1.48 0.0235 12.6 0.836 1.84 97.7 61.1 2.82
{5,1,1} | —0.290 | 0.987 21.7 365.7 0.655 0.0478 4.22 69.0 11.0
{5,1,3} | —0.306 | 1.02 23.3 416.8 3.35 0.990 3.90 161.3 19.3
{5,1,4} 0.454 1.00 18.8 556.9 0.123 1.48 3.37 71.2 14.9
{5,2,1} | —0.110 | 1.07 0.0596 0.000478 | 0.866 0.000611 4779. 44.5 24.9
{5,3,1} | —0.312 | 0.999 212.9 41.7 0.948 1.89 3.96 30.3 0.178
{5,3,2} 0.429 1.03 | 0.000743 3.35 1.37 1.19 555.0 89.4 0.637
{5,3,4} 0.359 1.27 57.8 734.3 0.280 0.176 2.41 9.00 15.5
{6,1,1} 0.197 1.54 273.3 26.7 0.955 0.00878 4.69 34.6 1.92
{6,1,2} 0.336 0.999 | 0.0000483| 0.0155 0.0514 1.25 7990. 15.1 0.0164
{6,1,3} 0.228 1.35 248.7 25.0 3.43 1.69 4.50 129.8 6.07
{6,1,4} | —0.206 | 1.04 159.3 16.6 0.458 1.69 5.35 256.1 5.33 x 1076
{6,2,2} 0.462 1.32 330.5 34.8 1.03 0.0106 3.31 67.4 37.7
{6,2,3} 0.108 1.07 0.0105 0.000487 | 0.919 0.000383 5072. 245.8 0.524
{6,3,1} | —0.414 | 1.15 250.0 29.4 0.0706 0.629 3.77 21.1 11.2
{6,3,2} | —0.433 | 1.12 230.0 28.0 0.114 1.36 3.96 11.7 1.82
{6,3,3} | —0.261 1.35 271.0 27.4 1.02 0.0987 4.13 77.3 4.21
{6,3,4} | —0.401 1.15 249.9 29.2 0.00272 1.06 3.77 10.1 11.7
{7,1,1} | —0.385 | 1.54 48.6 1171. 0.976 1.99 1.09 27.2 0.512
{7,1,2} | —0.0409| 1.60 49.1 1211. 0.857 1.99 1.10 13.4 0.0187
{7,1,3} | —0.0394| 1.17 0.0162 | 0.0000941| 0.949 0.0132 3377. 159.6 0.509
{7,2,2} | —0.473 | 1.13 41.8 767.1 1.16 1.96 1.20 130.1 2.71
{7,2,3} | —0.114 | 1.09 643.9 40.8 0.916 2.00 1.29 210.7 0.0846
{7,3,1} 0.389 1.44 0.00268 8.22 1.57 1.80 145.8 125.2 1.66
{7,3,2} 0.326 1.51 0.00326 9.45 0.405 1.99 133.1 39.7 7.60
{7,3,4} 0.330 1.13 3.49 0.00119 0.586 0.414 238.1 70.0 0.716
{8,1,1} 0.125 1.24 | 0.000808 0.0477 0.935 1.99 2934. 58.9 0.254
{8,1,3} | —0.306 | 1.02 18.0 322.9 3.35 0.990 5.03 161.3 19.3
{8,1,4} 0.333 1.13 0.0154 0.00101 0.403 1.61 3586. 116.7 3.15
{8,3,1} | —0.312 | 0.999 157.1 30.8 0.948 1.89 5.37 30.3 0.178
{8,3,4} 0.330 1.13 3.49 0.0152 0.586 0.414 238.1 70.0 0.716
{9,1,1} 0.241 1.34 731.9 73.8 1.03 1.78 1.52 66.6 3.05
{9,1,3} 0.195 0.992 30.4 881.9 0.935 0.00581 1.57 350.8 0.0744
{9,1,4} | —0.206 | 1.04 561.9 58.5 0.458 1.69 1.52 256.1 8.05 x 1076
{9,2,2} 0.462 1.32 590.0 62.2 1.03 0.0105 1.85 67.3 37.8

Table 7. The best fit values of the input parameters, neutrino masses and mixing parameters at the
minimum values of x? for viable models C; — D; — Nj, which are labelled as {i,, k}. In this table,
the gCP symmetry compatible with As is not imposed (continues. . .).
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{9,2,3} | —0.291 1.34 695.7 70.9 0.852 2.00 1.60 51.1 23.5
{9,3,1} 0.389 1.44 8.22 0.00982 1.57 1.80 145.8 125.2 1.65
{9,3,2} | —0.433 1.12 424.7 51.8 0.114 1.36 2.14 11.7 1.82
{9,3,3} | —0.261 1.35 721.5 72.9 1.02 0.0990 1.55 77.3 4.21
{9,3,4} | —0.401 1.15 482.4 56.3 0.00272 1.06 1.95 10.1 11.6
{10,1,1} 0.241 1.34 1174. 118.4 1.03 1.78 0.948 66.6 3.06
{10,1,2} | —0.0404| 1.60 24.7 0.0717 0.857 1.99 54.0 13.4 0.0186
{10,1,3}| 0.195 0.992 71.1 2063. 0.935 0.00581 0.671 350.8 0.0744
{10,1,4}| —0.206 1.04 1263. 131.6 0.458 1.69 0.675 256.1 6.40 x 106
{10,2,2}| —0.473 1.13 18.4 0.0187 1.16 1.96 50.2 130.2 2.72
{10,2,3}| —0.291 1.34 1302. 132.7 0.852 2.00 0.854 51.1 23.6
{10,3,1}| —0.414 1.15 2016. 236.8 0.0705 0.629 0.467 21.1 11.2
{10,3,2}| —0.433 1.12 2181. 265.9 0.114 1.36 0.418 11.7 1.82
{10,3,3}| —0.261 1.35 1218. 123.1 1.02 0.0989 0.919 77.3 4.21
{10,3,4}| —0.401 1.15 1983. 231.5 0.00271 1.05 0.476 10.1 11.7
{i,j,k} | sin? 015 |sin? 012 [sin? 023 | dop /7|21 /7| as1/m |m1/meV |ma/meV |m3/meV mgg/meV mg/meV
{1,1,1} | 0.02209| 0.317 0.474 1.63 | 0.149| 0.173 1.25 8.69 49.8 2.64 8.90
{1,1,2} | 0.02221| 0.309 0.467 1.07 | 0.980| 1.08 2.21 8.88 49.8 2.30 9.07
{1,1,3} | 0.02215| 0.308 0.470 1.02 1.79 1.87 6.25 10.6 50.2 8.11 10.8
{1,1,4} | 0.02221| 0.310 0.460 1.25 | 0.422| 1.98 2.81 9.04 49.8 291 9.23
{1,3,1} | 0.02215| 0.308 0.470 1.08 | 0.567| 0.0167 30.1 31.3 58.2 21.4 31.4
{1,3,2} | 0.02215| 0.308 0.470 1.09 | 0.317| 0.0638 11.9 14.7 51.2 12.0 14.8
{1,3,4} | 0.02214| 0.308 0.469 1.30 | 0.310| 0.767 10.3 13.4 50.8 10.9 13.5
{2,1,1} | 0.02216| 0.300 0.458 1.63 1.16 1.26 0.537 8.61 49.8 1.40 8.77
{2,1,4} | 0.02216| 0.309 0.468 1.36 1.57 | 0.129 2.22 8.88 49.8 4.07 9.06
{2,2,2} | 0.02216| 0.322 0.494 1.68 | 0.863| 0.610 8.45 12.1 50.4 1.58 12.2
{2,3,1} | 0.02217| 0.307 0.466 1.36 1.41 1.83 3.04 9.12 49.9 3.04 9.29
{2,3,2} | 0.02221| 0.306 0.464 1.22 | 0.765| 1.72 3.86 9.42 50.0 1.08 9.60
{2,3,3} | 0.02217| 0.306 0.436 1.39 1.96 1.54 0.583 8.62 49.8 2.18 8.80
{3,1,1} | 0.02215| 0.308 0.470 1.25 | 0.299| 0.262 3.60 9.32 49.9 5.13 9.49
{3,1,2} | 0.02215| 0.308 | 0.471 1.12 | 0.773] 0.930 9.66 12.9 50.7 4.57 13.1
{3,1,3} | 0.02215| 0.308 0.471 1.05 1.69 1.72 7.61 11.5 50.4 8.43 11.6
{3,1,4} | 0.02221| 0.310 0.460 1.25 | 0.422| 1.98 2.81 9.04 49.8 2.90 9.23
{3,3,1} | 0.02215| 0.307 | 0.469 1.35 1.65 1.64 28.8 30.1 57.5 23.7 30.1
{3,3,2} | 0.02215| 0.308 0.470 1.09 | 0.316| 0.0638 11.9 14.7 51.2 12.0 14.8
{3,3,4} | 0.02215| 0.308 0.471 1.10 1.61 1.69 13.1 15.7 51.5 11.9 15.8
{4,1,1} | 0.02212| 0.309 0.468 1.02 1.56 | 0.897 0.894 8.64 49.8 2.10 8.83
{4,1,2} | 0.02215| 0.308 0.470 1.15 | 0.362| 1.08 0.169 8.60 49.8 3.05 8.79
{4,1,4} | 0.02216| 0.309 0.468 1.36 1.57 | 0.129 2.22 8.88 49.8 4.07 9.06
{4,2,1} | 0.02242| 0.283 0.452 1.78 1.03 1.01 2.26 8.89 50.4 1.72 9.07
{4,2,2} | 0.02185| 0.318 0.489 1.30 | 0.934| 0.261 3.90 9.44 49.7 0.425 9.59
{4,2,3} | 0.02215| 0.310 0.469 1.12 1.06 1.41 10.1 13.3 50.8 2.34 13.4
{4,3,2} | 0.02231| 0.300 0.459 | 0.872 | 1.26 | 0.428 3.49 9.28 50.0 1.06 9.46
{5,1,1} | 0.02216| 0.303 0.465 1.65 1.37 | 0.317 2.72 9.02 49.9 2.53 9.19
{5,1,3} | 0.02217| 0.308 0.470 1.81 | 0.217| 0.284 | 0.0978 8.60 49.7 3.02 8.78
{5,1,4} | 0.02220| 0.301 0.459 1.72 1.81 | 0.375 2.33 8.91 49.9 2.95 9.07
{5,2,1} | 0.02242| 0.283 0.452 1.78 1.03 1.01 2.26 8.89 50.4 1.72 9.07
{5,3,1} | 0.02215| 0.308 0.471 1.08 | 0.303| 1.66 19.6 21.4 53.5 17.5 21.5
{5,3,2} | 0.02216| 0.308 0.474 1.29 1.58 1.97 15.5 17.7 52.2 13.0 17.8
{5,3,4} | 0.02213| 0.314 0.539 1.36 | 0.417| 0.318 1.82 8.79 49.4 2.73 8.95
{6,1,1} | 0.02206| 0.312 0.473 1.37 1.83 1.44 1.42 8.71 49.8 2.63 8.90
{6,1,2} | 0.02215| 0.308 0.470 1.15 | 0.193| 1.89 0.557 8.61 49.8 2.84 8.80
{6,1,3} | 0.02213| 0.297 0.513 1.16 | 0.818| 1.72 0.0976 8.60 49.7 2.38 8.73

Table 7. The best fit values of the input parameters, neutrino masses and mixing parameters at the
minimum values of x? for viable models C; — D; — N, which are labelled as {7, j, k}. In this table,
the gCP symmetry compatible with As is not imposed (continues. . .).
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{6,1,4} | 0.02215| 0.308 | 0.470 1.18 | 0.278| 0.701 6.09 10.5 50.2 7.50 10.7
{6,2,2} | 0.02306| 0.287 | 0.440 1.94 1.07 | 0.0349| 0.821 8.64 49.9 0.763 8.88
{6,2,3} | 0.02216| 0.313 | 0.468 1.05 1.03 | 0.951 12.5 15.1 51.3 2.75 15.3
{6,3,1} | 0.02223| 0.316 | 0.514 1.51 | 0.966| 1.82 2.93 9.08 49.8 1.97 9.30
{6,3,2} | 0.02216| 0.308 | 0.464 1.36 1.01 1.48 3.28 9.20 49.9 1.52 9.38
{6,3,3} | 0.02212| 0.310 | 0.504 1.32 1.54 | 0.0968 7.10 11.2 50.3 6.73 11.3
{6,3,4} | 0.02222| 0.315 | 0.518 1.50 | 0.973| 1.73 3.00 9.10 49.8 1.86 9.31
{7,1,1} | 0.02212| 0.309 | 0.468 1.02 1.55 | 0.897 0.893 8.64 49.8 2.10 8.83
{7,1,2} | 0.02215| 0.308 | 0.470 1.15 | 0.364| 1.08 0.169 8.60 49.8 3.05 8.79
{7,1,3} | 0.02215| 0.308 | 0.470 1.02 1.79 1.86 6.25 10.6 50.2 8.11 10.8
{7,2,2} | 0.02186| 0.318 | 0.488 1.30 | 0.935| 0.259 3.90 9.44 49.7 0.430 9.59
{7,2,3} | 0.02215| 0.309 | 0.469 1.12 1.06 1.41 10.1 13.3 50.8 2.33 13.4
{7,3,1} | 0.02217| 0.307 | 0.466 1.36 1.41 1.83 3.04 9.12 49.9 3.03 9.29
{7,3,2} | 0.02232| 0.305 | 0.439 1.45 1.42 | 0.631 2.17 8.87 49.8 3.76 9.06
{7,3,4} | 0.02214| 0.308 | 0.469 1.30 | 0.310| 0.767 10.3 13.4 50.8 10.9 13.5
{8,1,1} | 0.02215| 0.308 | 0.470 1.25 | 0.299| 0.262 3.60 9.32 49.9 5.12 9.49
{8,1,3} | 0.02217| 0.308 | 0.470 1.81 | 0.216| 0.284 | 0.0978 8.60 49.7 3.02 8.78
{8,1,4} | 0.02215| 0.306 | 0.467 1.43 1.94 | 0.319 1.57 8.74 49.8 3.83 8.91
{8,3,1} | 0.02215| 0.308 | 0.471 1.08 | 0.303| 1.66 19.6 21.4 53.5 17.5 21.5
{8,3,4} | 0.02214| 0.308 | 0.469 1.30 | 0.310| 0.767 10.3 13.4 50.8 10.9 13.5
{9,1,1} | 0.02212| 0.300 | 0.499 1.12 1.02 1.97 0.262 8.60 49.7 1.88 8.74
{9,1,3} | 0.02215| 0.308 | 0.470 1.12 | 0.739| 1.30 16.4 18.5 52.4 7.26 18.6
{9,1,4} | 0.02215| 0.308 | 0.470 1.18 | 0.278| 0.701 6.09 10.5 50.2 7.50 10.7
{9,2,2} | 0.02307| 0.287 | 0.440 1.94 1.07 | 0.0347| 0.820 8.64 49.9 0.762 8.88
{9,2,3} | 0.02205| 0.306 | 0.532 1.70 1.37 | 0.572 1.50 8.73 49.8 3.14 8.89
{9,3,1} | 0.02217| 0.307 | 0.466 1.36 1.41 1.83 3.04 9.12 49.9 3.03 9.29
{9,3,2} | 0.02216| 0.308 | 0.464 1.36 1.01 1.48 3.28 9.20 49.9 1.52 9.38
{9,3,3} | 0.02212| 0.310 | 0.504 1.32 1.54 | 0.0952 7.09 11.1 50.3 6.71 11.3
{9,3,4} | 0.02222| 0.315 | 0.518 1.50 | 0.972| 1.73 3.00 9.10 49.8 1.86 9.31
{10,1,1}| 0.02212| 0.300 | 0.499 1.12 1.02 1.97 0.263 8.60 49.7 1.88 8.74
{10,1,2} | 0.02215| 0.308 | 0.470 1.15 | 0.363| 1.08 0.169 8.60 49.8 3.05 8.79
{10,1,3} | 0.02215| 0.308 | 0.470 1.12 | 0.739| 1.30 16.4 18.5 52.4 7.26 18.6
{10,1,4}| 0.02215| 0.308 | 0.470 1.18 | 0.278| 0.701 6.09 10.5 50.2 7.50 10.7
{10,2,2}| 0.02186| 0.318 | 0.488 1.30 | 0.934| 0.259 3.90 9.44 49.7 0.430 9.59
{10,2,3}| 0.02205| 0.306 | 0.532 1.70 1.37 | 0.573 1.50 8.73 49.8 3.14 8.89
{10,3,1}| 0.02223| 0.316 | 0.514 1.51 | 0.966| 1.82 2.93 9.08 49.8 1.97 9.30
{10,3,2} | 0.02216| 0.308 | 0.464 1.36 1.01 1.48 3.28 9.20 49.9 1.52 9.38
{10,3,3} | 0.02212| 0.310 | 0.504 1.32 1.54 | 0.0964 7.10 11.1 50.3 6.72 11.3
{10,3,4} | 0.02222| 0.315 | 0.518 1.50 | 0.972| 1.73 3.00 9.10 49.8 1.86 9.31

Table 7. The best fit values of the input parameters, neutrino masses and mixing parameters at the
minimum values of x? for viable models C; — D; — N which are labelled as {i,, k}. In this table,
the gCP symmetry compatible with As is not imposed.

Models Best fit results for 48 viable models C; — D; — N,’C with gCP

(i k}| R0 [ S [ Bla va [ ha/hi | av/MeV [ (g7 (A /meV] i
{1,1,2} 0.435 1.08 1219. 16.8 —5.18 3.20 877.7 0.714
{1,1,3} 0.108 1.36 537.5 16.9 2.83 4.23 49.3 25.8
{1,3,1} | 0.0244 | 1.24 390.3 7.96 0.808 7.51 67.2 4.49
{1,3,2} | —0.0730| 1.17 0.00123 0.586 1.77 1315. 111.5 3.88
{2,2,2} | —0.462| 1.03 0.00173 1.09 1.45 758.8 235.5 15.6

Table 8. The best fit values of the input parameters, neutrino masses and mixing parameters at the
minimum values of x? for viable models C; — D; — N/ with gCP symmetry (continues. .. ).
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{2,3,1} 0.357 1.45 144.5 1206. 2.19 1.00 167.6 5.91
{2,3,2} 0.330 1.51 144.5 1358. 0.400 0.924 39.4 7.64
{3,1,1} 0.353 | 0.994 84.5 343.8 1.20 4.93 117.8 6.00
{3,3,2} 0.407 1.10 9.67 0.00350 —3.12 394.8 193.6 6.87
{4,1,2} | —0.145| 1.63 18.2 452.4 0.868 3.00 11.8 3.59
{4,2,2} 0.453 1.14 2.63 48.5 1.11 19.1 124.0 13.6
{5,1,1} | —0.313 | 1.03 23.8 434.7 0.639 3.80 59.7 19.6
{5,1,3} | —0.310 | 1.02 23.6 4274 -3.39 3.84 161.0 19.4
{5,2,1} | —0.127 | 1.08 0.0515 0.000423 0.864 4812. 41.9 27.0
{5,3,2} | 0.0730 | 1.17 0.586 0.00260 1.77 1315. 111.5 0.689
{6,1,3} | —0.314 | 1.17 242.3 26.9 0.901 3.95 118.9 10.6
{6,1,4} | —0.269 | 0.973 154.8 17.0 0.165 5.11 163.3 5.50
{6,2,2} 0.486 1.33 332.7 35.0 1.03 3.29 67.0 39.6
{6,2,3} | —0.253 | 1.37 270.5 27.2 0.842 4.20 46.5 34.3
{6,3,1} | —0.404 | 1.15 249.5 29.2 —0.0191 3.78 21.2 11.8
{6,3,2} | —0.408 | 1.12 228.9 27.7 —0.0297 3.97 10.3 7.22
{6,3,3} | —0.410| 1.14 243.6 28.8 —0.133 3.82 50.3 10.4
{6,3,4} | —0.401 | 1.15 249.9 29.2 —0.00273 3.77 10.1 11.7
{7,1,2} | —0.146 | 1.63 49.7 1234. 0.868 1.10 11.8 3.54
{7,1,3} 0.108 1.36 0.0315 0.000176 2.83 2274. 49.2 25.8
{7,2,2} 0.453 1.14 41.9 772.6 1.11 1.20 124.0 13.2
{7,3,1} | 0.0244 | 1.24 0.0204 0.000118 0.807 2931. 67.2 4.45
{7,3,2} | 0.330 1.51 0.00323 9.40 0.400 133.6 39.4 7.64
{8,1,1} 0.353 | 0.994 0.00272 4.07 1.20 416.4 117.8 6.01
{8,1,3} | —0.310 | 1.02 18.0 326.8 -3.39 5.02 161.0 19.4
{9,1,1} 0.353 | 0.994 0.000588 4.07 1.20 416.5 117.8 6.00
{9,1,3} | —0.314 | 1.17 570.6 63.3 0.901 1.68 118.9 10.6
{9,1,4} | —0.269 | 0.973 440.2 48.3 0.165 1.80 163.3 5.50
{9,2,2} | 0.486 1.33 588.1 61.9 1.03 1.86 66.9 39.7
{9,2,3} | —0.253 | 1.37 735.6 73.9 0.843 1.54 46.6 34.2
{9,3,1} | —0.404 | 1.15 479.2 56.1 —0.0190 1.97 21.2 11.8
{9,3,2} | —0.408 | 1.12 440.6 53.3 —0.0296 2.06 10.3 7.22
{9,3,3} | —0.410| 1.14 464.0 54.9 —0.133 2.01 50.3 10.4
{9,3,4} | —0.401 | 1.15 482.2 56.3 —0.00272 1.96 10.1 11.6
{10,1,2}| —0.145 | 1.63 24.8 0.0687 0.868 54.6 11.8 3.57
{10,1,3}| —0.314 | 1.17 1659. 183.9 0.901 0.577 118.9 10.6
{10,1,4}| —0.269 | 0.973 1709. 187.3 0.165 0.463 163.3 5.50
{10,2,2}| —0.500 | 1.14 18.5 0.0192 1.11 50.2 123.9 13.7
{10,2,3}| —0.253 | 1.37 1181. 118.6 0.842 0.962 46.5 34.3
{10,3,1}| —0.404 | 1.15 1993. 233.3 —0.0190 0.473 21.2 11.8
{10,3,2}| —0.408 | 1.12 2130. 257.6 —0.0297 0.427 10.3 7.22
{10,3,3}| —0.410 | 1.14 2046. 242.2 —0.133 0.455 50.3 10.4
{10,3,4}| —0.401 | 1.15 1983. 231.6 | —0.00272 0.475 10.1 11.7
{i,5,k} | sin® 013 |sin? 612 |sin® Oa3 |cp /7|21 /7| as1 /7 |m1/meV |ma/meV |ms/meV |mgg/meV |mg/meV
{1,1,2} | 0.02240| 0.312 | 0.468 | 1.04 | 1.01 | 1.18 2.24 8.88 49.8 2.30 9.12
{1,1,3} | 0.02220| 0.292 | 0.460 | 1.87 | 1.93 | 1.91 0.0495 8.60 49.7 3.40 8.71
{1,3,1} | 0.02188| 0.307 | 0.464 | 1.47 | 1.51 | 1.68 28.7 29.9 57.5 20.6 30.0
{1,3,2} | 0.02205| 0.307 | 0.483 | 0.759| 0.588| 1.18 13.8 16.2 51.6 9.31 16.3

Table 8. The best fit values of the input parameters, neutrino masses and mixing parameters at the
minimum values of x? for viable models C; — D; — Nj, with gCP symmetry (continues...).

— 28 —



{2,2,2} | 0.02210| 0.322 | 0.488 | 1.70 | 0.864| 0.629 8.66 12.2 50.4 1.64 12.4
{2,3,1} | 0.02202| 0.308 | 0.497 | 1.46 | 1.46 | 1.62 3.09 9.13 50.0 2.12 9.30
{2,3,2} | 0.02232| 0.305 | 0.438 | 1.45 | 1.42 | 0.644 2.18 8.87 49.8 3.70 9.06
{3,1,1} | 0.02216| 0.308 | 0.469 | 1.53 | 1.98 | 0.744 3.72 9.37 50.0 6.03 9.55
{3,3,2} | 0.02159| 0.303 | 0.437 | 1.12 | 0.351| 0.0694| 10.9 13.9 50.2 10.7 13.9
{4,1,2} | 0.02196| 0.319 | 0.444 | 1.13 | 0.683| 1.31 0.151 8.60 49.7 3.22 8.80
{4,2,2} | 0.02091| 0.342 | 0.464 | 1.05 | 0.984| 0.0634| 3.99 9.48 49.5 0.432 9.56
{5,1,1} | 0.02198| 0.328 | 0.490 | 1.75 | 1.35| 0.467 2.59 8.98 50.1 2.59 9.24
{5,1,3} | 0.02217| 0.308 | 0.470 | 1.81 | 0.243| 0.278 | 0.0986 8.60 49.7 3.12 8.78
{5,2,1} | 0.02246| 0.288 | 0.449 | 1.84 | 0.994| 1.01 2.33 8.91 50.3 1.73 9.10
{5,3,2} | 0.02206| 0.308 | 0.483 | 1.24 | 1.41 | 0.819 13.8 16.2 51.6 9.32 16.3
{6,1,3} | 0.02251| 0.327 | 0.522 | 1.10 | 1.20 | 0.645 6.21 10.6 50.0 1.71 10.8
{6,1,4} | 0.02210| 0.307 | 0.498 | 1.44 | 1.96 | 1.07 10.1 13.3 50.8 11.7 13.4
{6,2,2} | 0.02295| 0.290 | 0.439 | 1.99 | 0.999| 0.0280| 0.824 8.64 49.9 0.780 8.88
{6,2,3} | 0.02192| 0.306 | 0.547 | 1.79 | 1.12 | 0.633 1.14 8.67 49.8 2.95 8.81
{6,3,1} | 0.02222| 0.316 | 0.518 | 1.50 | 0.971| 1.74 2.94 9.09 49.8 1.90 9.30
{6,3,2} | 0.02220| 0.300 | 0.503 | 1.46 | 0.977| 1.74 3.09 9.14 50.0 1.69 9.30
{6,3,3} | 0.02222| 0.308 | 0.511 | 1.52 | 0.980| 1.76 2.54 8.96 49.9 1.97 9.15
{6,3,4} | 0.02222| 0.315 | 0.518 | 1.49 | 0.971| 1.73 3.00 9.10 49.8 1.87 9.31
{7,1,2} | 0.02197| 0.319 | 0.445 | 1.13 | 0.682| 1.31 0.151 8.60 49.7 3.22 8.80
{7,1,3} | 0.02220| 0.292 | 0.460 | 1.87 | 1.93 | 1.91 | 0.0495 8.60 49.7 3.40 8.71
{7,2,2} | 0.02092| 0.341 | 0.465 | 1.05 | 0.984| 0.0639| 3.98 9.47 49.5 0.436 9.56
{7,3,1} | 0.02189| 0.307 | 0.465 | 1.47 | 1.51 | 1.68 28.7 30.0 57.5 20.6 30.0
{7,3,2} | 0.02232| 0.305 | 0.438 | 1.45 | 1.42| 0.644 2.18 8.87 49.8 3.70 9.06
{8,1,1} | 0.02216| 0.308 | 0.469 | 1.53 | 1.98 | 0.744 3.72 9.37 50.0 6.03 9.55
{8,1,3} | 0.02217| 0.308 | 0.470 | 1.81 | 0.243| 0.278 | 0.0986 8.60 49.7 3.12 8.78
{9,1,1} | 0.02216| 0.308 | 0.469 | 1.53 | 1.98 | 0.744 3.72 9.37 50.0 6.03 9.55
{9,1,3} | 0.02251| 0.327 | 0.522 | 1.10 | 1.20 | 0.645 6.21 10.6 50.0 1.71 10.8
{9,1,4} | 0.02210| 0.307 | 0.498 | 1.44 | 1.96 | 1.07 10.1 13.3 50.8 11.7 13.4
{9,2,2} | 0.02295| 0.290 | 0.439 | 1.99 | 0.999| 0.0277| 0.823 8.64 49.9 0.778 8.88
{9,2,3} | 0.02192| 0.306 | 0.547 | 1.79 | 1.12 | 0.633 1.14 8.67 49.8 2.95 8.82
{9,3,1} | 0.02222| 0.316 | 0.518 | 1.50 | 0.971| 1.74 2.94 9.09 49.8 1.90 9.30
{9,3,2} | 0.02220| 0.300 | 0.503 | 1.46 | 0.976| 1.74 3.09 9.14 50.0 1.69 9.30
{9,3,3} | 0.02222| 0.308 | 0.511 | 1.52 | 0.980| 1.76 2.54 8.96 49.9 1.97 9.15
{9,3,4} | 0.02222| 0.315 | 0.518 | 1.49 | 0.971| 1.73 3.00 9.10 49.8 1.87 9.31
{10,1,2}| 0.02197| 0.319 | 0.444 | 1.13 | 0.683| 1.31 0.151 8.60 49.7 3.22 8.80
{10,1,3}| 0.02251| 0.327 | 0.522 | 1.10 | 1.20 | 0.645 6.21 10.6 50.0 1.71 10.8
{10,1,4}| 0.02210| 0.307 | 0.498 | 1.44 | 1.96 | 1.07 10.1 13.3 50.8 11.7 13.4
{10,2,2}| 0.02094| 0.341 | 0.456 1.0 | 1.00 | 2.00 3.99 9.48 49.5 0.448 9.57
{10,2,3}| 0.02192| 0.306 | 0.547 | 1.79 | 1.12 | 0.633 1.14 8.67 49.8 2.95 8.81
{10,3,1}| 0.02222| 0.316 | 0.518 | 1.50 | 0.971| 1.74 2.94 9.09 49.8 1.90 9.30
{10,3,2}| 0.02220| 0.300 | 0.503 | 1.46 | 0.977| 1.74 3.09 9.14 50.0 1.69 9.30
{10,3,3}| 0.02222| 0.308 | 0.511 | 1.52 | 0.980| 1.76 2.54 8.96 49.9 1.97 9.15
{10,3,4}| 0.02222| 0.315 | 0.518 | 1.49 | 0.971| 1.73 3.00 9.10 49.8 1.87 9.31

Table 8. The best fit values of the input parameters, neutrino masses and mixing parameters at the
minimum values of x? for viable models C; — D; — N, with gCP symmetry.
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Models Best fit results for 98 viable models C! — D’ — Ny without gCP

gk} | ) S | Bla_ | /e | Tha/mal [arg(ha/ho)/m] av/NeV] (2o /(AN meV] i
{1,1,1} | —0.232 | 1.08 40.3 1215. 0.763 2.00 5.67 146.7 0.0920
{1,1,2} 0.422 1.03 8.96 0.0122 0.317 1.97 389.5 98.4 2.60
{1,1,3} 0.354 1.06 79.7 2381. 1.62 1.98 3.30 161.8 7.76
{1,1,4} 0.183 1.06 28.1 930.9 0.220 0.310 7.54 55.5 0.470
{1,2,1} 0.393 1.01 91.6 3288. 0.537 1.19 2.85 18.8 0.00437
{1,2,4} 0.415 1.00 100.4 3650. 0.0460 1.29 2.65 12.2 0.00189
{1,3,1} | —0.187 | 1.21 39.2 702.6 1.03 2.00 7.02 41.4 0.196
{1,3,2} | —0.407 | 0.959 | 93.7 4088. 0.120 0.865 2.71 3.38 0.00419
{1,3,3} | —0.251 | 1.19 | 0.0649 | 0.00231 1.53 0.0600 3698. 26.0 0.363
{14,1} | —0.301 1.02 56.6 2013. 3.28 1.34 4.11 17.6 2.23
{2,1,1} 0.493 0.913 4.47 26.1 0.180 0.0900 56.1 39.2 0.234
{2,1,2} | 0.349 1.03 | 388.0 13.9 0.360 1.90 8.92 136.9 0.0528
{2,1,3} | —0.286 | 1.01 42.8 218.4 1.57 1.99 7.10 208.6 0.00286
{2,2,4} 0 1.29 | 0.0110 5.75 0.442 0.00895 302.4 36.2 15.3
{2,3,1} | —0.359 | 1.05 394.8 15.4 1.32 1.81 8.45 49.1 0.400
{2,3,2} | 0.0454 1.13 376.2 882.1 1.16 1.95 1.81 48.6 0.213
{2,3,4} 0.0616 1.02 1421. 139.8 0.174 1.80 2.26 11.1 20.1
{3,1,1} | 0.0595 1.15 | 0.00286 1.61 0.762 0.0000972 947.1 102.3 0.00168
{3,1,2} | 0.0917 1.11 | 0.00537 1.84 0.967 1.95 795.2 162.6 0.0584
{3,1,3} | —0.179 | 1.17 26.5 179.6 1.32 1.99 8.55 97.6 22.8
{3,1,4} | —0.185 | 0.998 12.0 56.8 0.113 1.86 21.2 40.0 0.0133
{3,2,4} 0.180 1.27 | 0.00926 4.31 0.409 0.184 381.2 44.0 19.1
{3,3,1} | —0.319 | 0.963 | 321.0 11.0 1.23 0.128 11.7 31.8 1.20
{3,3,3} | —0.250 | 1.19 | 0.0652 | 0.000759 1.53 0.0609 3686. 26.3 0.362
{3,3,4} | 0.0556 1.14 | 0.00267 1.44 0.316 0.484 1040. 29.8 0.0272
{4,1,1} | —0.422 | 0.982| 635.0 6.42 0.110 1.46 16.5 43.9 0.162
{4,1,2} 0.396 0.966 | 636.0 5.90 0.0358 1.09 16.8 16.4 0.259
{4,1,3} | —0.117 | 1.15 262.7 6.07 1.36 0.00988 21.8 104.1 0.0308
{4,1,4} | —0.418 | 0.981| 637.0 6.40 0.00892 1.34 16.5 23.2 0.256
{4,2,4} | 0.0396 1.18 15.9 59.4 0.408 0.0794 28.3 68.1 4.20
{4,3,1} | 0.0751 1.17 213.1 5.59 0.712 0.0795 25.3 39.6 1.26
{4,3,3} | 0.117 1.18 | 266.6 7.56 0.977 0.0474 19.8 44.1 3.40
{4,3,4} | 0.414 | 0.961| 620.5 5.56 0.0502 0.948 17.9 4.02 0.0426
{4,4,2} 0.384 1.10 609.5 13.1 0.229 1.47 11.4 4.37 7.66
{5,1,1} | 0.0595 | 1.15 | 0.110 1.61 0.762 0.0000902 944.0 102.3 0.00102
{5,1,2} | 0.0917 | 1.11 | 0.0409 1.84 0.967 1.95 794.9 162.6 0.0584
{5,1,3} | —0.0755| 1.24 24.5 38.8 1.26 1.99 41.6 62.2 0.0228
{5,1,4} | —0.160 | 1.07 149.3 193.4 0.197 1.84 7.08 36.2 0.0755
{5,2,4} | —0.222 | 0.983| 1769. 28.2 0.0821 1.97 4.52 5.73 0.387
{5,3,1} | —0.305 | 1.30 | 0.0679 6.04 1.14 1.90 271.5 75.4 0.342
{5,3,2} | —0.147 | 1.11 113.6 156.4 0.446 0.300 9.22 41.4 0.172
{5,3,3} 0.448 1.04 269.3 450.3 1.04 1.08 2.64 62.0 0.0756
{5,3,4} | —0.280 1.12 166.4 318.1 0.0981 1.75 4.40 24.4 0.0186
{5,4,1} 0.431 1.13 1915. 41.3 1.32 0.0757 3.32 16.5 13.0
{5,4,2} | 0.329 1.02 15.4 0.00105 0.128 0.786 558.8 1.97 0.0131
{5,4,3} | 0.330 1.10 1909. 37.8 1.52 0.0231 3.61 6.24 19.1
{6,1,1} | 0.0594 | 1.15 | 0.00283 1.61 0.762 0.0000943 947.3 102.3 0.00162
{6,1,2} | 0.108 1.10 | 0.0221 | 0.000854 0.876 1.93 5320. 160.6 0.00610
{6,1,3} | —0.306 | 1.06 143.6 7.23 1.43 0.00324 11.3 217.7 0.156
{6,1,4} | —0.246 | 1.02 | 0.00687 2.86 0.199 1.79 431.6 93.9 0.241
{6,2,3} 0.252 0.985 6.16 77.5 1.18 0.0150 14.7 190.3 1.35

Table 9. The best fit values of the input parameters, neutrino masses and mixing parameters at the
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{6,2,4} | 0.0539 1.08 46.1 2.53 0.309 0.196 34.6 80.7 0.227
{6,3,1} 0.108 1.27 12.6 145.4 0.762 0.0789 11.5 49.6 0.476
{6,3,3} 0.279 1.22 18.1 210.0 1.50 1.90 7.47 37.6 0.0256
{6,3,4} | 0.0557 1.14 | 0.00254 1.44 0.316 0.484 1038. 29.8 0.0261
{7,1,1} | —0.422 | 0.982| 7323. 74.1 0.110 1.46 1.43 43.9 0.161
{7,1,2} | 0.0777 1.09 1911. 32.2 0.903 1.95 3.35 153.3 0.412
{7,1,3} | —0.286 | 1.01 | 0.0127 5.11 1.57 1.99 303.6 208.6 0.00305
{7,1,4} | —0.418 | 0.981| 7251. 72.9 0.00892 1.34 1.45 23.2 0.255
{7,2,1} 0.393 1.01 35.9 0.00261 0.537 1.19 260.7 18.8 0.00436
{7,2,4} | 0.0397 1.18 134.6 499.6 0.408 0.0798 3.37 68.3 4.18
{7,3,1} | 0.0752 1.17 1634. 42.9 0.712 0.0796 3.30 39.6 1.26
{7,3,2} | —0.407 | 0.959 43.6 0.00223 0.120 0.865 253.6 3.38 0.00403
{7,3,3} | —0.199 | 1.18 20.4 0.00645 1.25 0.133 261.9 45.7 1.13
{7,3,4} 0.414 0.961 | 7750. 69.4 0.0502 0.948 1.43 4.02 0.0430
{7.4,1} | —0.301 | 1.02 35.6 0.00402 3.28 1.34 232.9 17.6 2.23
{7,4,2} 0.384 1.10 3919. 84.3 0.229 1.47 1.77 4.37 7.65
{8,1,1} | 0.0542 1.15 446.4 498.2 0.761 0.000119 3.03 103.4 0.153
{8,1,2} | 0.0494 1.12 536.5 474.3 1.08 0 3.05 159.3 2.78
{8,1,3} | —0.0757| 1.24 335.1 530.4 1.26 1.99 3.04 62.2 0.0253
{8,1,4} | —0.185 | 0.998 | 0.0511 4.72 0.113 1.86 254.2 39.9 0.0132
{8,2,1} 0.393 1.01 35.9 0.00587 0.537 1.19 260.7 18.8 0.00465
{8,2,4} 0.222 0.977 | 2283. 35.8 0.0816 0.0221 3.51 5.75 0.366
{8,3,1} | 0.0524 1.27 331.4 534.6 0.687 1.98 3.06 47.1 1.32
{8,3,2} | —0.407 | 0.959 43.6 0.00628 0.120 0.865 253.5 3.38 0.00430
{8,3,3} 0.448 1.04 163.0 272.7 1.04 1.08 4.36 62.0 0.0758
{8,3,4} | —0.280 1.12 223.3 426.4 0.0979 1.75 3.28 24.4 0.0118
{8,4,1} | —0.408 | 1.13 1802. 38.6 2.13 0.158 3.56 24.3 13.3
{8,4,3} 0.334 1.10 1982. 38.8 1.52 0.0231 3.48 6.24 19.4
{9,1,1} | —0.499 | 0.906 32.0 1.17 0.156 0.0804 45.5 39.2 0.0117
{9,1,2} | —0.0918| 1.11 28.6 410.1 0.979 0.0521 3.59 163.9 0.0579
{9,1,3} | —0.307 | 1.07 285.8 14.5 1.43 0.00296 5.67 214.2 0.159
{9,1,4} 0.322 0.960 | 203.6 8.63 0.165 0.195 7.36 144.8 8.12
{9,2,3} 0.252 0.986 16.9 212.4 1.18 0.0149 5.38 190.2 1.33
{9,2,4} | 0.0539 1.08 447.5 24.6 0.306 0.199 3.56 80.4 0.215
{9,3,1} 0.108 1.27 40.3 463.5 0.763 0.0789 3.61 49.6 0.476
{9,3,3} 0.279 1.22 28.8 334.5 1.50 1.90 4.69 37.6 0.0260
{9,3,4} | —0.371 | 1.12 | 0.00397 3.13 0.0919 1.88 434.4 20.0 6.72
{10,1,1}| —0.498 | 0.906 | 354.3 13.2 0.156 0.0813 4.11 39.3 0.0119
{10,1,2}| —0.0918| 1.11 5.93 84.9 0.979 0.0522 17.4 163.9 0.0596
{10,1,3}| —0.306 | 1.06 283.2 14.3 1.43 0.00322 5.71 217.4 0.156
{10,1,4}| 0.323 0.960 | 301.7 12.8 0.165 0.195 4.97 144.9 8.10
{10,2,3}| 0.252 0.986 15.1 189.7 1.18 0.0149 6.03 190.2 1.31
{10,2,4}| 0.0538 1.08 56.4 3.10 0.309 0.196 28.2 80.7 0.225
{10,3,1}| 0.108 1.27 7.54 86.8 0.763 0.0789 19.3 49.6 0.476
{10,3,2}| 0.159 1.10 | 0.00105 1.41 0.392 1.70 1012. 39.4 0.265
{10,3,3}| 0.279 1.22 174 202.0 1.50 1.90 7.76 37.6 0.0256
{10,3,4}| 0.199 1.13 | 0.00132 1.69 0.137 0.338 859.1 23.8 0.213
{i,5,k} | sin? 013 |sin? 012 |sin? Oa3 | 6cp /7| ao1/m | asi/m |m1/meV|ma/meV |ms/meV| mgg/meV |mg/meV
{1,1,1} | 0.02215| 0.308 | 0.470 | 1.22 1.74 | 0.0609 14.0 16.5 51.7 14.1 16.6
{1,1,2} | 0.02213| 0.306 | 0.475 1.41 1.31 0.456 10.3 13.4 50.9 6.81 13.5
{1,1,3} | 0.02223| 0.307 | 0.463 | 1.56 | 0.723 | 0.333 5.88 10.4 50.6 2.01 10.6
{1,1,4} | 0.02215| 0.308 | 0.470 | 1.02 1.35 1.95 1.80 8.78 49.8 2.90 8.97
{1,2,1} | 0.02215| 0.308 | 0.470 | 1.16 | 0.903 | 0.270 0.180 8.60 49.8 1.39 8.79
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{1,2,4} | 0.02215| 0.308 | 0.470 | 1.17 | 0.877 | 0.410 | 0.464 8.61 49.8 1.59 8.80
{1,3,1} | 0.02215| 0.308 | 0.470 | 1.08 1.82 1.92 9.04 12.5 50.6 10.5 12.6
{1,3,2} | 0.02215| 0.308 | 0.470 | 1.19 | 0.638 | 1.33 2.65 9.00 49.9 2.65 9.18
{1,3,3} | 0.02214| 0.308 | 0.470 | 1.04 1.52 1.43 1.88 8.80 49.8 3.76 8.98
{1,4,1} | 0.02216| 0.309 | 0.469 | 1.39 | 0.791 | 1.55 0 8.60 49.8 3.70 8.79
{2,1,1} | 0.02211| 0.306 | 0.473 | 1.24 1.06 1.11 6.21 10.6 50.2 0.774 10.7
{2,1,2} | 0.02215| 0.308 | 0.470 | 1.13 | 0.847 | 1.46 16.9 19.0 52.6 5.80 19.1
{2,1,3} | 0.02215| 0.308 | 0.470 | 1.19 | 0.453 | 1.41 8.59 12.2 50.5 6.29 12.3
{2,2,4} | 0.02206| 0.305 | 0.471 | 1.74| 1.37 1.12 0.500 8.61 49.7 3.36 8.77
{2,3,1} | 0.02222| 0.315 | 0.467 | 1.18 | 0.990 | 1.32 11.3 14.2 51.0 2.09 14.3
{2,3,2} | 0.02214| 0.307 | 0.470 | 1.24 | 1.11 1.52 11.2 14.1 51.0 2.87 14.2
{2,3,4} | 0.02218| 0.297 | 0.441 | 1.75 1.11 | 0.0478| 4.91 9.90 50.1 0.530 10.0
{3,1,1} | 0.02215| 0.308 | 0.470 | 1.18 | 0.688 | 0.201 11.9 14.6 51.2 7.25 14.8
{3,1,2} | 0.02215| 0.308 | 0.471 | 1.12 1.29 | 0.101 7.16 11.2 50.3 4.89 11.3
{3,1,3} | 0.02215| 0.308 | 0.472 | 1.87 | 1.70 | 0.457 4.76 9.83 50.1 4.53 10.0
{3,1,4} | 0.02215| 0.308 | 0.470 | 1.15 | 0.844 | 0.882 2.58 8.97 49.9 2.52 9.15
{3,2,4} | 0.02235| 0.297 | 0.461 | 1.79 1.02 | 0.452 0.642 8.62 49.9 3.10 8.80
{3,3,1} | 0.02216| 0.307 | 0.471 | 1.33 1.28 | 0.428 9.14 12.5 50.6 5.91 12.7
{3,3,3} | 0.02213| 0.308 | 0.469 | 1.04 1.53 1.44 1.91 8.81 49.8 3.78 8.99
{3,3,4} | 0.02215| 0.308 | 0.470 | 1.20 1.41 | 0.252 6.80 11.0 50.3 5.97 11.1
{4,1,1} | 0.02215| 0.309 | 0.470 | 1.09 1.12 | 0.510 1.35 8.70 49.8 0.993 8.89
{4,1,2} | 0.02215| 0.308 | 0.470 | 1.06 | 0.784 | 1.58 0.947 8.65 49.8 1.62 8.84
{4,1,3} | 0.02215| 0.308 | 0.470 | 1.20 | 0.258 | 0.222 5.88 10.4 50.1 7.27 10.6
{4,1,4} | 0.02215| 0.309 | 0.470 | 1.06 1.15 | 0.557 1.27 8.69 49.8 1.26 8.88
{4,2,4} | 0.02205| 0.306 | 0.468 | 1.47 | 1.37 1.15 0.866 8.64 49.8 1.76 8.80
{4,3,1} | 0.02218| 0.308 | 0.470 | 1.34 | 0.0918| 0.0663 11.2 14.2 51.1 11.3 14.3
{4,3,3} | 0.02228| 0.308 | 0.470 | 1.44 | 0.150 | 0.0615 4.21 9.57 50.0 4.53 9.76
{4,3,4} | 0.02215| 0.308 | 0.470 | 1.13 | 0.754 | 1.47 2.38 8.92 49.9 1.70 9.10
{4,4,2} | 0.02223| 0.306 | 0.471 | 1.58 1.74 | 0.183 0 8.60 49.9 2.08 8.80
{5,1,1} | 0.02215| 0.308 | 0.470 | 1.18 | 0.688 | 0.201 11.9 14.7 51.2 7.26 14.8
{5,1,2} | 0.02215| 0.308 | 0.471 | 1.12 1.29 | 0.100 7.16 11.2 50.3 4.89 11.3
{5,1,3} | 0.02214| 0.308 | 0.470 | 1.20 1.61 | 0.161 3.93 9.45 50.0 5.59 9.62
{5,1,4} | 0.02216| 0.308 | 0.470 | 1.22 1.30 1.22 1.80 8.78 49.8 1.89 8.97
{5,2,4} | 0.02218| 0.305 | 0.476 | 1.07 | 1.00 | 0.158 | 0.217 8.60 49.8 1.31 8.78
{5,3,1} | 0.02216| 0.308 | 0.471 | 1.05 | 0.499 | 0.498 11.1 14.0 51.0 9.47 14.1
{5,3,2} | 0.02217| 0.308 | 0.469 | 1.09 1.43 | 0.595 24.7 26.1 55.6 16.5 26.2
{5,3,3} | 0.02216| 0.311 | 0.467 | 1.17 | 0.721 | 1.00 6.02 10.5 50.2 3.71 10.7
{5,3,4} | 0.02215| 0.308 | 0.469 | 1.15 | 0.0414| 0.269 22.1 23.7 54.5 23.3 23.8
{5,4,1} | 0.02219| 0.312 | 0.460 | 1.69 1.78 1.92 0 8.60 49.8 1.96 8.81
{5,4,2} | 0.02215| 0.308 | 0.470 | 1.15 | 0.405| 1.03 0 8.60 49.8 3.30 8.78
{5,4,3} | 0.02297| 0.326 | 0.447 | 1.69 1.43 1.56 0 8.60 49.7 2.12 8.96
{6,1,1} | 0.02215| 0.308 | 0.470 | 1.18 | 0.688 | 0.201 11.9 14.6 51.2 7.25 14.8
{6,1,2} | 0.02217| 0.307 | 0.470 | 1.18 1.16 | 0.703 8.77 12.3 50.6 3.38 12.4
{6,1,3} | 0.02214| 0.308 | 0.472 | 1.23 1.70 1.12 11.9 14.7 51.2 10.5 14.8
{6,1,4} | 0.02216| 0.308 | 0.470 | 1.25 | 0.854 | 1.05 4.27 9.60 50.0 2.38 9.77
{6,2,3} | 0.02191| 0.305 | 0.482 | 1.30 1.07 1.38 4.45 9.68 50.1 0.645 9.82
{6,2,4} | 0.02212| 0.306 | 0.468 | 1.24 | 1.13 1.10 1.22 8.68 49.8 1.96 8.86
{6,3,1} | 0.02216| 0.308 | 0.470 | 1.28 | 0.0999| 1.94 9.93 13.1 50.8 10.1 13.3
{6,3,3} | 0.02215| 0.308 | 0.470 | 1.14 | 0.878 | 0.145 2.57 8.97 49.9 0.598 9.15
{6,3,4} | 0.02215| 0.308 | 0.470 | 1.20 1.41 | 0.252 6.80 11.0 50.3 5.98 11.1
{7,1,1} | 0.02215| 0.309 | 0.470 | 1.09 1.12 | 0.510 1.35 8.70 49.8 0.991 8.89
{7,1,2} | 0.02223| 0.305 | 0.465 | 1.25 1.14 | 0.536 8.14 11.8 50.5 3.70 12.0
{7,1,3} | 0.02215| 0.308 | 0.470 | 1.19 | 0.453 | 1.41 8.59 12.2 50.5 6.29 12.3

Table 9. The best fit values of the input parameters, neutrino masses and mixing parameters at the
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{7,1,4} | 0.02215| 0.309 | 0.470 | 1.06 1.15 | 0.557 1.27 8.69 49.8 1.25 8.88
{7,2,1} | 0.02215| 0.308 | 0.470 | 1.16 | 0.903 | 0.270 | 0.180 8.60 49.8 1.39 8.79
{7,2,4} | 0.02205| 0.306 | 0.468 | 1.47 | 1.37 1.15 0.868 8.64 49.8 1.76 8.80
{7,3,1} | 0.02218| 0.308 | 0.470 | 1.34 | 0.0916| 0.0661 11.2 14.2 51.1 11.3 14.3
{7,3,2} | 0.02215| 0.308 | 0.470 | 1.19 | 0.638 | 1.33 2.65 9.00 49.9 2.65 9.18
{7,3,3} | 0.02216| 0.308 | 0.470 | 1.33 1.94 1.82 3.33 9.22 49.9 4.15 9.40
{7,3,4} | 0.02215| 0.308 | 0.470 | 1.13 | 0.754 | 1.47 2.38 8.92 49.9 1.70 9.10
{7,4,1} | 0.02216| 0.309 | 0.469 | 1.39 | 0.686 | 1.45 0 8.60 49.8 3.70 8.79
{7,4,2} | 0.02223| 0.306 | 0.472 | 1.58 | 0.329 | 0.768 0 8.60 49.9 2.08 8.80
{8,1,1} | 0.02214| 0.308 | 0.471 | 1.09 | 0.622 | 0.163 12.2 15.0 51.3 8.76 15.1
{8,1,2} | 0.02206| 0.311 | 0.480 | 1.40 1.31 | 0.229 5.39 10.1 49.9 3.97 10.3
{8,1,3} | 0.02214| 0.308 | 0.470 | 1.20 1.61 | 0.162 3.93 9.45 50.0 5.60 9.62
{8,1,4} | 0.02215| 0.308 | 0.470 | 1.15| 0.844 | 0.883 2.57 8.97 49.9 2.51 9.15
{8,2,1} | 0.02215| 0.308 | 0.470 | 1.16 | 0.903 | 0.270 | 0.180 8.60 49.8 1.39 8.79
{8,2,4} | 0.02217| 0.307 | 0.474 | 1.05 | 0.963 | 0.141 0.215 8.60 49.8 1.38 8.78
{8,3,1} | 0.02225| 0.308 | 0.468 | 1.34 | 0.282 | 0.112 9.85 13.1 50.8 9.12 13.2
{8,3,2} | 0.02215| 0.308 | 0.470 | 1.19 | 0.638 | 1.33 2.65 9.00 49.9 2.65 9.18
{8,3,3} | 0.02216| 0.311 | 0.467 | 1.17 | 0.720 | 1.00 6.02 10.5 50.2 3.72 10.7
{8,3,4} | 0.02215| 0.308 | 0.470 | 1.15 | 0.0420| 0.270 22.2 23.8 54.5 23.3 23.8
{8,4,1} | 0.02219| 0.312 | 0.460 | 1.69 | 0.473 | 0.289 0 8.60 49.8 3.07 8.81
{8,4,3} | 0.02304| 0.329 | 0.453 | 1.70 1.10 1.23 0 8.60 49.7 2.14 8.98
{9,1,1} | 0.02214| 0.307 | 0.471 | 1.19 1.05 1.12 7.38 11.3 50.3 0.897 11.5
{9,1,2} | 0.02214| 0.309 | 0.471 | 1.21 | 0.898 | 0.0534 7.03 11.1 50.3 2.02 11.3
{9,1,3} | 0.02215| 0.308 | 0.471 | 1.24 | 1.69 1.12 11.8 14.6 51.2 10.4 14.7
{9,1,4} | 0.02205| 0.311 | 0.463 | 1.58 | 0.972 | 0.480 5.91 10.4 50.1 0.680 10.6
{9,2,3} | 0.02191| 0.305 | 0.482 | 1.29 1.07 1.38 4.45 9.68 50.1 0.646 9.82
{9,2,4} | 0.02211| 0.306 | 0.468 | 1.24 | 1.13 1.09 1.23 8.68 49.8 1.98 8.86
{9,3,1} | 0.02216| 0.308 | 0.470 | 1.28 | 0.0996| 1.94 9.93 13.1 50.8 10.1 13.3
{9,3,3} | 0.02215| 0.308 | 0.470 | 1.14 | 0.878 | 0.145 2.57 8.97 49.9 0.596 9.15
{9,3,4} | 0.02199| 0.309 | 0.519 | 1.11 1.52 | 0.125 18.3 20.2 53.1 15.3 20.3
{10,1,1}| 0.02214| 0.307 | 0.471 | 1.19 1.05 1.13 7.41 11.3 50.3 0.899 11.5
{10,1,2}| 0.02214| 0.309 | 0.471 | 1.21 | 0.898 | 0.0539 7.03 11.1 50.3 2.02 11.3
{10,1,3}| 0.02214| 0.308 | 0.472 | 1.23 1.70 1.12 11.9 14.7 51.2 10.5 14.8
{10,1,4}| 0.02205| 0.311 | 0.463 | 1.58 | 0.972 | 0.480 5.91 10.4 50.1 0.682 10.6
{10,2,3}| 0.02191| 0.305 | 0.482 | 1.29 1.07 1.38 4.46 9.68 50.1 0.646 9.82
{10,2,4}| 0.02211| 0.306 | 0.468 | 1.24 | 1.13 1.10 1.22 8.68 49.8 1.95 8.86
{10,3,1}| 0.02216| 0.308 | 0.470 | 1.28 | 0.0998| 1.94 9.93 13.1 50.8 10.1 13.3
{10,3,2}| 0.02217| 0.308 | 0.468 | 1.06 | 0.621 | 1.43 27.2 28.5 56.7 16.1 28.6
{10,3,3}| 0.02215| 0.308 | 0.470 | 1.14 | 0.878 | 0.145 2.57 8.97 49.9 0.597 9.15
{10,3,4}| 0.02215| 0.308 | 0.470 | 1.07 | 1.94 | 0.0463 15.6 17.8 52.2 17.0 17.9

Table 9. The best fit values of the input parameters, neutrino masses and mixing parameters at the
minimum values of x? for viable models C/ — D; — Ny, without gCP symmetry.

Models Best fit results for 52 models C] — D; — Ny with gCP

ikt % [Sn]  Bla Vo | hafhi | oo/MV (@0 (mA)/meV] xom
{1,1,2} 0.465 1.03 9.04 0.0117 0.289 392.0 90.6 4.30
{1,1,4} 0.402 0.986 0.00273 20.0 —0.00824 509.2 22.4 8.04
{1,3,1} —0.185 1.21 38.3 703.0 1.02 7.10 40.7 0.620
{1,3,3} —0.277 | 1.16 0.0585 0.00187 1.63 4024. 15.6 2.20
{2,1,1} 0.476 0.910 4.88 28.2 0.194 51.7 42.7 3.89

Table 10. The best fit values of the input parameters, neutrino masses and mixing parameters at the

minimum values of x? for viable models C! — D — Ny with gCP symmetry (continues. . . .)
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{2,2,4} | —0.00936| 1.29 0.0110 5.77 0.444 301.7 34.0 18.4
{3,1,1} | —0.0598 | 1.15 0.00288 1.61 0.762 947.6 102.7 2.50
{3,1,4} | —0.163 | 1.15 0.00106 0.0373 0.302 4385. 78.2 11.2
{3,3,3} 0.277 1.16 0.0584 0.000678 1.63 4026. 15.6 2.85
{3,3,4} | —0.452 | 1.07 879.7 73.1 0.0923 3.66 12.4 31.3
{4,1,2} 0.0451 1.10 141.2 2.48 0.936 44.3 136.8 1.43
{4,1,3} 0.232 1.10 446.9 8.51 1.35 14.6 163.3 23.4
{4,2,4} | —0.00938| 1.29 0.104 5.78 0.444 301.1 34.1 18.4
{4,3,1} | —0.443 | 1.04 648.1 9.61 2.51 13.5 93.6 31.1
{4,3,3} 0.112 1.18 259.3 7.11 0.933 20.6 44.5 8.86
{5,1,1} 0.0597 1.15 0.110 1.61 0.762 944.7 102.7 0.0156
{5,1,2} 0.0493 1.12 18.4 16.3 1.08 88.8 159.3 2.83
{5,1,3} | —0.458 | 1.12 2035. 41.3 2.14 3.20 101.1 19.9
{5,1,4} | —0.163 | 1.15 0.00424 0.0373 0.302 4386. 78.3 11.2
{5,3,1} 0.0595 1.28 39.4 65.3 0.680 25.2 49.1 15.1
{5,3,3} 0.413 1.02 274.6 436.1 —0.705 2.66 42.1 11.4
{6,1,1} 0.0597 1.15 0.00283 1.61 0.762 948.1 102.7 0.0166
{6,1,2} 0.0515 1.11 3.45 50.0 0.956 29.8 140.0 23.3
{6,1,3} | —0.330 | 1.10 169.1 9.07 1.41 9.78 179.7 0.771
{6,1,4} | —0.163 | 1.15 0.000673 0.0372 0.301 4393. 78.4 11.2
{6,2,3} | —0.249 | 0.969 5.84 72.3 1.19 15.3 199.6 6.31
{6,2,4} | —0.00937| 1.29 5.78 0.0243 0.444 301.3 34.1 18.4
{6,3,3} 0.277 1.09 0.000598 0.0191 1.74 5105. 15.6 19.9
{7,1,2} 0.0451 1.10 1830. 32.2 0.936 3.42 136.8 1.43
{7,1,3} 0.232 1.10 2558. 48.7 1.35 2.56 163.2 23.2
{7,1,4} | —0.328 | 1.05 31.1 0.00369 1.66 250.8 746.2 23.4
{7,2,4} | —0.0133 | 1.26 144.8 506.6 0.447 3.41 41.9 23.9
{7,3,1} | —0.185 | 1.21 18.3 0.00671 1.02 272.3 40.7 0.623
{7,3,3} 0.112 1.18 1680. 46.1 0.933 3.18 44.5 8.98
{8,1,1} 0.0526 1.15 451.9 496.9 0.761 3.03 104.3 0.215
{8,1,2} 0.0497 1.12 535.1 474.5 1.08 3.05 159.0 2.79
{8,1,3} | —0.458 | 1.12 1786. 36.2 2.14 3.65 101.0 19.9
{8,2,4} 0.221 0.977 2282. 35.9 0.0816 3.51 5.75 1.15
{8,3,1} | —0.185 | 1.21 18.3 0.0107 1.02 272.3 40.7 0.623
{8,3,3} 0.413 1.02 166.3 264.1 —0.705 4.40 42.1 11.4
{9,1,1} 0.490 | 0.905 33.0 1.20 0.160 44.1 40.6 0.814
{9,1,2} 0.0515 1.11 29.4 425.3 0.956 3.50 139.9 23.1
{9,1,3} | —0.330 | 1.10 281.8 15.1 1.41 5.87 179.7 0.782
{9,1,4} | —0.311 | 0.998 14.5 177.9 0.585 6.45 406.1 37.2
{9,2,3} | —0.250 | 0.970 16.3 201.8 1.19 5.49 199.2 6.27
{9,2,4} | —0.0539 | 0.999 393.3 19.5 0.0637 3.78 22.2 2.80
{10,1,1}| —0.490 | 0.905 353.9 13.1 0.159 4.11 40.6 1.55
{10,1,2}| 0.0451 1.10 0.0176 0.00118 0.936 6262. 136.8 1.43
{10,1,3}| -0.330 | 1.10 290.4 15.6 1.41 5.70 179.7 0.770
{10,1,4}| —0.311 | 0.998 17.8 218.7 0.585 5.24 406.4 37.1
{10,2,3}| —0.249 | 0.969 14.9 184.3 1.19 6.00 199.7 6.25
{10,2,4}| —0.0137 | 1.26 16.8 1.29 0.447 103.2 43.2 23.6

Table 10. The best fit values of the input parameters, neutrino masses and mixing parameters at the
minimum values of x? for viable models C! — D’ — Ny with gCP symmetry (continues. . . .)
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{i,j, k} | sin® B3 |sin® 012 |sin® Oz |Scp /7|21 /7| az1/7 |m1/meV |ma/meV |ms/meV | mgg/meV|mg/meV
{1,1,2} | 0.02191| 0.307 | 0.499 | 1.37 | 1.29 | 0.480 9.45 12.8 50.7 6.12 12.9
{1,1,4} | 0.02184| 0.284 | 0.489 | 1.36 | 1.03 1.53 1.10 8.67 50.3 2.59 8.77
{1,3,1} | 0.02210| 0.306 | 0.480 | 1.08 | 1.82 1.91 8.97 12.4 50.4 10.4 12.5
{1,3,3} | 0.02164| 0.308 | 0.453 | 1.05 | 1.19 | 1.69 1.00 8.66 49.8 2.74 8.77
{2,1,1} | 0.02180| 0.297 | 0.499 | 1.07 | 1.02 | 0.908 6.57 10.8 50.4 0.782 10.9
{2,2,4} | 0.02205| 0.308 | 0.476 | 1.79 | 1.36 | 1.08 0.468 8.61 49.7 3.53 8.77
{3,1,1} | 0.02214| 0.309 | 0.473 | 0.820| 1.32 1.80 12.0 14.7 51.2 7.35 14.8
{3,1,4} | 0.02227| 0.283 | 0.466 | 1.53 | 1.24 | 0.851 3.88 9.43 50.0 2.98 9.53
{3,3,3} | 0.02164| 0.307 | 0.453 | 0.953| 0.815| 0.313 1.00 8.65 49.8 2.74 8.77
{3,3,4} | 0.02167| 0.300 | 0.573 | 1.10 | 1.18 | 1.74 10.6 13.7 50.3 5.22 13.7
{4,1,2} | 0.02211| 0.305 | 0.474 | 1.34 | 1.15| 0.596 6.54 10.8 50.3 3.16 10.9
{4,1,3} | 0.02340| 0.298 | 0.507 | 1.58 | 0.408| 0.0354| 7.85 11.6 52.1 6.43 12.1
{4,2,4} | 0.02205| 0.308 | 0.476 | 1.79 | 1.36 | 1.08 0.468 8.61 49.7 3.53 8.77
{4,3,1} | 0.02320| 0.292 | 0.484 | 1.71 | 0.306| 0.108 12.8 15.4 53.7 11.6 15.7
{4,3,3} | 0.02108| 0.310 | 0.477 | 1.50 | 0.205| 0.142 4.26 9.60 49.7 4.45 9.60
{5,1,1} | 0.02215| 0.308 | 0.472 | 1.18 | 0.685| 0.199 11.9 14.7 51.2 7.34 14.8
{5,1,2} | 0.02205| 0.312 | 0.480 | 1.40 | 1.31 | 0.229 5.40 10.1 49.9 3.96 10.3
{5,1,3} | 0.02223| 0.306 | 0.454 | 1.81 | 1.98 | 1.01 0.951 8.65 49.8 3.15 8.84
{5,1,4} | 0.02227| 0.283 | 0.466 | 1.53 | 1.24 | 0.851 3.88 9.43 50.0 2.99 9.53
{5,3,1} | 0.02381| 0.312 | 0.438 | 1.27 | 0.252| 0.0796 10.0 13.2 51.9 9.87 13.6
{5,3,3} | 0.02212| 0.311 | 0.467 | 1.66 | 0.794| 1.70 3.63 9.33 49.9 2.80 9.51
{6,1,1} | 0.02215| 0.308 | 0.472 | 1.18 | 0.686| 0.200 12.0 14.7 51.2 7.33 14.8
{6,1,2} | 0.02129| 0.333 | 0.546 | 1.14 | 1.13 | 0.304 6.26 10.6 49.6 2.34 10.7
{6,1,3} | 0.02223| 0.307 | 0.460 | 1.26 | 1.64 | 1.20 10.7 13.7 50.9 8.78 13.8
{6,1,4} | 0.02227| 0.283 | 0.467 | 1.53 | 1.24 | 0.849 3.88 9.43 50.0 2.98 9.53
{6,2,3} | 0.02160| 0.287 | 0.487 | 1.00 | 0.999| 1.00 4.82 9.86 50.4 0.493 9.92
{6,2,4} | 0.02205| 0.308 | 0.476 | 1.79 | 1.36 | 1.08 0.468 8.61 49.7 3.53 8.77
{6,3,3} | 0.02257| 0.298 | 0.551 | 1.29 | 1.02 | 0.578 0.877 8.64 49.8 0.801 8.85
{7,1,2} | 0.02212| 0.305 | 0.474 | 1.34 | 1.15| 0.596 6.54 10.8 50.3 3.16 10.9
{7,1,3} | 0.02339| 0.298 | 0.507 | 1.58 | 0.408| 0.0353 7.85 11.6 52.1 6.43 12.1
{7,1,4} | 0.02234| 0.300 | 0.473 | 1.78 | 0.226| 0.105 2.62 8.99 51.4 4.65 9.35
{7,2,4} | 0.02252| 0.284 | 0.441 | 1.74 | 1.56 1.13 0.454 8.61 50.3 3.59 8.81
{7,3,1} | 0.02209| 0.306 | 0.480 | 1.08 | 1.82 | 1.91 8.96 12.4 50.4 10.4 12.5
{7,3,3} | 0.02107| 0.310 | 0.478 | 1.50 | 0.205| 0.142 4.26 9.60 49.7 4.45 9.60
{8,1,1} | 0.02216| 0.308 | 0.476 | 1.10 | 0.620| 0.170 12.5 15.1 51.4 8.92 15.3
{8,1,2} | 0.02205| 0.312 | 0.479 | 1.40 | 1.31 | 0.229 5.39 10.1 49.9 3.97 10.3
{8,1,3} | 0.02223| 0.306 | 0.454 | 1.81 | 1.98 1.01 0.951 8.65 49.8 3.15 8.84
{8,2,4} | 0.02221| 0.305 | 0.472 | 0.946| 1.02 1.87 0.214 8.60 49.8 1.33 8.78
{8,3,1} | 0.02209| 0.306 | 0.480 | 1.08 | 1.82 | 1.91 8.96 12.4 50.4 10.4 12.5
{8,3,3} | 0.02212| 0.311 | 0.467 | 1.66 | 0.794| 1.70 3.63 9.33 49.9 2.80 9.51
{9,1,1} | 0.02209| 0.302 | 0.479 | 1.06 | 1.01 | 0.957 7.64 11.5 50.4 0.911 11.6
{9,1,2} | 0.02129| 0.333 | 0.545 | 1.14 | 1.13 | 0.304 6.26 10.6 49.6 2.34 10.7
{9,1,3} | 0.02223| 0.307 | 0.460 | 1.26 | 1.64 1.20 10.7 13.7 50.9 8.78 13.8
{9,1,4} | 0.02136| 0.291 | 0.538 | 1.75 | 1.10 1.83 4.58 9.74 51.4 1.12 9.90
{9,2,3} | 0.02160| 0.287 | 0.487 | 1.00 | 0.997| 0.999 4.82 9.86 50.4 0.493 9.92
{9,2,4} | 0.02193| 0.297 | 0.454 | 1.01 | 0.989| 1.01 1.36 8.70 50.0 2.69 8.84
{10,1,1}| 0.02208| 0.302 | 0.479 | 0.946| 0.986| 1.04 7.68 11.5 50.4 0.913 11.6

Table 10. The best fit values of the input parameters, neutrino masses and mixing parameters at the
minimum values of x? for viable models C/ — D} — N with gCP symmetry (continues. . ..)
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{10,1,2}| 0.02212| 0.305 | 0.474 | 1.34 | 1.15| 0.596 6.54 10.8 50.3 3.16 10.9
{10,1,3}| 0.02223| 0.307 | 0.460 | 1.26 | 1.64 | 1.20 10.7 13.7 50.9 8.78 13.8
{10,1,4}| 0.02136| 0.291 | 0.538 | 1.75| 1.10 | 1.83 4.58 9.74 51.4 1.12 9.90
{10,2,3}| 0.02161| 0.287 | 0.487 | 1.00 | 0.999| 1.00 4.82 9.86 50.4 0.492 9.92
{10,2,4}| 0.02248| 0.285 | 0.443 | 1.75 | 1.57 | 1.12 0.445 8.61 50.2 3.62 8.80

Table 10. The best fit values of the input parameters, neutrino masses and mixing parameters at
the minimum values of x* for viable models C] — D — N}, with gCP symmetry.

A Finite modular group I's = As

The finite modular group I's = A5 can be generated by the modular generators S and T
which satisfy the multiplication rules:

S2=T°=(ST)®=1. (A1)

The As group has five irreducible representations: one singlet representation 1, two three-
dimensional representations 3 and 3’, one four-dimensional representation 4 and one five-
dimensional representation 5. In the present work, we shall follow the conventions of refs. [66—
69] and the explicit forms of the generators S and T in the five irreducible representations
are as follows:

1: S=1, T=1,
I Ve
3: S:% V2 —¢ $—11, T = diag(1,ws,ws),
—~V2¢6-1 —¢
-1 V2 V2
3 S:% V21—¢ ¢ , T = diag(1,w?,w?),
V2 ¢ 1-¢
1 ¢—1 ¢ —1
4: S:% ¢;1 _11 _11 ¢f1 ) T = diag(ws, w2, ws,ws),
1 4 -1 1
-1 V6 V6 V6 V6
V6 (6172 =20 2(¢—-1) ¢
5: S=3|v6 20  ¢* (6-1220¢-1)|. T =diag(l,wswi wi ws),
V62(0-1) (¢—1)0° ¢ —2¢
V6 9P 200-1) 29 (- 1) (A.2)

where ws = €2™/% denotes the quintic root of unit and ¢ = (14 /5)/2 is the golden ratio.
Then the Kronecker products between various irreducible representations follow immediately
19 R=R®1=R, 3®3=1503,4®5s, 323 =1503,d5s, 3x3 =4®5,
34=3"04905, 3®4=304905, 3R5=303 0405,
325=303 04905, 494=1503,03, 045055, 405=303 4D 51 D52,
505=15034034 045044551 D552, (A.3)

— 36 —



where R denotes any irreducible representation of As, and 4g, 44, 51, 52, 55,1 and 552
stand for the two 4 and 5 which appear in the Kronecker products, where the subscript “S”
(“A”) refers to symmetric (antisymmetric) combinations. We now list the CG coefficients

in our basis, and the results are summarized in table 11.

33 =15sD34D5s

323 =1503, ®5s

33 =45

1s:z1y1 + x2y3 + T3Yy2
T2Y3 — T3Y2
34 | z1y2 — z2y1

r3Y1 — T1Y3

2T1Y1 — T2Ys — T3Y2
_\/g(l’lyQ + x2y1)
55 : V6r2y2
V6z3ys
—V/3(x1y3 + z391)

bs:

1s:z1y1 + T2y3 + T3Yy2

3:4 : :ljlyg — T2Y1 4 N

V2xay1 + z3y2
—V2z1y2 — 23Y3
—V2z1y3 — T2y2

\/§$3y1 + x2y3

V3ziy

xT2Y3 — T3Y2

T3Y1 — T1Y3

2T1Y1 — T2Y3 — T3Y2

\/éxgyg T2Y1 — \/§$3y2
—V3(x1y2 + 2211) 5: | z1y2 — V223ys
*\/§($1y3 + x3y1) r1Y3 — \/szyz

V6xays z3y1 — V2T2y3

34=3" 39465

3®4=30405

—V2(z2y4 + z3y1)
3" | V2xiy2 — zay1 + w3y3
\/§m1y3 + X2y2 — T3Y4
z1y1 — V2x3y2
—z1y2 — V22201
T1y3 + V2w3Y4
—21ya + V222ys3
V6(z2ys — z391)
2v/2x1y1 + 223Y2
5: | —v2z1y2 + 2291 + 3z3y3
V2z1y3 — 3x2y2 — T3Y4
—2v/21y4 — 222y3

—V2(x2y3 + z3Y2)
3: | V2z1y1 + zoys — z3y3
\/§m1y4 — X2Y2 + 31
z1y1 + V273Y3
z1y2 — V2x3y4
—21y3 + V23211
—z1ys — V222y2
V6(z2y3 — z3Y2)
V2x1y1 — 3z2ys — T3Y3
5: 2v/271y2 + 223Y4
—2v/2x1y3 — 22291
—V2z1ys + T2y + 3331

4 :

35=303 04®5

35=303¢405

—2z1y1 + V3w2ys + V3z3y2
3: | VBziy2 + 2231 — V6r3Y3
V3z1ys — V6ways + z3yn
\/§x1y1 + T2ys + x3Y2
3" | z1ys — V2m2y2 — V22354
T1ya — V2w2y3 — V2w3Y5
2v2z1y2 — V6x2y1 + T3Ys3
—V2z1y3 + 2x2y2 — 3T3Y4
V2z1ys + 3x2y3 — 223Yys
—2v2m1y5 — T2y4 + V62331

V3z1y1 + T2ya + T3Y3

3: | z1y2 — V222y5 — V27314

T1ys — V2w2y3 — V2x3Y2
—2z1y1 + V322y4 + V373Ys3

3| VBziys + z2yr — V6asys

V3z1ys — V62292 + 2331

V2z1y2 + 3z2ys — 223y4

2\/§m1y3 — \/él’Zyl + z3Yys5
—2v2z1y4 — 22y2 + V6a3y1

—V221y5 + 232y3 — 373Y2

Table 11. Tensor products and the corresponding CG coefficients for the finite modular symmetry
As. Here all CG coefficients are presented in the form x ® y, where z; denotes the elements of the left

base vector  and y; stands for the elements of the right base vector y (continues. .. ).
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35=333®445 3®5=303 0405
V3(z2ys — w3y2) V3(z2y4 — w3y3)
—z1y2 — V3w2y1 — V223Y3 2z1y2 + V223Y4
5: —2z1y3 — V2x2y2 5: | —z1ys — V3z2y1 — V223y5
2x1ya + V2x3ys5 T1ya + V2z2y2 + V32331
T1ys + V2291 + V3311 —2z1y5 — V2x2y3
505=15®34®3, D4s D44 D 55,1 D 5s,2
1s : z1y1 + T2ys + T3Ya + T4Y3 + T5Y2
T2Ys + 2x3Ys — 2T4Y3 — T5Y2
34 | —V3Bz1y2 + V3z2y1 + V2x3y5 — V225y3
V3x1ys + V222y1 — V2xay2 — V3511
2xoys — T3ys + T4Y3 — 225Y2
84 | VBaiys — VBasyr + V2zays — V2asy4
—V3z1ys + V2z2y3 — V2z3y2 + V3zays
3V2z1y2 + 3v2z2y1 — V373ys5 + 4v374ys — V375Ys3
As 3v2x1ys3 + 4v3z2y2 + 3v2x3y1 — V3Tays — V3T5y4
3V2z1ys — V3z2ys — V3z3y2 + 3vV2zay1 + 4V325y5
3V2z1ys5 — V3z2ys + 4V313y3 — V3zay2 + 3v2251
V2z1y2 — V2z2y1 + VBa3ys — V3xsys
4y —\/§I1y3 + \/§I3y1 + \/§w4y5 — \/§m5y4
—V2z1ys — V3r2ys + V3z3y2 + V2zayn
V2z1ys — V3w2ys + V3ray2 — V2zsy1
2z1y1 + T2ys5 — 2x3ys — 274Y3 + T5Y2
T1y2 + 2291 + V6T3Yys + V6z5y3
55,1 : —2x1Yy3 + \/ézgyg — 2x31y1
—221ys — 224y1 + V6T5Y5
z1ys + V6x2ys + V6zay2 + w591
2x1Yy1 — 2w2Y5 + T3Y4 + T4Y3 — 2T5Y2
—221y2 — 2221 + V624Y4
55,2 : z1y3 + 23y1 + V6zays + V6504
T1Y4 + \/6I2y3 + \/61’3242 + T4y1
—2x1ys + V6x3ys — 2x5y1

Table 11. Tensor products and the corresponding CG coefficients for the finite modular symmetry
As. Here all CG coefficients are presented in the form x ® y, where z; denotes the elements of the left

base vector x and y; stands for the elements of the right base vector y.
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