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Abstract

Through this thesis, I investigate the way in which the electroweak phase transition,

and therefore the Higgs boson, bridges high energy particle physics and early universe

cosmology; moreover, I argue that it is particularly interesting to explore this bridge

today as experiments such as the Large Hadron Collider begin to uncover the nature

of physics at the electroweak scale. I will discuss how measurements of the properties

of the Higgs boson at the Large Hadron Collider allow one to determine the nature

of the phase transition that was responsible for electroweak symmetry breaking in

the early universe. That information in turn will allow one to assess whether the

asymmetry between the abundances of matter and anti-matter in the universe may

have been generated during the electroweak phase transition. Additionally, I will

discuss the impact of the electroweak phase transition on another cosmological relic:

namely, the dark matter. Precise measurements of the mass and abundance of dark

matter today yield further information about the nature of the electroweak phase

transition, in some scenarios. This information may be used to test the hypothesis

that the cosmological constant, assumed to be a good model of dark energy, is finely

tuned. In this way, I hope to demonstrate the importance of the electroweak phase

transition as a bridge between terrestrial tests of high energy physics and cosmological

tests of the physics of the early universe.
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Chapter 1

Introduction

I can’t imagine a more exciting time to be a high energy physicist. As I am writing this

document, the Higgs boson has just been discovered at the Large Hadron Collider

facility in Geneva, Switzerland. The Higgs represents the final piece of the puzzle

in the Standard Model of particle physics, and put more broadly, its discovery can

be counted as one of science’s greatest successes of all time. Over the next few

years, studies of the properties of the Higgs boson will open wide the window on a

new and unexplored realm of physics. We have some suspicions about what beasts

that realm may contain. In the field of cosmology, high-precision measurements

of the cosmic microwave background over the past decade have revolutionized our

understanding of the universe and its makeup. We live in a universe brimming with a

mysterious dark matter and an enigmatic dark energy, both of which pose challenges

to our understanding of high energy physics. Moreover, the observed abundance of

matter over anti-matter can only be explained if Nature is more complex and dynamic

than the Standard Model would have us believe. In the coming years, the Planck

satellite will probe the temperature fluctuations of the cosmic microwave background

with unprecedented precision, dark matter detection experiments will increase their
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sensitivity and may yield a discovery of dark matter, and galaxy surveys will extend

their breadth and depth to test the nature of dark energy. The Higgs boson may have

been the first great discovery of the 21st century, but it will not be the last.

These exciting topics in high energy physics–the Higgs boson, the matter / anti-

matter asymmetry, dark matter, and dark energy–may seem to be entirely distinct

fields of research. However, as I will discuss throughout this manuscript, they are

linked together by the electroweak phase transition. This event, which is hypothesized

to have taken place in the first femtoseconds after the Big Bang when the universe

was very hot and dense, is responsible for inducing electroweak symmetry breaking,

which allows the Higgs to provide mass to the Standard Model fields. Thus, on

one hand the electroweak phase transition has direct connections to the physics of

the Higgs boson: the temperature at which the phase transition took place and

its thermodynamic “order” are controlled by the mass of the Higgs boson and the

coupling of the Higgs boson to new particles. On the other hand, the electroweak

phase transition, by virtue of taking place in the very early universe, has connections

with the physics of dark matter and dark energy: the phase transition can indirectly

affect the abundance of dark matter in the universe today and may act as a probe

of dark energy in the early universe. In this way, the electroweak phase transition

bridges two otherwise separate fields of physics – cosmology and high energy particle

physics. It is the subject of this manuscript to study this connection further.

We begin in Chapter 2 by discussing the Higgs boson, the essential role that it

plays in the Standard Model, the history of searches for the Higgs particle, and its

connection to the baryon asymmetry of the universe via electroweak baryogenesis

and the electroweak phase transition. In Chapter 3, we discuss the physics of the

electroweak phase transition, and introduce a quantity, called the thermal effective

potential, which will be an invaluable tool in the following phase transition analyses.



3

In Chapters 4, 5, and 6, we employ these concepts to investigate the connection

between the Higgs boson and baryogenesis in various scenarios. In Chapter 7, we

discuss the physics of dark matter and dark energy and evidence for their existence

in our universe. In Chapters 8 and 9, we investigate the impact of the electroweak

phase transition on the dark matter relic abundance, and we propose a way of testing

the hypothesis of the fine-tuning of the cosmological constant.

Throughout this manuscript, we will be using “physicist’s units” in which ~ = c =

1. Consequently, mass, energy, inverse time, and inverse length are measured with

the same unit. We will primarily use the GeV, which is approximately equal to the

mass of the proton.
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Part I

The Higgs Boson and Electroweak

Baryogenesis
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Chapter 2

The Two Faces of the Higgs

In the introduction, we discussed that the Higgs boson is especially suited to the

task of bridging high energy particle physics at colliders with the high energy cos-

mology of the early universe. In this part of the manuscript, we will make this

terrestrial-cosmological connection more concrete. We begin this chapter in Sec. 2.1

by discussing the physics of the Higgs boson: the critical role it plays in the SM,

its participation in spontaneous symmetry breaking and the Higgs mechanism, and

constraints on Higgs physics from collider experiments. In Sec. 2.2 we will turn our

attention to the role that the Higgs plays in creating the cosmic baryon asymmetry

in the early universe through electroweak baryogenesis. We will see the success of

electroweak baryogenesis hinges upon the nature of the electroweak phase transition.

Finally, we will establish the connection between the terrestrial and cosmological

sides of the Higgs by using the baryogenesis success criterion to derive a bound on

the mass of the Higgs boson in the Standard Model and to motivate the search for

physics beyond the Standard Model.
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2.1 The Terrestrial Higgs: Weak Boson Masses

In the Standard Model (SM) of particle physics, the Higgs boson is charged with

the critical task of providing mass to the matter fields and weak gauge bosons (W±

and Z). Without the Higgs, for example, electrons would be massless particles and

would not bind with nuclei into atoms. Consequently our universe would be devoid

of molecules, planets, and life as we know it. However, as we will see, the truly

indispensable job of the Higgs is providing mass to the weak gauge bosons. If we

lived in a universe lacking a weak nuclear force, but instead only the strong nuclear

force and electromagnetic forces were present, then the Higgs would not be required

to generate mass for the matter fields. In this regard, the Higgs is essential.

The SM is a Yang-Mills theory (1) built upon the symmetry group SU(3)C ×
SU(2)L × U(1)Y . Each of the symmetry groups is associated with one of the funda-

mental forces (with the exception of the gravitational force, which stands apart). The

SU(3)C group is the foundation of quantum chromodynamics (QCD) (2; 3), the theory

which describes the strong force that is responsible for binding quarks together into

nucleons. Since our primary subject of interest – the Higgs boson – does not partici-

pate in the strong interaction, we will speak no further of QCD. The SU(2)L×U(1)Y

group (4) is the basis of the Glashow-Weinberg-Salam Model (GWS) (5–7) of the

unified electromagnetic and weak nuclear forces. Studies of the electromagnetic force

were pioneered in the 19th century by Michael Faraday, James Maxwell Clerk, and

others. Today, the models which describe the electromagnetic force are arguably the

most well tested in all of science1. The weak nuclear force is most familiar for its role

in mediating the radioactive decay of heavy nuclei, a phenomenon first observed by

Becquerel and the Curie’s at the end of the 19th century. Subsequently, the theory of

1E.g., recent measurements of the magnetic moment of the electron agree with the predictions
of quantum electrodynamics at the order of 0.1 parts per billion (8).
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Figure 2.1: Feynman graphs showing interactions between electrons (straight lines)
and a massive photon (wiggly lines). I am grateful to Hiren Patel for assistance in
creating this figure.

the weak interaction underwent a number of revisions, beginning with Fermi’s four-

fermion model in 1933 (9; 10), the inclusion of parity violation in the 1950’s (11; 12),

and finally culminating with the GWS model in the 1960’s. As we will discuss further

below, the Higgs plays a staring role in the GWS model.

The Trouble with Vector Boson Masses

It is well known that unlike electromagnetism, the weak force is a short range force

(see, e.g., the textbook (13)). However, in analogy with electromagnetism, one can

model such an interaction with an intermediate vector (spin equal to one) boson

provided that this boson is allowed to be massive. If the boson has a mass M then

the range of the interaction is given approximately by r ∼ M−1. Indeed, in the case

of the weak interactions this boson must be quite heavy, since it was not produced in

either nuclear or muonic decays. This picture was confirmed in 1983 when the W±

and Z bosons were discovered at the Super Proton Source (SPS) accelerator with

masses 80.4 GeV and 91.2 GeV, respectively (14).

The weak force is the only known fundamental force that is mediated by mas-
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sive vector bosons. It turns out to be very difficult to develop a theory of massive

spin-1 fields that is theoretically consistent and predictive. In fact, it wasn’t until

1971 that ’t Hooft and Veltman (15; 16) demonstrated that this task may be accom-

plished by employing a Higgs field. In order to illustrate the difficulty that arises

– and thereby demonstrate the importance of the Higgs boson – let us consider the

hypothetical interaction of electrons with a massive photon. Suppose that we are

interested in calculating perturbative corrections to the mass of the electron and to

its electromagnetic coupling with the photon. This calculation may be performed by

evaluating various one-loop Feynman graphs, some of which are shown in Figure 2.1.

As a consequence of quantum mechanics, the virtual particles in the loops are allowed

to have an arbitrarily large momentum q, and we anticipate that this may cause di-

vergences to arise in our calculation. Focusing our attention on estimating the degree

of divergence, we can calculate the graphs using the following “Feynman rules”

each loop : lim
Λ→∞

ˆ Λ

0

d4q

electron line :
1

/q −m
q�m−−−→ 1

q
+
m

q2

photon line :
−gµν + qµqν

M2

q2 −M2

q�M−−−→ qµqν
q2M2

∼ 1

M2
(2.1)

where m and M are the electron and photon masses, respectively. Here, we have

written the upper bound on the momentum integration as Λ, anticipating that the

integral will be divergent. Applying these rules to the first graph in Figure 2.1,

corresponding to corrections to the electron’s mass, we estimate the amplitude as2

lim
Λ→∞

ˆ Λ

0

d4q

(
1

q
+
m

q2

)
1

M2
∼ lim

Λ→∞
m

Λ2

M2
, (2.2)

which diverges like Λ2/M2. Divergences like this are not uncommon in quantum field

theory, and can be removed by the procedure known as renormalization. That is, after
2The term which would be O

(
Λ3
)
vanishes as a consequence of Lorentz invariance.
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measuring the electron’s mass, we can add a counterterm to the theory which will

cancel the divergence and leave behind only the physical mass. The second graph is

also divergent, and can be renormalized by using a measurement of electron scattering

to determine the electromagnetic coupling constant. However, the persistence of the

divergence in the third graph, and similar higher order graphs, is ruinous. Ultimately

in order to cancel the divergences to all orders we would need an infinite number

of measurements to specify the infinite number of counterterms. In this way, the

theory looses its predictive power and is said to be non-renormalizable. Note that

this problem does not arise for a massless photon, since in that case each photon line

comes in with a factor of 1/q2 and renders the higher-order integrals convergent.

The Incredible Edible Higgs

The purpose of the Higgs in the GWS model of the electroweak interactions is to

provide a mass to the weak gauge bosons in a way that allows the theory to remain

renormalizable. The GWS model is formulated as follows. The gauge group is

GEW = SU(2)L × U(1)Y (2.3)

with associated gauge fieldsW a
µ (for a = 1, 2, 3) and Bµ and coupling constants g and

g′. The Higgs field transforms as a doublet under the SU(2)L and carries a charge

YH = 1 under the U(1)Y . Therefore it can be written as H = (H+ , H0)
T . The

matter fields (quarks and leptons) are also incorporated into the theory, but they are

not pertinent to this discussion and will be neglected. The interactions between the

Higgs and the electroweak gauge bosons are specified by the Lagrangian

L =

∣∣∣∣∂µH − i gσa2 W a
µH − i g′

YH
2
BµH

∣∣∣∣2 (2.4)
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where σa are the Pauli matrices. It is straightforward to show that the Lagrangian

Eq. (2.4) remains invariant under the action of the gauge group

H → exp
[
i
σa

2
θaL + i

YH
2
θY
]
H

W a
µ → W a

µ +
1

g
∂µθ

a
L − εabcθbLW c

µ

Bµ → Bµ +
1

g′
∂µθY (2.5)

where θaL(x) and θY (x) are smooth functions of the spacetime coordinate x. It is also

important to note the theory Eq. (2.4) is renormalizable.

It is immensely useful to build a theory upon a symmetry group. The symmetry

controls the allowed interactions and determines the conserved quantities. However,

in this situation, the symmetry Eq. (2.3) is quite limiting. To correctly model the

weak interactions, we need the weak gauge bosons acquire a mass, but the mass terms

M2
WW

a
µW

µa and M2
BBµB

µ cannot be added to the Lagrangian without breaking

the symmetry (i.e., they are not invariant under Eq. (2.5)). The way in which we

get around this restriction is to suppose that the symmetry is broken not at the

level of the Lagrangian, but instead broken by the vacuum state of the theory. In

such a situation we say that spontaneous symmetry breaking has occurred. In 1962

Goldstone, Salam, and Weinberg (17) proved that in such a situation the spectrum

should contain a massless scalar field – known as a Goldstone boson (18; 19) – for every

spontaneously broken (continuous, global) symmetry. The Goldstone boson seems

undesirable (and unphenomenological), however it is just what is needed to generate

masses for the gauge bosons. The Higgs mechanism, proposed in 1964 by Peter

Higgs (20–22), Englert & Brout (23), and Guralnik, Hagen, & Kibble (24), allows

the scalar Goldstone boson to be “eaten” by the longitudinal polarization component

of the vector boson and thereby endow it with a mass. The Higgs mechanism is

operative provided the symmetry group being broken is a gauge group, which is the
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case in the GWS model.

The following calculation illustrates how the symmetry SU(2)L×U(1)Y is broken

so as to give the weak gauge bosons masses and maintain the massless photon. Spon-

taneous symmetry breaking is manifest in the fact that the Higgs acquires a nonzero

vacuum expectation value (vev)

〈
0
∣∣H∣∣0〉 =

 0

v√
2

 . (2.6)

Making this replacement in Eq. (2.4) we obtain (suppressing the µ subscripts)

L =
1

8

∣∣∣∣∣∣∣
 gW 3 + g′B g(W 1 − iW 2)

g(W 1 + iW 2) −gW 3 + g′B


 0

v√
2


∣∣∣∣∣∣∣
2

. (2.7)

Now defining

W± = W 1 ∓W 2 , A =
g′W 3 + gB√
g2 + g′ 2

, Z =
gW 3 − g′B√
g2 + g′ 2

(2.8)

we can write Eq. (2.7) as

L =
1

2
M2

WW
+W− +

1

2
M2

ZZ
2 +

1

2
M2

AA
2 (2.9)

where

MW =
1

2
vg , MZ =

1

2
v
√
g2 + g′ 2 , MA = 0 . (2.10)

In this way we see that the GWS model predicts masses for the weak gauge bosons

and a massless photon. This model of Glashow, Weinberg, and Salam didn’t receive

much attention until 1971 when ’t Hooft and Veltman (15; 16) showed that the

the renormalizability of the original Lagrangian Eq. (2.4) is maintained through the

process of spontaneous symmetry breaking. Thus, the Higgs managed to deliver the

long sought after renormalizable theory of massive weak bosons. Measurements of the
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Figure 2.2: The Higgs potential illustrating spontaneous symmetry breaking.

weak neutral current merited Glashow, Weinberg, and Salam the 1979 Nobel Prize,

and ‘t Hooft and Veltman received their prizes in 1999.

The crux of the GWS models is that the Higgs acquires a vev and thereby breaks

the SU(2)L × U(1)Y symmetry spontaneously. Spontaneous symmetry breaking is

accomplished by introducing a potential energy (density) function for the Higgs field

which renders H = (0 , 0)T unstable. The potential may be written as

V (H) = µ2H†H + λ(H†H)2 . (2.11)

Provided that µ2 < 0, the origin is an unstable maximum and spontaneous symmetry

breaking occurs. A potential of this form is illustrated in Figure 2.2. The true vacuum

state is found by minimizing V (H) to obtain

v =

√−µ
λ

(2.12)

where we have used Eq. (2.6). The GWS model predicts a relationship between

the coupling constant GF of Fermi’s four-fermion theory and the vev of the Higgs:

GF =
√

2 g2/8m2
W = (

√
2v2)−1. Thus, a measurement of GF ≈ 1.166 × 10−5 GeV−2

(14) allows one to determine v ≈ 246 GeV. Higgs boson particles corresponds to

fluctuations of the Higgs field on top of this nontrivial background. To study their
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mass and interactions, we can perform an expansion H =
(
0 , (v + h)/

√
2
)
and write

Eq. (2.11) as

V̂ (h) =
1

2
(2λv2)h2 +

1

3
(3λv2)h3 +

λ

4
h4 . (2.13)

From this expression, we see that the mass of the Higgs boson is related to its self-

coupling λ by

MH = v
√

2λ . (2.14)

Since λ is a free parameter, the Higgs mass is all together unconstrained in the GWS

model.

The Great Higgs Hunt

Predictions of the GWS model were very quickly confirmed. The predicted weak

neutral current (mediated by the Z boson) was first observed in 1973 at CERN’s

Gargamelle bubble chamber through the processes e−νe → e−νe (25) and νN →
ν + hadrons (26). On-shell production and discovery of the weak bosons, however,

had to wait another decade. The W± boson was the first to be discovered in 1983 at

the UA1 detector at SPS (27). The Z boson discovery came a few months later (28).

The only missing piece of the puzzle was the Higgs boson itself. For nearly the past

half century, the search for the Higgs boson has been the driving force behind high

energy particle physics (see e.g., (29) for a historical overview). Here, I review the

progress (and success!) that has been made in the great Higgs hunt.

Pre-Collider Constraints

As the GWS model began to receive attention in the early 1970’s, many physicists

were hoping for the Higgs boson to turn up. As it so happened, in 1971 measurements
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Figure 2.3: Constraints on the Higgs mass by various searches. The figure was com-
piled using references in the text and the Particle Data Group archives (30).

of muonic x-rays, i.e. the x-ray emission by atomic transitions in muonic atoms,

revealed a discrepancy between the predicted and measured spectra (31; 32). In 1972,

the seminal paper Is There a Light Scalar Boson? (33) investigated the possibility

that a light scalar Higgs particle may be able to account for the anomaly. They

determined that the discrepancy could indeed be explained by the Higgs and placed an

upper bound on its massMH < 8.5 MeV. Moreover, they proposed that the existence

of a light Higgs could be confirmed if one were to measure the 0+ → 0+ +H nuclear

transition and search for a e+e− pair emitted upon decay of the Higgs boson. Two

years later (34), this search3 was performed in the decay of excited O16 (6.05 MeV)

and He4 (20.2 MeV) nuclei. The results were null and provided one of the earliest

bounds on the Higgs mass, 1.030 MeV < MH < 18.2 MeV, where the lower limit is

constrained by 2me and the upper limit by the scale of the nuclei observed. Later

that year, another group (35) recognized that a light scalar boson would mediate a

3To my knowledge, this was the first dedicated “Higgs search.” Regrettably, the paper has a
mere forty-two citations listed on Inspire-HEP.
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long-range force, and they sought out the Higgs by looking for anomalous behavior in

the neutron-electron and deuteron-electorn elastic scattering processes. This allowed

them to exclude the entire range MH < 0.6 MeV. Similarly, the following year low

energy neutron-nucleus scattering experiments yielded an exclusion of mH < 13 MeV

(36). In 1975, Sato & Sato (37) ruled out the 0.1 eV < M < 100 eV mass range

by considerations of the impact of out of equilibrium Higgs diphoton decays on the

cosmic microwave background. A few months later, the same group (38) considered

stellar cooling by Higgs particle emission and excludedMH < 350 keV. The low mass

Higgs was quickly becoming ruled out.

In 1975, Ellis, Gaillard, and Nanopolous (39) released the groundbreaking paper

A Phenomenological Profile of the Higgs Boson. They discussed possible detection of

the Higgs particle at a high energy collider experiment, and calculated the branching

ratios for Higgs decays over a mass range of 1 MeV to 100 GeV. At the end of

their paper, the authors offer an apology to their experimentalist colleagues for not

being able to pin down the mass or couplings of the Higgs boson. They conclude by

saying, “For these reasons we do not want to encourage big experimental searches for

the Higgs boson, but we do feel that people performing experiments vulnerable to the

Higgs boson should know how it may turn up.” Despite their cautious attitude, their

paper heralded the era of high energy Higgs searches.

Meson Decay Searches

The next leap forward in the hunt for the Higgs occurred in the 1980’s at which point

various facilities were studying mesons. If the Higgs were sufficiently light, it may

have been produced in the decay of these mesons and then decayed to a detectable

pair of charged leptons. This allowed the mass ranges up to 2mµ ≈ 211 MeV and

2mτ ≈ 3.4 MeV to be probed. In 1984, an experiment at KEK looked for the decay
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K± → π±H decay and excluded the mass range 50 MeV < MH < 2mµ (40). A few

years later, a group at BNL excludedMH < 26 MeV by the non-observation of K± →
π±+ nothing, since a light Higgs would be longer lived and escape the detector (41).

In 1987, the CUSB collaboration failed to observe the decay Υ → γH and excluded

600 MeV < M < 3.2 GeV (42; 43). In 1989, SPS looked for the decay K0
L → π0H

with H → e+e− and was able to exclude 15 MeV < M < 2mµ (44). Furthermore, the

SINDRUM collaboration searched for the decay π+ → e+νeH with H → e+e− and

finding no anomalous behavior, they excluded the range 10 MeV < M < 110 MeV

(45). In the same year, CLEO excluded 211 MeV < M < 3.4 GeV by the non-

observation of the B → KH decay with subsequent H → (µ+µ−)(π+π−)(K+K−)

(46). These constraints from meson decays pushed the Higgs mass bound across the

GeV threshold and thereby extended the exclusion region by two orders of magnitude

more than earlier nuclear experiments. However, the hadronic physics involved in

these processes was not well understood and these bounds came along with large

theory uncertainties.

LEP – ALEPH, DELPHI, OPAL, & L3

In 1989, the Large Electron-Positron Collider (LEP) began operation at CERN. Run-

ning in the first phase (LEP1) until 1995, the center-of-mass energy was fixed at
√
s ≈ MZ so as to produce on-shell Z bosons. This allowed for the Higgs to be

searched for via the Bjorken process in which the on-shell Z decays to a Higgs and

an off-shell Z, which subsequently decays to fermions (Z → HZ∗ → Hff̄). If the

Higgs mass were in this energy range, the Higgs would then decay dominantly to bb̄

with a small fraction to τ+τ−. By 1996, the non-observation of a Higgs signal placed

the bound MH > 65.2 at 95% CL (47). In its second phase (LEP2), the center-of-

mass energy was increased up to 209 GeV. This allowed for a Higgs search via the
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Higgs-strahlung production process in which an off-shell Z boson was created and

subsequently decayed to a Higgs and an on-shell Z (Z∗ → ZH). The nonobservation

of a Higgs signal placed a lower bound on the Higgs mass MH > 114.4 GeV at 95%

CL (48). The collider was decommissioned in 2000, and construction on the LHC

was already undeway.

Tevatron – D0 & CDF

Meanwhile, the Tevatron began operation at Fermilab in 1983. The Tevatron collided

protons and antiprotons at energies up to 1.96 TeV. At a hadron collider, a sub-TeV

Higgs is most likely to be produced by the gluon fusion process in which the protons

radiate a pair of gluons which annihilate into a Higgs by way of a top quark loop. The

machine shut down in the fall of 2011, but data analysis continued. In the March of

2012, the Tevatron collaborations announced that they had found the hint of a Higgs

boson in the 125 GeV mass range. In particular, the CDF and D0 detectors uncovered

a statistical excess (2.7σ local, 2.2σ global over 115− 135 GeV) of Higgs-like events

in combined channels, although dominantly bb̄ decays (49). After increased analysis,

the collaborations announced in July of that year that the statistical significance had

risen (3.0σ local, 2.5σ global over 115 − 140 GeV) (50; 51), however discovery was

still beyond their reach.

LHC – ATLAS & CMS

The Large Hadron Collider (LHC) began operations at CERN in 2009 with the goal of

discovering the Higgs boson and (/or) uncovering the nature of electroweak symmetry

breaking. Like the Tevatron, the LHC is a hadron collider, however it operates a

higher energy – approximately 7 TeV per beam – and thus has a higher event rate.

This allows the LHC’s detectors, ATLAS and CMS, to search for rare, “clean” decay
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channels which were too infrequent to be useful at the Tevatron. In particular, the

golden channel for the discovery of a light Higgs is the gluon fusion and diphoton

decay channel (gg → H → γγ). In this decay, the photons are easily identified

by their recognizable clusters in the electron calorimeter, and their energy may be

measured precisely. Moreover, this channel is considered clean, because although the

background processes (jets faking photons) are large, they are also reducible. The

second best channel for Higgs detection is H → ZZ → `+`−`+`−. Although this

process is rare, the background is very low.

In December of 2011, the Atlas and CMS experiments hinted at a Higgs signal

in the H → γγ channel at MH ≈ 126 GeV. The official results were released in the

early spring. In the diphoton channel, CMS saw an excess (3.1σ local, 1.8σ global

over 110 − 150 GeV) at mH ≈ 124 GeV (52; 53). In the ZZ → 4` channel, they

saw excesses at mH ≈ 126 GeV (1.5σ local) and at mH ≈ 119 GeV (2.7σ local)

(52; 54). At the same time, ATLAS uncovered and excess (2.8σ local, 1.5σ global

over 110 − 150 GeV) in the diphoton channel at mH ≈ 126.5 GeV (55; 56) as well

as in the ZZ → 4` channel at mH ≈ 125 GeV (2.1σ local) (56; 57). Finally on July

4, 2012 – forty years after the hunt for the Higgs had began – the collaborations

announced the discovery of a new scalar particle that fit the profile of the SM Higgs.

Success!

2.2 The Cosmological Higgs: Electroweak

Baryogenesis

As we saw in the previous section, a critical assumption of the SM is that the elec-

troweak symmetry is broken today by the nonzero vev of the Higgs field. This fact

may have surprising consequences for early universe cosmology. In 1972 Kirzhnits
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and Linde (58; 59) were the first to predict that the electroweak symmetry is restored

in the high temperature conditions of the early universe. Their argument is moti-

vated by an analogy with the Meissner effect in a superconductor, and relies on the

intuition that the free energy F = U − TS is minimized at high temperature by a

disordered state in which the entropy is maximized. Their results were confirmed two

years later by Weinberg (60) and Dolan & Jackiw (61) who reevaluated the problem

using thermal effective potential techniques. The phenomenon of thermal symme-

try restoration suggests that as the universe cooled, spontaneous symmetry breaking

could have been accomplished through an electroweak phase transition (EWPT).

Remarkably, the electroweak phase transition may have set the stage for the gen-

eration of the baryon asymmetry of the universe (BAU), i.e., the abundance of matter

over antimatter. In 1985 Kuzmin, Rubakov, & Shaposhnikov (62) conjectured that

during the EWPT, the BAU may have been produced by recently discovered baryon-

number violating processes known as electroweak sphalerons. Their investigation

revealed that, nominally, the SM contains all of the requisite ingredients for baryoge-

nesis, but that the EWPT must satisfy certain conditions4 in order for the BAU to

be generated successfully. These results were confirmed by Cohen, Kaplan, & Nelson

in 1990 (63; 64) who further developed the mechanism now known as electroweak

baryogenesis (EWBG).

Of course empirically, absolutely nothing is known about the nature of the elec-

troweak symmetry breaking, since the Higgs boson has only recently been discovered,

and its properties and couplings to new physics are still undetermined. However, the

success of electroweak baryogenesis is predicated on certain conditions being met at

the electroweak phase transition. Thus, if one insists that electroweak baryogenesis

is to be responsible for creating the BAU, one can derive constraints on properties of
4In the SM, these conditions translate into an upper bound on the Higgs mass mH . 60 GeV,

as we will see below.
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Higgs boson, such as its mass, its participation in CP-violation, and its coupling to

exotic particles. In this way, EWBG augments Higgs searches at colliders with an ad-

ditional constraint on models of the EW sector. This connection to terrestrial Higgs

physics makes electroweak baryogenesis arguably the most compelling and testable

baryogenesis mechanism.

The Baryon Asymmetry of the Universe

The abundance of matter over antimatter is one of the most apparent yet mysterious

properties of our universe. The only antimatter that exists on the Earth are produced

fleetingly through high energy particle collisions in accelerator facilities or in the upper

atmosphere during cosmic ray showers. There is evidence that a small fraction of the

cosmic rays are, themselves, antiprotons – approximately one in ten-thousand (65) –

however, this tiny abundance is consistent with secondary production in astrophysical

accelerators, and does not suggest a primordial antimatter abundance. On larger

scales, one might guess that antimatter may be found sequestered in distant galaxies

or galaxy clusters. However, if this were the case gamma rays would nevertheless be

produced at the interface of the matter / antimatter domains. The non-observation

of this diffuse gamma ray background puts a lower bound on the sequestration scale

which exceeds the size of the visible universe (66; 67). It seems that for all intents

and purposes, we live in a universe of matter.

The BAU can be quantified using the baryon-to-photon ratio. This parameter is

defined as

η ≡ nB
nγ

(2.15)

where nb (nb̄) is the number density of baryons (antibaryons), nγ ' 2ζ(3)T 3/π2 is

the number density of photons at temperature T , and nB = nb − nb̄ is the number
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density of baryon number (B). Although both nB and nγ are functions of time, when

defined in this way η remains constant at late times.

The baryon-to-photon ratio was famously measured by comparing the abundances

of light elements with the predictions of Big Bang Nucleosynthesis (BBN) (68). As-

suming that BBN takes places after the BAU is generated, η represents the relative

number of nucleons (p and n) to photons. Larger η would therefore bias the produc-

tion of He4 , produced through the nuclear reactions5 p(n, γ)D(D, n) He3 (D, p) He4 ,

and cause a reduction in the abundances of He3 and D. The abundances of light

elements can be measured in metal-poor astrophysical systems where the effects of

stellar processing are thought to be minimized. Extrapolating to zero metallicity, the

primordial abundances may be inferred and, comparing with the predictions of BBN,

used to constrain the baryon-to-photon ratio to be (69)

BBN : (5.1× 10−10) < η < (6.5× 10−10) at 95% CL . (2.16)

This measurement indicates that our universe contains approximately 60 protons for

every billion photons.

Measurements of the power spectrum of the cosmic microwave background radi-

ation (CMB) provide an independent and yet more precise determination of η. The

CMB was formed when the universe was approximately 300,000 years old and it had

cooled to a temperature of a few eV. At this point, electrons and hydrogen nuclei

were able to recombine without becoming immediately dissociated once again by hot

photons. Subsequently, it became possible for photons to free stream through the

optically thin, neutral hydrogen gas. On reaching us today, these photons fill the sky

with a diffuse, thermal radiation in the microwave band. The distribution of temper-

ature fluctuations over the sky bears the imprint of density fluctuations at the time
5The notation A(B,C)D refers to the two processes A + B → C + D and A + C → B + D by

which A is converted into D.
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of recombination. The pattern of peaks and dips in the CMB power spectrum owe

their origin to the baryon acoustic oscillations (BAO) which preceded recombination.

Prior to recombination, baryons6 and photons were kept tightly coupled by Comp-

ton scattering. At the temperature of recombination, the baryons were non-relativistic

and pressureless (pb = 0) whereas the photons were ultrarelativistic (pγ = ργ/3). To-

gether they formed a baryon-photon fluid (BPF) with a sound speed

cs =
1√

3(1 +R)
(2.17)

where

R ≡ pb + ρb
pγ + ργ

≈ 45

2π4
ζ(3)

mb

T
η . (2.18)

In the second equality we have neglected the electron mass and used ρb = mpnb and

ργ = π4Tnγ/30ζ(3). Since T ≈ eV at the time of recombination and mp ≈ 1 GeV,

we can estimate R ≈ 0.17 × η/(6 × 10−10). Since R ∼ 1, we expect cs to depend

sensitively on η. We can use cs to get a handle on the behavior of the BPF. For larger

η, we find that cs decreases implying that the BPF behaves more like a pressureless

gas of baryons; whereas for smaller η we find that cs increases toward 1/
√

3 implying

that the BPF behaves like a relativistic gas of photons.

The propagation of sound waves played an important role in the formation of the

BAO. Before recombination, density fluctuations of the BPF evolved in the gravi-

tational potential sourced by the distribution of dark matter. We can understand

this system by considering an isolated overdensity of dark matter and a homogenous

background of BPF. Initially, the BPF begins to collapse onto the dark matter, but as

its own density grows there comes a point where its repulsive pressure overcomes the

gravitational attraction, the infall turns around, and the BPF begins to recede. This

initiates an oscillatory process which goes on until recombination reduces the pressure
6Conventionally, the term “baryons” is used here to refer to protons as well as electrons.
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of the BPF to zero. As a result, the CMB power spectrum displays a harmonic pro-

gression of peaks and dips corresponding to the points of maximal compression and

rarefaction. Varying η affects the power spectrum primarily by varying the relative

heights of the even and odd peaks. For instance, increasing η decreases cs and makes

the BPF behave more like a pressureless baryonic gas. As a result of this baryon

loading, the compression stages of the oscillation have a greater “inertia,” since there

is not as great a pressure to retard the collapse, and the density fluctuations are able

to grow larger (70). In this way, measuring the height of the first (compression) peak

of the CMB allows for an excellent determination of the baryon-to-photon ratio (71)

CMB : η = (6.19± 0.15)× 10−10 (68% CL) . (2.19)

Comparing Eq. (2.16) and Eq. (2.19), we are encouraged by their remarkable agree-

ment despite the fact that they independently probe η at totally different epochs in

the cosmic history.

Baryogenesis at the Electroweak Phase Transition

As we have discussed above, on cosmic scales the baryon asymmetry may be quan-

tified as η = nB/nγ ≈ 6 × 10−10. In order to put this number into perspective, we

can ask what the baryon asymmetry would be today if the universe had began in an

initially baryon symmetric state (η = 0) and if no baryogenesis had taken place. In

this scenario, the universe today would contain a gas of relic protons and antiprotons

which is so diffuse that annihilations are extremely rare and effectively impossible.

Consequently, the universe today would have a global baryon asymmetry of zero, but

it could have a nonzero local baryon asymmetry if p and p̄ had somehow become

sequestered on scales larger than the size of the visible universe. It is straightforward

to estimate the proton relic abundance. In the early universe, protons remained ther-
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Figure 2.4: A cartoon illustrating hypothetical “electron-genesis” in analogy with
EWBG. a) An L-violating process inter-converts electrons and positrons. b) The
presence of a background electric field violates CP and biases a spatial separation of L.
c) The L-violating process is only active in the region containing the positron excess.
d) The L-violating process goes out of thermal equilibrium and is rendered inactive,
residual electrons and positrons annihilate, and the L-asymmetry is generated.

malized and η ≈ np/nγ ≈ (mp/T )3/2exp
[−mp/T

]
. Freeze out occurred when the pp̄

annihilation rate dropped below the Hubble expansion rate, roughly at a temperature

of Tfo ≈ 20 MeV (see e.g., (72)). Subsequently, η remained approximately constant,

and thus its value today should be given by ηfo ≈ 10−20, which is much too small.

Alternatively, one may admit the unnatural solution that η ∼ 10−10 is merely an

initial condition of the “Big Bang.” However, the concordance model of cosmology

incorporates an inflationary phase which would have diluted any initial B-asymmetry

to zero. We are left with only one possibility: that the B-asymmetry was created

during a baryogenesis event in the course of the cosmic history, and more specifically,

prior to BBN.

In 1976 Sakharov (73) proved that any baryogenesis mechanism must satisfy three

criteria: B-violation, both C- and CP-violation, and a departure from thermal equi-

librium7. These can be thought of as the ingredients that must be combined to yield

a BAU, and compared to other baryogenesis mechanism, EWBG mixes these compo-

nents in an interesting and unique way. Schematically, EWBG works in the following

way, which is also illustrated in Figure 2.4 in the fictitious case of “electron-genesis.”
7In general, the out of equilibrium condition may be replaced by CPT-violation.
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Figure 2.5: The mechanism of electroweak baryogenesis, as discussed in the text.

The existence of a B-violating process allows one to convert an antibaryon b̄ into a

baryon b. However, if such a process were simply applied to a thermal distribution

of b and b̄, no net B would be generated since CPT ensures that b is converted back

to b̄ at the same rate. The way in which EWBG gets around this impediment is to

separate the b and b̄ into different regions of space, and ensure that the B-violating

process is only active in the region containing b̄. The spatial separation of b and b̄

relies on the fact that these antiparticle partners carry opposite charges, and thus

they behave oppositely under C- and CP-violating interactions. After the b̄ → b

conversion is complete, the B-violating processes is rendered inactive provided that

it is not in thermal equilibrium, and the BAU has been generated.

Although the discussion of the previous paragraph captures the primary features of

EWBG, the actual mechanism is a bit more involved. For example, the “L-violating”

process discussed in Figure 2.4 also violates the conservation of electric charge, and

therefore creates a cosmic charge asymmetry as well, which is not present in our

universe. Let us now review in more detail the EWBG mechanism (63; 64), which is

also represented in Figure 2.5. As the universe cools below T ∼MEW ≈ 100 GeV, it

is necessary that electroweak symmetry breaking proceeds through a first order phase

transition. This subject will be discussed further in Chapter 3. For the present, we

need only note that at a first order EWPT, bubbles of EW-broken phase (〈H〉 6=
0) form within a background of EW-symmetric phase (〈H〉 = 0). These bubbles
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provide the spatial boundary at which the B-asymmetry will be generated and satisfy

Sakharov’s out of equilibrium condition.

In the first step of EWBG, CP-violating interactions between the Higgs field and

the particles in the plasma will bias the transmission and reflection of quarks and

antiquarks from the bubble wall. For instance, if a left-handed quark qL is incident

on the bubble wall, it has a different probability to be transmitted as a qL than to be

reflected as a right-handed quark qR. Consequently, qR and q̄L build up outside of the

bubble wall while qL and q̄R build up within. In the second step, B-violating process,

known as the EW-sphaleron, acts on the q̄L outside of the bubble and converts it

to qL and charged leptons, such that electric charge is conserved. More will be said

about the EW-sphaleron transition in Sec. 2.2, but for the moment two points should

be emphsized. First, the EW-sphaleron only acts on field that carry a charge under

the SM SU(2) gauge group. This ensures that the qR outside of the bubble are not

converted back into q̄R. Moreover, in this way, C is violated. Second, it is critical that

the EW-sphalerons are inactive inside of the bubble. If this is not the case, then the qL

will be converted into q̄L, and there will be no global production of B-asymmetry. In

the third and final step, the bubble wall expands to overtake the B-asymmetry where

it is protected from further processing by EW-sphalerons, and EWBG terminates.

“Baryopreservation” and the Washout Criterion

In light of the discussion in the preceding section, we see that the EWBG mechanism

relies upon baryon number generation at the bubble wall and baryon number preser-

vation within the bubbles. It is essential that the latter “baryopreservation” stage

is successful. If this stage fails, then the issue of whether or not a baryon asymme-

try was generated at the wall in the first place is moot. Moreover, as we will see,

the requirement of baryopreservation imposes direct constraints on the scale of the



27

electroweak phase transition and thereby, it places a model-dependent lower bound

on the Higgs mass. Therefore, a measurement of merely the Higgs mass at colliders

yields powerful constraints on EWBG models. For this reason, the question of viable

baryopreservation will be the focus of the remainder of our discussion.

In EWBG, the B-violation is accomplished through thermal EW-sphaleron tran-

sitions. However, B-violation is forbidden at the classical level since the EW interac-

tions respect a U(1)B symmetry and B is a conserved quantity. In order to achieve

a violation of B, the symmetry associated with B conservation must be anomalous.

The so-called Adler-Bell-Jackiw anomaly was first identified in 1969 (74; 75), but its

connection to B-violation wasn’t recognized until 1976 by ’t Hooft (76; 77). ’t Hooft

discovered that B may be violated8 by the non-perturbative processes known as in-

stantons, which had been constructed in the previous year by Belavin, et. al. (78).

’t Hooft noted that the rate of B-violation by instanton processes is proportional to

a factor of exp
[−4π/(αW~)

]
. The presence of ~ in the denominator indicates that

the rate vanishes as we take ~ to zero. This allows us to interpret the instanton as

the process associated with quantum mechanical tunneling through a barrier (79; 80)

Using αW = g2/4π ≈ 1/30 for the weak coupling constant the suppression factor is

approximately equal to 10−163, and consequently B-violation by instanton processes

is unobservable and insufficient for baryogenesis.

In 1985 Kuzmin, Rubakov, and Shaposhnikov (62; 81; 82) recognized that in the

hot conditions of the early universe B-violation may proceed by “hopping over” the

barrier instead of tunneling through it9. They employed a different non-perturbative

process called the sphaleron, which had been discovered two years earlier (83; 84).
8Strictly speaking the anomaly mediates B+L violation where L is the lepton number. Since the

combination B - L remains exactly conserved, B+L-violation allows B-violation accompanied by an
equal amount of L-violation.

9Here I follow the standard language used in contrasting instantons and sphalerons. However,
it is worth clarifying that the instanton is a scale invariant solution, and therefore its tunneling is
associated with a barrier the action and not the potential energy, as in the case of the sphaleron.
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The sphaleron, which takes its name from the Latin for “ready to fall,” represents

the static field configuration at the top of the potential energy barrier separating two

topologically distinct states which differ by ∆(B+L) = 3. The energy of the sphaleron

represents the height of the barrier and is given by Esph = B× 4πv/g ≈ 9 TeV where

B ≈ 2 is a slowly varying function of m2
H/m

2
W . At finite temperature, the height of

the barrier grows smaller as the expectation value of the Higgs field v(T ) begins to

decrease, leading to the scaling behavior (85)

Esph(T ) ≈ Esph
v(T )

v
. (2.20)

We can estimate the rate per unit volume of B-violation as T 4exp
[−Esph(T )/T

]
where

the Boltzman factor appears because the sphaleron is a thermal process and the T 4

is added on dimensional grounds. A more rigorous calculation yields (86; 87)

Γsph

V
≈ (2.8× 105)T 4

(αW
4π

)4

κ

(
Esph(T )

BT

)7

exp
[−Esph(T )/T

]
(2.21)

where 10−4 < κ < 10−1 is a dimensionless prefactor that must be calculated numeri-

cally. It is also worth noting that outside of the bubbles the sphaleron processes, which

are responsible for creating the B-asymmetry in the first place, are unsuppressed and

proceed at a rate

Γsph

V
≈ k (αWT )4 (2.22)

where 0.1 < k < 1.

We have stressed that baryopreservation requires the EW-sphaleron processes to

be inactive within the bubbles. If these processes are not inactive, they any baryon

asymmetry inside of the bubbles will be washed out by a factor of

exp
[−ˆ ∞

tc

Γsphdt
]

(2.23)
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Figure 2.6: The rate of B-violation by sphaleron processes Γsph in the broken phase
must fall below the Hubble expansion rate H(T ) at the time of the phase transition
in order for the B-asymmety to be preserved. In the SM, this is the case for mH .
50 GeV. The error bands correspond to uncertainty in κ and k.

where tc is the time at which the phase transition occurred. This condition can

be stated by saying that the rate Eq. (2.21) must be much smaller than the Hub-

ble expansion rate at the time of the phase transition (62). At the time of the

phase transition, the universe is radiation-dominated and the Hubble rate is given by

H(T ) ∼ (π/3)
√
g∗/10(T 2/Mp) where g∗ ' 106 is the number of relativistic degrees

of freedom and Mp ' 1018 GeV is the Planck mass. Numerically, this competition

is represented in Figure 2.6 where H(T ) is plotted along with the sphaleron rate in

the broken phase Eq. (2.21) and in the symmetric phase Eq. (2.22). Analytically,

requiring H(T ) to exceed the EW-sphaleron rate Eq. (2.21) averaged over a volume

of T−3 we find a lower bound (88)

Esph(T )

T
> 37− 45 (2.24)

where the variation arises from the uncertainty in κ. This bound must be satisfied

at all times after the EWPT has occurred. Since both Esph and 1/T are growing
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functions of time (decreasing temperature), it is sufficient to impose the bound at

the temperature Tc just after the EWPT. Furthermore, using the scaling relation

Eq. (2.20), we can rewrite the bound Eq. (2.24) as

v(Tc)

Tc
& 1.0− 1.3 . (2.25)

This bound is known as the washout criterion; if it fails to be satisfies, the baryon

asymmetry will be erased by EW-sphaleron processes, and EWBG will have failed; if

it is satisfied, we say that the EWPT is strongly first order (SFOPT). As we will see

in the next chapter, both v(T ) and Tc depend upon the properties of the Higgs such

as its mass and coupling to BSM physics. Therefore the bound Eq. (2.25) imposes a

direct constraint on properties of the Higgs boson.

Baryogenesis in the Standard Model and Beyond

It is interesting to note that electroweak baryogenesis is the only baryogenesis mech-

anism that has the potential to generate the BAU using only ingredients drawn from

the SM (88). Unfortunately, the SM falls short of the necessary requirements of

EWBG in two ways. First, the only source of CP violation in the SM is the phase an-

gle in the quark mixing matrix, and this tiny angle is insufficient to generate the BAU.

Second, the SM fails to satisfy the requirement of a strongly first order elecroweak

phase transition, which is expressed in Eq. (2.25). In fact, the phase transition is

not even a phase transition at all; it is a continuous crossover without any departure

from thermal equilibrium. It was known in the earliest discussions of EWBG that the

SFOPT requirement imposed an upper bound on the Higgs mass (82). This bound,

which is derived in the following chapter (see Eq. (3.43)) is given by

mH < (mH)max =

√
2m3

W +m3
Z

πv
≈ 48 GeV . (2.26)
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This bound is also seen in the numerical calculation of the sphaleron rate shown in

Figure 2.6. Lattice simulations of the phase transition later confirmed that for a

Higgs mass above (mH)max ≈ 66.5 GeV, electroweak symmetry breaking proceeds

through a continuous crossover (89; 90). As we discussed in the previous chapter,

such a light Higgs was excluded in the late 1990s (see Figure 2.3). The Standard

Model is incapable of generating a cosmic baryon asymmetry.

The failure of EWBG in the Standard Model is a disappointment, but at the same

time it is an incentive. Many extensions of the SM are able to accommodate EWBG.

The minimal supersymmetric generalization of the SM, known as the MSSM, allows

for additional CP violation through the so-called µ term. Additionally, the EWPT

may be rendered strongly first order by the presence of stops – new, colored scalar

particles which couple strongly to the Higgs. However, searches for the Higgs and for

the superpartners of the SM fields sharply constrain EWBG in the MSSM (91). The

only remaining viable corner of parameter space is the limit in which stops are light

(92) and the strength of the phase transition is enhanced by two-loop effects (93).

In extensions of the MSSM, such as the nMSSM (94), the NMSSM (95; 96), and

the µνSSM (97), electroweak baryogenesis is easier to accommodate. Electroweak

baryogenesis may also be achieved in non-supersymmetric extensions of the SM. In

particular, many models have been studied (98–119) which add a singlet scalar field

to the SM in order to render the phase transition strongly first order. Whatever

one’s preference may be, the baryon asymmetry of the universe makes it necessary

to venture beyond the Standard Model. Although electroweak baryogenesis may not

provide the roadmap, it certainly points the way.
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Chapter 3

The Phase Transition Calculation

In Sec. 2.2 we saw that electroweak baryogenesis may be able to account for the

baryon asymmetry of the universe provided that the bound v(Tc)/Tc > 1 is satisfied.

Since this bound – and the electroweak phase transition, more generally – will play

a central role in the succeeding chapters, we will spend this chapter introducing

the concepts and the techniques used in the phase transition calculation. At the

conclusion of this chapter, we would like calculate the ratio v(Tc)/Tc for the Standard

Model electroweak phase transition. To reach this point, we will require a tool, known

as the thermal effective potential, which facilitates the calculation of quantities like Tc

and v(T ). A formal derivation of this function is beyond the scope of our discussion.

Instead, we will define the effective potential as a free energy that depends upon an

order parameter and temperature. Since these may not be familiar concepts, we will

begin our discussion with a heuristic introduction to the phase transition analysis

in two simple systems where we may underline the important concepts without the

distraction of technical details.
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3.1 Heuristic Introduction

Phase transitions are among the most interesting, complex, and yet familiar physical

phenomena. Examples include the solid-liquid-gas transitions in many materials,

the ionization and recombination of a hot plasma, the demagnetization of a heated

ferromagnet, superconductivity in various cooled materials, and superfluidity in liquid

helium. Although these systems are very distinct, they nevertheless share a number of

common features. In systems like the ferromagnet and liquid helium, the microscopic

dynamics respect a symmetry that is spontaneously broken at low temperature but

restored above some critical temperature Tc. Symmetry restoration follows from the

fact that a system in thermal equilibrium will evolve to a minimum of the free energy

F = E−T S, which corresponds to a state of minimal energy at low temperature and

to a state of maximal entropy at high temperature. Thus, it is often useful to identify

an order parameter which quantifies the degree of symmetry breaking. As we will

see, the temperature dependence of the order parameter provides useful information

about the nature of the phase transition.

Ferromagnetic Transition

Consider the Ising Model in the absence of any external magnetic field. The system

consists of N atoms arranged on a regular d-dimensional lattice of volume V , such

that each lattice site has n neighbors. Each atom has spin 1/2 (due to an unpaired

electron), which is aligned with the z-axis and can either point up or down. We

will let Nu be the number of upward spins and Nd = N − Nu be the number of

downward spins. A particular spin configuration is illustrated in Figure 3.1. To

model a ferromagnet, we suppose that the Hamiltonian of the system is such that

misaligned spins are energetically disfavored. To be concrete, we can let ε be the
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Figure 3.1: An illustration of the system of spins discussed in the text, where we have
let d = 2 and n = 4.

energy cost of having a pair of adjacent, misaligned spins and let −ε be the energy

liberated by having a pair of adjacent, aligned spin. Thus, the maximal energy state is

the one in which for every atom, the spins on all adjacent lattice sites are misaligned.

The energy of this configuration is Emax = Nnε/2, where the factor of 1/2 eliminates

double counting. Conversely, the ground state of the system is the one in which all

spins are aligned (either all up or all down) and the energy is E0 = −Nnε/2.
We may now investigate the behavior of this system at finite temperature through

the following thought experiment. Suppose that the system is prepared by allowing

it to relax to its ground state in which all of the spins are up, Nu = N and E = E0.

We immerse the system into a heat bath at temperature T . As the system exchanges

energy with the heat bath, some of the spins will flip downward at random. An energy

of approximately 2nε is required to flip the spin of an atom. This is illustrated in

Figure 3.2. Thus, if an energy on the order of NkBT is absorbed from the heat

bath, the number of flipped spins will be approximately Nd = NkBT/(2nε). As the

temperature is raised, Nd cannot grow without bound since there are only a finite
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Figure 3.2: An isolated flipped spin increases the energy of the configuration by n×2ε.

number of spins on the lattice. Symmetry arguments, which we will discuss further

below, demonstrate that Nd maxes out at N/2. This occurs at a temperature given

approximately by Tc = nε/kB. At temperatures greater than Tc, the fraction of

upward and downward spins each remain approximately equal to Nu ≈ Nd ≈ 1/2.

The temperature Tc demarcates an important threshold across which the macro-

scopic properties of the system vary dramatically. This can be seen by looking at

the magnetization. For a given configuration, the average magnetization M (coarse

grained over V ) can be calculated as M = µB(Nu − Nd)/V where µB is the Bohr

magneton. In the ground state with all spins aligned upward, the magnetization is

simply M0 = µBN/V . When the system is immersed in the heat bath, the number

of flipped spins increases like Nd ∼ T and the magnetization begins to decrease like

M = M0(1−T/Tc). As the temperature approaches Tc, the magnetization approaches

zero, and for all temperatures above Tc the magnetization remains approximately

fixed at zero since Nd ≈ Nu. We can see that the temperature Tc demarcates the

boundary between the low-temperature magnetized phase and the high-temperature

demagnetized phase. It may be identified as the phase transition temperature, also

called the Curie temperature in this particular system.

A second way of identifying that a phase transition occurs at Tc it so look at the

analyticity of the free energy. The free energy is calculated as F = U−TS where U is

the average energy and S is the entropy. In the ground state at T = 0 we have U = E0.
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At the temperature Tc and above, it is reasonable to suppose that U = 0. This guess

is motivated by our earlier observation that at temperatures above Tc, there are an

equal number of upward spins and downward spins. We may also expect that there

are an equal number of aligned and misaligned spin pairs. Since aligned spin pairs

provide a positive contribution to U while misaligned spins contribute negatively, it

follows that on average U vanishes above Tc. The entropy S scales like the logarithm

of the number of states (spin configurations) that are accessible provided an “energy

budget" of NkBT . Thus, the entropy vanishes at T = 0 where the configuration of

uniformly aligned spins is the only allowed state. Above Tc, we have just argued that

the system is equally likely to be found in any of the states. Since the number of spin

configurations scales exponentially with the number of atoms N on the lattice, we

find that the entropy reaches a constant of approximately NkB above Tc. Combining

these two contributions to F , we find that as the temperature is raised from zero to

Tc, the two terms which enter into F compete: U increases while −TS decreases. The

latter terms wins out and F decreases from E0 to approximately −NkBTc at Tc. At
temperatures above Tc, the average energy is fixed at zero and F decreases further,

linearly with T . The temperature dependence of M and F are shown together in

Figure 3.3. The key observation here is that the behavior of F is non-analytic as the

temperature crosses the threshold Tc. This non-analyticity in some thermodynamic

quantity is a characteristic feature of a phase transition.

Finally, it is important to recognize that the magnetization acts as the order

parameter of the symmetry of this system. The Hamiltonian makes no distinction

between up spins and down spins, but instead only depends upon the alignment or

misalignment of adjacent spins. Thus, the system possesses a symmetry relating any

given spin configuration and the one in which all spins are flipped. The invariance of

the Hamiltonian under this symmetry transformation ensures that the two conjugate



37

F

MΜB N�V

E0

-N kB Tc

T = 0

T = T c = n Ε � kB

Figure 3.3: A sketch free of the energy F and magnetization M of the ferromagnetic
system discussed in the text as the system is heated and the phase transition takes
place.

configurations are degenerate. However under this transformation, the magnetiza-

tion changes sign. Thus we can identify M as the order parameter of the spin flip

symmetry.

The key features of the ferromagnetic phase transition which will be relevant in

the remainder of this section are the following. A phase transition is (frequently)

associated with symmetry breaking or restoration. As the temperature is increased,

the system passes from the symmetry broken (ordered) to symmetry restored (dis-

ordered) phase, because the maximization of entropy becomes more important than

the minimization of energy. This change occurs abruptly at a temperature threshold

called the critical temperature Tc. One can identify the presence of a phase transi-

tion using an order parameter, appropriately defined to be nonzero in the symmetry

broken phase and to vanish in the symmetry restored phase. One can also study the

phase transition by investigating the non-analytic behavior of the free energy.
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Figure 3.4: A schematic representation of the phase transition from vapor to liquid.

Water Vapor Condensation

The ferromagnetic phase transition, which was discussed above, is known as a second

order phase transition. In such a phase transition, the order parameter and free energy

vary continuously across the temperature threshold T = Tc, but the second derivative

of the free energy varies discontinuously. In our investigation of the electroweak

phase transition, we will be more interested in first order phase transitions. These

transitions are characterized by a discontinuity in the order parameter at Tc and an

associated coexistence of phases in the form of bubbles. A familiar example of a

first order phase transition is the condensation of water vapor into liquid water at

a temperature of approximately 100◦C. In this system there is no spontaneously

broken symmetry, but we can still identify an order parameter as the density of the

material. The temperature dependence of the free energy and order parameter are

shown schematically in Figure 3.4. The primary distinction with the ferrogmagnetic

system is that now there exists a range of temperature at which the system could be

found in either the liquid or gaseous phase. Above the critical temperature Tc, the
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system has a smaller free energy in the gaseous phase, and below this temperature the

free energy is smaller in the liquid phase. The phase transition occurs as the vapor

is cooled to the temperature Tc ≈ 100◦C, at which point the free energy in the two

phases are equal. Bubbles of condensed liquid begin to form, and the phases coexist

at a temperature Tc until all of the vapor is converted into liquid. It is important to

note that the order parameter, the density of the material, varies discontinuously as

a function of temperature at the phase transition. This will be the hallmark feature

of first order phase transitions in our study of the electroweak phase transition.

3.2 The Thermal Effective Potential

In the study of phase transitions, the thermal effective potential is an invaluable tool.

As we saw in the examples of Sec. 3.1, the phase transition may be studied by cal-

culating an order parameter and free energy as functions of temperature. However,

it would be very useful to employ a thermodynamic potential, in analogy with a po-

tential energy function of classical mechanics, which represents the free energy of the

system at a given temperature as a function of all possible values of the order param-

eter. One may obtain the physical value of the order parameter and free energy at a

given temperature by minimizing the thermodynamic potential. Figure 3.5 illustrates

the application of such a thermodynamic potential for the systems discussed above.

This thermodynamic potential is precisely the thermal effective potential we seek to

define and calculate in this remainder of this section.

The non-thermal effective potential was first introduced by Heisenberg & Euler in

1936 (120) and by Schwinger in 1951 (121; 122). This formalism was applied to studies

of spontaneous symmetry breaking by Goldstone, Salam, and Weinberg in 1962 (17),

Jona-Lasinio in 1964 (123), and throughout the early 1970s by various authors (124–
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Figure 3.5: Schematic representations of the utility of a thermodynamic potential as
applied to the study of phase transitions.

127). Meanwhile, thermal field theory was developed throughout the 1950s and 1960s

(128–133). The thermal effective potential was introduced and applied to the issues

of symmetry restoration and phase transitions by Weinberg (60) and Dolan & Jackiw

(61) in 1974. I will follow the presentation of Guth (134), and sidestep the tricky issues

of Green’s functions at finite temperature by immediately restricting the discussion

to a homogenous, static scalar field condensate.

Formal Definition

In this section we calculate the thermal effective potential Veff(φc, T ) for a system at

temperature T in which the scalar field condensate takes the value φc. The condensate

may represent the order parameter of a symmetry breaking phase transition. In order

to treat φc as a independent variable, as opposed to a function of T , we employ a

subtle trick. We will take the Hamiltonian of the theory and add to it a source

term for the scalar field such that the desired value of the scalar field condensate

may be obtained by choosing the source appropriately. After calculating the free
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energy density the explicit dependence on the source term is removed by a Legendre

transformation. The result is the desired function Veff(φc, T ) which is independent of

the source.

Consider the system in which the degrees of freedom consist of a real scalar field

Φ̂(x)1 and potentially other fields Ψ̂i of arbitrary spin. The dynamics of this system

are described by the Hamiltonian density Ĥ(Π̂, Φ̂) where Π̂(x) is the momentum

conjugate to Φ̂, and the dependence on Ψ̂i and their conjugate momenta have been

suppressed for clarity. Since we will be interested in the homogenous scalar field

condensate, it will be convenient to define the spatially averaged field operator

ˆ̄Φ(Ω) =
1

Ω

ˆ
Ω

d3x Φ̂(x) (3.1)

which is coarse grained over a spatial volume Ω that we will eventually take to infinity.

As discussed above, we are actually interested in the sourced Hamiltonian

Ĥ(j,Ω) =

ˆ
Ω

d3x
(
Ĥ(Π̂, Φ̂)− j ˆ̄Φ

)
(3.2)

where j is the classical source field, assumed to be homogenous and static. At finite

temperature the system is described by a mixed state – a statistical ensemble of pure

states (e.g., eigenstates of the Hamiltonian). Eigenvalues of the density matrix ρ̂ give

the probability of finding the system in the associated (pure state) eigenstate. In

thermal equilibrium at temperature T , and in the absence of any conserved charges

(i.e., chemical potentials vanish), the density matrix is given by the Boltzmann dis-

tribution

ρ̂(j,Ω, T ) =
1

Z(j,Ω, T )
exp
[−Ĥ(j,Ω)/T

]
(3.3)

where the partition function

Z(j,Ω, T ) = Tr
(
exp
[−Ĥ(j,Ω)/T

])
(3.4)

1Working in the Schrödinger picture, the operators are time-independent. Operators are denoted
by a hat.
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ensures that the density matrix is properly normalized Tr
(
ρ̂
)

= 1. We can calculate

the expectation value of some operator Ô using the density matrix as〈Ô〉
j,Ω,T

= Tr
(
ρ̂(j,Ω, T ) Ô) . (3.5)

This expectation value is an ensemble (or thermodynamic) average, and it is not to

be confused with a vacuum expectation value.

Equipped with the density matrix and partition function we can proceed to cal-

culate thermodynamic quantities. The von Neumann entropy is calculated as

S(j,Ω, T ) = −〈ln ρ̂(j,Ω, T )〉j,Ω,T . (3.6)

We define the free energy as

F (j,Ω, T ) =
〈
Ĥ(j,Ω)

〉
j,Ω,T
− T S(j,Ω, T ) = −T lnZ(j,Ω, T ) (3.7)

where the second equality follows from taking the logarithm of Eq. (3.3). We can

eliminate the explicit dependence on the source by performing a Legendre transfor-

mation. We will take the new independent variable to be the scalar field condensate

φc = − 1

Ω

∂F

∂j
=
〈 ˆ̄Φ
〉
j,Ω,T

, (3.8)

which is the expectation value of the coarse grained field calculated at a temperature

T in the sourced theory. The Legendre transformation yields the function

A(φc,Ω, T ) = F (j,Ω, T ) +

ˆ
Ω

d3x j φc , (3.9)

which is independent of the source provided that

j =
1

Ω

∂A

∂φc
. (3.10)

The effective potential is obtained by calculating the free energy density in the infinite

volume limit. Thus,

Veff(φc, T ) = lim
Ω→∞

1

Ω
A(φc,Ω, T ) = lim

Ω→∞
−T

Ω
lnZ(j,Ω, T ) + jφc . (3.11)
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Combining Eq. (3.11) with Eq. (3.4), one obtains the formal expression for the effec-

tive potential:

Veff(φc, T ) = lim
Ω→∞

−T
Ω

ln Tr
(
e
−(1/T )

´
Ω d

3x
“
Ĥ−j

“
ˆ̄Φ−φc

””)
, (3.12)

where j is to be eliminated using Eq. (3.8).

One-Loop Expansion

The effective potential can only be calculated exactly in very limited cases. For

practical applications, the effective potential may be calculated perturbatively as an

expansion in coupling constants. In the diagrammatic formalism, the leading order

corrections may be calculated by summing the set of Feynman diagrams with a single

loop and no external lines. Some of these vacuum bubble graphs are illustrated in

Figure 3.6. The resulting expression for Veff is known as the one-loop thermal effective

potential V1−loop. Reproducing the rigorous calculation of V1−loop is beyond the scope

of this paper. Instead, we will present a limited derivation that captures the primary

features of the approximation, and simply write down the full expression afterward.

For simplicity, assume that the system contains only one species of particle, which

may be either a boson or fermion. Since we are interested in studying a thermal bath

of particles, when we calculate the partition function, we will include only states

in the Fock space and neglect, for example, non-perturbative field configurations.

For this set of states, the spectrum of the Hamiltonain Eq. (3.2) will depend upon

the additional source term in two ways. First, the explicit presence of the term

− ´ d3xj ˆ̄Φ will change the energy of the ground state by an amount −Ωjφc. Second,

the implicit effect of this term is to source the homogenous scalar field and shift all

of the states of the theory in a way that depends on j. Thus, the “shifted" spectrum
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Figure 3.6: A typical set of tree-level and 1PI vacuum bubble graphs which are
summed when calculating the thermal effective potential perturbatively. The X’s
represent insertions of the condensate φc.

of the Hamiltonian Ĥ(j)2 consists of the vacuum
∣∣0〉

j
with energy

〈
0
∣∣Ĥ(j)

∣∣0〉
j j

=

E0(j)−Ωjφc, one-particle states
∣∣p〉

j
with energy

〈
p
∣∣Ĥ(j)

∣∣p〉
j j

= E(p; j), and multi-

particle states
∣∣p1,p2, . . .

〉
j
with energies E(p1,p2, . . . ; j). The partition function is

calculated by performing the trace in Eq. (3.4) to obtain

Z(j, T ) =
〈
0
∣∣e−(E0(j)−Ωjφc)/T

∣∣0〉
j j

+ “
∑∣∣p〉

j

”
〈
p
∣∣e−E(p;j)/T

∣∣p〉
j j

+ “
∑∣∣p1,p2

〉
j

”
〈
p1,p2

∣∣e−E(p1,p2;j)/T
∣∣p1,p2

〉
j j

+ . . . . (3.13)

For simplicity, we have written the sum over states schematically.

We make the “one-loop approximation," by neglecting interactions between parti-

cles. This allows us to write the multi-particle states as tensor products of one-particle
2We suppress the argument Ω hereafter for simplicity.
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states with the appropriate (anti-)symmetrization for (fermions) bosons. For example

∣∣p1,p2

〉
=

1√
2


∣∣p1

〉⊗ ∣∣p2

〉
+
∣∣p2

〉⊗ ∣∣p1

〉
bosons∣∣p1

〉⊗ ∣∣p2

〉− ∣∣p2

〉⊗ ∣∣p1

〉
fermions

. (3.14)

Consequently, the energy of a general multi-particle state reduces to

E(p1,p2, . . . ; j) = E(p1; j) + E(p2; j) + . . . . (3.15)

With these replacements, we can reorganize the sum over states in Eq. (3.13) in terms

of a product over one particle states and a sum over their occupancies. Extracting

the ground state from this product and defining Ep ≡ E(p; j)−E0 +Ωjφc, Eq. (3.13)

becomes

Z(j, T ) = e−
E0(j)
T

+ Ω
T
jφc “

∏
p

”
nmax∑
np=0

e−Ep(j)np/T


nmax =∞ bosons

nmax = 1 fermions

. (3.16)

Performing the sum over the mode occupancies, we obtain

Z(j, T ) = e−
E0(j)
T

+ Ω
T
jφc × “

∏
p

”


1

1−e−Ep(j)/T bosons(
1 + e−Ep(j)/T

)
fermions

. (3.17)

Finally we can calculate the effective potential using Eq. (3.11). As we mentioned

at the outset, the spectrum contains both explicit an implicit dependence on the

source j. The Legendre transformation ensures that the explicit dependence on j

cancels between Eq. (3.11) and Eq. (3.17), and that the implicit dependence on j can

be expressed as a dependence on φc instead. Evaluating Eq. (3.11) with the partition

function Eq. (3.17), we find

V1−loop(φc, T ) =
E0(φc)

Ω
+


+T

Ω
“
∑

p ” ln
(
1− e−Ep(φc)/T

)
bosons

−T
Ω

“
∑

p ” ln
(
1 + e−Ep(φc)/T

)
fermions

(3.18)
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where we have used ln “Πp” = “
∑

p ” ln. This expression provides an intuitive un-

derstanding of the effective potential. At low temperature T � Ep, the effective

potential reduces to the vacuum energy density E0/Ω which consists of classical and

quantum contributions to the energy of the ground state. We are unable to evalu-

ate E0/Ω as a function of φc without going into a more rigorous calculation of the

effective potential. The temperature dependent pieces, not surprisingly, resemble the

Bose-Einstein and Fermi-Dirac distribution functions, as a consequence of the spin

statistics of Eq. (3.14). We can evaluate these expressions further by noting that the

energy of a one-particle state of mass m can be expressed as E =
√

p2 +m2. Thus,

to leading order the presence of the condensate φc simply modifies the dispersion

relation by replacing m2 → m̃2(φc).

Having deriving the effective potential for a gas of free particles in Eq. (3.18), we

will bypass the full calculation and simply proceed to write down the general one-

loop effective potential. However, it is important to note that in the course of the

calculation, one encounters UV divergent loop integrals (corresponding to the E0 term

of Eq. (3.18)) which must be regulated and renormalized. We will restrict ourselves

to dimensional regularization and the MS regularization scheme with renormalization

scale µ. This calculation yields (61)

V1−loop(φc, T ) = Vren(φc) + ∆V 0
1 (φc) + ∆V T

1 (φc, T ) (3.19)

where Vren is the renormalized scalar potential. The non-thermal correction term

∆V 0
1 , known as the Coleman-Weinberg potential (124), may be expressed as

∆V 0
1 (φc) =

∑
i

ni(−1)2si
(m̃2

i (φc))
2

64π2

[
ln

(
m̃i(φc)

2

Q2

)
− Ci

]
. (3.20)

In this expression, the sum runs over fields labeled by i: ni is the number of dynamical

degrees of field i, si is the spin of field i, and Ci is a constant that depends on the
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renormalization scheme; it equals 3/2 for a scalar or fermion field and 5/6 for a vector

boson. The thermal correction term is given by

∆V T
1 (φc, T ) =

T 4

2π2

∑
i

ni


JB

(
m̃2
i (φc)

T 2

)
si = 0, 1

−JF
(
m̃2
i (φc)

T 2

)
si = 1/2

(3.21)

where the thermal loop functions are given by

JB,F (y) ≡
ˆ ∞

0

dx x2 log
[
1∓ e−

√
x2+y

]
. (3.22)

We have already seen the emergence of this term in Eq. (3.18) through our simple

derivation.

It is useful and important to note that the functions JB,F admit a polynomial

expansion in the so-called high temperature limit where m̃2
i � T 2. These expansions

are (61)

JB(y)
y�1−−→− π4

45
+
π2

12
y − π

6
(y)3/2 − 1

32
y2 ln

y

ab
+O

(
y3
)

(3.23a)

JF (y)
y�1−−→+

7π4

360
−π

2

24
y − 1

32
y2 ln

y

af
+O

(
y3
)

(3.23b)

where ab = 16af = 16π2exp
[
3/2− 2γE

]
. The most significant distinction between JB

and JF in this limit is the presence of the non-analytic term (y)3/2 in the expansion of

JB. This term is associated with the non-analyticity of the Bose-Einstein distribution

function (1−exp
[
E/T

]
)−1 at E = 0. This term will play an important role in helping

to render the electroweak phase transition strongly first order.

3.3 The Standard Model Electroweak Phase

Transition

To illustrate how the effective potential may be used to analyze the physics of a

phase transition, we will consider the electroweak phase transition in the Standard
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Model. The scalar potential is given by the non-derivative terms in the renormalized

Lagrangian,

−Lren 3 µ2H†H + λ
(
H†H

)2
. (3.24)

where H = (φ+ , φ0)
T is the Higgs doublet scalar field. By choosing µ2 = −λv2, the

Higgs will develop a vacuum expectation value
〈
0
∣∣H∣∣0〉 =

(
0 , v/

√
2
)
. Thus, we will

calculate the effective potential as a function of the condensate h =
√

2 〈Re[φ0]〉. Here,

we have departed from our earlier notation of using φc to represent the condensate

in favor of a more intuitive notation.

The leading contribution to the one-loop effective potential Eq. (3.19) is the renor-

malized scalar potential

Vren(h) = −λv
2

2
h2 +

λ

4
h4 . (3.25)

To obtain the quantum and thermal corrections, we must identify the field-dependent

masses m̃2
i (h) of the particles in the plasma. The dominant contributions come from

those species which couple most strongly to the Higgs field. Namely, we need only

include the top quark, weak gauge bosons, and Higgs particles, and we can neglect the

light quarks, leptons, photon, and gluon. The field dependent Higgs mass is obtained

from Eq. (3.25) by differentiating m̃2
H(h) = V ′′ren = λ(3h2− v2). Defining the physical

Higgs mass as m2
H = m̃2

H(v) we can make the replacement λ = m2
H/2v

2. The other

field-dependent particle masses may be obtained from relevant terms in the full SM

Lagrangian. For these particles we have

m̃2
t (h) =

m2
t

v2
h2 nt = 12 st = 1/2 Ct = 3/2

m̃2
W (h) =

m2
W

v2
h2 nW = 6 sW = 1 CW = 5/6

m̃2
Z(h) =

m2
Z

v2
h2 nZ = 3 sZ = 1 CZ = 5/6

m̃2
H(h) =

m2
H

2v2
(3h2 − v2) nH = 1 sH = 0 CH = 3/2 , (3.26)
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where mt, mW , and mZ are the pole masses of the top quark, W-boson, and Z-boson.

The degrees of freedom are counted as nt = 3× 4 for color and spin, nW = 3× 2 for

polarization and charge, and so on. Using Eq. (3.26) we can evaluate the remaining

contributions to the one-loop effective potential given by Eq. (3.20) and Eq. (3.21).

The result is the one-loop thermal effective potential for the SM,

V
(SM)

1−loop(h, T ) =− m2
H

4
h2 +

λ

4
h4

+
1

16π2

(
Ft(h) + FW (h) + FZ(h) + FH(h)

)
+
T 4

2π2

(
−12 JF

(
m2
th

2

v2T 2

)
+ 6 JB

(
m2
Wh

2

v2T 2

)

+ 3 JB

(
m2
Zh

2

v2T 2

)
+ JB

(
m2
H(3h2 − v2)

2v2T 2

))
, (3.27)

where

Ft(h) ≡ −3m4
t h

4

v4
ln

(
m2
th

2

v2Q2e3/2

)
FW (h) ≡ 3m4

W h4

2v4
ln

(
m2
Wh

2

v2Q2e5/6

)
FZ(h) ≡ 3m4

Z h
4

4v4
ln

(
m2
Zh

2

v2Q2e5/6

)
FH(h) ≡ m4

H(3h2 − v2)2

16v4
ln

(
m2
H(3h2 − v2)

2v2Q2e3/2

)
. (3.28)

The expression Eq. (3.27) is a bit unwieldy. To obtain a more intuitive expression,

we can employ the high temperature approximation Eq. (3.23). Provided that h2 �
v2T 2/m2

t we can approximate,

V
(SM)

1−loop(h, T ) ≈ 1

2
c (T 2 − T 2

0 )h2 − e T

12π
(h2)3/2 +

λ

4
h4 (3.29)
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where the effective parameters are given by

T 2
0 =

m2
H

2c
(3.30)

c =
4m2

t + 4m2
W + 2m2

Z +m2
H

8v2
(3.31)

e =
6m3

W + 3m3
Z

v3
. (3.32)

In calculating Eq. (3.29) from Eq. (3.27), we have left out the residual terms δV =

Ω + (σ/2)h2 + (τ/4)h4 where

Ω(h, T ) = −427π2

360
T 4 − m4

H

256π2
ln

(
m2
H(3h2 − v2)

2v2T 2ab

)
+
m3
HT
√

2
√

3h2 − v2

48πv
(3.33)

σ(h, T ) =
3m4

H

64π2v2
ln

(
m2
H(3h2 − v2)

2v2T 2ab

)
− m3

HT
√

2
√

3h2 − v2

8πv3
(3.34)

τ(h, T ) =
1

16π2

[
12
m4
t

v4
ln

(
m2
th

2

v2T 2af

)
− 6

m4
W

v4
ln

(
m2
Wh

2

v2T 2ab

)
(3.35)

− 3
m4
Z

v4
ln

(
m2
Zh

2

v2T 2ab

)
− 9m4

H

4v4
ln

(
m2
H(3h2 − v2)

2v2T 2ab

)]
.

The correction δV is a small, slowly varying function of h when the temperature is

on the order of the electroweak scale, and it may be neglected for the purposes of an

approximate analytic analysis.

The approximate expression Eq. (3.29) illuminates the consequence of interactions

between the condensate and the plasma. The dominant thermal contribution induces

an effective mass m2
eff(T ) = c (−T 2

0 +T 2) for the Higgs field. Since spontaneous sym-

metry breaking is driven by the tachyonic mass m2
eff(0) = −c T 2

0 , we expect that the

broken symmetry will be restored above a temperature T ≈ T0 where the tachyonic

instability becomes lifted. Equation (3.30) reveals that this temperature scale is set

by the Higgs mass and also depends upon the dimensionless thermal mass parameter

c. Qualitatively, c represents the tightness of the coupling between the condensate

and the plasma. For large c, thermal interactions are very effective at stabilizing
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the symmetric phase, and symmetry restoration occurs at a lower temperature. The

non-analytic term (h2)3/2 arises from interactions with weak gauge bosons. This

term plays an important role rendering the phase transition first order by allowing.

Near the phase transition temperature, we expect the three terms in Eq. (3.29) to be

comparable in magnitude.

With Eq. (3.29) at hand, we are equipped to study the SM electroweak phase

transition. We obtain the physical value of the Higgs condensate v(T ) at a given

temperature by minimizing the effective potential. The equation

∂V
(SM)

1−loop(h, T )

∂h

∣∣∣∣∣
h=v(T )

= 0 (3.36)

has two solutions. The first, vsym(T ) = 0, represents the Higgs condensate in the

symmetric phase, and the second,

vbrk(T ) =
e

8πλ
T +

√( e

8πλ

)2

T 2 +
c

λ
(T 2

0 − T 2) , (3.37)

represents the broken phase condensate. Note that the broken phase condensate does

not exist for temperatures above

Tmax =
T0√

1− α2
(3.38)

where α ≡ e/(8π
√
λc). The free energy density in the broken phase is given by the

value of the effective potential at this minimum,

Fbrk(T ) = V
(SM)

1−loop(vbrk(T ), T ) = (3.39)

− c2

4λ
T 4

0 −
2c2

3λ
T 2

0α
√
T 2

0 − T 2(1− α2)T +
c2

2λ
T 2

0

(
1− 2α2

)
T 2

+
2c2

3λ
α
(
1− α2

)√
T 2

0 − T 2(1− α2)T 3 − c2

4λ

(
1− 4α2 +

8

3
α4

)
T 4 .

At T = 0, the free energy density is just equal to the negative classical potential energy

of the ground state, i.e., (−1)(c2T 4
0 /4λ) = −λv4/4. At T = Tmax, the free energy is
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positive and equal to (c2T 4
0 /4λ)(α4/[3(1 − α2)2]). In the symmetric phase, the free

energy density remains fixed at Fsym(T ) = 0, since we have dropped the T 4 pieces

from the effective potential. Thus, the broken phase is energetically favored at low

temperature, and the symmetric phase is energetically favored at high temperature,

as we would expect. The equality occurs at a temperature Tc defined by

Fsym(Tc) = Fbrk(Tc) (3.40)

which resolves to

Tc =
T0√

1− 8
9
α2

. (3.41)

Finally, using Eq. (3.37) and Eq. (9.70) we can estimate the order parameter of the

electroweak phase transition to be

v(Tc)

Tc
=

e

6πλ
=

2m3
W +m3

Z

πm2
Hv

. (3.42)

Then by imposing the washout condition v(Tc)/Tc > 1, we obtain an upper bound

on the Higgs mass

(mH)max =

√
2m3

W +m3
Z

πv
≈ 48 GeV . (3.43)

In Figure 3.7 we have illustrated the temperature dependence of the effective potential

for a scenario with the Higgs mass just at the threshold value Eq. (3.43). If the Higgs

were lighter, the phase transition would be more strongly first order. However, in light

of the Higgs search bound mH & 115 GeV (48), we conclude that the SM electroweak

phase transition is not strongly first order.
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Figure 3.7: The SM thermal effective potential for a 45 GeV Higgs. The phase
transition occurs at a temperature of Tc ≈ 56 GeV at which point vbrk(Tc) ≈ 65 GeV,
and since vbrk(Tc)/Tc > 1, the electroweak phase transition is strongly first order
phase transition.
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Chapter 4

Electroweak Phase Transition in the

µνSSM

An extension of the MSSM called the µνSSM does not allow a conventional thermal

leptogenesis scenario because of the low scale seesaw that it utilizes. Hence, we

investigate the possibility of electroweak baryogenesis. Specifically, we identify a

parameter region for which the electroweak phase transition is sufficiently strongly

first order to realize electroweak baryogenesis. In addition to transitions that are

similar to those in the NMSSM, we find a novel class of phase transitions in which

there is a rotation in the singlet vector space.

This work was performed in collaboration with Daniel Chung. It was published

in Physical Review D in June of 2010 (97).

4.1 Introduction to the Chapter

An extension of the MSSM called the µνSSM (135) is a model similar to the NMSSM

(136) (with the usual Z3 charge assignment) except that the singlet whose vacuum
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expectation value (VEV) gives rise to the µ term also serves the role of a right handed

neutrino, thereby violating R-parity. Because the VEV generates the µ-term and the

right handed neutrino mass, the right handed neutrino masses are of order TeV,

leading to a low scale type I seesaw. Given the absence of high scale seesaw, thermal

leptogenesis is difficult in the µνSSM. Hence, it is interesting to consider whether or

not electroweak baryogenesis (EWBG) (62) can occur in this class of models. One

of the most stringent constraints of EWBG on the µνSSM is the requirement of

a sufficiently strongly first order phase transition (SFOPT) such that the created

baryons are not washed out (137).

Because the µνSSM contains 3 singlet chiral superfields (right handed neutrinos),

mainly motivated by generality, standard model generation replication pattern, and

phenomenological convenience (135; 138), there is a “larger” SFOPT parameter space

for EWBG when compared to the NMSSM. More precisely, there can be SFOPT

where the singlet VEVs rotate in the singlet vector space during the electroweak phase

transition. The price paid for this is a more complicated global minimum analysis

at both finite and zero temperatures. The aim of this paper is not to uncover the

most general parameter space consistent with EWBG, but is to simply give a couple

of parametric regions to show the existence of possibilities.

Depending on the path of the phase transition, the exact µνSSM parametric

dependence of the phase transition strength v(Tc)/Tc is complicated. Nonetheless,

we find that it is typically true that to achieve SFOPT, the parameters are close to

satisfying the following condition:

Eeff

λeffv(0)
≈ 1

2
(4.1)

where Eeff is the effective cubic coupling, λeff is the effective quartic coupling, and

v(0) is the magnitude of the scalar field space VEV (including both the Higgs and
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singlets) at zero temperature. Physically, this corresponds to the parametric region

where the critical temperature Tc is small compared to v(0) during the electroweak

phase transition. In the examples provided in this paper, whether or not the SFOPT

proceeds from the origin, the leading nonvanishing value of Eeff in the µνSSM arises

from the soft terms

3∑
i

[
−aλH1H2ν̃

c
i +

1

3
aκ (ν̃ci )

3 + h.c.

]
(4.2)

where ν̃ci are singlet fields. The dimensionful coupling aλ is distinguished from aκ

in that aλ also enhances the mixing between the Higgs sector and the singlet sector.

The leading contribution to λeff comes from the superpotential and D-terms.

Beyond these general results, we find a somewhat interesting feature because we

focus on the parametric region analyzed by (138). In this parametric region, an

approximate S3 symmetry (permutation symmetry) arises due to the right handed

neutrino generation independence of the non-Yukawa couplings and the smallness of

the neutrino Yukawa couplings. Hence, to avoid any extra complications associated

with domain wall formations, one might naively try to avoid S3 symmetry break-

ing phase transitions by considering parameters which yield zero temperature vacua

preserving S3. Hence, this is the boundary condition that we impose in this paper.

Interestingly, we find that despite this boundary condition, S3 is typically sponta-

neously broken multiply at finite temperatures in a way that is sensitive to quantum

radiative corrections. As the temperature is lowered from high temperatures, this

leads to multi-step phase transitions starting from the trivially S3 symmetric vac-

uum in which all VEVs vanish. The electroweak symmetry breaking phase transition

occurs with S3 symmetry restoration to a vacuum in which all sneutrino VEVs are

identical and nonvanishing. We also find one step SFOPTs in which the scalar fields

(including the singlet fields) make a transition from the origin to the electroweak
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symmetry breaking minimum. The numerical values of the parametric regions un-

covered in this paper is in the paragraph containing Eq. (4.46) and regions IIIa and

IIIb depicted in Fig. 4.5.

Since this work is most closely related to previous work on SFOPT in the NMSSM,

we give here a little preview of some of the differences between our work and previous

works, in addition to the multi-dimensional aspect stressed above. In Ref. (96),

SFOPT in the context of the NMSSM is first analyzed and the author points out that

the tree level cubic term coming from the soft SUSY breaking sector is important.

Note that Ref. (96) uses the definition of critical temperature in which scalar mass

squared matrix develops a vanishing eigenvalue. We take a more robust definition of

Tc being the temperature at which a new coexistence phase occurs even though this

definition is harder to implement in practice.

The authors of Ref. (139) also analyze the NMSSM, but they include a µ-term on

the basis that it is more general and its nonzero value eliminates the Z3 symmetry

which can be cosmologically dangerous with respect to the problem of domain wall

formation (140). The non-zero µ-term leads to false vacuum not being at the origin.

In this case the critical temperature criterion used by Ref. (96) is invalid. Therefore,

the authors of Ref. (139) take the coexistence phase definition of critical temperature

as we do in this paper. They also include a bilinear soft term in the Higgs which

break the Z3 symmetry. Although we do not include such Z3 breaking terms directly,

we will assume that non-renormalizable terms can be included to obtain acceptable

phenomenology with respect to any possible domain wall formation. However, it is to

be noted that Z3 breaking can often lead to UV instabilities in the singlet tadpoles,

making the UV stability of these theories (including the one considered in this paper)

a model building challenge as noted by (140).

The analysis (95) considers the generalized NMSSM similar to (139). They run 9
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parameters with a popular choice of “universal” boundary conditions from the GUT

scale down to the electroweak scale to generate their model. They do not reject

metastable vacua based on the intuition that longevity of the false vacuum on the

horizon scale today is not difficult to attain. To be conservative and to avoid poten-

tially complicated discussions of metastability, we accept only stable vacua in this

paper.

A model related to the NMSSM and the µνSSM is the nMSSM in which the

discrete charge assignment is modified as to eliminate the singlet cubic term in the

superpotential. This model was analyzed by (94) for SFOPT. For a significant por-

tion of the parameter space in which SFOPT occurs, a linear tadpole term in the

superpotential plays a significant role in contrast to our scenario.

The analysis of (111) considers the EWPT in an extension of the SM which adds

a real singlet S. These authors find a large region of the parameter space of their

model that is consistent with SFOPT and LEP Higgs search bounds. They argue that

the strength of the phase transition can be enhanced by 1) choosing a large negative

value for the SH2 coupling, 2) choosing a negative value for the S2H2 coupling, or

3) allowing the singlet to have a non-zero VEV before the electroweak symmetry is

broken. In the language of this paper, the first two points correspond to increasing

Eeff and decreasing λeff , respectively.

Before we begin the main body of the work, let’s list here all the caveats to

our analysis. We do not take into account explicitly the high energy Landau pole

constraint (i.e. perturbativity up to the GUT scale) because we will take the attitude

that the µνSSM is well motivated mainly by its ability to have all fields participate

at low energy and thereby have potential measurability. Nonetheless, the parametric

region that we uncover lies at the border of perturbativity up to the GUT scale

(inferring from the work of Refs. (138; 141)), which means that the UV cutoff for our
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theory can be taken to be far above the TeV scale. We do not take into account explicit

Z3 breaking effects because small amount of breaking can address most cosmological

domain wall problems, as we later demonstrate. We do not take into account explicit

CP violation effects in the phase transitions as this will typically lead to less than order

10% effects since CP violating phases compatible with phenomenology are typically

order 0.1 or smaller. For robustness, we accept in this paper as phenomenological

possibility only absolutely stable global zero temperature vacua instead of analyzing

the phenomenological possibilities of metastable vacua. Finally, all of our numerical

work is kept in control to only order 10% accuracy.

The order of presentation is as follows. In the next section, we present the La-

grangian including its discrete symmetry properties and radiative/thermal correc-

tions. The section concludes by highlighting the µνSSM differences from the NMSSM

scenario. In Sec. 4.3, we describe the parametric region relevant for SFOPT in terms

of one-dimensional field space slice parameterization. There we also qualitatively

describe how the multidimensional paths of the phase transition and discrete sym-

metries play a role. Next, in Sec. 4.4, we explicitly show that singlets do not play

a significant role in terms of numerical value of the sphaleron action controlling the

B+L violating rate in the broken phase. The main numerical results are presented in

Sec. 4.5 where explicit existence of SFOPT parameter region is demonstrated. Details

of the transition paths organized in terms of discrete symmetries, phenomenological

bounds placed, and explicit mass spectra for a sample parametric point are given.

In Sec. 4.6, we demonstrate that cosmological domain wall problem is easily evaded

with an inclusion of a weak Z3 symmetry breaking operator in our scenario. We

then conclude with a summary of the results. Several appendices then follow giving

useful technical details. In Appendix 4.A, we list the field dependent mass matrices

used for computing the effective potential. In the next appendix, we give details
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regarding the approximate thermal masses used in the paper. In Appendix 4.C, we

describe analytically the boundaries of in Figure 4.5 which is one of our main results.

Finally, in Appendix 4.D, we show that it is generically possible to construct a non-

renormalizable Z3 superpotential to obtain a CP conserving global minimum in the

absence of any explicit CP violating parameters.

4.2 The Thermal Potential Differences Between the

NMSSM and the µνSSM

The µνSSM that we consider in this paper is specified by the following superpotential

and soft terms

W =
3∑
i

{
Y i
uQ̂i ·Ĥ2û

c
i + Y i

d Ĥ1 ·Q̂id̂
c
i + Y i

e Ĥ1 ·L̂iêci

+Y i
ν L̂i ·Ĥ2ν̂

c
i − λĤ1 ·Ĥ2ν̂

c
i +

1

3
κ (ν̂ci )

3
}

(4.3)

−Lsoft =
3∑
i

{
m2
Q̃
|Q̃i|2 +m2

ũc |ũci |2 +m2
d̃c
|d̃ci |2 +m2

L̃
|L̃i|2 +m2

ẽc|ẽci |2 +m2
ν̃c |ν̃ci |2

}
+

3∑
i

{
auQ̃i ·H2ũ

c
i + adH1 ·Q̃id̃

c
i + aeH1 ·L̃iẽci + aνL̃i ·H2ν̃

c
i + h.c.

}
+

2∑
i

m2
Hi
|Hi|2 − 1

2

(
3∑
i

Miλ̃iλ̃i + h.c.

)

+
3∑
i

[
−aλH1 ·H2ν̃

c
i +

1

3
aκ (ν̃ci )

3 + h.c.
]
. (4.4)

Where indicated by a dot, the SU(2) indices are contracted with the antisymmetric

tensor and ε12 = 1. First, note in addition to the usual Z3 symmetry used to forbid

an explicit µ term, there is an exact CP symmetry due to the reality of the coupling

constants. We ignore the CKM phases since these will only give corrections smaller
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than the O(10%) accuracy that we are aiming for in this paper. The CP transfor-

mation in the scalar effective potential can be effectively taken to be each scalar field

transforming to its conjugate. Next, note that the couplings of the ν̃ci sector to the

SM were taken to be generation independent, except for the Yukawa couplings, and

that the singlets do not couple to one another directly in the superpotential. This

choice is motivated by trying partially to match the work of (138). Hence, we see

there is an enhanced S3 symmetry (permutation symmetry) in the ν̃ci sector if we ne-

glect the Yukawa couplings. This approximate symmetry S3 is nearly exact because

of the smallness of the symmetry breaking Yukawa couplings Y i
e,ν . As discussed in the

introduction, the exact global Z3 symmetry itself is plausibly assumed to be broken

by non-renormalizable operators such that cosmological domain wall problem does

not arise.

At tree level there is an additional global symmetry in the phase in which the

electroweak symmetry is unbroken such that Hi = 0 and all electromagnetically

charged scalars vanish. Hence, in the high temperature phase in which the non-

singlet fields are assumed to be frozen at their classical potential minimum, we have

an enhanced symmetry in the effective potential as a function of the singlets only.

The enhanced tree level symmetry is Z3 ⊗ Z3 ⊗ Z3, where each singlet can be phase

rotated independently:

ν̃cj −→ einj2π/3ν̃cj . (4.5)

This symmetry appears because we have tuned the superpotential ν̃c1ν̃c2ν̃c3 coupling

to vanish. Unlike the approximate S3 symmetry, this high temperature phase classi-

cal symmetry has significant breaking at 1-loop from perturbative interactions even

about the electroweak symmetry preserving minima. Nonetheless, it will be useful

in understanding the SFOPT in which there is a rotation in the singlet sector space
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during the phase transition.1

In addition to the Yukawa and gauge couplings, there are 19 adjustable parameters

in this model which are {λ, κ,m2
Q̃,ũc,d̃c,L̃,ẽc,ν̃c

,m2
H1,2

,Mi, au,d,e,ν,λ,κ}. These are taken

to be defined at the renormalization scale of 100 GeV in the DR scheme. Because

the neutrino Yukawa couplings control the neutrino Dirac mass via the up-type Higgs

VEV, these Yukawas are small for reasonable values of tan β,

Yν ≈ 6× 10−7

(
sin[β]

sin[arctan 2.6]

)−1

, (4.6)

and will play a negligible dynamical role. The neutral scalar field vector space be-

longing to the fields {H1, H2, L̃i, ν̃
c
i } is parameterized as follows:

H0
i = vi(T ) +

φi + iai√
2

i ∈ {1, 2}

ν̃
(c)
j = v

ν̃
(c)
j

(T ) +
φ
ν̃

(c)
j

+ ia
ν̃

(c)
j√

2
j ∈ {1, 2, 3} (4.7)

where the VEVs at finite temperature are denoted by {vi(T ), vν̃i(T ), vν̃ci (T )}. To

maintain the S3 symmetry in the electroweak symmetry breaking vacuum at zero

temperature and to avoid unnecessary complexities in the SU(2)L charged sector, we

choose the sneutrino VEVs to be independent of generation, such that

{vi(0) = real, vν̃i(0) = vν̃(0) = real, vν̃ci (0) = vν̃c(0) = real}. (4.8)

To fix the VEVs in this way, we solve the potential minimization condition for the

four parameters {m2
H1
,m2

H2
,m2

L,m
2
ν̃c}. In addition to the desire to simplify the phase

transition history, one of our main motivation in choosing vν̃ci (0) = vν̃c(0) is to preserve

the S3 symmetry manifest in Eqs. (4.3) and (4.4). Interestingly enough, as we will

see, this S3 symmetry spontaneously breaks at finite temperature. The left-handed
1One may also wonder whether omitting the ν̃c

1ν̃
c
2ν̃

c
3 term is radiatively stable. It turns out that

this term is generated at 2-loop order, which means that as far as one loop analysis of this paper is
concerned, this term can be omitted self-consistently. However, this must be viewed as fine tuning
motivated by staying consistent with Ref. (138).
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sneutrino VEV is small, as we argue below, and the Higgs VEVs satisfy v2
1(0)+v2

2(0)+

3v2
ν̃(0) ≈ v2

1(0) + v2
2(0) = v2(0) = (174 GeV)2. The rest of the parameter specification

will be discussed in Sec. 4.5.

To study the electroweak phase transition we need to calculate the thermal ef-

fective potential V T
eff as a function of temperature and the field directions which par-

ticipate in the phase transition. There are no charged scalars with VEVs at zero

temperature and we assume that there are no charge or color breaking minima to

appear at finite temperature. In general, the left-handed sneutrinos receive VEVs

vν̃(0) and participate in electroweak symmetry breaking, but these VEVs must be

much less than the electroweak scale to avoid excessive stellar energy loss (142) by ν̃

emission. Hence, we can neglect O (vν̃) contributions and reduce the relevant degrees

of freedom to the five dimensional complex field space {H0
1 , H

0
2 , ν̃

c
i }. Although a part

of the complex phase degrees of freedom in the Higgs sector is a gauge degree of

freedom, for simplicity we will use the notation {H0
1 , H

0
2 , ν̃

c
i } and keep in mind that

there are nine real degrees of freedom.

We compute the zero temperature effective potential as a loop expansion over the

field space {H0
1 , H

0
2 , ν̃

c
i }. The leading order term is the tree-level potential given by

V0 =m2
H1

∣∣H0
1

∣∣2 +m2
H2

∣∣H0
2

∣∣2 +m2
ν̃c

∑
i

|ν̃ci |2 +
g2

1 + g2
2

8

(∣∣H0
1

∣∣2 − ∣∣H0
2

∣∣2)2

+
∑
i

[
−aλH0

1H
0
2 ν̃

c
i +

1

3
aκ (ν̃ci )

3 − κλ (H0
1H

0
2

)?
(ν̃ci )

2 + h.c.

]
+ 3λ2

∣∣H0
1

∣∣2 ∣∣H0
2

∣∣2 +
∣∣H0

2

∣∣2∑
i

(
Y i
ν

)2 |ν̃ci |2

+ λ2
(∣∣H0

1

∣∣2 +
∣∣H0

2

∣∣2) ∣∣∣∣∣∑
i

ν̃ci

∣∣∣∣∣
2

+ κ2
∑
i

|ν̃ci |4 . (4.9)

We exchange the three parameters
{
m2
H1
,m2

H2
,m2

ν̃c

}
for the real VEVs {v1(0), v2(0), vν̃c(0)}
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by solving the five minimization equations

∂V0

∂H0
1

∣∣∣∣
VEV

= 0 = m2
H1
v1 +

g2
1 + g2

2

4

(
v2

1 − v2
2

)
v1 + 3

[−aλv2vν̃c − κλv2v
2
ν̃c

]
+ 3λ2v1v

2
2 + 9λ2v1v

2
ν̃c

∂V0

∂H0
2

∣∣∣∣
VEV

= 0 = m2
H2
v2 − g2

1 + g2
2

4

(
v2

1 − v2
2

)
v2 + 3

[−aλv1vν̃c − κλv1v
2
ν̃c

]
+ 3λ2v2v

2
1 + 9λ2v2v

2
ν̃c

∂V0

∂ν̃ci

∣∣∣∣
VEV

= 0 = m2
ν̃cvν̃c +

[−aλv1v2 + aκ
(
v2
ν̃c

) − 2κλv1v2vν̃c
]

+ 3λ2
(
v2

1 + v2
2

)
vν̃c + 2κ2vν̃cv

2
ν̃c (4.10)

where “VEV” represents evaluating the fields at the zero-temperature vacuum {H0
1 , H

0
2 , ν̃

c
i } =

{v1(0), v2(0), vν̃c(0)}. Terms proportional to Y i
ν and vν̃ are negligible and have been

omitted. Because of the S3 permutation symmetry of our potential, the three equa-

tions associated with the sneutrino field directions are identical.

The one-loop radiative correction to the effective potential is given by the Coleman-

Weinberg potential (124) as a function of the field-dependent mass matrices M2
i cal-

culated in the Landau gauge (ξ = 0). The mass matrices which we use are included in

Appendix 4.A along with ni, the degrees of freedom associated with each matrix that

correspond to suppressed indices (negative for fermions). Regulating UV divergences

in d = 4− 2ε dimensions, the Coleman-Weinberg potential becomes

∆V 0
1 =

1

64π2

∑
i

niTr M4
i

(
log

M2
i

µ2
− 3

2
− CUV

)
(4.11)

where CUV = 1
ε
−γE + ln 4π and µ is the t’Hooft scale. We impose a mixed renormal-

ization scheme in which the counterterms for the parameters
{
m2
H1
,m2

H2
,m2

ν̃c

}
are

chosen such that the zero-temperature vacuum is unshifted by the radiative correc-
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tions. This condition is equivalent to requiring tadpole graphs to vanish and imposes

δm2
H1

= − 1

v1

∂∆V 0
1

∂ (H0
1 )
∗

∣∣∣∣
VEV

δm2
H2

= − 1

v2

∂∆V 0
1

∂ (H0
2 )
∗

∣∣∣∣
VEV

δm2
ν̃c = − 1

vν̃c

∂∆V 0
1

∂ (ν̃ci )
∗

∣∣∣∣
VEV

. (4.12)

The remaining parameters are determined by the DR scheme and all parameters are

specified at a renormalization scale of µ = 100 GeV. We make no assumptions about

dominant contributions to the one-loop corrections but instead calculate Eq. (4.11)

by summing all species that couple to the Higgs sector.

At finite temperature, the effective potential receives an additional one-loop cor-

rection

∆V T
1 =

T 4

2π2

[∑
b

nbTr JB
(
M2

b /T
2
)

+
∑
f

nfTr JF
(
M2

f /T
2
)]

(4.13)

where the traces run over bosonic (b) and fermionic (f) mass matrices. The thermal

functions can be expressed as a a sum of modified Bessel functions of the second kind,

JB (y) =

ˆ ∞
0

dx x2 log
(

1− e−
√
x2+y

)
= −

∞∑
n=1

1

n2
yK2 (n

√
y) (4.14)

JF (y) =

ˆ ∞
0

dx x2 log
(

1 + e−
√
x2+y

)
= −

∞∑
n=1

(−1)n

n2
yK2 (n

√
y) .

Because these integrals are computationally taxing, we use the Bessel function rep-

resentation and truncate the sum at five terms. This is a very good approximation

and introduces less than one percent of error.

At high temperatures, the perturbative expansion fails unless higher order “daisy”

graphs which diverge quadratically with temperature are resummed. This procedure

effectively replaces the bosonic field dependent mass matrix M2
b with M2

b + Πb where
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Πb ∝ T 2 and amounts to including a term into the potential given by

∆Vdaisy = − T

12π

∑
b

nbTr
[(
M2

b + Πb

)3/2 − (M2
b

)3/2
]
. (4.15)

The thermal mass corrections Πb are included in Appendix 4.B. Combining all of

the radiative and finite temperature terms, the one-loop finite-temperature effective

potential plus daisy resummation becomes

V T
eff (T ) = V0 + ∆V 0

1 + ∆V T
1 (T ) + ∆Vdaisy (T ) . (4.16)

The main difference between the NMSSM and the µνSSM relevant for strongly

first order EWPT can be summarized as follows:

1. Because of the multidimensionality of the singlet field space {vν̃ci (T )}, there can
be electroweak phase transitions accompanied by rotations within the singlet

field space. This opens up a new class of phase transitions that are unlike any

of the NMSSM transitions since for example the phase transition can take place

with the singlet VEV hopping from one nonzero value to another:

{vν̃ci (Tc) = xi 6= 0, 〈Hj〉 = 0} −→ {vν̃ci (Tc) = yi ∦ xi, 〈Hj〉 6= 0}. (4.17)

The terms in Eqs. (4.3) and (4.4) that will play a particularly important role

for this rotational hopping are the soft terms −aλH1 ·H2ν̃
c
i + 1

3
aκ (ν̃ci )

3 (which

control the cubic and lower dimension tree level couplings which in turn control

radiative corrections) and the superpotential terms−λĤ1·Ĥ2ν̂
c
i+

1
3
κ (ν̂ci )

3 (which

control the quartic and lower dimension tree level couplings).2

2. There is a soft term coupling the singlet to the Higgs H2

∆Vsoft ∼ aνvν̃v2vν̃c . (4.18)

2As we will see later, the shift of the field origin will generically generate lower dimension
couplings from higher dimensional couplings.
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which potentially provides a cubic coupling for the Higgs sector. Unfortunately,

this term does not play an important role in the analysis because vν̃ � O(GeV).

3. Superpotential has a Yukawa coupling of the singlet to the left handed lepton

and Higgs, leading to the following additional F -terms:

∆VF = 2Yνvν̃
[
κv2v

2
ν̃c − v1λ(v2

2 + 3v2
ν̃c)
]

+

Y 2
ν (v2

2v
2
ν̃ + v2

2v
2
ν̃c + 3v2

ν̃v
2
ν̃c) (4.19)

Given the smallness of the Yukawa couplings Yν ∼ O(10−7), these terms are not

particularly important for the phase transition when the transition occurs with

VEVs of order 107 GeV or less. Note that all of these terms are quartic in nature

owing to the absence of dimensionful parameters in the superpotential. Also,

since the origin of R-parity violation is the leptonic Yukawa coupling which is

also the source of ∆VF , we see that these do not play a significant role.

Hence, a generic feature of the µνSSM SFOPT not reproducible by the NMSSM is the

feature due to point 1 above. This will be emphasized in the numerical exploration

below. We will also find one step transitions, which are qualitatively similar to the

NMSSM transitions.

4.3 Qualitative Description of The Desired

Parametric Region

A novel feature of the µνSSM compared to the NMSSM is the transition depicted

in Eq. (4.17). In such cases one can shift the origin of the field such that the phase

transition of interest occurs from the origin. With such shifted coordinates in mind,

we define the field φ to be the radial magnitude

φ ≡
√

(~v)2 + (∆~vν̃)2 + (∆~vν̃c)2 (4.20)
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for a phase transition controlled by the potential VT (φ) in which the vector of CP even

Higgs scalars attains an order parameter change of ~v. Explicitly, the strength of the

phase transition is approximately characterized by the SU(2)L breaking |~v|/Tc and not

φc/Tc where the critical temperature Tc is defined by the condition VTc(0) ≈ VTc(φc).

Φ

V
T

c
HΦ
L

Figure 4.1: A schematic plot of the finite temperature effective potential at the critical
temperature of Eq. (4.22). The vertical line represents φ = 0 and helps to visualize
the effect of φ→ −φ symmetry breaking effect of the cubic term which is responsible
for the bump at φ > 0 for {E > 0, Fna = 0} in Eq. (4.21).

The finite temperature corrected effective potential of a real scalar field φ near

the critical temperature will behave approximately as

VT (φ) ≈ (
1

2
M2 + c1T

2)φ2 − Eeffφ
3 + Fna(φ, T ) +

λeff

4
φ4 (4.21)

up to additional temperature dependences. The c1 ∼ O(1) constant is proportional

to coupling constants responsible for the leading mass correction, and Fna is the

non-analytic thermal correction contribution that can lead to an effective cubic con-

tribution to the potential. Although in the MSSM Fna plays a significant role, with

a singlet involved such as in the µνSSM, Fna need not play a crucial role. Hence,

we will set Fna = 0. In this section, we neglect “other temperature dependences” in

Eq. (4.21). Note that Eq. (4.21) has M2 > 0 even though at T = 0, symmetry is

broken when Eeff > 0 and satisfies a condition specified below.
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Defining where v(Tc) is the degenerate minimum VEV, we find

Tc =

√
2E2

eff/λeff −M2

√
2c1

. (4.22)

The potential at the critical temperature is depicted in Fig. 4.1. The unusual sign

of 2E2
eff/λeff −M2 stems from our assumption that the symmetry is broken at zero

temperature due to predominantly the Eeff term. This situation turns out to be

generically beneficial for a SFOPT as we explain soon below. The critical temperature

Tc is larger if Eeff > 0 because in that case, the negative contribution from the cubic

term in Eq. (4.21) is enhanced for φ > 0 which means that the quadratic term which is

the leading source of positivity (as φ approaches φc from the left) has to be stronger

to cancel the stronger negative contribution. Since there will be no positive mass

squared at the origin during the phase transition in the absence of the cubic term,

the mass at the origin has to be also larger for increasing Eeff > 0. Explicitly, the

mass at the origin (which by construction is our starting point of the phase transition)

is

∂2
φVT=Tc(0) =

2E2
eff

λeff

. (4.23)

This mass is identical to the mass at φ = φc. We can also understand the VEV

φc =
2Eeff

λeff

(4.24)

which can be heuristically justified by the fact that the broken phase local minimum

results from a competition between the cubic and the quartic term (which is the

dominant source of positivity as φ → φ+
c ) at the time of critical temperature when

the mass term is again controlled by Eq. (4.23).

Finally, the strength of the SU(2)L breaking in the transition is given by

v(Tc)

Tc
=

v(Tc)
√

2c1

M
√

2E2
eff

λeffM2 − 1
(4.25)
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where

v(Tc) = φcf(~Ω) (4.26)

and f(~Ω) is a projection cosine onto the Higgs axis. By definition of the SU(2)L

breaking transition, φcf(~Ω) . O(v(0)). At T = 0, φ(0) ≡ 〈φ〉T=0 is related to M

through

M =
√
λeffφ2(0)− 3Eeffφ(0) (4.27)

where λeffφ(0) > 3Eeff . Eq. (4.25) thus can be rewritten in terms of φ(0) as

v(Tc)

Tc
=

(
2Eeff

λeffφ(0)

) √
2c1/λeff√(

1− Eeff

λeffφ(0)

)(
1− 2Eeff

λeffφ(0)

)f(~Ω) . (4.28)

Hence, the strength of the phase transition is controlled mostly by 2 parameters:{
Eeff

λeffφ(0)
,

√
c1

λeff

}
. (4.29)

Note that since f(~Ω) ≤ 1, this angular projection function can only enhance the

phase transition in a limited manner. Requiring v(Tc)
Tc

be real and requiring V (φ(0)) <

V (0) result in the condition

0 ≤ Eeff

λeffφ(0)
≤ 1

2
. (4.30)

Therefore, one should keep in mind that although having a non-vanishing Eeff is good

for a strong first order phase transition, the enhancement is bounded. Indeed, this

bound is approximately satisfied by the numerical analysis, and SFOPT points that

we find occur when

Eeff

λeffφ(0)
≈ 1

2
. (4.31)

From the derivation of Eq. (4.28), one can see that Eq. (4.31) corresponds to making

Tc as small as possible during the phase transition. When Eeff

λeffφ(0)
> 1

2
the origin
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becomes the global minimum and the symmetry is unbroken. Note also that because

φ is defined with respect to the shifted singlet origin in Eq. (4.20), φ(0) does not

correspond to the radial magnitude of the scalar field from the original Lagrangian’s

field origin.

After this first order phase transition, a second order phase transition might occur

when V ′′(0) = 0. However, with M2 > 0, this does not occur for this 1D toy model.

Note that (96) assumes that there exists a temperature for which V ′′ = 0 which in

fact never occurs for this toy model.

Generically, we are interested in a strong first order phase transition characterized

by

√
2
v(Tc)

Tc
& 1.3 (4.32)

(137). If the asymptotic conditions Eeff

λeffφ(0)
→ 1/2 and/or c1/λeff → ∞ are met, the

phase transition can be arbitrarily strong. However, the following phenomenological

constraints prevent/constrain arbitrarily strong transition in Eq. (4.28):

1. Global minima shifts can prevent the saturation of Eeff/ [λeffφ(0)] = 1/2 for

a particular underlying parametric path. For example, as one approaches

Eeff/ [λeffφ(0)] = 1/2 within a particular region of underlying parameter space,

3 the origin of Eq. (4.20) has to be shifted to a new global minimum (where

the electroweak symmetry is still not broken, i.e. ~v = 0). When this occurs,

{Eeff , λeff , c1} of Eq. (4.21) undergo a discontinuous change as a function of the

underlying parameters such as those of Eqs. (4.3) and (4.4).

2. Small λeff can result in phenomenologically unacceptably light Higgs (or other

scalar masses). For example, it is clear from the effective model that

m2
φ = 2λeffφ

2(0)

[
1− 3

2

Eeff

λeffφ(0)

]
(4.33)

3Recall that Eeff/ [λeffφ(0)] are effective parameters derivable from underlying Lagrangian pa-
rameterized for example as Eqs. (4.3) and (4.4).
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where the term in the parenthesis in Eq. (4.33) is positive since 0 ≤ Eeff/ (λeffφ(0)) ≤
1/2. Note that in any models that embed the MSSM, there is a minimal contri-

bution to λeff from the D-terms that also makes it difficult to make it arbitrarily

small. Note also that increasing Eeff

λeffφ(0)
lowers the φ mass as well.

3. When Eeff/(λeffφ(0))→ 1/2, the energy difference ∆V between the false vacuum

and true vacuum asymptotically vanishes. Explicitly, we have as Eeff → Ec ≡
λeffφ(0)/2, we find

∆V → 2
√

2∆EeffM
3

λ3/2
→ 0 (4.34)

v(Tc)

Tc
→
(

2

λeff

)1/4√
c1M

∆Eeff

(4.35)

where ∆Eeff ≡ Eeff − Ec. Since the validity of this estimate requires ∆V > 0,

this region of parameter space becomes very sensitive to radiative corrections.

4. The contributions to c1 that maximize
√
c1/λeff typically contribute to λeff as

well (with different powers). Hence, particularly in the µνSSM, we are in a

region where λeff is on the larger side and not the small side.

The features just discussed qualitatively explain the numerical scan of the parameter

space which identifies a particular parametric region in which Eq. (4.32) is satisfied

at the same time with some basic phenomenological constraints which we detail in

Sec. 4.5. There, more analytic formulae will be given explaining some of the features

of the numerical results.

Now, let us consider the general path of the electroweak phase transition. At

T � O(TeV), the global minimum will be at

{vν̃ci (T ) = 0, vi(T ) = 0}, (4.36)
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the scalar field origin.4 As explained previously, the left handed slepton VEVs are un-

dergoing small energy scale transitions which are not particularly relevant to most of

the discussion. As the temperature is lowered, non-trivial singlet VEV configuration

will realize a global minimum, and the system will consequently make a transition.

This transition in the singlets is sometime accompanied by an electroweak symmetry

breaking phase transition, and sometimes not. If the first nontrivial singlet transition

is accompanied by strongly first order electroweak symmetry breaking, these would

be SFOPT from the scalar field origin:

{vν̃ci (T+
c ) = 0, vj(T

+
c ) = 0} −→ {vν̃ci (T−c ) 6= 0, vj(T

−
c ) 6= 0}. (4.37)

In this case, the origin of the vector whose magnitude is taken in Eq. (4.20) will be

zero.

In addition, there will generically be singlet transitions from the origin at tem-

perature TO first without an electroweak phase transition, of the form

{vν̃ci (T+
O ) = 0, vj(T

+
O ) = 0}

−→ {vν̃ci (T−O ) = xi(TO) 6= 0, vj(T
−
O ) = 0} . (4.38)

Even if this is a first order phase transition, it will typically complete before the subse-

quent electroweak symmetry breaking, and thus it does not to leading approximation

participate in EWBG. However, it can in principle be relevant for gravity waves

(see e.g. (112; 115; 116; 143–167)). Afterwards, there is a subsequent electroweak

symmetry breaking phase transition

{vν̃ci (T+
c ) = xi(Tc) 6= 0, vj(T

+
c ) = 0}

−→ {vν̃ci (T−c ) = yi 6= 0, vj(T
−
c ) 6= 0} (4.39)

4Symmetry restoration typically occurs as long as there are no tadpole contribution proportional
to the temperature.
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whose strength is important for EWBG. In this case, the origin of the vector whose

magnitude is taken in Eq. (4.20) will be {vν̃ci (T+
c ) = xi, vj(T

+
c ) = 0}. When xi ∦ yi,

this transition corresponds to a “rotation” of the singlet vector.

Before concluding this section, let’s briefly describe how the discrete symmetry

discussed below Eq. (4.4) and zero temperature radiative corrections play a role

for some of our strong multi-step transitions. Once a phase transition of the form

Eq. (4.38) takes place, the set of degenerate global minima will form a coset repre-

sentation of Z3 ⊗ CP ⊗ S3.5 Because of the approximate Z3 ⊗ Z3 ⊗ Z3 symmetry

described in Eq. (4.5), to tree level accuracy, the coset space will be actually bigger:

Z3⊗Z3⊗Z3⊗CP⊗S3. Some of the Z3⊗Z3⊗Z3 minima will be split due to the zero

temperature radiative corrections, and the global minimum will be at a subset of the

Z3⊗Z3⊗Z3 minima (one of which is what we labeled as ~x(TO) in Eq. (4.38)). Finally,

when the temperature drops enough to make one of the EWSB minima degenerate

with ~x(Tc), the transition depicted by Eq. (4.39) occurs.

In Sec. 4.5, we will discuss explicit examples of both one-step and multi-step phase

transitions.

4.4 Weak Sphaleron and the Singlet

After the baryon asymmetry has been created at a first order electroweak phase

transition, it may be washed out by the B-violating sphaleron process (62; 84) in

the broken phase. The sphaleron is a non-perturbative field configuration in the

Weinberg-Salam theory that interpolates between topologically distinct vacua and

violates B + L. To avoid washout, one must require that sphaleron transitions are

suppressed meaning that the rate of these processes is less than the Hubble parameter

5Recall that S3 is nearly an exact symmetry because of the smallness of the leptonic Yukawa
coupling.
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at the time of the phase transition. This imposes a lower bound on the sphaleron

Euclidean action Esph(Tc)/Tc & 45 (137) which, in the Standard Model, becomes

a lower bound on the Higgs VEV in the broken phase
√

2v(Tc)/Tc & 1.3 where

v(0) = 174 GeV. The six sneutrino fields of the µνSSM which receive VEVs during

EWSB could in principle modify this bound. As we will see, the modifications are

small because 1) the left-handed sneutrino VEV is much less than the electroweak

scale and 2) the singlet sneutrino has a nearly homogenous solution which stays nears

the minimum of the potential.

To obtain the sphaleron action at finite temperature, we calculate the zero tem-

perature sphaleron and apply the scaling law (85)

Esph(T ) = Esph(0)
v(T )

v(0)
(4.40)

which introduces less than a ten percent error. Additionally, we compute the sphaleron

solution using the tree level scalar potential V0 and neglect radiative corrections. To

a very good approximation (84) we can also neglect the U(1)Y gauge coupling and

compute a purely SU(2)L sphaleron solution. The sphaleron ansatz is static and

possesses an SO(3) rotational symmetry. The ansatz is given by

{
H1, H2, L̃i

}
= {v1h1(ξ), v2h2(ξ), v3h3(ξ)}U∞

 0

1


ν̃ci = v4h4(ξ)

W a
i σ

adxi = −2i

g
f (ξ) dU∞(U∞)−1 (4.41)

U∞ =
1

r

 z x+ iy

−x+ iy z

 (4.42)

in terms of the dimensionless radial coordinate ξ = r/r0 rescaled by r0 =
(
g
√

2
√
v2

1 + v2
2 + v2

ν̃

)−1

≈(
g
√

2v
)−1

. All VEVs are evaluated at zero temperature and we have introduced
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v3 = vν̃ and v4 = vν̃c for convenience. We have used the S3 symmetry to equate

the functions that describe the sneutrino fields of different generations, such that the

sphaleron solution is given by five functions hi (ξ) and f (ξ). Using this ansatz and

after normalizing the potential to satisfy V0(hi = 1) = 0 by adding a constant, the

field equations become

ξ2r2
0

v2
i

∂V0

∂hi
=


ξ2h′′i + 2ξh′i − 2(1− f)2hi i = 1, 2

3 [ξ2h′′3 + 2ξh′3 − 2(1− f)2h3] i = 3

3 [ξ2h′′4 + 2ξh′4] i = 4

ξ2f ′′ − 2f(1− f)(1− 2f) = −1

4
ξ2(1− f)g2r2

0

3∑
i=1

θiv
2
i h

2
i . (4.43)

where θi = 1 for i = 1, 2 and θi = 3 for i = 3, 4. Note that the term (1 − f)2hi is

absent for i = 4 because the singlet sneutrinos do not couple to the gauge bosons.

The sphaleron action is obtained by integrating the sphaleron solution

Esph (0)=
4πv
√

2

g

ˆ ∞
0

dξ

{
ξ2

2v2

4∑
i=1

θi

(
vi
dhi
dξ

)2

+
1

v2
(1− f)2

3∑
i=1

θiv
2
i h

2
i

+ 4

(
df

dξ

)2

+
8

ξ2
f 2 (1− f)2 + ξ2V0 (hi)

g2v4

}
(4.44)

We can observe immediately that contributions from the left-handed sneutrinos will

be negligible because the function h3 always appears with a prefactor of v3 = vν̃ � v.

We can study the sphaleron solution by considering the asymptotic limits of

Eq. (4.43). In the large ξ limit, all five field profiles must asymptote to unity in

order for Esph to be finite. In the small ξ limit, we find that the gauge boson and

the three weakly charged scalar functions asymptote to zero, as in the Weinberg-

Salam model, but that the singlet function approaches a value which can in general

be non-zero:

f (ξ)
ξ→0−−→ αξ2, hi (ξ)

ξ→0−−→ βiξ i ∈ {1, 2, 3} , h4
ξ→0−−→ c+ β4ξ

2. (4.45)
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The singlet function behaves differently in this limit because the gauge coupling term

(1 − f)2h4 in the field equation is absent. The boundary condition on the singlets

makes the solution for h4 (ξ) qualitatively different than for the Higgs fields. In

particular, the solution h4 (ξ) which minimizes Esph will tend to be homogenous with

h4 ≈ 1 for all ξ. The solution is homogenous because Esph 3 (dh4/dξ)
2 is positive

semi-definite. Hence, it can be minimized by a constant h4, and the solution remains

near h4 = 1 because this is where V0 is minimized. As a result, the singlet fields

contribute negligibly to the sphaleron action.

The sphaleron solution and energy density for a fiducial parameter set are plotted

in Figure 4.2. To obtain the field profiles we solve Eq. (4.43) in the large and small

ξ limits analytically, then match the solutions at five radii ri which are chosen to

minimize Esph. As discussed above, the singlet solution hovers around h4 = 1 where

the potential has a minimum. To display how each terms in Eq. (4.44) contributes

to the sphaleron action, we have also plotted the integrand for the gauge kinetic,

scalar kinetic, and scalar potential contributions separately. We observe that the

sphaleron action is dominated by the kinetic terms. Since the parametric dependence

only appears explicitly in the scalar potential, which is negligible, we expect that the

sphaleron action is largely independent of our parameter choice. For this parameter

set we find Esph(0) ≈ 1.834πv
g
≈ 8.7 TeV which translates into a bound on the Higgs

VEV at the critical temperature that is
√

2v(Tc)
Tc

& 1.3. As such, the Higgs VEV must

satisfy the same constraint in the µνSSM as in the SM to avoid washout.

4.5 Parameter Scan and Phenomenological Bounds

We have investigated the µνSSM phase transition by performing a two-dimensional

parameter space scan. For the two free parameters we use mch = 3λvν̃c , which
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Figure 4.2: On the left, the µνSSM sphaleron solution versus the dimensionless radial
coordinate with h1 and h2 solid, h3 dashed, h4 dotted, and f dot-dashed. The solution
hν̃c for the singlet sneutrinos does not satisfy the same boundary condition at ξ → 0
as the SU(2)L charged scalars. Hence, the solution of minimum energy is the one in
which hν̃c ≈ 1 for all ξ. On the right, the sphaleron energy density, Eq. (4.44), with
gauge kinetic terms dashed, scalar kinetic terms dotted, scalar potential terms dot-
dashed, and the total energy density solid. This plot illustrates that the sphaleron
action is dominated by the kinetic terms and that the contribution from the scalar
potential is negligible.

coincides with the charged Higgsino mass in the limit M2 � mW ,mch, and the

dimensionless variable

σ = 2

(
aλ
mchλ

+
κ

3λ

)
. (4.46)

These parameters are scanned over the ranges mch : [75 GeV, 175 GeV] and σ : [0, 25]

by varying vν̃c and aλ. The SUSY-breaking parameters are chosen to match the con-

ventions of (138):
{
m2
Q̃
,m2

ũc ,m
2
d̃c
,m2

ẽc

}
are fixed at a fiducial SUSY-breaking scale

which is taken to be 1 TeV, gaugino masses are set to 6M1 = 3M2 = M3 = 3 TeV, and

A-terms are scaled by the associated Yukawa couplings as {Aui = au/Yui , Adi = ad/Ydi , Aei = ae/Yei , Aν = −aν/Yν}
and fixed at 1 TeV. Note that we have assumed for simplicity common left-handed

sneutrino VEVs vν̃i = vν̃ and a diagonal Yukawa matrix (Yν)ij = Yνδij. The remaining

soft masses
{
m2
H1
,m2

H2
,m2

L̃
,m2

ν̃c

}
are exchanged for the VEVs {v1 (0) , v2 (0) , vν̃ (0) , vν̃c (0)}

by solving the minimization equations at zero-temperature. The remaining Higgs sec-

tor parameters are chosen to be tan β = 2.6, κ = −0.64, λ = 0.18, vν̃ = 1.4 × 10−5
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GeV, and aκ = −236 GeV. Given that some of our sparticle masses are far larger

than Tc ∼ O(100)GeV, we could have integrated out these fields giving rise to a

more illuminating effective field theory parameterization within the DR scheme.6

However, to stay similar to the parameterization used in (135; 138), and to give a

relatively unrestricted range for possible Tc, we have kept these relatively heavy fields

as dynamical.

At each point in the parameter space, we calculate the µνSSM spectrum. In order

to get a handle on phenomenological constraints, we impose the MSSM search bounds

for the SUSY particles and require the Higgs masses to be & 90 GeV (14) (later we

will show a sample parametric point Higgs spectrum with the lightest Higgs mass

of about 110 GeV). Model dependent bounds are of interest, but typically, they are

weaker as far as the neutral Higgs is concerned because of singlet mixing effects. A

more complete model dependent phenomenological consistency check including the

study of charged Higgs mediated b → sγ rates is beyond the scope of this paper.

We calculate the spectrum of the charged Higgses (φ±i ), charginos (χ̃
±
i ), and neutrali-

nos (χ̃0
i ) at tree-level and require

{
mφ±1

> 79.3 GeV,mχ̃±1
> 94 GeV,mχ̃0

1
> 46 GeV

}
.

The SM-like neutrinos mix with the neutralinos and heavy neutrinos in a seesaw ma-

trix. We are able to reproduce the correct neutrino mass scale but neglected the

question of precise neutrino mass pattern since any desired neutrino mass pattern

will not be difficult to achieve by adjusting the small Yukawa couplings. Since we

have already noted that the smallness of the leptonic Yukawa couplings make their

role in the current SFOPT analysis insignificant, this does not present a significant

loss of generality.

Because the squark, charged slepton, and left-handed sneutrino masses are sup-

ported by their TeV-scale SUSY-breaking mass parameters, they are insensitive to
6 Recall that in DR scheme, decoupling is accomplished “by hand” through computing threshold

corrections after integrating out fields.
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parameters in the Higgs sector and are not affected by the phenomenological lower

bounds. We compute the mass spectrum of Higges and singlet sneutrinos at one-loop

order using the effective potential. Since we choose the VEVs for these fields to be real

and there is no explicit CP-violation, the CP-even (φi) and CP-odd (ai) components

do not mix. The mass matrices are given by the curvature of the one-loop effective

potential evaluated at the zero-temperature vacuum 7

(
M2

φ

)
ij

=
∂2V 0

eff

∂(Rϕi)∂(Rϕj)
∣∣∣∣
VEV

(
M2

a

)
ij

=
∂2V 0

eff

∂(Iϕi)∂(Iϕj)
∣∣∣∣
VEV

(4.47)

where ϕi ∈
{
H0

1 , H
0
2 , ν̃

c
j

}
. We can separately impose the mass bounds mφ1 >

92.8 GeV and ma1 > 93.4 GeV.

At each point in parameter space that satisfies the phenomenological mass bounds,

we require the electroweak-breaking vacuum with v(0) = 174 GeV to be the global

minimum of the one-loop effective potential. This condition imposes particularly

strong constraints on the parameter space. To understand these constraints and

the nature of our multi-step phase transitions, we must discuss the structure of the

{H0
1 , H

0
2 , ν̃

c
i } field space and, in particular, determine the locations of the vacua that

could potentially have lower energy than the EWSB vacuum. Recall that in the

subspace with H0
1 = H0

2 = 0 there is a Z3 ⊗ Z3 ⊗ Z3 symmetry at tree level given by

Eq. (4.5). To locate the extrema in this field space we solve the three cubic equations

∂V0

∂ν̃ci

∣∣∣∣
H0

1=H0
2=0

= 0 i ∈ {1, 2, 3} (4.48)

for ν̃ci . The solutions of Eq. (4.48) which turn out to be minima (for our choice of the

7Since the effective potential is defined as a sum over 1PI diagrams with zero external momentum,
this definition of mass differs from the pole in the propagator by the difference of the scalar self-
energy evaluated at p = mpole and p = 0.
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sign of aκ) are given by

ν̃ci = ρie
ini

2π
3 ni ∈ {0, 1, 2}

ρi = 0 or
1

4κ2

(
−aκ +

√
a2
κ − 8m2

ν̃cκ
2

)
≈ vν̃c (4.49)

We will focus on the solutions with ρ1 = ρ2 = ρ3 ≈ vν̃c because these minima are in

general deeper than those with ρi = 0. Then, there are 33 = 27 local minima in the

H0
1 = H0

2 = 0 field space, that we will refer to by ~xn1n2n3 where the subscript indicates

the phases of the three singlets. The (Z3)3⊗S3⊗CP symmetry ensures the degeneracy

of the twenty-seven minima. Moving away from H0
1 = H0

2 = 0 as illustrated in Figure

4.3, the (Z3)3 symmetry is broken to Z3 by terms in V0 proportional to aλ and λ.

We will use ~yn1n2n3 to denote the point in field space near to ~xn1n2n3 but where

H0
1/v1 = H0

2/v2 = 1. For example, in this notation, ~y000 corresponds to the EWSB

vacuum in which the three singlets have real VEVs.

At one loop order, radiative corrections break the approximate (Z3)3 symmetry

(described above Eq. (4.5)) and split the degeneracy of the ~xn1n2n3 minima as repre-

sented by Figure 4.4. After including radiative corrections, the preserved symmetry

group is Z3 ⊗ S3 ⊗ CP. (Here, as an approximation, we are ignoring the fact that

the subgroup S3⊗CP is explicitly weakly broken in the Lagrangian already while Z3

must be broken by non-renormalizable operators to evade cosmological inconsistencies

caused by domain walls.) The 27-fold degeneracy is split into three classes: a 3-fold

degeneracy of the points ~xiii, a 6-fold degeneracy of the points ~xijk for i 6= j 6= k,

and a 18-fold degeneracy of the points ~xiij plus permutations for i 6= j. In order to

discuss the phase transition we will choose one representative from each class: ~x000,

~x012, and ~x001. In this notation, if we say a transition occurs from the origin to ~x012

we mean that just below the critical temperature the vacuum is localized nearby to

one of the six field points in the class that contains ~x012.
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0
=v2
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Figure 4.3: The tree level potential plotted over a slice of the ν̃ci field space with
H0

1 = H0
2 = 0 on the left and H0

1/v1 = H0
2/v2 = 1 on the right. The labeled points

are defined in the text, and a stationary point of the potential can be found at or near
each of the labeled points. The potential grows farther from the central region. In
the EW-preserving subspace, the three minima are degenerate, but the Higgs VEV
selects out ~y000 as the global minimum.

The radiative corrections will generally split the degeneracy in such a way that

some of the EW-preserving vacua will be depressed relative to the EWSB vacuum

and may cause the latter to become metastable. This is both good and bad for the

parameter space scan and phase transition analysis. It is bad because many points

will be excluded because the EWSB vacuum is only metastable. On the other hand,

it is good because with appropriate tuning, we can obtain an EW-preserving vacuum

that is nearly degenerate with, but slightly higher than, the EWSB vacuum. Along

the trajectory connecting these vacua, we can make Eeff/ (λeffφ(0)) arbitrarily close

to one half and obtain SFOPT. In Appendix 4.C we include analytic bounds which

must be satisfied to prevent the EWSB vacuum from becoming metastable.

At each point in parameter space which satisfies the mass and vacuum bounds

described above, we calculate the critical temperature Tc and order parameter v(Tc)

of the electroweak phase transition. The phase transition is calculated using the
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Figure 4.4: Same as Figure 4.3 but the contours represent values of the one loop
effective potential at zero temeprature. The degeneracy is broken even in the EW-
preserving subspace and induces V 0

1 (~x012) < V 0
1 (~x001) < V 0

1 (~x000) .

following procedure: increase the temperature from zero in increments, at each

temperature minimize the thermal effective potential to find the EWSB vacuum

~vEWSB(T ) =
{
v1(T ), v2(T ), vν̃ci (T )

}
, also find whatever metastable vacua ~vMS,i are

near to ~xn1n2n3 and ~yn1n2n3 , as the temperature increases the location and depth

of these stationary points will change, converge on the critical temperature Tc at

which the EWSB vacuum becomes degenerate with one of the EW-preserving min-

ima V Tc
eff (~vEWSB(Tc)) = V Tc

eff (~vMS,i?(Tc)), compute v (Tc) =
√
v2

1(Tc) + v2
2(Tc) as the

Higgs VEV in the broken phase. Using this procedure, we obtain Tc and v (Tc) for

the lowest temperature phase transition. Generally in this region of parameter space,

multiple phase transition steps are required to bring the field configuration from the

high-temperature symmetric phase to the zero-temperature broken phase. We must

investigate separately earlier steps.

The results of the 2000 point parameter space scan are summarized in Figure 4.5

where regions IIIa and IIIb are the only likely viable regions for SFOPT EWBG.

We will describe the different regions here and give an analytic derivation of the
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boundaries and their parametric dependence in Appendix 4.C. The points in region

I are excluded because the EWSB vacuum, where v(0) = 174 GeV, contains a tachy-

onic direction. The points in region II are excluded because the EWSB vacuum is

metastable. For regions IIa,b,c, the actual vacuum can be found at the following

points: the origin of field space in region IIa, nearby to x012 in region IIb, and nearby

to y012 in region IIc. That is, in regions IIa and IIb, the electroweak phase transition

does not occur. Region IIc does not work for EWBG as well as we will see below.

In region III there are no tachyons, no false minima, and all phenomenological mass

bounds are satisfied, but as we will see only IIIa and IIIb are likely to give acceptable

phase transitions for EWBG.

The phase transition at each point can be classified into one of four types based

on the path that the vacuum follows through the {H0
1 , H

0
2 , ν̃

c
i } field space. In the

largest region IIIa, the PT makes two steps: from the origin to a
{

EW, /Z3, /S3, /CP
}

phase and then to the
{
/EW, /Z3,S3,CP

}
phase. In region IIIb the EWPT occurs in

one step directly from the origin to the EW-broken phase. In region IIIc, the EW

symmetry is broken by a second order phase transition in which only H0
2 gets a VEV;

then, a first order phase transition occurs giving the singlets VEVs. Finally in region

IIId the phase transitions occur in three or four steps and there are multiple EWSB

phases, whose details for a representative point are discussed below. However, as we

will see, region IIId is unlikely to give an acceptable of EWBG scenario.

To understand how the µνSSM phase transition differs from the NMSSM scenario,

we have taken one representative parameter point from each sector of region III and

followed the full phase transition from the origin ~xO to the zero temperature EWSB

vacuum ~y000. In the tables, the minima above and below an arrow are degenerate

at the temperature indicated. A 0+ indicates that a second order phase transition

occurs along the specified field direction.
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Figure 4.5: A slice of the µνSSM parameter space. Region I suffers from tachyons
in the EWSB vacuum. In region II the EWSB vacuum is metastable and we exclude
these points. In region III we calculate the electroweak phase transition and find that
the path through field space can be classified into one of four types, shown on the
right.

IIIa. Two Step Transition via EW-preserving Phase: ~xO
1PT−−→ ~x012

1PT−−→ ~y000

Representative point: {mch, σ} = {108.8 GeV, 9.12}.

At T = 75.1 GeV, a first order phase transition gives the singlets VEVs and

breaks Z3,S3, and CP. The EW symmetry is broken by a strongly first order

phase transition at 54.6 GeV which also restores S3 and CP. Baryon number may

be generated at the strongly first order EW-breaking PT because spahlerons

are suppressed by
√

2v(Tc)/Tc = 4.46 inside the bubble.
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T {H0
1 , H

0
2 , ν̃

c
i } (GeV)

√
2v(T )

T
Symmetries

�Mw {0, 0, 0, 0, 0} 0 {EW,Z3,S3,CP}
75.1 GeV−−−−−→ {

0, 0, 191.7, 191.7ei2π/3, 191.7ei4π/3
}

0
{

EW, /Z3, /S3, /CP
}{

0, 0, 192.6, 192.6ei2π/3, 192.6ei4π/3
}

0
{

EW, /Z3, /S3, /CP
}

54.6 GeV−−−−−→ {61.7, 160.7, 201.0, 201.0, 201.0} 4.46
{
/EW, /Z3,S3,CP

}
0 GeV {62.5, 162.5, 201.5, 201.5, 201.5} N/A

{
/EW, /Z3,S3,CP

}
Table 4.1: Phase transition path for the representative point in region IIIa.

IIIb. One Step: ~xO
1PT−−→ ~y000

Representative point: {mch, σ} = {102.5 GeV, 7.22}.

T {H0
1 , H

0
2 , ν̃

c
i }

√
2v(T )

T
Symmetries

�Mw {0, 0, 0, 0, 0} 0 {EW,Z3,S3,CP}
69.6 GeV−−−−−→ {60.3, 157.7, 188.3, 188.3, 188.3} 3.43

{
/EW, /Z3,S3,CP

}
0 GeV {62.5, 162.5, 189.8, 189.8, 189.8} N/A

{
/EW, /Z3,S3,CP

}
Table 4.2: Phase transition path for the representative point in region IIIb.

At T = 69.6 GeV, the Higgs and singlets obtain VEVs simultaneously break-

ing the EW symmetry and Z3. This one-step phase transition resembles the

ones seen in certain parametric regions of the NMSSM and other Higgs-singlet

extensions. A baryon number may be generated since
√

2v(Tc)/Tc = 3.43 in the

broken phase will suppress washout. For the parameters in region IIIb, we have

plotted in Figure 4.6 the order parameter and critical temperature as functions

of Eeff/ (λeffφ(0)) which we calculate using the tree level potential along the

trajectory that joins ~xO and ~y000. The order parameter grows and the critical

temperature decreases as Eeff/ (λeffφ(0)) approaches 1/2 from below. The data

points do not extend all the way to 1/2 because the radiative corrections lift

the potential in such a way that parameter sets with Eeff/ (λeffφ(0)) ≈ 1/2 at

tree level have a metastable EWSB vacuum at one loop.
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IIIc. Two Step via EWSB Phase: ~xO
2PT−−→ ~yH2

1PT−−→ ~y000

Representative point: {mch, σ} = {95.1 GeV, 5.37}.

T {H0
1 , H

0
2 , ν̃

c
i }

√
2v(T )

T
Symmetries

�Mw {0, 0, 0, 0, 0} 0 {EW,Z3,S3,CP}
116.4 GeV−−−−−−→ {0, 0+, 0, 0, 0} 0+

{
/EW,Z3,S3,CP

}
{0, 101, 0, 0, 0} 2.5

{
/EW, /Z3,S3,CP

}
57.6 GeV−−−−−→ {61.6, 160.6, 175.4, 175.4, 175.4} 4.25

{
/EW, /Z3,S3,CP

}
0 GeV {62.5, 162.5, 176.2, 176.2, 176.2} N/A

{
/EW, /Z3,S3,CP

}
Table 4.3: Phase transition path for the representative point in region IIIc.

At a high temperature T = 116.4 GeV the EW symmetry is broken by

a second order phase transition along the up-type Higgs direction. As the

temperature decreases, the global minimum of the effective potential moves

along the H0
2 axis until it becomes degenerate with a minimum localized near

to ~y000. A first order phase transition occurs with
√

2v(Tc)/Tc = 4.25 inside the

bubble and
√

2v(Tc)/Tc = 2.5 outside the bubble. In this scenario, there is no

baryon number generation. Because the first transition is of the second order,

there is no coexistence of phases. The second transition is first order, but the

sphaleron transition rate is suppressed both inside and outside the bubble such

that B + L is preserved on both sides.

IIId. Multi-Step: ~xO
1PT−−→ ~x012

1PT−−→ (~y001 or ~y002)
1PT−−→ ~y000

Representative point: {mch, σ} = {121.6 GeV, 4.40}.

At this parametric point, the phase transition occurs in four steps with the

EW symmetry broken in the second step by a second order phase transition.

As the temperature drops from 128 GeV to 105 GeV, the sphaleron becomes

increasingly suppressed. When the 1PT occurs at 105 GeV, the sphaleron is
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T {H0
1 , H

0
2 , ν̃

c
i }

√
2v(T )

T
Symmetries

�Mw {0, 0, 0, 0, 0} 0 {EW,Z3,S3,CP}
222.3 GeV−−−−−−→ {

0, 0, 197, 197ei2π/3, 197ei4π/3
}

0
{

EW, /Z3, /S3, /CP
}{

0, 0, 229, 229ei2π/3, 229ei4π/3
}

0
{

EW, /Z3, /S3, /CP
}

128 GeV−−−−−→ {
0+, 0+, 229, 229ei2π/3, 229ei4π/3

}
0+

{
/EW, /Z3, /S3, /CP

}{
0+, 82, 232, 232ei2π/3, 232ei4π/3

}
1.1

{
/EW, /Z3, /S3, /CP

}
105 GeV−−−−−→ {

29ei1.9π, 117ei1.9π, 229, 229, 232ei2π/3
}

1.6
{
/EW, /Z3, /S3, /CP

}{
32.0, 128.0, 230.3, 230.3, 232.7ei2π/3

}
2.10

{
/EW, /Z3, /S3, /CP

}
89.0 GeV−−−−−→ {58.4, 152.3, 224.4, 224.4, 224.4} 2.59

{
/EW, /Z3,S3,CP

}
0 GeV {62.5, 162.5, 225.1, 225.1, 225.1} N/A

{
/EW, /Z3,S3,CP

}
Table 4.4: Phase transition path for the representative point in region IIId.
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Figure 4.6: The order parameter (squares) and critical temperature (circles) plot-
ted against Eeff/λeffφ (0) for the points in parametric region IIIb. We calculate
Eeff/λeffφ (0) using the tree level potential along the trajectory that connects the
origin ~xO and zero temperature vacuum ~y000.

inactive, such that there will be no B-number generation. Not every phase

transition in region IIId follows this particular PT path, but the PTs are gen-

erally multi-step with at least one EWSB intermediate phase and transitional

CP violation.

To give an impression of the particle masses in this region of parameter space, we

include here the spectrum for the representative point in region IIIb where {mch, σ} =

{102.5 GeV, 7.22}. The slepton, squark, gaugino, and left-handed sneutrino masses
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are all O (TeV) because we have fixed the soft masses in these sectors at a fiducial

SUSY-breaking scale. In the case of the ν̃, we solve for the soft mass using the

minimization equations to find m2
L̃
≈ −aνvν̃cv2/vν̃ , yet it is still typically TeV scale

because Aν = aν/Yν = −1 TeV. The remaining fermion and charged scalar spectrum

is given by

mH± = 342 GeV

mH̃± = 96 GeV

mνc = 260, 243, 243 GeV

mχ̃0
1,2

= 88.7, 94.5 GeV, mostly Higgsino

mν = 41, 41, 7.8 meV (4.50)

which are calculated at tree-level. The LSP is a Higgsino with mass 88.7 GeV. The

degeneracies present in the neutrino sector result from the S3 symmetry of our La-

grangian. By allowing the left-handed sneutrinos to have different VEVs or choosing

different values for the Yν Yukawas, we could obtain a correct neutrino hierarcy. We

include these masses here to demonstrate that the seesaw matrix produces the cor-

rect mass scale for the light neutrinos. The neutral scalar masses are calculated at

one-loop using the effective potential. Because there is significant mixing, we have

included their mass eigenvalues and field composition in Table 4.5. Once again the

degeneracies are a result of our S3 symmetry in the singlet sector. The lightest Higgs

is mostly up-type with a mass of 110 GeV at this parametric point and only varies

by 10 GeV over all of region III.
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Mass <H0
1 <H0

2 <ν̃c1 <ν̃c2 <ν̃c3
395 0.83 0.16 0.00 0.00 0.00
140 0.01 0.21 0.26 0.26 0.26
128 0.00 0.00 0.58 0.01 0.41
128 0.00 0.00 0.09 0.65 0.07
110 0.16 0.63 0.07 0.07 0.07

Mass =H0
1 =H0

2 =ν̃c1 =ν̃c2 =ν̃c3
439 0.48 0.07 0.15 0.15 0.15
369 0.00 0.00 0.02 0.39 0.59
369 0.00 0.00 0.65 0.27 0.08
314 0.39 0.06 0.18 0.18 0.18

Table 4.5: CP-even and CP-odd Higgs masses and mixings for a sample parameter
point. The masses are in GeV. The field composition is described by the squared
eigenvector associated with each eigenvalue.

4.6 Domain Walls

It is well known (140; 168–172) that domain wall formation can be cosmologically

problematic when spontaneous breaking of discrete symmetry occurs. In our scenario,

we have only one “exact” discrete symmetry Z3 at the level of explicit parameteri-

zation of the Lagrangian. Because of the undesirable cosmological consequences of

domain walls, we have implicitly assumed that this symmetry is broken by non-

renormalizable operators which are cutoff by a scale 8 larger than many TeV (such as

not to disrupt the effective potential analysis). In addition, we have approximate dis-

crete symmetries such as S3⊗CP which a priori can cause problems if the symmetry

breaking operators are overly suppressed. However, the set of electroweak symmetry

breaking vacua of interest in this paper does not break S3 ⊗ CP (i.e. our symmetry

breaking pattern can naturally select a S3⊗CP singlet VEV to be the lowest energy

vacuum as partly demonstrated in Appendix 4.D). Hence, we will neglect any tran-

sient behavior and focus on Z3 domain walls even though the analysis is not very

specific to the discrete group.9 Although a full analysis of domain wall histories is

8Because we have λ2 +κ2 < 0.5 in the parametric regime of interest, the couplings should remain
perturbative up to close to the GUT scale (141) (see e.g. (138) for explicit plots which suggest that
our parametric choice is close to the border of perturbativity up to the GUT scale). Thus we are
not severely restricted in the cutoff scale of our effective field theory.

9For example, if one wanted to analyze transient domain walls associated with S3 breaking, one
can easily work out from our Lagrangian the leading effective scalar operator breaking S3 and use
the result at the end of this section.
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beyond the scope of this paper, here we briefly estimate the effects of the suppressed

symmetry breaking operators that will alleviate the cosmological problems associated

with domain walls that may form when the discrete symmetries considered in this

paper are spontaneously broken. We will follow closely the work of Ref. (140).

In Ref. (140), it is estimated that during the approximate discrete symmetry

breaking phase transition, domain walls separating approximately degenerate minima

are formed. Then a simplified model of domain wall evolution is considered which

approximately accounts for the surface tension of the bubble, the friction coming

from bubble wall interaction with the plasma, and the pressure coming from energy

density difference between the approximately degenerate minima. This last ingredient

(pressure from energy density difference) is what will be coming from the inclusion of

suppressed symmetry breaking operators, and we will refer to this simply as “pressure

difference.” If the pressure difference dominates, one of the approximately degenerate

phases will eat away at the higher energy phase regions and eventually dominate in

a time scale controlled by the strength of the symmetry breaking operator.

Estimating the friction to be negligible, an approximate sufficient condition for

curing the possible domain wall problem from a cosmological perspective is to have

the pressure difference dominate before the equilibrium initial condition period of

big bang nucleosynthesis: i.e. before the photon temperature reaches about 10 MeV.

Explicitly, assuming order unity Lorentz factor γ for the bubble wall speed, one must

require

ε >
σ

R(t)
(4.51)

where ε is the energy density difference coming from suppressed symmetry breaking

operators, σ is the energy per unit area of the bubble wall, and R(t) is the time

dependent radius of a typical bubble. For a dimension 4 + u non-derivative operator
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consisting of scalars only, ε can be estimated as

ε ∼ cu
v4+u

Λu
(4.52)

where Λ is the cutoff scale and we have assumed all scalar VEVs to be of common

order v ≡ 174 GeV (which is appropriate for our scenario). To be able to treat u = 0,

we will set Λ = 100 TeV and find a bound on the value of cu for different values of u.

Assuming R ∼ t ∼ 1/H (where H is the Hubble expansion rate) and σ ∼ v3, we find

cu > 10−24500u (4.53)

for u ≥ 0.10 Hence, as long as the cutoff is not required to be very large (in contrast

with the assumption of Ref. (140)) or the accidental symmetry arising from the UV

completion quantum numbers do not make u too large, this bound is very easy to

satisfy for the Z3 domain wall problem. Of course, if the cutoff is taken to be high

and/or a UV completion is desired without fine tuning, model building challenges

along the lines of Refs. (173; 174) exist.

4.7 Summary of the Chapter

We have uncovered a µνSSM parameteric region giving rise to a first order phase

transition sufficiently strong to be useful for the electroweak baryogenesis scenarios

involving electroweak symmetry breaking bubbles as the source of out of equilibrium

and SU(2)L FF̃ operators as a source of baryon number violation. The paramet-

ric region corresponds to tuning the soft terms in the Lagrangian aλH1 ·H2ν̃
c
i and

−m2
ν̃c |ν̃ci |2 to achieve Eq. (4.31). The numerical values of the uncovered parametric

region is in the paragraph containing Eq. (4.46) and regions IIIa and IIIb depicted

in Fig. 4.5. As expected, the Yukawa coupling of the singlets to the leptonic sector
10This result can easily be checked to be consistent with Ref. (140) for u = 1.
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does not play a role in determining the strength of the phase transitions because of

the weakness of the coupling tied to the smallness of the neutrino masses.

The region IIIa transitions are two-step transitions in which the electroweak sym-

metry breaking is the second transition that starts from a phase in which the singlet

scalars of the µνSSM have a non-zero vacuum expectation value (e.g. starts from

a vacuum which spontaneously breaks the approximate S3 symmetry in the singlet

sector). These transitions contain a rotation in the singlet field space and do not

have an analog in the NMSSM transitions because of the different dimensionality in

the singlet complex vector space. The region IIIb transitions are the ones in which

electroweak symmetry breaking transition starts from the origin of the scalar field

space. All these transitions have useful descriptions in terms of the representations

of the approximate discrete symmetries in the system.

Our phenomenological bounds were rather minimal and placed using Ref. (14), but

in many parametric regions, the observables are sufficiently far away from the bounds

that the plausibility of the phenomenological self-consistency is strong. Follow-up

possibilities include a more complete collider related phenomenological investigation

in this parameteric regime, studies of domain wall histories due to weak global sym-

metry breaking operators, and a complete computation of CP asymmetry creation

and transport leading to baryon asymmetry.

Given that the µνSSM had to give up the popular thermal leptogenesis scenario

due to its low scale implementation of the type I seesaw, this work is of interest as

it shows that electroweak baryogenesis may be a promising avenue to create baryon

asymmetry in this class of models. Given that the µνSSM is one of the few supersym-

metric models in which all dynamical degrees of freedom responsible for the neutrino

mass may be accessible at TeV scale colliders, it is encouraging that the model has a

good chance at being consistent with the observed baryon asymmetry in the universe.
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4.A Appendix A. Field Dependent Mass Matrices

Here we include the tree level, field dependent mass matrices which are required to

compute the one loop radiative corrections. We fix the charged scalars at their vanish-

ing VEVs, let the left handed sneutrino VEV ν̃i = vν̃ be real, and treat the matrices

as functions of the complex fields {H0
1 , H

0
2 , ν̃

c
i }.

Neutralinos. Using the basis (χ0)
T

=
{
B̃, W̃3, H̃

0
1 , H̃

0
2 , ν

c
1, ν

c
2, ν

c
3, ν1, ν2, ν3

}
, the

mass term appears as L 3 −1
2

(χ0)
T
Mχ0 (χ0) + h.c. with nχ0 = −2 and

Mχ0 =

M m

mT 03×3

 (4.54)

mT =


− g1√

2
vν̃

g2√
2
vν̃ 0 Yν ν̃

c
1 YνH

0
2 0 0

− g1√
2
vν̃

g2√
2
vν̃ 0 Yν ν̃

c
2 0 YνH

0
2 0

− g1√
2
vν̃

g2√
2
vν̃ 0 Yν ν̃

c
3 0 0 YνH

0
2

 (4.55)
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andM is a symmetric, sparse array with elements

MB̃B̃ = M1 (4.56)

MB̃H̃0
1

= − g1√
2

(
H0

1

)∗ (4.57)

MB̃H̃0
2

=
g1√

2

(
H0

2

)∗ (4.58)

MW̃3W̃3
= M2 (4.59)

MW̃3H̃0
1

=
g2√

2

(
H0

1

)∗ (4.60)

MW̃3H̃0
2

= − g2√
2

(
H0

2

)∗ (4.61)

MH̃0
1 H̃

0
2

= −λ (ν̃c1 + ν̃c2 + ν̃c3) (4.62)

MH̃0
1ν
c
i

= −λH0
2 (4.63)

MH̃0
2ν
c
i

= −λH0
1 + Yνvν̃ (4.64)

Mνci ν
c
j

= 2κν̃ci δij . (4.65)

Charginos. Using the basis (Ψ+)
T

=
{
−iλ̃+, H̃+

2 , e
+
R, µ

+
R, τ

+
R

}
and (Ψ−)

T
={

−iλ̃−, H̃−1 , e−L , µ−L , τ−L
}

the mass term appears as L 3 −1
2

(Ψ+)
T
MT

χ± (Ψ−) + h.c.

with nχ± = −2 and

Mχ± =



M2 g2 (H0
2 )
∗

0 0 0

g2 (H0
1 )
∗
λ (ν̃c1 + ν̃c2 + ν̃c3) −Yevν̃ −Yµvν̃ −Yτvν̃

g2vν̃ −Yν ν̃c1 YeH
0
1 0 0

g2vν̃ −Yν ν̃c2 0 YµH
0
1 0

g2vν̃ −Yν ν̃c3 0 0 YτH
0
1


. (4.66)

Gauge Bosons. The propagators and field dependent masses in the gauge sector

have gauge dependence. We work in the Landau gauge (ξ = 0), in which the scalar

component and ghost propagators have no field dependence. The charged gauge
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bosons have field dependent mass

M2
W± =

g2
2

2

(∣∣H0
1

∣∣2 +
∣∣H0

2

∣∣2 + 3v2
ν̃

)
(4.67)

and in the basis {W3, B} the neutral gauge bosons have the mass matrix

M2
W3B

=

 g2
2

2

(
|H0

1 |2 + |H0
2 |2 + 3v2

ν̃

)
−g1g2

2

(
|H0

1 |2 + |H0
2 |2 + 3v2

ν̃

)
−g1g2

2

(
|H0

1 |2 + |H0
2 |2 + 3v2

ν̃

)
g2
1

2

(
|H0

1 |2 + |H0
2 |2 + 3v2

ν̃

)
 . (4.68)

In order to count the degrees of freedom in the gauge sector, we must distinguish

longitudinal and transverse components of the gauge boson fields, 2nW±
L

= nW±
T

= 4

and 2nW3BL = nW3BT = 2. We do this because only the longitudinal components

receive thermal mass corrections in the computation of the daisy correction Eq. (4.15),

(175). Note that v2
ν̃ is numerically negligible in these equations over all parameter

regions of interest.

Squarks. Because we assume there is no inter-generational mixing in the squark

sector, the squark mass matrix block diagonalizes. The ith generation up- and down-

type squarks have mass terms L 3 −1
2
q̃†iM

2
q̃i
q̃i in the basis q̃i =

{
q̃Li , q̃

∗
Ri

}
with nq = 12

and

(
M2

ũi

)
11

= M2
Q +

1

6

(
3g2

2

2
− g2

1

2

)(∣∣H0
1

∣∣2 − ∣∣H0
2

∣∣2 + 3v2
ν̃

)
+ Y 2

ui

∣∣H0
2

∣∣2 (4.69)

(
M2

ũi

)
12

=
(
M2

ũi

)∗
21

= au
(
H0

2

)∗ − YνYuvν̃ (ν̃c1 + ν̃c2 + ν̃c3)

− Yuiλ
(
H0

1

)
(ν̃c1 + ν̃c2 + ν̃c3) (4.70)(

M2
ũi

)
22

= m2
ũc +

g2
1

3

(∣∣H0
1

∣∣2 − ∣∣H0
2

∣∣2 + 3v2
ν̃

)
+ Y 2

ui

∣∣H0
2

∣∣2 (4.71)(
M2

d̃i

)
11

= M2
Q −

1

6

(
3g2

2

2
+
g2

1

2

)(∣∣H0
1

∣∣2 − ∣∣H0
2

∣∣2 + 3v2
ν̃

)
+ Y 2

di

∣∣H0
1

∣∣2 (4.72)(
M2

d̃i

)
12

=
(
M2

d̃i

)∗
21

= ad
(
H0

1

)− Ydiλ (H0
2

)∗
(ν̃c1 + ν̃c2 + ν̃c3)∗ (4.73)(

M2
d̃i

)
22

= m2
d̃c
− g2

1

6

(∣∣H0
1

∣∣2 − ∣∣H0
2

∣∣2 + 3v2
ν̃

)
+ Y 2

di

∣∣H0
1

∣∣2 . (4.74)
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Charged Scalars. The charged Higgs mixes with the charged sleptons. Using

the basis S+ =
{
H+

1 , H
+
2 , ẽ

+
L , ẽ

+
R, µ̃

+
L , µ̃

+
R, τ̃

+
L , τ̃

+
R

}
, the mass term is L 3 −S+M2

H±S−

with nH± = 2 and the elements of the Hermetian mass matrix are

(
M2

H±

)
H1H1

= m2
H1

+ v2
ν̃

3∑
i=1

Y 2
ei

+
1

4

(
g2

1 + g2
2

) ∣∣H0
1

∣∣2
+

1

4

(
g2

1 − g2
2

) (
3v2

ν̃ −
∣∣H0

2

∣∣2)+ λ2 |ν̃c1 + ν̃c2 + ν̃c3|2 (4.75)

(
M2

H±

)
H1H2

= aλ

3∑
i=1

ν̃ci + 3vν̃Yνλ
(
H0

2

)∗
+

(
1

2
g2

2 − 3λ2

)(
H0

1H
0
2

)∗
+ κλ

3∑
i=1

(ν̃ci )
2∗ (4.76)

(
M2

H±

)
H2H2

= m2
H2

+
1

4

(
g2

1 + g2
2

) ∣∣H0
2

∣∣2 − 1

4

(
g2

1 − g2
2

) (
3v2

ν̃ +
∣∣H0

1

∣∣2)
+ Y 2

ν

3∑
i=1

|ν̃ci |2 + λ2 |ν̃c1 + ν̃c2 + ν̃c3|2 (4.77)

(
M2

H±

)
H1

˜̀
Li

=

(
1

2
g2

2 − Y 2
ei

)
vν̃
(
H0

1

)∗ − Yνλ (ν̃ci )
∗

3∑
i=k

ν̃ck (4.78)

(
M2

H±

)
H1

˜̀
Ri

= −aevν̃ − YνYei
(
H0

2 ν̃
c
i

)∗ (4.79)(
M2

H±

)
H2

˜̀
Li

=

(
1

2
g2

2 − Y 2
ν

)
vν̃H

0
2 + λYνH

0
1H

0
2

− Yνκ (ν̃ci )
2 − aν (ν̃ci )

∗ (4.80)
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(
M2

H±

)
H2

˜̀
Ri

= −YνYeiH0
1 (ν̃ci )

∗ − λYeivν̃
3∑

k=1

(ν̃ck)
∗ (4.81)

(
M2

H±

)
˜̀
Li

˜̀
Lj

= δij

[
m2
L +

1

4

(
g2

1 − g2
2

) (∣∣H0
1

∣∣2 − ∣∣H0
2

∣∣2 + 3v2
ν̃

)
+ Y 2

ei

∣∣H0
1

∣∣2]
+

1

2
g2

2v
2
ν̃ + Y 2

ν ν̃
c
i

(
ν̃cj
)∗ (4.82)(

M2
H±

)
˜̀
Ri

˜̀
Rj

= δij

[
m2
ec −

1

2
g2

1

(∣∣H0
1

∣∣2 − ∣∣H0
2

∣∣2 + 3v2
ν̃

)
+ Y 2

ei

∣∣H0
1

∣∣2]
+ YeiYejv

2
ν̃ (4.83)

(
M2

H±

)
˜̀
Li

˜̀
Rj

= δij

[
aeiH

0
1 − λYei

(
H0

2

)∗ 3∑
k=1

(ν̃ck)
∗

]
. (4.84)

Neutral Scalars. The neutral Higgses mix with the left- and right-handed sneu-

trinos in a 16×16 matrixM2
H0
. At the EWSB vacuum which respects CP, this matrix

block diagonalizes into CP-even and CP-odd sectors. In order to study the phase

transition in which there are transitional CP-violating phases, we must retain the off-

diagonal blocks. In the basis φT = {<H0,=H0} whereH0 = {H0
1 , H

0
2 , ν̃

c
1, ν̃

c
2, ν̃

c
3, ν̃1, ν̃2, ν̃3}

the mass term is given by L 3 −1
2
φTM2

H0
φ with nH0 = 1. One can obtain the mass

matrix

(
M2

H0

)
ij

=

M2
<H0

M2
/CP

M2
/CP

M2
=H0


ij

=
∂2V̄0

∂φi∂φj
. (4.85)

by differentiating the full scalar potential

V̄0 = V0 +m2
L

∑
i

|ν̃i|2 + Y 2
ν

∣∣H0
2

∣∣2∑
i

|ν̃i|2 +

∣∣∣∣∣∑
i

ν̃iν̃
c
i

∣∣∣∣∣
2


+
∑
i

[
aνH

0
2 ν̃iν̃

c
i + Yνκ

(
H0

2 ν̃i
)∗

(ν̃ci )
2 + h.c.

]
− λYν

[∣∣H0
2

∣∣2H0
1

∑
i

ν̃∗i +H0
1

(∑
i

ν̃ci

)(∑
i

ν̃iν̃
c
i

)∗
+ h.c.

]

+

g2
1 + g2

2

8

(∣∣H0
1

∣∣2 − ∣∣H0
2

∣∣2 +
∑
i

|ν̃i|2
)2

− g2
1 + g2

2

8

(∣∣H0
1

∣∣2 − ∣∣H0
2

∣∣2)2

 (4.86)

where the dominant contribution V0 is given by Eq. (4.9).
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4.B Appendix B. Bosonic Thermal Masses

In order to calculate the daisy resummation Eq. (4.15) we require the thermal mass

corrections Πb. For the Higgs and singlet fields we compute the thermal mass cor-

rections from the thermal effective potential using the procedure explained in this

section. For the left-handed sneutrinos we use

Πν̃i

T 2
=
g2

1

8
+

7g2
2

24
+

5Y 2
ei

24
+
Y 2
ν

4
(4.87)

which can be calculated by assuming that all species that are summed in ∆V T
1 are

light. For the remaining bosonic species, we use the thermal mass functions calculated

for the nMSSM by (94) in which the authors assumed that the Higgs, Higgsinos,

electroweak gauginos, and SM particles were light.

First, we evaluate the thermal effective potential correction Eq. (4.13) as a function

of the eigenvalues of the field dependent mass matrices listed in Appendix 4.A. Let

m̃2
ij be the jth eigenvalue of the ith mass matrix with has ni associated degrees of

freedom. By expanding the traces, Eq. (4.13) can be written as

∆V T
1 =

T 4

2π2

∑
i

|ni|


∑

j JB
(
m̃2
ij/T

2
)

i bosonic

−∑j JF
(
m̃2
ij/T

2
)

i fermionic
. (4.88)

In the high-temperature limit, m̃2
ij � T 2 the bosonic and fermionic thermal functions

can be expanded as

JB (y)
y�1−−→ π2

12
y +O

(
y3/2

)
(4.89)

JF (y)
y�1−−→ −π

2

24
y +O

(
y2
)

(4.90)

plus field independent terms. Second, we define the high-temperature thermal poten-
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tial correction by imposing a sharp cutoff at m̃2
ij = 2T 2 to obtain

∆V T,high
1 =

1

48
T 2
∑
i

|ni|



∑
j 2m̃2

ij i bosonic∑
j m̃

2
ij i fermionic

0 m̃2
ij < 2T 2

(4.91)

Third, we extract the thermal mass corrections by differentiating with respect to the

Higgs and singlet fields,

Πφi = T 2

[
∂2

∂φ2
i

∆V T,high
1

T 2

]
H0

1=H0
2=ν̃cj=0,T=100 GeV

(4.92)

where φi ∈ {H0
1 , H

0
2 , ν̃

c
k}. The derivatives are evaluated at the origin in field space

such that Πφi is accurate in the high-temperature vacuum. Because the derivative in

Eq. (4.92) has only weak field dependence, we expect this expression for Πφi to be

accurate even for our multi-step phase transitions in which the singlets have VEVs

before the EWPT. The value of T used in Eq. (4.92) only affects the location of

the cutoff in Eq. (4.91). We have chosen the temperature T = 100 GeV to be

at the appropriate scale for our phase transitions and such that Πφi does not vary

discontinuously in the region of parameter space with first order phase transitions.

Using this procedure we obtain ΠH0
1
≈ 0.11 T 2,ΠH0

2
≈ 0.40 T 2,Πν̃ci

≈ 0.20 T 2 over

the region of parameter space with phase transitions.

4.C Appendix C. Analytic Derivation of Parameter

Space Boundaries

The boundaries in Figure 4.5 can be understood analytically. In this section, we

derive expressions for each of the boundaries and discuss the parametric dependence.
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At the interface of regions I and II, the electroweak vacuum develops a tachyonic

direction at tree level and detM2
<H0

= 0. Since M2
<H0

is an 8 by 8 matrix, it would

not be useful to write out its determinant. Instead, we observe that the tachyonic

direction is directed along {H0
1/v1, H

0
2/v2, ν̃

c
i /vν̃c ≈ 1, ν̃i = 0}.

At the boundary between region IIa and III, the minima at ~x012 and ~y000 are

degenerate at one loop. Note that this degeneracy cannot occur at tree level. To see

why, write

V0 (~x012)− V0 (~y000) = ∆V a
0 + ∆V b

0 (4.93)

with ∆V a
0 = V0 (~x012)−V0 (~x000) and ∆V b

0 = V0 (~x000)−V0 (~y000). The tree level (Z3)3

symmetry ensures ∆V a
0 = 0. Additionally, the minimization equations Eq. (4.10)

require that the potential has a minimum at ~y000. Therefore, we have

∆V b
0 =

1

8

[(
g2

1 + g2
2

)
cos2 2β + 6λ2 sin2 2β

]
v4 > 0. (4.94)

At one loop order we calculate the difference in the potential as

V 0
1 (~x012)− V 0

1 (~y000) = ∆V a
1 + ∆V b

1 (4.95)

where V 0
1 is the one loop, zero temperature effective potential and ∆V a,b

1 are defined

analogously as above. We expect ∆V a
1 to be nonzero and sensitive to the radiative

corrections because the (Z3)3 symmetry is broken to Z3. The terms responsible for this

symmetry breaking are the superpotential term W 3 λĤ0
1Ĥ

0
2 ν̂

c
i and corresponding

A-term in the soft SUSY-breaking Lagrangian. We calculate

64π2∆V a
1 = 6m4

ch log
m2

ch

e3/2µ2
+ 4

[
m4
H1

log
m2
H1

e3/2µ2

+m4
H2

log
m2
H2

e3/2µ2
−
∑
±

m4
± log

m2
±

e3/2µ2

]

m2
± = m2

ch +
m2
H1

+m2
H2

2
± 1

2

√(
m2
H1
−m2

H2

)2
+ σ2m4

ch (4.96)
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For the sake of discussion, we can approximate the logarithms in the second term as

order one numbers and eliminate the soft masses using Eq. (4.10) to obtain

64π2∆V a
1 ≈ 6m4

ch log
m2

ch

e3/2µ2
− 2m4

ch

(
σ2 + 4σ csc 2β − 4

)
+ 24λ2v2m2

ch (4.97)

Since we are simply trying to estimate the parametric dependence, we can approx-

imate ∆V b
1 ≈ ∆V b

0 . By requiring that the minimum at ~x012 is not deeper than the

EWSB vacuum, we obtain the bound ∆V a
1 + ∆V b

0 ≥ 0, which is saturated at the

interface of regions IIa and III. This bound disfavors large mch and large σ because

of the −m4
chσ

2 term in ∆V a
1 .

At the boundary where regions III and IIa meet, the EWSB is degenerate with

the origin in field space at one loop. Neglecting the radiative corrections we can

approximate the splitting as V 0
1 (~xO)− V 0

1 (~y000) ≈ V0 (~xO)− V0 (~y000) ≡ ∆V c
0 with

∆V c
0 =

1

8

[(
g2

1 + g2
2

)
cos2 2β + 6λ2 sin2 2β

]
v4

+m2
chv

2

[
1− κ sin 2β

6λ
− σ sin 2β

4

]
+
m4

chκ
2

27λ4
+
aκm

3
ch

27λ3
(4.98)

To prevent the origin from becoming the global minimum we require ∆V c
0 > 0 which

favors larger mch and smaller σ.

At the boundary between regions IIc and III, the one loop potential has degenerate

minima at ~y012 and ~y000. We can compute the splitting ∆V d
0 ≡ V0 (~y012) − V0 (~y000)

by neglecting the radiative corrections to find

∆V d
0 =

1

2
m2

chv
2 (σ sin 2β − 2) . (4.99)

The condition that the EWSB minimum at ~y000 is absolutely stable requires ∆V d
0 > 0

which imposes the lower bound σ & 2 csc 2β ≈ 3 for tan β = 2.6. Figure 4.5 shows

that the IIc-III boundary also depends on mch contrary to Eq. (4.99), but this is a

result of the radiative corrections.
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4.D Appendix D. Selecting a CP Even Vacuum

In this Appendix, we show formally how a superpotential contribution ∆W that

break Z3 weakly can be constructed to make the CP conserving vacuum to have the

lowest energy perturbatively in the absence of any explicit CP violating parameters.

Consider the superpotential

W = W0 + ∆W (4.100)

where ∆W represents a irrelevant operator perturbation to renormalizable W0. We

then have

∑
i

∣∣∣∣∂W∂φi
∣∣∣∣2 =

∑
i

{∣∣∣∣∂W0

∂φi

∣∣∣∣2 + 2<
[(

∂∆W

∂φi

)(
∂W0

∂φi

)∗]}
(4.101)

= V0 +
∑
i

∆Vi (4.102)

where

V0 ≡
∑
i

∣∣∣∣∂W0

∂φi

∣∣∣∣2 (4.103)

and

∆Vi ≡ 2<
[(

∂∆W

∂φi

)(
∂W0

∂φi

)∗]
(4.104)

to leading order in ∆W which we will call O(δ). As usual, W0 and ∆W are holomor-

phic polynomials in fields. Considering φi → φ∗i as a rep of Z2 which we will call 2,

we have (
∂∆W

∂φi

)(
∂W0

∂φi

)∗
(4.105)

being a rep of

⊕
∑
u

(2u ⊗ 2̄2) ≡ R. (4.106)
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If we assume all the coefficients of W and ∆W are real, we can write

2<
[(

∂∆W

∂φi

)(
∂W0

∂φi

)∗]
= R⊕ Z2(R) (4.107)

where Z2(Z2(R)) = R. Hence, we see that ∆Vi is a singlet under Z2. Given that ∆Vi

is a polynomial in aj ≡ <φj and bj ≡ =φj and since under Z2 : {aj → aj, bj → −bj},
we must have

∆Vi =
∑
k

∑
m

cikmPk({aj})Sm({bj}) (4.108)

where Sm represents a basis of Z2 singlet polynomial functions composed of bj and

Pk is a basis of polynomial functions composed of aj. Note that here cikm = O(δ).

Hence, given that the part of the effective potential not associated with ∆W had a

minimum at ~φ = ~v(s) where s ∈ {−1, 0, 1} parameterizes the Z3 fundamental rep

elements and bj|~v(0) = 0 is the singlet element, the energy shift due to ∆W to O(δ) is

∆ρ(s) ≡
∑
i

∆Vi|~v(s) =
∑
i

∑
k

∑
m

cikmPk({vj cos

(
s2π

3

)
})Sm({vj sin

(
s2π

3

)
}),

(4.109)

Note that ∆ρ(1) = ∆ρ(−1). Hence, we only need to determine whether ∆ρ(1) −
∆ρ(0) > 0 to see if CP singlet has the lowest energy. Since cikm ∝ sgn∆W , we can

simply flip the sign of ∆ρ(1)−∆ρ(0) by flipping the sign of ∆W if the original choice

of sign gives ∆ρ(1) − ∆ρ(0) < 0. Of course, all of this is under the assumption

that the potential is not destabilized by the non-renormalizable operators such that

the smallness of the pertrubation order δ is meaningful. Stability is generic if the

nonrenormalizable terms are dominated by the perturbations in the superpotential

since the superpotential contribution is positive definite.
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Chapter 5

SFOPT Near an Enhanced Discrete

Symmetry Point

We propose a group theoretic condition which may be applied to extensions of the

Standard Model in order to locate regions of parameter space in which the electroweak

phase transition is strongly first order, such that electroweak baryogenesis may be a

viable mechanism for generating the baryon asymmetry of the universe. Specifically,

we demonstrate that the viable corners of parameter space may be identified by their

proximity to an enhanced discrete symmetry point. At this point, the global symme-

try group of the theory is extended by a discrete group under which the scalar sector

is non-trivially charged, and the discrete symmetry is spontaneously broken such that

the discrete symmetry relates degenerate electroweak preserving and breaking vacua.

This idea is used to investigate several specific models of the electroweak symme-

try breaking sector. The phase transitions identified through this method suggest

implications for other relics such as dark matter and gravitational waves.

This work was performed in collaboration with Vernon Barger and Lian-Tao

Wang. It was published in the journal Physics Letters B in March of 2012 (176).
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5.1 Introduction to the Chapter

Standard cosmology of the early universe within the context of a large class of models

embedding the Standard Model (SM) of particle physics predicts the existence of an

electroweak symmetry breaking (EWSB) phase transition (PT). Collider constraints

alone cannot determine the nature of the EWSB PT in a model independent way.

However, additional information is available in the form of cosmological relics, which

were produced in the early universe and survive as direct probes of the physics of

the era during which the temperature was electroweak scale. Relics such as the

baryon asymmetry (62), primordial gravitational waves (159; 161; 164; 167), and

(modifications to) the dark matter relic abundance (119; 177–179), may have been

generated at the electroweak scale PT(s).

Generating the baryon asymmetry through CP violations at electroweak symme-

try breaking bubbles (62), requires a strongly first order phase transition (SFOPT)

to protect the baryon number in the broken phase. In this context, a SFOPT may be

defined as a first order PT in which the (thermal) expectation value of the SM-like

Higgs v(T ) = 〈h〉 satisfies v(T )/T & 1 in the broken phase after the phase transition

completes, such that weak sphaleron processes are inactive (62; 84). It is well-known

that the SM is unable to accommodate a SFOPT while satisfying the Large Electron-

Positron (LEP) Collider bounds on the Higgs mass (90). This is one of the main

motivations for considering an extended Higgs sector. Many beyond the Standard

Model theories are able to accommodate a SFOPT, including supersymmetry, two

Higgs doublet models, and minimal scalar singlet extensions of the SM. However, if

the extra scalar fields obtain vacuum expectation values (vevs), one often finds that

new patterns of symmetry breaking become accessible. This fact makes the phase

transition more difficult to study, because quantities such as v(T )/T are nonanalytic
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functions of the parameters of the model. Consequently, many beyond the Stan-

dard Model PT analyses rely on an intensive numerical parameter scan to search for

SFOPT. Although such scans may be capable of locating SFOPTs, on their own they

do not reveal why one particular parametric limit is favored over another.

In this article, we propose a group theoretic guideline which will aid the search

for SFOPT in a large parameter space and help to identify why certain parametric

limits are favored over others. Our guideline is motivated by the following heuristic

argument. In perturbative thermal effective potential computations, the thermal mass

is of the order c T 2 where c is a thermal loop factor. Therefore, if all the renormalized

coupling constants are of order unity and all mass scales are of the electroweak scale,

we expect that the phase transition will occur at a temperature T ∼ v/
√
c such

that v(T )/T ∼ √c < 1, and the PT is typically not strongly first order. Hence, in

order to have a SFOPT, the renormalized parameters of the theory must be near

a special point in the parameter space. An ideal parametric limit which overcomes

the natural thermal loop suppression is the region where v(T )/T → ∞. To achieve

this, it would be unnatural to expect v(T ) to deviate by many orders of magnitude

from the electroweak scale, because of the constraint that v(0) defines the electroweak

scale. On the other hand, v(T )/T may be enhanced by taking the T → 0 limit.

The limit of low phase transition temperature and large v(T )/T can be achieved

naturally by employing a discrete symmetry. The phase transition begins at the crit-

ical temperature Tc, defined as the temperature above which the thermal corrections

are sufficiently large as to make the EW symmetric phase energetically favored, and

below which the EW broken phase is favored. Hence, at T = Tc the thermal effec-

tive potential possesses two degenerate minima corresponding to the EW symmetric

and broken phases (see also Appendix 5.A). One may enhance v(Tc)/Tc by taking

Tc → 0 provided that there is a mechanism guaranteeing that the theory possesses
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such degenerate vacua even in the absence of thermal corrections. One mechanism

that yields degenerate vacua is the spontaneous symmetry breaking of a discrete

group (see e.g. (180; 181)). After spontaneous symmetry breaking, one finds a set of

degenerate vacuum states which fall into a coset representation of the discrete group.

Moreover, if the discrete symmetry group does not commute with the electroweak

group, then the scenario described above may be achieved: the electroweak symme-

try is broken in one vacuum and unbroken in a second degenerate vacuum implying

Tc = 0 and v(Tc)/Tc =∞.

Of course the existence of degenerate vacua alone does not imply v(T )/T � 1,

since the EW phase transition must take place, and this is not necessarily the case in

extensions of the SM with multiple vacua. If the discrete symmetry is exact, then Tc =

0 and the phase transition does not proceed because the broken phase never becomes

energetically favored. Hence, we will consider models in which the discrete symmetry

is generally approximate, but becomes exact at a particular parametric point, referred

to as an enhanced discrete symmetry point (EDSP)1. Then the heuristic arguments

above imply that one can expect to find SFOPT in a parametric neighborhood of

an EDSP and connected to it by a continuous “small” deformation which breaks

the discrete symmetry. Precisely how “small” a deformation is required depends

upon two model-dependent conditions: the condition that the electroweak PT must

complete and upon the order unity number that sits at the right of the inequality

v(T )/T > 1. Hence the takeaway message is that one can make the analysis of and

search for SFOPT in a large parameter space more tractable with the aid of an EDSP

“lamppost" which signals the parametric neighborhood which is favorable for SFOPT.

The order of presentation is as follows. In Sec. 5.2 we motivate our group theoretic

identification of SFOPTs. In Sec. 5.3, we employ our technique to explore three
1In general, a model may possess multiple EDSPs each relating the EW broken and symmetric

vacua by a different symmetry transformation.



109

example models. We then finish with some concluding remarks in Sec. 5.4 and an

appendix which reviews some relevant basics of phase transitions used in this paper.

5.2 Why Discrete Symmetry?

Suppose that a given theory is exactly invariant under an internal discrete symmetry

group G. It is well-known that the spontaneous symmetry breaking of G down to

H ⊂ G leads to the vacua giving a nontrivial coset G/H representation (180; 181).

We will first illustrate how this connects to a SFOPT in a perturbative single real

scalar field toy model, and then proceed to give a more general discussion.

Quite often in extensions of the SM, other scalar fields along with the Higgs obtain

vevs at the electroweak phase transition. One may model such a first order phase

transition with the following toy theory in which ϕ represents the linear combination

of the SM Higgs and other scalar fields. Consider the theory of a real scalar field ϕ

with the classical potential

U(ϕ) =
1

2
M2ϕ2 − Eϕ3 +

λ

4
ϕ4 , (5.1)

and suppose that ϕ is coupled to a family of N fermions L ⊃ (mi + hiϕ)ψ̄iψi. Note

that this theory has no internal symmetries for non-special values of the parameters

{M2, E , λ, hi,mi}. When we turn on temperature, there will be a thermal bath of

ϕ and ψi particles. If the fermions are relativistic at the electroweak scale (i.e.,

m2
i � T 2), then the thermal effective potential can be written to leading order as

Veff(ϕ, T ) ≈ U(ϕ) + c T 2ϕ2 (5.2)

where c ≈ Nh2
i /12 (182). Here, in the so-called high-temperature approximation, we

have neglected the subdominant thermal corrections (such as the non-analytic term)

and the ~ radiative corrections.



110

As long as the supercooling is small (e.g., as measured by the fractional tempera-

ture change during the duration of the PT), the PT occurs at the temperature near

Tc at which the thermal effective potential Veff displays two degenerate minima (for

more details, see Sec. 5.A). Solving this constraint for Tc gives

T 2
c =

E2

λ c

(
1− λM2

2E2

)
. (5.3)

In this simple toy model and subject to the approximation Eq. (5.2), there is an

enhanced Z2 symmetry at T = Tc. Explicitly, the potential at T = Tc becomes

Veff(ϕ, Tc) =
λϕ2

4

(
ϕ− 2E

λ

)2

(5.4)

and respects the discrete symmetry

Z2 :

(
ϕ− E

λ

)
→ −

(
ϕ− E

λ

)
, (5.5)

which was not originally present in Eq. (5.1). This Z2 exchanges the degenerate vacua

at ϕ = 0 and ϕ = v(Tc) = 2E/λ across a potential barrier at ϕ = E/λ. It is to be

noted that Eq. (5.4) is independent of M , and thus this symmetry exists in this toy

model for any critical temperature Tc that can be tuned using M .2

Although there is no electroweak symmetry in this toy model, there is still a first

order phase transition, and we can investigate the parametric dependence of its order

parameter v(Tc)/Tc. Since v(Tc) = 2E/λ is independent of M2, the order parameter

can be maximized by varying M2 to minimize Tc. Even though the high-temperature

expansion breaks down when T drops below the mass of the fermion, the formal limit

Tc → 0 can be taken assuming that the fermions are massless. The formal solution

to Tc = 0 is3

α ≡ λM2/2E2 = 1 . (5.6)
2Although this is an enhanced Z2 symmetry at T = Tc, since the symmetry does not generically

exist at other temperatures, it is not the enhanced discrete symmetry point relevant for this paper.
See below for further clarification.

3 The idea of focusing on Tc ≈ 0 was recently emphasized by (118).
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The important observation is that 1−α = 0 corresponds to an EDSP in the parameter

space at which the zero-temperature scalar potential Eq. (5.1) is invariant under the

symmetry transformation Eq. (5.5). At the EDSP, 1− α = 0, the order parameter

v(Tc)

Tc
= 2

√
c

λ

1√
1− α (5.7)

formally diverges, and for 1 − α � 1, the phase transition may be made arbitrarily

strongly first order.

Hence, our group theoretic guideline leads us to identify the parametric region in

the vicinity of the EDSP 1−α = 0 as favorable for SFOPT. However, for this region

to be truly viable, it must be the case that the rate at which bubbles of the broken

phase nucleate is sufficiently large that the phase transition actually completes. This

requires the discrete symmetry to be weakly broken, such that the PT occurs at

a nonzero T .4 In the toy model, such breaking can be accomplished explicitly at

the classical level through a finite excursion from the EDSP (i.e. 1− α = ε 6= 0), or

radiatively through the Yukawa coupling. Indeed, in many extensions of the SM where

singlets are introduced, the relevant discrete symmetry transforms both the Higgs and

the singlet fields. Since the singlets lack SM gauge couplings, radiative corrections

necessarily break the discrete symmetry to a degree controlled by the strength of the

gauge interactions. If the breaking of the symmetry is so large that the potential does

not have the qualitative features of Eq. (5.1) near α = 1, then the EDSP method

loses its advantage for identifying SFOPT. If the breaking of the symmetry is so small

that bubbles will not nucleate fast enough to complete the PT, then any candidate

parameter points found with the EDSP method are inherently not viable. Since this

non-completion of the PT will be a general feature of the region of parameter space

nearby to the EDSP, we must take extra care in choosing the temperature at which

to evaluate the EW order parameter v(T )/T . Up to this point in the discussion,
4Note that the bubble nucleation rate is zero at T = Tc.
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1
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Figure 5.1: The order parameter, calculated as v(Tc)/Tc (dashed) and v(Tr)/Tr
(solid), plotted against α = λM2/2E2. The insets show U(ϕ) for particular values of
α in each of the associated colored regions.

we have evaluated v(T )/T at the degeneracy temperature Tc, which, physically, is

the temperature in the symmetric phase at the onset of supercooling. However, a

first order phase transition proceeds with the nucleation of bubbles of broken phase

which subsequently collide and reheat the plasma to a temperature Tr (see App. 5.A

for precise definition). Since the purpose of the SFOPT criterion v(T )/T & 1 is to

ensure suppression of weak sphaleron processes in the broken phase after the phase

transition, the most physically relevant temperature at which to evaluate v(T )/T is

the reheat temperature Tr.

To obtain a numerical intuition for our proposal, consider Fig. 5.1 where we have

plotted v(Tc)/Tc (dashed) and v(Tr)/Tr (solid) while varying α and fixing U ′(v) = 0
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at v = 300 GeV, U ′′(v) = (50 GeV)2, N = 1, and h = 0.3. In this figure, we also

show U(ϕ), such as to make the discrete symmetry evident at the EDSP. As expected,

v(Tc)/Tc diverges at the EDSP and is arbitrarily large for arbitrarily small discrete

symmetry breaking (1−α� 1). On the other hand, v(Tr)/Tr cannot be calculated if

the discrete symmetry is too weakly broken (1−α . 0.5), because the phase transition

does not occur. However, sufficient discrete symmetry breaking (1− α & 0.5) yields

SFOPT which become monotonically weaker as the degree of symmetry breaking

grows. We have used the same coloring in Fig. 5.1 as we do in the rest of this article

to distinguish the varous regions of parameter space: the phase transition does not

occur because the broken phase is not energetically favored (green); the PT does not

occur because the bubble nucleation rate is too low (orange); a strongly first order

PT occurs (blue); a weakly first order or second order PT occurs (gray); the EDSP

(purple dot); and the point at which the barrier disappears (red dot).

Now let us return to a more broad discussion of the connection between discrete

symmetry and strongly first order phase transition. In retrospect, we recognize that

the existence of an EDSP associated with a discrete symmetry under which the vacua

form a coset representation (along with the condition that spontaneous symmetry

breaking occurs) is sufficient to obtain v(Tc)/Tc → ∞ since Tc = 0 implies a degen-

eracy at the level of the nonthermal effective potential. Even though the toy model

calculation was accomplished using the leading high-temperature T dependence and

the classical potential, this statement regarding the EDSP is an exact statement for an

exact effective potential. In other words, as far as this exact statement is concerned,

it is not particularly important that T = Tc corresponded to an enhanced symmetry

point for general Tc as in the case of this simple one dimensional toy model (see

Eq. (5.4)), nor is it important that quantum radiative corrections from the Yukawa

couplings break the discrete symmetry given by Eq. (5.5). One final ingredient, which
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is important for electroweak baryogenesis but is not represented in the toy model is

that at least two vacua in the coset space must carry different electroweak quantum

numbers. Otherwise, the PT will not be an electroweak symmetry breaking PT.

This means that the discrete group must not commute with the electroweak group

and one element in the coset representation must be an electroweak singlet. Hence

our group theoretic guideline may be summarized as: an arbitrarily strong phase

transition (i.e., v(Tc)/Tc � 1) may be found in the parametric neighborhood of an

EDSP if 1) the condition for spontaneous (discrete) symmetry breaking is satisfied

(such that there will be degenerate vacua), 2) the discrete group does not commute

with the electroweak group, and 3) its coset representation contains an electroweak

singlet element (such that the EW symmetry is broken in one vacuum and preserved

in another).

5.3 A Few Examples

SM with Low Cutoff

As a first example, we will consider a generic extension of the SM with a low scale

cutoff, as studied by (183–185). Provided that the UV physics does not violate the

EW symmetry, then upon integrating it out one obtains a classical potential of the

form

−L ⊃ λ

(∣∣H†H∣∣− v2

2

)2

+
1

Λ2

(∣∣H†H∣∣− v2

2

)3

(5.8)
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up to terms of order H8/Λ4. Writing the Higgs doublet in terms of the fundamental

scalar Higgs h as H =
(
0, h/
√

2
)T

, and using m2
H = 2λv2, the potential becomes

U(h) =
1

8Λ2
h6 − λ

4

(
3

v4

m2
HΛ2

− 1

)
h4 +

λv2

4

(
3

v4

m2
HΛ2

− 2

)
h2 (5.9)

up to constant and higher order terms. There exists an enhanced discrete symmetry

point5 at which a Z2 symmetry is nonlinearly realized,

EDSP : mHΛ = v2 Z′2 : h→ −h
2

+

√
v2 − 3

4
h2 . (5.10)

The Z′2 symmetry exchanges the minima at h = 0 and h = v while leaving the

maximum at h = v/
√

3 invariant. We have reproduced an earlier PT analysis (183) in

order to illustrate the proximity of SFOPTs to the EDSP. Moreover, we have extended

the previous analysis by calculating the more physically relevant order parameter

v(Tr)/Tr, instead of v(Tc)/Tc. Our results are summarized in Fig. 5.2, and are in

good agreement with Fig. 2 of (183) which shows the same slice of parameter space.

We find that nearby to the EDSP (purple curve), the PT is strongly first order (blue),

and that the PT becomes weaker moving away from the EDSP. It is also worth noting

that while the barrier persists, the PT most likely does not occur, as evidenced by

the lack of blue in the region between the purple and red curves except for a small

sliver above mH = 200 GeV.

SM Plus Real Singlet – xSM

Next, we will consider models with multiple scalars in the electroweak sector. Ex-

tending the SM by a real scalar singlet s, we obtain a model known as the xSM (108),

5It may be more appropriate to use the term “enhanced discrete symmetry plane,” as the condi-
tion mHΛ = v2 actually specifies a hypersurface in the parameter space, but we will continue using
EDSP for simplicity.
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Figure 5.2: The parameter space nearby to the EDSP (purple curve). The coloring
is the same as in Fig. 5.1. The PT order parameter v(Tr)/Tr is indicated by the
overlaid contours. SFOPTs are found in the blue region and become weaker in the
gray region, farther from the EDSP.

which has the classical potential

U(h, s) =
λ0

4
h4 − µ2

2
h2 +

b4

4
s4 +

b3

3
s3 +

b2

2
s2 +

a2

4
s2h2 +

a1

4
sh2 . (5.11)

Since there is no symmetry protecting s = 0, generally both h and s will obtain vevs,

denoted v and x0 respectively, and the mass parameters may be written as

µ2 = λ0v
2 +

a2

2
x2

0 +
a1

2
x0 and b2 = −b4x

2
0 − b3x0 − a2

2
v2 − a1

4

v2

x0

. (5.12)

Provided that x0 6= 0, the cubic terms s3 and sh2 help to generate a barrier separating

the symmetric and broken vacua and make the PT strongly first order. A number

of PT analyses (106; 109; 111; 118) have revealed that the xSM can accommodate a

strongly first order electroweak PT. They also find that this model displays multiple

patterns of symmetry breaking such that, either h and s can obtain vevs at the same

temperature, or s can receive a vev prior to electroweak symmetry breaking. If we

were to search for SFOPT by randomly choosing order one parameters, there would

be no way of anticipating what pattern of symmetry breaking would be realized, or if
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the EW symmetry would be spontaneously broken at all. Moreover, since Eq. (5.11)

has six free parameters, such a random search could become quite time consuming.

The discrete symmetry technique greatly simplifies the SFOPT search. We are

able to specify a desired pattern of symmetry breaking to investigate, identify the cor-

responding discrete symmetry, compute the associated EDSP, and begin searching by

perturbing from the EDSP. Here, we will focus on a particular pattern of symmetry

breaking in which both s and h obtain vevs simultaneously, and we will compare our

calculation against the “high-T trivial singlet vev” case of (111). The appropriate

discrete symmetry is a Z2 relating the vacua at {h, s} = {0, 0} and {v, x0}. We can

identify the associated EDSP by first reducing Eq. (5.11) to Eq. (5.1) and then impos-

ing α = 1. This is accomplished by focusing on the one-dimensional linear trajectory

{h, s} = {v, x0} × ϕ/
√
v2 + x2

0 parametrized by ϕ, which interpolates between the

EW-symmetric and EW-broken vacua. Along this trajectory, the potential can be

written in the form of Eq. (5.1) with

λ =
λ0v

4 + b4x
4
0 + a2v

2x2
0

(v2 + x2
0)2

E = −x0(3a1v
2 + 4b3x

2
0)

12(v2 + x2
0)3/2

M2 =
√
v2 + x2

0

(
3E − λ

√
v2 + x2

0

)
α =

λM2

2E2
. (5.13)

Then, upon resolving the condition α = 1 we find the enhanced discrete symmetry

point,

EDSP : 0 = 12a2v
2x2

0 + 3a1v
2x0 + 4b3x

3
0 + 12b4x

4
0 + 6λ0v

4

Z2 :

(
ϕ− E

λ

)
→ −

(
ϕ− E

λ

)
. (5.14)

In general, the PT will not occur along the trajectory parametrized by ϕ, but never-

theless this linear interpolation is useful for identifying the EDSP.

Once again, we have numerically investigated the strength of first order PTs in the

vicinity of the EDSP. We have chosen a parameter set which allows us to reproduce
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Figure 5.3: A slice of the xSM parameter space showing the proximity of SFOPT
(blue region) to the enhanced symmetry axis (purple curve).

Fig. 4 (left panel) of (111) by fixing a1 = −933 GeV, a2 = 0.69, b3 = 356 GeV, b4 =

0.53 and scanning λ0 ∈ [0, 1] and log10 x0 ∈ [−1, 3]. Our results are shown in Fig. 5.3.

A few observations may be made. First, as anticipated, the first order PTs are

strongest close to the EDSP (purple) curve and become weaker farther away. Sec-

ond, there is a large region (green) in which the EW remains unbroken. Below the

EDSP (purple) curve, the origin remains the global minimum of the effective poten-

tial, whereas at large values of x0 & 102.1, the global minimum sits at s < 0. Third,

in comparing with (111), one must bear in mind that we have fixed the remaining

parameters, whereas those authors have scanned the full parameter space and pro-

jected onto these coordinates. As such, the region where we find SFOPT is much

smaller than what is suggested by Fig. 4 of (111). However, this just goes to show

that it is typically difficult to find SFOPT in a large parameter space without either
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a large parameter scan or some guiding principle.

SM Plus Real Z2-Charged Singlet – Z2xSM

As a final example, we turn out attention to the Z2xSM, which extends the SM by a

real scalar singlet s such that the scalar potential becomes (117; 118)

U(h, s) =
λ

4
h4 − µ2

2
h2 +

b4

4
s4 +

b2

2
s2 +

a2

4
s2h2 . (5.15)

The singlet is charged under a Z2, which restricts the allowed operators, but extends

the possible patterns of symmetry breaking, because now 〈s〉 = 0 is radiatively stable.

We will focus on a particular parameter region in which there is transitional Z2

symmetry breaking: at temperature T > Ta both Z2 and the EW symmetry are

restored, at T = Ta the singlet obtains a vev breaking Z2, and at T = Tb < Ta the

Higgs field obtains a vev and the singlet’s vev returns to zero, thereby breaking the

EW symmetry and restoring the Z2 (i.e., EW×Z2 → EW×��Z2 →���EW×Z2). In the

context of this pattern of symmetry breaking, the enhanced discrete symmetry point

admits an S2 symmetry,

EDSP : b4 = λ and b2 = −µ2 S2 : h↔ s (5.16)

where we will also take a2 > 2λ to ensure that the discrete symmetry interchanges

vacua. Note that this S2 symmetry is more restrictive than the Z2 symmetries we

considered in the previous examples. To illuminate the role of the EDSP in locating

SFOPT, we will reparametrize b4 = λ+∆b4 and b2 = −µ2 +∆b2 to write the potential

as

U(h, s) =

[
λ

4

(
h4 + s4

)− λv2

2

(
h2 + s2

)
+
a2

4
h2s2

]
+

[
∆b4

4
s4 +

∆b2

2
s2

]
(5.17)
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where we have also used µ2 = λv2. In this parameterization, we expect to find SFOPT

nearby to the EDSP at ∆b4 = ∆b2 = 0.
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Figure 5.4: Three slices of the Z2xSM parameter space for fixed λ ≈ 0.12. The origin
∆b2 = ∆b4 = 0 is an EDSP at which the theory has an S2 discrete symmetry.

We present the results of our numerical analysis in Fig. 5.4, where we have fixed

λ ≈ 0.12 to give a Higgs mass6 of mh =
√

2λv2 = 120 GeV. As in the previous

examples, the phase transition strength decreases monotonically with distance from

the enhanced symmetry axis. Significantly far from the EDSP, the phase transition

proceeds with a different pattern of symmetry breaking. In the brown region, the

EW symmetry breaks without transitional Z2 violation (EW × Z2 →���EW × Z2), in

the yellow region the Z2 remains broken in the low temperature vacuum (EW×Z2 →
EW×��Z2 →���EW×��Z2), and in the purple region there exists an intermediate phase in

6Since the axes of Fig. 5.4 depend only on the ratios ∆b4/λ and ∆b2/λv2, a change in the Higgs
mass (via λ) could be absorbed by ∆b4 and ∆b2, such that the qualitative features of Fig. 5.4 would
remain unchanged.
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which both Z2 and the electroweak symmetry are broken (EW × Z2 → EW ×��Z2 →
���EW ×��Z2 →���EW × Z2).

The region of parameter space nearby to the EDSP displays an interesting phe-

nomenology. Since the singlet mass is given by

ms = mh

[
a2/λ

4
− 1−∆b2/λv

2

2

]1/2

(5.18)

one typically finds ms . mh nearby to the enhanced symmetry point. The unbroken

Z2 symmetry ensures that the singlet is stable, and thus it is a dark matter candidate

which annihilates to Higgses with a cross section proportional to a2
2. A number

of analyses (108; 186–193) have considered this scenario and found that a2 and the

singlet mass ms can be strongly constrained by assuming that the s particle composes

all of the dark matter. Collider experiments, such as the LHC, may also be able

to constrain the Higgs-singlet coupling. For ∆b2/λv
2 < (3 − a2/λ)/2, the singlet

mass is less than half of the Higgs mass and the invisible decay channel h → ss

becomes kinematically accessible. Then, a measurement of the invisible decay width

may constrain the Higgs-singlet coupling a2 (185; 193–196). On the other hand, the

singlet self-coupling b4 remains unconstrained. This is because unlike in other limits

of this model and similar models (107; 115; 194; 195), the unbroken Z2 symmetry

prevents the Higgs and singlet from mixing. Consequently, the singlet self-coupling b4

is practically impossible to constrain at colliders, and contributions to the anomalous

Higgs trilinear coupling (197) are loop suppressed. Finally, let us point out that

the transitional Z2 violation limit may not suffer from the domain wall problem that

generally accompanies models with spontaneously broken discrete symmetries. When

the Z2 breaks in the first step of the PT, domain walls will be generated. However,

once the EW symmetry is broken and the Z2 symmetry is restored, the domain walls

should be “wiped out” by the Z2-symmetric vacuum field configuration. This may
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lead to a unique gravitational wave spectrum.

5.4 Summary of the Chapter

Strongly first order phase transitions (SFOPTs) are required for electroweak baryo-

genesis and may have other interesting implications for early universe relics. In this

article we have discussed a general analytic guideline, based on symmetry principles,

which is useful in identifying a region of parameter space favorable for SFOPT: an

arbitrarily strong PT can be found for parameters near an enhanced discrete symme-

try point (EDSP) if the condition for spontaneous symmetry breaking is met and if

the discrete symmetry relates the electroweak symmetry preserving vacuum to one in

which it is broken. Group theoretically, this means that the coset representation of

the broken discrete symmetry contains an electroweak singlet and the discrete group

does not commute with the electroweak group. Because of phenomenological require-

ment of completing the PT at a nonzero temperature, the symmetry must be broken

by parametric deformations away from the EDSP. As the deformation decreases, the

strength of the PT tends to increase. We applied this guideline to study the elec-

troweak PT in three specific models. In each of the models considered, SFOPTs occur

in close proximity to the EDSP, as expected. In this way, the enhanced symmetry

point acts like a lamppost in the parameter space, signaling the location of SFOPTs.

It would be interesting to apply a similar EDSP-motivated analysis of the electroweak

phase transition to models with larger scalar sectors and greater parametric freedom,

such as singlet extensions of the Minimal Supersymmetric Standard Model.

It is not unnatural to expect SFOPT to be localized in the vicinity of an EDSP.

Strongly first order phase transitions almost always require some fine-tuning of the

parameters in the theory. From an UV completion point of view, such fine-tuning
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could be more natural if it is close to a point of the parameter space with enhanced

symmetry. It is also clear that degenerate vacua may be found even without discrete

symmetry, and thus our guideline provides a sufficient, though not necessary, condi-

tion for locating SFOPT. Nonetheless, such parametric regions form a large class of

possibilities which can most likely always occur in practice.

We also observe (as did (118; 177)) that the PT tends not to proceed at all un-

less the barrier separating the EW-broken and EW-unbroken vacua is very small

or not present at all (along the red curve), because otherwise the tunneling rate is

too strongly suppressed. Hence, the deformations away from the EDSP required for

phenomenologically viable SFOPTs are not vanishingly small and are model depen-

dent. Although such phenomenologically viable parametric regions can be arrived at

by deforming away from enhanced continuous symmetry points rather than EDSPs,

the EDSP starting point guarantees the existence of potential barriers required for

a first order PT. In that sense, our proposal here is advantageous over the enhanced

continuous symmetry point perspective.

Proximity to an EDSP implies interesting relations between parameters in the

extended Higgs sector, which is responsible for the dynamics of the electroweak sym-

metry breaking. Such relations will manifest themselves in both the spectrum of the

states in the Higgs sector and their couplings. Probing this sector is the central scien-

tific focus of the LHC. We might have already seen the discovery of the Higgs boson

on the horizon (198; 199). Discovering the additional states in the extended Higgs

sector and measuring the parameters in the Higgs potential are expected to be very

challenging tasks. At the same time, confirming the structure of the Higgs sector to

be consistent with a SFOPT would establish a striking link to the generation of the

baryonic asymmetry in the universe.
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5.A Appendix A. Details of Phase Transition

Calculation

For the phase transition analyses in this paper, we have calculated the thermal

effective potential Veff(~φ, T ) through one-loop order using the standard techniques

(61; 124; 126). We numerically minimize7 Veff with respect to ~φ to obtain the scalar

field expectation values in the symmetric and broken phases, ~vsym(T ) and ~vbrk(T ),

respectively. The latter quantity is sometimes referred to in the text as simply v(T ).

The critical temperature Tc is defined as

Veff(~vsym(Tc), Tc) = Veff(~vbrk(Tc), Tc) . (5.19)

We use Veff(~φ, T ) to calculate the action8 S3(T ) of the bubble field configuration

that mediates the vacuum transition (202–205). We determine the bubble nucleation

temperature Tn by requiring the bubble nucleation rate per Hubble volume to exceed

the Hubble expansion rate. This condition may be resolved to

S3(Tn)/Tn = 140 (5.20)

where the value on the right hand side depends only logarithmically on the model

parameters (98; 206). Finally, we calculate the temperature Tr of the plasma after

the phase transition ends and the plasma has been reheated. This is obtained by

assuming that the universe does not expand significantly during the phase transition

and then by imposing energy conservation (119)

ρsym(Tn) = ρbrk(Tr) (5.21)

7This definition of v(T ) implies that Tc, Tn, and Tr will be dependent upon the choice of gauge
(200; 201). Though this may affect the numerical accuracy of our results, we expect that the
qualitative parametric dependence of the EW order parameter nearby to an EDSP, which is our
primary interest, will remain unchanged.

8For the models of Secs. 5.3 and 5.3 which have more than one scalar field participating the
phase transition, we calculate the bounce using the approximation described in (119).
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where

ρ(T ) = Veff(v(T ), T )− T d

dT
Veff(v(T ), T ) (5.22)

is the energy density in the symmetric or broken phase, respectively.
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Chapter 6

The 125 GeV Higgs and EWPT

Model Classes

Recently, the ATLAS and CMS detectors have discovered a scalar particle which, to

a reasonable degree of statistical uncertainty, fits the profile of the Standard Model

Higgs. One obvious implication is that models which predict a significant departure

from SM phenomenology, such as large invisible decay or mixing with a hidden sector

scalar, are already ruled out. This observation threatens the viability of electroweak

baryogenesis, which favors, for example, a lighter Higgs and a Higgs coupled to or

mixed with light scalars. To assess the broad impact of these constraints, we propose

a scheme for classifying models of the electroweak phase transition, and we impose

constraints on a class-by-class basis. We find that models, such as the MSSM, which

rely on thermal loop effects are severely constrained by the measurement of a 125

GeV Higgs. Models which rely on tree-level effects from a light singlet are also

restricted by invisible decay and mixing constraints. Moreover, we find that the

parametric region favored by EWBG often coincides with an enhanced symmetry

point with a distinctive phenomenological character. We also comment on the excess
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of diphoton events observed by ATLAS and CMS. We note that although Higgs

portal models can accommodate both enhanced diphoton decay and strongly first

order phase transiition, the former favors a negative Higgs portal coupling whereas

the latter favors a negative one, and therefore these two constraints are at tension

with one another.

This work was performed in collaboration with Daniel Chung and Lian-Tao Wang.

It has not yet been published.

6.1 Introduction to the Chapter

A number of baryogenesis mechanisms are known to successfully account for the

baryon asymmetry of the universe, but many of these operate at a high scale, inac-

cessible to independent confirmation by direct laboratory tests. The primary motiva-

tion for studying electroweak baryogenesis is that the baryon asymmetry is generated

by electroweak scale physics, which is tested by experiments aimed at understand-

ing the nature of electroweak symmetry breaking. These include Higgs searches at

LEP, the Tevatron, and LHC colliders. Thus, models of the electroweak sector may

be constrained from two sides: by the requirement that electroweak baryogenesis is

viable and by the requirement that Higgs search constraints are satisfied. Indeed, the

ATLAS and CMS collaborations recently announced the discovery of a particle in the

mass range 125− 126 GeV which matches the profile of the Higgs boson (207; 208).

Even at this early stage, without precise knowledge of the alleged Higgs’ couplings to

SM fields, we have gained a partial picture of the origin of the electroweak symmetry

breaking. In this paper, we would like to understand what is the main implications

of a 125 GeV SM-like Higgs for electroweak baryogenesis.

Studies of the viability of electroweak baryogenesis and the impact of collider con-
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straints are usually performed on a model-by-model basis. However, many individual

models can accommodate a partial picture of the electroweak symmetry breaking

sector. Thus, as the LHC begins to expose the Higgs sector, revealing only glimpses

of the full picture, one would like to understand what classes of models may be

consistent with or at tension with the data. To this end, we propose a scheme for

classifying models of the electroweak sector based upon the nature of the electroweak

phase transition, and we study the implications of the recent Higgs discovery at the

LHC on a class-by-class basis. We find, the LHC’s detection of a 125 GeV Higgs

in conjunction with constraints on invisible decay and hidden sector mixing, provide

strong constraints on certain EWPT model classes.

We identify the phase transition model classes in the following way. The success

of EWBG relies upon the electroweak phase transition being of the first order (62).

In the context of the phase transition calculation, this translates into the requirement

that the thermal effective potential, Veff(h, T ), possesses a pair of minima separated

by a barrier for some range of temperatures (209). Thus, we can classify models

of the EW sector based on what physics is responsible for providing the requisite

barrier in Veff(h, T ). When calculated perturbatively, Veff(h, T ) is given by a sum of

tree-level, quantum (loop), and thermal contributions. Thus, three model classes can

be identified1 (see also Figure 6.1):

I. Thermally Driven. A barrier arises due to thermal loop effects associated with

bosonic zero modes. The effective potential acquires a term of the form −T (h2)3/2

where h is the Higgs condensate. This term competes with the h2 and h4 terms in

the scalar potential to generate a barrier.

II. Tree-Level Driven. A barrier arises due to a competition between terms in the

1We do not claim that this classification scheme is exhaustive. For instance, models which rely on
non-pertubative effects cannot be classified in this way (see, e.g., (210)). However, this classification
does cover most perturbative models in the literature known to us.
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effective potential which are already present at tree-level. This model class can be

further subdivided.

IIA. Renormalizable Operators. The barrier arises from the competition be-

tween renormalizable operators. Since the operator h3 violates gauge invariance, the

models in this class rely upon an additional scalar field (or fields) getting vevs during

the EWPT.

IIB. Non-Renormalizable Operators. If higher order operators involving the

Higgs field, such as h6, are added to the scalar potential, a barrier can arises as a result

of their competition with the renormalizable terms.

III. Loop Driven. Large loop corrections may generate the term h4 lnh2, which can

compete with the h4 term to generate a barrier.

In addition to a barrier in Veff , successful EWBG require the EW sphaleron process

to be out of equilibrium in the broken phase to ensure that the baryon asymmetry is

not washed out. This condition may be expressed as a bound on the EWPT order

parameter (88)

v(Tc)

Tc
& 1 (6.1)

where 〈H〉T =
(
0 , v(T )/

√
2
)T

is the expectation value (EV) of the Higgs at temper-

ature T and Tc is the temperature at which the phase transition takes place. We say

that phase transitions which satisfy Eq. (6.1) are “strongly” first order.

Thus, we will study the EWPT in the context of each model class by writing down

an approximate expression for Veff – which captures the physics relevant to the PT

(i.e., the source of the barrier), but otherwise doesn’t explicitly depend on the under-

lying model – and then investigating what parametric limit will yield v(Tc)/Tc � 1.

We can then ask what underlying physics would give rise to such an “optimal limit,”

what does the associated phenomenology look like, and what is the impact of collider
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Figure 6.1: The four methods of obtaining a strongly first order phase transition
by inducing a barrier in the thermal effective potential, which are discussed in this
paper.

constraints. One of the central points of our paper is to note that the optimal limits

frequently correspond to enhanced symmetry points in the theory space. This makes

the optimal limits straightforward to identify, and moreover associates them with a

distinctive phenomenology which is constrained by recent LHC data.

6.2 Collider Data and Interpretation

With certainty, the Tevatron signal and ATLAS/CMS discovery confirm the existence

of a scalar boson with an approximate mass of 125 GeV (207; 208) The available

statistics suggest that the decays of this boson are consistent with the SM predictions

in the channel bb̄ (50; 51) as well as ZZ → 4` and WW → `ν`ν (207; 208). In

the diphoton decay channel, both ATLAS and CMS observe approximately twice as
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many events as the SM prediction (211) The discovery of a Higgs-like boson strongly

constrains or rules out models which predict appreciable (order one) enhancement or

reduction of Higgs production and decay channels with respect to the SM predictions.

Since models of the EW sector with strongly first order EW phase transitions tend

to rely on a large coupling between the Higgs and light scalar fields, it is important

to review the relevant constraints here.

Spectrum: It is well known that in models such as the SM and the MSSM, even

the LEP Higgs mass bound imposes strong constraints on the viability of EWBG.

Of course, these constraints have already ruled out EWBG in the SM (89). The

measurement of a Higgs mass of 125 GeV further severely restricts the allowed MSSM

parameter space and threatens to rule out EWBG in that model as well (91).

Invisible Decay: If the Higgs had a large branching fraction to invisibles,

BRinv = BR(h → inv), this would suppress the branching fraction in all visible

channels, and it would have been more difficult to find the Higgs at the LHC2 (113).

Conversely, the discovery of a SM-like Higgs at the LHC is at tension with a large

BRinv. A number of analyses have investigated this possibility by assuming that the

production cross section is the same as for a 125 GeV SM Higgs, but allowing for

BRinv to vary in fitting the data. They obtain upper bounds on the branching fraction

to invisibles in the range BRinv < 0.30 − 0.75 at 95% CL (211; 213–217). Although

this may not seem overly restrictive, we will see that in the phase transition model

classes which allow invisible decay, this is naturally the dominant decay channel. Fur-

thermore, the LHC expects to resolve the issue of invisible decay with increased data.

It is estimated that with at 20 fb−1 integrated luminosity, the LHC should detect

or exclude invisible decay for BRinv > 0.4 at 95% CL (218), and at 30 fb−1, ATLAS
2Assuming that the new physics does not enhance the Higgs production cross section, i.e., we

assume σ(pp → h) = σSM(pp → h). However, even in the MSSM where new physics both allows
invisible decay and enhances the Higgs production cross section, one finds that invisible decay is at
tension with the data (212).
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should detect or exclude invisible decay for BRinv > 0.24 at 5σ (113).

Mixing with Hidden Sector: Just as with the case of invisible decay, the

ATLAS / CMS data strongly constraints the scenario in which the Higgs is allowed

to mix with a hidden sector scalar field or fields, which are singlets under the SM

gauge group. For the sake of discussion, we will suppose that only one singlet scalar

field is mixing with the SM Higgs. The impact of this mixing on the phenomenology

depends on the relative mass scales, of the Higgs-like scalar at mH ≈ 125 GeV and

the singlet-like scalar with mass mhid. Let θ be the angle between the Higgs-like mass

eigenstate and the Higgs gauge eigenstate. The relevant constraints are:

1. Light Higgs search at LEP. The existence of a light singlet-like resonance (i.e.,

mhid � mH = 125 GeV) is constrained by Higgs searches at LEP. In order for

the singlet-like particle to have evaded detection, its coupling to the SM must be

suppressed. This places an upper bound on θ, which which becomes more stringent

as mhid is deceased below the LEP Higgs search bound of 114.4 GeV. For instance,

for mhid = 20 GeV one needs cos2 θ > 0.99 at 95% CL (48).

2. Heavy Higgs search at LHC. Similarly, if the singlet-like resonance is heavier

(i.e., mhid � mH = 125 GeV), there is an upper bound on θ coming from the

requirement that the heavy singlet-like scalar evades detection at the LHC. Again,

this is a function of the singlet-like scalar’s mass. For instance, if mhid = 200 GeV

one needs cos2 θ > 0.60 at 95% CL to avoid detection (219; 220).

3. LHC Higgs Detection. The LHC’s signal at 125 GeV places an upper bound on

θ, because if there were more mixing the diphoton channel would have been suppressed

and there would not have been a detection. Assuming that the Higgs-like resonance

is lighter (i.e., mH = 125 GeV� mhid), then the consequence of mixing is a universal

suppression of all Higgs production processes by a factor of cos2 θ. Thus, large mixing
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is at tension with the LHC’s Higgs signal, and one obtains a bound cos2 θ > 0.77 at

90% CL (221). (See also (213; 219; 222; 223)).

Taken together, these constraints imply that the large mixing scenario (i.e., cos2 θ =

0.5) is strongly disfavored, independent of the mass of the hidden sector scalar field.

6.3 Electroweak Phase Transition Model Classes

In this section, we will enumerate the phase transition model classes, identify the

parametric limits which are optimal for SFOPT by maximizing the washout criterion

Eq. (6.1), and discuss phenomenological constraints that arise in those limits. As we

discuss further below, the optimal limits for SFOPT often correspond to enhanced

symmetry points of the theory at which the symmetry group is extended to include

an additional continuous or discrete symmetry. For the sake of brevity, we will not

dwell on the details of the phase transition calculation. We refer the interested reader

to the review: (209).

Thermally (BEC) Driven

In models such as the SM and the MSSM, the barrier in the thermal effective poten-

tial arises from thermal loop effects, which emerge in the following way. The Higgs

condensate 〈H〉 =
(
0 , h/

√
2
)T

modifies the dispersion relation of particles in the

plasma causing them to acquire an effective temperature and field-dependent mass

m2
eff(h, T ) = m̃2(h) + Π(T ). Here, Π is a temperature-dependent self-energy cor-

rection (known as “daisy resummation,” see e.g., (175)) and m̃2(h) can be obtained

by replacing the zero temperature VEVv with h in the standard expression for the

field’s mass (209). Bosonic fields induce a contribution to the thermal effective poten-
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tial of the form3 Veff 3 (−T/12π)
(
m2

eff(h, T )
)3/2 in the high-temperature limit. The

non-analyticity of this term at m2
eff = 0 can be traced to the non-analyticity of the

Bose-Einstein distribution function at zero energy. Hence, we will refer to this term

as the “BEC term.”

Near the phase transition temperature Tc, we want (m2
eff(Tc))

3/2 ∼ h3 such that

competition between this term and the h2 and h4 terms will generate a barrier in Veff .

Supposing that m̃2(h) can be written as m̃2(h) = αh2 + β, the effective mass will

have the desired scaling if we tune β−Π(Tc)� αv(Tc)
2. A general phenomenological

consequence of this tuning is that the scalar bosons today will be light, since their

mass squared m̃2(v) = αv2 −Π(Tc) is given by the difference of two O (v2) numbers.

The need for this tuning is well-established in the MSSM (92), where light stops are

required. Phenomenologically, the light stops tend to enhanced Higgs production by

gluon fusion and reduce Higgs diphoton decay. The LHC has already placed strong

constraints on EWBG in the MSSM (91).

Near the temperature of the phase transition, the effective potential may be ap-

proximated as

Veff(h, T ) ≈ 1

2

(
µ2 + c T 2

)
h2 − e T

12π
(h2)3/2 +

λ

4
h4 (6.2)

A potential of this form is illustrated in Figure 6.1. The parameters µ2 = −m2
H/2

and λ = m2
H/(2v

2) are related to the Higgs mass mH and VEVv. The dimensionless

parameters c and e quantify the coupling between the Higgs condensate and the rela-

tivistic particles in the plasma. In particular, c depends on couplings between H and

light (m < T ) bosons and fermions, whereas e only depends upon couplings between

H and light bosons. The contribution from heavy fields (m > T ) are Boltzmann

3In a gauge theory, this term is not gauge-invariant (61). Consequently, this model class suffers
from an ambiguity in how to calculate the phase transition parameters reliably and accurately
(200; 224).
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Model ∆L c e

SM (98) 6m2
t+6m2

W+3m2
Z+ 3

2
m2
H

12v2

6m3
W+3m3

Z

v3

MSSM5

(92)
cSM +

6m2
t

12v2

(
1− Ã2

t

m2
Q

)
eSM +

6m3
t

v3

(
1− Ã2

t

m2
Q

)3/2

Colored
Scalar5
(225)

M2
X |X|2 +

K
6
|X|4 +

Q |H|2 |X|2
cSM + 6

24
Q
2

eSM + 6
(
Q
2

)3/2

Singlet
Scalar
(98)

M2 |S|2 +
λS |S|4 +
2ζ2 |H|2 |S|2

cSM + gS
24
ζ2 eSM + gSζ

3

Singlet
Ma-
joron
(114)

µ2
s |S|2 +
λs |S|4 +
λhs |H|2 |S|2+
1
2
yiSνiνi +

h.c.

cSM + 2
24
λhs
2

eSM + 2
(
λhs
2

)3/2

Table 6.1: Examples of Thermally (BEC) Driven SFOPT models.

suppressed, and the O(T 4exp
[−m/T ]) terms are dropped. Some examples of models

that fall into this class are shown in Table 6.1.

A familiar calculation (see, e.g., (209)), yields the EW order parameter

v(Tc)

Tc
≈ e

6πλ
. (6.3)

There are two “optimal” limits in which we can obtain v(Tc)/Tc � 1.

e�λ To reach the limit of large e, the Higgs must have a large coupling with

many light bosonic degrees of freedom. There are various phenomenological

constraints on this limit. First, since e is a sum of dimensionless coupling

constants (see, e.g., Table 6.1), it is bounded from above by the perturbative

unitarity constraint. Second, heavy bosonic fields will become Boltzmann sup-

pressed and cannot contribute to e. However, the same interactions which allow
5In these models, the light scalars that provide the BEC term are colored (e.g., stops in the

MSSM). Higher order contributions, which scale like −g2
s(N2

c − 1)T 2m2
t̃

logmt̃/T , tend to lower the
PT temperature and strengthen the PT (93).
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light bosonic fields to contribute to e also provide a mass to those fields after

EWSB. Thus, increasing the coupling constants that enter e, will eventually

cause the bosons become heavy and their contributions to e become Boltzmann

suppressed. Finally, as e is increased, interactions between the Higgs and other

bosonic fields are made stronger. Thus, there may be loop-suppressed, but

nevertheless significant, modifications to Higgs production and / or decay. For

example, if the bosons carry color, then they can significantly enhance Higgs

production by gluon fusion (225; 226). We will revisit this constraint in the

context of Higgs diphoton decay in Sec. 6.4.

λ→0 In the context of the SM, this limit is obviously forbidden in light of the

relationship λ = m2
H/2v

2 and the fact that mH is now a measured quantity.

However, in an effort to keep our model classification scheme as general as pos-

sible, we will consider the scenario in which the field h that appears in Eq. (6.2)

is not the SM Higgs condensate. Instead, it may represent a parametrization of

some non-trivial trajectory through an extended scalar field space connecting

the EW-preserving vacuum h = 0 with the EW-broken vacuum h = v. Such

situations arise in minimal singlet extensions of the SM (111). Then, the limit

λ → 0 implies the spectrum contains a light scalar. If the scalar carries SM

quantum numbers, it is already excluded by . If the scalar is a SM singlet and if

it has a large coupling to the Higgs, then this limit is at tension with constrains

on Higgs invisible decay or hidden sector mixing. Moreover, vacuum stability

considerations limit the range of the EFT.

To illustrate how these limits and constraints arise in a concrete model, we extend

the SM by a color triplet scalar field X (see (225)):

L = LSM + (∂µX)∗ (∂µX)−
[
M2

XX
∗X +

K

6
(X∗X)2 +QH†HX∗X

]
. (6.4)
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Figure 6.2: The EW order parameter v(Tc)/Tc calculated numerically (solid line) and
using the analytic approximation Eq. (6.3) (dashed line).

The effective mass of the scalar X is given by m2
X(h, T ) = M2

X + (Q/2)h2 + ΠX(T )

where ΠX(T ) = (K +Q)T 2/24. Thus, the BEC term is given by

∆Veff(h, T ) = −6
T

12π

(
M2

X +
Q

2
h2 + ΠX(T )

)3/2

, (6.5)

where the factor 6 is the number of internal degrees of freedom for the complex,

colored X field. As discussed above, we must tune M2
X ≈ −ΠX(Tc). Doing so,

Eq. (6.5) takes the form of Eq. (6.2) with e = eSM + 6(Q/2)3/2.

We would like to understand what constraints arise as we go to the SFOPT

limit e � λ. This limit is reached by taking Q � λ2/3. First, we verify that the

phase transition is strongly first order by calculating v(Tc)/Tc as a function of Q

for fixed mH = 125 GeV. The numerical calculation is performed in the standard

way (see, e.g., (209)) using the full one-loop thermal effective potential. As shown

in Figure 6.2, the EW phase transition becomes strongly first order for sufficiently

large values of Q & 1.3. Second, we note that perturbativity up to 100 TeV requires

Q < 2 at the weak scale (225). Third, as we discussed above, Boltzmann suppression



138

of heavy X bosons prevents us from obtaining SFOPT for arbitrarily large Q. We

can estimate an upper bound on Q by requiring the X bosons to be light at the

temperature of the phase transition. That is, we require mX(v(Tc), Tc) < Tc where

mX(v(Tc), Tc) ≈
√
Q/2v(Tc). This becomes the bound Q . 2(Tc/v(Tc))

2 ≈ 2, since

for a strongly first order phase transition v(Tc)/Tc & 1. This estimate is confirmed by

the numerical calculation, which reveals that for Q & 1.8, the fractional error between

the numeric and analytic expressions becomes greater than 50%. The perturbativity

and Boltzmann suppression constraints are also shown on the figure.

Tree-Level (Renormalizable Operators) Driven

As we saw in the previous section, models such as the MSSM which rely upon the BEC

term to provide a strongly first order phase transition have become very constrained

by the discovery of a 125 GeV SM-like Higgs. The available parameter space

opens up if we allow the Higgs sector to be extended by one or more scalar fields

which participate in the electroweak phase transition. The phase transition can be

made strongly first order if the new scalar fields participate in the EWPT, i.e their

expectation value changes during EWBS. The barrier in Veff thereby arises from

(renormalizable) tree-level interactions between the Higgs and the new scalars fields.

We can parametrize the additional scalar field(s) as S. The number of degrees

of freedom associated with S, its quantum numbers, and its interactions will be

model-dependent. The information that is pertinent to our generic phase transition

analysis is that there exists a one-dimensional trajectory through the configuration

space which interpolates between the EW-symmetric and EW-broken phases4. The

4We can parametrize the one-dimensional trajectory with a field ϕ, as h = h̄(ϕ, T ) and S =
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Model ∆L
xSM (111; 118) 1

2
(∂S)2 − [ b2

2
S2 + b3

3
S3 + b4

4
S4 + a1

2
H†HS2 + a2

2
H†HS2

]
Z2xSM (176) 1

2
(∂S)2 − [ b2

2
S2 + b4

4
S4 + a2

2
H†HS2

]
Model ∆W

NMSSM (96) λH1H2N − κ
3
N3

nMSSM (94) λH1H2S +
m2

12

λ
S

µνMSSM (97) −λiH1H2ν
c
i +

κijk
3
νci ν

c
jν

c
k + Y ij

ν H2Liν
c
j

Table 6.2: Examples of Classically Driven SFOPT models. For the SUSY models,
only the superpotential is specified.

effective potential along this trajectory may be approximated as

Veff(ϕ, T ) ≈ 1

2

(
m2 + c T 2

)
ϕ2 − E ϕ3 +

λ

4
ϕ4 , (6.6)

where we have only included the leading temperature dependence, since, as we will

see, the O(Tϕ3) term is not necessary for SFOPT, because the O(ϕ3) term arises from

tree-level interactions. Generally the parameters m2, E , and λ will also depend on

temperature implicitly via the one-dimensional trajectory. This makes it difficult to

connect the parameters of Eq. (6.6) to Lagrangian parameters in general. However,

we will see that in the optimal limit for SFOPT, the PT temperature approaches zero.

In this limit, the parameters of Veff are directly related to the Lagrangian parameters

along a particular trajectory. Some examples of models that fall into this class are

shown in Table 6.2.

This model class has the significant advantage that thermal loop effects are not

necessary to generate a barrier in Veff . As we discussed in Sec. 6.3, the BEC term

eT/(12π)(h2)3/2 is suppressed by a factor of 12π, and consequently a SFOPT requires

a hierarchy of coupling constants (see Eq. (6.3)). However, in the present model class,

the barrier is provided by the tree-level potential, and therefore one naturally expects

S̄(ϕ, T ). In principle, the functions h̄ and S̄ can be determined by solving for the multi-field bounce
solution.
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v(Tc) ≈ v, such that enhancements of v(Tc)/Tc will be primarily driven by a desire

to reduce Tc. The phase transition temperature is calculated from Eq. (6.6) to be

Tc ≈
√
m2

c

√
2E2

λm2
− 1 , (6.7)

and the EW order parameter is found to be

v(Tc)

Tc
≈
√

2c

λ

1√
1− λm2

2E2

cosα . (6.8)

Here, we have introduced a projection factor of cosα, since in general ϕ will not

correspond to the Higgs field, however this factor will be irrelevant to our discussion,

sincne we will focus on scenarios which reduce Tc. The optimal limits for enhancing

v(Tc)/Tc are given by:

c� λ Since c represents a sum of coupling constants controlling interactions

between the Higgs and light particle in the plasma, one might try to take the

limit c� λ by increasing the size of these couplings or by increasing the number

of degrees of freedom in the plasma. However, the Higgs self-coupling λ is also

renormalized by these same couplings. Generally, it is not obvious that the limit

used to increase c will not also increase λ and thereby prevent one from reaching

the c � λ limit. For example, we can consider the contributions to c and λ

that arise from the Yukawa interaction with the top quark. The contributions

scale with the Yukawa coupling ht and number of colors Nc like cÑch
2
t and

λ ∼ −Nch
4
t yielding c/λ ∼ −1/h2

t . In this example, increasing the value of

the Yukawa coupling will tend to decrease the ratio of c/λ. One way to get

around this result is to note that contributions to c are non-negative whereas

contributions to λ are positive for bosonic fields and negative for fermionic fields.

If the underlying model possesses a symmetry relating bosonic and fermionic

fields (such as SUSY) then it may be possible to take c large while keeping λ
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small. If the light fields do not carry any SM quantum numbers, and if they

are sufficiently light (m < mH/2) then c� λ is at tension with constraints on

Higgs invisible decay.

λm2/2E2 → 1 This is the limit in which Tc vanishes and the EW-symmetric

and EW-broken vacua are degenerate. As noted in (176), this degeneracy may

arise as the result of a discrete symmetry relating the Higgs field with the

other field(s) participating in the phase transition. We will refer to this limit

as an enhanced (discrete) symmetry point (EdSP), which is also illustrated in

Figure 6.3. As one approaches the EdSP, the EW-symmetric vacuum becomes

metastable and increasingly degenerate with EW-broken vacuum. Without

sufficient degeneracy breaking, tunneling out of the EW-symmetric vacuum

may become suppressed to the point that tunneling occurs on a time scale that

exceeds the age of the universe. That is, as one approaches the EdSP, it may

be the case that the EWPT never occurs, even if the EW-broken vacuum is

energetically favored. Otherwise, it is difficult to make any model-independent

statements about the phenomenology near the EdSP.

λ→ 0 We would like to take this limit while fixing λm2/2E2 such that Eq. (6.8)

just scales like 1/
√
λ. Moreover, if we also want to fix the VEV of the ϕ field

vϕ =
3E
2λ

(
1 +

√
1− 8

9

λm2

2E2

)
(6.9)

then we see that we must let m2 ∼ E ∼ λ→ 0. In this limit, the mass of the ϕ

field

m2
ϕ =

9E2

2λ

(
1− 8

9

λm2

2E2
+

√
1− 8

9

λm2

2E2

)
(6.10)

also scales like λ and goes to zero. Thus, there there will be a light scalar field

associated with the ϕ field direction. The light scalar runs into two phenomeno-

logical constraints. If ϕ represents a mixture of the Higgs with a hidden sector
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Figure 6.3: An illustration of the behavior of Veff as the limits λ→ 0 and λµ2/2E2 → 1
are taken. The former leads to an EcSP whereas the latter leads to an EdSP.

scalar field, then a light Higgs is excluded by searches at LEP and at tension

with the LHC Higgs discovery. On the other hand, even if there is no mixing,

provided that the light scalar is mostly a SM singlet, then this limit runs into

constraints on Higgs invisible decay imposed by the LHC Higgs discovery. We

will discuss this scenario further in an example below.

It is important to note that as we take this limit in which m2 ∼ E ∼ λ→ 0,

the effective potential develops a shift symmetry. Thus, we can identify the

λ → 0 limit with a enhanced symmetry point of the theory at which a contin-

uous symmetry emerges. We will refer to this parametric limit as a enhanced

(continuous) symmetry point (EcSP), which is also illustrated in Figure 6.3.

In order to illustrate how these limits and constraints may be realized in a con-

crete model, we consider the Z2xSM (176). This model extends the SM by a real

scalar field S which is a singlet under the SM gauge group, but which respects a Z2

discrete symmetry that takes S → −S. The most general, renormalizable Lagrangian
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consistent with the SM gauge group and Z2 is given by5

LZ2xSM = LSM +
1

2
(∂µS) (∂µS)−

[
−b2

2
S2 +

b4

4
S4 +

a2

2
H†HS2

]
, (6.11)

where LSM is the Lagrangian of the SM. We assume that S does not acquire a VEV.

Thus the Z2 is unbroken, thereby ensuring stability of S if it is lighter than 2mH and

preventing mixing with the Higgs. Although S does not have a VEV, we will allow

it to obtain a non-zero EV at finite temperature so that it may participate in the

EWPT and render it strongly first order.

With this Lagrangian, we can calculate the effective potential as a function of both

the Higgs condensate 〈H〉 =
(
0 , h/

√
2
)T

and singlet condensate 〈S〉 = s. Working

to the same level of approximation as in Eq. (6.6), we neglect the loop-suppressed

contributions and include only the leading thermal contributions to obtain6

Veff(h, s, T ) =
−µ2 + ch T

2

2
h2 +

λ

4
h4 +

−b2 + cs T
2

2
s2 +

b4

4
s4 +

a2

4
h2s2 . (6.12)

The thermal mass terms ch T 2 and cs T 2 ensure symmetry restoration at sufficiently

high temperature.

In light of the general analysis of the preceding subsections, we are motivated

to seek out enhanced symmetry points. In the following discussion, we will identify

the EcSP, justify the claim that SFOPT are found in its vicinity, determine the

phenomenology in this limit, and assess the impact of collider constraints. We will

then repeat the analysis for a neighborhood of the EdSP.

The parameters of the Z2xSM are the SM gauge (gi) and Yukawa couplings (yi),

the Higgs sector parameters (µ2 and λ), the singlet sector parameters (b2 and b4),

and the “Higgs portal” coupling (a2). The symmetry group of the Z2xSM Lagrangian

5Since the one-loop phase transition analysis does not depend upon the quantum numbers of S,
the analysis here will also apply to the more general case of a non-singlet S coupled via the “Higgs
portal” operator H†HS∗S.

6Note that we now use the convention LSM ⊃ +µ2H†H where µ2 > 0 triggers SSB.
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is GSM × Z2 where GSM is the gauge group of the SM. For a particular choice of pa-

rameters, an additional continuous symmetry arises. We find this EcSP by requiring

the parameters to satisfy

EcSP :
{
b2 = µ2 , b4 = λ , a2 = 2λ

}
and {gi = 0 , yi = 0} ,

(6.13)

where λ = m2
H/(2v

2) and µ2 = m2
H/2 are not constrained by the symmetry, but are

restricted by measurements of the Higgs mass and VEV. At the EcSP, the Lagrangian

can be written as

LZ2xSM

∣∣∣
EcSP
⊃ (∂µH)† (∂µH) +

1

2
(∂µS) (∂µS)

−
[
−µ2

(
H†H + S2/2

)
+ λ

(
H†H + S2/2

)2
]

(6.14)

up to kinetic terms for the other SM fields. This Lagrangian is invariant under the

continuous symmetry transformation

SO(2) :

√2H

S

→
 cos θ sin θ

− sin θ cos θ


√2H

S

 . (6.15)

The symmetry ensures that cs = ch = c0 and the effective potential may be written

as

Veff(h, s, T )
∣∣∣
EcSP

=
1

2

(−µ2 + c0 T
2
) (
h2 + s2

)
+
λ

4

(
h2 + s2

)2
. (6.16)

However, the restriction to vanishing gauge and Yukawa couplings is unphysical, and

once these couplings are turned on, radiative corrections to Veff will break the symme-

try Eq. (6.15). However, the symmetry breaking terms will carry a loop suppression

factor of 1/16π2 and can be neglected at this level of approximation. On the other

hand, contributions to the thermal masses are not loop-suppressed and will gener-

ically induce ch 6= cs. Therefore, in the following discussion we will neglect loop

suppressed corrections to Veff , but we will treat ch and cs as independent parameters.
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We will see that there are SFOPT in a neighborhood of Eq. (6.13), but first it

is interesting to remark that the pattern of symmetry breaking is controlled by the

symmetry that arises at this EcSP. Provided that µ2 > 0, the SO(2) will be sponta-

neously broken. The resulting Goldstone boson is associated with a flat direction in

the potential connecting |H| = v/
√

2 with S = v. Thus, we anticipate that we will

find phase transitions that occur in two steps: first S acquires an EV breaking the

Z2, and second the EV of S returns to zero as H acquires an EV breaking the EW

symmetry.

We can proceed to perturb away from the EcSP by writing the parameters as

{
b2 = µ2 (1 + εb2) , b4 = λ (1 + εb4) , a2 = 2λ (1 + εa2)

}
. (6.17)

What sort of perturbations will yield SFOPT? At the EcSP, the EW-broken and

EW-symmetric vacua are degenerate, and if ch = cs then the thermal corrections will

maintain that degeneracy. As we perturb away from the EcSP looking for SFOPT,

we will need to ensure that degeneracy breaking causes the EW-broken vacuum to

be energetically favored and also ensure that the breaking of ch 6= cs causes the EW-

symmetric vacuum (in which Z2 is broken) to become (free-)energetically favored

above some temperature. Keeping this picture in mind, we can proceed to calcu-

late the phase transition parameters. In this neighborhood of the EcSP, the phase

transition temperature and EW order parameter are given by

Tc =
mH

2
√
ch − cs

√
εb4 − 2εb2

(
1 +O(εb2 , εb4)

)
(6.18)

v(Tc)

Tc
= 2
√
ch − cs v

mH

1√
εb4 − 2εb2

(
1 +O(εb2 , εb4)

)
. (6.19)

See also Figure 6.4. As we anticipated, Tc is arbitrarily small and v(Tc)/Tc is arbi-

trarily large for arbitrarily small perturbations away from the EcSP (εb4 − 2εb2 � 1).

The particular combination of parameters εb4 − 2εb2 appears, because it controls the
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degree of degeneracy breaking between the EW-symmetric and EW-broken vacua.

We can verify this by calculating

Veff (0, vs, T )− Veff (v, 0, T )

=
[µ4

4λ
(εb4 − 2εb2)− µ2

2λ
(ch − cs)T 2

](
1 +O(εb2 ∼ εb4 ∼ T 2)

)
, (6.20)

where vs =
√
b2/b4 is the expectation value of s in the EW-symmetric vacuum and

v =
√
µ2/λ = 246 GeV is the Higgs VEV. Thus if εb4 − 2εb2 = 0, the two vacua are

degenerate at T = 0. If εb4 − 2εb2 > 0, the broken vacuum is energetically favored

and the PT occurs at the temperature Tc given by Eq. (6.18), but if εb4 − 2εb2 < 0,

the symmetric vacuum is energetically favored and the PT does not occur. From

this discussion, and particularly Eq. (6.19), we conclude that SFOPT are found in

the neighborhood of the EcSP, but additionally the EcSP demarcates a boundary

between physical models (εb4−2εb2 > 0) in which EWSB occurs and unphysical models

(εb4−2εb2 < 0) in which EWSB does not take place. The singular factor of 1/
√
ch − cs

in Eq. (6.18) can also be understood in light of Eq. (6.20). If ch = cs, then thermal

corrections lift the EW-broken and EW-symmetric phases together maintaining their

degeneracy. One needs ch > cs to ensure that Veff at the EW-broken phase (free energy

density) is lifted more greatly with increasing temperature than the EW-symmetric

phase. Conversely, if ch < cs then the EW-symmetric phase in which the Z2 is broken

never becomes (free-)energetically favored.

We can begin to investigate the phenomenology near the EcSP by calculating the

mass of the singlet scalar field. The tree-level relationship can be read off of the

Lagrangian Eq. (6.14), which gives

m2
S = −b2 +

a2

2
v2 EcSP−−−→ m2

H

2
(εa2 − εb2) . (6.21)

Since this scalar field corresponds to the Goldstone boson of the spontaneously broken

symmetry Eq. (6.15), we are not surprised to find that it is light when deviations away
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Figure 6.4: A neighborhood of the EcSP. In both panels, the dashed lines corresponds
to mS = 60, 45, 30, and 15 GeV as εb2 is increased. Left. The EW order parameter,
for which Eq. (6.19) is the leading order expression, grows as εb2 increases and εb4
decreases. Right. The branching fraction of Higgs to an invisible S-pair, calculated
from the width Eq. (6.22). The BR grows with increasing εb2 .

from the EcSP are small εa2−εb2 � 1. Since the Higgs is coupled to this light singlet,

there will generically be a large Higgs invisible decay width. The expression is given

by (113)

Γ(H → SS) =
a2

2v
2

32πmH

√
1− 4m2

S

m2
H

EcSP−−−→ m3
H

32πv2

(
1 + (εa2 + εb2) +O(ε2a2

, ε2b2)
)
. (6.22)

See also Figure 6.4. Since S only couples to the SM via the Higgs, the width for

Higgs decay into SM fields, Γ(H → SM), is only affected by its coupling to S at

the multi-loop level. Thus, we can approximate Γ(H → SM) by the SM Higgs total

width, which is ΓSM
tot ≈ 5 MeV for mH ≈ 125 GeV (227). We find that the invisible

branching ratio is

BRinv =
Γ(H → SS)

Γ(H → SM) + Γ(H → SS)
≈ 0.985 , (6.23)



148

where we also neglect kinematically suppressed 3-body (and greater) final states.

Such a large invisible decay greatly exceeds the 95% CL limits set by analyses of the

LHC and Tevatron Higgs data, which were discussed in Sec. 6.2. Thus, the tension

which we had discussed between the EcSP limit and invisible decay is illustrated in

a concrete setting.

We can attempt to evade the collider constraints on Higgs invisible decay by

suppressing the channel H → SS. This can be accomplished by either lifting the

singlet mass above the kinematic threshold mS > mH/2 or by reducing the coupling

of the Higgs to the singlet a2 → 0. Either of these approaches requires us to depart

from the EcSP limit which guarantees us SFOPT, but also brings in the dangerous

light scalar. In the following, we will discuss two ways of evading the invisible decay

constraint by deviating away from the EcSP in a particular way to maintain SFOPT.

It was discussed in the preceding subsection that SFOPT may also be found in

the neighborhood of an EdSP. We can perturb away from the EcSP such that the

continuous symmetry is broken to its discrete subgroup S2 which exchanges
√

2H ↔
S. The EdSP is given by

EdSP :
{
b2 = µ2 , b4 = λ

}
and {gi = 0 , yi = 0} . (6.24)

Now µ2, λ, and a2 are free to vary, and therefore the EdSP represents a 3-dimensional

submanifold of the full Z2xSM theory space. As before we can consider perturbations

away from the EdSP,

{
b2 = µ2 (1 + εb2) , b4 = λ (1 + εb4)

}
. (6.25)

The singlet is no longer the Goldstone boson of the spontaneously broken SO(2)

symmetry, so its mass need not be small

m2
S = −b2 +

a2

2
v2 EdSP−−−→ m2

H

4λ
(a2 − 2λ)

(
1− 2λ

a2 − 2λ
εb2

)
. (6.26)
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From this expression we can see how the variation of a2 affects the vacuum structure.

For a2 = 2λ we return to the EcSP and the singlet is the massless Goldstone boson.

For a2 < 2λ, the singlet becomes tachyonic, signaling that the true vacuum of the

theory is one in which the Z2 is spontaneously broken. This is an undesirable limit,

because without the Z2 preventing the Higgs and singlet from mixing, we run into

the collider Higgs mixing constraints, which were discussed in Sec. 6.2. For a2 > 2λ,

the vacuum preserves the Z2 and the singlet is massive. Provided that a2 > 3λ,

the singlet mass mS > mH/2 will exceed the kinematic threshold and block the

invisible decay H → SS. Using mH ≈ 125 GeV and λ = m2
H/(2v

2), this bound is

approximately a2 & 0.39. Moreover, since the expressions for the phase transition

temperature and EW order parameter, Eq. (6.18) and Eq. (6.19), were independent

of a2, we still expect to find SFOPT in this corner of parameter space near the EdSP.

Thus a departure from the EcSP along the EdSP allows for SFOPT while avoiding

Higgs invisible decay by kinematically blocking the H → SS channel.

A second approach toward avoiding Higgs invisible decay is to reduce the Higgs

portal coupling a2 and thereby suppress Γ(H → SS). In the previous discussion we

saw that if we moved away from the EcSP along the direction of the EdSP, then

taking a2 < 2λ would change the vacuum structure such that the Z2 is spontaneously

broken and allow the Higgs and singlet to mix. Thus, we must find a different path

that continuously connects the EcSP with a2 = 0 but maintains the vacuum structure.

This is accomplished with the following parameter choice,

EcSP :

{
b2 =

a2

2λ
µ2 , b4 =

( a2

2λ

)2

λ

}
. (6.27)

At the parameter point Eq. (6.27), the scalar sector Lagrangian can be written as

LZ2xSM

∣∣∣
EcSP
⊃ (∂µH)† (∂µH) +

1

2
(∂µS) (∂µS)

−
[
−µ2

(
H†H +

a2

2λ
S2/2

)
+ λ

(
H†H +

a2

2λ
S2/2

)2
]
. (6.28)
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From this expression we see that the scalar potential is invariant under a continuous

symmetry transformation which rotates and dilates the fields H and S,√2H√
a2

2λ
S

→
 cos θ sin θ

− sin θ cos θ


√2H√

a2

2λ
S

 . (6.29)

However, the scalar kinetic terms are not invariant under this transformation (unless

a2 = 2λ), and thus Eq. (6.27) is not a true enhanced symmetry point of the Z2xSM.

That is, radiative corrections will spoil the symmetry Eq. (6.29), and therefore we do

not expect the effective potential to respect this symmetry (even if we were to also

set gi = yi = 0). Nevertheless, since in this class of models, the phase transition pa-

rameters are dominantly controlled by the structure of the tree-level scalar potential,

we expect that SFOPT may still be found in the vicinity of Eq. (6.27). However, it

turns out that the loop corrections which break Eq. (6.29) and split the degeneracy

of the EW-symmetric and EW-broken vacua tend to render the EW-broken vacuum

metastable. In this case, the universe becomes trapped in the energetically favored

EW-symmetric phase and the electroweak phase transition does not occur. To avoid

this outcome, we must allow for a finite perturbation away from the EcSP parameter

point. We consider instead{
b2 =

a2

2λ
µ2 (1 + εb2) , b4 =

( a2

2λ

)2

λ (1 + εb4)

}
, (6.30)

where we will allow α to vary and keep εb2 = εb4 = −1/2.

Along the trajectory Eq. (6.30) we can take a2 → 0. The singlet remains light

m2
S = −b2 + a2v

2/2 = a2v
2εb2 and the invisible width is approximately given by

Γ(H → SS) =
a2

2v
2

32πmH

√
1− 4m2

S

m2
H

EcSP−−−→ m3
H

32πv2

( a2

2λ

)2

. (6.31)

To bring the invisible branching fraction below BRinv < 0.64 (the weakest 95% CL

limit (215)) we need a2 < 0.043. Furthermore, since the expression for the EW order
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Figure 6.5: The EW order parameter v(Tc)/Tc and invisible branching fraction BRinv

in the Z2xSM at the EcSP parameter point Eq. (6.27). As a2/2λ is decreased below
about 0.15, Higgs invisible decay becomes sufficiently suppressed to evade collider con-
straints which impose BRinv . 0.64. This threshold corresponds to a2 ≈ 0.04. At the
same time, the electroweak phase transition remains strongly first order v(Tc)/Tc > 1.

parameter Eq. (6.19) is independent of a2, we still expect to finds SFOPT in this

limit. This can be verified by calculating the EW order parameter numerically, and

the result is shown in Figure 6.5.

Tree-Level (Non-Renormalizable Operators) Driven

The second way of obtaining a SFOPT using only tree-level operators is to employ

higher order, non-renormalizable terms in the potential. If the scale of new physics

Λ is not much larger than the EW scale, then the leading correction to the scalar po-

tential, (H†H)3, may dramatically change the nature of the EWPT. In this scenario,

the effective potential may be written as

Veff(h, T ) ≈ 1

2

(
µ2 + c T 2

)
h2 +

λ

4
h4 +

1

8Λ2
h6 (6.32)
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up to terms which are O(h8/Λ4). By minimizing the potential, the parameters µ2

and λ may be exchanged for the Higgs VEVv and mass mH as

λ =
m2
H

2v2
− 3v2

2Λ2
=
m2
H

2v2

(
1− Λ2

max

Λ2

)
(6.33)

µ2 = −m
2
H

2
+

3v4

4Λ2
=
m2
H

2

(
Λ2

max

2Λ2
− 1

)
. (6.34)

In the second equality we have introduced Λmax ≡
√

3v2/mH , this meaning of which

will become clear presently. Since we are interested in the limit that will yield a

barrier in the effective potential, we will focus on the case of a low-scale cutoff such

that µ2 > 0 stabilizes the EW-symmetric vacuum, λ < 0 causes the potential to turn

over, and the O(h6) term stabilizes the EW-broken vacuum. In order to obtain λ < 0,

we must have Λ < Λmax, where the upper bound evaluates to Λmax ≈ 800 GeV for

mH ≈ 125 GeV. A potential of this form is illustrated in Figure 6.1. The electroweak

phase transition in this effective theory was studied by (183; 184; 228).

As in the Tree-Level (Renorm. Op.) Driven Model Class, the presence of the tree

level barrier allows v(Tc) ≈ v and therefore v(Tc)/Tc may be enhanced by reducing Tc.

Once again using standard techniques, we calculate the phase transition temperature

and the EW order parameter to be

Tc =

√
µ2

c

√
λ2Λ2

4µ2
− 1 (6.35)

v(Tc)

Tc
=

√
c

−λ
2√

1− 4µ2

λ2Λ2

. (6.36)

The optimal limits for enhancing v(Tc)/Tc are given by:

c� λ This limit was discussed previously in the context of the Tree-Level

(Renorm. Ops.) Driven Model Class.

4µ2/λ2Λ2 → 1 Using the relationships Eqs. (6.33) & (6.34), this combination
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of parameters can be expressed as

4µ2

λ2Λ2
=

4

3

1− 2Λ2/Λ2
max

(1− Λ2/Λ2
max)2

. (6.37)

Then, the limit is obtained when Λ → Λmin where Λmin ≡ Λmax/
√

3 = v2/mH .

For mH ≈ 125 GeV this evaluates to Λmin ≈ 480 GeV. As we approach this

limit, the phase transition temperature, given by Eq. (6.35), goes to zero. We

found a similar behavior in the Tree-Level (Renorm. Op.) Driven Model Class,

and once again we can identify this degeneracy limit with an EdSP (176).

The (H†H)3 operator is able to evade the standard phenomenological con-

straints. Since it preserves the custodial SU(2), there is no anomalous contribu-

tion to the ρ parameter, even for a low cutoff (183). However, if other dimension

six operators are not forbidden, they may be constrained by electroweak preci-

sion tests. The Higgs cubic self-coupling, given by

m2
H

v

(
1 + 2

Λ2
min

Λ2

)
, (6.38)

receives O (1) corrections in this limit. However, it is unlikely that the LHC

will be able to measure the Higgs self-coupling.

λ→ 0 We would like to take this limit λ→ 0 while fixing 4µ2/(λ2Λ2) such that

Eq. (6.36) just scales like 1/
√
λ. Using the relationship Eq. (6.37), this implies

that we must let Λ/Λmax = const.. Then, Eq. (6.33) reveals that in order to

take λ to zero we would have to take mH ∼
√
λ to zero. Obviously, this limit

is not viable. However, it is interesting to note that this limit corresponds to

an EcSP. Since both λ, µ2, and 1/Λ2 all vanish, the potential becomes flat.

This extension of the SM by an O
[
(H†H)3

]
term has been studied by (183; 184)

in the context of the electroweak phase transition and phenomenology. We have

calculated v(Tc)/Tc in the two limits discussed above. First, we allow λ to vary

while fixing 4µ2/λ2Λ2 = 0.2. The results, shown in Figure 6.6 (left panel), indicate
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Figure 6.6: Left: The EWPT order parameter Eq. (6.36) (red), Higgs massmH (blue),
and UV cutoff Λ (green) in the vicinity of the EcSP λ = 0. Right: The EWPT order
parameter with mH = 125 GeV in the vicinity of the EdSP Λ = Λmin ≈ 480 GeV.
The solid line shows the result of a calculation using the full one-loop thermal effective
potential whereas the dashed line shows the approximation Eq. (6.36).

that v(Tc)/Tc grows like 1/
√−λ as λ approaches zero. For λ ≈ −0.15 the Higgs

mass is consistent with the LHC signal at mH ≈ 125 GeV, the phase transition is

strongly first order, and the cutoff is low Λ ≈ 500 GeV. The behavior of v(Tc)/Tc

nearby to the EdSP is shown in Figure 6.6 (right panel) where we have fixed mH =

125 GeV and varied Λ. This figure illustrates that v(Tc)/Tc grows as Λ decreases

toward the EdSP where Λmin ≈ 480 GeV and Tc vanishes. For smaller values of Λ,

electroweak symmetry breaking does not occur. For large values of the cutoff, the

Higgs self-coupling λ becomes positive and the PT proceeds as in the SM without

any enhancement.

Loop Driven

In the presence of large quantum corrections, a competition between the terms h4

and h4 lnh2 can generate a barrier in the effective potential. Alternatively, we can

say that λ is positive at high scales and runs negative at the electroweak scale. In
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this model class, the effective potential may be written as

Veff(h, T ) ≈ 1

2

(
µ2 + c T 2

)
h2 +

λ

4
h4 +

κ

4
h4 ln

h2

M2
. (6.39)

Unlike in the previous model classes, the loop-suppressed quantum corrections will

play an important role here, and they are not dropped. The parameters µ2 and λ

may be exchanged for the Higgs VEVv and mass7 mH =
√
V ′′eff(v, T = 0) using

λ =
m2
H

2v2
− κ

(
ln

v2

M2
+

3

2

)
(6.40)

µ2 = −m
2
H

2
+ κ v2 . (6.41)

The dimensionless parameter κ parametrizes loop-suppressed corrections to the effec-

tive potential arising from interactions between the Higgs and the other fields. For

example, in the SM one finds κSM ≈ (6M4
W + 3M4

Z − 12M4
t )/(16π2v4) ≈ −0.018.

The loop induced term can help provide a barrier, as shown in Figure 6.1, if µ2 > 0

stabilizes h = 0, λ < 0 turns the potential over, and κ > 0 stabilzes h = v. To allow

κ > 0, the BSM physics contributions should be dominated by bosonic fields, since

fermion loops bring in an additional minus sign. If κ→ κSM ≈ 0 the SM is regained

and the PT will not be Loop Driven. A model which relies on large loop corrections

to generate an SFOPT was studied by (110).

From Eq. (6.39) we can calculate the PT temperature and EW order parameter

7Since the loop contributions are important in this model class, we must be careful to distinguish
the parameter mH from the Higgs pole mass. They differ by a correction that depends on the
renormalization conditions. Since we are primarily interested in the parametric scaling behavior
and not numerical precision, we use mH to characterize the mass scale of fluctuations about h = v
and implement LHC Higgs data by setting mH ≈ 125 GeV.
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to be 8

Tc ≈ mH

2
√
c

√
1− κv2/m2

H (6.42)

v(Tc)

Tc
≈ 3

2

v

mH

√
c√

1− κv2/m2
H

(
1 +

1

3

κv2

m2
H

)
(6.43)

A comparison of the approximations and the exact values is shown in Figure 6.7. The

optimal limits for enhancing v(Tc)/Tc are given by

κv2/m2
H → 1 In this limit, the quantum corrections are large, i.e., κ → κmax =

m2
H/v

2 ≈ 0.26 for mH = 125 GeV. Since κ contains a suppression factor of

1/16π2, obtaining κ = O (1) requires either many additional (bosonic) degrees

of freedom and/or large couplings to the Higgs. This limit is then bounded

by perturbativity constraints. Moreover, the large loops which generate κ may

also contribute to Higgs production and/or decay processes. We discuss this

scenario further in Sec. 6.4 in the context of Higgs diphoton decay. Finally, we

can once again identify this limit as an EdSP in which Tc vanishes and the EW-

broken and EW-symmetric vacua are degenerate. Above κ = κmax electroweak

symmetry breaking does not occur.

mH � v This limit is excluded in light of the Higgs discovery.

As an example of a model in the Loop Driven class, we will discuss a singlet

extension of the SM presented in (110). The SM Lagrangian is extended by

∆L =
N∑
i=1

(∂Si)
2 − ζ2H†H

N∑
i=1

S2
i (6.44)

where the N real, scalar fields Si are singlets under the SM gauge group. We assume

that ζ2 > 0 and the Si do not acquire vevs. Instead, they modify the electroweak

phase transition by radiatively generating a correction to the effective potential given

8In deriving these expressions we have assumed the that PT temperature is low and performed
an expansion in c T 2/m2

H . In the optimal limits κv2/m2
H → 1 and mH � v, the PT temperature is

low and this expansion is a good approximation.
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Figure 6.7: A comparison of the approximations Eqs. (6.42) & (6.43) (dashed lines)
with the full toy-model potential Eq. (6.39).

by

∆Veff(h, T ) =
Nζ4h4

64π2

[
ln
ζ2h2

Q2
− 3

2

]
, (6.45)

which is calculated in the MS scheme with a renormalization scale Q. This term

can be matched onto the O(h4 lnh2) term in the generic potential Eq. (6.39) to find

κ = Nζ4/16π2 and M2 = Q2ζ−2exp
[
3/2
]
. With this identification, the optimal

limit κv2/m2
H → 1 corresponds to ζ → ζmax = 2

√
πmH/(

√
Nv), which evaluates to

ζmax ≈ 2.5N−1/4 for mH = 125 GeV.

Choosing mH = 125 GeV, N = 12, and Q = mt = 172 GeV, we calculate

v(Tc)/Tc and present the results in Figure 6.8. As expected, v(Tc)/Tc grows upon

approaching the EdSP ζmax ≈ 1.36. For larger values of ζ, electroweak symmetry

breaking does not occur. Comparing the analytic approximation Eq. (6.43) with the

full one-loop numerical calculation, we find qualitative agreement. However, they

disagree at small ζ where the low Tc expansion used in deriving Eq. (6.43) breaks

down, and they disagree at large ζ . ζmax where Tc is low and the high-temperature

expansion, implicit in Eq. (6.39), begins to break down.
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Figure 6.8: The EW order parameter evaluated numerically (solid) with the approx-
imation Eq. (6.43) (dashed) in the vicinity of the EdSP ζ = ζmax ≈ 1.32.

6.4 Diphoton Excess and SFOPT in the Higgs

Portal

One of the most exciting revelations to come out of the recent LHC announcement is

the appreciable excess of events the final states with two photons. The γγ final state,

which is associated with Higgs production by gluon fusion, is observed at a rate that

exceeds the SM prediction by a factor of approximately 1.5, while the γγjj final state

is enhanced by a factor of approximately three (211) . Consequently, fits to the entire

data set favor an enhancement of the diphoton decay rate Γ(h → γγ) by a factor of

approximately 2−3 with respect to the SM prediction, as well as a suppression of the

rate of Higgs production by σ(gg → h) by a factor of approximately 0.5−0.6 (see, e.g.,

(211; 226) and references therein). Since gg → h and h→ γγ are both loop-induced

processes in the SM these channels are particularly sensitive to new physics. For

instance, the appropriate enhancement and suppression can be achieved by letting

the Higgs couple to a new charged scalar or scalars S via the Higgs portal (229–231).
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Then, graphs containing an S loop will contribute to the amplitudes for gg → h

and h → γγ, and they will interfere with the t− and W−loops that dominant the

SM contributions to those processes. Generally, a negative value of the Higgs portal

coupling is favored by the data. This choice of sign ensures that the interference in

the h→ γγ process is constructive and that it is destructive for gg → h. As we have

seen, the Higgs portal operator also provides a means of rendering the electroweak

phase transition strongly first order. It is then interesting to ask whether or not

the region of parameter space that can accommodate a SFOPT can also allow for

enhanced diphoton decay. We will see that generically, the SFOPT condition favors

a positive value of the Higgs portal coupling and, therefore, is at tension with the

diphoton enhancement.

In order to demonstrate that SFOPT favors a positive Higgs portal coupling, let

us consider a Higgs portal coupling between the Higgs and a scalar field S, which is

given by the Lagrangian

−L ⊃ µ2
SS
∗S + 2λH†HS∗S . (6.46)

The phase transition calculation is independent of the quantum numbers of S at

the one-loop order, but instead only depends upon the coupling of S to the Higgs9.

However, in order to obtain an enhanced diphoton decay rate, we need S to carry an

electric charge. Consequently, we must ensure that S does not acquire a VEV10. In

that case, the field-dependent squared mass of the S field is given by

m2
eff,S(h, T ) = µ2

S + λh2 + ΠS(T ) , (6.47)

9If S is colored, then the two-loop contribution from gluons can have an appreciable impact on
the order of the phase transition. This is, for example, the case in the MSSM (92).

10This discussion presumes that S is a singlet under weak isospin. More generally, the electrically
neutral component of S may acquire a VEVwithout breaking U(1)em. However, unless this VEVis
much less than v, it will induce unphysical corrections to electroweak precision observables. Thus,
we will restrict ourselves to the case of vanishing VEV.
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where ΠS(T ) is the thermal self-energy correction. In the appropriate limits, this

simple extension of the SM Lagrangian can yield any one of the phase transition

models classes discussed above. These are as follows:

I. Thermally (BEC) Driven. The BEC term receives a contribution (µ2
S +

λh2 + ΠS(T ))3/2. As discussed in Sec. 6.3, we must tune µ2
S ≈ −ΠS(Tc).

However, in this limit the zero-temperature squared mass of the S field is

−ΠS(Tc) + λv2. We cannot let λ < 0, because this would cause S to acquire a

VEV.

IIA. Tree-Level (Ren. Ops.) Driven. Since S cannot acquire a VEV, the

only way in which tree-level terms can enhance the strength of the phase transi-

tion are if S had a VEVin the early universe and its VEVreturned to zero during

the electroweak phase transition. This scenario is realized by letting µ2
S < 0

such that S obtains a VEVin the early universe, but ensuring λv2 > −µ2
S > 0

such that S has a vanishing VEVtoday. Once again, we find that λ > 0 is

required for a SFOPT in this model class as well.

IIB. Tree-Level (Non-Ren. Ops.) Driven. The non-renormalizable opera-

tor (H†H)3/Λ2 may be generated by integrating out the field S. The leading

order contribution to this operator is then given by λ3/M2
S. Since this model

class relies upon (H†H)3 having a positive coefficient in order to stabilize the

potential against a runaway direction, we must take λ > 0.

III. Loop Driven. This model class relies upon the addition of a term to the

effective potential that goes like h4 lnh2 and its competition with the h4 term

to generate a barrier in the effective potential. The Higgs portal operators

Eq. (6.46) will instead generate a term of the form h4 ln(µ2
S + λh2). Unless

|µ2
S| � |λv2|, this term will simply scale like h4 and there will be no competition

between terms and no barrier. However, if λ < 0, then in this limit the S field
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develops a tachyonic instability and acquires a VEV.

This analysis may seem to suggest that λ > 0 is generally favored by SFOPT.

However, this is not the case. If we were not interested in enhancing Higgs diphoton

decay, then we could achieve a SFOPT by coupling the Higgs to a singlet scalar field

using the operators Eq. (6.46). Since there are no restrictions on the VEVof a singlet

field, we could have found SFOPT in the IIA. Tree-Level (Ren. Ops.) Driven model

class (see, e.g., (111)).

6.5 Summary of the Chapter

In this paper we have proposed a scheme for classifying models of the electroweak

sector which may yield a strongly first order phase transition – a necessary ingredient

for electroweak baryogenesis. For each model class, we investigated the impact of

the data that is currently available from the LHC: 1) the discovery of a 125 GeV

Higgs-like scalar, 2) the absence of a large invisible width, and 3) the absence of a

universal suppression, which would indicate mixing between the Higgs and a hidden

sector scalar field. We find that the mass measurement severely constraints models

(such as the MSSM (91)) which drive a strongly first order phase transition with

thermal loop effects11. The invisible decay and mixing constraints are at tension with

models which rely on light singlets coupled to the Higgs.

One recurring theme of our analysis is the ubiquity of enhanced symmetry points.

We find that the “optimal” limit for SFOPT often corresponds to a parameter point

at which the symmetry group of the theory is extended. In the case that the group is

enlarged by a continuous symmetry, either the Higgs mass constraint or the invisible

decay and mixing constraints will come into play. The case of a discrete symmetry is

11However, it may be possible to weaken the tension between the Higgs mass measurement and
the baryon asymmetry washout condition in non-standard cosmologies (232).
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less restricted (176).

We have also discussed the possibility of employing the Higgs portal operator to

both render the EWPT strongly first order and to account for the diphoton excess

observed by ATLAS and CMS. We find that these two goals are at odds with one

another: the phase transition favors a positive Higgs portal coupling whereas the

diphoton enhancement favors a negative coupling. A model which can accommodate

EWBG as well as fit the LHC data will most likely require two distinct new physics

operators. However, it is worth noting that the diphoton excess does not have a great

statistical significance, and the data remains consistent with the SM at the 75 % CL

(216) or approximately 2σ (211; 217). It remains entirely possible that the particle

recently discovered by ATLAS and CMS is the SM Higgs (233).
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Part II

Dark Matter, Cosmological Constant,

and the Electroweak Phase Transition
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Chapter 7

Introduction to the Dark Side

As we have already discussed in the previous part of this manuscript, the Standard

Model of particle physics fails to explain the asymmetry between matter and anti-

matter in our universe. The observed baryon asymmetry of the universe, therefore

provided a strong motivation for studying physics beyond the Standard Model. How-

ever, the BAU is not the only situation in which the SMcannot describe Nature in its

entirety. A cosmology constructed with ingredients drawn from the SMalone is inca-

pable of accounting for the two dominant components of our universe: dark matter

and dark energy. In this chapter, we will discuss the physics of the dark side of the

universe. In the subsequent chapters, we will bring our discussion back to the topic

of the Higgs boson and investigate connections between dark matter, dark energy,

and the electroweak phase transition.

7.1 Dark Matter

Throughout the 20th century, mounting evidence suggested that the universe contains

much more matter than that which can be seen in stars and galaxies. This missing,
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non-luminous matter was given the name dark matter. Today it is known that dark

matter constitutes approximately 22 % of the total energy density of the universe,

roughly five times more than the fraction allotted to baryonic matter (14). Despite

years of searching, dark matter particles have not been observed directly, and therefore

the properties of dark matter – such as its mass and couplings to visible matter –

remain undetermined, although constrainted. This uncertainty has allowed for the

proliferation of dark matter models. Variants include Cold Dark Matter (234), Warm

Dark Matter (235), Hot Dark Matter (236; 237), WIMPs, WIMPzillas (238), Unified

Dark Matter (239), Inelastic Dark Matter (240), Quirky Dark Matter (241), Atomic

Dark Matter (242), Millicharged Atomic Dark Matter (243), Bound Dark Matter

(244), Asymmetric Dark Matter (245), and Dynamical Dark Matter (246; 247) – just

to name a few.

We will restrict ourselves to the minimal cold dark matter (CDM) model featured

in the ΛCDM concordance model of cosmology. That is, we will suppose that dark

matter is a particle, which we represent by χ, that 1) interacts only weakly with

visible matter (i.e., it does not carry electromagnetic charge), 2) is not baryonic, 3)

is stable, and 4) has mass mχ 6= 0. On cosmological scales, we can treat dark matter

as a pressureless “fluid” with number density nχ and energy density ρχ = mχnχ. It

will be useful to quantify the amount of dark matter in the universe using the dark

matter relic abundance defined as

Ωχh
2 =

ρχ
ρ′cr

(7.1)

where ρ′cr ≡ (8πGN/3)−1(100 km s−1 Mpc−1)2 and GN is Newton’s gravitational con-

stant. In the remainder of this section, we will discuss the evidence for dark matter

and the freeze out process which took place in the early universe and thereby deter-

mined the cosmological dark matter relic abundance that we observe today.
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Evidence for Dark Matter

There is a multitude of evidence in astrophysical and cosmological systems to support

the hypothesized presence and predicted abundance of dark matter in our universe.

Thus, it commonly accepted that particle dark matter exists. In the spirit of full

disclosure, however, it is worth mentioning that this is only indirect evidence, which

could perhaps be explained by some other physics, such as a modification of gravity.

Moreover, there has not been a convincing signal from dark matter direct detection

experiments. Nevertheless, nearly a century of evidence points toward a model of

particle dark matter. Therefore, having made this disclaimer, we will speak no further

of alternate scenarios.

Galactic Rotation Curves

The existence of dark matter was famously postulated by Fritz Zwicky in 1933 (248).

Zwicky had applied the virial theorem to infer the total mass of the Coma galaxy

cluster. Upon comparing this value with the observed amount of luminous matter in

the galaxies composing the cluster, Zwicky noted the “somewhat unexpected” result:

that the luminous mass was on the order of one-hundred times too small (249). He

dubbed the non-luminous matter “dark matter.”

Decades later, similar techniques were used to “weigh” individual galaxies as well

(see, e.g., (250)). The rotation curve of a galaxy represents the rotational velocity

V (R) of the matter in the galaxy as a function of distance R from the galactic center.

For small R, the velocity can be inferred from the Doppler shift of starlight, whereas

for larger R, where there are no stars, the velocity may instead be inferred from the

21 cm emission line (hyperfine transition) of neutral hydrogen gas (HI regions). The

measured rotation curve V (R) allows for a determination of the mass of the galaxy.

The back-of-the-envelope calculation is performed by equating the gravitational force
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on a mass m at radius R with the centripetal force,

GM(R)m

R2
= m

V 2(R)

R
, (7.2)

and solving to obtainM(R) = RV 2/G, the mass contained within a radius R. If most

of the mass of the galaxy were collected near the core, then M(R) would approach a

constant at large R and V (R) ∼ 1/
√
R. However, observations of over one-thousand

galaxies (251) revealed that in actuality V (R) does not drop like 1/
√
R but remains

nearly constant at large R. Since the calculation only relies upon elementary kine-

matics, gravitation, and electromagnetism, this observation provides strong evidence

for the presence of a large dark matter halo surrounding the visible galaxy.

Gravitational Lensing

General relativity predicts that light passing by a massive body will be deflected,

in analogy to the passage of light through an optical lens. The phenomenon was

the central topic of Einstein’s 1936 paper in the journal Science (252). The first

gravitational lens, dubbed “Twin QSO,” was not discovered until 1979 (253). Since

the lensing is a purely gravitational effect, it provides the opportunity to measure the

matter distribution directly.

Strong lensing occurs when a massive galaxy cluster in the foreground – the lens

– greatly distorts the image of a background galaxy or galaxies. Just as with an

optical lens, the gravitational lens may produce multiple images, which are arranged

on a ring. The radius of the ring is related to the mass of the lens M by R ∝ √M .

This relationship allows for the measurement of mass and distribution of dark matter

in the galaxy cluster. For example, in 2004 the observation of a set of four multiple

images in the cluster lens Abell 2218 yielded a constraint on the cosmic matter fraction

(dark plus baryonic) Ωm < 0.33 (254) However, strongly lensed systems with multiple
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images are rare. Moreover, when they do occur, the lensing may be due to the dense

baryonic core instead of the sparse dark matter, as in the case of the famous Einstein

cross system (255).

Weak lensing, on the other hand, provides a means of probing the spatial distri-

bution of diffuse dark matter in a galaxy cluster. In this scenario, a field of galaxies

in the background becomes lensed by the inhomogenous distribution of dark matter

in a foreground object, such as a galaxy cluster. In order to infer the distribution of

dark matter, a sky survey must measure the ellipticities and magnitudes of millions

of galaxies over a small patch of sky. The lensing introduces correlations between

the orientation and brightness of nearby galaxies in the field. A statistical analysis

allows one to extract the distribution of matter. Weak lensing is typically employed

in conjunction with a measurement of the visible matter in order to ascertain the

deficit associated with dark matter.

Bullet Cluster

Perhaps the most striking evidence for dark matter, as well as a brilliant demonstra-

tion of the utility of weak lensing, is the Bullet Cluster. In 2003, the group (256)

reported the high-velocity merger of two galaxy clusters, dubbed the Bullet Cluster.

Imaging the bullet cluster reveals a spatial separation between the sources of galactic

starlight in the visible and the regions of hot gas in the X-ray. This is consistent with

a two-component model of the system, in which the stellar component is treated as

pressureless and the X-ray emitting component is treated as a fluid-like. Moreover,

the gas displays a distinct bow shock, suggestive of the recent collision. Using weak

lensing, the distribution of matter may be inferred directly. A 2006 analysis (257),

revealed that the matter distribution more closely follows the distribution of galaxies

than the distribution of X-ray emission, and they identified the spatial offset as an 8σ
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effect. This is consistent with the hypothesis that the two clusters contained a large

amount of non-luminous, pressureless matter. For most cosmologists (but not all

(258)), the Bullet Cluster constitutes sufficient evidence for the existence of particle

dark matter.

CMB Power Spectrum

As we have discussed in the context of the BAU, the CMB power spectrum provides

the best probe of the composition of the universe on cosmological scales. During the

formation of the baryon acoustic oscillations, dark matter acted like a driving force by

sourcing the gravitational potential wells in which the baryon-photon plasma would

oscillate. Thus, the CMB power spectrum that we see today holds information about

the amount of dark matter present in the universe. Precise measurements of the CMB

by the WMAP satellite (71) allow us to determine Ωc = 0.222± 0.026.

Dark Matter Freeze Out

In the ΛCDM cosmological model, it is assumed that the dark matter present in the

universe today is a thermal relic which underwent the process of freeze out in the

early universe.

The freeze out calculation allows us to relate the relic abundance of dark matter

Ωχh
2, which may be inferred from the astrophysical and cosmological systems dis-

cussed above, with properties of the dark matter particle, which can vary significantly

from model to model. In this way, even without a direct detection of the dark matter

particle, it is possible to strongly constrain models of dark matter. In this section,

we will discuss the dark matter freeze out calculation (see, e.g., (72)).

We suppose that the dark matter is weakly coupled to visible matter. This as-

sumption ensures that at a sufficiently high temperature T in the early universe, the
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dark matter was in thermal equilibrium with the plasma and the number density of

dark matter particles nχ(T ) remained very nearly equal to the equilbrium number

density n(eq)
χ . We further assume that the dark mater was non-relativistic (cold) at

the time of freeze out. This lets us write the dark matter equilibrium number density

as

n(eq)
χ (T ) =

g

2π
(mχT )3/2 exp

[−mχ/T
]

(7.3)

where g is the number of dynamical degrees of freedom, which depends on the spin

and quantum numbers of χ. As the universe expands and its temperature decreases,

nχ must fall exponentially quickly in order to remain equal to n(eq)
χ . The reduction

in the number density of dark matter is primarily accomplished by the annihilation

of dark matter into SM particles

χ+ χ→ SM + SM . (7.4)

Since two DM particles must find one other in order to annihilate, the rate at which

this process occurs should scale like (nχ)2. This rate falls exponentially rapidly, and

eventually it become smaller than the rate of expansion of the universe, given by the

Hubble parameter H. At this point, DM annihilations must cease and we say that

the dark matter has frozen out. Since we have also assumed that the DM particles

are stable, the number of DM particles in the universe just after freeze out is the

same as the number today.

We calculate the relic abundance of dark matter by solving the thermally averaged

Boltzman equation in the presence of an expanding universe. Working in the ho-

mogenous, isotropic Friedmann-Robertson-Walker (FRW) metric, this equation may

be written as

a−3d(nχa
3)

dt
= −〈σv〉

[
(nχ)2 − (n(eq)

χ

)2
]

(7.5)
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where a is the FRW scale factor and 〈σv〉 is the thermally averaged dark matter anni-

hilation cross section. To proceed, we make a series of variable changes. First define

Yχ ≡ nχ/s where s = (2π2/45)g∗S(T )T 3 is the entropy density and g∗S(T ) counts

the number of relativistic species at temperature T . In general, g∗S(T ) varies with

temperature from a value of approximately 106.75 in the early universe to approxi-

mately 3 today. However, assuming that freeze out occurs rapidly compared to the

time scale on which other species are becoming non-relativistic, we can approximate

g∗S as a constant. Next, we eliminate t in favor of a using da/dt = aH where H is

the Hubble parameter that represents the expansion rate of the universe. Provided

that freeze out occurs during the radiation dominated era of the universe, H is given

by H =
√

(8πGN/3)(π2/30)g∗(T )T 4 where g∗ ≈ g∗S. We eliminate a in favor of T

using the fact that the entropy per comoving volume S = sa3 is conserved. Finally

we introduce the dimensionless variable x = mχ/T . After the dust settles, we find

dYχ
dx

= − λ

x2

[
(Yχ)2 − (Y (eq)

χ

)2
]

(7.6)

where

λ(x) ≡ 〈σv〉 s(x)x

H(x)
. (7.7)

In general, 〈σv〉 will depend on temperature, but assuming that the dominant anni-

hilation channel is through the s-wave, we can approximate 〈σv〉 ∼ x0 as a constant.

Since we also have the scaling relations H ∼ x−2 and s ∼ x−3, we see that λ ∼ x0 is

approximately constant.

We solve for the relic abundance long after freeze out by integrating Eq. (7.6). We

suppose that freeze out takes place “abruptly” at x = xf , and that after freeze out

the equilbrium term is exponentially suppressed and negligible. Dropping this term,
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we obtain the solution by integrating from xf to x =∞

1

Yχ(x =∞)
− 1

Yχ(x = xf )
=
λf
xf

, (7.8)

where λf = λ(xf ). After freeze out occurs, residual annihilations cause Yχ to decrease

further. This allows us to neglect the Y −1
χ (xf ) term. Moreover, we have assumed that

various quantitites are constant or scale in a particular way, but these assumptions

break down long after freeze out. Thus, Yχ(x = ∞) does not represent the relic

abundance today, but instead the abundance long after freezeout but still early enough

that our assumptions are valid. Thus, we have

Yχ(after f.o.) ≈ xf
λ
≈ H(xf )

〈σv〉 s(xf ) . (7.9)

We can relate this to the relic abundance Eq. (7.1) as

Ωχh
2 =

ρχ(today)

ρ′cr

= mχYχ(today)s(today) (ρ′cr)
−1

= mχ

√
8πG

3
T 2
f

〈σv〉
g∗S(today)T 3

0

g∗S(xf )T 3
f

(ρ′cr)
−1

Ωχh
2 = xfT

3
0 〈σv〉−1 g∗S(today)

g∗S(xf )

√
8πG

3
(ρ′cr)

−1
. (7.10)

Finally our work has paid off; Eq. (7.10) is a very revealing equation. We can see that

the relic abundance is inversely related to the annihilation cross section. This means

that dark matter which interacts more strongly with the SM will remain coupled to

the plasma longer and will consequently have a smaller relic abundance. Conversely,

models which predict too small of a coupling between the dark matter and SM parti-

cles will generate too great a relic abundance. We also see that Ωχh
2 is only indirectly

dependent on mχ the dark matter mass. One can show that xf ≈ 1/10 is only log-

arithmically sensitive to mχ (72). In this way, the freeze out calculation provides a
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robust prediction of the relic abundance for a given model. In the subsequent chap-

ters, we will explore how the various assumed used in this derivation break down if

freeze out occurs during the electroweak phase transition, and we will investigate the

resulting relationships between parameters of the EWPT and the dark matter relic

abundance.

7.2 Dark Energy & the Cosmological Constant

We have already seen that our universe is full of surprises and challenges – the per-

plexing baryon asymmetry, the interesting origin of mass and electroweak symmetry

breaking, and the mysterious abundance of dark matter. But, perhaps the most re-

markable surprise of all is that for the past few billion years, the rate of expansion

of the universe has been accelerating. This is quite astounding, in light of the pre-

diction that if the dominant source of energy in the universe were dark matter, then

the induced gravitational attraction would cause the expansion to decelerate. The

cosmic acceleration tells us that the dominant source of energy in the universe is, in

fact, something else all together. The term dark energy was introduced as a “catch

all” to refer to whatever the origin of cosmic acceleration may be. The extent of our

knowledge about dark energy is incredibly limited, and can be summarized as follows:

most of the energy density of the universe arises from a “substance” with an energy

density ρΛ ≈ 3
4
ρcr and an equation of state w ≈ −1 that are, as best as we can tell,

homogenous and static. Needless to say, dark energy is very poorly understood.

Evidence for Accelerated Expansion

The expansion of the universe was discovered long before it was known that the

expansion is accelerating. In 1929, Hubble used distance and velocity data for 24
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nearby galaxies (out to 2 Mpc) to infer that their their recession velocity grew linearly

with distance from the Earth (259). This is formulated as Hubble’s law v = H0` where

H0 is the recession rate (Hubble’s constant) and ` is the distance between the Earth

and the galaxy. With the available data, Hubble estimatedH0 ≈ (50−60) km/s/Mpc.

Today, Hubble’s constant is measured directly via the magnitude-redshift relation of

240 low-redshift (z < 0.1) SNe Ia H0 = (74.2 ± 3.6) km/s/Mpc (260) and improved

to H0 ≈ (70.4± 1.3) km/s/Mpc (71) with CMB data.

The first evidence for accelerated expansion (and thereby for dark energy) began

to appear in the early 1990’s. At that point, the matter abundance was estimated to

be Ωm ∼ 0.15− 0.4 through galaxy clustering surveys (261), but inflationary models

predicted (and the homogeneity of the CMB later confirmed) that Ωtot ∼ 1 (i.e.,

flat universe). There needed to be an undiscovered energy component to make up

the difference. As early as 1990 (262–264), cosmologists began to suggest that the

missing energy may be in the form of a cosmological constant. The breakthrough

came in 1998 when Riess (265) & Perlmutter (266), et. al., measured the distance to

high redshift (z ≈ 0.5) Type Ia supernovae and used this observation to infer that

the expansion of the universe was accelerated. Today, a combination of supernovae

data as well as measurements of the cosmic microwave background, baryon acoustic

oscillations, and measurements of H0 provide good measurements of the parameters

of dark energy: ρΛ = (0.728± 0.015)ρcr and w = (−1.10± 0.14) (71). Note that this

energy density corresponds to ρΛ ≈ 10meV4. For a historical review of the evidence

for accelerated expansion, see (267).

The Cosmological Constant

In the two decades since the discovery of dark energy, theorists have remained very

active. Many models have been proposed which attempt to model the dark energy
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as the energy density of a scalar field (e.g., (268; 269)) analogous to inflationary

models. Other models seek to unify dark matter and dark energy in a single framework

(270; 271) or to implement dark energy as a modification to gravity (272). However,

the oldest and most minimal model of dark energy is still the cosmological constant

(CC). In 1917, Einstein attempted to create a theory of a static universe by adding

a term to the gravitational action of the form

SΛ = − 1

16πGN

ˆ
d4x
√−g(2Λ) (7.11)

where Λ is the cosmological constant. Although Hubble’s observation of the expansion

of the universe obviated the need for a cosmological constant, it has been revived to

model the accelerated expansion of the universe. The action SΛ may arise from the

energy-momentum tensor

(TΛ)µν = ρΛδµν (7.12)

where ρΛ = Λ/(8πGN). As a phenomenological model, Λ is a free parameter, and

may be chosen appropriately to reproduced the observed value of ρΛ ≈ 10meV4.

Moreover, since Tµν is proportional to δµν , the equation of state of the cosmological

constant is precisely w = −1. In this way, the CC model of dark energy has been

able to fit all available data.

A negative equation of state is very unusual since it implies that the pressure

pΛ = wρΛ is negative. As the universe expands, instead of doing work and loosing

energy, the dark energy exerts a negative work and thereby gains energy. In fact

for w = −1, it gains just enough energy to compensate for the expansion such that

the energy density remains fixed. To understand the behavior of a DE dominated

universe, by solving Friedmann’s equation

H2 =
8πGN

3
ρΛ (7.13)
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to find

a(t) = a0 exp
[
t

√
8πGN

3
ρΛ

]
. (7.14)

We see now that not only is the expansion accelerated, but it is growing exponen-

tially. This reveals the fate of our own universe: the exponential expansion phase

has already begun, and if DE truly is a cosmological constant, the expansion will

continue indefinitely.

CC Problem and Fine Tuning

Although the CC model of dark energy provides an excellent fit to all available data, it

suffers from a major theoretical shortcoming. From the phenomenological perspective,

we think of the CC as a homogenous, static, energy density with equation of state

w = −1. However, we would also like to have an understanding of the physical origin

of the cosmological constant as well. In the context of quantum field theory, we can

understand the CC as the energy density of the vacuum state, and, moreover, we

can even predict the value of the cosmological constant. In fact, we have already

encountered this calculation. The vacuum energy is just the non-thermal part of the

effective potential, which we evaluated in Chapter 3 by summing the “vacuum bubble

graphs” shown in Figure 3.6. The non-thermal contribution to these graphs (which

we did not write down explicitly earlier) is given by

ρvac ∼
ˆ

d4q

(2π)4
ln
(
q2 +M2

)
(7.15)

where M is the mass of the particle in the loop. The divergence of this integral is

problematic but not all together unexpected. We had no reason to think that our

QFT would be an accurate model of the physics at very high energies, because it

does not – for instance – incorporate gravity, which we anticipate to be relevant at
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energies above the Planck scale MP . Thus, cutoff the integration at q < MP , and

find that the integral evaluates to ρvac ∼M4
P ≈ 1073 GeV4. Comparing this with the

measured value, ρΛ ≈ 10 meV4 ≈ 10−47 GeV4, we find that they disagree by 120 order

of magnitude. This enormous discrepancy between theory and observation is known

as the cosmological constant problem. The history of the problem was discussed by

Weinberg in 1988 (273), even before the CC was fully revived in the 1990’s.

Resolving the CC problem is not an easy task. One proposed solution is that a can-

cellation occurs between the enormous ρvac predicted by QFT and another enormous

number ρtune which is finely tuned to leave behind the tiny value of ρΛ = ρvac − ρtune

that we measure. Such a cancellation seems astronomically unlikely (for most def-

initions of unlikely) and marginally unphysical. However, it is very fortunate that

our cosmological constant is finely tuned, because if its value were much larger or

smaller, we would not find ourselves in a universe with conditions hospitable to life.

This has lead some to invoke the anthropic principle, that is, we find ourselves in this

unimaginably rare universe, because in any other universe, we would not be around

to talk about it. At face value, the anthropic principle is somewhat unpalatable and

seems like a “cheat.” However, in order to justify the anthropic principle, some people

have turned to an idea known as the string landscape (274). In the type IIB limit

of string theories, each compactification of the internal space is associated with a

different vacuum state of the theory, and there are on the order of 10500 such vacua.

Although the physical parameters of each of the vacua are not known, it is reason-

able that with such a large number of possible vacuum state, one of them may have

conditions similar to our own universe. Moreover, if our universe entered a phase of

eternal inflation (275; 276), then it is reasonable that each of the vacua will have

been populated at some point. In this way, a combination of the anthropic principle,

string landscape, and eternal inflation may be able to explain why the cosmological
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constant is so finely tuned.
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Chapter 8

Probing the Cosmological Constant

and Phase Transitions with Dark

Matter

The Standard Model and its extensions predict multiple phase transitions in the

early universe. In addition to the electroweak phase transition, one or several of

these could occur at energies close to the weak scale. Such phase transitions can

leave their imprint on the relic abundance of TeV-scale dark matter. In this paper,

we enumerate several physical features of a generic phase transition and parameterize

the effect of each on the relic abundance. In particular, we include among these effects

the presence of the scalar field vacuum energy and the cosmological constant, which

is sensitive to UV physics. Within the context of the Standard Model Higgs sector,

we find that the relic abundance of generic TeV-scale dark matter is affected by the

vacuum energy at the order of a fraction of a percent. For scalar field sectors with

strong first order phase transitions, an order one percent apparent tuning of coupling

constants may allow corrections induced by the vacuum energy to be of order unity.
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This work was performed in collaboration with Daniel Chung and Lian-Tao Wang.

It was published in the journal Physical Review D in August of 2011 (177).

8.1 Introduction to the Chapter

Phase transitions (PTs) are expected to be generic in the early universe (277). The

high temperature environment gives rise to significant corrections to the vacuum

structure, and symmetries which are broken in the universe today can be restored

at earlier times (59–61). The Standard Model (SM) predicts early universe phase

transitions in both the electroweak and QCD sectors. Beyond the SM, it is well-known

that additional degrees of freedom can modify the dynamics of the electroweak phase

transition significantly (92; 94–97; 103; 106; 109–111; 139; 278–285). Furthermore,

because almost all scenarios beyond the SM have extended symmetries, an even richer

thermal history is expected in general (e.g., (60; 180; 286–296)).

Most phenomenologically viable, cosmological PTs do not leave significant ob-

servable signals today. The successful and precisely measured theories of big bang

nucleosynthesis, cosmic microwave background, and large scale structure formation

strongly constrain late time PTs. At earlier stages of the cosmic evolution, thermal

equilibrium erases most of the traces of PTs. Therefore, particle species which decou-

ple early offer us perhaps the best probe PTs in the early universe. Among candidate

particles, possibly the most obvious is the TeV-scale dark matter (DM), which is ex-

pected to freeze out of thermal equilibrium around O(10− 100) GeV. The successful

prediction of its relic abundance, sometimes referred to as the WIMP miracle, is con-

sidered to be one the most important hints of new physics at the TeV-scale. Such a

scenario is expected to be thoroughly probed at the LHC.

In this paper, we assess the sensitivity with which DM may probe the physics of
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PTs by exploring how PTs occurring nearly coincident with freeze out can modify the

relic abundance calculation and alter the predicted relic density. In PTs for which

supercooling is non-negligible, we find that several competing effects contribute to

an overall shift in the DM relic abundance (as compared to the usual calculation

without a PT). Two of these effects, the decoupling of non-relativistic species and

the vacuum energy contribution to the Hubble expansion rate, tend to increase the

relic abundance, while the entropy produced by the PT tends to decrease it. The

principal result of this paper is summarized in Eq. (9.47), and the central discussion

will emphasize the role of vacuum energy during the PT (297), since that is the most

novel aspect of this letter as compared to previous studies. We find that a parametric

tuning of order one percent can lead to an order unity dark matter abundance shift

due to the presence of vacuum energy, assuming that a tuning of the cosmological

constant sets the vacuum energy today. In such situations, it may be possible to use

DM as a probe of vacuum energy during the early universe by measuring the DM

properties at terrestrial experiments and making mild assumptions about cosmology

and UV completions of the effective field theory.

This work is related to past papers which discuss moduli dilution, such as (298)

(and hundreds of inflationary papers), in that we calculate how the PT effects (in-

cluding the vacuum energy) alter the relic abundance.1 However, unlike the present

work, most of these papers do not consider the case of a PT which nearly coincides

with freeze out, nor do they consider the case of a low scale (e.g., electroweak scale)

PT with electroweak scale vacuum expectation values. As in (179; 302), our calcula-

tion incorporates the possibility that the dark matter annihilation cross section may

change after the freeze out, and as in (178), we estimate the dilution of dark matter

1It is also related to papers such as (299–301) and many others which consider the change in the
relic density due to a change in the equation of state during the freeze out process. Instead of listing
all papers, interested readers can consider finding citations to and references within these papers.
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due to a release of entropy at the PT. However, we also include additional features

of the PT such as the changing vacuum energy.

This paper is organized as follows. In Sec. 8.2, we derive a generic parameteriza-

tion with which one can discuss the effects of a PT on the DM relic abundance. In

Sec. 8.3, we use this parameterization to estimate the correction to the relic abun-

dance in two toy models in which a real scalar field experiences a phase transition. In

Sec. 9.5 we summarize and briefly discuss which aspects of a generic model could be

favorable for enhancing the effect of vacuum energy on the relic abundance. Being a

letter, we restrict ourselves to the highlights.

Throughout the paper, we work in the FLRW spacetime ds2 = dt2− a2(t)|dx|2 in

which a(t) is a monotonically increasing function of t.

8.2 General Framework

In this section, we discuss the various ways in which phase transitions can affect the

relic density, and we provide a general parameterization which is useful for analyzing

specific models.

Integrating the thermally averaged Boltzmann equation, we obtain the number

density of dark matter today (a = a0 and t = t0)

nX(t0) = x−3
0

(ˆ lnx0

0

d ln(x)

H
〈σv〉

)−1

, x =
a

af
, x0 =

a0

af
(8.1)

where af corresponds to the scale factor at the time of the freeze out. We define the

fractional deviation of the relic abundance as

δnX(t0) =
nX(t0)

n
(U)
X (t0)

− 1 (8.2)

where n(U)
X (t0) is the “usual” relic density that one finds assuming that the PT does

not occur. In Eq. (9.9), the quantities that will be affected by the PT are the Hubble
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expansion rate H(a), the thermally averaged cross section 〈σv〉 (also a function of a),

and the dilution factor x−3
0 = (af/a0)3 � 1, which accounts for the expansion of the

universe from freeze out until today (related to T (a)).

Suppose that a PT occurs after the time of the freeze out. This PT can affectH(a)

(though the energy density) in three ways: exotic energy, reheating, and decoupling.

First, the PT is a change in the vacuum state and is typically accompanied by a

decrease in the vacuum energy. For all (cosmological) intents and purposes, this

vacuum energy behaves as a cosmological constant (CC). Speaking more generally,

we can collectively refer to the vacuum energy, cosmological constant, and any other

non-thermal sources of energy (e.g., quintessence) as “exotic energy.” We assume that

the exotic energy density can be written as ρ(x) = ρexκ(x) with

κ(x) ≈ Θ((1 + δ)− x) + Θ(x− (1 + δ))

(
1− ∆ρex

ρex

)
κ2(x) , (8.3)

where Θ(z) is a step function and δ ≡ aPT
af
−1 . 1 quantifies the delay between freeze

out and the phase transition. During the phase transition, the exotic energy decreases

by ∆ρex > 0, and the step function approximation corresponds to restricting ourselves

to only phase transitions that occur on a time scale much shorter than 1/H. Such

short time scale phase transitions are expected to be generic for models in which

the thermal bounce action has a strong temperature dependence.2 In the case that

the exotic energy is simply composed of vacuum energy plus a tuned cosmological

constant,3 we have ∆ρex ≈ 0 if the phase transition is of the second order or a smooth

cross over and ∆ρex ≈ ρex if the phase transition is first order with large supercooling.

In the case ∆ρex 6= ρex, the behavior of κ2(x) can parameterize quintessence dynamics

which we assume decreases approximately as (x af/aPT )−nd where nd is a computable

2For a recent discussion of situations with a longer time scale transitions, see for example (303).
3This has been considered as an acceptable possibility (39; 304), and it is a consequence of

recently proposed string landscape scenario (305).
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model dependent parameter. We focus on phase transitions that can be parameterized

by a weakly coupled scalar field description.

The remaining ways in which a PT can affect H(a) are via the radiation energy

density. From energy conservation, the change in exotic energy ∆ρex must be com-

pensated by a release of radiation energy, or equivalently, a reheating with entropy

release ∆s. In addition, generically particle masses may depend upon the scalar

field vacuum expectation value (VEV) and may increase during the phase transition

(e.g., this is the case in the SM electroweak phase transition). The heavier degrees

of freedom can become non-relativistic and decouple. Consequently, the remaining

relativistic species have a relatively lower energy density. We can parameterize this

decoupling effect by writing the effective number of degrees of freedom for radiation

energy gE and entropy gS as

gE/S (x) = gE/S(1)− h(x) (8.4)

h(x) =
7

8
NPT Θ(x− (1 + δ)) +

7

8
Nf(x) , (8.5)

where (NPT ) N represents the number of fermionic degrees of freedom which have

(non-) adiabatically decoupled, and f(x), which rises from 0 to 1, is given by Eq. (9.125).

Treating all of the aforementioned effects as small perturbations and using T (a)

from Eq. (9.121), the modification to H(a) can be expressed as

H ≈ H
(U)
R (x)

[
1 +

ε1
2
x4 κ(x) +

2

3
ε2Θ(x− (1 + δ))

+
ε31Θ(x− (1 + δ)) + ε32f (x)

6

]
(8.6)

where

H
(U)
R (x) ≡ T 2

f

3Mp x2

√
π2

10
gE(Tf ) (8.7)
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is the “usual” Hubble parameter in the absence of a PT, Tf is the temperature at

freeze out, and

ε1 ≡ ρex

π2

30
gE(Tf )T 4

f

= fractional energy of the exotic during freeze out (8.8a)

ε2 ≡ (1 + 3 δ)
∆s

2π2

45
gS(Tf )T 3

f

= fractional entropy increase during PT (8.8b)

ε31 ≡
7
8
NPT

gE(Tf )
= fractional decoupling degrees of freedom during PT (8.8c)

ε32 ≡
7
8
N

gE(Tf )
= fractional decoupling degrees of freedom (8.8d)

are small, dimensionless quantities.

Furthermore, if the dark matter is coupled to the scalar sector directly, a PT in

the scalar sector may alter the annihilation cross section 〈σv〉. This effect can be

parameterized by

〈σv〉 = 〈σv〉(U)
(

1− ε4 Θ(x− (1 + δ))
)

with ε4 ≡ − ∆σ

〈σv〉(U)
. (8.9)

Since the derivation of Eq. (9.9) assumes that the dark matter is decoupled after Tf ,

we will assume that ε4 & 0 in order to prevent re-thermalization due to an increase

〈σv〉.
Finally, we turn our attention to the dilution factor x−3

0 . Phase transitions occur-

ring close to the freeze out can change the Hubble expansion rate, which in turn can

cause dark matter to freeze out earlier or later. We can parameterize this effect by

approximating the freeze out temperature as

Tf ≈ mX

lnA

[
1 +

ε1
2

(
1

lnA
+O

(
(lnA)−2

))]
(8.10)

where

A ≡ NDM3
√

5Mp

√
mXTf〈σv〉

4π5/2
√
gE(Tf )

∼ exp
[
[
]
20] , (8.11)
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mX is the dark matter mass, and NDM counts the real dynamical degrees of freedom

of the dark matter. By also taking into account the effect of a late time entropy

release associated with the PT, we obtain

x0 =
a0

af

∣∣∣∣
usual

×
[
1 +

ε1
2

1

lnA
+
ε2
3

]
(8.12)

where

a0

af

∣∣∣∣
usual

≡
(
gS(Tf )

gS(T0)

)1/3
mX

T0

1

lnA
(8.13)

is the “usual” dilution factor in the absence of a PT, and T0 is the temperature

today. In this paper we assume that the PT described by Eq. (9.19) is the last

PT that generates appreciable entropy, but one can easily generalize Eq. (8.13) to

accommodate later PTs that generate more entropy.4

Putting everything together, we obtain a general parameterization of the changes

to the dark matter relic abundance which are induced by a PT:

δnX(t0) = c1 ε1 + c2 ε2 + c31 ε31 + c32 ε32 + c4 ε4 (8.14)

where the coefficients

c1 ≡ 1

2

(
δ +

(1 + 3δ)

nd − 3

(
1− ∆ρex

ρex

))
− 3

2

1

lnA
(8.15a)

c2 ≡ −1

3
(1 + 2δ) (8.15b)

c31 ≡ 1

6
(1− δ) (8.15c)

c32 ≡ 1

6

ˆ a0/af |usual

1

dx

x2
f (x) (8.15d)

c4 ≡ 1− δ (8.15e)

are order one numbers that account for the delay between freeze out and the PT

(recall δ = aPT/af − 1 & 0). Note that c32 receives most of contributions from
4In particular, we assume that QCD phase transition is not a significant source of entropy (306).
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near the freeze out temperature. The usefulness of this parameterization is that it

is general enough to classify most phase transitions that can affect the DM relic

abundance. This is one of the main results of this paper.

8.3 Phase transition effects as a function of

Lagrangian parameters

In the section, we discuss how the parameters of a scalar field theory map to the

freeze out modifying effects discussed in the previous section. In particular, we focus

on a generic real scalar field for which the one-loop thermal effective potential is

well-approximated by

Veff(φ, T ) ≈ ρex +
1

2
M2φ2 − E φ3 +

λ

4
φ4 + c T 2φ2 (8.16)

where M2, E , λ, and c are free parameters.5 This can be viewed as the effective

description of the dynamics of a large class of PTs with a tuned cosmological constant.

This simple description contains all the information that is necessary to discuss the

vacuum energy contribution (c1ε1) and reheating contribution (c2ε2) to δnX(t0). The

contributions from the decoupling (c31ε31 and c32ε32) depend on additional details of

the model and, as we will see, they have the dominant effect on the DM abundance.

Therefore, as far as we are concerned with the mapping of Lagrangian parameters

to ciεi, we will focus our discussion on just c1ε1 and c2ε2. Here, we also follow the

traditional abuse of language in classifying the cosmological phase transitions as first

5 In order to treat c as a free parameter, we must suppose that the φ-sector is coupled to another
sector, call it sector X, which is not strongly constrained phenomenologically. The interaction
between φ and sector X can then be considered a nearly a free parameter and generates the thermal
mass c T 2. For instance, suppose a Yukawa coupling L 3 yφψ̄ψ where ψ is a spin-1/2 X-sector field
with N dynamical degrees of freedom, and then c ≈ Ny2/48. E.g., to obtain c ≈ 0.1 one needs
y ≈ 1.1 if N = 4 (Dirac fermion) and y ≈ 0.6 if N = 12. Moreover, the X-sector particles must be
lighter than the PT temperature. Otherwise, Boltzmann suppression drives c→ 0.
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order or second order dependent on whether or not (transient) bubbles are involved

during changes in the vacuum determining the 1-particle state.

E = 0, “second order” phase transition

We first restrict our analysis to the case of E = 0. In this limit there is a Z2 symmetry,

and the finite temperature effective potential can be written as

Veff(φ, T ) ≈ λ

4

(
φ2 − v2

φ

)2
+ c T 2φ2, (8.17)

where vφ =
√−M2/λ is the VEV in the Z2 broken phase at T = 0. Because there

is no cubic term, no sub-horizon bubbles are involved as the vacuum changes from

φ = 0 to φ = vφ at the PT.6 The temperature at the beginning of the PT can be

approximately mapped to the Lagrangian parameters as (T−PT )2 = λ
2c
v2
φ. By requiring

that the exotic energy be zero today when T = 0, we find the exotic energy at the

time of the phase transition to be

ρex = Veff(0, 0) =
λ

4
v4
φ =

c2

λ
(T−PT )4. (8.18)

Therefore using Eqs. (9.26a) and (9.48a) the exotic energy contribution is given by

(for δ < 1)

c1ε1 ≈ δ

2gE

c2

λ
∼ 1

10

1

gE
c2
v2
φ

m2
φ

(8.19)

where m2
φ = 2λv2

φ is the approximate scalar mass in the φ = vφ vacuum, and typically

gE & 100.

In the minimal scenario of the SM supplemented by a DM sector, one finds

c2
SM/λSM ≈ 0.28 where cSM is dominated by the top Yukawa and does not take into

account the coupling of DM to the Higgs sector. If electroweak symmetry breaking

6Horizon sized domain walls do form, however (180).
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occurs soon after the dark matter freeze out, Eq. (8.19) allows us to estimate that

the DM relic abundance will experience a fractional change at the order of 10−3 due

to each of the CC effect. Moreover, soon after the electroweak phase transition, the

heavy quarks decouple and N ∼ 20 fermionic degrees of freedom are lost from the

tally of relativistic species. Consequently, the ratio

c1ε1
c32ε32

∼ −c
2

λ

1

N
. 1 (8.20)

is small, and we expect that the shift in the relic abundance is dominated by the

decoupling of these heavy degrees of freedom.

In the SM, the exotic energy effect is subdominant, but Eq. (8.19) provides a

guide to constructing models with enhanced c1ε1. This term can be made larger

if v2
φ/m

2
φ � 1, which could be realized by invoking fine tuning or some additional

symmetry to generate a flat potential. Alternatively, one could contrive a model in

which ρex � T 4
f ≥ (T−PT )4 and thereby enhance ε1 directly. Such a scenario can be

naturally realized if supercooling occurs, as in the case of a “first order” PT. We now

turn our attention to this scenario.

E 6= 0, supercooling and “first order” phase transition

At T = 0, the general potential in Eq. (9.68) has extrema at

φ = 0 and φ = vφ =
3E
2λ

(
1 +

√
1− 8

9
α0

)
, (8.21)

where we have introduced the dimensionless quantity α0 ≡ λM2/2E2, which controls

the vacuum structure. For α0 > 1, φ = 0 is the true vacuum; for 0 < α0 < 1, φ = vφ is

the true vacuum while φ = 0 is metastable; and for α0 < 0, φ = 0 becomes unstable.

The barrier separating the metastable and true vacua has a height (for 0 < α0 < 1)

Vbarrier =
4E4α3

0

27λ3

(
1 +O (α0)

)
(8.22)
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which vanishes rapidly as α0 → 0. As in Eq. (8.18), by requiring the exotic energy to

vanish today, we calculate the exotic energy prior to the PT to be

ρex =
E4

8λ3

[
27− 36α0 + 8α2

0 + 27

(
1− 8

9
α0

)3/2
]

(8.23)

and note that all of this energy is converted into radiation at the phase transition

(i.e., ∆ρex = ρex).

In order to compute the CC’s effect on the relic abundance, we need to know

the PT temperature T−PT , or equivalently the amount of supercooling, which has an

interesting dependence on α0. We require α0 < 1 such that there exists a temperature

Tc = E
√

1− α0

λ c
(8.24)

below which the symmetric phase φ = 0 becomes metastable. The PT begins at a

temperature T−PT < Tc when the bubble nucleation rate per Hubble volume ΓH−3 ∼
T 4e−S

(3)/T H−3 is comparable to Hubble expansion rate H ∼ T 2/Mp. Here S(3) is the

action of the O(3) symmetric bounce. For an electroweak scale phase transition this

condition is satisfied when S(3)/T drops below approximately 140 (209). Provided

that the potential can be expressed in the form of Eq. (9.68), then the action is

well-approximated by the empirical formula (307)

S(3)

T
≈ 13.7

E
T

(α
λ

)3/2

f(α) (8.25)

f(α) ≡ 1 +
α

4

(
1 +

2.4

1− α +
0.26

(1− α)2

)
(8.26)

where the temperature dependence is parameterized by α(T ) = α0(1 − T 2/T 2
0 ), and

T 2
0 = −M2/(2c) can be positive or negative.

The PT temperature is constrained by Max [T 2
0 , 0] < (T−PT )2 < T 2

c where the

lower bound depends on the sign of α0. We will discuss the two cases separately.

For α0 > 0 (or T 2
0 < 0), the vacuum φ = 0 remains metastable as T → 0. This
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suggests that the PT temperature can be arbitrarily low, and in this limit of large

supercooling the CC effect may be arbitrarily large. Unfortunately, if the barrier

persists as T → 0, it is possible that the PT does not occur at any temperature – a

obviously unphysical scenario in the case of the electroweak phase transition. This

follows from the observation that for α0 > 0, S(3)/T has a minimum at T 6= 0: at low

temperatures S(3)/T grows due to the explicit factor of T in the denominator, and

at high temperatures f(α) diverges as α → 1. Over some of the parameter space,

the inequality S(3)/T . 140 is not satisfied at any temperature, and the PT does

not occur. In particular, if α0 is close to one, then α > α0 ≈ 1 at all temperatures,

and it is very difficult for the PT to proceed. Therefore, if we require that the PT

must occur via thermal bubble nucleation, we obtain an upper bound on α0. For the

case α0 < 0, the PT necessarily occurs at a temperature T−PT > T0 > 0, since the

φ = 0 vacuum becomes perturbatively unstable below T0. This case has the drawback

that supercooling cannot last an arbitrarily long time, but on the other hand, one is

guaranteed that the PT proceeds.

Provided that the PT does occur, we define

δSC = 1− T−PT
Tc

(8.27)

which ranges from 0 to 1 and quantifies the amount of supercooling. Using δSC to

parameterize the temperature dependence, we can rewrite Eq. (9.71) in the form

S(3)

T

∣∣∣∣
T−PT

≈
(
λ√
c

)−1
1√

1− α0

[
a−2

δ2
SC

+
a−1

δSC
+ a0 + a1δSC +O

(
δ2
SC

)]
, (8.28)

where the ai are functions of α0. We require S(3)/T
∣∣
T−PT

= 140 and solve for δSC,

which we have plotted in Figure 9.5. The supercooling grows with increasing α0 and

decreasing λ/
√
c as the barrier and bounce action are made larger. In the shaded

region the lower bound on T−PT > T0 is not satisfied. The amount of supercooling is
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Figure 8.1: We have plotted the amount by which the phase transition temperature
drops below the critical temperature, quantified by δSC, against the parameter α0

which controls the height of the barrier. These curves only depend on the parametric
combination λ/

√
c. The amount of supercooling grows as α0 is made larger, but

reaches a finite maximum δ
(max)
SC . O (1) at a value of α0 that depends on the ratio

λ/
√
c.

typically of the order δSC . 0.5 which implies T−PT & Tc/2. Above a finite value of

α0 (indicated by a dot) the barrier becomes insurmountably large, and the universe

becomes trapped in the metastable vacuum. The existence of this upper bound on α0

does not allow a phenomenologically viable, arbitrarily large supercooling, contrary

to naive expectations. The largest amount of supercooling is achieved for λ/
√
c� 1

and α0 & 0. In this parameter regime the exotic energy is large (see Eq. (9.66)), and

the metastable vacuum is separated from the true vacuum by a small barrier (see

Eq. (9.67)).

We have calculated the exotic energy and reheating contributions to the relic

abundance shift by using Eq. (9.47), and we present the results in Figure 8.2. In

generating these plots, we have fixed c = 0.1, E = 5 GeV, and gE/S = 106.75 (SM

degrees of freedom7) while allowing α0 to vary. We select two values for the dark

7We choose this value as a fiducial reference. Realistically, for these parameters the PT occurs
at T−PT ≈ 1 − 100 GeV, which could be later than the electroweak phase transition. In that case,
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Figure 8.2: The fractional shift in the dark matter relic abundance due to the exotic
energy (dashed, c1ε1) and the reheating (solid, c2ε2). Note that the two figures have
different scales, and that we have plotted |c2ε2| since this quantity is negative. When
λ/
√
c is smaller than 0.04, then one may enter a regime of large supercooling for

tuned values of α0. The reheating effect dominates by an order of magnitude or
more. The contours extend over a finite range of α0 because for larger α0 the PT does
not occur, and for smaller α0 the PT occurs before freeze out. Since our analytical
approximation breaks down when ciεi ∼ O(1), the extrapolation into this region
should only be treated as an indication of possible size of the effect.

matter mass, which in turn fixes the freeze out temperature via Eq. (9.34). For the

heavier case mX = 2 TeV, the freeze out occurs quite early, and if λ/
√
c = 1.00, 5.00

(which are not shown) the PT would occur much later, in the limit where our analytic

approximations break down (i.e., δ > 1). Some of the curves are truncated at small

α0, because we require that the PT occur after the freeze out (i.e., δ > 0), and the

phase transition temperature increases with decreasing α0 (see Figure 9.5). It is also

for this reason that, the λ/
√
c = 0.04 and 0.2 curves are entirely absent from the

mX = 500 GeV plot.

These figures indicate that the exotic energy effect on the relic abundance is

typically on the order of 10−3 and is subdominant to the reheating effect by an order of

magnitude. Both contributions become larger in the limit of large supercooling where

some of the SM degrees of freedom would have decoupled, gE/S would be smaller, and the εi would
be relatively larger.
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λ/
√
c is small and α0 approaches its maximal value. For smaller values of λ/

√
c a brief

period of inflation might even be possible. The curves {λ/√c = 0.04,mX = 2 TeV}
and {λ/√c = 1.00,mX = 500 GeV} illustrate the parametric tuning of α0 that is

required to achieve a large correction to the relic abundance. If α0 is made too large,

the PT does not occur, and if α0 is made too small, the PT occurs before freeze out.

Comparing the mX = 2 TeV and mX = 500 GeV plots reveals the parametric tuning

that must occur between the DM and scalar sectors. If the DM mass is small, for

example, then the parameters of the scalar sector must conspire to generate a low

scale PT, otherwise the PT occurs too early and decouples from the physics of the

freeze out.

8.4 Summary of the Chapter

If the properties of dark matter can be measured accurately in laboratories, the

information that these experiments yield can be used to probe the properties of

early universe phase transitions. This is a particularly exciting prospect given that

phase transition physics incorporates the energy densities of the false vacuum and

the cosmological constant, and thereby it provides an empirical method to directly

probe the tuning of the cosmological constant. With this in mind, we have developed

a general parameterization to characterize the effects of a single field phase transition

on the thermal dark matter relic abundance in a freeze out scenario.

In the context of the SM (supplemented by a DM candidate) and assuming a tuned

cosmological constant, we find that the exotic energy (i.e. the Higgs field vacuum

energy plus the cosmological constant energy) leads to a fractional increase in the dark

matter abundance by O(10−3). The dominant change in the dark matter abundance

comes from a decoupling of relativistic degrees of freedom near the time of the freeze
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out, which leads to a fractional increase in the relic abundance of order 10−2. Without

extreme tuning, we expect that most second order PTs share the characteristics of

the SM case.

In the case of a second order phase transition, models with a very flat potential

(i.e., m2
φ . HPT ) generally give a large dark matter abundance shift via the exotic

energy contribution. In this limit, Hubble friction can enhance the supercooling as

in the case of slow-roll inflation (as signaled by the enhancement attendant with

large vφ/mφ in Eq. (8.19)). Although pseudo-Nambu-Goldstone boson models may

be useful for producing such flat potentials, the required hierarchies can be somewhat

unnatural during the electroweak phase transition since HPT ∼ 10−14 GeV.

In first order phase transitions with supercooling, there is a somewhat surprising

theoretical upper limit on the duration of supercooling which follows from the fact

that the bubble nucleation rate is not a monotonically decreasing function of time.

In certain parametric regimes, the phase transition never occurs. Close to this failed

phase transition case, the maximum fractional increase in the relic abundance due to

the exotic energy effect can become O(0.1) and due to the reheating effect can become

O(1). However, reaching these large magnitudes requires some degree of parametric

tuning. As the parameters deviate from their tuned values, either the PT will not

occur at all, or it will occur before the freeze out.

In order for dark matter freeze out to act as a probe of the phase transition,

as we have considered, it must be the case that freeze out occurs soon before or

concurrently with the phase transition. Since phase transitions typically occur at

electroweak scale temperatures or higher and since the mass of weakly interacting

dark matter is typically 20 times larger than the freeze out temperature, these DM

particles must be heavy, and they may be difficult to discover at the LHC.

It is nonetheless an exciting prospect that LHC and other experiments sensitive
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to dark matter’s non-gravitational interaction properties may unveil a new probe of

dark energy. This is particularly interesting given that there is almost no other way

to probe the conjecture of a tuned cosmological constant.8

8There are generic theoretical limitations on empirical reconstruction of the phase transition
scenario. This study will be presented elsewhere (308).
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8.A Appendix A. Derivation of PT induced change

in the degree of freedom

We begin with the well-known formula for the energy density of a gas of fermions at

temperature T with N dynamical degrees of freedom:

ρ(T ) = N

ˆ
d3p

(2π)3

Ep
1 + eEp/T

. (8.29)

The gas has an effective number of degrees of freedom gE given implicitly by ρ(T ) =

π2

30
gE(T )T 4. We can parameterize the decrease in gE due to the decoupling of the

fermionic gas by writing

gE(T ) = gE(Tf )− 7

8
Nf (a/af ) (8.30)

where

f (x = a/af ) =

(
7

8

π2

30

)−1 ˆ
d3p

(2π)3
Ep

[
1

T 4
f

1

e
Ep
Tf + 1

− 1

T 4(afx)

1

e
Ep

T (afx) + 1

]
. (8.31)

The temperature T = T (a) is given by Eq. (9.121) to leading order in the pertur-

bations εi. Since f already multiplies a small term in Eq. (9.22), we need only keep

the leading factor in Eq. (9.121) which is T = Tf af/a = Tf/x. This lets us write

Eq. (9.124) as

f (x) =
8

7

(
30

π2

) ˆ
d3p

(2π)3

Ep
T 4
f

[
1

e
Ep
Tf + 1

− x4

e
xEp
Tf + 1

]
. (8.32)

Note that f(x) increases from f(1) = 0 to f(∞) ≈ 1. Due to the exponential

temperature dependence, the transition to f ≈ 1 occurs at T ≈ mN and is smoothly

steplike over a time scale ∆t ≈ 1/H. In this discussion we have assumed Ep =√
p2 +m2

N with mN constant, that is, we neglect any change in the mass of the

particle as a function of time. This assumption is valid sufficiently far after the PT

such that the scalar VEV and field-dependent masses have approximately stopped

varying.
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8.B Appendix B. Derivation of T+
PT , ∆s, and T (a)

In this appendix, we calculate the temperature after the phase transition T+
PT by

imposing energy conservation at the PT. This allows us to calculate ∆s and ε2 in

terms of ∆ρex. Provided that there is a negligible change in a ≈ aPT during reheating,

energy conservation can be written as

π2

30
gE(T−PT )

(
T−PT

)4
+ ∆ρex =

π2

30
gE(T+

PT )
(
T+
PT

)4
. (8.33)

Using the perturbative expansions introduced in Section 8.2, Eq. (9.110) can be solved

for T+
PT at leading order to obtain

T+
PT ≈ T−PT

[
1 +

1

4
ε31 +

1

4

∆ρex

π2

30
gE(Tf ) (T−PT )4

]
(8.34)

where ε31 is given by Eq. (9.26c). As expected, the amount of exotic energy released

∆ρex > 0 controls the reheating from T−PT to T+
PT . Additionally, the reheating is

larger when more species non-adiabatically decouple (larger ε31), because there are

fewer degrees of freedom after the PT to distribute ∆ρex over, which makes them

comparatively hotter.

Similarly, we can calculate the entropy density increase at the PT. Writing the

entropy density as s(T ) = 2π2

45
gS(T )T 3, we can calculate ∆s as

∆s =
2π2

45

{
gS(T+

PT )(T+
PT )3 − gS(T−PT )(T−PT )3

}
(8.35)

≈ 2π2

45

{
−gE(Tf )

gS(Tf )
ε31 +

3

4

[
ε31 +

∆ρex

π2

30
gE(Tf )(T

−
PT )4

]}
gS(Tf )

(
T−PT

)3 (8.36)

where we have used Eq. (9.112) and linearized in perturbations. We can calculate ε2,

given by Eq. (9.26b), by noting T−PT aPT ≈ Tf af and gS(Tf ) ≈ gE(Tf ) up to higher

order terms. Doing so yields

ε2 ≈ −1

4
ε31 +

3

4

∆ρex

π2

30
gE(Tf )(T

−
PT )4

. (8.37)
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These expressions for ∆s and ε2 illustrate that the entropy increase at the PT is

controlled by the amount of latent heat released and the number of particles that

non-adiabatically decouple.

Lastly, we will solve the equation of entropy conservation for T (a). The entropy

per comoving volume S = s a3 is conserved except for the entropy injection at re-

heating, which is assumed to occur rapidly at aPT . Entropy conservation may be

expressed as

gS(T )T 3a3 = gS(Tf )T
3
f a

3
f + Θ(a− aPT ) a3

PT

(
2π2

45

)−1

∆s (8.38)

and implicitly defines T (a). To solve for T we use Eq. (9.21) to expand gS(T ) then

linearize in h and ∆s to obtain

T (a) ≈ Tf
af
a

[
1 +

1

3

h(a/af )

gS(Tf )
+ Θ (a− aPT )

1

3

(
aPT
af

)3
∆s

2π2

45
gS(Tf )T 3

f

]
. (8.39)

Further expanding h using Eq. (9.22), approximating gS(Tf ) ≈ gE(Tf ), and applying

Eq. (9.26b) we obtain the final expression,

T (a) ≈ Tf
af
a

[
1 +

1

3
ε32 f(a/af ) + Θ (a− aPT )

1

3
(ε31 + ε2)

]
. (8.40)

After the PT, the exotic energy component behaves approximately adiabatically.
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Chapter 9

Cosmological Constant, Dark Matter,

and Electroweak Phase Transition

Accepting the fine tuned cosmological constant hypothesis, we have recently pro-

posed that this hypothesis can be tested if the dark matter freeze out occurs at the

electroweak scale and if one were to measure an anomalous shift in the dark matter

relic abundance. In this paper, we numerically compute this relic abundance shift

in the context of explicit singlet extensions of the Standard Model and explore the

properties of the phase transition which would lead to the observationally most favor-

able scenario. Through the numerical exploration, we explicitly identify a parameter

space in a singlet extension of the standard model which gives order unity observable

effects. We also clarify the notion of a temperature dependence in the vacuum energy.

This work was performed in collaboration with Daniel Chung. It was published

in the journal Physical Review D in November of 2011 (119).
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9.1 Introduction to the Chapter

The hypothesis that the cosmological constant (CC) energy density today is a result

of a tuning between UV and IR contributions (39; 304) is favored according to some

versions of the string landscape proposal (see e.g. (305)). Furthermore, this hypoth-

esis has always been the default assumption in particle physics model building (see

e.g. (273; 309)). Unfortunately, this conjecture is notoriously difficult to test with lab

experiments, such as those at colliders.

One of the predictions of the tuning hypothesis is that there can be an electroweak

scale effective CC in the early universe if there was a phase transition (PT) at that

scale. A well-known reason to suspect that there was an electroweak scale PT in

the early universe is the thermally supported electroweak symmetry restoration phe-

nomenon in the context of the Standard Model (SM) of particle physics (58; 59).

Hence, if lab experiments, such as particle colliders, can eventually measure the field

content and couplings of the scalar sector at the electroweak scale with sufficient ac-

curacy, then one may be able to predict the CC energy density existing at around

the time of the PT. Such an energy density would interact with gravity to modify

the expansion history of the universe. Indeed, Kolb and Wolfram (297) were one

of the first to state that this computable energy density arising from the Standard

Model Higgs condensate may have an observationally acceptable yet significant effect

in cosmology.

In a recent paper (177), we proposed that dark matter freeze out can be used to

probe PTs, including the properties of such a computable CC, through its effect on

the expansion rate of the universe during freeze out. Such an idea is abstractly very

similar to the well known big bang nucleosynthesis idea, as well as generic particle

probes of cosmology (see e.g. (277; 299; 310–312)). In particular, if a weakly
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interacting massive particle (WIMP) dark matter candidate is discovered with a mass

of the order of TeV, then its freeze out dynamics would be sensitive to the value of

the CC during the electroweak scale PT at a temperature of the order of 100 GeV.

Therefore accurate measurements of the dark matter and scalar sector properties will,

in principle, make possible a lab test of the tuning of the CC. More accurately, what

is being tested is the absence of self-tuning mechanisms and/or modified gravitational

theories (313–325) that would eliminate or significantly change the effects of vacuum

energy during a PT.

For non-first order PTs, it was found that the shift in the relic abundance due to

the CC energy density effects is suppressed by ∆nX/nX = O
(
g−1
E

)
where gE is the

number of of relativistic degrees of freedom contributing to the energy density. For

first order PTs, it was found that this fractional shift can be generically enhanced

by supercooling such that the CC effects can be O(1) with a 1% parameteric tuning.

In all cases, the sought after CC “signal” is buried in the dominant “background”

coming from the adiabatic change in the number of degrees of freedom and possibly

the entropy release near the time of the dark matter freeze out. The adiabatic change

in the number of degrees of freedom and the vacuum energy effect tend to increase

the relic density today while the entropy production effect decreases the relic density.

The purpose of this paper is to complement the previous short paper (177) in

several ways:

1. Present an explicit singlet extension of the Standard Model (SM) that gives a

large supercooling with a first order PT at the electroweak scale.

2. Clarify the notion of how an effective vacuum energy (which is Lorentz invariant

in the flat space limit) can depend on temperature (which manifestly breaks

Lorentz invariance).

3. Compare numerical results with analytic results presented in (177).
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4. Provide relevant technical details that were left out in (177) to aid future re-

search efforts in this direction.

In addition to giving a generic singlet scalar model coupled to a Dirac fermion that

gives a significant supercooling, we analyze xSM, i.e. a real singlet coupled to the

SM, and identify a parametric region in which significant supercooling occurs. As

anticipated in (177), an O(10−2) tuning is sufficient to induce an O(1) supercooling

effect on the relic abundance.

The order of presentation is as follows. In Section 9.2 we review the physics of

PTs and focus on the myriad ways in which a PT may impact dark matter freeze out.

We clarify the notion of a temperature dependence of vacuum energy density in this

section. In Section 9.3 we analytically compute the fractional shift of the relic abun-

dance δnX(t0) due to an electroweak scale PT in the limit in which the PT represents

a small perturbation to the usual freeze out. In Section 9.4 we compute the relic

abundance deviation in the SM and minimal singlet extensions (both supplemented

by a generic dark matter which is assumed to play a negligible role in determining the

properties of the PT). In Section 9.5 we conclude with a summary and suggestions

for future work. An extensive set of appendices detail technicalities useful for the

material presented in the body of the paper.

Throughout the paper, we assume a flat Friedmann-Robertson-Walker (FRW)

metric, ds2 = dt2 − a2(t)|dx|2, and use the reduced Planck mass Mp ≈ 2.4 × 1018

GeV.
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9.2 A Brief Review of the Physics of Phase

Transitions

In this section, we review the physical features that accompany a cosmological PT.

Each of these features modifies one of the relationships, ρ ∼ T 4, T ∼ a−1, or

〈σv〉 = 〈σv〉 (T ), which are assumed in the usual freeze out calculation. One of

the topics discussed in this section is how to understand the thermal dependence

of vacuum energy, which a priori is an oxymoron. Readers interested in mostly the

phenomenology can skip to the next section.

The standard cosmological model assumes an expanding FRW universe which

leads to the temperature of the relativistic species in the universe decreasing as a

function of time except during the time periods when entropy is generated. As the

temperature decreases, there may exist critical temperatures at which the thermody-

namic quantities are not analytic as a function of temperature and/or the symmetries

of the effective Lagrangian governing the dynamical degrees of freedom changes. Fol-

lowing the typical convention in the literature, we refer to the passages through these

critical temperatures as PTs.

In order to calculate thermodynamic quantities in the system described above,

we will use the thermal effective potential (see (209) for a review). The thermal

effective potential Veff(φc, T ), derived from Legendre transforming the partition func-

tion coupled to external sources, represents the free energy density of the plasma at

temperature T dynamically interacting with a homogeneous scalar field background

φc which may affect the masses and interactions of particles in the plasma. A lo-

cal minimum φc = v(T ) is called the thermal vacuum, and PTs occur near critical

temperatures Tc which will be defined more precisely below.1

1We will leave out the adjective “thermal” in “thermal vacuum” whenever no confusion should
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The critical temperature Tc in the case of what is conventionally referred to as a

first order PT is defined by the existence of two or more degenerate minima φ = v(Tc)

existing for the thermal effective potential Veff(φ, Tc). In such cases, we refer to the

vacuum of the universe just prior to the PT as v(s)(T ) (where the “s” superscript

denotes “symmetric” vacuum) whether or not there is a symmetry in the thermal

effective potential prior to the PT. The vacuum solution after the first order PT is

referred to as v(b)(T ) where “b” denotes “broken.” A non-first order PT (sometimes

loosely referred to as a second order PT) is characterized by a single continuous

function v(T ) before and after the PT: i.e. v(b)(Tc) = v(s)(Tc). Even in such situations,

it is sometimes useful to define v(s)(T ) to be the vacuum before the PT whenever there

is a restored symmetry prior to the PT. The quantity v(s)(T ) can then be taken as

an order parameter associated with spontaneous symmetry breaking.

The thermal vacua v(s/b)(T ) can be obtained from summing up thermal tadpole

corrections obtained from expanding perturbatively about the zero temperature vacua

v(s/b)(0). Despite the suggestive notation of the thermally shifted vacuum v(s/b)(T ),

the resummation of tadpoles is nothing more than a reorganization of perturba-

tion theory, and the vacuum energy represented by the Lorentz-invariant part of the

energy-momentum tensor, is not shifted by the manifestly Lorentz-noninvariant ther-

mal tadpoles. Note that symmetry restoration cannot be inferred from the thermal

tadpole resummation alone since the thermal perturbation theory breaks down when

the perturbations are expanded about the inflection points of the effective potential.

Let us now establish some more notation for the quantities introduced above. The

thermal effective potential and v(s/b)(T ) can be used to construct the thermodynamic

arise.
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quantities

F (s/b)(T ) = Veff(v(s/b)(T ), T ) (9.1a)

s(s/b)(T ) = − d

dT
F (s/b) (9.1b)

ρ(s/b)(T ) = F (s/b) + T s(s/b) (9.1c)

representing the free energy density F , entropy density s, and energy density ρ in the

symmetric and broken phases. A typical PT occurs as the universe cools, and the

free energy of the broken phase, in which the entropy and energy densities are high,

drops below the free energy of the symmetric phase, in which the entropy and energy

densities are low. It will be useful to define the critical temperature of the PT Tc by

F (s)(Tc) = F (b)(Tc) , (9.2)

but note that the PT may not actually occur until a much lower temperature if the

symmetric phase experiences supercooling. The PT is accompanied by a number of

physical features, which we will outline in the remainder of this section and which

each have an impact on dark matter freeze out.

The first feature that we would like to discuss is the vacuum energy associated

with the PT. We assume that the energy density ρ(s/b)(T ) can be partitioned into

the energy associated with the plasma and the energy associated with the condensate

(i.e. the vacuum energy with an effective equation of state of −1), and we define the

latter as

ρ(s/b)
cc (T ) ≡ Veff(v(s/b)(T ), 0) (9.3)

which has an observable consequence when coupled to gravity. This equation is

artificial because the vacuum energy cannot be rigorously separated from the particle

energy with which it is associated for most of the states populating the density matrix.
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Nonetheless, it is useful because it captures the CC type of contribution (i.e. negative

equation of state contribution) to the energy-momentum tensor.

Note that flat space thermal corrections to the zero temperature effective poten-

tial cannot generate Lorentz invariant contributions to the energy-momentum tensor

because temperature T dependent quantities are not Lorentz invariant. Since the CC

contribution to the energy-momentum tensor in the flat space limit is Lorentz invari-

ant, one may wonder whether Eq. (9.3) is valid since it implies that thermal tadpoles

are contributing to the vacuum energy. Furthermore, the fact that the effective vac-

uum energy takes on a continuum of values while the only non-perturbatively stable

vacuum state is at v(b)(0) (which we will assume to be associated with negligible

vacuum energy) also leads one to be suspicious of Eq. (9.3).

To semi-quantitatively resolve this puzzle, one notes that near the time of the

PT, there are A ↔ B processes in equilibrium where A and B schematically corre-

spond to states of the form |particles + vacuum energy〉 and |particles〉, respectively.
These transitions are mediated by non-perturbative processes since they are vacuum

changing processes. Classically, the plasma (when these transitions are efficient) is

approximately described by inhomogeneous solutions in Minkowski space. This can

easily be characterized by computing for example the thermal two-point function.

The equation of state for such a plasma in the classical approximation corresponds

to neither that of quantum expectation values with respect to states A nor B, but is a

mixture which from the quantum perspective depends on the non-perturbative tran-

sition operators as well as the relative statistical and/or coherent weighting of A and

B type of states. The incoherent aspect of this mixture is what the T dependence of

Eq. (9.3) reflects.2 To corroborate this picture, one can easily solve classical equations

2Note also unlike in flat spacetime, there are IR cutoffs associated with the expansion rate H
for a single causal domain during the PT and H0 associated with the presently observable universe.
The former scale H is also associated with one of the scales at wich quasi-equilibrium assumption



208

of motion in models with spontaneous symmetry breaking to obtain inhomogeneous

background field solutions which have an inhomogeneous equation of state. Since the

Friedmann equation (which is the only gravitational probe we will be concerned in

this paper) approximately describes the gravitational response to the spatial average

of the energy-momentum tensor, one can spatially average the energy density and the

pressure. This leads to an effectively homogeneous energy density and pressure which

is approximately the same as that due to particles plus a vacuum condensate energy

density. The resulting effective vacuum condensate energy density is somewhere be-

tween Veff(v(s)(0), 0) and Veff(v(b)(0), 0), justifying the diagnostic quantity defined by

Eq. (9.3).

To renormalize the CC, we impose the tuning condition

ρ(b)
cc (T = 0) = 0 , (9.4)

which states that the vacuum energy density today is on the order of the meV4 dark

energy density (71; 326) and negligible as compared to the PT scale. Hence, we will

refer to ρ(s/b)
cc (T ) as the “effective CC energy density.” With this normalization, the

CC energy density before a PT at scale M will typically be

ρ(s)
cc (T & M) ∼M4, (9.5)

which can be measured, in principle, by gravitational probes such as the Hubble

expansion rate and its impact on dark matter freeze out.3 Any self-tuning/modified-

gravity mechanism which decouples the vacuum energy or significantly modifies the

vacuum energy effect on gravity on a time scale shorter than that of the expansion

scale will have an effective ρ(s)
cc significantly different from Eq. (9.5). It would be

breaks down.
3Although an in depth discussion of UV sensitivity of the CC is beyond the scope of this paper,

one should keep in mind that using Eq. (9.4) as a quantum renormalization condition leads to
Eq. (9.5) as a prediction only if assumptions about analyticity of the effective potential as well as
Lorentz invariance structure of the UV cutoff is assumed.
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interesting in future studies to compare various self-tuning/modified gravity models

which may have non-trivial time dependence in the effective vacuum energy different

from that in this paper.

The second PT feature is the decoupling of heavy degrees of freedom which become

non-relativistic after the PT and cause the number of relativistic species, denoted here

as g, to decrease. This has two consequences for the dark matter freeze out calcu-

lation. First, the energy density of the plasma ρ ∼ g T 4 and Hubble expansion rate

H ∼ √ρ decrease more rapidly than usual after the PT. Second, since temperature is

related to the FRW scale factor by entropy conservation, which gives T ∼ g−1/3a−1,

the temperature decreases less rapidly than usual after the PT. To estimate the mag-

nitude of the effect on dark matter freeze out, consider the SM electroweak PT at

T ∼ 100 GeV and suppose that freeze out occurs at the same temperature. Then

during the residual annihilation stage of freezeout, which lasts until T ∼ 10 GeV,

g will decrease by approximately 20% corresponding to the decoupling of the top,

Higgs, and massive gauge bosons. In the usual freeze out calculation, changes in g

are neglected, because freeze out occurs much later than the electroweak PT when g

is insensitive to T . When we arrange for the two events to occur at the same scale,

g decreases significantly and can have a large effect on the relic abundance.

The third feature is related to the coupling between the PT sector and the rest of

the particle physics model. As the phase changes at the PT, in general the masses and

interactions of particles in the plasma can change as well. In particular, it is possible

for the scalar field to couple to dark matter in such a way that the dark matter’s mass

and/or annihilation cross section is different in the symmetric and broken phases.

This scenario, studied by (179; 302), may allow dark matter to rethermalize and can

have a significant effect on the relic abundance.

If the PT is of the first order, then it possesses a number of additional features
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(see e.g. (303) for a more detailed discussion). A first order PT can be divided

into two stages. The first stage, known as supercooling, occurs while the universe

remains in the symmetric phase after it has become metastable at T ≈ Tc. As the

temperature decreases and the CC energy density remains approximately constant,

the total energy density can deviate from the standard ρ ∼ T 4 scaling (i.e., first

feature above). Supercooling ends when it becomes energetically favorable for bubbles

of the broken phase to nucleate. Determining the temperature T−PT at which bubble

nucleation begins requires one to solve for the non-perturbative bounce solution and

evaluate the decay rate of the metastable phase (203). During the second stage,

known as reheating, the expanding bubbles release an energy density

∆ρex = ρ(s)
cc (T−PT )− ρ(b)

cc (T+
PT ) (9.6)

which is converted into radiation and heats the gas from T−PT before the PT to T+
PT >

T−PT after the PT. We assume that reheating occurs rapidly as compared with the

expansion rate of the universe4, which allows us to treat reheating as an abrupt

process at time tPT when a = aPT . Reheating is accompanied by a non-adiabatic

entropy increase. This entropy growth modifies the relationship between temperature

and the FRW scale factor in such a way that the universe is relatively larger for a

given temperature. As a result, the dark matter number density undergoes a longer

period of dilution and the relic abundance can be significantly smaller (178). Finally,

just as massive species can adiabatically decouple after the electroweak PT occurs,

heavy particles can undergo a non-adiabatic decoupling at the time of a first order

PT if they abruptly acquire a mass m & TPT .

4 A third stage, known as phase coexistence, can occur if a large latent heat is released by the
expanding bubbles and the plasma is reheated to the point where the pressure gradient across the
bubble wall vanishes (144). Subsequently, the bubbles expand only insofar as the universe expands,
and the PT completes on a time scale t ∼ H−1. Typically, this stage does not occur during an
electroweak-scale PT because the number of relativistic species O (100) is too many to allow for
sufficient reheating.
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9.3 An Analytic Estimate of the Change in the

Dark Matter Abundance

In this section, we estimate the change in the dark matter relic abundance due to the

presence of a PT, and the CC energy density in particular, during freeze out. Our

final result is the fractional deviation of the relic abundance, denoted δnX(t0) and

given by Eq. (9.47), in which we have linearized in the various effects of the PT on

freeze out. Although most of the results in this section have already been presented

in (177), we repeat some of the results for self-containedness as well as serving as

introduction for more complete results such as Eqs. (9.49) and (9.50). The main

point of this section is to present a formalism to understand analytically the effects

outlined in Sec. 9.3.

Throughout the calculation, we will take a as the independent variable and rewrite

functions of temperature using T = T (a) given by Eq. (9.121). In particular, we will

assume that freeze out occurs at a temperature Tf = T (af ) before the PT at a = aPT .

Since all of the thermodynamic quantities depend on the phase of the system which

changes at a = aPT , the formulas in this section would become unnecessarily obscure

if we persisted in writing all the (s/b) superscripts and distinguishing the a < aPT

and a > aPT cases. Therefore, we introduce the following shorthand. Whenever a

temperature-dependent function F (s/b)(T ) appears without the (s/b) superscript, the

intended meaning is

F (a) =


F (s)(T (a)) a < aPT

F (b)(T (a)) a > aPT

. (9.7)

In particular, one always has F (af ) = F (s)(Tf ) since af < aPT by assumption.

We calculate the thermal relic abundance of dark matter by integrating the ther-
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mally averaged Boltzmann equation,

1

a3

d

dt

(
a3nX

)
= −〈σv〉 (n2

X − neq 2
X

)
, (9.8)

over the era of residual annihilations from freeze out at a = af until today. Subject

to general assumptions (see Appendix 9.B for more details), we obtain

nX(t0) =

(ˆ ln a0/af

0

d ln(a/af )

H
〈σv〉 a

3
0

a3

)−1

(9.9)

for the number density of dark matter today at a = a0 and t = t0. In this expression,

the quantities that will be affected by the PT are the Hubble expansion rate H(a),

the thermally averaged cross section 〈σv〉 (a), and the dilution number since the time

of the freeze out to today a0/af , which is related to T (a). As a fiducial reference

value, we also calculate the “usual” relic abundance n(U)
X (t0) by assuming that the PT

does not occur, but instead that the universe remains radiation dominated and has

the standard scaling relations

H(U) ∼ a−2, 〈σv〉(U) = 〈σv〉 (T (a)), and T (U) ∼ a−1 (9.10)

throughout freeze out. We define the relic abundance fractional deviation as

δnX(t0) =
nX(t0)

n
(U)
X (t0)

− 1 (9.11)

and expect this quantity to depend on the way in which H, 〈σv〉, and a0/af deviate

from the usual freeze out scenario. We will consider each effect in turn.

Before addressing each of the factors in Eq. (9.9), let us discuss the partitioning

of energy. The Hubble expansion rate, which appears in Eq. (9.9), is related to the

total energy density ρ(s/b)(T ). However, we are particularly interested in determining

the impact of the effective CC on the calculation of dark matter freeze out. Therefore

we will assume that the energy can be partitioned as

ρ ≈ (particle degrees of freedom + exotic energy component) . (9.12)
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In general, the exotic energy component can arise from physics other than the ef-

fective CC, such as quintessence (e.g. (299; 312; 327–331)) or late-decaying massive

particles (e.g. (332–339)). To maintain a minimal degree of generality throughout

our analytic estimates (without accumulating distasteful notational complication), we

will parametrize the exotic energy component as ρex κ(a). However, since our primary

interest is in the case that the exotic energy component represents an effective CC,

we will write

ρex κ(a) = ρcc(a) (9.13)

where ρ(s/b)
cc (T ) is defined by Eq. (9.3), and we have used the shorthand Eq. (9.7).

The remaining energy density can be attributed to relativistic particles in the plasma,

which we will denote by5

ρ
(s/b)
R (T ) = ρ(s/b)(T )− ρ(s/b)

cc (T ) . (9.14)

To connect with a familiar and intuitive notation, we let the functions gE and gS be

defined implicitly by

ρ
(s/b)
R (T ) =

π2

30
g

(s/b)
E (T )T 4 (9.15)

s(s/b)(T ) =
2π2

45
g

(s/b)
S (T )T 3 (9.16)

such that they represent the number of relativistic degrees of freedom at temperature

T in either the symmetric or broken phase. As shown in Appendix 9.C, one must

have gS(T ) 6= gE(T ) if entropy and energy are to be conserved during the time when

a species adiabatically decouples.

5 Contributions from non-relativistic species are Boltzmann suppressed. Defined in this way,
ρ

(s/b)
R includes a term proportional to dv(s/b)/dT which arises from the derivative in Eq. (9.1b).

This term represents kinetic energy in the scalar field and, strictly speaking, should not be included
in ρR. Nevertheless, we do not separate out the kinetic term, because it is typically negligible.
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Now, we will begin our investigation of the quantities in Eq. (9.9). First, consider

the effect on the Hubble expansion rate H(a) which is obtained by solving the Fried-

mann equation. To do so, we partition the energy as described above and assume

that ρex � ρR(af ) such that we can treat the CC energy density as a perturbation.

With these assumptions, we obtain

H(a) =
1√
3Mp

√
ρ(a) (9.17)

≈ T 2

3Mp

√
π2

10
gE(a)

[
1 +

1

2

ρex κ(a)
π2

30
gE(a)T (a)4

]
. (9.18)

where we have used the shorthand Eq. (9.7). During the PT, we can approximate

κ(a) as

κ(a) ≈ Θ(aPT − a) + Θ(a− aPT )

(
1− ∆ρex

ρex

)
κ2(a) (9.19)

where Θ(z) is a step function, ∆ρex > 0 is given by Eq. (9.6), and κ2(a) is a function

which starts from κ2(aPT ) = 1 and decreases as fast as(
a

aPT

)−nd
(9.20)

with nd & 4. If ∆ρex = 0, we have a continuous second order transition or a crossover.

If ∆ρex = ρex, then the supercooling is sufficiently strong as to end up with no

CC energy just after the PT. The step functions represent the fact that the PT

occurs with negligible change in the scale factor. With this assumption, ∆s and

the corresponding change in the temperature become functions of ∆ρex according

to Eq. (9.117) in Appendix 9.D. Finally, the Θ(aPT − a) term in Eq. (9.19) should,

in general, be multiplied by another smooth function unless there is some symmetry

fixing v(s)(T ), and consequently ρ(s)
cc (T ), to a particular value in the high energy limit.

However, we will neglect this detail in favor of cleaner notation, since the final result

will be approximately unchanged.
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As discussed in Section 9.2, particle species start becoming non-relativistic after

the (electroweak) PT which causes gE/S(a) to decrease. We will parametrize this de-

crease by focusing on the (non-)adiabatic decoupling of (NPT ) N fermionic dynamical

degrees of freedom and write

gE/S(a) = gE/S(af )− h(a) (9.21)

h(a) =
7

8
NPT Θ(a− aPT ) +

7

8
N f(a) (9.22)

where f(a), which rises from 0 to 1, is given by Eq. (9.125). Note that in reality, h(a)

is a smooth complicated function (particularly Nf(a)), but here we are accounting

for the change in the number of degrees of freedom in a physically suggestive approx-

imation. As we will see below, this effect will be one of the dominant “backgrounds”

to the “signal” of measuring the effects of the cosmological constant. We treat this

effect as a perturbation to linear order, and we estimate the Hubble expansion rate

to be

H(a) ≈ T (a)2

3Mp

√
π2

10
gE(af )

[
1− 1

2

h(a)

gE(af )
+

1

2

ρex κ(a)
π2

30
gE(af )T (a)4

]
. (9.23)

Writing T (a) using Eq. (9.121) and linearizing further with respect to small quantities,

we have

H(a) ≈ H(U)(a)

[
1 +

ε1
2

(
a

af

)4

κ(a) +
2

3
ε2Θ(a− aPT )

+
1

6
ε31Θ(a− aPT ) +

1

6
ε32f (a)

]
(9.24)

where

H(U)(a) ≡ T 2
f

3Mp

(
a
af

)2

√
π2

10
gE(af ) (9.25)
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and

ε1 ≡ ρex

π2

30
gE(af )T 4

f

= fractional energy of the exotic during freeze out (9.26a)

ε2 ≡
(
aPT
af

)3
∆s

2π2

45
gS(af )T 3

f

= fractional entropy increase during PT (9.26b)

ε31 ≡
7
8
NPT

gE(af )
= fractional decoupling degrees of freedom during PT (9.26c)

ε32 ≡
7
8
N

gE(af )
= fractional decoupling degrees of freedom near freeze out (9.26d)

where ∆s, denoting the entropy density change at the time of the PT, is given by

Eq. (9.117). AlthoughH(a) appears to vary discontinuously at a = aPT , its continuity

is ensured by the conservation of energy. At the PT, the CC energy converts into

radiation, which generates an entropy but leaves the total energy density fixed (i.e.,

ε2 compensates for the discontinuity of the ε1 term) because the volume remains

approximately constant through the duration of the PT. The fact that H is boosted

by ε31 and ε32 is intuitive for the following reason. When a particle species becomes

non-relativistic, the effective equation of state becomes smaller, such that the energy

dilutes less, which in turn leads to a larger expansion rate for the same scale factor.

The term ε31 accounts for the non-adiabatic change in the number of degrees of

freedom during the PT, while the term ε32 accounts for the adiabatic change in the

number of degrees of freedom.

Next, consider the change in the cross section due to the PT. We parametrize this

effect as

〈σv〉 = 〈σv〉(U)
(

1− ε4 Θ(a− aPT )
)

(9.27)

where

ε4 ≡ − ∆σ

〈σv〉(U)
(9.28)
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and ∆σ is the change in 〈σv〉 due to the PT. Since the derivation of Eq. (9.9) assumes

that the dark matter is decoupled after Tf , we will assume that ε4 & 0 in order

to prevent re-thermalization due to an increase in the cross section. Hence, we can

evaluate Eq. (9.9) by linearizing in the ε’s to obtain

nX(t0) ≈
(
af
a0

)3
(ˆ ln a0/af

0

d ln a/af
H(U)(a)

〈σv〉(U)

(a/af )3

[
1 +

∑
n

θn(a)εn

])−1

(9.29)

where ∑
n

θn(a) εn =− ε1
2

(
a

af

)4

κ(a)−Θ(a− aPT )
2

3
ε2

− 1

6
[ε31 Θ(a− aPT ) + ε32 f (a)]− ε4 Θ(a− aPT ) (9.30)

implicitly defines the θn. Note that the integral is dominated by contributions around

ln a/af = 0. On the other hand, the (af/a0)3 prefactor should be evaluated with all

the gS changes accounted for, not just the effects around lnx = 0.

Next, let’s consider the effects on the af/a0 factor determined by the freeze out

condition itself. The freeze out temperature Tf can be solved using (297)

〈σv〉neq
X (Tf ) = C

mX

Tf
H(Tf ) (9.31)

neq
X (T ) ≡ gX

(
mXT

2π

)3/2

exp
[−mX

T

]
(9.32)

where C is an order unity number whose optimum value to reproduce numerical

integration is cross section dependent (e.g., C ≈ 2), gX counts the real dynamical

degrees of freedom of the dark matter, and mX is the dark matter mass. Evaluating

H(Tf ) with Eq. (9.24) and assuming freeze out occurs before the PT, Eq. (9.31)

becomes

〈σv〉 gX
(
mXTf

2π

)3/2

exp
[−mX

Tf

]
≈ C mX Tf

3Mp

√
π2

10
gE(af )

[
1 +

ε1
2

]
. (9.33)
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Although not solvable in closed form, one can linearize in the perturbation again to

obtain

Tf ≈ mX

lnA

[
1 +

ε1
2

(
1

lnA
+O

(
(lnA)−2

))]
(9.34)

where

A ≡ gX3
√

5Mp

√
mXTf〈σv〉

2Cπ5/2
√
gE(af )

∼ exp
[
20
]

(9.35)

for electroweak mass scales. If we assume that there is only one period of entropy

production between freeze out and today, and that it occurs at the PT temperature

TPT , we can use entropy conservation in the form of Eq. (9.119) to write

a0

af
=

(
gS(af )

gS(a0)

)1/3
Tf
T0

[
1 +

1

3
ε2

]
(9.36)

where T0 is the temperature today. Combining this with Eq. (9.34), we find

a0

af
=

(
a0

af

∣∣∣∣(U)
)[

1 +
ε1
2

1

lnA
+

1

3
ε2

]
(9.37)

where (
a0

af

∣∣∣∣(U)
)
≡
(
gS(af )

gS(a0)

)1/3
mX

T0

1

lnA
. (9.38)

Putting Eq. (9.37) into Eq. (9.29) results in

nX(t0) ≈
(
a0

af

∣∣∣∣(U)
)−3 [

1− 3ε1
2

1

lnA
− ε2

]

×
(
E1 +

ˆ ln(a0/af |(U))

0

d ln a/af
H(U)(a)

〈σv〉(U)

(a/af )3

[
1 +

∑
n

θn(a)εn

])−1

(9.39)

where the endpoint contribution to the integral has been written as

E1 ≡
ε1
2

1
lnA

+ ε2
3

H(U)(a0)

〈σv〉(U)

(a0/af |(U))3
. (9.40)
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The term E1 is negligible because of the volume dilution factor in its denominator.

Linearizing the small factors gives

nX(t0) ≈n(U)
X (t0)

[
1− 3ε1

2

1

lnA
− ε2 − F−1

u

∑
n

θ̃nεn

]
(9.41)

where

Fu ≡
ˆ ln(a0/af |(U))

0

d ln a/af
H(U)(a)

〈σv〉(U)

(a/af )3
(9.42)

n
(U)
X (t0) ≡

(
a0

af

∣∣∣∣(U)
)−3

F−1
u = usual computation of relic abundance (9.43)

θ̃n ≡
ˆ ln(a0/af |(U))

0

d ln a/af
H(U)(a)

〈σv〉(U)

(a/af )3
θn(a) . (9.44)

In particular, if we assume an s-wave cross section (i.e., constant 〈σv〉), we can express

θ̃1 explicitly as

F−1
u θ̃1 ≈ −1

2

[
δ +

(1 + 3δ)

nd − 3

(
1− ∆ρex

ρex

)]
(9.45)

where we have expanded in δ ≡ aPT/af − 1 & 0 which represents the delay between

freeze out and the PT. The first term in square brackets comes from integrating the

CC energy density from af to aPT , and the second term comes from integrating the

decreasing CC energy density after the PT. This equation shows that if ∆ρex

ρex
≈ 1

(large supercooling) there is a suppression of the ε1 effect by a factor of order δ.

Although we have linearized in δ along with εi, terms of the form εi δ are not higher

order. The expansion in εi reflects the fact that we treat the PT as a perturbation,

whereas the expansion in δ is performed merely to simplify the expressions. With the

same assumptions, we can evaluate the other F−1
u θ̃n terms:

F−1
u θ̃2 ≈ −2

3
(1− δ) , F−1

u θ̃31 ≈ −1

6
(1− δ) ,

F−1
u θ̃4 ≈ − (1− δ) , F−1

u θ̃32 ≈ −1

6

ˆ ln(a0/af |(U))

0

d ln a/af
(a/af )2

f(a) . (9.46)
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Hence, for s-wave cross sections, the change in the relic abundance due to small

changes made by the PT can be expressed as

δnX(t0) = c1 ε1 + c2 ε2 + c31 ε31 + c32 ε32 + c4 ε4 (9.47)

where

c1 ≡ 1

2

(
δ +

(1 + 3δ)

n− 3

(
1− ∆ρex

ρex

))
− 3

2

1

lnA
(9.48a)

c2 ≡ −1

3
(1 + 2δ) (9.48b)

c31 ≡ 1

6
(1− δ) (9.48c)

c32 ≡ 1

6

ˆ ln(a0/af |(U))

0

d ln a/af
(a/af )2

f (a) (9.48d)

c4 ≡ 1− δ . (9.48e)

The key point of Eq. (9.47) is that despite the “background” represented by εn6=1,

the “signal” contained in ε1 can be “measured” and represents a prediction of the

hypothesis of a tuned CC. It is a tuned but striking statement, nonetheless. Since

this term is central to the rest of our calculation, we have reproduced the so called

“CC effect” term here as

c1 ε1 =

(
ρex

π2

30
gE(af )T 4

PT

)
1

(1 + δ)4

×
{

1

2

[
(1 + δ)3 − 1

3
+

(1 + δ)3

nd − 3

(
1− ∆ρex

ρex

)]
− 3

2

1

lnA

}
(9.49)

without linearizing in δ. We also write the so called “entropy effect” as

c2 ε2 = −δ + 1
3

δ + 1

∆s
2π2

45
gS(aPT )T 3

PT

. (9.50)

Note finally that we can obtain a smooth non-first order PT by taking the limit

∆ρex = ε2 = ε31 = ε4 = 0.
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One should remember that all of the analysis has assumed that the entropy re-

leased from the PT (in the case of a first order PT) did not reheat the system to

the point that the dark matter rethermalized after freeze out, i.e., T+
PT . Tf . This

provides a lower bound on δ for a given ∆ρex, which can be expressed as

1

4
ε31 +

1

4

∆ρex

π2

30
gE(af ) (T−PT )4

. δ (9.51)

by using Eq. (9.112) and assuming that f(aPT ) is negligible.

Note also that the range and independence of {εi, δ} that is achievable by choosing

a beyond the SM Lagrangian is not easy to compute nor to generalize. For example,

suppose we want to increase δ while keeping ε1 fixed. To increase δ, we increase aPT

more than af . Since af is mostly determined by the mass of the dark matter mX

while aPT is determined in part by the competition between the thermal mass support

and scalar field mass at the field origin, we can keep af fixed and increase aPT by

decreasing the scalar field mass competing with the thermal support. This, however,

typically changes the fractional entropy increase ε2 during the PT. Furthermore, this

will change the index nd (defined in Eq. (9.20)) which depends partly on the flatness

of the non-thermal part of the scalar potential. Indeed, we see that if this nd can

be engineered to be as close to 3 as possible (i.e. a flat potential with no thermal

particles decoupling), then the ε1 signal can be enhanced. One also sees that in the

case of a first order PT, the prediction for the effect of the cosmological constant

(i.e., the ε1 piece) depends on ∆ρex and δ, both of which depend on knowing exactly

when the PT occurs. As described in Sec. 9.2, an accurate computation of this will

require a non-perturbative numerical treatment. Hence, the first order PT situation,

which can give a larger CC dependent signal, presents an interesting computational

challenge of its own.
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9.4 Illustrative Models

In this section, we present numerical calculations of δnX(t0) for various models. This

section represents one of the key features of the paper that distinguish it from (177), as

discussed in the introduction. For each model we specify the parameters of the scalar

sector, which appear in the thermal effective potential Veff(φc, T ), and the parameters

of the dark matter sector, mX , gX , and 〈σv〉. We then calculate the relic abundance

shift using the methods of Section 9.3. Most of the numerical results have not been

reported previously, and the model dependent analysis of a real singlet extension of

the standard model is entirely new.

Standard Model with Dark Matter

We calculate here the relic abundance deviation due to the SM electroweak PT.

The qualitative results were already given in (177). The numerical details that we

discuss in this section can be summarized as δnX(t0) = O (10−3 − 10−2) with the CC

contributing c1ε1 = O (10−4 − 10−3). With mh = 115 GeV, the largest CC effect

occurs for mX ≈ 4.2 TeV where c1ε1 ≈ 9.5 × 10−4. Our results are summarized in

Figure 9.2. In this section, we first discuss this figure and then extend the analytic

estimate of Section 9.3, now in the context of a concrete model, to obtain Eq. (9.57),

which lets us motivate extensions of the SM that achieve larger δnX(t0). Some of the

qualitative discussion of (177) is reproduced for completeness.

In Appendix 9.F we compute the SM thermal effective potential Veff(hc, T ) through

one-loop order6, where h(x) =
√

2
∣∣H†H∣∣1/2 is the radial component of the Higgs

6It is well known that the one-loop approximation breaks down at the temperature of the SM
electroweak PT (340), and that accurate results require lattice calculations (89; 341; 342). How-
ever, since the CC contribution already represents perturbative correction to dark matter freeze
out, we will neglect higher-order corrections to the PT physics and simply apply the mean field
approximation described in Section 9.2.
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Figure 9.1: The energy density at the SM PT, ρ(T ) = ρcc(T ) + ρR(T ), relative to
the energy density when the entire SM is relativistic, ρr(106.75) ≡ π2

30
106.75T 4. Just

before the PT at T & 150 GeV, the energy density grows relative to ρr due to the
temperature independent CC contribution, ρcc(T > TPT ) ≈ const. After the PT, the
top, bottom, Higgs, and massive gauge boson adiabatically decouple causing ρ/ρr to
drop below one. This adiabatic decoupling is the dominant feature of the SM PT
that is relevant for freeze out.

field and hc = 〈h(x)〉. It is important to point out that the renormalization con-

ditions, given by Eq. (9.130), are chosen such that Veff(hc, 0) has a minimum at

v = 246 GeV where the curvature is m2
h and, most importantly the CC is tuned by

requiring Veff(v, 0) = 0.

Before discussing the numerical results, it is useful to recall from Section 9.3 that

for a non-first order PT, freeze out is only affected by modifications to the relations

H(T ) ∝ √ρ(T ) ∝ T 2 and T 3 ∝ g−1
S a−3 ∼ a−3. These modifications arise when the

energy partitioning deviates from radiation domination and the number of relativistic

degrees of freedom deviates from a constant value. These deviations can be visualized

in Figure 9.1, where we plot ρ(T ) normalized by ρr(106.75) ≡ (π2/30)(106.75)T 4,

the energy density of the SM as if all particles were relativistic. We have taken

mh = 115 GeV which gives a PT at TPT ≈ 148 GeV. As the temperature decreases

toward TPT from above, ρ/ρr grows to approximately 1.006 due to the presence
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Figure 9.2: Fractional deviation of the relic abundance and due to the SM electroweak
PT plotted againstmh (left) andmX (right). The numerical calculation is represented
by the solid curve, the analytic estimate Eq. (9.47) by the dashed curve, the CC effect
(c1ε1 term) by the dot-dashed curve, and the adiabatic decoupling effect (c32ε32 term)
by the dotted curve. The right axis shows the values of the c1ε1 curve only, and the
left axis shows the values of the three other curves.

of the additional CC energy density (i.e., λv4/(106.75T 4
PT ) ≈ 10−3). Below TPT

the massive species decouple, the plasma loses about twenty relativistic degrees of

freedom, and ρ/ρr decreases to approximately 0.8. This figure illustrates that the

adiabatic decoupling has an effect on ρ which is two orders of magnitude larger than

that from the CC. Therefore, we expect that the Standard Model electroweak effective

CC will have a subdominant effect on the relic abundance as well.

The fractional shift δnX(t0) is calculated using the perturbative, analytic expres-

sions in Section 9.3 as well as by solving the Boltzmann equation numerically. In the

left panel of Figure 9.2 we have plotted δnX(t0) by varyingmh and fixingmX = 6 TeV,

gX = 2, and 〈σv〉 = 2.33 × 10−39 cm2. As seen in the figure, the PT causes an

O (10−3 − 10−2) fractional increase in the relic abundance. We have chosen the DM

mass to be 6 TeV such that freeze out and the PT coincide at T ≈ 303 GeV for

mh = 300 GeV. For smaller mh, the PT is delayed with respect to freezeout. The

analytic estimate, given by Eq. (9.47), only receives contributions from the CC ef-

fect (c1ε1 term) and the adiabatic decoupling effect (c32ε32 term), because the PT
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is not first order. As we anticipated in the discussion of the preceeding paragraph,

the ε32 term dominates. The analytic formula consistently underestimates the nu-

merical calculation by 2 − 3%, and moreover, in the large mh limit where δ ≈ 0,

the deviation grows to approximately 4.5%. Both of these features can be traced

back to approximations we have made in the analytic estimate. The first is asso-

ciated with the approximation Eq. (9.96), which assumes the number density per

comoving volume decreases significantly due to residual annihilations and introduces

an O (Tf/mX) . 5% error at all mh. The second is associated with neglecting the

equlilibrium term neq
X in Eq. (9.8), which is not negligible at the start of the residual

annihilation era. The scaling with mh also has a simple, intuitive explanation. One

can understand why δnX(t0) is small at small mh, because in this limit the PT occurs

too late and becomes decoupled from freeze out. Considering the opposite limit, one

may wonder if δnX(t0) continues to increase for mh & 300 GeV where δ < 0. For

δ < 0 the PT occurs before freeze out, as in the usual cosmology, and one would

naively expect δnX(t0) = 0. Nevertheless, δnX(t0) does continue to grow because

of the way we have defined n
(U)
X . To calculate the usual relic abundance n(U)

X we

assume that there are 106.75 relativistic species at freeze out. If the PT occurs much

earlier, the number of relativistic species at freeze out will be significantly less than

106.75 and δnX(t0) will be non-zero. The CC contribution grows monotonically with

decreasing mh, since in this limit the PT temperature decreases and c1ε1 ∼ ρex/T
4
PT .

On the right panel of Figure 9.2 we plot the relic abundance shift by fixing mh =

115 GeV and varying mX . At large mX , freeze out occurs well before the PT, the

two events decouple, and the relic abundance shift is small. At small mX . 2.8 TeV,

freeze out occurs after the PT, and the analytic estimate fails. The CC effect c1ε1 has

a maximum of approximately 10−3 at δmax ≈ 0.5. For δ > δmax the factor ε1, given

by Eq. (9.26a), is small because Tf in the denominator is large. For δ < δmax the
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factor c1, given by Eq. (9.48a), is small because the CC is only present over a short

time during WIMP residual annihilations. The presence of this maximum suggests

that c1ε1 will typically be more sensitive to variations in the parameters of the scalar

sector (e.g., mh) than in variations of the DM sector (e.g., mX). With this in mind,

we will focus the remainder of our discussion on determining the conditions that a

scalar potential must satisfy to maximize c1ε1.

We will now extend the estimates of Section 9.3 in order to understand Figure

9.2 through a simple analytic approximation. We focus on the CC contribution to

δnX(t0), given by Eq. (9.49), which is

δnX(t0) 3 c1ε1 ∼ 1

10

ρex

gE T 4
PT

(9.52)

up to multiplication by an O (1) function of δ. The factor of gE ≈ 106.75 represents

the SM relativistic degrees of freedom before the PT. If we assume that before the PT,

the SM particles are light with respect to the temperature, then we can approximate

Veff using the so-called high-temperature approximation

Veff(hc, T ) ≈ λeff
4

(
h2
c − v2

)2
+ c T 2h2

c . (9.53)

Here we have defined λeff ≡ 4
v4 [Veff(0, 0)− Veff(v, 0)] to be the one-loop effective self-

coupling and 2 c T 2 is the thermal mass acquired by Higgs particles passing through

the plasma. In the SM and subject to our renormalization scheme, these dimensionless

numbers are λeff ≈ λSM and c ≈ cSM where

cSM =
1

24v2

(
6m2

t + 6m2
b + 6m2

w + 3m2
z +

3

2
m2
h

)
(9.54a)

λSM =
m2
h

2v2
+

48m4
t + 48m4

b − 24m4
w − 12m4

z − (15 + log 4)m4
h

128π2v4
, (9.54b)

which yield cSM ≈ 0.18 and λSM ≈ 0.12 for mh ≈ 115 GeV. The PT occurs at a

temperature TPT where ∂2
hc
Veff(0, TPT ) = 0. Solving for this temperature one obtains

c T 2
PT =

λeff
2
v2 . (9.55)
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Before the PT, the CC energy density is

ρex = Veff(0, 0) =
λeff

4
v4 (9.56)

and we can estimate the deviation in the relic abundance using Eq. (9.52) to be

c1ε1 ∼ 1

10

1

gE

c2

λeff
. (9.57)

For natural couplings one expects c2/λeff ∼ O (1) (e.g., c2
SM/λSM ≈ 0.28) and finds

c1ε1 ∼ 1/(10gE) ∼ 10−3. Recalling also that λeff ∼ m2
h, one sees that this estimate

agrees well with both the magnitude and scaling shown in Figure 9.2. Note that in the

λeff → 0 limit, we find that both ρex and TPT approach zero, but the ratio ρex/T
4
PT

becomes large. This simple approximation suggests that the region of parameter

space that maximizes the CC contribution to δnX(t0) will have low temperature PTs.

This is evident in Figure 9.2 because the CC effect grows at low mh where the PT

temperature is low. Hence we will next consider a model in which a scalar singlet

coupled to the Higgs is introduced to lower the PT temperature.

SM Singet Extension with Z2

In this section, we briefly discuss an extension of the Standard Model in which the

presence of an additional scalar field modifies the electroweak PT dynamics. However,

we show that the dark matter relic abundance is not significantly enhanced, and we

argue that we should consider models with first order PTs. Consider an extension of

the SM in which a real, singlet, scalar field s(x) is coupled to the Higgs h(x) through

interactions which respect the Z2 symmetry s→ −s. The renormalized potential for

this theory can be written as

U({h, s}) =
m2
h

8v2

(
h2 − v2

)2
+
b4

4
s4 +

1

2
m2
ss

2 +
a2

2
s2
(
h2 − v2

)
(9.58)
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such that ∂hU({v, 0}) = 0, ∂2
hU({v, 0}) = m2

h and ∂2
sU({v, 0}) = m2

s. We require

m2
s − a2 v

2 > 0 and 2a2 + b4 +
m2
h

2v2
> 0 (9.59)

to ensure 〈s〉 = 0. This model, known as the Z2xSM, has been previously studied

in order to determine the viability of s as a dark matter candidate (108; 186–191).

We will not restrict ourselves to this scenario, but instead treat the dark matter as a

separate sector. The role of s is simply to modify the PT dynamics (107; 110; 112;

117; 118)7.

Since this model possesses a greater parametric freedom than the SM, we can

attempt to verify the relationship Eq. (9.57), derived in the previous section, which

relates c1ε1 ∼ c2/λeff . This is accomplished by first mapping the parameters of the

Z2xSM to c and λeff , and second by performing a parameter scan while calculating

c1ε1. We obtain c and λeff by calculating the thermal effective potential as described

in the previous section (see also Appendix 9.F). If we assume that the quanta of s(x)

are light with respect to the temperature, we can then extract c and λeff by matching

the effective potential to Eq. (9.53). Doing so yields the expressions

c = cSM +
a2

24
(9.60)

λeff = λSM − a2
2

32π2
ψ

(
a2v

2

m2
S

)
(9.61)

ψ(x) ≡ 3− 2

x
− 2

(
1− 2

x
+

1

x2

)
log [1− x] (9.62)

where the terms containing a2 arise from 1-loop diagrams with an s-particle in the

loop, and the function ψ varies from ψ(0) = 0 to ψ(1) = 1. As a result of the

minus sign in Eq. (9.61), there is an upper bound a2 . 5 given by the constraint

λeff > 0. Now we can see the impact of the singlet field on the PT. For a2 > 0,

7See also (99–101; 114) for PT studies of the similar singlet Majoron model and (98; 102; 104)
for the complex singlet.
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the parameter c is slightly larger and λeff is slightly smaller than in the SM. Recall

that the PT temperature, given by Eq. (9.55), scales like T 2
PT ∼ λeff/c. Hence, the

singlet field lowers the PT temperature and makes the CC energy density relatively

more significant, which causes the relic abundance shift to be greater.

To verify these analytic arguments, we calculate the PT temperature and c1ε1

numerically over a region of the theory space. We allow m2
h and a2 to vary in the

ranges m2
h ∈ [(50 GeV)2, (300 GeV)2] and a2 ∈ [−0.1, 4.0], and we fix b4 = 0.25 and

m2
s = (500 GeV)2. The range for mh is chosen to prevent the Higgs from becoming

unacceptably light8, while the range for a2 is chosen to satisfy Eq. (9.59) and to

avoid the unitarity bound. We map m2
h and a2 to c and λeff using Eqs. (9.60) and

(9.61). In Figure 9.3, we have plotted the contribution to δnX(t0) from the CC effect

(c1ε1) over the c2/λeff–mh plane. This figure shows that the CC effect grows with

increasing c2/λeff and decreasing mh, as we anticipated in Eq. (9.57). The largest

value of c1ε1 is approximately 1.3× 10−3, which is only about 40% larger than in the

SM. The insignificant enhancement can be understood by observing that although

a2 > 0 tends to decrease c, given by Eq. (9.60), its contribution is suppressed by

a factor of 24. Since cSM ≈ 0.18 we run into the unitarity bound on a2 before it

contributes significantly to c. If we were to add N light singlet fields instead of one,

the contribution to c would be Na2/24, which can be order one even for small a2.

We have not take this approach here because the N additional relativistic degrees of

freedom would have a larger effect on the relic abundance by increasing the energy

density of radiation than through the CC. We have also plotted c1ε1 for three different

values of the WIMP mass from 4 to 8 TeV. This narrow range of viable parameters

illustrates the tuning that is required to ensure that the PT and freeze out occur
8Mixing with the singlet does not significantly reduce the LEP Higgs search bound (108). More-

over, for small mh the electroweak breaking minimum may become metastable (117; 186), and the
PT becomes first order (90). Nevertheless, we have allowed mh to be as small as 50 GeV to illustrate
the parametric dependence of the CC effect.
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Figure 9.3: The CC contribution to δnX(t0), given by the c1ε1 term of Eq. (9.47),
plotted over the c2/λeff–mh plane for three values of mX . The black line represents
the SM (a2 = 0).

at the same time. If the WIMP mass is too large, freeze out occurs too long before

the PT when the CC energy density was subdominant to the energy density of the

plasma. As the WIMP mass is lowered, the delay between freeze out and the PT

decreases and c1ε1 grows. If the WIMP mass is too small, freeze out occurs after the

PT when the CC energy density has been converted into radiation. This is the case

in the mh & 200 region of the mX = 4 TeV plot.

The examples of the SM and the Z2xSM demonstrate that it is challenging to

obtain c1ε1 larger than O (10−3). Our discussion at the end of Section 9.4 and simple

dimensional analysis illustrate why this is the case. In that calculation we obtained

Eq. (9.57) which can be written schematically as c1ε1 ∼ ρex/T
4
PT ∼ c2/λeff . Note that

the mass scale v, which controls both ρex and TPT , cancels out in the ratio ρex/T
4
PT .

In light of Eq. (9.57) we propose that the CC effect can be enhanced by working in

a model that has multiple mass scales if there exists a hierarchy between them. We

will explore different applications in the remainder of this section.
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Generic Single Scalar Model

In this section we calculate the CC contribution to the relic abundance shift in a

generic single scalar model. Although extensions of the Standard Model typically

contain multiple scalar degrees of freedom related by symmetries, the thermal dy-

namics (supercooling and reheating) of a symmetry breaking PT can often be mod-

eled by a single scalar degree of freedom which does not display the symmetries of

the full theory (111; 177). With this motivation in mind, we consider the theory of a

real scalar field ϕ(x) coupled to N Dirac fields ψi(x). The scalar field will experience

a first order PT during which dark matter freezes out, and the light fermions will

compose the hot thermal bath. Using this construction, we will be able to calculate

the CC effect, which is related to the non-thermal energy density and the amount of

supercooling, but we cannot estimate the entropy and decoupling effects since these

depends on how ϕ is coupled to the full theory. Therefore, in this section we assume

no decoupling occurs near the time of the PT and that the number of relativistic

species is fixed to gE/S ≈ 106.75, the relativistic SM background. Let the action be

given by

S[ϕ] =

ˆ
d4x

{
1

2
(∂ϕ)2 − U(ϕ)−

N∑
i=1

ψ̄i
(
i/∂ −mi − hiϕ

)
ψi + Lct

}
(9.63)

where

U(ϕ) = ρex +
1

2
M2ϕ2 − Eϕ3 +

λ

4
ϕ4 (9.64)

is the renormalized potential and Lct is the counterterm Lagrangian. Note that

we have eliminated the tadpole term in U(ϕ) by defining the origin in field space

appropriately, but there is still a counterterm for the tadpole in Lct. As discussed in

Section 9.4, we expect that there will be a greater impact on the dark matter relic

abundance if freeze out occurs during a first order PT with large supercooling. Hence,
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we would like to understand what region of parameter space yields a PT of this kind.

In particular, we expect that large supercooling can be obtained if the theory S[ϕ]

possesses two vacua, which will correspond to the low- and high-temperature phases,

and that the vacua are separated by a barrier (106; 115; 118).

We can determine the vacuum structure by identifying the minima of the effec-

tive potential, which is calculated in Appendix 9.F. Provided that the non-thermal

radiative corrections are negligible, the effective potential can be approximated as

Veff(ϕc, T = 0) ≈ U(ϕc). It is convenient to eliminate M2 for the dimensionless

quantity α0 ≡ λM2/2E2 while assuming λE 6= 0. We now see that the parameter α0

controls the shape of the potential U(ϕ): for α0 = 1, the potential has two degenerate

minima at ϕc = 0 and ϕc = v|α0=1 where

v =
3E
2λ

(
1 +

√
1− 8

9
α0

)
; (9.65)

for α0 > 1, ϕc = 0 is the global minimum; for 0 < α0 < 1, ϕc = v is the global

minimum; and for α0 < 0, ϕc = 0 becomes a maximum (see also Figure 9.4). There-

fore, provided that we take 0 . α0 . 1, the theory possesses a metastable vacuum in

which ϕc ≈ 0 and a stable vacuum in which ϕc ≈ v. In the stable vacuum, we impose

the tuning condition Veff(v, 0) = 0 to solve for

ρex ≈ E
4

8λ3

[
27− 36α0 + 8α2

0 + 27

(
1− 8

9
α0

)3/2
]

+O (~) , (9.66)

which represents the CC energy density prior to the PT. Finally, the barrier separating

the two vacua has a “height”

Vbarrier = U(barrier)− U(0) ≈ 4E4α3
0

27λ3

[
1 +O (α0)

]
(9.67)

relative to the metastable vacuum. Due to the factor of α3
0, the barrier vanishes

rapidly as α0 approaches zero. This is illustrated by the α0 = 0.5 curve of Figure 9.4

in which the barrier is already almost imperceptible to the eye.
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Figure 9.4: An illustration of the α0 dependance of the potential given by Eq. (9.64).
The curves represent α0 = −2 (red), α0 = 0 (green), α0 = 0.5 (blue), α0 = 1 (purple),
and α0 = 9/8 (black).

Having established that this theory admits two vacua, we will study the PT us-

ing the thermal effective potential. Although the numerical calculations use the

full effective potential, we can gain some intuition by making the high temperature

approximation. We assume that the ψi-particles are light with respect to the tem-

perature of the thermal bath, m2
i � T 2, and that the ϕ-particles are heavy. In this

limit, then the one-loop thermal effective potential may be approximated by the high

temperature expansion

Veff(ϕc, T ) ≈ U(ϕc) + c T 2ϕ2
c +O

(
m2
i /T

2
)

+O (~) (9.68)

where c ≈ ∑N
i=1 h

2
i /12 is related to the couplings between ϕ and ψi. Just as we

introduced α0 to reparametrize Veff(ϕc, 0), we can now introduce

α(T ) = α0

(
1 +

λc

E2α0

T 2

)
≥ α0 (9.69)

to parameterize Veff(ϕc, T ). This definition is particularly convenient, because now

Figure 9.4 also illustrates the temperature dependence of Veff(ϕc, T ) (up to ϕc-independent

terms) if one replaces α0 with α(T ). We obtain the expectation values of ϕ in the
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“symmetric” and “broken” phases, v(s)(T ) and v(b)(T ), by solving (∂/∂ϕc)Veff(ϕc, T ) =

0 subject to the boundary conditions v(b)(0) = v and v(s)(0) = 0. We use the terms

“symmetric” and “broken,” eventhough S[ϕ] does not display a symmetry in order to

connect with the notation of Section 9.2.

Provided that this model experiences a first order PT, the CC’s effect on the relic

abundance will depend sensitively on the amount of supercooling at the PT (112).

This is seen by the factor of (Tf )
4 ≈ (T−PT )4 in Eq. (9.26a). Therefore, we will begin

by investigating the parametric dependence of the amount of supercooling, and we

will see that it has an interesting dependance on the parameter α0. The supercooling

stage begins when the temperature drops below

Tc ≈ E
√

1− α0

λ c
, (9.70)

defined by Eq. (9.2), or equivalently when α(Tc) = 1. During supercooling, the

universe remains in the metastable, symmetric phase until bubbles of the broken

phase begin to nucleate. Bubble nucleation is a non-perturbative process (343), and

it occurs at a rate per unit volume which carries the standard exponential suppression

Γ ∼ T 4exp
[−S(3)/T

]
, where S(3)(T ) is the action of the O(3) symmetric bounce

(202; 204; 205). Provided that Veff(ϕc, T ) can be expressed in the form of Eq. (9.68),

then S(3) is well approximated by the empirical formula (307)

S(3)

T
≈ 13.7

E
T

(α
λ

)3/2

f(α) (9.71)

f(α) ≡ 1 +
α

4

(
1 +

2.4

1− α +
0.26

(1− α)2

)
(9.72)

with α = α(T ). Bubbles form rapidly once the bubble nucleation rate averaged over

a Hubble volume ΓH−3 is comparable to the Hubble expansion rate H ∼ T 2/Mp. For

an electroweak scale PT, this equality occurs when S(3)/T drops below approximately

140 (98; 206). Therefore, we can determine the amount of supercooling by solving

S(3)/T ≈ 140 for T = T−PT and comparing this temperature with Tc.
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Considerations of the equation S(3)/T ≈ 140 demonstrate that the nature of the

PT is strongly dependent upon the vacuum structure of the theory, as parametrized

by α0. We will discuss the two cases α0 > 0 and α0 < 0 separately. For α0 > 0, the

vacuum with ϕc = 0 remains metastable as T → 0. This implies that T−PT can be

arbitrarily low, and in this limit of large supercooling the CC effect may be arbitrarily

large. However, in this case the barrier in Veff(ϕc, T ) persists as T → 0, and it is

possible that the PT does not occur at any temperature, but instead that the universe

becomes trapped in the metastable vacuum. This follows from the observation that

for α0 > 0, S(3)/T has a minimum at finite T : at low temperatures S(3)/T grows

due to the explicit factor of T in the denominator, and at high temperatures f(α)

diverges as T approaches Tc and α → 1. For α0 . 1 the inequality S(3)/T . 140

is not satisfied at any temperature, and the PT does not occur9. Therefore, if we

require that the PT must occur via thermal bubble nucleation, we obtain an upper

bound on α0. On the other hand, for the case α0 < 0, the PT necessarily occurs at a

temperature T−PT > 0, since the symmetric phase becomes perturbatively unstable at

low temperatures. This latter case has the drawback that supercooling cannot last

an arbitrarily long time.

Assuming that the PT does occur, we can quantify the amount of supercooling

using

δSC = 1− T−PT
Tc

, (9.73)

which takes values between 0 and 1. Parametrizing the temperature dependance with

9At least, the PT does not occur as a thermal process, although it may still occur as a quantum
tunneling process (204). However, since quantum tunneling typically proceeds on a longer time
scale, the universe could enter an inflationary phase, which leads to a cosmological history that
deviates significantly from the perturbations we consider in Section 9.3.



236

àà

-0.4 -0.2 0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

Α0

∆
SC

Λ � c = 0.04

Λ � c = 0.20

Λ � c = 1.00

Λ � c = 5.00

Figure 9.5: The amount by which the PT temperature drops below the critical
temperature, quantified by δSC , is plotted against the parameter α0 which controls
the height of the barrier. The curves represent λ/

√
c = 0.04 (purple), 0.20 (green),

1.00 (blue), and 5.00 (red). The square indicates the especially tuned parameter set
given by Eq. (9.78).

δSC , we can rewrite Eq. (9.71) as

S(3)

T

∣∣∣∣
T−PT

≈ 13.7

(
λ√
c

)−1
α3/2

√
1− α0

f(α)

1− δSC (9.74)

α = α0 + (1− α0)(1− δSC)2 , (9.75)

which is now only a function of α0, λ/
√
c, and δSC . Of course, this expression is

approximate, since we assumed Veff took the form of Eq. (9.68), but it suggests that

the amount of supercooling will depend most sensitively on α0 and λ/
√
c. Now using

the full thermal effective potential, we impose S(3)/T
∣∣
T−PT

= 140 and solve for δSC ,

which we have plotted in Figure 9.5 for various parameter sets:

E = 5 GeV λ = {0.004, 0.02, 0.10, 0.50}

N = 1 m = 10 GeV h = 0.346 c ≈ 0.01 . (9.76)

The supercooling grows with increasing α0 and decreasing λ/
√
c as the barrier height

and bounce action are made larger. The amount of supercooling is typically δSC =
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Figure 9.6: The CC effect on the relic abundance c1ε1 plotted against α0 for mX = 17
TeV (solid), 6 TeV (dashed), and 0.3 TeV (dotted), and for four values of λ/

√
c as

indicated by the shape used to denote the endpoint. For the contours which are
absent, freeze out occurs after the PT when the CC is not EW-scale.

O (0.5) which implies T−PT = O (Tc/2). Above a finite value of α0 (indicated by a

dot) the barrier becomes insurmountably large, and the universe becomes trapped in

the metastable vaccum. The largest amount of supercooling is achieved for λ/
√
c�

1 and 0 < α0 � 1. In this parameter regime the CC is large (see Eq. (9.66)),

and the metastable vacuum is separated from the true vacuum by small barrier (see

Eq. (9.67)).

Having come to understand the parametric dependance of the amount of super-

cooling as ϕ experiences a first order PT, we turn our attention back to calculating

the impact of such a PT on dark matter freeze out. Using Eq. (9.49) we calculate the

effect of the CC on the relic abundance shift and present the results in Figure 9.6.

We have chosen the same parameters as indicated in Eq. (9.76) and have taken

mX = {0.3, 6.0, 17} TeV gX = 2 〈σv〉 = 2.33× 10−39cm−2 (9.77)

as well. The figure illustrates that is possible to achieve c1ε1 = O (0.01) in the tuned

parametric regime where λ/
√
c is small and α0 approaches its maximally allowed
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value. Some of the curves are absent for the smaller WIMP masses. This occurs

because as mX is lowered, the temperature of freeze out decreases as well. In the case

that λ/
√
c is small and the PT temperature is high (see Eq. (9.70)), freeze out will

occur after the PT for smallmX . This statement about the relative times of freeze out

and the PT also explains why c1ε1 is insensitive to α0 for certain parameter sets (e.g.,

λ/
√
c = 1, mX = 17 TeV) and very sensitive for others (e.g., λ/

√
c = 5, mX = 0.3

TeV). In the first case, freeze out occurs long before the PT while in the latter case,

freeze out occurs just before and during the PT and there is a large impact on the

relic abundance.

To conclude this section, we present a particular tuned parameter set which yields

c1ε1 = O (1). Suppose that we have only one fermion ψ and the parameters of S[ϕ]

are given by

λ = 5.4× 10−4 h = 0.1

E = 0.27 GeV M2 = (1.89 GeV)2 m = 10 GeV (9.78)

which leads to

v ≈ 1497 GeV α0 ≈ 0.007

c ≈ 8.3× 10−4 λ√
c
≈ 0.018 (9.79)

and PT temperatures

Tc ≈ 374 GeV T−PT ≈ 16 GeV δSC ≈ 0.96 . (9.80)

This parameter set is represented on Figure 9.5 by a square marker. In the dark

matter sector we take

mX = 600 GeV gX = 2 〈σv〉 = 2.33× 10−39cm−2 (9.81)
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such that

Tf ≈ 34 GeV and δ ≈ 1.12 . (9.82)

Using these values we can estimate the CC effect as

c1ε1 ≈ 6.1 (9.83)

Note that the potential obtained with these parameters has a very shallow metastable

vacuum at ϕc ≈ 0, separated from the global vacuum at ϕc ≈ v by a very small barrier.

Singlet Extension with First Order PT

In this section, we consider a generalization of the SM extension studied in Section

9.4, in which we do not impose a Z2 symmetry on the singlet field s(x). This leads

to model known as the xSM (108; 186). The xSM admits a first order electroweak

PT (103; 105–107; 109; 111; 115; 116; 118), and we seek to compute the effect on the

relic abundance due to the effective CC at the PT. As discussed in Section 9.4, the

CC effect grows with the duration of supercooling. With this in mind, we will focus

on a region of parameter space in which we expect to have first order PTs with large

supercooling. Supercooling is an example of the hierarchy of mass scales which we

argued in Section 9.4 helps to obtain a larger CC effect.

We generalize the Z2xSM potential Eq. (9.58) by relaxing the Z2 symmetry. This

allows us to write down the three additional operators sh2, s3, and s, but we eliminate

the tadpole by an appropriate shift in the field space. We are left with the xSM

renormalized potential

U({h, s}) =
m2
h

8v2

(
h2 − v2

)2
+
b4

4
s4 +

1

2
m2
ss

2

+
b3

3
s3 +

1

2
s
(
h2 − v2

)
(a1 + a2s) . (9.84)
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The thermal effective potential Veff is calculated in Appendix 9.F. With this parametriza-

tion, Veff({hc, sc} , T = 0) has a minimum at {hc, sc} = {v, 0} where Veff({v, 0} , T =

0) = 0 and the curvatures in the h and s directions are m2
h and m2

s respectively. The

Higgs vacuum expectation value is fixed by electroweak constraints, but the six real

numbers {m2
h,m

2
s, b4, b3, a1, a2} are free parameters.

As in the previous section, we compute the bounce action S(3) in order to estimate

the PT temperature T−PT by solving S(3)/T ≈ 140. This calculation is made more

challenging by the presence of the additional field direction. To obtain S(3) we make

the approximation that the PT occurs along the trajectory s̄(hc) satisfying

dU({hc, sc} , 0)

ds

∣∣∣∣
s̄c

= 0 and s̄c(v) = 0 , (9.85)

which reduces the problem back to solving for the bounce in one dimension. In the

region of parameter space on which we are focused, this approximation gives T−PT

to within a few percent (see Appendix 9.G for details). Note that the empirical

formula Eq. (9.71) cannot be applied here, because the effective potential is not well

approximated by the form Eq. (9.68).

We have performed a parameter space scan and searched for a region with large

corrections to the relic abundance from the CC. In the scan we fix the parame-

ters b3 = −20 GeV, b4 = 0.2, a1 = −25 GeV, and a2 = 0.2, and we vary m2
h ∈

[(65 GeV)2, (170 GeV)2] andm2
S ∈ [(40 GeV)2, (140 GeV)2]. In order to connect with

the intuition garnered from the single field model of Section 9.4, we have mapped the

xSM parameter space to a single parameter M2. This is accomplished by restricting

to the trajectory given by Eq. (9.85) and defining

M2 ≡ d

dx2
Veff ({hc(x), s̄c(hc(x))} , T = 0)

∣∣∣∣
x=0

(9.86)

where x parametrizes the position along the curve s̄c(h). The parameter M2 controls

the stability of the electroweak preserving vacuum: if M2 > 0 the symmetric phase
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Figure 9.7: The fractional deviation in the relic abundance of a 2 TeV WIMP due
to the CC at the xSM electroweak PT. The parameter M2 controls the curvature of
the zero temperature effective potential along the PT trajectory. For M2 . 0 large
supercooling enhances the CC’s effect. For M2 & 0 the PT does not occur, and for
M2 . −2500 GeV2 the PT occurs before freeze out leading to a suppression of the
relic abundance shift.

remains metastable as T → 0, whereas if M2 < 0 the symmetric phase becomes

perturbatively unstable at some finite temperature T0 > 0. In this way, the potential

depends on the parameter M2 in the same way as the parameter α0 from Section

9.4. We cannot map the xSM parameter space to α0 directly because the effective

potential along the trajectory Eq. (9.85) cannot be expressed in the form of Eq. (9.68).

In Figure 9.7, we have plotted c1ε1, given by Eq. (9.49), by projecting onto the

M2 axis and choosing mX = 2 TeV. For M2 . 0 the CC has an O (1) impact on

the relic abundance. In this region, the supercooling is maximal10 and T−PT & T0 =

O (few GeV). For smaller values of M2, the CC effect rapidly decreases and drops

below 1% for M2 . 500 GeV2. Therefore, in order for the CC to have a significant

impact on the relic abundance, the parameters of the scalar sector must be tuned into

a narrow band where supercooling is large. In Figure 9.8, we have allowed the WIMP

10A recent phase transition analysis of this model (118) also concluded that the order parameter
is enhanced in the limit in which the potential possesses a flat direction.
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Figure 9.8: This figure shows a subset of Figure 9.7 as well as the CC effect for a 500
GeV WIMP represented by squares. As the WIMP mass is reduced, freeze out occurs
at a lower temperature. This increases c1ε1 for M2 . 0 where the PT temperature is
low, but excludes points M2 . −100 GeV2 where freeze out occurs after the PT.

mass to decrease to 500 GeV. This change lowers the freeze out temperature, reduces

the delay δ between freeze out and the PT, and therefore increases the CC effect.

However, this increase is small compared with the amount by which c1ε1 varies with

M2 in the M2 . 0 region. For smaller values of M2, the PT temperature is higher

and for the 500 GeV WIMP, freeze out occurs after the PT causing the CC effect to

be suppressed. These calculations lead us to the conclusion that the optimal region of

parameter space is one in which the symmetric phase becomes perturbatively unstable

at a low temperature and the effective potential is concave at zero temperature. We

were unable to find any points with M2 > 0 in which the PT completes.
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The following is a benchmark parameter point:

{a1, b3,mh,ms,mX} = {−25,−20, 128, 91.1, 2000}GeV,

{a2, b4} = {0.2, 0.2} ,

M2 = −47.7 GeV2,{
Tf , Tc, T

+
PT , T

−
PT , T0

}
= {107, 70.7, 30.0, 13.7, 12.7} GeV,

c1ε1 = 0.390,

ρex = (69.7 GeV)4 . (9.87)

The scalar masses are given by the eigenvalues of Eq. (9.141) which are

MH = 141 GeV , {0.78, 0.22}

MS = 70.7 GeV , {0.22, 0.78} (9.88)

with the respective squared eigenvectors indicated to the right.

9.5 Summary of the Chapter

We have considered a way to probe the hypothesis that the present-day, minute CC

energy density is the result of a tuning between UV contributions of unspecified origin

and IR contributions that arise from cosmological PTs. Prior to the electroweak

scale PT, the UV contribution would have been partially uncancelled leaving an

O (M4
W ) energy density. It is possible to probe this energy density with the physics

of dark matter freeze out provided that the dark matter mass is greater than a few

hundred GeV. The dark matter relic abundance is increased due to the effective CC’s

contribution to the Hubble expansion rate during freeze out.

The notion of how an effective vacuum energy (which is Lorentz invariant in

the flat space limit) can depend on temperature (which manifestly breaks Lorentz
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invariance) has been clarified. The temperature is an approximation to the mixed

vacua, inhomogeneous states whose occupation is very probable near the time of the

PT. This leads to a spatially averaged equation of state that is expressed in terms

of an effective vacuum energy density that is somewhere between the false and true

vacuum energy densities. The true inhomogeneous field configurations may also lead

to additional dark matter freeze out effects that have not been investigated in this

paper. This would be an interesting avenue for future investigations.

To provide a generic prediction associated with the established physics and to

provide the computational details missing in (177), we have analyzed the Standard

Model with a 115 GeV Higgs and a single WIMP dark matter degree of freedom,

assuming that the WIMP interaction effects on the dynamics of the PT is negligi-

ble. We have found that the CC causes an O (10−3) fractional increase in the relic

abundance of a 4 TeV WIMPs. This is typical of non-first order PTs.

We have also investigated minimal singlet extensions of the SM and searched for

parametric regimes in which the CC effect on the relic abundance is enhanced. We

find that a low temperature, first order PT with large supercooling is the optimal

scenario for maximizing the CC effect. In this limit, the effective CC energy density’s

contribution to the Hubble expansion rate can be comparable to the radiation energy

density, and the CC effect can become order one. In the context of a generic single

field model, we find that reaching this limit requires a tuning of the scalar sector

parameters and the WIMP mass. Without appropriate tuning, either 1) the PT will

not occur at all by thermal bubble nucleation, 2) the PT will occur before freeze out

(when the dark matter is still in equilibrium and the CC effect is suppressed), or 3)

the CC effect will not be large.

As a specific example, we have considered the xSM, an extension of the SM that

adds a real scalar singlet. In that model, we find that the CC may increase the
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relic abundance by as much as a factor of order few. To maximize the CC effect,

the scalar parameters must be tuned into a narrow band where fluctuations around

the symmetric “vacuum” are slightly tachyonic, which allow for a long period of

supercooling. The magnitude of the CC effect is relatively insensitive to the WIMP

mass provided that the latter is sufficiently large such that freeze out begins before

the PT occurs.

The tests of CC fine tuning hypothesis are notoriously rare. In the context of

a dark matter probe, it is encouraging that parametric possibilities do exist within

simple extensions of the SM. It would be interesting to further advance this explo-

ration by computing the dark matter implications of modified gravity/self-tuning

models and comparing the results with those of this paper. Furthermore, it would be

interesting to cross correlate other astrophysical tests of those modified gravity/self-

tuning models with the dark matter predictions made within those models. Note also

that there are other probes of the cosmological constant during a PT such as gravity

wave probes (167) that will need more development as the gravity wave spectrum

calculational technology improves (159; 161; 164).
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9.A Appendix A. Renormalization Scale

Any measurable quantity is independent of the renormalization scale. Hence, one

should not expect that the running of the cosmological constant parameter should

affect any physical observable. Indeed, the running of the other parameters in the

Lagrangian will compensate the running of the CC parameter to yield the same T00

governing the expansion rate H which can be measured for example by a test photon

redshift. The renormalization scheme and scale does however determine the manner

in which radiative corrections play a role. Furthermore, in any practical computa-

tions involving finite order truncation in ~ expansion, there is a renormalization scale

dependence to next order in the perturbation power unless one is able to explicitly

keep exactly the terms of the relevant order in ~.

Given that we are computing homogeneous quantities, one might also naively

worry that there is a coarse graining requirement down to length scales of H−1. To

see why this is not the case and to see what renormalization scales would minimize

the radiative correction dependence, consider the effective action generating the grav-

itational equation of motion for the metric g:

eiSeff [g] = eiSEH [g]

ˆ
DΛφ e

iSM [g,φ] (9.89)

where SEH is the Einstein-Hilbert action, the matter field schematically written as

φ satisfies the appropriate boundary conditions relevant for the matter distribution,

and we assume a renormalization scale at Λ. Since we are going to resolve the one-

particle thermal states with masses of order the freeze out temperature Tf , we should

have Λ & Tf . Semiclassically expanding about the classical path φ0 on the right hand

side of Eq. (9.89), we have

eiSeff [g] = ei(SEH [g]+SM [g,φ0])N
ˆ
DΛ δφ e

i
´
d4x

δφ2(x)
2

δ2SM [g,φ]

δφ2(x)
|φ=φ0

+... (9.90)
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where the path integral will have the usual perturbative renormalization. Hence, one

can consider the physical observables to be defined through

Tµν(y) =
2√
g(y)

δ

δgµν(y)

(
SM [g, φ0]

− i ln

{
N
ˆ
DΛ δφexp

[
i

ˆ
d4x

δφ2(x)

2

δ2SM [g, φ]

δφ2(x)
|φ=φ0 + . . .

]})
.

(9.91)

Note that in practice, we are expanding gµν perturbatively about a homogeneous and

isotropic FRW background before doing the path integral. Hence, the inhomogeneities

can be computed using classical perturbation theory and the renormalization scale

need not be at Λ = HPT even though it is at length scales longer than H−1
PT for which

homogeneity and isotropy are typically a good assumptions.

9.B Appendix B. Derivation of Eq. (9.9)

Start with the thermally averaged Boltzmann equation for nX(t)

1

a3

d

dt

(
nXa

3
)

= −〈σv〉 (n2
X − neq 2

X

)
(9.92)

which says that nX tracks the equilibrium number density neq
X until freeze out occurs

at t = tf . Long after freeze out, the equilibrium term can be neglected, and the

equation asymptotically approaches

d

dt

(
nXa

3
)

= −〈σv〉 (nXa3
)2 1

a3
. (9.93)

One can solve for nX(t0) by integrating

nX(t0) =
nX(tf )

(
af
a0

)3

1 + nX(tf )
(
af
a0

)3 ´ t0
tf
dt 〈σv〉 a3

0

a3

. (9.94)
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The integral in the denominator accounts for residual annihilations of dark matter

particles after freeze out. The freeze out time tf is not fundamental but instead an

artifact of defining when the solution deviates “significantly” from the equilibrium dis-

tribution. For temperatures away from resonances and thresholds, one can typically

parameterize 〈σv〉 as

〈σv〉 = ã+ b̃
T

mX

, (9.95)

where T is the temperature and mX is the mass of the dark matter. To further

reduce Eq. (9.94) we apply Eq. (9.31), which implicitly defines tf , and approximate

nX(tf ) ≈ neq
X (tf ). Then, the denominator of Eq. (9.94) satisfies

nX(tf )

(
af
a0

)3 ˆ t0

tf

dt 〈σv〉 a
3
0

a3
≈ mX

Tf

(
ã+ b̃

2

Tf
mX

ã+ b̃ T
mX

)
� 1 (9.96)

for Tf ≈ mX/20 the freeze out temperature. Using this approximation we can express

the relic abundance as

nX(t0) =

(ˆ ln a0/af

0

d ln(a/af )

H
〈σv〉a

3
0

a3

)−1

(9.97)

after also applying dt = H−1 d ln a.

9.C Appendix C. Difference Between Entropy and

Energy Degrees of Freedom

In this appendix, we show that as the universe expands adiabatically during radiation

domination, the relationship gE(T ) = gS(T ) hold iff

d ln gE
d lnT

=
d ln gS
d lnT

= 0 (9.98)

where gE is the effective number of degrees of freedom for the thermal energy density

and gS is the effective number of degrees of freedom for the entropy density. We also

justify an ansatz that can be used to relate gE and gS.
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Assume that the CC energy density is negligible so that ρ ≈ ρR, which is the case

sufficiently far before or after the PT. The entropy and energy densities of a gas are

related by Eq. (9.1c), which can be written as

ρ+ P − T s = 0 (9.99)

where the pressure P of the gas is given by P (T ) = −F(T ). The functions gE and gS

representing the number of relativistic degrees of freedom were defined by Eq. (9.15)

and Eq. (9.16) and are reproduced here for convenience:

ρ =
π2

30
gE(T )T 4 and s =

2π2

45
gS(T )T 3 . (9.100)

As the universe expands, energy conservation is enforced by

d
(
ρa3
)

+ P da3 = 0 . (9.101)

Using Eq. (9.99) and Eq. (9.100) this becomes

d ln gE(T )

d ln a
+ 4

d lnT

d ln a
+ 4

gS
gE

= 0 , (9.102)

which can be resolved as

d lnT

d ln a
=− gS

gE

[
1 +

1

4

d ln gE(T )

d lnT

]−1

. (9.103)

Next, impose adiabaticity d(sa3)/da = 0 by first using Eq. (9.100) to write

d ln(s a3)

d ln a
=−

[
d ln gS
d lnT

+ 3

]
gS
gE

[
1 +

1

4

d ln gE(T )

d lnT

]−1

+ 3 , (9.104)

and then setting this to zero and solving to find

gS
gE

= 1 +
1

4

d ln gE
d lnT

− 1

3

d ln gS
d lnT

. (9.105)

This equation implies gE = gS iff

d ln gE
d lnT

=
d ln gS
d lnT

= 0 (9.106)
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as claimed.

To obtain some intuition for this theorem consider the SM electroweak PT. Be-

fore the PT, the entire spectrum is massless and Eq. (9.106) is satisfied exactly so

gE(T ) = gS(T ) = const for T > TPT . After the PT, we can estimate how much

difference between gS and gE is required for self-consistency and to justify an in-

tuitive parameterization, by considering a hypothetical situation in which one can

approximate

gE/S(T ) = gE/S(Ti) [T/Ti]
−12K (9.107)

where K is a constant and Ti is an initial condition temperature. Then, one can solve

Eq. (9.105) as

gS(T )

gE(T )
=

1− 3K

1− 4K
. (9.108)

Hence, if 0 < K � 1, we have a situation in which gE(T ) decreases slowly as a function

of time while satisfying both entropy conservation and gS(T ) ≈ gE(T ). Presumably,

K can be viewed as a leading term in a Taylor expansion regarding gS/gE. Hence,

we will approximate

gS(T ) ≈ (1 +K) gE(T ) (9.109)

even though we are not necessarily making the assumption of Eq. (9.107) throughout

the paper.

9.D Appendix D. Derivation of T+
PT , ∆s, and T (a)

To find T (a), we start with the temperature before the PT T−PT and impose energy

conservation to solve for the temperature after the PT T+
PT . This allows us to calculate
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∆s and ε2 in terms of ∆ρex. Then, we require the entropy per comoving volume

S = s a3 to be conserved before and after the PT to find T (a).

Assuming that there is a negligible change in a during reheating, we can impose

energy conservation at aPT . Using Eqs. (9.6), (9.14), and (9.15), energy conservation

can be written as

π2

30
g

(s)
E

(
T−PT

) (
T−PT

)4
+ ∆ρex =

π2

30
g

(b)
E

(
T+
PT

) (
T+
PT

)4
, (9.110)

which implicitly defines T+
PT . This equation can be solved analytically by expanding

T+
PT = T−PT (1 + ∆τ) and linearizing in ∆τ along with other small quantities. Using

Eq. (9.21) to expand g(s)
E (T ) around g(s)

E (Tf ), Eq. (9.110) becomes

π2

30

[
lim
ε→0

h(aPT + ε)− h(aPT − ε)
] (
T−PT

)4
+ ∆ρex

≈ 4
π2

30
g

(s)
E (Tf )

(
T−PT

)4
∆τ . (9.111)

where we have dropped higher order terms. Using Eq. (9.22), the term in brackets is

(7/8)NPT . Finally, the equation can be solved for ∆τ = T+
PT/T

−
PT − 1 to obtain

T+
PT ≈ T−PT

[
1 +

1

4
ε31 +

1

4

∆ρex

π2

30
g

(s)
E (Tf ) (T−PT )4

]
(9.112)

where ε31 is given by Eq. (9.26c). As expected, the energy released ∆ρex > 0 controls

the reheating from T−PT to T+
PT . Additionally, the reheating is larger when more

particles non-adiabatically decouple (larger ε31), because the latent heat is distributed

over fewer degrees of freedom after the PT.

Next we can calculate the entropy density increase at the PT given by

∆s ≡ s(b)(T+
PT )− s(s)(T−PT ) (9.113)

=
2π2

45

{
g

(b)
S (T+

PT )(T+
PT )3 − g(s)

S (T−PT )(T−PT )3
}
. (9.114)
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Once again we will linearize in the perturbation by expanding gS using Eq. (9.21)

and writing T+
PT using Eq. (9.112). This gives

∆s ≈ 2π2

45

{
− 1

g
(s)
S (Tf )

[
lim
ε→0

h(aPT + ε)− h(aPT − ε)
]

+ 3∆τ

}
g

(s)
S (Tf )

(
T−PT

)3

(9.115)

≈ 2π2

45

{
−g

(s)
E (Tf )

g
(s)
S (Tf )

ε31 + 3

[
1

4
ε31 +

1

4

∆ρex

π2

30
g

(s)
E (Tf )(T

−
PT )4

]}
g

(s)
S (Tf )

(
T−PT

)3 (9.116)

As discussed in Section 9.C, we can approximate g(s)
S (Tf ) ≈ g

(s)
E (Tf ). Then finally ∆s

becomes

∆s ≈ 2π2

45
g

(s)
S (Tf )

(
T−PT

)3

[
−1

4
ε31 +

1

4

∆ρex

π2

30
g

(s)
E (Tf )(T

−
PT )4

]
. (9.117)

Using Eq. (9.26b) and noting T−PT aPT = Tf af up to higher order terms, we also

obtain

ε2 ≈ −1

4
ε31 +

1

4

∆ρex

π2

30
g

(s)
E (Tf )(T

−
PT )4

. (9.118)

Both of these equations illustrate that the entropy increase at the PT is controlled by

the amount of latent heat released and the number of particles that non-adiabatically

decouple.

Finally we will solve the equation of entropy conservation for T (a). The entropy

per comoving volume S = s a3 is conserved excepting the entropy injection at reheat-

ing which is assumed to occur rapidly at aPT . Entropy conservation may be expressed

as

gS(a)T (a)3a3 = g
(s)
S (Tf )T

3
f a

3
f + Θ(a− aPT ) a3

PT

(
2π2

45

)−1

∆s , (9.119)

which implicitly defines T (a). To solve for T we use Eq. (9.21) to expand gS(a) then
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linearize in h and ∆s to obtain

T (a) ≈ Tf
af
a

[
1 +

1

3

h(a)

g
(s)
S (Tf )

+ Θ (a− aPT )
1

3

(
aPT
af

)3
∆s

2π2

45
g

(s)
S (Tf )T 3

f

]
. (9.120)

Further expanding h using Eq. (9.22), approximating gS(Tf ) ≈ gE(Tf ), and applying

Eq. (9.26b) we obtain the final expression,

T (a) ≈ Tf
af
a

[
1 +

1

3
ε32 f(a) + Θ (a− aPT )

1

3
(ε31 + ε2)

]
(9.121)

After the PT, the exotic energy component behaves approximately adiabatically.

9.E Appendix E. Derivation of PT induced change

in the degree of freedom

We begin with the well-known formula for the energy density of a gas of fermions at

temperature T with N dynamical degrees of freedom:

ρ(T ) = N

ˆ
d3p

(2π)3

Ep
1 + eEp/T

. (9.122)

The gas has an effective number of degrees of freedom gE given implicitly by ρ(T ) =

π2

30
gE(T )T 4. We can parameterize the decrease in gE due to the decoupling of the

fermionic gas by writing

gE(T ) = gE(Tf )− 7

8
Nf (a/af ) (9.123)

where

f (a) =

(
7

8

π2

30

)−1 ˆ
d3p

(2π)3
Ep

[
1

T 4
f

1

e
Ep
Tf + 1

− 1

T 4(a)

1

e
Ep
T (a) + 1

]
. (9.124)
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The temperature T = T (a) is given by Eq. (9.121) to leading order in the perturba-

tions εi. Since f already multiplies a small term in Eq. (9.22), we need only keep the

leading factor in Eq. (9.121) which is T = Tf af/a. This lets us write Eq. (9.124) as

f (a) =
8

7

(
30

π2

) ˆ
d3p

(2π)3

Ep
T 4
f

[
1

e
Ep
Tf + 1

− (a/af )
4

e
aEp
afTf + 1

]
. (9.125)

Note that f(a) increases from f(af ) = 0 to f(∞) ≈ 1. Due to the exponential

temperature dependence, the transition to f ≈ 1 occurs at T ≈ mN and is smoothly

steplike over a time scale ∆t ≈ 1/H. In this discussion we have assumed Ep =√
p2 +m2

N with mN constant, that is, we neglect any change in the mass of the

particle as a function of time. This assumption is valid sufficiently far after the

PT such that the scalar field expectation value and field-dependent masses have

approximately stopped varying.

9.F Appendix F. Thermal Effective Potential

Details

We have calculated the thermal effective potential through one-loop order for each

of the models in Section 9.4. Our calculation employs the standard techniques (61;

124; 126), and the case of the Standard Model is particularly well documented (175;

340; 344). As such, we do not feel the need to reproduce the entire calculation here.

However, we have chosen to use renormalization schemes which are convenient for

our calculation, but not standardly employed. Hence, we will use this appendix to

write down the thermal effective potentials for each of the models in Section 9.4 and

to spell out our renormalization conditions.

In calculating thermal corrections to the scalar effective potential, we do not

include contributions from the dark matter sector. This is an excellent approximation
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provided that freeze out occurs prior to the phase transition (as we have assumed),

such that the dark matter is decoupled from the plasma during the phase transition.

Thermal Effective Potential: Standard Model

Let h(x) =
√

2
∣∣H†H∣∣1/2 be the radial component of the SM Higgs field and let hc =

〈h〉. In calculating the radiative corrections, we need not include the contributions

from every field in the Standard Model. With regards to the non-thermal corrections,

light particles which couple weakly to the Higgs can be neglected, and with regards to

the thermal corrections, particles which are light and do not decouple during freeze

out can be treated as massless. Since we expect that freeze out will coincide with the

PT at a mass scale of about 100 GeV and that residual annihilations will occur down

to a mass scale of about 10 GeV, we can neglect particles with a mass below that of

the bottom quark (i.e., 4.2 GeV). We retain the top quark, bottom quark, physical

Higgs, and massive gauge bosons11 which have field dependent masses

M2
t/b/Z/W (hc) =

(mt/b/Z/W

v

)2

h2
c (9.126a)

M2
h(hc) =

m2
h

2v2

(
3h2

c − v2
)

(9.126b)

where mt = 172.6 GeV,mb = 4.2 GeV,mZ = 91.2 GeV, and mW = 80.4 GeV (14).

The non-thermal corrections can be expressed as functions of the Coleman-Weinberg

potential (124). Regulating in (d = 4−2ε) spacetime dimensions, the unrenormalized

potential is given by

Vcw(M2) =
M4

64π2

(
log

M2

µ2
− 3

2
− Cuv

)
(9.127)

11We work in the Landau gauge (ξ = 0) for which the scalar polarization mode and ghost
propagators are independent of hc (124).
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where Cuv = ε−1− γE + ln 4π and µ is the t’Hooft scale. The thermal corrections can

be expressed in terms of the bosonic and fermionic thermal functions (61; 182)

JB (y) ≡
ˆ ∞

0

dx x2 log
(

1− e−
√
x2+y

)
= −

∞∑
n=1

1

n2
y K2 (n

√
y) (9.128a)

JF (y) ≡
ˆ ∞

0

dx x2 log
(

1 + e−
√
x2+y

)
= −

∞∑
n=1

(−1)n

n2
y K2 (n

√
y) (9.128b)

where K2(z) is the modified Bessel function of the second kind. Putting the pieces

together, the Standard Model thermal effective potential (through one-loop order and

before renormalization) is given by

V
(SM)

eff (hc, T ) ≈ m2
h

8v2

(
h2
c − v2

)2
+

{
δΩ +

1

2
δm2 h2

c +
δλ

4
h4
c

− 12Vcw

(
M2

t (hc)
)− 12Vcw

(
M2

b (hc)
)

+ 3Vcw

(
M2

Z(hc)
)

+ 6Vcw

(
M2

W (hc)
)

+ Vcw

(
M2

h(hc)
)}

+

{
−π

2

90
75.75T 4 +

T 4

2π2

[
−12 JF

(
M2

t (hc)T
−2
)

− 12 JF
(
M2

b (hc)T
−2
)

+ 3 JB
(
M2

Z(hc)T
−2
)

+ 6 JB
(
M2

W (hc)T
−2
)

+ JB
(
M2

h(hc)T
−2
)]}

(9.129)

where δΩ, δm2, and δλ are counterterms. We have also included the term (−π2

90
75.75T 4),

which represents the thermal radiative contribution from light quarks, leptons, and

massless gauge bosons which are relativistic at temperatures T & 10 GeV. The

renormalization conditions,

∂

∂hc
V

(SM)
eff (hc, 0)

∣∣∣∣
hc=v

= 0 (9.130a)

∂2

∂h2
c

V
(SM)

eff (hc, 0)

∣∣∣∣
hc=v

= m2
h (9.130b)

V
(SM)

eff (v, 0) = 0 , (9.130c)
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are chosen such that tadpole graphs vanish and V (SM)
eff (hc, 0) has a minimum at hc = v,

self-energy graphs vanish and the Higgs mass12 is mh, and the CC is tuned against

the vacuum energy density to zero.

Thermal Effective Potential: Z2xSM

The Z2xSM potential was specified by Eq. (9.58). Since we focus on the case 〈s〉 = 0,

we need only calculate the effective potential as a function of hc and not sc = 〈s〉.
That is, the presence of the singlet in this model simply add an additional degree of

freedom, with field dependent mass

M2
s (hc) =

(
m2
s − a2v

2
)

+ a2h
2
c , (9.131)

to the radiative corrections. We can construct the effective potential from the SM

effective potential Eq. (9.129) as

V
(Z2xSM)

eff (hc, T ) =V
(SM)

eff (hc, T ) + Vcw

(
M2

s (hc)
)

+
T 4

2π2
JB
(
M2

s (hc)T
−2
)
. (9.132)

An additional UV divergence arises from the term Vcw(M2
s ), and is cancelled by

solving the renormalization conditions Eq. (9.130) once again for the counterterms.

Thermal Effective Potential: Generic Singlet

For the theory specified by the action Eq. (9.63), we have the field dependent masses

M2
ϕ(ϕc) = M2 − 6Eϕc + 3λϕc (9.133)

M2
ψi

(ϕc) = (mi + hiϕc)
2 . (9.134)

12Since the effective potential is computed from diagrams with zero external momentum, the
mass ∂2

hc
Veff(hc = v, 0) = m2

h differs from the Higgs pole mass by logarithmic corrections (345),
which we verify are O (few %). As such, we will neglect this distinction and continue to refer to mh

as the “Higgs mass.”



258

We construct the thermal effective potential as

V
(GS)

eff (ϕc, T ) =ρex +
1

2
M2ϕ2

c − Eϕ3
c +

λ

4
ϕ4
c

+
T 4

2π2

[
JB
(
M2

ϕ(ϕc)
)− 4

N∑
i=1

JF
(
M2

ψi
(ϕc)

)]
(9.135)

+

{
δΩ + δt ϕc +

1

2
δM2ϕ2

c − δE ϕ3
c +

δλ

4
ϕ4
c

+ Vcw

(
M2

ϕ(ϕc)
)− 4

N∑
i=1

Vcw

(
M2

ψi
(ϕc)

)}
where δΩ, δt, δM2, δE , and δλ are counterterms. We do not renormalize using the

same renormalization conditions as we did for the SM. To simply the discussions

of Section 9.4, we have attempted to choose the renormalization conditions such

that the effective potential preserves certain features of the renormalized tree-level

potential. For example, the renormalization conditions that we applied to the SM,

Eq. (9.130), ensured that the effective potential and the tree-level potential agreed

to order h2
c as an expansion around hc = v. In our analysis of Section 9.4, we found

it convenient to define the parameter α0 which controls the shape of the effective

potential. This parameter is defined using the tree-level potential U(ϕ), but we

claim that it also describes the shape of the one-loop effective potential provided

that the radiative corrections do not significantly distort the shape of the potential.

For the tuned limit 0 . α0 � 1, this parameter is particularly sensitive to the

shape of the potential near the origin ϕc = 0 since the barrier is very small. The

radiative corrections grow as ϕc → 0, because the fermions ψi become light, but

these logarithmic corrections remain subdominant. However, with a renormalization

scheme of the form of Eq. (9.130), the counterterms pick up a finite piece, which

depends on derivatives of logarithms at the renormalization point ϕc ≈ v, and which

contributes non-negligibly near ϕc ≈ 0. If we were to use such a renormalization

scheme in the limit where U(ϕc) has a small barrier so 0 . α0 � 1, then the radiative
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corrections may lift the minimum at ϕc ≈ 0 and eliminate the barrier. Of course,

there is nothing incorrect with using such a renormalization scheme except that it is

inconvenient since we would not be able to characterize the shape of the potential

using α0 derived from U(ϕc).

In light of this discussion, we will use a renormalization scheme which preserves

the location of the minimum at ϕc = v and also preserves the shape of the potential

near ϕc = 0. This is accomplished by first writing Eq. (9.135) for T = 0 as

V
(GS)

eff (ϕc, 0) = Ω̄(ϕc) + t̄(ϕc)ϕc +
1

2
M̄2(ϕc)ϕ

2
c − Ē(ϕc)ϕ

3
c +

λ̄(ϕc)

4
ϕ4
c (9.136)

where
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Ω̄(ϕc) = ρex + δΩ +
~

4π2

[ 1

16
M4fϕ(ϕc)− 1

4

N∑
i=1

m4
i fψi(ϕc)

]
(9.137a)

t̄(ϕc) = δt+
~

4π2

[
−3

4
EM2fϕ(ϕc)−

N∑
i=1

m3
ihifψi(ϕc)

]
(9.137b)

M̄2(ϕc) = M2 + δM2 +
~

4π2

[3

4
M2λfϕ(ϕc) +

9

2
E2fϕ(ϕc)− 3

N∑
i=1

m2
ih

2
i fψi(ϕc)

]
(9.137c)

Ē(ϕc) = E + δE +
~

4π2

[9

4
Eλfϕ(ϕc) +

N∑
i=1

mih
3
i fψi(ϕc)

]
(9.137d)

λ̄(ϕc) = λ+ δλ+
~

4π2

[9

4
λ2fϕ(ϕc)−

N∑
i=1

h4
i fψi(ϕc)

]
(9.137e)

and

fϕ(ϕc) =

(
ln
M2

ϕ(ϕc)

µ2
− 3

2
− Cuv

)
(9.138)

fψi(ϕc) =

(
ln
M2

ψi
(ϕc)

µ2
− 3

2
− Cuv

)
. (9.139)

Then the renormalization conditions can be expressed as

Ω̄(v) = ρex (9.140a)

t̄(v) = 0 (9.140b)

M̄2(v) = M2 (9.140c)

Ē(v) = E (9.140d)

λ̄(v) = λ . (9.140e)

Near ϕc ≈ 0, the radiative corrections are at most logarithmic.

Thermal Effective Potential: xSM

In Section 9.4 we wrote down the xSM renormalized potential in Eq. (9.84). For

general hc and sc, the Higgs and singlet fields mix. In order to calculate the radia-
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tive corrections, we must generalize the field-dependent Higgs mass M2
h , given by

Eq. (9.126b), to the Higgs-singlet mass matrix M2
hs, which has components

[
M2

hs({hc, sc})
]

11
= m2

h/(2v
2)
(
3h2

c − v2
)

+ sc (a1 + a2 sc) (9.141a)[
M2

hs({hc, sc})
]

12
=
[
M2

hs({hc, sc})
]

21
= hc (a1 + 2 a2 sc) (9.141b)[

M2
hs({hc, sc})

]
22

= m2
s + a2

(
h2
c − v2

)
+ 2b3 sc + 3b4 s

2
c . (9.141c)

Now we can write down the thermal effective potential in terms of V (SM)
eff by subtract-

ing the contribution from the SM Higgs and adding the contribution from the mixed

Higgs and singlet. Doing so we obtain

V
(xSM)

eff ({hc, sc} , T ) = V
(SM)

eff (hc, T ) +
b4

4
s4
c +

1

2
m2
ss

2
c +

b3

3
s3
c

+
1

2
sc
(
h2
c − v2

)
(a1 + a2sc)

+

{
δb4

4
s4
c +

δb3

3
s3
c +

1

2
δb2s

2
c + δb1sc +

1

2
δa2s

2
ch

2
c

+
1

2
δa1sch

2
c + δΩ− Vcw

(
M2

h(hc)
)

+ TrVcw

(
M2

hs({hc, sc})
)}

+
T 4

2π2

[−JB (M2
h(hc)T

−2
)

+ Tr JB
(
M2

hs({hc, sc})T−2
)]

(9.142)

where δΩ, δbi, and δai are counterterms. The trace is interpreted to mean evaluat-

ing Vcw or JB with the eigenvalues of M2
hs. We generalize the SM renormalization

conditions Eq. (9.130) to incorporate the additional fields,(
∂

∂hc

)nh ( ∂

∂sc

)ns
V

(xSM)
eff ({hc, sc})

∣∣∣
{v,0}

=

(
∂

∂hc

)nh ( ∂

∂sc

)ns
U({hc, sc})|{v,0}

{nh, ns} = {1, 0} , {2, 0} , {0, 1} , {0, 2} , {1, 1} , {1, 2} , {0, 3} , {0, 4} , {0, 0} (9.143)

where U({hc, sc}) is given by Eq. (9.84). Once again, we require V (xSM)
eff ({v, 0} , 0) = 0

which tunes the CC.
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9.G Appendix G. xSM Bounce Calculation

As discussed in Section 9.4, the xSM electroweak PT is first order in the parametric

regime of interest and proceeds through thermal bubble nucleation. In order to de-

termine the bubble nucleation temperature T−PT we estimate the action of the three

dimensional bounce S(3)(T ) and require S(3)/T
∣∣
T−PT
∼ 140. The bounce field config-

uration φB(r) is a saddle point solution of the Euclidean equation of motion with an

O(3) symmetry. Let ~φ = {h, s} be the field space coordinate and let ~φsym = v(s)(T )

and ~φbrk = v(b)(T ) be the location of the symmetric and broken phases at temperature

T . In this notation, the field equation and boundary conditions can be written as

d2~φ

dr2
+

2

r

d~φ

dr
− ~∇~φVeff(~φ, T ) = 0 (9.144)

d~φ

dr

∣∣∣∣∣
r=0

= 0 , lim
r→∞

~φ(r) = ~φsym (9.145)

where r is the radial coordinate and Veff is the thermal effective potential. The bounce

solution is a curve ~φB(r) which starts nearby to ~φbrk at r = 0 and approaches ~φsym

as r →∞. Once the solution ~φB(r) is obtained, the bounce action is calculated as

S(3)(T ) = 4π

ˆ ∞
0

r2dr

1

2

(
d~φB
dr

)2

+ Veff(~φB(r), T )

 . (9.146)

It is difficult to solve Eq. (9.144) by brute force numerics, because the solution is

unstable to perturbations about the initial point ~φB(0), and the over shoot / under

shoot method is non-trivial to apply in two dimensions.

Profumo et. al. (117) have outlined a numerical procedure which reduces the

calculation to iteratively solving the one-dimensional analog of Eq. (9.144). They

suggest that one should decompose the field equation into a basis with unit vectors

parallel and perpendicular to the solution curve ~φ(r). Suppose that there exists a
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curve ~φ(x) that interpolates between ~φ(0) = ~φsym and ~φ(L) = ~φbrk. Let

x =

ˆ ~φ(x)

~φsym

∣∣∣d~φ∣∣∣ (9.147)

be the distance along the curve such that L is the total length and

ê‖ =
d~φ

dx
and ê⊥ =

 0 1

−1 0

 d~φ

dx
(9.148)

are the unit vectors parallel and perpendicular to the curve at x. In this basis,

Eq. (9.144) becomes {
d2x

dr2
+

2

r

dx

dr
− dV (~φ(x))

dx

}
ê‖ = 0 (9.149){∣∣∣∣∣d2~φ

dx2

∣∣∣∣∣
(
dx

dr

)2

−
(
~∇~φV

)
⊥

}
ê⊥ = 0 . (9.150)

The authors of (117) solve these equations numerically using an iterative procedure.

Since we compute T−PT by calculating the bounce at various temperatures in order

to solve S(3)/T ≈ 140, the iterative procedure is too computationally intensive for

our purposes. Fortunately, in the parametric regime of interest the bounce solution

~φB(r) can be approximated by ~φapp(x) = {h(x), s̄(h(x))} where s̄(h) satisfies13

dU({h, s} , 0)

ds

∣∣∣∣
s̄

= 0 and s̄(v) = 0 , (9.151)

U is the classical potential, and ~φapp(x) is parametrized by its length x given by

Eq. (9.147). Using ~φapp(x), we solve Eq. (9.149) for x(r) and calculate S(3) using

Eq. (9.146).

To check our approximation, we also compute the PT temperature using the

method of (117) for a few parameter sets. In Figure 9.9 we contrast our approximation

13 In the parametric region described in Section 9.4, the solution of dU/ds = 0 is not generally a
single-valued function of h. However, the boundary condition s̄(v) = 0 selects out a unique trajectory
which tends to stay in the “valley” connecting the two minima and passes through the saddle point.
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Figure 9.9: Comparisons of bounce calculations for the xSM benchmark point
Eq. (9.87). On the left, the bounce action computed at various temperatures be-
tween T0 = 12.7 GeV and Tc = 70.7 GeV using the method of (117) (squares) and
our approximation (circles). On the right, the xSM thermal effective potential at
T−PT = 13.7 GeV. The solid curve shows the trajectory ~φB(x) obtained using the
method of (117), and the dashed curve shows the approximation ~φapp(x) given by
Eq. (9.151). The curves do not coincide at small h because the minimum along the
h = 0 axis shifts as the temperature is raised. Nevertheless, the action along the two
paths still agrees remarkably well.

with the procedure of (117) for the xSM benchmark point Eq. (9.87). We find that

our approximation tends to overestimate S(3) by a few percent generically. However,

S(3) is a rapidly increasing function of temperature, and even an O (5%) deviation in

S(3) does not causes T−PT to deviate appreciably.
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Chapter 10

*
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