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Abstract

Through this thesis, I investigate the way in which the electroweak phase transition,
and therefore the Higgs boson, bridges high energy particle physics and early universe
cosmology; moreover, I argue that it is particularly interesting to explore this bridge
today as experiments such as the Large Hadron Collider begin to uncover the nature
of physics at the electroweak scale. 1 will discuss how measurements of the properties
of the Higgs boson at the Large Hadron Collider allow one to determine the nature
of the phase transition that was responsible for electroweak symmetry breaking in
the early universe. That information in turn will allow one to assess whether the
asymmetry between the abundances of matter and anti-matter in the universe may
have been generated during the electroweak phase transition. Additionally, I will
discuss the impact of the electroweak phase transition on another cosmological relic:
namely, the dark matter. Precise measurements of the mass and abundance of dark
matter today yield further information about the nature of the electroweak phase
transition, in some scenarios. This information may be used to test the hypothesis
that the cosmological constant, assumed to be a good model of dark energy, is finely
tuned. In this way, I hope to demonstrate the importance of the electroweak phase
transition as a bridge between terrestrial tests of high energy physics and cosmological

tests of the physics of the early universe.
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Chapter 1

Introduction

I can’t imagine a more exciting time to be a high energy physicist. As I am writing this
document, the Higgs boson has just been discovered at the Large Hadron Collider
facility in Geneva, Switzerland. The Higgs represents the final piece of the puzzle
in the Standard Model of particle physics, and put more broadly, its discovery can
be counted as one of science’s greatest successes of all time. Over the next few
years, studies of the properties of the Higgs boson will open wide the window on a
new and unexplored realm of physics. We have some suspicions about what beasts
that realm may contain. In the field of cosmology, high-precision measurements
of the cosmic microwave background over the past decade have revolutionized our
understanding of the universe and its makeup. We live in a universe brimming with a
mysterious dark matter and an enigmatic dark energy, both of which pose challenges
to our understanding of high energy physics. Moreover, the observed abundance of
matter over anti-matter can only be explained if Nature is more complex and dynamic
than the Standard Model would have us believe. In the coming years, the Planck
satellite will probe the temperature fluctuations of the cosmic microwave background

with unprecedented precision, dark matter detection experiments will increase their



sensitivity and may yield a discovery of dark matter, and galaxy surveys will extend
their breadth and depth to test the nature of dark energy. The Higgs boson may have
been the first great discovery of the 215 century, but it will not be the last.

These exciting topics in high energy physics—the Higgs boson, the matter / anti-
matter asymmetry, dark matter, and dark energy—may seem to be entirely distinct
fields of research. However, as I will discuss throughout this manuscript, they are
linked together by the electroweak phase transition. This event, which is hypothesized
to have taken place in the first femtoseconds after the Big Bang when the universe
was very hot and dense, is responsible for inducing electroweak symmetry breaking,
which allows the Higgs to provide mass to the Standard Model fields. Thus, on
one hand the electroweak phase transition has direct connections to the physics of
the Higgs boson: the temperature at which the phase transition took place and
its thermodynamic “order” are controlled by the mass of the Higgs boson and the
coupling of the Higgs boson to new particles. On the other hand, the electroweak
phase transition, by virtue of taking place in the very early universe, has connections
with the physics of dark matter and dark energy: the phase transition can indirectly
affect the abundance of dark matter in the universe today and may act as a probe
of dark energy in the early universe. In this way, the electroweak phase transition
bridges two otherwise separate fields of physics — cosmology and high energy particle
physics. It is the subject of this manuscript to study this connection further.

We begin in Chapter [2| by discussing the Higgs boson, the essential role that it
plays in the Standard Model, the history of searches for the Higgs particle, and its
connection to the baryon asymmetry of the universe via electroweak baryogenesis
and the electroweak phase transition. In Chapter [3] we discuss the physics of the
electroweak phase transition, and introduce a quantity, called the thermal effective

potential, which will be an invaluable tool in the following phase transition analyses.



In Chapters [4] and [6], we employ these concepts to investigate the connection
between the Higgs boson and baryogenesis in various scenarios. In Chapter [7] we
discuss the physics of dark matter and dark energy and evidence for their existence
in our universe. In Chapters [§ and [0, we investigate the impact of the electroweak
phase transition on the dark matter relic abundance, and we propose a way of testing
the hypothesis of the fine-tuning of the cosmological constant.

Throughout this manuscript, we will be using “physicist’s units” in which A = ¢ =
1. Consequently, mass, energy, inverse time, and inverse length are measured with
the same unit. We will primarily use the GeV, which is approximately equal to the

mass of the proton.



Part 1

The Higgs Boson and Electroweak

Baryogenesis



Chapter 2

The Two Faces of the Higgs

In the introduction, we discussed that the Higgs boson is especially suited to the
task of bridging high energy particle physics at colliders with the high energy cos-
mology of the early universe. In this part of the manuscript, we will make this
terrestrial-cosmological connection more concrete. We begin this chapter in Sec.
by discussing the physics of the Higgs boson: the critical role it plays in the SM,
its participation in spontaneous symmetry breaking and the Higgs mechanism, and
constraints on Higgs physics from collider experiments. In Sec. we will turn our
attention to the role that the Higgs plays in creating the cosmic baryon asymmetry
in the early universe through electroweak baryogenesis. We will see the success of
electroweak baryogenesis hinges upon the nature of the electroweak phase transition.
Finally, we will establish the connection between the terrestrial and cosmological
sides of the Higgs by using the baryogenesis success criterion to derive a bound on
the mass of the Higgs boson in the Standard Model and to motivate the search for

physics beyond the Standard Model.



2.1 The Terrestrial Higgs: Weak Boson Masses

In the Standard Model (SM) of particle physics, the Higgs boson is charged with
the critical task of providing mass to the matter fields and weak gauge bosons (W*
and 7). Without the Higgs, for example, electrons would be massless particles and
would not bind with nuclei into atoms. Consequently our universe would be devoid
of molecules, planets, and life as we know it. However, as we will see, the truly
indispensable job of the Higgs is providing mass to the weak gauge bosons. If we
lived in a universe lacking a weak nuclear force, but instead only the strong nuclear
force and electromagnetic forces were present, then the Higgs would not be required
to generate mass for the matter fields. In this regard, the Higgs is essential.

The SM is a Yang-Mills theory (1) built upon the symmetry group SU(3)c X
SU(2), x U(1)y. Each of the symmetry groups is associated with one of the funda-
mental forces (with the exception of the gravitational force, which stands apart). The
SU(3)¢ group is the foundation of quantum chromodynamics (QCD) (2} [3), the theory
which describes the strong force that is responsible for binding quarks together into
nucleons. Since our primary subject of interest — the Higgs boson — does not partici-
pate in the strong interaction, we will speak no further of QCD. The SU(2), x U(1)y
group (4) is the basis of the Glashow-Weinberg-Salam Model (GWS) (5H7)) of the
unified electromagnetic and weak nuclear forces. Studies of the electromagnetic force
were pioneered in the 19" century by Michael Faraday, James Maxwell Clerk, and
others. Today, the models which describe the electromagnetic force are arguably the
most well tested in all of science!. The weak nuclear force is most familiar for its role
in mediating the radioactive decay of heavy nuclei, a phenomenon first observed by

Becquerel and the Curie’s at the end of the 19*" century. Subsequently, the theory of

IE.g., recent measurements of the magnetic moment of the electron agree with the predictions
of quantum electrodynamics at the order of 0.1 parts per billion (g]).
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Figure 2.1: Feynman graphs showing interactions between electrons (straight lines)
and a massive photon (wiggly lines). I am grateful to Hiren Patel for assistance in
creating this figure.

the weak interaction underwent a number of revisions, beginning with Fermi’s four-
fermion model in 1933 (9} 10)), the inclusion of parity violation in the 1950’s (11} 12),
and finally culminating with the GWS model in the 1960’s. As we will discuss further

below, the Higgs plays a staring role in the GWS model.

The Trouble with Vector Boson Masses

It is well known that unlike electromagnetism, the weak force is a short range force
(see, e.g., the textbook (I3])). However, in analogy with electromagnetism, one can
model such an interaction with an intermediate vector (spin equal to one) boson
provided that this boson is allowed to be massive. If the boson has a mass M then
the range of the interaction is given approximately by r ~ M~!. Indeed, in the case
of the weak interactions this boson must be quite heavy, since it was not produced in
either nuclear or muonic decays. This picture was confirmed in 1983 when the W=+
and Z bosons were discovered at the Super Proton Source (SPS) accelerator with
masses 80.4 GeV and 91.2 GeV, respectively (14).

The weak force is the only known fundamental force that is mediated by mas-



sive vector bosons. It turns out to be very difficult to develop a theory of massive
spin-1 fields that is theoretically consistent and predictive. In fact, it wasn’t until
1971 that 't Hooft and Veltman (15} [16) demonstrated that this task may be accom-
plished by employing a Higgs field. In order to illustrate the difficulty that arises
— and thereby demonstrate the importance of the Higgs boson — let us consider the
hypothetical interaction of electrons with a massive photon. Suppose that we are
interested in calculating perturbative corrections to the mass of the electron and to
its electromagnetic coupling with the photon. This calculation may be performed by
evaluating various one-loop Feynman graphs, some of which are shown in Figure [2.1]
As a consequence of quantum mechanics, the virtual particles in the loops are allowed
to have an arbitrarily large momentum ¢, and we anticipate that this may cause di-
vergences to arise in our calculation. Focusing our attention on estimating the degree

of divergence, we can calculate the graphs using the following “Feynman rules”

A
each loop : lim d*q
— 00 0

. 1 >m 1 m
electron line : - &z
qd—m q q
— G + q]\iI_q; e>M - quqy ~ L
q* — M? M2 M?

2

photon line : (2.1)

where m and M are the electron and photon masses, respectively. Here, we have
written the upper bound on the momentum integration as A, anticipating that the
integral will be divergent. Applying these rules to the first graph in Figure 2.1,

corresponding to corrections to the electron’s mass, we estimate the amplitude as?

A 2
1 m\ 1 A
1 4 — N —_— A~ ] -
Ahm i d*q (q + q2> 5 Ahm m—s, (2.2)

which diverges like A2/M?. Divergences like this are not uncommon in quantum field

theory, and can be removed by the procedure known as renormalization. That is, after

2The term which would be O (Ag) vanishes as a consequence of Lorentz invariance.



measuring the electron’s mass, we can add a counterterm to the theory which will
cancel the divergence and leave behind only the physical mass. The second graph is
also divergent, and can be renormalized by using a measurement of electron scattering
to determine the electromagnetic coupling constant. However, the persistence of the
divergence in the third graph, and similar higher order graphs, is ruinous. Ultimately
in order to cancel the divergences to all orders we would need an infinite number
of measurements to specify the infinite number of counterterms. In this way, the
theory looses its predictive power and is said to be non-renormalizable. Note that
this problem does not arise for a massless photon, since in that case each photon line

comes in with a factor of 1/¢* and renders the higher-order integrals convergent.

The Incredible Edible Higgs

The purpose of the Higgs in the GWS model of the electroweak interactions is to
provide a mass to the weak gauge bosons in a way that allows the theory to remain

renormalizable. The GWS model is formulated as follows. The gauge group is

with associated gauge fields W¢ (for a = 1,2,3) and B, and coupling constants g and
g'. The Higgs field transforms as a doublet under the SU(2);, and carries a charge
Yy = 1 under the U(1)y. Therefore it can be written as H = (H*, H°)". The
matter fields (quarks and leptons) are also incorporated into the theory, but they are
not pertinent to this discussion and will be neglected. The interactions between the

Higgs and the electroweak gauge bosons are specified by the Lagrangian

.o a .Y 2
L=|0,H— zg?WMH - ZQITBMH (2.4)
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where ¢ are the Pauli matrices. It is straightforward to show that the Lagrangian

Eq. (2.4) remains invariant under the action of the gauge group

Noas a Y
H — exp [Z?QL + 276’3/]]-]

a a 1 a aobc Cc
Wi — Wi+ EML — W
1
B,u — B# + ?Qﬂy (25)

where 07 (x) and 6y (z) are smooth functions of the spacetime coordinate x. It is also
important to note the theory Eq. is renormalizable.

It is immensely useful to build a theory upon a symmetry group. The symmetry
controls the allowed interactions and determines the conserved quantities. However,
in this situation, the symmetry Eq. is quite limiting. To correctly model the
weak interactions, we need the weak gauge bosons acquire a mass, but the mass terms
M%W;}W““ and M3 B, B* cannot be added to the Lagrangian without breaking
the symmetry (i.e., they are not invariant under Eq. ) The way in which we
get around this restriction is to suppose that the symmetry is broken not at the
level of the Lagrangian, but instead broken by the vacuum state of the theory. In
such a situation we say that spontaneous symmetry breaking has occurred. In 1962
Goldstone, Salam, and Weinberg (17)) proved that in such a situation the spectrum
should contain a massless scalar field — known as a Goldstone boson (18} 19) — for every
spontaneously broken (continuous, global) symmetry. The Goldstone boson seems
undesirable (and unphenomenological), however it is just what is needed to generate
masses for the gauge bosons. The Higgs mechanism, proposed in 1964 by Peter
Higgs (20H22)), Englert & Brout (23)), and Guralnik, Hagen, & Kibble (24), allows
the scalar Goldstone boson to be “eaten” by the longitudinal polarization component
of the vector boson and thereby endow it with a mass. The Higgs mechanism is

operative provided the symmetry group being broken is a gauge group, which is the
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case in the GWS model.

The following calculation illustrates how the symmetry SU(2);, x U(1)y is broken
so as to give the weak gauge bosons masses and maintain the massless photon. Spon-
taneous symmetry breaking is manifest in the fact that the Higgs acquires a nonzero

vacuum expectation value (VEV)

0
(0|H|0) = E (2.6)

V2

Making this replacement in Eq. (2.4)) we obtain (suppressing the p subscripts)

2

1 gW3+g¢gB  gW—iWw?) 0

L= (2.7)
gWht+iWw?) —gW?+g¢B | \ 5
Now defining
W =Wt w2 A:M Z:M (2.8)
’ g2 + g2 ’ /3?2 + ¢'?
we can write Eq. (2.7) as
Lo vt o a2z o L2 a2
where
1 1
My = gvg . Mz = §”\/W ; Ma=0. (2.10)

In this way we see that the GWS model predicts masses for the weak gauge bosons
and a massless photon. This model of Glashow, Weinberg, and Salam didn’t receive
much attention until 1971 when 't Hooft and Veltman (I5; [16) showed that the
the renormalizability of the original Lagrangian Eq. is maintained through the
process of spontaneous symmetry breaking. Thus, the Higgs managed to deliver the

long sought after renormalizable theory of massive weak bosons. Measurements of the
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Potential Energy

Potential Energy [ V(H) ]

HiggsField [H ]

Figure 2.2: The Higgs potential illustrating spontaneous symmetry breaking.

weak neutral current merited Glashow, Weinberg, and Salam the 1979 Nobel Prize,
and ‘t Hooft and Veltman received their prizes in 1999.

The crux of the GWS models is that the Higgs acquires a VEV and thereby breaks
the SU(2); x U(1l)y symmetry spontaneously. Spontaneous symmetry breaking is
accomplished by introducing a potential energy (density) function for the Higgs field

which renders H = (0, 0)" unstable. The potential may be written as
V(H)=p?H'H + \(H'H)?. (2.11)

Provided that ;2 < 0, the origin is an unstable maximum and spontaneous symmetry
breaking occurs. A potential of this form is illustrated in Figure[2.2] The true vacuum

state is found by minimizing V (H) to obtain
v=y/ L (2.12)

where we have used Eq. . The GWS model predicts a relationship between
the coupling constant Gz of Fermi’s four-fermion theory and the VEV of the Higgs:
Gr = V2¢?/8m?, = (v/2v*)~'. Thus, a measurement of G ~ 1.166 x 107> GeV 2
(I4) allows one to determine v =~ 246 GeV. Higgs boson particles corresponds to

fluctuations of the Higgs field on top of this nontrivial background. To study their
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mass and interactions, we can perform an expansion H = (0 , (v+h)/ \/5) and write

Eq. (2.11) as
9 1 2\ 1,2 1 2\1.3 )\ 4
V(h) = 53R + S (3R + Tht. (2.13)

From this expression, we see that the mass of the Higgs boson is related to its self-

coupling A\ by
My =vv2\. (2.14)

Since A is a free parameter, the Higgs mass is all together unconstrained in the GWS

model.

The Great Higgs Hunt

Predictions of the GWS model were very quickly confirmed. The predicted weak
neutral current (mediated by the Z boson) was first observed in 1973 at CERN’s
Gargamelle bubble chamber through the processes e v, — e v, (25) and vN —
v + hadrons (26). On-shell production and discovery of the weak bosons, however,
had to wait another decade. The W boson was the first to be discovered in 1983 at
the UA1 detector at SPS (27). The Z boson discovery came a few months later (28)).
The only missing piece of the puzzle was the Higgs boson itself. For nearly the past
half century, the search for the Higgs boson has been the driving force behind high
energy particle physics (see e.g., (29) for a historical overview). Here, I review the

progress (and success!) that has been made in the great Higgs hunt.

Pre-Collider Constraints

As the GWS model began to receive attention in the early 1970’s, many physicists

were hoping for the Higgs boson to turn up. As it so happened, in 1971 measurements
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Figure 2.3: Constraints on the Higgs mass by various searches. The figure was com-
piled using references in the text and the Particle Data Group archives (30).

of muonic x-rays, i.e. the x-ray emission by atomic transitions in muonic atoms,
revealed a discrepancy between the predicted and measured spectra (31; 32). In 1972,
the seminal paper Is There a Light Scalar Boson? (33) investigated the possibility
that a light scalar Higgs particle may be able to account for the anomaly. They
determined that the discrepancy could indeed be explained by the Higgs and placed an
upper bound on its mass My < 8.5 MeV. Moreover, they proposed that the existence
of a light Higgs could be confirmed if one were to measure the 07 — 0 + H nuclear
transition and search for a eTe™ pair emitted upon decay of the Higgs boson. Two
years later (34)), this search® was performed in the decay of excited '°0(6.05 MeV)
and *He(20.2 MeV) nuclei. The results were null and provided one of the earliest
bounds on the Higgs mass, 1.030 MeV < My < 18.2 MeV, where the lower limit is
constrained by 2m,. and the upper limit by the scale of the nuclei observed. Later

that year, another group (35) recognized that a light scalar boson would mediate a

3To my knowledge, this was the first dedicated “Higgs search.” Regrettably, the paper has a
mere forty-two citations listed on Inspire-HEP.
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long-range force, and they sought out the Higgs by looking for anomalous behavior in
the neutron-electron and deuteron-electorn elastic scattering processes. This allowed
them to exclude the entire range My < 0.6 MeV. Similarly, the following year low
energy neutron-nucleus scattering experiments yielded an exclusion of my < 13 MeV
(36). In 1975, Sato & Sato (37) ruled out the 0.1 eV < M < 100 eV mass range
by considerations of the impact of out of equilibrium Higgs diphoton decays on the
cosmic microwave background. A few months later, the same group (38) considered
stellar cooling by Higgs particle emission and excluded My < 350 keV. The low mass
Higgs was quickly becoming ruled out.

In 1975, Ellis, Gaillard, and Nanopolous (39) released the groundbreaking paper
A Phenomenological Profile of the Higgs Boson. They discussed possible detection of
the Higgs particle at a high energy collider experiment, and calculated the branching
ratios for Higgs decays over a mass range of 1 MeV to 100 GeV. At the end of
their paper, the authors offer an apology to their experimentalist colleagues for not
being able to pin down the mass or couplings of the Higgs boson. They conclude by
saying, “For these reasons we do not want to encourage big experimental searches for
the Higgs boson, but we do feel that people performing experiments vulnerable to the
Higgs boson should know how it may turn up.” Despite their cautious attitude, their

paper heralded the era of high energy Higgs searches.

Meson Decay Searches

The next leap forward in the hunt for the Higgs occurred in the 1980’s at which point
various facilities were studying mesons. If the Higgs were sufficiently light, it may
have been produced in the decay of these mesons and then decayed to a detectable
pair of charged leptons. This allowed the mass ranges up to 2m, ~ 211 MeV and

2m, ~ 3.4 MeV to be probed. In 1984, an experiment at KEK looked for the decay
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K#* — 7*H decay and excluded the mass range 50 MeV < My < 2m,, (40). A few
years later, a group at BNL excluded My < 26 MeV by the non-observation of K+ —
7+ + nothing, since a light Higgs would be longer lived and escape the detector (41)).
In 1987, the CUSB collaboration failed to observe the decay T — vH and excluded
600 MeV < M < 3.2 GeV (42; [43). In 1989, SPS looked for the decay K9 — 7°H
with H — e*e™ and was able to exclude 15 MeV < M < 2m,, (44). Furthermore, the
SINDRUM collaboration searched for the decay 7t — etv,H with H — ete™ and
finding no anomalous behavior, they excluded the range 10 MeV < M < 110 MeV
(45). In the same year, CLEO excluded 211 MeV < M < 3.4 GeV by the non-
observation of the B — KH decay with subsequent H — (up™)(nF7n™)(KTK™)
(46]). These constraints from meson decays pushed the Higgs mass bound across the
GeV threshold and thereby extended the exclusion region by two orders of magnitude
more than earlier nuclear experiments. However, the hadronic physics involved in
these processes was not well understood and these bounds came along with large

theory uncertainties.

LEP - ALEPH, DELPHI, OPAL, & L3

In 1989, the Large Electron-Positron Collider (LEP) began operation at CERN. Run-
ning in the first phase (LEP1) until 1995, the center-of-mass energy was fixed at
Vs & My so as to produce on-shell Z bosons. This allowed for the Higgs to be
searched for via the Bjorken process in which the on-shell Z decays to a Higgs and
an off-shell Z, which subsequently decays to fermions (Z — HZ* — Hff). If the
Higgs mass were in this energy range, the Higgs would then decay dominantly to bb
with a small fraction to 777~. By 1996, the non-observation of a Higgs signal placed
the bound My > 65.2 at 95% CL (47). In its second phase (LEP2), the center-of-

mass energy was increased up to 209 GeV. This allowed for a Higgs search via the
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Higgs-strahlung production process in which an off-shell Z boson was created and
subsequently decayed to a Higgs and an on-shell Z (Z* — ZH). The nonobservation
of a Higgs signal placed a lower bound on the Higgs mass My > 114.4 GeV at 95%
CL (48). The collider was decommissioned in 2000, and construction on the LHC

was already undeway.

Tevatron — DO & CDF

Meanwhile, the Tevatron began operation at Fermilab in 1983. The Tevatron collided
protons and antiprotons at energies up to 1.96 TeV. At a hadron collider, a sub-TeV
Higgs is most likely to be produced by the gluon fusion process in which the protons
radiate a pair of gluons which annihilate into a Higgs by way of a top quark loop. The
machine shut down in the fall of 2011, but data analysis continued. In the March of
2012, the Tevatron collaborations announced that they had found the hint of a Higgs
boson in the 125 GeV mass range. In particular, the CDF and DO detectors uncovered
a statistical excess (2.70 local, 2.20 global over 115 — 135 GeV) of Higgs-like events
in combined channels, although dominantly bb decays (49). After increased analysis,
the collaborations announced in July of that year that the statistical significance had
risen (3.00 local, 2.50 global over 115 — 140 GeV) (50; [51]), however discovery was

still beyond their reach.

LHC - ATLAS & CMS

The Large Hadron Collider (LHC) began operations at CERN in 2009 with the goal of
discovering the Higgs boson and (/or) uncovering the nature of electroweak symmetry
breaking. Like the Tevatron, the LHC is a hadron collider, however it operates a
higher energy — approximately 7 TeV per beam — and thus has a higher event rate.
This allows the LHC’s detectors, ATLAS and CMS, to search for rare, “clean” decay
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channels which were too infrequent to be useful at the Tevatron. In particular, the
golden channel for the discovery of a light Higgs is the gluon fusion and diphoton
decay channel (99 — H — ~7). In this decay, the photons are easily identified
by their recognizable clusters in the electron calorimeter, and their energy may be
measured precisely. Moreover, this channel is considered clean, because although the
background processes (jets faking photons) are large, they are also reducible. The
second best channel for Higgs detection is H — ZZ — (T4~ ¢T¢~. Although this
process is rare, the background is very low.

In December of 2011, the Atlas and CMS experiments hinted at a Higgs signal
in the H — 77 channel at My ~ 126 GeV. The official results were released in the
early spring. In the diphoton channel, CMS saw an excess (3.10 local, 1.80 global
over 110 — 150 GeV) at my ~ 124 GeV (52; 53). In the ZZ — 4¢ channel, they
saw excesses at mpy ~ 126 GeV (1.50 local) and at my ~ 119 GeV (2.70 local)
(52; 54). At the same time, ATLAS uncovered and excess (2.8¢ local, 1.50 global
over 110 — 150 GeV) in the diphoton channel at my ~ 126.5 GeV (53 b6) as well
as in the ZZ — 4( channel at my ~ 125 GeV (2.10 local) (56} [57). Finally on July
4, 2012 — forty years after the hunt for the Higgs had began — the collaborations
announced the discovery of a new scalar particle that fit the profile of the SM Higgs.

Success!

2.2 The Cosmological Higgs: Electroweak
Baryogenesis

As we saw in the previous section, a critical assumption of the SM is that the elec-
troweak symmetry is broken today by the nonzero VEV of the Higgs field. This fact

may have surprising consequences for early universe cosmology. In 1972 Kirzhnits
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and Linde (58; [59) were the first to predict that the electroweak symmetry is restored
in the high temperature conditions of the early universe. Their argument is moti-
vated by an analogy with the Meissner effect in a superconductor, and relies on the
intuition that the free energy F' = U — T'S is minimized at high temperature by a
disordered state in which the entropy is maximized. Their results were confirmed two
years later by Weinberg (60) and Dolan & Jackiw (61) who reevaluated the problem
using thermal effective potential techniques. The phenomenon of thermal symme-
try restoration suggests that as the universe cooled, spontaneous symmetry breaking
could have been accomplished through an electroweak phase transition (EWPT).

Remarkably, the electroweak phase transition may have set the stage for the gen-
eration of the baryon asymmetry of the universe (BAU), i.e., the abundance of matter
over antimatter. In 1985 Kuzmin, Rubakov, & Shaposhnikov (62) conjectured that
during the EWPT, the BAU may have been produced by recently discovered baryon-
number violating processes known as electroweak sphalerons. Their investigation
revealed that, nominally, the SM contains all of the requisite ingredients for baryoge-
nesis, but that the EWPT must satisfy certain conditions* in order for the BAU to
be generated successfully. These results were confirmed by Cohen, Kaplan, & Nelson
in 1990 (63} [64) who further developed the mechanism now known as electroweak
baryogenesis (EWBG).

Of course empirically, absolutely nothing is known about the nature of the elec-
troweak symmetry breaking, since the Higgs boson has only recently been discovered,
and its properties and couplings to new physics are still undetermined. However, the
success of electroweak baryogenesis is predicated on certain conditions being met at
the electroweak phase transition. Thus, if one insists that electroweak baryogenesis

is to be responsible for creating the BAU, one can derive constraints on properties of

4In the SM, these conditions translate into an upper bound on the Higgs mass my < 60 GeV,
as we will see below.
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Higgs boson, such as its mass, its participation in CP-violation, and its coupling to
exotic particles. In this way, EWBG augments Higgs searches at colliders with an ad-
ditional constraint on models of the EW sector. This connection to terrestrial Higgs
physics makes electroweak baryogenesis arguably the most compelling and testable

baryogenesis mechanism.

The Baryon Asymmetry of the Universe

The abundance of matter over antimatter is one of the most apparent yet mysterious
properties of our universe. The only antimatter that exists on the Earth are produced
fleetingly through high energy particle collisions in accelerator facilities or in the upper
atmosphere during cosmic ray showers. There is evidence that a small fraction of the
cosmic rays are, themselves, antiprotons — approximately one in ten-thousand (65]) —
however, this tiny abundance is consistent with secondary production in astrophysical
accelerators, and does not suggest a primordial antimatter abundance. On larger
scales, one might guess that antimatter may be found sequestered in distant galaxies
or galaxy clusters. However, if this were the case gamma rays would nevertheless be
produced at the interface of the matter / antimatter domains. The non-observation
of this diffuse gamma ray background puts a lower bound on the sequestration scale
which exceeds the size of the visible universe (60; 67). It seems that for all intents
and purposes, we live in a universe of matter.

The BAU can be quantified using the baryon-to-photon ratio. This parameter is
defined as

) (2.15)

Ty

U]

where n;, (ng) is the number density of baryons (antibaryons), n., ~ 2¢(3)T°/7? is

the number density of photons at temperature 7', and ng = n, — nj is the number
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density of baryon number (B). Although both ng and n, are functions of time, when
defined in this way 1 remains constant at late times.

The baryon-to-photon ratio was famously measured by comparing the abundances
of light elements with the predictions of Big Bang Nucleosynthesis (BBN) (68)). As-
suming that BBN takes places after the BAU is generated, n represents the relative
number of nucleons (p and n) to photons. Larger  would therefore bias the produc-
tion of He, produced through the nuclear reactions® p(n,~)D(D,n)3He(D, p)‘He,
and cause a reduction in the abundances of 3He and D. The abundances of light
elements can be measured in metal-poor astrophysical systems where the effects of
stellar processing are thought to be minimized. Extrapolating to zero metallicity, the
primordial abundances may be inferred and, comparing with the predictions of BBN,

used to constrain the baryon-to-photon ratio to be (69)
BBN: (51x107") <n<(65x107"%)  at95% CL. (2.16)

This measurement indicates that our universe contains approximately 60 protons for
every billion photons.

Measurements of the power spectrum of the cosmic microwave background radi-
ation (CMB) provide an independent and yet more precise determination of 7. The
CMB was formed when the universe was approximately 300,000 years old and it had
cooled to a temperature of a few eV. At this point, electrons and hydrogen nuclei
were able to recombine without becoming immediately dissociated once again by hot
photons. Subsequently, it became possible for photons to free stream through the
optically thin, neutral hydrogen gas. On reaching us today, these photons fill the sky
with a diffuse, thermal radiation in the microwave band. The distribution of temper-

ature fluctuations over the sky bears the imprint of density fluctuations at the time

5The notation A(B,C)D refers to the two processes A+ B — C + D and A+ C — B+ D by
which A is converted into D.
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of recombination. The pattern of peaks and dips in the CMB power spectrum owe
their origin to the baryon acoustic oscillations (BAO) which preceded recombination.

Prior to recombination, baryons® and photons were kept tightly coupled by Comp-
ton scattering. At the temperature of recombination, the baryons were non-relativistic
and pressureless (p, = 0) whereas the photons were ultrarelativistic (p, = p,/3). To-

gether they formed a baryon-photon fluid (BPF) with a sound speed
Cy = —F———— (2.17)

where

CB3) - (2.18)

In the second equality we have neglected the electron mass and used p, = m,n; and
py = 7Tn./30¢(3). Since T~ eV at the time of recombination and m, ~ 1 GeV,
we can estimate R ~ 0.17 x /(6 x 1071%). Since R ~ 1, we expect ¢, to depend
sensitively on 7. We can use ¢, to get a handle on the behavior of the BPF. For larger
n, we find that ¢, decreases implying that the BPF behaves more like a pressureless
gas of baryons; whereas for smaller n we find that ¢, increases toward 1/v/3 implying
that the BPF behaves like a relativistic gas of photons.

The propagation of sound waves played an important role in the formation of the
BAO. Before recombination, density fluctuations of the BPF evolved in the gravi-
tational potential sourced by the distribution of dark matter. We can understand
this system by considering an isolated overdensity of dark matter and a homogenous
background of BPF'. Initially, the BPF begins to collapse onto the dark matter, but as
its own density grows there comes a point where its repulsive pressure overcomes the
gravitational attraction, the infall turns around, and the BPF begins to recede. This

initiates an oscillatory process which goes on until recombination reduces the pressure

6Conventionally, the term “baryons” is used here to refer to protons as well as electrons.
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of the BPF to zero. As a result, the CMB power spectrum displays a harmonic pro-
gression of peaks and dips corresponding to the points of maximal compression and
rarefaction. Varying 7 affects the power spectrum primarily by varying the relative
heights of the even and odd peaks. For instance, increasing n decreases ¢s and makes
the BPF behave more like a pressureless baryonic gas. As a result of this baryon
loading, the compression stages of the oscillation have a greater “inertia,” since there
is not as great a pressure to retard the collapse, and the density fluctuations are able
to grow larger (70). In this way, measuring the height of the first (compression) peak

of the CMB allows for an excellent determination of the baryon-to-photon ratio (7))
CMB: 75=(619+0.15)x107"  (68%CL). (2.19)

Comparing Eq. (2.16) and Eq. (2.19), we are encouraged by their remarkable agree-
ment despite the fact that they independently probe 7 at totally different epochs in

the cosmic history.

Baryogenesis at the Electroweak Phase Transition

As we have discussed above, on cosmic scales the baryon asymmetry may be quan-
tified as = np/n, ~ 6 x 107'% In order to put this number into perspective, we
can ask what the baryon asymmetry would be today if the universe had began in an
initially baryon symmetric state (n = 0) and if no baryogenesis had taken place. In
this scenario, the universe today would contain a gas of relic protons and antiprotons
which is so diffuse that annihilations are extremely rare and effectively impossible.
Consequently, the universe today would have a global baryon asymmetry of zero, but
it could have a nonzero local baryon asymmetry if p and p had somehow become
sequestered on scales larger than the size of the visible universe. It is straightforward

to estimate the proton relic abundance. In the early universe, protons remained ther-



24

N/ @ > |A€c0 i A

)\ AREEN A€o : A
A4

Figure 2.4: A cartoon illustrating hypothetical “electron-genesis” in analogy with
EWBG. a) An L-violating process inter-converts electrons and positrons. b) The
presence of a background electric field violates CP and biases a spatial separation of L.
¢) The L-violating process is only active in the region containing the positron excess.
d) The L-violating process goes out of thermal equilibrium and is rendered inactive,
residual electrons and positrons annihilate, and the L-asymmetry is generated.
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malized and 1 ~ n,/n, ~ (m,/T)*?exp[—m,/T|. Freeze out occurred when the pp
annihilation rate dropped below the Hubble expansion rate, roughly at a temperature
of Ty, ~ 20 MeV (see e.g., (72))). Subsequently, n remained approximately constant,
and thus its value today should be given by 7y, ~ 1072, which is much too small.
Alternatively, one may admit the unnatural solution that 7 ~ 107!° is merely an

2

initial condition of the “Big Bang.” However, the concordance model of cosmology
incorporates an inflationary phase which would have diluted any initial B-asymmetry
to zero. We are left with only one possibility: that the B-asymmetry was created
during a baryogenesis event in the course of the cosmic history, and more specifically,
prior to BBN.

In 1976 Sakharov (73) proved that any baryogenesis mechanism must satisfy three
criteria: B-violation, both C- and CP-violation, and a departure from thermal equi-
librium”. These can be thought of as the ingredients that must be combined to yield
a BAU, and compared to other baryogenesis mechanism, EWBG mixes these compo-

nents in an interesting and unique way. Schematically, EWBG works in the following

way, which is also illustrated in Figure [2.4] in the fictitious case of “electron-genesis.”

"In general, the out of equilibrium condition may be replaced by CPT-violation.
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Figure 2.5: The mechanism of electroweak baryogenesis, as discussed in the text.

The existence of a B-violating process allows one to convert an antibaryon b into a
baryon b. However, if such a process were simply applied to a thermal distribution
of b and b, no net B would be generated since CPT ensures that b is converted back
to b at the same rate. The way in which EWBG gets around this impediment is to
separate the b and b into different regions of space, and ensure that the B-violating
process is only active in the region containing b. The spatial separation of b and b
relies on the fact that these antiparticle partners carry opposite charges, and thus
they behave oppositely under C- and CP-violating interactions. After the b — b
conversion is complete, the B-violating processes is rendered inactive provided that
it is not in thermal equilibrium, and the BAU has been generated.

Although the discussion of the previous paragraph captures the primary features of
EWBG, the actual mechanism is a bit more involved. For example, the “L-violating”
process discussed in Figure [2.4] also violates the conservation of electric charge, and
therefore creates a cosmic charge asymmetry as well, which is not present in our
universe. Let us now review in more detail the EWBG mechanism (63} 64]), which is
also represented in Figure [2.5] As the universe cools below T ~ Mgw ~ 100 GeV, it
is necessary that electroweak symmetry breaking proceeds through a first order phase
transition. This subject will be discussed further in Chapter [3] For the present, we
need only note that at a first order EWPT, bubbles of EW-broken phase ((H) #

0) form within a background of EW-symmetric phase ((H) = 0). These bubbles
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provide the spatial boundary at which the B-asymmetry will be generated and satisfy
Sakharov’s out of equilibrium condition.

In the first step of EWBG, CP-violating interactions between the Higgs field and
the particles in the plasma will bias the transmission and reflection of quarks and
antiquarks from the bubble wall. For instance, if a left-handed quark ¢, is incident
on the bubble wall, it has a different probability to be transmitted as a ¢, than to be
reflected as a right-handed quark ¢r. Consequently, qr and ¢, build up outside of the
bubble wall while ¢;, and g build up within. In the second step, B-violating process,
known as the EW-sphaleron, acts on the ¢; outside of the bubble and converts it
to qr, and charged leptons, such that electric charge is conserved. More will be said
about the EW-sphaleron transition in Sec. [2.2] but for the moment two points should
be emphsized. First, the EW-sphaleron only acts on field that carry a charge under
the SM SU(2) gauge group. This ensures that the g outside of the bubble are not
converted back into gzr. Moreover, in this way, C is violated. Second, it is critical that
the EW-sphalerons are inactive inside of the bubble. If this is not the case, then the ¢y,
will be converted into ¢y, and there will be no global production of B-asymmetry. In
the third and final step, the bubble wall expands to overtake the B-asymmetry where

it is protected from further processing by EW-sphalerons, and EWBG terminates.

“Baryopreservation” and the Washout Criterion

In light of the discussion in the preceding section, we see that the EWBG mechanism
relies upon baryon number generation at the bubble wall and baryon number preser-
vation within the bubbles. It is essential that the latter “baryopreservation” stage
is successful. If this stage fails, then the issue of whether or not a baryon asymme-
try was generated at the wall in the first place is moot. Moreover, as we will see,

the requirement of baryopreservation imposes direct constraints on the scale of the
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electroweak phase transition and thereby, it places a model-dependent lower bound
on the Higgs mass. Therefore, a measurement of merely the Higgs mass at colliders
yields powerful constraints on EWBG models. For this reason, the question of viable
baryopreservation will be the focus of the remainder of our discussion.

In EWBG, the B-violation is accomplished through thermal EW-sphaleron tran-
sitions. However, B-violation is forbidden at the classical level since the EW interac-
tions respect a U(1)p symmetry and B is a conserved quantity. In order to achieve
a violation of B, the symmetry associated with B conservation must be anomalous.
The so-called Adler-Bell-Jackiw anomaly was first identified in 1969 (74 [75), but its
connection to B-violation wasn’t recognized until 1976 by 't Hooft (76} [77). 't Hooft
discovered that B may be violated® by the non-perturbative processes known as in-
stantons, which had been constructed in the previous year by Belavin, et. al. (7g]).
't Hooft noted that the rate of B-violation by instanton processes is proportional to
a factor of exp[—47r/ (awh)}. The presence of h in the denominator indicates that
the rate vanishes as we take h to zero. This allows us to interpret the instanton as
the process associated with quantum mechanical tunneling through a barrier (79; [80)
Using ayy = ¢2/4m ~ 1/30 for the weak coupling constant the suppression factor is
approximately equal to 107163 and consequently B-violation by instanton processes
is unobservable and insufficient for baryogenesis.

In 1985 Kuzmin, Rubakov, and Shaposhnikov (62} 81 82) recognized that in the
hot conditions of the early universe B-violation may proceed by “hopping over” the
barrier instead of tunneling through it?. They employed a different non-perturbative

process called the sphaleron, which had been discovered two years earlier (83 [84).

8Strictly speaking the anomaly mediates B+L violation where L is the lepton number. Since the
combination B - L remains exactly conserved, B+L-violation allows B-violation accompanied by an
equal amount of L-violation.

9Here I follow the standard language used in contrasting instantons and sphalerons. However,
it is worth clarifying that the instanton is a scale invariant solution, and therefore its tunneling is
associated with a barrier the action and not the potential energy, as in the case of the sphaleron.
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The sphaleron, which takes its name from the Latin for “ready to fall,” represents
the static field configuration at the top of the potential energy barrier separating two
topologically distinct states which differ by A(B+L) = 3. The energy of the sphaleron
represents the height of the barrier and is given by Egp, = B x 4wv/g =~ 9 TeV where
B ~ 2 is a slowly varying function of m?% /m?,. At finite temperature, the height of
the barrier grows smaller as the expectation value of the Higgs field v(T") begins to

decrease, leading to the scaling behavior (85)

o)

Esph (T) ~ Esph (220)

We can estimate the rate per unit volume of B-violation as T*exp [~ Eqn(T) /T] where
the Boltzman factor appears because the sphaleron is a thermal process and the 7%

is added on dimensional grounds. A more rigorous calculation yields (86} 87)

Lspn aw\* [ Eagn(T)\'
where 107* < k < 107! is a dimensionless prefactor that must be calculated numeri-
cally. It is also worth noting that outside of the bubbles the sphaleron processes, which

are responsible for creating the B-asymmetry in the first place, are unsuppressed and

proceed at a rate

=

sph

~ k(awT)* (2.22)

where 0.1 < k < 1.
We have stressed that baryopreservation requires the EW-sphaleron processes to
be inactive within the bubbles. If these processes are not inactive, they any baryon

asymmetry inside of the bubbles will be washed out by a factor of

exp[— / Cgpndt] (2.23)
te
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Figure 2.6: The rate of B-violation by sphaleron processes I'spn in the broken phase
must fall below the Hubble expansion rate H(T') at the time of the phase transition
in order for the B-asymmety to be preserved. In the SM, this is the case for my <
50 GeV. The error bands correspond to uncertainty in « and k.

where t. is the time at which the phase transition occurred. This condition can
be stated by saying that the rate Eq. must be much smaller than the Hub-
ble expansion rate at the time of the phase transition (62). At the time of the
phase transition, the universe is radiation-dominated and the Hubble rate is given by
H(T) ~ (7/3)y/9./10(T?/M,) where g. ~ 106 is the number of relativistic degrees
of freedom and M, ~ 10'® GeV is the Planck mass. Numerically, this competition
is represented in Figure where H(T') is plotted along with the sphaleron rate in
the broken phase Eq. and in the symmetric phase Eq. . Analytically,
requiring H(T') to exceed the EW-sphaleron rate Eq. averaged over a volume
of T=3 we find a lower bound (

88)
ESPh<T)

> 37— 45 (2.24)

where the variation arises from the uncertainty in x. This bound must be satisfied

at all times after the EWPT has occurred. Since both Eg,, and 1/T are growing
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functions of time (decreasing temperature), it is sufficient to impose the bound at

the temperature 7T, just after the EWPT. Furthermore, using the scaling relation

Eq. (2.20), we can rewrite the bound Eq. (2.24) as

(1)
T.

>10-13. (2.25)

This bound is known as the washout criterion; if it fails to be satisfies, the baryon
asymmetry will be erased by EW-sphaleron processes, and EWBG will have failed; if
it is satisfied, we say that the EWPT is strongly first order (SFOPT). As we will see
in the next chapter, both v(7") and 7, depend upon the properties of the Higgs such
as its mass and coupling to BSM physics. Therefore the bound Eq. imposes a

direct constraint on properties of the Higgs boson.

Baryogenesis in the Standard Model and Beyond

It is interesting to note that electroweak baryogenesis is the only baryogenesis mech-
anism that has the potential to generate the BAU using only ingredients drawn from
the SM (88)). Unfortunately, the SM falls short of the necessary requirements of
EWBG in two ways. First, the only source of CP violation in the SM is the phase an-
gle in the quark mixing matrix, and this tiny angle is insufficient to generate the BAU.
Second, the SM fails to satisfy the requirement of a strongly first order elecroweak
phase transition, which is expressed in Eq. . In fact, the phase transition is
not even a phase transition at all; it is a continuous crossover without any departure
from thermal equilibrium. It was known in the earliest discussions of EWBG that the
SFOPT requirement imposed an upper bound on the Higgs mass (82). This bound,
which is derived in the following chapter (see Eq. (3.43)) is given by

2 3 3
M < (M) max = mWTW ~ 48 GeV . (2.26)
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This bound is also seen in the numerical calculation of the sphaleron rate shown in
Figure 2.6] Lattice simulations of the phase transition later confirmed that for a
Higgs mass above (mpg)max =~ 66.5 GeV, electroweak symmetry breaking proceeds
through a continuous crossover (89; 90). As we discussed in the previous chapter,
such a light Higgs was excluded in the late 1990s (see Figure . The Standard
Model is incapable of generating a cosmic baryon asymmetry.

The failure of EWBG in the Standard Model is a disappointment, but at the same
time it is an incentive. Many extensions of the SM are able to accommodate EWBG.
The minimal supersymmetric generalization of the SM, known as the MSSM, allows
for additional CP violation through the so-called p term. Additionally, the EWPT
may be rendered strongly first order by the presence of stops — new, colored scalar
particles which couple strongly to the Higgs. However, searches for the Higgs and for
the superpartners of the SM fields sharply constrain EWBG in the MSSM (91)). The
only remaining viable corner of parameter space is the limit in which stops are light
(92) and the strength of the phase transition is enhanced by two-loop effects (93).
In extensions of the MSSM, such as the nMSSM (94), the NMSSM (95; 96), and
the uvSSM (97), electroweak baryogenesis is easier to accommodate. Electroweak
baryogenesis may also be achieved in non-supersymmetric extensions of the SM. In
particular, many models have been studied (98-119) which add a singlet scalar field
to the SM in order to render the phase transition strongly first order. Whatever
one’s preference may be, the baryon asymmetry of the universe makes it necessary
to venture beyond the Standard Model. Although electroweak baryogenesis may not

provide the roadmap, it certainly points the way.
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Chapter 3

The Phase Transition Calculation

In Sec. we saw that electroweak baryogenesis may be able to account for the
baryon asymmetry of the universe provided that the bound v(7,)/T. > 1 is satisfied.
Since this bound — and the electroweak phase transition, more generally — will play
a central role in the succeeding chapters, we will spend this chapter introducing
the concepts and the techniques used in the phase transition calculation. At the
conclusion of this chapter, we would like calculate the ratio v(7.)/T. for the Standard
Model electroweak phase transition. To reach this point, we will require a tool, known
as the thermal effective potential, which facilitates the calculation of quantities like T
and v(7). A formal derivation of this function is beyond the scope of our discussion.
Instead, we will define the effective potential as a free energy that depends upon an
order parameter and temperature. Since these may not be familiar concepts, we will
begin our discussion with a heuristic introduction to the phase transition analysis
in two simple systems where we may underline the important concepts without the

distraction of technical details.
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3.1 Heuristic Introduction

Phase transitions are among the most interesting, complex, and yet familiar physical
phenomena. Examples include the solid-liquid-gas transitions in many materials,
the ionization and recombination of a hot plasma, the demagnetization of a heated
ferromagnet, superconductivity in various cooled materials, and superfluidity in liquid
helium. Although these systems are very distinct, they nevertheless share a number of
common features. In systems like the ferromagnet and liquid helium, the microscopic
dynamics respect a symmetry that is spontaneously broken at low temperature but
restored above some critical temperature T,.. Symmetry restoration follows from the
fact that a system in thermal equilibrium will evolve to a minimum of the free energy
F = FE—-T S, which corresponds to a state of minimal energy at low temperature and
to a state of maximal entropy at high temperature. Thus, it is often useful to identify
an order parameter which quantifies the degree of symmetry breaking. As we will
see, the temperature dependence of the order parameter provides useful information

about the nature of the phase transition.

Ferromagnetic Transition

Consider the Ising Model in the absence of any external magnetic field. The system
consists of N atoms arranged on a regular d-dimensional lattice of volume V', such
that each lattice site has n neighbors. Each atom has spin 1/2 (due to an unpaired
electron), which is aligned with the z-axis and can either point up or down. We
will let N, be the number of upward spins and N, = N — N, be the number of
downward spins. A particular spin configuration is illustrated in Figure 3.1 To
model a ferromagnet, we suppose that the Hamiltonian of the system is such that

misaligned spins are energetically disfavored. To be concrete, we can let € be the
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Figure 3.1: An illustration of the system of spins discussed in the text, where we have
let d =2 and n = 4.

energy cost of having a pair of adjacent, misaligned spins and let —e be the energy
liberated by having a pair of adjacent, aligned spin. Thus, the maximal energy state is
the one in which for every atom, the spins on all adjacent lattice sites are misaligned.
The energy of this configuration is Ey,.. = Nne/2, where the factor of 1/2 eliminates
double counting. Conversely, the ground state of the system is the one in which all
spins are aligned (either all up or all down) and the energy is Ey = —Nne/2.

We may now investigate the behavior of this system at finite temperature through
the following thought experiment. Suppose that the system is prepared by allowing
it to relax to its ground state in which all of the spins are up, N, = N and E = E.
We immerse the system into a heat bath at temperature 7. As the system exchanges
energy with the heat bath, some of the spins will flip downward at random. An energy
of approximately 2ne is required to flip the spin of an atom. This is illustrated in
Figure [3.2l Thus, if an energy on the order of NkgT is absorbed from the heat
bath, the number of flipped spins will be approximately N; = NkgT'/(2ne). As the

temperature is raised, N cannot grow without bound since there are only a finite
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Figure 3.2: An isolated flipped spin increases the energy of the configuration by n x 2¢.

number of spins on the lattice. Symmetry arguments, which we will discuss further
below, demonstrate that N; maxes out at N/2. This occurs at a temperature given
approximately by 7. = ne/kp. At temperatures greater than 7., the fraction of
upward and downward spins each remain approximately equal to N, ~ N, ~ 1/2.

The temperature T, demarcates an important threshold across which the macro-
scopic properties of the system vary dramatically. This can be seen by looking at
the magnetization. For a given configuration, the average magnetization M (coarse
grained over V') can be calculated as M = ug(N, — N;)/V where up is the Bohr
magneton. In the ground state with all spins aligned upward, the magnetization is
simply My = upN/V. When the system is immersed in the heat bath, the number
of flipped spins increases like N; ~ T and the magnetization begins to decrease like
M = My(1-T/T.). As the temperature approaches T, the magnetization approaches
zero, and for all temperatures above T, the magnetization remains approximately
fixed at zero since N; ~ N,. We can see that the temperature T, demarcates the
boundary between the low-temperature magnetized phase and the high-temperature
demagnetized phase. It may be identified as the phase transition temperature, also
called the Curie temperature in this particular system.

A second way of identifying that a phase transition occurs at T, it so look at the
analyticity of the free energy. The free energy is calculated as ' = U —T'S where U is

the average energy and S is the entropy. In the ground state at 7' = 0 we have U = L.



36

At the temperature T, and above, it is reasonable to suppose that U = 0. This guess
is motivated by our earlier observation that at temperatures above T, there are an
equal number of upward spins and downward spins. We may also expect that there
are an equal number of aligned and misaligned spin pairs. Since aligned spin pairs
provide a positive contribution to U while misaligned spins contribute negatively, it
follows that on average U vanishes above T,.. The entropy S scales like the logarithm
of the number of states (spin configurations) that are accessible provided an “energy
budget" of NkgT. Thus, the entropy vanishes at T = 0 where the configuration of
uniformly aligned spins is the only allowed state. Above T,, we have just argued that
the system is equally likely to be found in any of the states. Since the number of spin
configurations scales exponentially with the number of atoms N on the lattice, we
find that the entropy reaches a constant of approximately Nkg above T,. Combining
these two contributions to F', we find that as the temperature is raised from zero to
T., the two terms which enter into F' compete: U increases while —T'S decreases. The
latter terms wins out and F' decreases from FEj to approximately —NkgT, at T,.. At
temperatures above T, the average energy is fixed at zero and F' decreases further,
linearly with 7. The temperature dependence of M and F' are shown together in
Figure [3.3] The key observation here is that the behavior of F' is non-analytic as the
temperature crosses the threshold 7. This non-analyticity in some thermodynamic
quantity is a characteristic feature of a phase transition.

Finally, it is important to recognize that the magnetization acts as the order
parameter of the symmetry of this system. The Hamiltonian makes no distinction
between up spins and down spins, but instead only depends upon the alignment or
misalignment of adjacent spins. Thus, the system possesses a symmetry relating any
given spin configuration and the one in which all spins are flipped. The invariance of

the Hamiltonian under this symmetry transformation ensures that the two conjugate
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Figure 3.3: A sketch free of the energy F' and magnetization M of the ferromagnetic
system discussed in the text as the system is heated and the phase transition takes
place.

configurations are degenerate. However under this transformation, the magnetiza-
tion changes sign. Thus we can identify M as the order parameter of the spin flip
symmetry.

The key features of the ferromagnetic phase transition which will be relevant in
the remainder of this section are the following. A phase transition is (frequently)
associated with symmetry breaking or restoration. As the temperature is increased,
the system passes from the symmetry broken (ordered) to symmetry restored (dis-
ordered) phase, because the maximization of entropy becomes more important than
the minimization of energy. This change occurs abruptly at a temperature threshold
called the critical temperature 7,.. One can identify the presence of a phase transi-
tion using an order parameter, appropriately defined to be nonzero in the symmetry
broken phase and to vanish in the symmetry restored phase. One can also study the

phase transition by investigating the non-analytic behavior of the free energy.
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Figure 3.4: A schematic representation of the phase transition from vapor to liquid.

Water Vapor Condensation

The ferromagnetic phase transition, which was discussed above, is known as a second
order phase transition. In such a phase transition, the order parameter and free energy
vary continuously across the temperature threshold 7' = T, but the second derivative
of the free energy varies discontinuously. In our investigation of the electroweak
phase transition, we will be more interested in first order phase transitions. These
transitions are characterized by a discontinuity in the order parameter at 7T, and an
associated coexistence of phases in the form of bubbles. A familiar example of a
first order phase transition is the condensation of water vapor into liquid water at
a temperature of approximately 100° C. In this system there is no spontaneously
broken symmetry, but we can still identify an order parameter as the density of the
material. The temperature dependence of the free energy and order parameter are
shown schematically in Figure The primary distinction with the ferrogmagnetic
system is that now there exists a range of temperature at which the system could be

found in either the liquid or gaseous phase. Above the critical temperature T., the



39

system has a smaller free energy in the gaseous phase, and below this temperature the
free energy is smaller in the liquid phase. The phase transition occurs as the vapor
is cooled to the temperature T, ~ 100° C, at which point the free energy in the two
phases are equal. Bubbles of condensed liquid begin to form, and the phases coexist
at a temperature T, until all of the vapor is converted into liquid. It is important to
note that the order parameter, the density of the material, varies discontinuously as
a function of temperature at the phase transition. This will be the hallmark feature

of first order phase transitions in our study of the electroweak phase transition.

3.2 The Thermal Effective Potential

In the study of phase transitions, the thermal effective potential is an invaluable tool.
As we saw in the examples of Sec. the phase transition may be studied by cal-
culating an order parameter and free energy as functions of temperature. However,
it would be very useful to employ a thermodynamic potential, in analogy with a po-
tential energy function of classical mechanics, which represents the free energy of the
system at a given temperature as a function of all possible values of the order param-
eter. One may obtain the physical value of the order parameter and free energy at a
given temperature by minimizing the thermodynamic potential. Figure illustrates
the application of such a thermodynamic potential for the systems discussed above.
This thermodynamic potential is precisely the thermal effective potential we seek to
define and calculate in this remainder of this section.

The non-thermal effective potential was first introduced by Heisenberg & Euler in
1936 (120) and by Schwinger in 1951 (121} [122). This formalism was applied to studies
of spontaneous symmetry breaking by Goldstone, Salam, and Weinberg in 1962 (17),

Jona-Lasinio in 1964 (123)), and throughout the early 1970s by various authors (124~
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Figure 3.5: Schematic representations of the utility of a thermodynamic potential as
applied to the study of phase transitions.

127). Meanwhile, thermal field theory was developed throughout the 1950s and 1960s
(128-133)). The thermal effective potential was introduced and applied to the issues
of symmetry restoration and phase transitions by Weinberg (60) and Dolan & Jackiw
(61)) in 1974. T will follow the presentation of Guth (134), and sidestep the tricky issues
of Green’s functions at finite temperature by immediately restricting the discussion

to a homogenous, static scalar field condensate.

Formal Definition

In this section we calculate the thermal effective potential Veg (e, T) for a system at
temperature 7" in which the scalar field condensate takes the value ¢.. The condensate
may represent the order parameter of a symmetry breaking phase transition. In order
to treat ¢. as a independent variable, as opposed to a function of 7', we employ a
subtle trick. We will take the Hamiltonian of the theory and add to it a source
term for the scalar field such that the desired value of the scalar field condensate

may be obtained by choosing the source appropriately. After calculating the free
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energy density the explicit dependence on the source term is removed by a Legendre
transformation. The result is the desired function Vig(¢., T') which is independent of
the source.

Consider the system in which the degrees of freedom consist of a real scalar field
@(x)l and potentially other fields W; of arbitrary spin. The dynamics of this system
are described by the Hamiltonian density (I, ®) where II(x) is the momentum
conjugate to ®, and the dependence on U; and their conjugate momenta have been
suppressed for clarity. Since we will be interested in the homogenous scalar field

condensate, it will be convenient to define the spatially averaged field operator

i-@ib

1 ~

Q) == / d*x ®(x) (3.1)
Q Jq

which is coarse grained over a spatial volume €2 that we will eventually take to infinity.

As discussed above, we are actually interested in the sourced Hamiltonian

A

(,0) = /Qd% (R @) ;@) (3.2)
where j is the classical source field, assumed to be homogenous and static. At finite
temperature the system is described by a mized state — a statistical ensemble of pure
states (e.g., eigenstates of the Hamiltonian). Eigenvalues of the density matriz p give
the probability of finding the system in the associated (pure state) eigenstate. In
thermal equilibrium at temperature 7', and in the absence of any conserved charges

(i.e., chemical potentials vanish), the density matrix is given by the Boltzmann dis-

tribution
1 N
0(4, 0. T) = ——— —H(5,Q)/T )
p(4,92,7T) Z(jﬂ,T)exp[ (4,92)/T] (3-3)
where the partition function
Z(5,Q,T) = Tr(exp[—H(j,Q)/T]) (3.4)

"Working in the Schrédinger picture, the operators are time-independent. Operators are denoted
by a hat.
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ensures that the density matrix is properly normalized Tr (ﬁ) = 1. We can calculate

the expectation value of some operator O using the density matrix as

(0), 07 =T (p(,2,7)0). (3.5)

This expectation value is an ensemble (or thermodynamic) average, and it is not to
be confused with a vacuum expectation value.
Equipped with the density matrix and partition function we can proceed to cal-

culate thermodynamic quantities. The von Neumann entropy is calculated as
S(,2.T) == np(G, Q. T));0r - (3.6)
We define the free energy as
F(5,9,T) = (H(j, D), 07— TSGQT) = -TZ(j,2,T) (3.7)

where the second equality follows from taking the logarithm of Eq. (3.3). We can
eliminate the explicit dependence on the source by performing a Legendre transfor-

mation. We will take the new independent variable to be the scalar field condensate

1OF -

Pe = Q9 <(I)>j,Q,T’ (3.8)

which is the expectation value of the coarse grained field calculated at a temperature

T in the sourced theory. The Legendre transformation yields the function

Ale, 0, T) :F(j,Q,T)Jr/Qd%jqﬁc, (3.9)

which is independent of the source provided that

194
1= Q06,

(3.10)

The effective potential is obtained by calculating the free energy density in the infinite

volume limit. Thus,

1 T
V6o, T) = lim SA(6e, . T) = lim —=nZ(j, Q. T) + jo. (3.11)
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Combining Eq. (3.11]) with Eq. (3.4]), one obtains the formal expression for the effec-

tive potential:

Vet (¢, T) = lim —g In T (¢~ /D o (73 (2-00)) ) (3.12)

Q—o00

where j is to be eliminated using Eq. (3.8]).

One-Loop Expansion

The effective potential can only be calculated exactly in very limited cases. For
practical applications, the effective potential may be calculated perturbatively as an
expansion in coupling constants. In the diagrammatic formalism, the leading order
corrections may be calculated by summing the set of Feynman diagrams with a single
loop and no external lines. Some of these vacuum bubble graphs are illustrated in
Figure[3.6] The resulting expression for Vog is known as the one-loop thermal effective
potential Vi_io0p. Reproducing the rigorous calculation of Vj_jo,p is beyond the scope
of this paper. Instead, we will present a limited derivation that captures the primary
features of the approximation, and simply write down the full expression afterward.

For simplicity, assume that the system contains only one species of particle, which
may be either a boson or fermion. Since we are interested in studying a thermal bath
of particles, when we calculate the partition function, we will include only states
in the Fock space and neglect, for example, non-perturbative field configurations.
For this set of states, the spectrum of the Hamiltonain Eq. will depend upon
the additional source term in two ways. First, the explicit presence of the term
— [ d®xj 3 will change the energy of the ground state by an amount —2j¢.. Second,
the implicit effect of this term is to source the homogenous scalar field and shift all

of the states of the theory in a way that depends on j. Thus, the “shifted" spectrum
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Figure 3.6: A typical set of tree-level and 1PI vacuum bubble graphs which are
summed when calculating the thermal effective potential perturbatively. The X’s
represent insertions of the condensate ¢..

of the Hamiltonian H(j)2 consists of the vacuum }0>j with energy j<0{ﬁ(j)|0>j =
Eo(7)—Qj¢., one-particle states |p>j with energy j<p‘I:I(j)|p>j = FE(p;J), and multi-
particle states ‘pl, P2, .. .>j with energies E(p1,p2,...;Jj). The partition function is

calculated by performing the trace in Eq. (3.4) to obtain

Z(j, T) :j<0|ef(E‘o(j)fQj¢>C)/T|O>j 4o« Z nj<p|efE(p;j)/T‘p>j

»),

e Z ,,j<p17p2|6—E(p1,p2§j)/T‘p1’ p2>j S (313)

‘P17P2>j
For simplicity, we have written the sum over states schematically.
We make the “one-loop approximation," by neglecting interactions between parti-

cles. This allows us to write the multi-particle states as tensor products of one-particle

2We suppress the argument € hereafter for simplicity.
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states with the appropriate (anti-)symmetrization for (fermions) bosons. For example

1 ‘P1> ® |p2> + |p2> ® ‘p1> bosons

IP1,p2) = 7 . (3.14)

‘P1> ® {p2> - }p2> & ’p1> fermions

Consequently, the energy of a general multi-particle state reduces to

E(p1,p2,---;7) = E(p1;J) + E(p2;j) + .- - . (3.15)

With these replacements, we can reorganize the sum over states in Eq. (3.13)) in terms
of a product over one particle states and a sum over their occupancies. Extracting
the ground state from this product and defining £, = E(p;j) — Eo+Qjé., Eq. (3.13)

becomes

Tmax Nmax = OO bOSOIlS
R IS S o

np=0 Nmax = 1 fermions

Performing the sum over the mode occupancies, we obtain

_EP(J)/T bosons

. _ B, 0 « "
25, T) = e 159 5 <
P (1+6_EP(3)/T) fermions

(3.17)

Finally we can calculate the effective potential using Eq. . As we mentioned
at the outset, the spectrum contains both explicit an implicit dependence on the
source j. The Legendre transformation ensures that the explicit dependence on j
cancels between Eq. and Eq. , and that the implicit dependence on j can
be expressed as a dependence on ¢, instead. Evaluating Eq. with the partition
function Eq. , we find

E0(¢C) +£ “ Zp ” In (1 — e_EP(¢c)/T) bosons
0 +

‘/I—loop<¢ca T) - (318)

_% « o ” In (1 + epr@)c)/T) fermions
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where we have used In “II,” = Zp ”In. This expression provides an intuitive un-
derstanding of the effective potential. At low temperature 7' < E,, the effective
potential reduces to the vacuum energy density Fy/€) which consists of classical and
quantum contributions to the energy of the ground state. We are unable to evalu-
ate Ey/€ as a function of ¢, without going into a more rigorous calculation of the
effective potential. The temperature dependent pieces, not surprisingly, resemble the
Bose-Einstein and Fermi-Dirac distribution functions, as a consequence of the spin
statistics of Eq. . We can evaluate these expressions further by noting that the
energy of a one-particle state of mass m can be expressed as F = \/m . Thus,
to leading order the presence of the condensate ¢. simply modifies the dispersion
relation by replacing m? — m?(¢.).

Having deriving the effective potential for a gas of free particles in Eq. , we
will bypass the full calculation and simply proceed to write down the general one-
loop effective potential. However, it is important to note that in the course of the
calculation, one encounters UV divergent loop integrals (corresponding to the Ey term
of Eq. ) which must be regulated and renormalized. We will restrict ourselves
to dimensional regularization and the MS regularization scheme with renormalization

scale p. This calculation yields (61))
‘/l—loop(qu T) - Wen(qsc) + A‘/lo(qsc) + AVvlT«bca T) (319>

where Vien is the renormalized scalar potential. The non-thermal correction term

AVP, known as the Coleman-Weinberg potential (124), may be expressed as

AV(¢.) = ;ni(—n%i (mgiig))Q [m (mgi)Q) — C,-] . (3.20)

In this expression, the sum runs over fields labeled by i: n; is the number of dynamical

degrees of field 7, s; is the spin of field i, and C; is a constant that depends on the
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renormalization scheme; it equals 3/2 for a scalar or fermion field and 5/6 for a vector

boson. The thermal correction term is given by

A%T<¢C,T>—T—42ni o)

272 .
¢ —Jr <_m?T(—fc)> s;=1/2

where the thermal loop functions are given by

(3.21)

Jpr(y) = /OO dz z* log [1 F e_\/m] ) (3.22)

0

We have already seen the emergence of this term in Eq. (3.18) through our simple
derivation.
It is useful and important to note that the functions Jp r admit a polynomial

expansion in the so-called high temperature limit where m? < T?. These expansions

are (61))
45 12 6 32 ap
360 24 327 "

where a, = 16a; = 16m%exp [3 /2 — 27];}. The most significant distinction between Jg

and Jp in this limit is the presence of the non-analytic term (y)3/2

in the expansion of
Jp. This term is associated with the non-analyticity of the Bose-Einstein distribution
function (1 —exp [E / T] )=t at E = 0. This term will play an important role in helping

to render the electroweak phase transition strongly first order.

3.3 The Standard Model Electroweak Phase
Transition

To illustrate how the effective potential may be used to analyze the physics of a

phase transition, we will consider the electroweak phase transition in the Standard
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Model. The scalar potential is given by the non-derivative terms in the renormalized

Lagrangian,
~Lyen 3 P H'H + X (HTH)? . (3.24)

where H = (¢, ¢°)" is the Higgs doublet scalar field. By choosing p2 = —Av?, the
Higgs will develop a vacuum expectation value <O’H |0> = (O, v/ \/5) Thus, we will
calculate the effective potential as a function of the condensate h = v/2 (Re[¢"]). Here,
we have departed from our earlier notation of using ¢. to represent the condensate
in favor of a more intuitive notation.

The leading contribution to the one-loop effective potential Eq. is the renor-

malized scalar potential
Av? A
Vien(h) = —Tvlﬂ +ht (3.25)

To obtain the quantum and thermal corrections, we must identify the field-dependent

2

masses m; (h) of the particles in the plasma. The dominant contributions come from
those species which couple most strongly to the Higgs field. Namely, we need only
include the top quark, weak gauge bosons, and Higgs particles, and we can neglect the
light quarks, leptons, photon, and gluon. The field dependent Higgs mass is obtained
from Eq. by differentiating m3,(h) = V.2 = A(3h? — v?). Defining the physical
Higgs mass as m% = m?%(v) we can make the replacement A = m? /2v*. The other
field-dependent particle masses may be obtained from relevant terms in the full SM

Lagrangian. For these particles we have

m2(h) = %hQ ny = 12 s =1/2 C, = 3/2
2

2, (h) = ”Z—;Vif nw = 6 sw =1 Cw = 5/6
2
- m

m%(h) = v—ffﬂ ny =3 sz =1 Cy;=5/6
m2

m3(h) = —£(3h? — v?) ny =1 sp =0 Cy=3/2, (3.26)
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where m;, my,, and my are the pole masses of the top quark, W-boson, and Z-boson.
The degrees of freedom are counted as n; = 3 x 4 for color and spin, ny = 3 x 2 for
polarization and charge, and so on. Using Eq. we can evaluate the remaining
contributions to the one-loop effective potential given by Eq. and Eq. .
The result is the one-loop thermal effective potential for the SM,

2
(SM) Mo Ay
‘/1 loop(h T) 4 h + 4h

+ 1o (Bh) + Fw () + Fz(h) + Fu(h))
T m2h? mi,h?
* ﬁ( WF(U T2> +6‘]B<—U2T2 )

m%h? 3h? —v
() ().

4p4 m2h2
Ft(h)z—3mth 1n< ih )

where

U2Q263/2
_ 3my, h? mi,h?
Fw(h) = 204 In <U2Q2e5/6
3m3, ht

In

e U2Q265/6)
4 (ap2 _ ,2Y2 2 (ap2 _ 2
Fu(h) = my (3h* — v?) In (mH(3h v ))

160v* 202()2e3/2 (3.28)

The expression Eq. (3.27) is a bit unwieldy. To obtain a more intuitive expression,

we can employ the high temperature approximation Eq. (3.23). Provided that h? <

v*T?/m? we can approximate,

—_

Vo (h,T) ~ S (T2 = T3)h? — ——

1—loop

h* (3.29)

l\D
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where the effective parameters are given by

2

m
Ty = -2 3.30
7= (3.30)
. 4m? 4+ 4m3, + 2m% + m3, (3.31)
8v?
3 3
e = 6miy + 3mi ' (3.32)

03
In calculating Eq. (3.29) from Eq. (3.27)), we have left out the residual terms §V =
Q+ (o/2)h* + (7/4)h* where

Q(h, T) 427> T4 mi; | m?2 (3h% — v?) N m3,TV/2v/3h% — 2 (3.33)
= — — n )
’ 360 25672 20212 qy 487mv
o(hT) = 3m¥, In my(3h* —v?)\ m3T/2v/3h% — 2 (3.34)
T 6An2? 202T2q, 83 )
1 m? m2h? m m?,h?

h,T) = 12—-1 : —6—21 W 3.35
7(h,T) 1672 [ i 1 (U2T2af> vl n v2T2q, ( )
B 3m_‘é In mzh® \ Iy In m3;(3h? — v?)

vt v2T2ay 4ot 202T2ay, ’

The correction 0V is a small, slowly varying function of h when the temperature is
on the order of the electroweak scale, and it may be neglected for the purposes of an
approximate analytic analysis.

The approximate expression Eq. illuminates the consequence of interactions
between the condensate and the plasma. The dominant thermal contribution induces
an effective mass m?(T) = ¢ (=17 + T?) for the Higgs field. Since spontaneous sym-
metry breaking is driven by the tachyonic mass m?Z;(0) = —cT¢, we expect that the
broken symmetry will be restored above a temperature 7" ~ T, where the tachyonic
instability becomes lifted. Equation ((3.30)) reveals that this temperature scale is set
by the Higgs mass and also depends upon the dimensionless thermal mass parameter
c. Qualitatively, ¢ represents the tightness of the coupling between the condensate

and the plasma. For large ¢, thermal interactions are very effective at stabilizing
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the symmetric phase, and symmetry restoration occurs at a lower temperature. The
non-analytic term (h?)%/? arises from interactions with weak gauge bosons. This
term plays an important role rendering the phase transition first order by allowing.
Near the phase transition temperature, we expect the three terms in Eq. to be
comparable in magnitude.

With Eq. at hand, we are equipped to study the SM electroweak phase
transition. We obtain the physical value of the Higgs condensate v(T') at a given

temperature by minimizing the effective potential. The equation

1—loop

oh

avEM (h T)
A =0 (3.36)

h=v(T)

has two solutions. The first, vgym(T") = 0, represents the Higgs condensate in the

symmetric phase, and the second,

e e \?2 c
= — [ 2 —_ 2 _ 2
vbrk(T) 87r)\T+ \/<87r)\> T? + )\(To T ), (3.37)

represents the broken phase condensate. Note that the broken phase condensate does

not exist for temperatures above

Ty
vV1—a2

where a = e¢/(87V/ Ac). The free energy density in the broken phase is given by the

T = (3.38)

value of the effective potential at this minimum,

Forc(T) = VER (0pi(T), T) = (3.39)
c? 2c? c?
- 5T - —)\Tga\/TO? ~ 11— )T+ 13 (1 - 20%) 12
2c? c? 8
+ 3@ (1—0a?) \/TO2 —T2(1—a2)T? — o (1 —4a® + §a4) T.

At T = 0, the free energy density is just equal to the negative classical potential energy

of the ground state, i.e., (=1)(c*Ty/4\) = — vt /4. At T = Tpax, the free energy is
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positive and equal to (c*Ty/4\)(a?/[3(1 — «?)?]). In the symmetric phase, the free
energy density remains fixed at Fyym(T) = 0, since we have dropped the T* pieces
from the effective potential. Thus, the broken phase is energetically favored at low
temperature, and the symmetric phase is energetically favored at high temperature,

as we would expect. The equality occurs at a temperature 7T, defined by
fsym(TC) - ]:brk(Tc) (340)
which resolves to

T,=—2 (3.41)

Finally, using Eq. (3.37) and Eq. (9.70) we can estimate the order parameter of the

electroweak phase transition to be

o(T.) e 2mi, +m}

3.42
T. 6T Tmiv (3.42)

Then by imposing the washout condition v(7.)/T. > 1, we obtain an upper bound

on the Higgs mass

3 3
2myy, +my,

~ 48 GeV . (3.43)

(mH)maX — iy

In Figure|3.7|we have illustrated the temperature dependence of the effective potential
for a scenario with the Higgs mass just at the threshold value Eq. . If the Higgs
were lighter, the phase transition would be more strongly first order. However, in light
of the Higgs search bound mpy 2 115 GeV (48), we conclude that the SM electroweak

phase transition is not strongly first order.
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Figure 3.7: The SM thermal effective potential for a 45 GeV Higgs. The phase
transition occurs at a temperature of T, ~ 56 GeV at which point vp(7%.) =~ 65 GeV,
and since vnk(T.)/T. > 1, the electroweak phase transition is strongly first order
phase transition.



o4

Chapter 4

Electroweak Phase Transition in the

LrSSM

An extension of the MSSM called the urSSM does not allow a conventional thermal
leptogenesis scenario because of the low scale seesaw that it utilizes. Hence, we
investigate the possibility of electroweak baryogenesis. Specifically, we identify a
parameter region for which the electroweak phase transition is sufficiently strongly
first order to realize electroweak baryogenesis. In addition to transitions that are
similar to those in the NMSSM, we find a novel class of phase transitions in which
there is a rotation in the singlet vector space.

This work was performed in collaboration with Daniel Chung. It was published

in Physical Review D in June of 2010 (97).

4.1 Introduction to the Chapter

An extension of the MSSM called the purSSM (I35) is a model similar to the NMSSM

(136) (with the usual Zs charge assignment) except that the singlet whose vacuum



%)

expectation value (VEV) gives rise to the p term also serves the role of a right handed
neutrino, thereby violating R-parity. Because the VEV generates the p-term and the
right handed neutrino mass, the right handed neutrino masses are of order TeV,
leading to a low scale type I seesaw. Given the absence of high scale seesaw, thermal
leptogenesis is difficult in the uzSSM. Hence, it is interesting to consider whether or
not electroweak baryogenesis (EWBG) (62) can occur in this class of models. One
of the most stringent constraints of EWBG on the purSSM is the requirement of
a sufficiently strongly first order phase transition (SFOPT) such that the created
baryons are not washed out (137).

Because the urSSM contains 3 singlet chiral superfields (right handed neutrinos),
mainly motivated by generality, standard model generation replication pattern, and
phenomenological convenience (I35; [138)), there is a “larger” SFOPT parameter space
for EWBG when compared to the NMSSM. More precisely, there can be SFOPT
where the singlet VEVs rotate in the singlet vector space during the electroweak phase
transition. The price paid for this is a more complicated global minimum analysis
at both finite and zero temperatures. The aim of this paper is not to uncover the
most general parameter space consistent with EWBG, but is to simply give a couple
of parametric regions to show the existence of possibilities.

Depending on the path of the phase transition, the exact purSSM parametric
dependence of the phase transition strength v(7.)/T. is complicated. Nonetheless,
we find that it is typically true that to achieve SFOPT, the parameters are close to

satisfying the following condition:

Eeff
)\efo(O)

~

(4.1)

DN | —

where F.g is the effective cubic coupling, Ag is the effective quartic coupling, and

v(0) is the magnitude of the scalar field space VEV (including both the Higgs and
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singlets) at zero temperature. Physically, this corresponds to the parametric region
where the critical temperature T, is small compared to v(0) during the electroweak
phase transition. In the examples provided in this paper, whether or not the SFOPT
proceeds from the origin, the leading nonvanishing value of F.g in the urSSM arises

from the soft terms

3
1
> [—a,\Hngﬁf + Za, (79)° + hc. (4.2)

- 3

where 7§ are singlet fields. The dimensionful coupling a, is distinguished from a,
in that a) also enhances the mixing between the Higgs sector and the singlet sector.
The leading contribution to Ay comes from the superpotential and D-terms.

Beyond these general results, we find a somewhat interesting feature because we
focus on the parametric region analyzed by (138). In this parametric region, an
approximate S3 symmetry (permutation symmetry) arises due to the right handed
neutrino generation independence of the non-Yukawa couplings and the smallness of
the neutrino Yukawa couplings. Hence, to avoid any extra complications associated
with domain wall formations, one might naively try to avoid S3 symmetry break-
ing phase transitions by considering parameters which yield zero temperature vacua
preserving S3. Hence, this is the boundary condition that we impose in this paper.
Interestingly, we find that despite this boundary condition, S5 is typically sponta-
neously broken multiply at finite temperatures in a way that is sensitive to quantum
radiative corrections. As the temperature is lowered from high temperatures, this
leads to multi-step phase transitions starting from the trivially S3 symmetric vac-
uum in which all VEVs vanish. The electroweak symmetry breaking phase transition
occurs with S3 symmetry restoration to a vacuum in which all sneutrino VEVs are

identical and nonvanishing. We also find one step SFOPTs in which the scalar fields

(including the singlet fields) make a transition from the origin to the electroweak
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symmetry breaking minimum. The numerical values of the parametric regions un-
covered in this paper is in the paragraph containing Eq. and regions IIla and
IIIb depicted in Fig.

Since this work is most closely related to previous work on SFOPT in the NMSSM,
we give here a little preview of some of the differences between our work and previous
works, in addition to the multi-dimensional aspect stressed above. In Ref. (96),
SFOPT in the context of the NMSSM is first analyzed and the author points out that
the tree level cubic term coming from the soft SUSY breaking sector is important.
Note that Ref. (96) uses the definition of critical temperature in which scalar mass
squared matrix develops a vanishing eigenvalue. We take a more robust definition of
T, being the temperature at which a new coexistence phase occurs even though this
definition is harder to implement in practice.

The authors of Ref. (139)) also analyze the NMSSM, but they include a p-term on
the basis that it is more general and its nonzero value eliminates the Zs symmetry
which can be cosmologically dangerous with respect to the problem of domain wall
formation (140). The non-zero p-term leads to false vacuum not being at the origin.
In this case the critical temperature criterion used by Ref. (96)) is invalid. Therefore,
the authors of Ref. (I39) take the coexistence phase definition of critical temperature
as we do in this paper. They also include a bilinear soft term in the Higgs which
break the Zz symmetry. Although we do not include such Zs breaking terms directly,
we will assume that non-renormalizable terms can be included to obtain acceptable
phenomenology with respect to any possible domain wall formation. However, it is to
be noted that Zs3 breaking can often lead to UV instabilities in the singlet tadpoles,
making the UV stability of these theories (including the one considered in this paper)
a model building challenge as noted by (140]).

The analysis (95) considers the generalized NMSSM similar to (I39). They run 9
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parameters with a popular choice of “universal” boundary conditions from the GUT
scale down to the electroweak scale to generate their model. They do not reject
metastable vacua based on the intuition that longevity of the false vacuum on the
horizon scale today is not difficult to attain. To be conservative and to avoid poten-
tially complicated discussions of metastability, we accept only stable vacua in this
paper.

A model related to the NMSSM and the purSSM is the nMSSM in which the
discrete charge assignment is modified as to eliminate the singlet cubic term in the
superpotential. This model was analyzed by (94)) for SFOPT. For a significant por-
tion of the parameter space in which SFOPT occurs, a linear tadpole term in the
superpotential plays a significant role in contrast to our scenario.

The analysis of (I11)) considers the EWPT in an extension of the SM which adds
a real singlet S. These authors find a large region of the parameter space of their
model that is consistent with SFOPT and LEP Higgs search bounds. They argue that
the strength of the phase transition can be enhanced by 1) choosing a large negative
value for the SH? coupling, 2) choosing a negative value for the S? H? coupling, or
3) allowing the singlet to have a non-zero VEV before the electroweak symmetry is
broken. In the language of this paper, the first two points correspond to increasing
E.¢ and decreasing A.g, respectively.

Before we begin the main body of the work, let’s list here all the caveats to
our analysis. We do not take into account explicitly the high energy Landau pole
constraint (i.e. perturbativity up to the GUT scale) because we will take the attitude
that the urSSM is well motivated mainly by its ability to have all fields participate
at low energy and thereby have potential measurability. Nonetheless, the parametric
region that we uncover lies at the border of perturbativity up to the GUT scale

(inferring from the work of Refs. (138; [141))), which means that the UV cutoff for our
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theory can be taken to be far above the TeV scale. We do not take into account explicit
Zs5 breaking effects because small amount of breaking can address most cosmological
domain wall problems, as we later demonstrate. We do not take into account explicit
CP violation effects in the phase transitions as this will typically lead to less than order
10% effects since CP violating phases compatible with phenomenology are typically
order 0.1 or smaller. For robustness, we accept in this paper as phenomenological
possibility only absolutely stable global zero temperature vacua instead of analyzing
the phenomenological possibilities of metastable vacua. Finally, all of our numerical
work is kept in control to only order 10% accuracy.

The order of presentation is as follows. In the next section, we present the La-
grangian including its discrete symmetry properties and radiative/thermal correc-
tions. The section concludes by highlighting the urSSM differences from the NMSSM
scenario. In Sec. 1.3, we describe the parametric region relevant for SFOPT in terms
of one-dimensional field space slice parameterization. There we also qualitatively
describe how the multidimensional paths of the phase transition and discrete sym-
metries play a role. Next, in Sec. [1.4] we explicitly show that singlets do not play
a significant role in terms of numerical value of the sphaleron action controlling the
B+ L violating rate in the broken phase. The main numerical results are presented in
Sec. [4.5] where explicit existence of SFOPT parameter region is demonstrated. Details
of the transition paths organized in terms of discrete symmetries, phenomenological
bounds placed, and explicit mass spectra for a sample parametric point are given.
In Sec. we demonstrate that cosmological domain wall problem is easily evaded
with an inclusion of a weak Zjz symmetry breaking operator in our scenario. We
then conclude with a summary of the results. Several appendices then follow giving
useful technical details. In Appendix [£.A] we list the field dependent mass matrices

used for computing the effective potential. In the next appendix, we give details
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regarding the approximate thermal masses used in the paper. In Appendix we
describe analytically the boundaries of in Figure which is one of our main results.
Finally, in Appendix [4.D] we show that it is generically possible to construct a non-
renormalizable Zs superpotential to obtain a CP conserving global minimum in the

absence of any explicit CP violating parameters.

4.2 The Thermal Potential Differences Between the

NMSSM and the urSSM

The purSSM that we consider in this paper is specified by the following superpotential
and soft terms

3
W= Z{Yiézﬁﬂf + Y Hy-Qud; + Y Hy - Lié

2

AN PSRN 1
Y Li- Hyf = Ny Fof + 2 (a;)?’} (4.3)

3

_‘Csoft = Z{m%‘QzP + m?ﬁ

7

d? +m2 |Li|* + m2

~c|2 2
ug|” +m3.

R+ m |
3 ~ ~ ~ ~ ~
+ Z{auQi-Hzﬂf 4 agHy-OuldS + aoHy - LicS + ay Ly~ Hait + h.c_}

2 3
+ Zmi,i|Hi|2 _ % (Z M\ + h.c.)
+ 23: [—a,\Hl-HQD»C + L ) + h.cl . (4.4)
i B
Where indicated by a dot, the SU(2) indices are contracted with the antisymmetric
tensor and €15 = 1. First, note in addition to the usual Z3 symmetry used to forbid
an explicit p term, there is an exact CP symmetry due to the reality of the coupling

constants. We ignore the CKM phases since these will only give corrections smaller
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than the O(10%) accuracy that we are aiming for in this paper. The CP transfor-
mation in the scalar effective potential can be effectively taken to be each scalar field
transforming to its conjugate. Next, note that the couplings of the 7{ sector to the
SM were taken to be generation independent, except for the Yukawa couplings, and
that the singlets do not couple to one another directly in the superpotential. This
choice is motivated by trying partially to match the work of (138). Hence, we see
there is an enhanced Sz symmetry (permutation symmetry) in the ¢ sector if we ne-
glect the Yukawa couplings. This approximate symmetry Ss is nearly exact because
of the smallness of the symmetry breaking Yukawa couplings Ye’V As discussed in the
introduction, the exact global Zs symmetry itself is plausibly assumed to be broken
by non-renormalizable operators such that cosmological domain wall problem does
not arise.

At tree level there is an additional global symmetry in the phase in which the
electroweak symmetry is unbroken such that H; = 0 and all electromagnetically
charged scalars vanish. Hence, in the high temperature phase in which the non-
singlet fields are assumed to be frozen at their classical potential minimum, we have
an enhanced symmetry in the effective potential as a function of the singlets only.
The enhanced tree level symmetry is Z3 ® Z3 ® Z3, where each singlet can be phase

rotated independently:

5 — M35, (4.5)

This symmetry appears because we have tuned the superpotential r{75r5 coupling
to vanish. Unlike the approximate S3 symmetry, this high temperature phase classi-
cal symmetry has significant breaking at 1-loop from perturbative interactions even
about the electroweak symmetry preserving minima. Nonetheless, it will be useful

in understanding the SFOPT in which there is a rotation in the singlet sector space
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during the phase transition.!

In addition to the Yukawa and gauge couplings, there are 19 adjustable parameters

2 2

in this model which are {\, Ry T e o [ ge per TV 0

M;, aydevrs}- These are taken
to be defined at the renormalization scale of 100 GeV in the DR scheme. Because
the neutrino Yukawa couplings control the neutrino Dirac mass via the up-type Higgs

VEV, these Yukawas are small for reasonable values of tan 3,

Y, ~ 6 x 1077 (%) B , (4.6)

sin[arctan 2.6

and will play a negligible dynamical role. The neutral scalar field vector space be-

longing to the fields {Hy, Hs, L;, ¢} is parameterized as follows:

¢i + iai .
H? = v (T) + =—= i€{1,2}
K3 \/§ Y
_© ¢D(c) + Z'CLD(_@ .
bj” = vy (T) + # j€{1,2,3} (4.7)

where the VEVs at finite temperature are denoted by {v;(T), vy, (T),vz¢(T)}. To
maintain the S3 symmetry in the electroweak symmetry breaking vacuum at zero
temperature and to avoid unnecessary complexities in the SU(2), charged sector, we

choose the sneutrino VEVs to be independent of generation, such that
{vi(0) = real, v;,(0) = v5(0) = real, vy (0) = ve(0) = real}. (4.8)

To fix the VEVs in this way, we solve the potential minimization condition for the
four parameters {m% ,m3,,m7,m%}. In addition to the desire to simplify the phase
transition history, one of our main motivation in choosing vye(0) = vz¢(0) is to preserve

the S3 symmetry manifest in Eqgs. (4.3) and (4.4)). Interestingly enough, as we will

see, this S3 symmetry spontaneously breaks at finite temperature. The left-handed

!One may also wonder whether omitting the Jfﬁgu}f term is radiatively stable. It turns out that
this term is generated at 2-loop order, which means that as far as one loop analysis of this paper is
concerned, this term can be omitted self-consistently. However, this must be viewed as fine tuning
motivated by staying consistent with Ref. (I38).
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sneutrino VEV is small, as we argue below, and the Higgs VEVs satisfy v?(0)+v3(0)+
3v2(0) ~ v?(0) + v3(0) = v*(0) = (174 GeV)2. The rest of the parameter specification
will be discussed in Sec. L5

To study the electroweak phase transition we need to calculate the thermal ef-
fective potential V. as a function of temperature and the field directions which par-
ticipate in the phase transition. There are no charged scalars with VEVs at zero
temperature and we assume that there are no charge or color breaking minima to
appear at finite temperature. In general, the left-handed sneutrinos receive VEVs
v5(0) and participate in electroweak symmetry breaking, but these VEVs must be
much less than the electroweak scale to avoid excessive stellar energy loss (142)) by o
emission. Hence, we can neglect O (v;) contributions and reduce the relevant degrees
of freedom to the five dimensional complex field space { HY, HY, 7¢}. Although a part
of the complex phase degrees of freedom in the Higgs sector is a gauge degree of
freedom, for simplicity we will use the notation {HY, HY, ¢} and keep in mind that
there are nine real degrees of freedom.

We compute the zero temperature effective potential as a loop expansion over the

field space {H?, HY, 7¢}. The leading order term is the tree-level potential given by

Vo =iy, [HO + i, [HO +m2 S [o5f2 + &0 +g2 (jasf” — 7"

1 *
S0n (7)° — kX (HYH)™ (55) + h.c}

+ Z [—aAH?HSDf +
+ 3N | HY) | HY|P + | HY? Z )? |55

+A2<\H0 + |HY)| ) T Zyy\ (4.9)

We exchange the three parameters {m%,1 ,m3.,ma. } for the real VEVs {v(0), v2(0), v5¢(0)}
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by solving the five minimization equations

OV, g+ 9
8[{% = 0= mi, v+ = A = (01 = v3) v+ 3 [~ anvpupe — KA
1 lvEV
+ 3\ 20102 4+ I 202
oV, 9t + 95
2 [VEV
+ 3220907 + 9N 2vav%
oVt
~2 = 0= m2vpe + [—awlvg + ay (vgc) — 2/1/\1)11)2"050}
I} |y

+ 307 (v] + v3) Ve + 267 VeV (4.10)

where “VEV” represents evaluating the fields at the zero-temperature vacuum { HY, HY, ¢} =
{v1(0),v9(0), v5¢(0)}. Terms proportional to Y and v; are negligible and have been
omitted. Because of the S3 permutation symmetry of our potential, the three equa-

tions associated with the sneutrino field directions are identical.

The one-loop radiative correction to the effective potential is given by the Coleman-
Weinberg potential (124) as a function of the field-dependent mass matrices M? cal-
culated in the Landau gauge (£ = 0). The mass matrices which we use are included in
Appendix [{.A] along with n;, the degrees of freedom associated with each matrix that
correspond to suppressed indices (negative for fermions). Regulating UV divergences

in d = 4 — 2¢ dimensions, the Coleman-Weinberg potential becomes

1 M2 3
A‘/lo = 6472 Z?’LZTI' M:l (lOg F — 5 — CUV) (411)

where Cyy = % —vg+Indnm and p is the t'Hooft scale. We impose a mixed renormal-
ization scheme in which the counterterms for the parameters {m%h, miy,, m,%c} are

chosen such that the zero-temperature vacuum is unshifted by the radiative correc-
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tions. This condition is equivalent to requiring tadpole graphs to vanish and imposes

1 0AV?

om3, = —— 1
h v O (HY) VEV

1 0AV?

m2, = — = 9B
2 vy 0 (HY) VEV

1 0AV?
vge O (UF) VEV

The remaining parameters are determined by the DR scheme and all parameters are
specified at a renormalization scale of © = 100 GeV. We make no assumptions about
dominant contributions to the one-loop corrections but instead calculate Eq.
by summing all species that couple to the Higgs sector.

At finite temperature, the effective potential receives an additional one-loop cor-

rection

T4
AV = —
! 272

> T Jp (M/T?) + Y ngTr Jp (M7/T7) (4.13)
b !

where the traces run over bosonic (b) and fermionic (f) mass matrices. The thermal

functions can be expressed as a a sum of modified Bessel functions of the second kind,

Jg (y) = /00 dx 2* log (1 - e_\/m> =— i %y[(z (n\y) (4.14)

Jr(y) = /OOO dz x* log (1 + e‘m> =— i (_7112)71ng (n\y) -

Because these integrals are computationally taxing, we use the Bessel function rep-
resentation and truncate the sum at five terms. This is a very good approximation
and introduces less than one percent of error.

At high temperatures, the perturbative expansion fails unless higher order “daisy”
graphs which diverge quadratically with temperature are resummed. This procedure

effectively replaces the bosonic field dependent mass matrix M? with M? + IT, where
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IT, o< T? and amounts to including a term into the potential given by
AViiey = == Sy T (M3 +11)"* = (ar) ") (4.15)
T 12m £ K ’

The thermal mass corrections II, are included in Appendix [£.B] Combining all of
the radiative and finite temperature terms, the one-loop finite-temperature effective

potential plus daisy resummation becomes

Vo (T) = Vo + AV + AV (T) + AViaisy (T)) . (4.16)

e

The main difference between the NMSSM and the purSSM relevant for strongly

first order EWPT can be summarized as follows:

1. Because of the multidimensionality of the singlet field space {vye(T)}, there can
be electroweak phase transitions accompanied by rotations within the singlet
field space. This opens up a new class of phase transitions that are unlike any
of the NMSSM transitions since for example the phase transition can take place

with the singlet VEV hopping from one nonzero value to another:

{vie(T.) = w3 # 0, (H;) = 0} — {vpe(T2) = i J @i, (H;) # 0} (4.17)

The terms in Egs. and that will play a particularly important role
for this rotational hopping are the soft terms —ayH; - Haoif + za, (7¢)* (which
control the cubic and lower dimension tree level couplings which in turn control
radiative corrections) and the superpotential terms —\H; - H, Uitk (2¢)* (which

control the quartic and lower dimension tree level couplings).?

2. There is a soft term coupling the singlet to the Higgs Ho

AVt ~ A, U509Vpc. (4.18)

2As we will see later, the shift of the field origin will generically generate lower dimension
couplings from higher dimensional couplings.
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which potentially provides a cubic coupling for the Higgs sector. Unfortunately,

this term does not play an important role in the analysis because v; < O(GeV).
3. Superpotential has a Yukawa coupling of the singlet to the left handed lepton

and Higgs, leading to the following additional F-terms:
AVF = 2viz7 [HUQU,%C — U1>\<U§ + 37)?/»)] +
Y2(vavz + v3vae + 3vavc.) (4.19)

Given the smallness of the Yukawa couplings Y, ~ O(1077), these terms are not
particularly important for the phase transition when the transition occurs with
VEVs of order 107 GeV or less. Note that all of these terms are quartic in nature
owing to the absence of dimensionful parameters in the superpotential. Also,
since the origin of R-parity violation is the leptonic Yukawa coupling which is
also the source of AVr , we see that these do not play a significant role.
Hence, a generic feature of the prSSM SFOPT not reproducible by the NMSSM is the
feature due to point 1 above. This will be emphasized in the numerical exploration
below. We will also find one step transitions, which are qualitatively similar to the

NMSSM transitions.

4.3 Qualitative Description of The Desired
Parametric Region

A novel feature of the prSSM compared to the NMSSM is the transition depicted
in Eq. (4.17)). In such cases one can shift the origin of the field such that the phase
transition of interest occurs from the origin. With such shifted coordinates in mind,

we define the field ¢ to be the radial magnitude

¢ = V()2 + (A7) + (Adipe)? (4.20)
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for a phase transition controlled by the potential Vr(¢) in which the vector of CP even
Higgs scalars attains an order parameter change of ¢. Explicitly, the strength of the
phase transition is approximately characterized by the SU(2), breaking |¢/| /T, and not

¢/ T. where the critical temperature T is defined by the condition V., (0) = Vr,(¢.).

Vr.(¢)

¢

Figure 4.1: A schematic plot of the finite temperature effective potential at the critical
temperature of Eq. . The vertical line represents ¢ = 0 and helps to visualize
the effect of ¢ — —¢@ symmetry breaking effect of the cubic term which is responsible
for the bump at ¢ > 0 for {E > 0, F},, = 0} in Eq. (4.21).

The finite temperature corrected effective potential of a real scalar field ¢ near
the critical temperature will behave approximately as

Vi) ~ (GM? + e T*)6 — Burd® + Ful6,7) + 206 (421)

up to additional temperature dependences. The ¢; ~ O(1) constant is proportional
to coupling constants responsible for the leading mass correction, and F, is the
non-analytic thermal correction contribution that can lead to an effective cubic con-
tribution to the potential. Although in the MSSM F},, plays a significant role, with
a singlet involved such as in the urSSM, Fj, need not play a crucial role. Hence,
we will set F,, = 0. In this section, we neglect “other temperature dependences” in

Eq. (4.21). Note that Eq. (4.21) has M? > 0 even though at T = 0, symmetry is

broken when E.¢ > 0 and satisfies a condition specified below.
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Defining where v(T.) is the degenerate minimum VEV, we find

B V2E% et — M2
N \/201 .

The potential at the critical temperature is depicted in Fig. [£.I] The unusual sign

1.

(4.22)

of 2F% /Aeg — M? stems from our assumption that the symmetry is broken at zero
temperature due to predominantly the F.s term. This situation turns out to be
generically beneficial for a SFOPT as we explain soon below. The critical temperature
T, is larger if F.g > 0 because in that case, the negative contribution from the cubic
term in Eq. is enhanced for ¢ > 0 which means that the quadratic term which is
the leading source of positivity (as ¢ approaches ¢, from the left) has to be stronger
to cancel the stronger negative contribution. Since there will be no positive mass
squared at the origin during the phase transition in the absence of the cubic term,
the mass at the origin has to be also larger for increasing F.gz > 0. Explicitly, the
mass at the origin (which by construction is our starting point of the phase transition)
is

252

. 4.2
o (4.23)

OVr—1,(0) =

This mass is identical to the mass at ¢ = ¢.. We can also understand the VEV

 2Eg

¢C )\eff

(4.24)

which can be heuristically justified by the fact that the broken phase local minimum
results from a competition between the cubic and the quartic term (which is the
dominant source of positivity as ¢ — ¢) at the time of critical temperature when

the mass term is again controlled by Eq. (4.23)).

Finally, the strength of the SU(2),, breaking in the transition is given by

U(TC)_ v(T,)\v2¢
T, M 2E2, 1

Aeg M2

(4.25)
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where

u(T.) = ¢ef(SD) (4.26)

and f (ﬁ) is a projection cosine onto the Higgs axis. By definition of the SU(2)p

—

breaking transition, ¢.f(Q2) < O(v(0)). At T = 0, ¢(0) = (¢)r—o is related to M

through

M = \/)‘effgbz(o) - 3Eeff¢(0) (427)

where A\e(0) > 3Eeq. Eq. (4.25) thus can be rewritten in terms of ¢(0) as
V2e1 /e -
U(Tc) _ ( 2F g Cl/ i f(Q) (4.28)

Tc )‘eff(lﬁ(o) ) 1 Eog 1 2E.g
T Xer(0) T e (0)

Hence, the strength of the phase transition is controlled mostly by 2 parameters:

{ )\eﬁE;fé()) ’ \/)\Zlﬁ } ~ (4.29)

Note that since f (ﬁ) < 1, this angular projection function can only enhance the

phase transition in a limited manner. Requiring %{:) be real and requiring V (¢(0)) <
V(0) result in the condition
Eog 1
0< < —. 4.30
- >\eff¢(0) 2 ( )

Therefore, one should keep in mind that although having a non-vanishing F.g is good
for a strong first order phase transition, the enhancement is bounded. Indeed, this
bound is approximately satisfied by the numerical analysis, and SFOPT points that

we find occur when

Eg 1
Aerd(0) 2

From the derivation of Eq. (4.28)), one can see that Eq. (4.31) corresponds to making

(4.31)

T. as small as possible during the phase transition. When %3520) > % the origin
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becomes the global minimum and the symmetry is unbroken. Note also that because
¢ is defined with respect to the shifted singlet origin in Eq. ([4.20)), ¢(0) does not
correspond to the radial magnitude of the scalar field from the original Lagrangian’s
field origin.

After this first order phase transition, a second order phase transition might occur
when V”(0) = 0. However, with M? > 0, this does not occur for this 1D toy model.
Note that (96) assumes that there exists a temperature for which V" = 0 which in
fact never occurs for this toy model.

Generically, we are interested in a strong first order phase transition characterized

by

~
Cc

\/5@ >1.3 (4.32)

(137). If the asymptotic conditions — 1/2 and/or ¢;/Aeg — 00 are met, the

_Eerr
Aetr®(0)
phase transition can be arbitrarily strong. However, the following phenomenological
constraints prevent/constrain arbitrarily strong transition in Eq. :
1. Global minima shifts can prevent the saturation of Eug/ [Aeg@(0)] = 1/2 for
a particular underlying parametric path. For example, as one approaches
Eet/ [Xet(0)] = 1/2 within a particular region of underlying parameter space,
3 the origin of Eq. has to be shifted to a new global minimum (where
the electroweak symmetry is still not broken, i.e. ¥ = 0). When this occurs,
{Eet, Aefr, 1} of Eq. undergo a discontinuous change as a function of the
underlying parameters such as those of Eqs. and .
2. Small Aeg can result in phenomenologically unacceptably light Higgs (or other

scalar masses). For example, it is clear from the effective model that

3 Eeﬂ
M = 2hen¢"(0) [1 "2 Aeff¢(0>]

3Recall that Feg/ [Aer#(0)] are effective parameters derivable from underlying Lagrangian pa-

rameterized for example as Eqgs. (4.3]) and (4.4).

(4.33)
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where the term in the parenthesis in Eq. (4.33)) is positive since 0 < Eog/ (Aer(0)) <
1/2. Note that in any models that embed the MSSM, there is a minimal contri-

bution to Aeg from the D-terms that also makes it difficult to make it arbitrarily

small. Note also that increasing =<~ lowers the ¢ mass as well.

E
)‘eff¢(0)
3. When Eoi/(Aer(0)) — 1/2, the energy difference AV between the false vacuum

and true vacuum asymptotically vanishes. Explicitly, we have as Eog — E. =

et ®(0)/2, we find

2V2AE M3
T. 9\ V4 M
o) “ (4.35)
Tc )\eff AEeff

where AFE.s = F.g — E.. Since the validity of this estimate requires AV > 0,
this region of parameter space becomes very sensitive to radiative corrections.
4. The contributions to ¢; that mazimize \/m typically contribute to A.g as
well (with different powers). Hence, particularly in the prSSM, we are in a
region where Ao is on the larger side and not the small side.
The features just discussed qualitatively explain the numerical scan of the parameter
space which identifies a particular parametric region in which Eq. is satisfied
at the same time with some basic phenomenological constraints which we detail in
Sec. There, more analytic formulae will be given explaining some of the features
of the numerical results.
Now, let us consider the general path of the electroweak phase transition. At

T > O(TeV), the global minimum will be at

{Uf/f(T) = 0,v;(T") = 0}, (4.36)
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the scalar field origin.* As explained previously, the left handed slepton VEVs are un-
dergoing small energy scale transitions which are not particularly relevant to most of
the discussion. As the temperature is lowered, non-trivial singlet VEV configuration
will realize a global minimum, and the system will consequently make a transition.
This transition in the singlets is sometime accompanied by an electroweak symmetry
breaking phase transition, and sometimes not. If the first nontrivial singlet transition

is accompanied by strongly first order electroweak symmetry breaking, these would

be SFOPT from the scalar field origin:
{vse (T77) = 0,05(T.") = 0} — {vse(T,7) # 0,v;(T7) # O} (4.37)

In this case, the origin of the vector whose magnitude is taken in Eq. (4.20)) will be
Zero.
In addition, there will generically be singlet transitions from the origin at tem-

perature Tp first without an electroweak phase transition, of the form

{Uﬁf(Tg) =0, Uj(Tg) =0}

— {vie(T5) = z:(To) # 0,v;(T5) = 0} (4.38)

Even if this is a first order phase transition, it will typically complete before the subse-
quent electroweak symmetry breaking, and thus it does not to leading approximation
participate in EWBG. However, it can in principle be relevant for gravity waves
(see e.g. (112; 115} 116, 143HI67)). Afterwards, there is a subsequent electroweak

symmetry breaking phase transition

{vpe(TF) = x4(T2) # 0,v;(T) = 0}

— {use(T7) = yi # 0,05(T.) # 0} (4.39)

4Symmetry restoration typically occurs as long as there are no tadpole contribution proportional
to the temperature.
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whose strength is important for EWBG. In this case, the origin of the vector whose
magnitude is taken in Eq. (4.20) will be {vse(T;") = i, v;(T) = 0}. When ; f y;,
this transition corresponds to a “rotation” of the singlet vector.

Before concluding this section, let’s briefly describe how the discrete symmetry
discussed below Eq. and zero temperature radiative corrections play a role
for some of our strong multi-step transitions. Once a phase transition of the form
Eq. takes place, the set of degenerate global minima will form a coset repre-
sentation of Zs ® CP ® S3.° Because of the approximate Zs ® Zs ® Zs symmetry
described in Eq. , to tree level accuracy, the coset space will be actually bigger:
13 R 73 @ 73 @ CP ®S3. Some of the Z3 ® Z3 ® Z3 minima will be split due to the zero
temperature radiative corrections, and the global minimum will be at a subset of the
Z3®Z3®Z3 minima (one of which is what we labeled as Z(1p) in Eq. (4.38))). Finally,
when the temperature drops enough to make one of the EWSB minima degenerate
with Z(T,), the transition depicted by Eq. occurs.

In Sec. [£.5] we will discuss explicit examples of both one-step and multi-step phase

transitions.

4.4 Weak Sphaleron and the Singlet

After the baryon asymmetry has been created at a first order electroweak phase
transition, it may be washed out by the B-violating sphaleron process (62f R4) in
the broken phase. The sphaleron is a non-perturbative field configuration in the
Weinberg-Salam theory that interpolates between topologically distinct vacua and
violates B 4+ L. To avoid washout, one must require that sphaleron transitions are

suppressed meaning that the rate of these processes is less than the Hubble parameter

SRecall that S3 is nearly an exact symmetry because of the smallness of the leptonic Yukawa
coupling.
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at the time of the phase transition. This imposes a lower bound on the sphaleron
Euclidean action Eg,(7%.)/T. Z 45 (I137) which, in the Standard Model, becomes
a lower bound on the Higgs VEV in the broken phase v/2v(T,)/T. > 1.3 where
v(0) = 174 GeV. The six sneutrino fields of the prSSM which receive VEVs during
EWSB could in principle modify this bound. As we will see, the modifications are
small because 1) the left-handed sneutrino VEV is much less than the electroweak
scale and 2) the singlet sneutrino has a nearly homogenous solution which stays nears
the minimum of the potential.

To obtain the sphaleron action at finite temperature, we calculate the zero tem-

perature sphaleron and apply the scaling law (85)

Egpn(T) = Esph(O)% (4.40)

which introduces less than a ten percent error. Additionally, we compute the sphaleron
solution using the tree level scalar potential Vf and neglect radiative corrections. To
a very good approximation (84) we can also neglect the U(1)y gauge coupling and
compute a purely SU(2); sphaleron solution. The sphaleron ansatz is static and

possesses an SO(3) rotational symmetry. The ansatz is given by

{H1, H,, f/i} = {v1h1(§), v2ha(€), v3hs(§)} U™

1
vy = U4h4(£)
) 21
Weotds' = _EZ (&) dU=(U>=)"! (4.41)
1 z T +1
g =2 Y (4.42)
"\ —z+iy z

in terms of the dimensionless radial coordinate £ = r/rg rescaled by ry = <g\/§ v+ 03+ vf) o~

(g\/iv)il. All VEVs are evaluated at zero temperature and we have introduced
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v3 = vy and vy = vpe for convenience. We have used the Sz symmetry to equate
the functions that describe the sneutrino fields of different generations, such that the
sphaleron solution is given by five functions h; (§) and f(£). Using this ansatz and
after normalizing the potential to satisfy Vy(h; = 1) = 0 by adding a constant, the

field equations become

(

ER 426k —2(1 — f)%h;  i=1,2

£*rg oVy
U_ZZ oh, =\ 3[6%hy + 26hy — 2(1 — f)*hs] =3
3[E2RY + 28R} i =4
2010 . . _ - . 2.2 2712
Ef —2f(1—f)1—2f) = s (1-f)g rozev n;. (4.43)

where §; = 1 for : = 1,2 and 6; = 3 for i = 3,4. Note that the term (1 — f)%h; is
absent for ¢ = 4 because the singlet sneutrinos do not couple to the gauge bosons.

The sphaleron action is obtained by integrating the sphaleron solution

Amvy/2 [ 21
Eqpn (0)= 7”; Odg{%?Ze(vl > +50- Zezﬂh?

df 2 2 Vo (i)
+4< 5) = f( —f) pox } (4.44)

We can observe immediately that contributions from the left-handed sneutrinos will

be negligible because the function h3 always appears with a prefactor of v3 = v; < v.

We can study the sphaleron solution by considering the asymptotic limits of
Eq. . In the large £ limit, all five field profiles must asymptote to unity in
order for Eg,, to be finite. In the small £ limit, we find that the gauge boson and
the three weakly charged scalar functions asymptote to zero, as in the Weinberg-
Salam model, but that the singlet function approaches a value which can in general
be non-zero:

§—0 §—0

FO2ag n©) S5 86 ie{1,2,3),  hi S4B (445)



7

The singlet function behaves differently in this limit because the gauge coupling term
(1 — f)?hy in the field equation is absent. The boundary condition on the singlets
makes the solution for h4(£) qualitatively different than for the Higgs fields. In
particular, the solution hy (§) which minimizes Egp, will tend to be homogenous with
hy ~ 1 for all £&. The solution is homogenous because Egn > (dhy/ d£)2 is positive
semi-definite. Hence, it can be minimized by a constant h4, and the solution remains
near hy = 1 because this is where V{ is minimized. As a result, the singlet fields
contribute negligibly to the sphaleron action.

The sphaleron solution and energy density for a fiducial parameter set are plotted
in Figure . To obtain the field profiles we solve Eq. in the large and small
¢ limits analytically, then match the solutions at five radii r; which are chosen to
minimize Egpn. As discussed above, the singlet solution hovers around hy = 1 where
the potential has a minimum. To display how each terms in Eq. contributes
to the sphaleron action, we have also plotted the integrand for the gauge kinetic,
scalar kinetic, and scalar potential contributions separately. We observe that the
sphaleron action is dominated by the kinetic terms. Since the parametric dependence
only appears explicitly in the scalar potential, which is negligible, we expect that the
sphaleron action is largely independent of our parameter choice. For this parameter
set we find Eg,,(0) ~ 1.834% ~ 8.7 TeV which translates into a bound on the Higgs
VEV at the critical temperature that is \/5%7}) 2 1.3. As such, the Higgs VEV must

satisfy the same constraint in the urSSM as in the SM to avoid washout.

4.5 Parameter Scan and Phenomenological Bounds

We have investigated the urSSM phase transition by performing a two-dimensional

parameter space scan. For the two free parameters we use me, = 3Avze, which
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Figure 4.2: On the left, the uSSM sphaleron solution versus the dimensionless radial
coordinate with h; and hs solid, hs dashed, hy dotted, and f dot-dashed. The solution
hie for the singlet sneutrinos does not satisfy the same boundary condition at £ — 0

as the SU(2),, charged scalars. Hence, the solution of minimum energy is the one in
which hze = 1 for all £&. On the right, the sphaleron energy density, Eq. (4.44)), with

gauge kinetic terms dashed, scalar kinetic terms dotted, scalar potential terms dot-
dashed, and the total energy density solid. This plot illustrates that the sphaleron
action is dominated by the kinetic terms and that the contribution from the scalar

potential is negligible.

coincides with the charged Higgsino mass in the limit M; > my, mq, and the

" (4.46)

an
_9 LAY
d (mch/\ + 3/\)

dimensionless variable

These parameters are scanned over the ranges mg, : [75 GeV, 175 GeV] and o : [0, 25]

by varying vze and ay. The SUSY-breaking parameters are chosen to match the con-
2

} are fixed at a fiducial SUSY-breaking scale

2 .2 2
5 Mo, M=, M

ventions of (I38): {mQ,

which is taken to be 1 TeV, gaugino masses are set to 6M; = 3My = M3 = 3 TeV, and
A-terms are scaled by the associated Yukawa couplings as {A,, = a./Yu,, Ag, = aa/Ya,, Ae, = ac/Ye,,

and fixed at 1 TeV. Note that we have assumed for simplicity common left-handed

sneutrino VEVs v, = vy and a diagonal Yukawa matrix (Y,), ;= Y, 0;;. The remaining
. } are exchanged for the VEVs {v; (0), v2 (0) ,v5 (0) , vze (0)}

2 2 2,2
soft masses {mHl,mH2, ms,m;
by solving the minimization equations at zero-temperature. The remaining Higgs sec-

tor parameters are chosen to be tan3 = 2.6,k = —0.64,\ = 0.18,v; = 1.4 x 107°
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GeV, and a, = —236 GeV. Given that some of our sparticle masses are far larger
than 7T, ~ O(100)GeV, we could have integrated out these fields giving rise to a
more illuminating effective field theory parameterization within the DR scheme.b
However, to stay similar to the parameterization used in (I35; 138), and to give a
relatively unrestricted range for possible T,., we have kept these relatively heavy fields
as dynamical.

At each point in the parameter space, we calculate the urSSM spectrum. In order
to get a handle on phenomenological constraints, we impose the MSSM search bounds
for the SUSY particles and require the Higgs masses to be 2 90 GeV (14)) (later we
will show a sample parametric point Higgs spectrum with the lightest Higgs mass
of about 110 GeV). Model dependent bounds are of interest, but typically, they are
weaker as far as the neutral Higgs is concerned because of singlet mixing effects. A
more complete model dependent phenomenological consistency check including the
study of charged Higgs mediated b — svy rates is beyond the scope of this paper.
We calculate the spectrum of the charged Higgses (¢7), charginos (Y;"), and neutrali-
nos (xY) at tree-level and require {md)li > 79.3 GeV,mgzx > 94 GeV,myo > 46 GeV}.
The SM-like neutrinos mix with the neutralinos and heavy neutrinos in a seesaw ma-
trix. We are able to reproduce the correct neutrino mass scale but neglected the
question of precise neutrino mass pattern since any desired neutrino mass pattern
will not be difficult to achieve by adjusting the small Yukawa couplings. Since we
have already noted that the smallness of the leptonic Yukawa couplings make their
role in the current SFOPT analysis insignificant, this does not present a significant
loss of generality.

Because the squark, charged slepton, and left-handed sneutrino masses are sup-

ported by their TeV-scale SUSY-breaking mass parameters, they are insensitive to

6 Recall that in DR scheme, decoupling is accomplished “by hand” through computing threshold
corrections after integrating out fields.
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parameters in the Higgs sector and are not affected by the phenomenological lower
bounds. We compute the mass spectrum of Higges and singlet sneutrinos at one-loop
order using the effective potential. Since we choose the VEVs for these fields to be real
and there is no explicit CP-violation, the CP-even (¢;) and CP-odd (a;) components
do not mix. The mass matrices are given by the curvature of the one-loop effective

potential evaluated at the zero-temperature vacuum ”

a2v0 82V0
M?) = cff M) = — —cff 4.47
)i = dmago oy gy (M) (4.47)

" 8(1@)8@%) VEV

where ¢; € {Hf,HS,Dj}. We can separately impose the mass bounds mg, >
92.8 GeV and mg, > 93.4 GeV.

At each point in parameter space that satisfies the phenomenological mass bounds,
we require the electroweak-breaking vacuum with v(0) = 174 GeV to be the global
minimum of the one-loop effective potential. This condition imposes particularly
strong constraints on the parameter space. To understand these constraints and
the nature of our multi-step phase transitions, we must discuss the structure of the
{HY, HY, v¢} field space and, in particular, determine the locations of the vacua that
could potentially have lower energy than the EWSB vacuum. Recall that in the
subspace with HY = HY = 0 there is a Z3 ® Z3 ® Z3 symmetry at tree level given by

Eq. (4.5)). To locate the extrema in this field space we solve the three cubic equations

Vo —0 ie{1,2,3) (4.48)

~C
% HO=HY9=0

for ¢. The solutions of Eq. (4.48)) which turn out to be minima (for our choice of the

"Since the effective potential is defined as a sum over 1PI diagrams with zero external momentum,
this definition of mass differs from the pole in the propagator by the difference of the scalar self-
energy evaluated at p = mpole and p = 0.
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sign of a,) are given by

7 = pie™ T n; € {0,1,2}

1
pi=0 or 12 (—a,.i +1/a2 — 8m§c/<2) SEIE (4.49)
K

We will focus on the solutions with p; = ps = p3 & vz because these minima are in
general deeper than those with p; = 0. Then, there are 3% = 27 local minima in the
HY = HY = 0 field space, that we will refer to by Z,,, n,n, Where the subscript indicates
the phases of the three singlets. The (Z3)3®83®CP symmetry ensures the degeneracy
of the twenty-seven minima. Moving away from HY = HY = 0 as illustrated in Figure
4.3, the (Z3)3 symmetry is broken to Zs by terms in Vj proportional to a) and .
We will use ¥n,n,ns to denote the point in field space near to Z,,n,n, but where
HY /vy = HY /vy = 1. For example, in this notation, gy corresponds to the EWSB
vacuum in which the three singlets have real VEVs.

At one loop order, radiative corrections break the approximate (Zg)3 symmetry
(described above Eq. (4.5)) and split the degeneracy of the Z,,,,,, minima as repre-
sented by Figure After including radiative corrections, the preserved symmetry
group is Zz ® S3 @ CP. (Here, as an approximation, we are ignoring the fact that
the subgroup S3 ® CP is explicitly weakly broken in the Lagrangian already while Z3
must be broken by non-renormalizable operators to evade cosmological inconsistencies
caused by domain walls.) The 27-fold degeneracy is split into three classes: a 3-fold
degeneracy of the points 7;, a 6-fold degeneracy of the points ;;, for ¢ # j # k,
and a 18-fold degeneracy of the points Z;;; plus permutations for ¢ # j. In order to
discuss the phase transition we will choose one representative from each class: g,
Zo12, and Tpo1. In this notation, if we say a transition occurs from the origin to Zyio
we mean that just below the critical temperature the vacuum is localized nearby to

one of the six field points in the class that contains Zgis.
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Tree Level < Tree Leve

=

Figure 4.3: The tree level potential plotted over a slice of the 7{ field space with
HY = HY = 0 on the left and HY/v; = HY /vy = 1 on the right. The labeled points
are defined in the text, and a stationary point of the potential can be found at or near
each of the labeled points. The potential grows farther from the central region. In
the EW-preserving subspace, the three minima are degenerate, but the Higgs VEV
selects out 100 as the global minimum.

The radiative corrections will generally split the degeneracy in such a way that
some of the EW-preserving vacua will be depressed relative to the EWSB vacuum
and may cause the latter to become metastable. This is both good and bad for the
parameter space scan and phase transition analysis. It is bad because many points
will be excluded because the EWSB vacuum is only metastable. On the other hand,
it is good because with appropriate tuning, we can obtain an EW-preserving vacuum
that is nearly degenerate with, but slightly higher than, the EWSB vacuum. Along
the trajectory connecting these vacua, we can make Fog/ (Aeg(0)) arbitrarily close
to one half and obtain SFOPT. In Appendix [£.C] we include analytic bounds which
must be satisfied to prevent the EWSB vacuum from becoming metastable.

At each point in parameter space which satisfies the mass and vacuum bounds
described above, we calculate the critical temperature T, and order parameter v(7,)

of the electroweak phase transition. The phase transition is calculated using the
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% One Loop
&

5SS

Figure 4.4: Same as Figure but the contours represent values of the one loop
effective potential at zero temeprature. The degeneracy is broken even in the EW-
preserving subspace and induces V}? (Zp12) < V2 (Zoo1) < V2 (Zooo) -

following procedure: increase the temperature from zero in increments, at each
temperature minimize the thermal effective potential to find the EWSB vacuum
Upwsp(T) = {vi(T),v2(T),v5¢(T)}, also find whatever metastable vacua s, are
near to T n,ngs and Yn,n.ns, as the temperature increases the location and depth
of these stationary points will change, converge on the critical temperature T, at

which the EWSB vacuum becomes degenerate with one of the EW-preserving min-

ima Vit (Tpwsp(T.)) = Vi (s, (T.)), compute v (T,) = \/v3(T.) + v3(T.) as the
Higgs VEV in the broken phase. Using this procedure, we obtain T, and v (T,) for
the lowest temperature phase transition. Generally in this region of parameter space,
multiple phase transition steps are required to bring the field configuration from the
high-temperature symmetric phase to the zero-temperature broken phase. We must
investigate separately earlier steps.

The results of the 2000 point parameter space scan are summarized in Figure [4.5]
where regions IIla and IIIb are the only likely viable regions for SFOPT EWBG.

We will describe the different regions here and give an analytic derivation of the
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boundaries and their parametric dependence in Appendix [4.C| The points in region
I are excluded because the EWSB vacuum, where v(0) = 174 GeV, contains a tachy-
onic direction. The points in region II are excluded because the EWSB vacuum is
metastable. For regions Ila,b,c, the actual vacuum can be found at the following
points: the origin of field space in region Ila, nearby to xg12 in region IIb, and nearby
to yo12 in region Ilc. That is, in regions Ila and IIb, the electroweak phase transition
does not occur. Region Ilc does not work for EWBG as well as we will see below.
In region III there are no tachyons, no false minima, and all phenomenological mass
bounds are satisfied, but as we will see only I1Ia and IIIb are likely to give acceptable
phase transitions for EWBG.

The phase transition at each point can be classified into one of four types based
on the path that the vacuum follows through the {HY, HY, 7¢} field space. In the
largest region IIla, the PT makes two steps: from the origin to a {EW, 73, s, C/P}
phase and then to the {E)W, 73, Ss, CP} phase. In region IIIb the EWPT occurs in
one step directly from the origin to the EW-broken phase. In region Illc, the EW
symmetry is broken by a second order phase transition in which only HY gets a VEV;
then, a first order phase transition occurs giving the singlets VEVs. Finally in region
ITId the phase transitions occur in three or four steps and there are multiple EWSB
phases, whose details for a representative point are discussed below. However, as we
will see, region II1d is unlikely to give an acceptable of EWBG scenario.

To understand how the pSSM phase transition differs from the NMSSM scenario,
we have taken one representative parameter point from each sector of region III and
followed the full phase transition from the origin Zp to the zero temperature EWSB
vacuum fogp. In the tables, the minima above and below an arrow are degenerate
at the temperature indicated. A 07 indicates that a second order phase transition

occurs along the specified field direction.
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Figure 4.5: A slice of the uySSM parameter space. Region I suffers from tachyons
in the EWSB vacuum. In region I the EWSB vacuum is metastable and we exclude
these points. In region III we calculate the electroweak phase transition and find that
the path through field space can be classified into one of four types, shown on the
right.

ITIa. Two Step Transition via EW-preserving Phase: Zp 1PT, Zo12 1PT, 1000

Representative point: {me,, o} = {108.8 GeV,9.12}.

At T = 175.1 GeV, a first order phase transition gives the singlets VEVs and
breaks Zs,S3, and CP. The EW symmetry is broken by a strongly first order
phase transition at 54.6 GeV which also restores S3 and CP. Baryon number may
be generated at the strongly first order EW-breaking PT because spahlerons
are suppressed by v/2v(T,)/T, = 4.46 inside the bubble.
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T ‘ {HY, HY, v¢} (GeV) ‘ \/5”(5) ‘ Symmetries ‘
> M, {0,0,0,0,0} 0 | {EW,Zs,S;, CP}
TLENV, | £0,0,191.7,191.7¢27/3 191.7¢47/3) | 0 | {EW, Zs, s, GP}

{0,0,192.6,192.6¢>7/% 192.6¢°/3} | 0 | {EW, Zs, S5, GP}

8GNV {61.7,160.7,201.0,201.0, 201.0} 446 | {EW, 75, Ss, CP}

0 GeV {62.5,162.5,201.5,201.5,201.5} N/A | {EW,%s,S;,CP}

Table 4.1: Phase transition path for the representative point in region Illa.

IIIb. One Step: Zo 1T Y000

Representative point: {me, o} = {102.5 GeV,7.22}.

T ‘ {HY HY, ¢ ‘ V224D ‘ Symmetries ‘
> M, {0,0,0,0,0} 0 | {EW,Zs,S;, CP}
B0V, 1 160.3,157.7,188.3,188.3,188.3} | 343 | {EXV,Zs,S;, CP}

0 GeV | {62.5,162.5,189.8,189.8,189.8) | N/A | {EWV, 7, S;, CP}

Table 4.2: Phase transition path for the representative point in region IIIb.

At T = 69.6 GeV, the Higgs and singlets obtain VEVs simultaneously break-
ing the EW symmetry and Zs. This one-step phase transition resembles the
ones seen in certain parametric regions of the NMSSM and other Higgs-singlet
extensions. A baryon number may be generated since v/2v(7.)/T, = 3.43 in the
broken phase will suppress washout. For the parameters in region IIIb, we have
plotted in Figure the order parameter and critical temperature as functions
of Eer/ (Aer9(0)) which we calculate using the tree level potential along the
trajectory that joins Zp and g9 The order parameter grows and the critical
temperature decreases as Feg/ (Aeg@(0)) approaches 1/2 from below. The data
points do not extend all the way to 1/2 because the radiative corrections lift
the potential in such a way that parameter sets with Eeg/ (Aeg(0)) =~ 1/2 at

tree level have a metastable EWSB vacuum at one loop.
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IIIc. Two Step via EWSB Phase: 7o LLER Y, L Yoo

Representative point: {me,, o} = {95.1 GeV,5.37}.

T {HY HY, b¢} ‘ V2 ‘ Symmetries ‘
> M, {0,0,0,0,0} 0 {EW, Zs,S;,CP}
1164 GeV, {0,07,0,0,0} 0" | {EW,Zs,S;,CP}
{0,101,0,0,0} 25 | {EW,%s5,S;,CP}
2O BV, 1 {61.6,160.6,175.4,175.4,175.4} | 4.25 | {EW, Zs,Ss, CP}
0 GeV | {62.5,162.5,176.2,176.2,176.2} | N/A | {EW,Zs,S;,CP}

Table 4.3: Phase transition path for the representative point in region IIlc.

At a high temperature T = 116.4 GeV the EW symmetry is broken by
a second order phase transition along the up-type Higgs direction. As the
temperature decreases, the global minimum of the effective potential moves
along the HY axis until it becomes degenerate with a minimum localized near
to ooo- A first order phase transition occurs with v/2v(7,)/T. = 4.25 inside the
bubble and v/2v(T,)/T. = 2.5 outside the bubble. In this scenario, there is no
baryon number generation. Because the first transition is of the second order,
there is no coexistence of phases. The second transition is first order, but the
sphaleron transition rate is suppressed both inside and outside the bubble such
that B + L is preserved on both sides.

PT ,  1PT 1PT

IIId Multl—Step .fo — Tg12 —— (9001 or ?joog) — Yooo

Representative point: {me, o} = {121.6 GeV,4.40}.

At this parametric point, the phase transition occurs in four steps with the
EW symmetry broken in the second step by a second order phase transition.
As the temperature drops from 128 GeV to 105 GeV, the sphaleron becomes

increasingly suppressed. When the 1PT occurs at 105 GeV, the sphaleron is
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T ‘ ([, Hy, v ‘ \/51}(5) ‘ Symmetries ‘
> M, {0,0,0,0,0} 0 [ {EW,Zs,S; CP}
222.3 GeV {O, 0,197, 197ei2”/3, 197€¢4w/3} 0 {EW, Uy, Sh, C‘/P}
{0,0,229,229¢77/3, 229¢47/3 | 0 | {EW,%s, S5, GP)
LGNV Lo+ 07,229, 229¢27/3 229¢47/3) 0t | {EW, 7. S5 GP)
{0%,82,232,232¢77/3,232¢47/3 1.1 [ {EW, 7,55, GP}
10 GV, | 9961197 1176197 229,929, 232¢27/3) | 1.6 | {EW, Zs, Sk, GP}

{32.0,128.0,230.3,230.3,232.7¢*7/3} | 210 | {EW,Zs, S5, P}

890 GeV, {58.4,152.3,224.4,224.4, 224 .4} 2.59 | {EW,Zs,S;, CP}
0 GeV {62.5,162.5,225.1,225.1,225.1} N/A | {EW,Zs,S;, CP}

Table 4.4: Phase transition path for the representative point in region IIId.
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Figure 4.6: The order parameter (squares) and critical temperature (circles) plot-
ted against Feg/Aegd (0) for the points in parametric region IIIb. We calculate
Eoi /Aer® (0) using the tree level potential along the trajectory that connects the
origin o and zero temperature vacuum ggg.

inactive, such that there will be no B-number generation. Not every phase
transition in region IIId follows this particular PT path, but the PTs are gen-
erally multi-step with at least one EWSB intermediate phase and transitional

CP violation.

To give an impression of the particle masses in this region of parameter space, we
include here the spectrum for the representative point in region IIIb where {mg,, o0} =

{102.5 GeV,7.22}. The slepton, squark, gaugino, and left-handed sneutrino masses
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are all O (TeV) because we have fixed the soft masses in these sectors at a fiducial
SUSY-breaking scale. In the case of the 7, we solve for the soft mass using the
minimization equations to find m% R —a,UpeUs Vg, yet it is still typically TeV scale

because A, = a, /Y, = —1 TeV. The remaining fermion and charged scalar spectrum

is given by

mpg+ = 342 GeV
mHi = 96 GeV
mye = 260,243,243 GeV

mgo = 83.7,94.5 GeV, mostly Higgsino

X1,

m, = 41,41,7.8 meV (4.50)

which are calculated at tree-level. The LSP is a Higgsino with mass 88.7 GeV. The
degeneracies present in the neutrino sector result from the S3 symmetry of our La-
grangian. By allowing the left-handed sneutrinos to have different VEVs or choosing
different values for the Y, Yukawas, we could obtain a correct neutrino hierarcy. We
include these masses here to demonstrate that the seesaw matrix produces the cor-
rect mass scale for the light neutrinos. The neutral scalar masses are calculated at
one-loop using the effective potential. Because there is significant mixing, we have
included their mass eigenvalues and field composition in Table £.5] Once again the
degeneracies are a result of our S3 symmetry in the singlet sector. The lightest Higgs
is mostly up-type with a mass of 110 GeV at this parametric point and only varies

by 10 GeV over all of region III.



Mass | RHY | RHY | Ro¢ | Ro§ | Ro§ ~ = =
1 2 L 2 31| Mass | SHY | SHY | Sog | Sus | Svs
395 | 0.83 | 0.16 | 0.00 | 0.00 | 0.00
439 | 048 | 0.07 | 0.15| 0.15 | 0.15
140 | 0.01 | 0.21 | 0.26 | 0.26 | 0.26
369 | 0.00 | 0.00 | 0.02 ] 0.39 | 0.59
128 | 0.00 | 0.00 | 0.58 | 0.01 | 0.41
369 | 0.00 | 0.00 | 0.65 | 0.27 | 0.08
128 | 0.00 | 0.00 | 0.09 | 0.65 | 0.07 214 | 039 | 0.06 | 0.18 | 0.18 | 0.18
110 | 0.16 | 0.63 | 0.07 | 0.07 | 0.07 ' ' ' ' :
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Table 4.5: CP-even and CP-odd Higgs masses and mixings for a sample parameter
point. The masses are in GeV. The field composition is described by the squared
eigenvector associated with each eigenvalue.

4.6 Domain Walls

It is well known (140} 168-172) that domain wall formation can be cosmologically
problematic when spontaneous breaking of discrete symmetry occurs. In our scenario,
we have only one “exact” discrete symmetry Zs at the level of explicit parameteri-
zation of the Lagrangian. Because of the undesirable cosmological consequences of
domain walls, we have implicitly assumed that this symmetry is broken by non-
renormalizable operators which are cutoff by a scale ® larger than many TeV (such as
not to disrupt the effective potential analysis). In addition, we have approximate dis-
crete symmetries such as S3 ® CP which a priori can cause problems if the symmetry
breaking operators are overly suppressed. However, the set of electroweak symmetry
breaking vacua of interest in this paper does not break S3 ® CP (i.e. our symmetry
breaking pattern can naturally select a S3 @ CP singlet VEV to be the lowest energy
vacuum as partly demonstrated in Appendix . Hence, we will neglect any tran-
sient behavior and focus on Zj3 domain walls even though the analysis is not very

specific to the discrete group.® Although a full analysis of domain wall histories is

8Because we have A2+ 2 < 0.5 in the parametric regime of interest, the couplings should remain
perturbative up to close to the GUT scale (141)) (see e.g. (I38]) for explicit plots which suggest that
our parametric choice is close to the border of perturbativity up to the GUT scale). Thus we are
not severely restricted in the cutoff scale of our effective field theory.

9For example, if one wanted to analyze transient domain walls associated with Ss breaking, one
can easily work out from our Lagrangian the leading effective scalar operator breaking S; and use
the result at the end of this section.
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beyond the scope of this paper, here we briefly estimate the effects of the suppressed
symmetry breaking operators that will alleviate the cosmological problems associated
with domain walls that may form when the discrete symmetries considered in this
paper are spontaneously broken. We will follow closely the work of Ref. (140).

In Ref. (140), it is estimated that during the approximate discrete symmetry
breaking phase transition, domain walls separating approximately degenerate minima
are formed. Then a simplified model of domain wall evolution is considered which
approximately accounts for the surface tension of the bubble, the friction coming
from bubble wall interaction with the plasma, and the pressure coming from energy
density difference between the approximately degenerate minima. This last ingredient
(pressure from energy density difference) is what will be coming from the inclusion of
suppressed symmetry breaking operators, and we will refer to this simply as “pressure
difference.” If the pressure difference dominates, one of the approximately degenerate
phases will eat away at the higher energy phase regions and eventually dominate in
a time scale controlled by the strength of the symmetry breaking operator.

Estimating the friction to be negligible, an approximate sufficient condition for
curing the possible domain wall problem from a cosmological perspective is to have
the pressure difference dominate before the equilibrium initial condition period of
big bang nucleosynthesis: i.e. before the photon temperature reaches about 10 MeV.
Explicitly, assuming order unity Lorentz factor v for the bubble wall speed, one must

require

€ > % (4.51)

where € is the energy density difference coming from suppressed symmetry breaking

operators, o is the energy per unit area of the bubble wall, and R(t) is the time

dependent radius of a typical bubble. For a dimension 4 + u non-derivative operator
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consisting of scalars only, € can be estimated as

U4+u

oY (4.52)

€~ Cy

where A is the cutoff scale and we have assumed all scalar VEVs to be of common
order v = 174 GeV (which is appropriate for our scenario). To be able to treat u = 0,
we will set A = 100 TeV and find a bound on the value of ¢, for different values of w.

3

Assuming R ~ t ~ 1/H (where H is the Hubble expansion rate) and o ~ v°, we find

c, > 10724500 (4.53)

for u > 0.1° Hence, as long as the cutoff is not required to be very large (in contrast
with the assumption of Ref. (140)) or the accidental symmetry arising from the UV
completion quantum numbers do not make u too large, this bound is very easy to
satisfy for the Z3 domain wall problem. Of course, if the cutoff is taken to be high
and/or a UV completion is desired without fine tuning, model building challenges

along the lines of Refs. (173} [174)) exist.

4.7 Summary of the Chapter

We have uncovered a purSSM parameteric region giving rise to a first order phase
transition sufficiently strong to be useful for the electroweak baryogenesis scenarios
involving electroweak symmetry breaking bubbles as the source of out of equilibrium
and SU(2), FE operators as a source of baryon number violation. The paramet-
ric region corresponds to tuning the soft terms in the Lagrangian ayH; - Hyvf and
—mZ.|rf]? to achieve Eq. . The numerical values of the uncovered parametric
region is in the paragraph containing Eq. and regions IIla and IIIb depicted

in Fig. 1.5l As expected, the Yukawa coupling of the singlets to the leptonic sector

10T his result can easily be checked to be consistent with Ref. (140)) for u = 1.
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does not play a role in determining the strength of the phase transitions because of
the weakness of the coupling tied to the smallness of the neutrino masses.

The region IIla transitions are two-step transitions in which the electroweak sym-
metry breaking is the second transition that starts from a phase in which the singlet
scalars of the urSSM have a non-zero vacuum expectation value (e.g. starts from
a vacuum which spontaneously breaks the approximate S3 symmetry in the singlet
sector). These transitions contain a rotation in the singlet field space and do not
have an analog in the NMSSM transitions because of the different dimensionality in
the singlet complex vector space. The region IIIb transitions are the ones in which
electroweak symmetry breaking transition starts from the origin of the scalar field
space. All these transitions have useful descriptions in terms of the representations
of the approximate discrete symmetries in the system.

Our phenomenological bounds were rather minimal and placed using Ref. (14)), but
in many parametric regions, the observables are sufficiently far away from the bounds
that the plausibility of the phenomenological self-consistency is strong. Follow-up
possibilities include a more complete collider related phenomenological investigation
in this parameteric regime, studies of domain wall histories due to weak global sym-
metry breaking operators, and a complete computation of CP asymmetry creation
and transport leading to baryon asymmetry.

Given that the urSSM had to give up the popular thermal leptogenesis scenario
due to its low scale implementation of the type I seesaw, this work is of interest as
it shows that electroweak baryogenesis may be a promising avenue to create baryon
asymmetry in this class of models. Given that the uSSM is one of the few supersym-
metric models in which all dynamical degrees of freedom responsible for the neutrino
mass may be accessible at TeV scale colliders, it is encouraging that the model has a

good chance at being consistent with the observed baryon asymmetry in the universe.
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4.A Appendix A. Field Dependent Mass Matrices

Here we include the tree level, field dependent mass matrices which are required to
compute the one loop radiative corrections. We fix the charged scalars at their vanish-
ing VEVs, let the left handed sneutrino VEV 7; = v; be real, and treat the matrices
as functions of the complex fields {HY, HY, v¢}.

Neutralinos. Using the basis (x°)" = {B, Wy, HO, HY, V¢, 5, U5, Vl,VQ,Vg}, the

mass term appears as £ > —3 ()" Mo (x°) + h.c. with n,0 = —2 and

M m
My = (4.54)

T
m*  Ozxs

<
e

SE SRSk
&
Sl S S

v, 0 Y, 7 Y,HY 0 0

3
I
|

v 0 Y55 0 Y,HY 0 (4.55)

v 0 Y, 05 0 0 Y,HY

S
N
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and M is a symmetric, sparse array with elements

Mpp =M (4.56)
g1 *
Mo = N (HY) (4.57)
[ *
Mpgy = NG (H3) (4.58)
MW3W3 = M, (4.59)
g2 *
Moo = 7 (HY) (4.60)
92 *
Mivymg = = 5 (H3) (4.61)
Moo = =\ (55 + 5 + 75) (4.62)
Mo,e = —AHy (4.63)
Mgg,e = =NH} + Y, 05 (4.64)

Charginos. Using the basis (UH)" = {—iﬂ*,ﬁ;,eg,ugmg} and (U)" =
{—z’j\_,ﬁ]f,ez,uz,TL’} the mass term appears as £ 3 —3 (wH)" M. (97) + hec.

with n,+ = —2 and

My g2 (H3)" 0 0 0

g2 (HO) N7+ 55+ %) ~Yooy Yoy —~Yiup

My =1 gus ~Y, % Y.HY 0 o |- (4.66)
92vp —Y, 5 0 Y,HY 0
g2Up —Y, g 0 0 YTH?

Gauge Bosons. The propagators and field dependent masses in the gauge sector
have gauge dependence. We work in the Landau gauge (¢ = 0), in which the scalar

component and ghost propagators have no field dependence. The charged gauge
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bosons have field dependent mass
2 9 0|2 0|2 2
M2, :5<]H1| + | HY)| +31117) (4.67)
and in the basis {W3, B} the neutral gauge bosons have the mass matrix

2 2 2 2 2
S(EP + 19 +302) g (|HOP + [HYP + 302)

M2, 5 =
B 7 (1EP -+ 1HSP +302) o (|HOP + [HSP + 302)
2 1 2 Z 2 1 2 v

(4.68)

In order to count the degrees of freedom in the gauge sector, we must distinguish
longitudinal and transverse components of the gauge boson fields, QnWE: =Ny = 4
and 2nw,p, = nwyp, = 2. We do this because only the longitudinal components
receive thermal mass corrections in the computation of the daisy correction Eq. ,
(I75). Note that vZ is numerically negligible in these equations over all parameter
regions of interest.

Squarks. Because we assume there is no inter-generational mixing in the squark
sector, the squark mass matrix block diagonalizes. The i*" generation up- and down-
type squarks have mass terms £ > —%ngq% ¢; in the basis ¢; = {QLZ., Q}‘Qi} with n, = 12

and

2 2
(42), =M+ g (P2 = D) (2] - |7+ 5e2) 4 v2 il ao

(M3),, = (M), = au (HY)" = Y, Y,y (5 + 05 + 05)

— Yo\ (HY) (77 + 75 + 75) (4.70)
2
(M2),, = mi + 5 (| B0 — | HS)" + 302) + Y2 |3’ (4.71)
2 2 1 393 9% 012 012 9 9 1 17012
(Md;_)11 =Mo-c{5 +%5 (\H1| — |H3)| +3vﬁ) +Y; |HY| (4.72)
(Mi)u = (Mi); = aq (HY) — Yo A (Hy)™ (9 + 05 + 05)" (4.73)
2
(Mi)m =mg. — % (170" = | HJ* + 302) + 2 [} (4.74)
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Charged Scalars. The charged Higgs mixes with the charged sleptons. Using
the basis ST = {H{", Hy e}, ek, i}, if, 71, 71 }, the mass term is £ 5 —STME. S~
with ng+ = 2 and the elements of the Hermetian mass matrix are

3 1 )
(Mis) gy = min + 03 )_Ye+ 7 (91 +63) |H|
i=1

P - ) (32— [HP) + 4555 (4T)

3
. (1 .
o, = 08 275+ 30X () + (o - 3% ) (19D
i=1
3
FRAY ()" (@76)
=1

1 1
(Ms) gy, = M, + 7 (93 + 93) | HSJ" = 7 (98 — gB) (302 + | H1[°)

4

3
+ YD TP+ N5+ 5+ i) (4.77)

=1

1 3
(43) 1, = (393 72) v (1)) = YA )" Y5 (1.79
i=k

(Mis) gz, = —aevs = Y. Ye, (H3ig) (4.79)

1
(M}s) ., = (593 — Yf) vy HY + \Y, H)HY

— Yok () — ay ()" (4.80)

(2
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3
(M=) pyi, = —YoYe HY ()" = AYey5 > (@) (4.81)
k=1
i 1
(Ms)y, 5, =8 |mi + 5 (68— 93) (|HOP = |HS[ + 302) + Y2 |Hf‘2}
3 *
+ 59505 + Y7 (%) (4.82)
i 1
(M) 5, = 0 | mie = 508 (|H§\2 — | HY)? + 3ug) + Y2 \Hgﬂ
+Y Y g (4.83)
3
2 .. = 4. 0 _ 0)* ~c\ *
lr, . LR. i i
(MHi) L;lr 6” ae, Hy — AYe (HQ) Z(Vk> ] . (484)
’ k=1

Neutral Scalars. The neutral Higgses mix with the left- and right-handed sneu-
trinos in a 16 x 16 matrix M7, . At the EWSB vacuum which respects CP, this matrix
block diagonalizes into CP-even and CP-odd sectors. In order to study the phase
transition in which there are transitional CP-violating phases, we must retain the off-
diagonal blocks. In the basis ¢* = {RHy, SHy} where Hy = {HY, HY, 0§, U5, U5, Uy, Uy, 3}

the mass term is given by £ 3 —3¢” M7 ¢ with ng, = 1. One can obtain the mass

matrix
(MZ) _ MS%HO Mé/P _ 32‘70 (485)
LA T, 06:00; |
cP SHo ii

by differentiating the full scalar potential

v0+mLZy% P+ y2 | |HY Z|
+ > [a HYoif + Yo (Hyo)" (96)% + hoc ]
|HI|” HY Z v+ HY (Z Df) (Z Dﬁf) +he.

" 91+92 (‘HO} —|HO‘ +Z‘~ ) g1+g2 <‘H0| _‘H0|> (4.86)

where the dominant contribution V; is given by Eq. (4.9).

—\Y,
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4.B Appendix B. Bosonic Thermal Masses

In order to calculate the daisy resummation Eq. (4.15) we require the thermal mass
corrections II,. For the Higgs and singlet fields we compute the thermal mass cor-
rections from the thermal effective potential using the procedure explained in this

section. For the left-handed sneutrinos we use

M, g2 7g2 5Y2 Y?
e e e SR 4.87
17 8 * 24 i 24 * 4 ( )

which can be calculated by assuming that all species that are summed in AV are
light. For the remaining bosonic species, we use the thermal mass functions calculated
for the nMSSM by (94) in which the authors assumed that the Higgs, Higgsinos,
electroweak gauginos, and SM particles were light.

First, we evaluate the thermal effective potential correction Eq. as a function
of the eigenvalues of the field dependent mass matrices listed in Appendix [£.A] Let
ﬁz?j be the j* eigenvalue of the i'" mass matrix with has n; associated degrees of
freedom. By expanding the traces, Eq. can be written as

~9 0 : .
AV = 2T_:2 Z s >.;JB (m,/T?) i bosonic | (4.5
: — >, Jp (m3;/T?) i fermionic
In the high-temperature limit, ﬁﬁj < T? the bosonic and fermionic thermal functions

can be expanded as

2
e
Jg (y) 2= YO0 (v*?) (4.89)
y<1 s 2
Tr(y) — =579+ 0 (¥") (4.90)

plus field independent terms. Second, we define the high-temperature thermal poten-
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tial correction by imposing a sharp cutoff at fn?j = 277 to obtain

>, 2m3; i bosonic
; 1
AV — 4_8T2 Z 4] >-;mi; i fermionic (4.91)
0 m2 < 2T*

\

Third, we extract the thermal mass corrections by differentiating with respect to the

Higgs and singlet fields,

82 A‘/IT,high

Iy =17
" 007 T

(4.92)

HY=HY=0¢=0,T=100 GeV

where ¢; € {HY, HY, ¢}, The derivatives are evaluated at the origin in field space
such that Ily4, is accurate in the high-temperature vacuum. Because the derivative in
Eq. has only weak field dependence, we expect this expression for Il to be
accurate even for our multi-step phase transitions in which the singlets have VEVs
before the EWPT. The value of T" used in Eq. only affects the location of
the cutoff in Eq. . We have chosen the temperature T" = 100 GeV to be
at the appropriate scale for our phase transitions and such that II,, does not vary
discontinuously in the region of parameter space with first order phase transitions.
Using this procedure we obtain Iy &~ 0.11 T?% My = 0.40 T2, Ize ~ 0.20 T% over

the region of parameter space with phase transitions.

4.C Appendix C. Analytic Derivation of Parameter
Space Boundaries

The boundaries in Figure 4.5 can be understood analytically. In this section, we

derive expressions for each of the boundaries and discuss the parametric dependence.
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At the interface of regions I and II, the electroweak vacuum develops a tachyonic
direction at tree level and det Mﬂ%EHO = (. Since Mﬁ)%EHo is an 8 by 8 matrix, it would
not be useful to write out its determinant. Instead, we observe that the tachyonic
direction is directed along { H? /vy, HY /vy, Uf Jvse =~ 1,0; = 0}.

At the boundary between region Ila and III, the minima at Zpo and oo are
degenerate at one loop. Note that this degeneracy cannot occur at tree level. To see

why, write
Vo (Zor2) — Vo (fooo) = AV + AV (4.93)

with A%a = ‘/0 (5012) — % (foog) and A%b = ‘/E) (fOOO) — ‘/E) ((77000). The tree level (Zg)3
symmetry ensures AV = 0. Additionally, the minimization equations Eq. (4.10)

require that the potential has a minimum at gy. Therefore, we have

AVy = < [(91 + g3) cos® 26+ 67 sin 26] v* > 0. (4.94)

1
8
At one loop order we calculate the difference in the potential as

V (For2) = Vi (Jooo) = AV + AV (4.95)

where V is the one loop, zero temperature effective potential and AVfL’b are defined
analogously as above. We expect AV}* to be nonzero and sensitive to the radiative
corrections because the (Zg)3 symmetry is broken to Zs. The terms responsible for this
symmetry breaking are the superpotential term W > Aﬁ?ﬁgﬁf and corresponding

A-term in the soft SUSY-breaking Lagrangian. We calculate

2 2

64T AV = 6md, 1 ~+ 4| mb, log -
n 1 mch 0g 3/ ,U mH1 0g =75 5 3/ ,U/
—l—mHQlog 3/ Zmilog 72y, ]

my, +my, 1
mi =m2 + % + 5\/(7}1%1 - mf%)2 + o?md, (4.96)
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For the sake of discussion, we can approximate the logarithms in the second term as
order one numbers and eliminate the soft masses using Eq. to obtain
2
64T AV} ~ 6my, log 6377—;;2 — 2myg, (0% + 4o csc 28 — 4) + 24N*v*m, (4.97)
Since we are simply trying to estimate the parametric dependence, we can approx-
imate AVY ~ AVY. By requiring that the minimum at Zp» is not deeper than the
EWSB vacuum, we obtain the bound AV + AV > 0, which is saturated at the
interface of regions Ila and III. This bound disfavors large mg, and large o because
of the —m 02 term in AV
At the boundary where regions III and ITa meet, the EWSB is degenerate with
the origin in field space at one loop. Neglecting the radiative corrections we can

approximate the splitting as V (Zo) — V2 (Jooo) = Vo (To) — Vo (fooo) = AV with

1
AVy = 3 [(gf + g%) cos® 23 + 62 sin® 25] v
in23 osin28] mik*  a.om?
2,2 1 — K Sl _ ch K'"%h 4.98
+ M 6A 1 SRToE (4.98)

To prevent the origin from becoming the global minimum we require AV > 0 which
favors larger my, and smaller o.

At the boundary between regions Ilc and III, the one loop potential has degenerate
minima at 3p12 and 3poo. We can compute the splitting AVE)d = Vo (Yo12) — Vo (Gooo)

by neglecting the radiative corrections to find

1
AV = §m3hv2 (0sin28 —2). (4.99)

The condition that the EWSB minimum at g is absolutely stable requires AV > 0
which imposes the lower bound ¢ > 2csc23 ~ 3 for tan 8 = 2.6. Figure shows
that the Ilc-III boundary also depends on m,, contrary to Eq. (4.99), but this is a

result of the radiative corrections.
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4.D Appendix D. Selecting a CP Even Vacuum

In this Appendix, we show formally how a superpotential contribution AW that
break Z3 weakly can be constructed to make the CP conserving vacuum to have the
lowest energy perturbatively in the absence of any explicit CP violating parameters.

Consider the superpotential
W =W, + AW (4.100)

where AW represents a irrelevant operator perturbation to renormalizable W,. We

then have
S| o (28 () )] o
=Vo+ AV, (4.102)
where Z
=2, '%Zé 2 (4.103)
and l

wea(R))]

to leading order in AW which we will call O(6). As usual, W, and AW are holomor-

phic polynomials in fields. Considering ¢; — ¢! as a rep of Z, which we will call 2,

) ()

we have

being a rep of

&Y (2"®2°) =R (4.106)

u
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If we assume all the coefficients of W and AW are real, we can write

2R Kagx/) (%‘Z‘))} = R® Zy(R) (4.107)

where Zy(Z2(R)) = R. Hence, we see that AV is a singlet under Z,. Given that AV;

is a polynomial in a; = R¢; and b; = ¢, and since under Z, : {a; — a;j,b; — —b;},

we must have

AV = 303 dnPillas D Sn({b}) (4.108)

where S, represents a basis of Z, singlet polynomial functions composed of b; and
Py, is a basis of polynomial functions composed of a;. Note that here ¢}, = O(0).
Hence, given that the part of the effective potential not associated with AW had a
minimum at ¢ = #(s) where s € {—1,0,1} parameterizes the Zs fundamental rep

elements and b;|z) = 0 is the singlet element, the energy shift due to AW to O(6) is

20(6) = 3 AVl = 330 T b Pil o (27 ) nsuttuysin (7)),
Z Z (4.109)

Note that Ap(1) = Ap(—1). Hence, we only need to determine whether Ap(1) —
Ap(0) > 0 to see if CP singlet has the lowest energy. Since ¢}, o< sgnAW, we can
simply flip the sign of Ap(1) — Ap(0) by flipping the sign of AW if the original choice
of sign gives Ap(1) — Ap(0) < 0. Of course, all of this is under the assumption
that the potential is not destabilized by the non-renormalizable operators such that
the smallness of the pertrubation order ¢ is meaningful. Stability is generic if the
nonrenormalizable terms are dominated by the perturbations in the superpotential

since the superpotential contribution is positive definite.
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Chapter 5

SFOPT Near an Enhanced Discrete

Symmetry Point

We propose a group theoretic condition which may be applied to extensions of the
Standard Model in order to locate regions of parameter space in which the electroweak
phase transition is strongly first order, such that electroweak baryogenesis may be a
viable mechanism for generating the baryon asymmetry of the universe. Specifically,
we demonstrate that the viable corners of parameter space may be identified by their
proximity to an enhanced discrete symmetry point. At this point, the global symme-
try group of the theory is extended by a discrete group under which the scalar sector
is non-trivially charged, and the discrete symmetry is spontaneously broken such that
the discrete symmetry relates degenerate electroweak preserving and breaking vacua.
This idea is used to investigate several specific models of the electroweak symme-
try breaking sector. The phase transitions identified through this method suggest
implications for other relics such as dark matter and gravitational waves.

This work was performed in collaboration with Vernon Barger and Lian-Tao

Wang. It was published in the journal Physics Letters B in March of 2012 (I76]).
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5.1 Introduction to the Chapter

Standard cosmology of the early universe within the context of a large class of models
embedding the Standard Model (SM) of particle physics predicts the existence of an
electroweak symmetry breaking (EWSB) phase transition (PT). Collider constraints
alone cannot determine the nature of the EWSB PT in a model independent way.
However, additional information is available in the form of cosmological relics, which
were produced in the early universe and survive as direct probes of the physics of
the era during which the temperature was electroweak scale. Relics such as the
baryon asymmetry (62), primordial gravitational waves (159; [161} 164; [167), and
(modifications to) the dark matter relic abundance (119; 177-179), may have been
generated at the electroweak scale PT(s).

Generating the baryon asymmetry through CP violations at electroweak symme-
try breaking bubbles (62), requires a strongly first order phase transition (SFOPT)
to protect the baryon number in the broken phase. In this context, a SFOPT may be
defined as a first order PT in which the (thermal) expectation value of the SM-like
Higgs v(T") = (h) satisfies v(T')/T Z 1 in the broken phase after the phase transition
completes, such that weak sphaleron processes are inactive (62} 84). It is well-known
that the SM is unable to accommodate a SFOPT while satisfying the Large Electron-
Positron (LEP) Collider bounds on the Higgs mass (90). This is one of the main
motivations for considering an extended Higgs sector. Many beyond the Standard
Model theories are able to accommodate a SFOPT, including supersymmetry, two
Higgs doublet models, and minimal scalar singlet extensions of the SM. However, if
the extra scalar fields obtain vacuum expectation values (vevs), one often finds that
new patterns of symmetry breaking become accessible. This fact makes the phase

transition more difficult to study, because quantities such as v(7T") /T are nonanalytic
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functions of the parameters of the model. Consequently, many beyond the Stan-
dard Model PT analyses rely on an intensive numerical parameter scan to search for
SFOPT. Although such scans may be capable of locating SFOPTs, on their own they
do not reveal why one particular parametric limit is favored over another.

In this article, we propose a group theoretic guideline which will aid the search
for SFOPT in a large parameter space and help to identify why certain parametric
limits are favored over others. Our guideline is motivated by the following heuristic
argument. In perturbative thermal effective potential computations, the thermal mass
is of the order ¢ T? where c is a thermal loop factor. Therefore, if all the renormalized
coupling constants are of order unity and all mass scales are of the electroweak scale,
we expect that the phase transition will occur at a temperature T ~ v/4/c such
that v(T)/T ~ y/c < 1, and the PT is typically not strongly first order. Hence, in
order to have a SFOPT, the renormalized parameters of the theory must be near
a special point in the parameter space. An ideal parametric limit which overcomes
the natural thermal loop suppression is the region where v(7T")/T — oo. To achieve
this, it would be unnatural to expect v(T') to deviate by many orders of magnitude
from the electroweak scale, because of the constraint that v(0) defines the electroweak
scale. On the other hand, v(T")/T may be enhanced by taking the 7" — 0 limit.

The limit of low phase transition temperature and large v(7")/T can be achieved
naturally by employing a discrete symmetry. The phase transition begins at the crit-
ical temperature T, defined as the temperature above which the thermal corrections
are sufficiently large as to make the EW symmetric phase energetically favored, and
below which the EW broken phase is favored. Hence, at T' = T, the thermal effec-
tive potential possesses two degenerate minima corresponding to the EW symmetric
and broken phases (see also Appendix [5.A). One may enhance v(T,)/T, by taking

T. — 0 provided that there is a mechanism guaranteeing that the theory possesses
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such degenerate vacua even in the absence of thermal corrections. One mechanism
that yields degenerate vacua is the spontaneous symmetry breaking of a discrete
group (see e.g. (180} [181))). After spontaneous symmetry breaking, one finds a set of
degenerate vacuum states which fall into a coset representation of the discrete group.
Moreover, if the discrete symmetry group does not commute with the electroweak
group, then the scenario described above may be achieved: the electroweak symme-
try is broken in one vacuum and unbroken in a second degenerate vacuum implying
T. =0 and v(T.)/T, = oc.

Of course the existence of degenerate vacua alone does not imply v(T)/T > 1,
since the EW phase transition must take place, and this is not necessarily the case in
extensions of the SM with multiple vacua. If the discrete symmetry is exact, then T, =
0 and the phase transition does not proceed because the broken phase never becomes
energetically favored. Hence, we will consider models in which the discrete symmetry
is generally approximate, but becomes exact at a particular parametric point, referred
to as an enhanced discrete symmetry point (EDSP)!. Then the heuristic arguments
above imply that one can expect to find SFOPT in a parametric neighborhood of
an EDSP and connected to it by a continuous “small” deformation which breaks
the discrete symmetry. Precisely how “small” a deformation is required depends
upon two model-dependent conditions: the condition that the electroweak PT must
complete and upon the order unity number that sits at the right of the inequality
v(T)/T > 1. Hence the takeaway message is that one can make the analysis of and
search for SFOPT in a large parameter space more tractable with the aid of an EDSP
“lamppost" which signals the parametric neighborhood which is favorable for SFOPT.

The order of presentation is as follows. In Sec. we motivate our group theoretic

identification of SFOPTs. In Sec. b.3| we employ our technique to explore three

'In general, a model may possess multiple EDSPs each relating the EW broken and symmetric
vacua by a different symmetry transformation.
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example models. We then finish with some concluding remarks in Sec. and an

appendix which reviews some relevant basics of phase transitions used in this paper.

5.2 Why Discrete Symmetry?

Suppose that a given theory is exactly invariant under an internal discrete symmetry
group . It is well-known that the spontaneous symmetry breaking of G down to
H C G leads to the vacua giving a nontrivial coset G/H representation (180; 181).
We will first illustrate how this connects to a SFOPT in a perturbative single real
scalar field toy model, and then proceed to give a more general discussion.

Quite often in extensions of the SM, other scalar fields along with the Higgs obtain
vevs at the electroweak phase transition. One may model such a first order phase
transition with the following toy theory in which ¢ represents the linear combination
of the SM Higgs and other scalar fields. Consider the theory of a real scalar field ¢

with the classical potential

1 A
Up) = §M2902 —Ep® + 1804; (5.1)

and suppose that ¢ is coupled to a family of N fermions £ D (m; + h;p));. Note
that this theory has no internal symmetries for non-special values of the parameters
{M?,E, X\, hi;m;}. When we turn on temperature, there will be a thermal bath of
¢ and 1); particles. If the fermions are relativistic at the electroweak scale (i.e.,

m? < T?), then the thermal effective potential can be written to leading order as
Ver (0, T) = U(p) + cT?¢" (5.2)

where ¢ &~ Nh?/12 (182)). Here, in the so-called high-temperature approximation, we
have neglected the subdominant thermal corrections (such as the non-analytic term)

and the & radiative corrections.
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As long as the supercooling is small (e.g., as measured by the fractional tempera-
ture change during the duration of the PT), the PT occurs at the temperature near
T. at which the thermal effective potential V.g displays two degenerate minima (for

more details, see Sec. 5.Al). Solving this constraint for 7, gives

£? AM?
2 P — J—
Lo=3e <1 262 ) ' (5:3)

In this simple toy model and subject to the approximation Eq. (5.2)), there is an

enhanced Zy symmetry at T' = T,.. Explicitly, the potential at T' = T,. becomes

Vaalo. 7 = 2 (o - %) (5.4)

and respects the discrete symmetry

]

which was not originally present in Eq. . This Zy exchanges the degenerate vacua
at ¢ = 0 and ¢ = v(T.) = 2E/X across a potential barrier at ¢ = £/\. It is to be
noted that Eq. is independent of M, and thus this symmetry exists in this toy
model for any critical temperature T, that can be tuned using M .2

Although there is no electroweak symmetry in this toy model, there is still a first
order phase transition, and we can investigate the parametric dependence of its order
parameter v(T,)/T,. Since v(T.) = 2E/X is independent of M?, the order parameter
can be maximized by varying M? to minimize T.. Even though the high-temperature
expansion breaks down when T drops below the mass of the fermion, the formal limit
T, — 0 can be taken assuming that the fermions are massless. The formal solution
to T. = 0 is®

a=AM?/2E* =1, (5.6)

2Although this is an enhanced Z, symmetry at T = T, since the symmetry does not generically
exist at other temperatures, it is not the enhanced discrete symmetry point relevant for this paper.
See below for further clarification.

3 The idea of focusing on T, ~ 0 was recently emphasized by (T18).



111

The important observation is that 1—a = 0 corresponds to an EDSP in the parameter
space at which the zero-temperature scalar potential Eq. ([5.1]) is invariant under the

symmetry transformation Eq. (5.5). At the EDSP, 1 — « = 0, the order parameter

o(T,) . Je 1
7 _2\/;m (5.7)

formally diverges, and for 1 — o < 1, the phase transition may be made arbitrarily

strongly first order.

Hence, our group theoretic guideline leads us to identify the parametric region in
the vicinity of the EDSP 1 — a = 0 as favorable for SFOPT. However, for this region
to be truly viable, it must be the case that the rate at which bubbles of the broken
phase nucleate is sufficiently large that the phase transition actually completes. This
requires the discrete symmetry to be weakly broken, such that the PT occurs at
a nonzero T.* In the toy model, such breaking can be accomplished explicitly at
the classical level through a finite excursion from the EDSP (i.e. 1 —a =€ # 0), or
radiatively through the Yukawa coupling. Indeed, in many extensions of the SM where
singlets are introduced, the relevant discrete symmetry transforms both the Higgs and
the singlet fields. Since the singlets lack SM gauge couplings, radiative corrections
necessarily break the discrete symmetry to a degree controlled by the strength of the
gauge interactions. If the breaking of the symmetry is so large that the potential does
not have the qualitative features of Eq. near « = 1, then the EDSP method
loses its advantage for identifying SFOPT. If the breaking of the symmetry is so small
that bubbles will not nucleate fast enough to complete the PT, then any candidate
parameter points found with the EDSP method are inherently not viable. Since this
non-completion of the PT will be a general feature of the region of parameter space
nearby to the EDSP, we must take extra care in choosing the temperature at which

to evaluate the EW order parameter v(7")/7. Up to this point in the discussion,

4Note that the bubble nucleation rate is zero at T = T..
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v(T) /T

Figure 5.1: The order parameter, calculated as v(7.)/T. (dashed) and v(7})/T.
(solid), plotted against o = AM?/2E2. The insets show U(¢p) for particular values of
« in each of the associated colored regions.

we have evaluated v(T')/T at the degeneracy temperature T,, which, physically, is
the temperature in the symmetric phase at the onset of supercooling. However, a
first order phase transition proceeds with the nucleation of bubbles of broken phase
which subsequently collide and reheat the plasma to a temperature 7T, (see App. |5.Al
for precise definition). Since the purpose of the SFOPT criterion v(7")/T 2 1 is to
ensure suppression of weak sphaleron processes in the broken phase after the phase
transition, the most physically relevant temperature at which to evaluate v(T")/T is
the reheat temperature 7.

To obtain a numerical intuition for our proposal, consider Fig. [5.1] where we have

plotted v(7T.)/T. (dashed) and v(7}.)/T, (solid) while varying « and fixing U’(v) = 0
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at v = 300 GeV, U"(v) = (50 GeV)?, N = 1, and h = 0.3. In this figure, we also
show U(yp), such as to make the discrete symmetry evident at the EDSP. As expected,
v(T.)/T. diverges at the EDSP and is arbitrarily large for arbitrarily small discrete
symmetry breaking (1 —a < 1). On the other hand, v(T,)/7, cannot be calculated if
the discrete symmetry is too weakly broken (1—a < 0.5), because the phase transition
does not occur. However, sufficient discrete symmetry breaking (1 — o 2 0.5) yields
SFOPT which become monotonically weaker as the degree of symmetry breaking
grows. We have used the same coloring in Fig. [5.1] as we do in the rest of this article
to distinguish the varous regions of parameter space: the phase transition does not
occur because the broken phase is not energetically favored (green); the PT does not
occur because the bubble nucleation rate is too low (orange); a strongly first order
PT occurs (blue); a weakly first order or second order PT occurs (gray); the EDSP
(purple dot); and the point at which the barrier disappears (red dot).

Now let us return to a more broad discussion of the connection between discrete
symmetry and strongly first order phase transition. In retrospect, we recognize that
the existence of an EDSP associated with a discrete symmetry under which the vacua
form a coset representation (along with the condition that spontaneous symmetry
breaking occurs) is sufficient to obtain v(T.)/T. — oo since T, = 0 implies a degen-
eracy at the level of the nonthermal effective potential. Even though the toy model
calculation was accomplished using the leading high-temperature 7" dependence and
the classical potential, this statement regarding the EDSP is an exact statement for an
exact effective potential. In other words, as far as this exact statement is concerned,
it is not particularly important that 1" = T, corresponded to an enhanced symmetry
point for general T, as in the case of this simple one dimensional toy model (see
Eq. ), nor is it important that quantum radiative corrections from the Yukawa

couplings break the discrete symmetry given . (5.5)). One final ingredient, whic
plings break the discrete sy try given by Eq. (5.5). One final ingredient, which
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is important for electroweak baryogenesis but is not represented in the toy model is
that at least two vacua in the coset space must carry different electroweak quantum
numbers. Otherwise, the PT will not be an electroweak symmetry breaking PT.
This means that the discrete group must not commute with the electroweak group
and one element in the coset representation must be an electroweak singlet. Hence
our group theoretic guideline may be summarized as: an arbitrarily strong phase
transition (i.e., v(7.)/T. > 1) may be found in the parametric neighborhood of an
EDSP if 1) the condition for spontaneous (discrete) symmetry breaking is satisfied
(such that there will be degenerate vacua), 2) the discrete group does not commute
with the electroweak group, and 3) its coset representation contains an electroweak
singlet element (such that the EW symmetry is broken in one vacuum and preserved

in another).

5.3 A Few Examples

SM with Low Cutoff

As a first example, we will consider a generic extension of the SM with a low scale
cutoff, as studied by (I83HI85)). Provided that the UV physics does not violate the
EW symmetry, then upon integrating it out one obtains a classical potential of the

form

v\? 1 v\’
—£D)\(‘HTH|—3> + 1 (\HTH\ —3) (5.8)
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up to terms of order H®/A*. Writing the Higgs doublet in terms of the fundamental
scalar Higgs h as H = (O, h/\/ﬁ)T, and using m?% = 2\v?, the potential becomes
1 A v Av? vt
Uh)=—h* - (3——= —1|n*+—(3—— —2]| K 5.9
() =512 4(m%{A2 ) +4<m§1A2 ) (5.9)
up to constant and higher order terms. There exists an enhanced discrete symmetry

point® at which a Z, symmetry is nonlinearly realized,

h
EDSP: myA =v* /S h_>_§+\“}2_2h2' (5.10)

The Z! symmetry exchanges the minima at h = 0 and h = v while leaving the
maximum at h = v//3 invariant. We have reproduced an earlier PT analysis (I83) in
order to illustrate the proximity of SFOPTs to the EDSP. Moreover, we have extended
the previous analysis by calculating the more physically relevant order parameter
v(T,)/T,, instead of v(T,)/T.. Our results are summarized in Fig. and are in
good agreement with Fig. 2 of (183]) which shows the same slice of parameter space.
We find that nearby to the EDSP (purple curve), the PT is strongly first order (blue),
and that the PT becomes weaker moving away from the EDSP. It is also worth noting
that while the barrier persists, the PT most likely does not occur, as evidenced by
the lack of blue in the region between the purple and red curves except for a small

sliver above mg = 200 GeV.

SM Plus Real Singlet — xSM

Next, we will consider models with multiple scalars in the electroweak sector. Ex-

tending the SM by a real scalar singlet s, we obtain a model known as the xSM (108)),

5Tt may be more appropriate to use the term “enhanced discrete symmetry plane,” as the condi-
tion my A = v? actually specifies a hypersurface in the parameter space, but we will continue using
EDSP for simplicity.
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Figure 5.2: The parameter space nearby to the EDSP (purple curve). The coloring
is the same as in Fig. 5.1, The PT order parameter v(7,)/T, is indicated by the
overlaid contours. SFOPTs are found in the blue region and become weaker in the
gray region, farther from the EDSP.

which has the classical potential

A 2 b b b
= DOpt B M B8 P22 B2 ap2 ) D go (5.11)

Ulh, s) = 2 1 3 2 1 1

Since there is no symmetry protecting s = 0, generally both h and s will obtain vevs,

denoted v and z( respectively, and the mass parameters may be written as

w2 = Av? + %x% + %xo and by = —byal — bgzg — —0v* — —— . (5.12)

Provided that xg # 0, the cubic terms s® and sh? help to generate a barrier separating
the symmetric and broken vacua and make the PT strongly first order. A number
of PT analyses (106} T09; 11T} 118) have revealed that the xSM can accommodate a
strongly first order electroweak PT. They also find that this model displays multiple
patterns of symmetry breaking such that, either A and s can obtain vevs at the same
temperature, or s can receive a vev prior to electroweak symmetry breaking. If we
were to search for SFOPT by randomly choosing order one parameters, there would

be no way of anticipating what pattern of symmetry breaking would be realized, or if
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the EW symmetry would be spontaneously broken at all. Moreover, since Eq.
has six free parameters, such a random search could become quite time consuming.

The discrete symmetry technique greatly simplifies the SFOPT search. We are
able to specify a desired pattern of symmetry breaking to investigate, identify the cor-
responding discrete symmetry, compute the associated EDSP, and begin searching by
perturbing from the EDSP. Here, we will focus on a particular pattern of symmetry
breaking in which both s and A obtain vevs simultaneously, and we will compare our
calculation against the “high-T trivial singlet vev” case of (I11)). The appropriate
discrete symmetry is a Zs relating the vacua at {h, s} = {0,0} and {v,zo}. We can
identify the associated EDSP by first reducing Eq. to Eq. and then impos-
ing a = 1. This is accomplished by focusing on the one-dimensional linear trajectory
{h,s} = {v,20} x @//v?+ 1% parametrized by o, which interpolates between the
EW-symmetric and EW-broken vacua. Along this trajectory, the potential can be
written in the form of Eq. with

vt + by + agvx

\ = £ _ @o(3a10* + 4bsaf)

(v + 23)? 12(v? + 23)3/2
AM?
M? = \/v? + 23 (38—)\\/02%—:&%) =y (5.13)

Then, upon resolving the condition @ = 1 we find the enhanced discrete symmetry

point,

EDSP: 0= 12a2v2x(2) + 3a;v%xy + 4b3:c3 + 1264xé + 60

e (8) (-9

In general, the PT will not occur along the trajectory parametrized by ¢, but never-
theless this linear interpolation is useful for identifying the EDSP.
Once again, we have numerically investigated the strength of first order PTs in the

vicinity of the EDSP. We have chosen a parameter set which allows us to reproduce
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Figure 5.3: A slice of the xSM parameter space showing the proximity of SFOPT
(blue region) to the enhanced symmetry axis (purple curve).

Fig. 4 (left panel) of (I11)) by fixing a; = —933 GeV,ay = 0.69, b3 = 356 GeV, by =
0.53 and scanning A\ € [0, 1] and log,, zo € [—1, 3]. Our results are shown in Fig. [5.3
A few observations may be made. First, as anticipated, the first order PTs are
strongest close to the EDSP (purple) curve and become weaker farther away. Sec-
ond, there is a large region (green) in which the EW remains unbroken. Below the
EDSP (purple) curve, the origin remains the global minimum of the effective poten-
tial, whereas at large values of 7y > 10*!, the global minimum sits at s < 0. Third,
in comparing with (I11), one must bear in mind that we have fixed the remaining
parameters, whereas those authors have scanned the full parameter space and pro-
jected onto these coordinates. As such, the region where we find SFOPT is much
smaller than what is suggested by Fig. 4 of (111)). However, this just goes to show

that it is typically difficult to find SFOPT in a large parameter space without either
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a large parameter scan or some guiding principle.

SM Plus Real Z,-Charged Singlet — Z,xSM

As a final example, we turn out attention to the Z,xSM, which extends the SM by a
real scalar singlet s such that the scalar potential becomes (117} 118

)‘4 U22 b44 b22 a2 9,9
— pd_ = bl il ) 1
U(h,s) 4h 2h +4s —|—2$ + 4sh (5 5)

The singlet is charged under a Z,, which restricts the allowed operators, but extends
the possible patterns of symmetry breaking, because now (s) = 0 is radiatively stable.
We will focus on a particular parameter region in which there is transitional Zs
symmetry breaking: at temperature 7' > T, both Z; and the EW symmetry are
restored, at T" = T, the singlet obtains a vev breaking Z,, and at T' = T, < T, the
Higgs field obtains a vev and the singlet’s vev returns to zero, thereby breaking the
EW symmetry and restoring the Z, (i.e., EW x Zy — EW x Z5 — EX x Z). In the
context of this pattern of symmetry breaking, the enhanced discrete symmetry point

admits an S, symmetry,
EDSP: by=\ and by, = —p? Sy : hes (5.16)

where we will also take as > 2\ to ensure that the discrete symmetry interchanges
vacua. Note that this So symmetry is more restrictive than the Z, symmetries we
considered in the previous examples. To illuminate the role of the EDSP in locating
SFOPT, we will reparametrize by = A+ Ab, and by = —pu?+Aby to write the potential
as

A Av? Ab Ab
Uh,s) = |7 (b +5*) - % (h* + %) + %h%ﬂ + {T484 + 7232} (5.17)
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where we have also used p? = \v?. In this parameterization, we expect to find SFOPT

nearby to the EDSP at Aby = Aby, = 0.

3

Aby /A
Abg /A
Aby /A

Aby /A VP Aby /A VP Aby /A VP

Figure 5.4: Three slices of the ZyxSM parameter space for fixed A = 0.12. The origin
Aby = Aby = 0 is an EDSP at which the theory has an S, discrete symmetry.

We present the results of our numerical analysis in Fig. where we have fixed
A~ 0.12 to give a Higgs mass® of m;, = v2 2 = 120 GeV. As in the previous
examples, the phase transition strength decreases monotonically with distance from
the enhanced symmetry axis. Significantly far from the EDSP, the phase transition
proceeds with a different pattern of symmetry breaking. In the brown region, the
EW symmetry breaks without transitional Z, violation (EW x Zy — B X Z,), in
the yellow region the Z, remains broken in the low temperature vacuum (EW x Zy —

EW x Z — EXV x %), and in the purple region there exists an intermediate phase in

6Since the axes of Fig. depend only on the ratios Abs/\ and Aby/\v?, a change in the Higgs
mass (via A) could be absorbed by Aby and Abs, such that the qualitative features of Fig. Would

remain unchanged.
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which both Z, and the electroweak symmetry are broken (EW x Zy — EW x Z5 —
B x 25 — B x Zy).
The region of parameter space nearby to the EDSP displays an interesting phe-

nomenology. Since the singlet mass is given by

az/A 1= Aby/Mw?]"?
4 2

(5.18)

mg = my

one typically finds m, < my nearby to the enhanced symmetry point. The unbroken
Zo symmetry ensures that the singlet is stable, and thus it is a dark matter candidate
which annihilates to Higgses with a cross section proportional to a3. A number
of analyses (108} 186H193) have considered this scenario and found that as and the
singlet mass mg can be strongly constrained by assuming that the s particle composes
all of the dark matter. Collider experiments, such as the LHC, may also be able
to constrain the Higgs-singlet coupling. For Aby/Av? < (3 — as/\)/2, the singlet
mass is less than half of the Higgs mass and the invisible decay channel h — ss
becomes kinematically accessible. Then, a measurement of the invisible decay width
may constrain the Higgs-singlet coupling ay (185 193H196). On the other hand, the
singlet self-coupling b, remains unconstrained. This is because unlike in other limits
of this model and similar models (I07; 115; 194 195), the unbroken Z, symmetry
prevents the Higgs and singlet from mixing. Consequently, the singlet self-coupling b,
is practically impossible to constrain at colliders, and contributions to the anomalous
Higgs trilinear coupling (197) are loop suppressed. Finally, let us point out that
the transitional Z, violation limit may not suffer from the domain wall problem that
generally accompanies models with spontaneously broken discrete symmetries. When
the Zs breaks in the first step of the PT, domain walls will be generated. However,
once the EW symmetry is broken and the Z, symmetry is restored, the domain walls

should be “wiped out” by the Zs-symmetric vacuum field configuration. This may
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lead to a unique gravitational wave spectrum.

5.4 Summary of the Chapter

Strongly first order phase transitions (SFOPTS) are required for electroweak baryo-
genesis and may have other interesting implications for early universe relics. In this
article we have discussed a general analytic guideline, based on symmetry principles,
which is useful in identifying a region of parameter space favorable for SFOPT: an
arbitrarily strong PT can be found for parameters near an enhanced discrete symme-
try point (EDSP) if the condition for spontaneous symmetry breaking is met and if
the discrete symmetry relates the electroweak symmetry preserving vacuum to one in
which it is broken. Group theoretically, this means that the coset representation of
the broken discrete symmetry contains an electroweak singlet and the discrete group
does not commute with the electroweak group. Because of phenomenological require-
ment of completing the PT at a nonzero temperature, the symmetry must be broken
by parametric deformations away from the EDSP. As the deformation decreases, the
strength of the PT tends to increase. We applied this guideline to study the elec-
troweak PT in three specific models. In each of the models considered, SFOPTs occur
in close proximity to the EDSP, as expected. In this way, the enhanced symmetry
point acts like a lamppost in the parameter space, signaling the location of SFOPTs.
It would be interesting to apply a similar EDSP-motivated analysis of the electroweak
phase transition to models with larger scalar sectors and greater parametric freedom,
such as singlet extensions of the Minimal Supersymmetric Standard Model.

It is not unnatural to expect SFOPT to be localized in the vicinity of an EDSP.
Strongly first order phase transitions almost always require some fine-tuning of the

parameters in the theory. From an UV completion point of view, such fine-tuning
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could be more natural if it is close to a point of the parameter space with enhanced
symmetry. It is also clear that degenerate vacua may be found even without discrete
symmetry, and thus our guideline provides a sufficient, though not necessary, condi-
tion for locating SFOPT. Nonetheless, such parametric regions form a large class of
possibilities which can most likely always occur in practice.

We also observe (as did (118; [177)) that the PT tends not to proceed at all un-
less the barrier separating the EW-broken and EW-unbroken vacua is very small
or not present at all (along the red curve), because otherwise the tunneling rate is
too strongly suppressed. Hence, the deformations away from the EDSP required for
phenomenologically viable SFOPTs are not vanishingly small and are model depen-
dent. Although such phenomenologically viable parametric regions can be arrived at
by deforming away from enhanced continuous symmetry points rather than EDSPs,
the EDSP starting point guarantees the existence of potential barriers required for
a first order PT. In that sense, our proposal here is advantageous over the enhanced
continuous symmetry point perspective.

Proximity to an EDSP implies interesting relations between parameters in the
extended Higgs sector, which is responsible for the dynamics of the electroweak sym-
metry breaking. Such relations will manifest themselves in both the spectrum of the
states in the Higgs sector and their couplings. Probing this sector is the central scien-
tific focus of the LHC. We might have already seen the discovery of the Higgs boson
on the horizon (198} [199). Discovering the additional states in the extended Higgs
sector and measuring the parameters in the Higgs potential are expected to be very
challenging tasks. At the same time, confirming the structure of the Higgs sector to
be consistent with a SFOPT would establish a striking link to the generation of the

baryonic asymmetry in the universe.
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5.A Appendix A. Details of Phase Transition
Calculation

For the phase transition analyses in this paper, we have calculated the thermal
effective potential Veg(gg, T) through one-loop order using the standard techniques
(61, 124t 126)). We numerically minimize’ Vg with respect to ¢ to obtain the scalar
field expectation values in the symmetric and broken phases, Usym (7)) and vy (1),

respectively. The latter quantity is sometimes referred to in the text as simply v(7T).

The critical temperature T, is defined as
%H(Usym(Tc)u Tc) = ‘/eff(gbrk<Tc>7 Tc) . (519>

We use Vig(¢,T) to calculate the action® S3(T) of the bubble field configuration
that mediates the vacuum transition (202-205). We determine the bubble nucleation
temperature 7T, by requiring the bubble nucleation rate per Hubble volume to exceed

the Hubble expansion rate. This condition may be resolved to
S3(T,) /T, = 140 (5.20)

where the value on the right hand side depends only logarithmically on the model
parameters (98; 206)). Finally, we calculate the temperature 7). of the plasma after
the phase transition ends and the plasma has been reheated. This is obtained by
assuming that the universe does not expand significantly during the phase transition

and then by imposing energy conservation (119)

Psym(Tn) = poux(T}) (5.21)

"This definition of v(T) implies that T, T},, and T} will be dependent upon the choice of gauge
(2005 201). Though this may affect the numerical accuracy of our results, we expect that the
qualitative parametric dependence of the EW order parameter nearby to an EDSP, which is our
primary interest, will remain unchanged.

8For the models of Secs. and which have more than one scalar field participating the
phase transition, we calculate the bounce using the approximation described in (119).
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where

() = Ve (o(T), T) = T Ve (u(T), ) (522)

is the energy density in the symmetric or broken phase, respectively.
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Chapter 6

The 125 GeV Higgs and EWPT
Model Classes

Recently, the ATLAS and CMS detectors have discovered a scalar particle which, to
a reasonable degree of statistical uncertainty, fits the profile of the Standard Model
Higgs. One obvious implication is that models which predict a significant departure
from SM phenomenology, such as large invisible decay or mixing with a hidden sector
scalar, are already ruled out. This observation threatens the viability of electroweak
baryogenesis, which favors, for example, a lighter Higgs and a Higgs coupled to or
mixed with light scalars. To assess the broad impact of these constraints, we propose
a scheme for classifying models of the electroweak phase transition, and we impose
constraints on a class-by-class basis. We find that models, such as the MSSM, which
rely on thermal loop effects are severely constrained by the measurement of a 125
GeV Higgs. Models which rely on tree-level effects from a light singlet are also
restricted by invisible decay and mixing constraints. Moreover, we find that the
parametric region favored by EWBG often coincides with an enhanced symmetry

point with a distinctive phenomenological character. We also comment on the excess
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of diphoton events observed by ATLAS and CMS. We note that although Higgs
portal models can accommodate both enhanced diphoton decay and strongly first
order phase transiition, the former favors a negative Higgs portal coupling whereas
the latter favors a negative one, and therefore these two constraints are at tension
with one another.

This work was performed in collaboration with Daniel Chung and Lian-Tao Wang.

It has not yet been published.

6.1 Introduction to the Chapter

A number of baryogenesis mechanisms are known to successfully account for the
baryon asymmetry of the universe, but many of these operate at a high scale, inac-
cessible to independent confirmation by direct laboratory tests. The primary motiva-
tion for studying electroweak baryogenesis is that the baryon asymmetry is generated
by electroweak scale physics, which is tested by experiments aimed at understand-
ing the nature of electroweak symmetry breaking. These include Higgs searches at
LEP, the Tevatron, and LHC colliders. Thus, models of the electroweak sector may
be constrained from two sides: by the requirement that electroweak baryogenesis is
viable and by the requirement that Higgs search constraints are satisfied. Indeed, the
ATLAS and CMS collaborations recently announced the discovery of a particle in the
mass range 125 — 126 GeV which matches the profile of the Higgs boson (207} 208)).
Even at this early stage, without precise knowledge of the alleged Higgs’ couplings to
SM fields, we have gained a partial picture of the origin of the electroweak symmetry
breaking. In this paper, we would like to understand what is the main implications
of a 125 GeV SM-like Higgs for electroweak baryogenesis.

Studies of the viability of electroweak baryogenesis and the impact of collider con-
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straints are usually performed on a model-by-model basis. However, many individual
models can accommodate a partial picture of the electroweak symmetry breaking
sector. Thus, as the LHC begins to expose the Higgs sector, revealing only glimpses
of the full picture, one would like to understand what classes of models may be
consistent with or at tension with the data. To this end, we propose a scheme for
classifying models of the electroweak sector based upon the nature of the electroweak
phase transition, and we study the implications of the recent Higgs discovery at the
LHC on a class-by-class basis. We find, the LHC’s detection of a 125 GeV Higgs
in conjunction with constraints on invisible decay and hidden sector mixing, provide
strong constraints on certain EWPT model classes.

We identify the phase transition model classes in the following way. The success
of EWBG relies upon the electroweak phase transition being of the first order (62).
In the context of the phase transition calculation, this translates into the requirement
that the thermal effective potential, Vog(h,T'), possesses a pair of minima separated
by a barrier for some range of temperatures (209). Thus, we can classify models
of the EW sector based on what physics is responsible for providing the requisite
barrier in Veg(h, T'). When calculated perturbatively, Veg(h,T) is given by a sum of
tree-level, quantum (loop), and thermal contributions. Thus, three model classes can
be identified! (see also Figure :

I. Thermally Driven. A barrier arises due to thermal loop effects associated with

bosonic zero modes. The effective potential acquires a term of the form —7T'(h2)3/?

where h is the Higgs condensate. This term competes with the h? and h?* terms in
the scalar potential to generate a barrier.

II. Tree-Level Driven. A barrier arises due to a competition between terms in the

'We do not claim that this classification scheme is exhaustive. For instance, models which rely on
non-pertubative effects cannot be classified in this way (see, e.g., (210)). However, this classification
does cover most perturbative models in the literature known to us.
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effective potential which are already present at tree-level. This model class can be
further subdivided.

ITA. Renormalizable Operators. The barrier arises from the competition be-
tween renormalizable operators. Since the operator h? violates gauge invariance, the
models in this class rely upon an additional scalar field (or fields) getting vevs during
the EWPT.

IIB. Non-Renormalizable Operators. If higher order operators involving the
Higgs field, such as h®, are added to the scalar potential, a barrier can arises as a result
of their competition with the renormalizable terms.

ITI. Loop Driven. Large loop corrections may generate the term h*Inh?, which can
compete with the h* term to generate a barrier.

In addition to a barrier in Vg, successful EWBG require the EW sphaleron process

to be out of equilibrium in the broken phase to ensure that the baryon asymmetry is

not washed out. This condition may be expressed as a bound on the EWPT order

parameter (88)

U(TC>
T.

>1 (6.1)

where (H), = (0, U(T)/ﬂ)T is the expectation value (EV) of the Higgs at temper-
ature T" and T, is the temperature at which the phase transition takes place. We say
that phase transitions which satisfy Eq. are “strongly” first order.

Thus, we will study the EWPT in the context of each model class by writing down
an approximate expression for V,g — which captures the physics relevant to the PT
(i.e., the source of the barrier), but otherwise doesn’t explicitly depend on the under-
lying model — and then investigating what parametric limit will yield v(7.)/T. > 1.
We can then ask what underlying physics would give rise to such an “optimal limit,”

what does the associated phenomenology look like, and what is the impact of collider
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Figure 6.1: The four methods of obtaining a strongly first order phase transition
by inducing a barrier in the thermal effective potential, which are discussed in this

paper.

constraints. One of the central points of our paper is to note that the optimal limits
frequently correspond to enhanced symmetry points in the theory space. This makes
the optimal limits straightforward to identify, and moreover associates them with a

distinctive phenomenology which is constrained by recent LHC data.

6.2 Collider Data and Interpretation

With certainty, the Tevatron signal and ATLAS/CMS discovery confirm the existence
of a scalar boson with an approximate mass of 125 GeV (207; 208) The available
statistics suggest that the decays of this boson are consistent with the SM predictions
in the channel bb (50; 51) as well as ZZ — 4¢ and WW — (vfv (207; 208). In

the diphoton decay channel, both ATLAS and CMS observe approximately twice as
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many events as the SM prediction (211) The discovery of a Higgs-like boson strongly
constrains or rules out models which predict appreciable (order one) enhancement or
reduction of Higgs production and decay channels with respect to the SM predictions.
Since models of the EW sector with strongly first order EW phase transitions tend
to rely on a large coupling between the Higgs and light scalar fields, it is important
to review the relevant constraints here.

Spectrum: It is well known that in models such as the SM and the MSSM, even
the LEP Higgs mass bound imposes strong constraints on the viability of EWBG.
Of course, these constraints have already ruled out EWBG in the SM (89). The
measurement of a Higgs mass of 125 GeV further severely restricts the allowed MSSM
parameter space and threatens to rule out EWBG in that model as well (91)).

Invisible Decay: If the Higgs had a large branching fraction to invisibles,
BRiny = BR(h — inv), this would suppress the branching fraction in all visible
channels, and it would have been more difficult to find the Higgs at the LHC? (113).
Conversely, the discovery of a SM-like Higgs at the LHC is at tension with a large
BRi.v. A number of analyses have investigated this possibility by assuming that the
production cross section is the same as for a 125 GeV SM Higgs, but allowing for
BR;,, to vary in fitting the data. They obtain upper bounds on the branching fraction
to invisibles in the range BRj,, < 0.30 — 0.75 at 95% CL (211} 213-H217). Although
this may not seem overly restrictive, we will see that in the phase transition model
classes which allow invisible decay, this is naturally the dominant decay channel. Fur-
thermore, the LHC expects to resolve the issue of invisible decay with increased data.
It is estimated that with at 20fb~! integrated luminosity, the LHC should detect

or exclude invisible decay for BRy,, > 0.4 at 95% CL (218), and at 30fb™', ATLAS

2 Assuming that the new physics does not enhance the Higgs production cross section, i.e., we
assume o(pp — h) = oM (pp — h). However, even in the MSSM where new physics both allows
invisible decay and enhances the Higgs production cross section, one finds that invisible decay is at
tension with the data (212]).
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should detect or exclude invisible decay for BRi,, > 0.24 at 50 (113).

Mixing with Hidden Sector: Just as with the case of invisible decay, the
ATLAS / CMS data strongly constraints the scenario in which the Higgs is allowed
to mix with a hidden sector scalar field or fields, which are singlets under the SM
gauge group. For the sake of discussion, we will suppose that only one singlet scalar
field is mixing with the SM Higgs. The impact of this mixing on the phenomenology
depends on the relative mass scales, of the Higgs-like scalar at my ~ 125 GeV and
the singlet-like scalar with mass my,;q. Let 6 be the angle between the Higgs-like mass

eigenstate and the Higgs gauge eigenstate. The relevant constraints are:

1. Light Higgs search at LEP. The existence of a light singlet-like resonance (i.e.,
mpia < mpy = 125 GeV) is constrained by Higgs searches at LEP. In order for
the singlet-like particle to have evaded detection, its coupling to the SM must be
suppressed. This places an upper bound on #, which which becomes more stringent
as Mmpiq is deceased below the LEP Higgs search bound of 114.4 GeV. For instance,
for my;q = 20 GeV one needs cos?§ > 0.99 at 95% CL (48).

2. Heavy Higgs search at LHC. Similarly, if the singlet-like resonance is heavier
(i.e., mpig > mpyg = 125 GeV), there is an upper bound on 6 coming from the
requirement that the heavy singlet-like scalar evades detection at the LHC. Again,
this is a function of the singlet-like scalar’s mass. For instance, if myp;q = 200 GeV
one needs cos? @ > 0.60 at 95% CL to avoid detection (219; 220)).

3. LHC Higgs Detection. The LHC’s signal at 125 GeV places an upper bound on
0, because if there were more mixing the diphoton channel would have been suppressed
and there would not have been a detection. Assuming that the Higgs-like resonance
is lighter (i.e., mpg = 125 GeV < my;q), then the consequence of mixing is a universal

suppression of all Higgs production processes by a factor of cos? . Thus, large mixing
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is at tension with the LHC’s Higgs signal, and one obtains a bound cos?# > 0.77 at
90% CL (221). (See also (213; 210; 222: 223)).
Taken together, these constraints imply that the large mixing scenario (i.e., cos® 0 =

0.5) is strongly disfavored, independent of the mass of the hidden sector scalar field.

6.3 Electroweak Phase Transition Model Classes

In this section, we will enumerate the phase transition model classes, identify the
parametric limits which are optimal for SFOPT by maximizing the washout criterion
Eq. (6.1), and discuss phenomenological constraints that arise in those limits. As we
discuss further below, the optimal limits for SFOPT often correspond to enhanced
symmetry points of the theory at which the symmetry group is extended to include
an additional continuous or discrete symmetry. For the sake of brevity, we will not
dwell on the details of the phase transition calculation. We refer the interested reader

to the review: (209).

Thermally (BEC) Driven

In models such as the SM and the MSSM, the barrier in the thermal effective poten-
tial arises from thermal loop effects, which emerge in the following way. The Higgs
condensate (H) = (0,h/ \/§)T modifies the dispersion relation of particles in the
plasma causing them to acquire an effective temperature and field-dependent mass
m2¢(h, T) = m?(h) + II(T). Here, II is a temperature-dependent self-energy cor-
rection (known as “daisy resummation,” see e.g., (I75)) and m?(h) can be obtained
by replacing the zero temperature VEVv with h in the standard expression for the

field’s mass (209). Bosonic fields induce a contribution to the thermal effective poten-
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tial of the form?® V.g > (—T/127r)(m§ff(h,T))g/2 in the high-temperature limit. The
non-analyticity of this term at mZ; = 0 can be traced to the non-analyticity of the
Bose-Einstein distribution function at zero energy. Hence, we will refer to this term
as the “BEC term.”

Near the phase transition temperature 7., we want (m2;(7.))*/? ~ h® such that
competition between this term and the h? and h* terms will generate a barrier in V,g.
Supposing that m?(h) can be written as m?(h) = ah® + 3, the effective mass will
have the desired scaling if we tune 3 —TII(7T,) < av(T,)?. A general phenomenological
consequence of this tuning is that the scalar bosons today will be light, since their
mass squared m?(v) = av? — II(T}) is given by the difference of two O (v*) numbers.
The need for this tuning is well-established in the MSSM (92)), where light stops are
required. Phenomenologically, the light stops tend to enhanced Higgs production by
gluon fusion and reduce Higgs diphoton decay. The LHC has already placed strong
constraints on EWBG in the MSSM (91)).

Near the temperature of the phase transition, the effective potential may be ap-

proximated as

T
(12 + e T?) b2 — S (h2)*2 + Aps (6.2)

Verr(h, T) ~ 127 1

| =

A potential of this form is illustrated in Figure 6.1l The parameters y? = —m%/2
and A = m? /(2v?) are related to the Higgs mass my and VEVv. The dimensionless
parameters ¢ and e quantify the coupling between the Higgs condensate and the rela-
tivistic particles in the plasma. In particular, ¢ depends on couplings between H and
light (m < T') bosons and fermions, whereas e only depends upon couplings between

H and light bosons. The contribution from heavy fields (m > T') are Boltzmann

3In a gauge theory, this term is not gauge-invariant (61). Consequently, this model class suffers
from an ambiguity in how to calculate the phase transition parameters reliably and accurately
(200; 224).
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Table 6.1: Examples of Thermally (BEC) Driven SFOPT models.
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suppressed, and the O(Texp [—m/ T]) terms are dropped. Some examples of models

that fall into this class are shown in Table [6.1].

A familiar calculation (see, e.g., (209))), yields the EW order parameter

o) e
T. 6w\’

(6.3)

There are two “optimal” limits in which we can obtain v(T,)/T,. > 1.
es> A\ To reach the limit of large e, the Higgs must have a large coupling with
many light bosonic degrees of freedom. There are various phenomenological
constraints on this limit. First, since e is a sum of dimensionless coupling
constants (see, e.g., Table , it is bounded from above by the perturbative

unitarity constraint. Second, heavy bosonic fields will become Boltzmann sup-

pressed and cannot contribute to e. However, the same interactions which allow

In these models, the light scalars that provide the BEC term are colored (e.g., stops in the
MSSM). Higher order contributions, which scale like —gZ(NZ — 1)T?mZ logm;/T, tend to lower the
PT temperature and strengthen the PT (93).
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light bosonic fields to contribute to e also provide a mass to those fields after
EWSB. Thus, increasing the coupling constants that enter e, will eventually
cause the bosons become heavy and their contributions to e become Boltzmann
suppressed. Finally, as e is increased, interactions between the Higgs and other
bosonic fields are made stronger. Thus, there may be loop-suppressed, but
nevertheless significant, modifications to Higgs production and / or decay. For
example, if the bosons carry color, then they can significantly enhance Higgs
production by gluon fusion (225; 226]). We will revisit this constraint in the
context of Higgs diphoton decay in Sec. [6.4]

A—0 In the context of the SM, this limit is obviously forbidden in light of the
relationship A = m?/2v? and the fact that mg is now a measured quantity.
However, in an effort to keep our model classification scheme as general as pos-
sible, we will consider the scenario in which the field h that appears in Eq.
is not the SM Higgs condensate. Instead, it may represent a parametrization of
some non-trivial trajectory through an extended scalar field space connecting
the EW-preserving vacuum h = 0 with the EW-broken vacuum A = v. Such
situations arise in minimal singlet extensions of the SM (I11)). Then, the limit
A — 0 implies the spectrum contains a light scalar. If the scalar carries SM
quantum numbers, it is already excluded by . If the scalar is a SM singlet and if
it has a large coupling to the Higgs, then this limit is at tension with constrains
on Higgs invisible decay or hidden sector mixing. Moreover, vacuum stability
considerations limit the range of the EFT.

To illustrate how these limits and constraints arise in a concrete model, we extend

the SM by a color triplet scalar field X (see (225)):

L= Lo+ (0,X) (0"X) — |MEX*X + % (X*XV?+QHIHX*X| . (6.4)
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Figure 6.2: The EW order parameter v(7,)/T. calculated numerically (solid line) and
using the analytic approximation Eq. (6.3]) (dashed line).

The effective mass of the scalar X is given by m% (h,T) = M% + (Q/2)h* + 11x(T)
where I x(T) = (K + Q)T?/24. Thus, the BEC term is given by

T , Q. 3/2
AV (h,T) = —GE <MX + §h + HX(T)) , (6.5)
where the factor 6 is the number of internal degrees of freedom for the complex,
colored X field. As discussed above, we must tune M% ~ —IIx(7,). Doing so,
Eq. takes the form of Eq. with e = egy + 6(Q/2)%/2.

We would like to understand what constraints arise as we go to the SFOPT
limit e > A. This limit is reached by taking Q > A\*?. First, we verify that the
phase transition is strongly first order by calculating v(7,)/T. as a function of @
for fixed my = 125 GeV. The numerical calculation is performed in the standard
way (see, e.g., (209)) using the full one-loop thermal effective potential. As shown
in Figure [6.2] the EW phase transition becomes strongly first order for sufficiently
large values of ) 2 1.3. Second, we note that perturbativity up to 100 TeV requires

() < 2 at the weak scale (225). Third, as we discussed above, Boltzmann suppression
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of heavy X bosons prevents us from obtaining SFOPT for arbitrarily large (). We
can estimate an upper bound on ) by requiring the X bosons to be light at the
temperature of the phase transition. That is, we require mx (v(T.),T.) < T. where
mx (v(T.), T.) ~ \/Q/2v(T.). This becomes the bound @ < 2(T,/v(T.))? ~ 2, since
for a strongly first order phase transition v(7.)/T. 2 1. This estimate is confirmed by
the numerical calculation, which reveals that for Q = 1.8, the fractional error between
the numeric and analytic expressions becomes greater than 50%. The perturbativity

and Boltzmann suppression constraints are also shown on the figure.

Tree-Level (Renormalizable Operators) Driven

As we saw in the previous section, models such as the MSSM which rely upon the BEC
term to provide a strongly first order phase transition have become very constrained
by the discovery of a 125 GeV SM-like Higgs. The available parameter space
opens up if we allow the Higgs sector to be extended by one or more scalar fields
which participate in the electroweak phase transition. The phase transition can be
made strongly first order if the new scalar fields participate in the EWPT, i.e their
expectation value changes during EWBS. The barrier in Vg thereby arises from

(renormalizable) tree-level interactions between the Higgs and the new scalars fields.

We can parametrize the additional scalar field(s) as S. The number of degrees
of freedom associated with S, its quantum numbers, and its interactions will be
model-dependent. The information that is pertinent to our generic phase transition
analysis is that there exists a one-dimensional trajectory through the configuration

space which interpolates between the EW-symmetric and EW-broken phases®. The

4We can parametrize the one-dimensional trajectory with a field ¢, as h = h(p,T) and S =
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Table 6.2: Examples of Classically Driven SFOPT models. For the SUSY models,
only the superpotential is specified.

effective potential along this trajectory may be approximated as

A
Ve (0, T) ~ = (m* +cT?) > — E* + 1904 : (6.6)

1
2
where we have only included the leading temperature dependence, since, as we will
see, the O(T¢?) term is not necessary for SFOPT, because the O(?) term arises from
tree-level interactions. Generally the parameters m? &€, and A will also depend on
temperature implicitly via the one-dimensional trajectory. This makes it difficult to
connect the parameters of Eq. to Lagrangian parameters in general. However,
we will see that in the optimal limit for SFOPT, the PT temperature approaches zero.
In this limit, the parameters of Vg are directly related to the Lagrangian parameters
along a particular trajectory. Some examples of models that fall into this class are
shown in Table 6.2

This model class has the significant advantage that thermal loop effects are not
necessary to generate a barrier in Vog. As we discussed in Sec. the BEC term
eT/(127)(h?)?/? is suppressed by a factor of 127, and consequently a SFOPT requires
a hierarchy of coupling constants (see Eq. ) However, in the present model class,

the barrier is provided by the tree-level potential, and therefore one naturally expects

S(¢,T). In principle, the functions h and S can be determined by solving for the multi-field bounce
solution.
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v(T.) =~ v, such that enhancements of v(7T,)/T. will be primarily driven by a desire

to reduce T,.. The phase transition temperature is calculated from Eq. to be

/m?2 | 2&2
T. ~ 4 — -1 .

and the EW order parameter is found to be

o(T,) = [2c 1
TC ~ )\ Am?2
\V 1 - 282

Here, we have introduced a projection factor of cosa, since in general ¢ will not

cos v . (6.8)

correspond to the Higgs field, however this factor will be irrelevant to our discussion,

sincne we will focus on scenarios which reduce T,.. The optimal limits for enhancing

v(T.)/T, are given by:

c> A Since ¢ represents a sum of coupling constants controlling interactions
between the Higgs and light particle in the plasma, one might try to take the
limit ¢ > A by increasing the size of these couplings or by increasing the number
of degrees of freedom in the plasma. However, the Higgs self-coupling A is also
renormalized by these same couplings. Generally, it is not obvious that the limit
used to increase ¢ will not also increase A and thereby prevent one from reaching
the ¢ > A limit. For example, we can consider the contributions to ¢ and A
that arise from the Yukawa interaction with the top quark. The contributions
scale with the Yukawa coupling h; and number of colors N, like c]\?chf and
A ~ —N_.h} yielding ¢/\ ~ —1/h?. In this example, increasing the value of
the Yukawa coupling will tend to decrease the ratio of ¢/\. One way to get
around this result is to note that contributions to ¢ are non-negative whereas
contributions to A are positive for bosonic fields and negative for fermionic fields.
If the underlying model possesses a symmetry relating bosonic and fermionic

fields (such as SUSY) then it may be possible to take ¢ large while keeping A
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small. If the light fields do not carry any SM quantum numbers, and if they
are sufficiently light (m < my/2) then ¢ > X is at tension with constraints on

Higgs invisible decay.

Am?/2E% — 1 This is the limit in which 7, vanishes and the EW-symmetric

A —

and EW-broken vacua are degenerate. As noted in (L76)), this degeneracy may
arise as the result of a discrete symmetry relating the Higgs field with the
other field(s) participating in the phase transition. We will refer to this limit
as an enhanced (discrete) symmetry point (EASP), which is also illustrated in
Figure [6.3] As one approaches the EASP, the EW-symmetric vacuum becomes
metastable and increasingly degenerate with EW-broken vacuum. Without
sufficient degeneracy breaking, tunneling out of the EW-symmetric vacuum
may become suppressed to the point that tunneling occurs on a time scale that
exceeds the age of the universe. That is, as one approaches the EASP, it may
be the case that the EWPT never occurs, even if the EW-broken vacuum is
energetically favored. Otherwise, it is difficult to make any model-independent

statements about the phenomenology near the EASP.
0 We would like to take this limit while fixing Am?/2€? such that Eq.
just scales like 1/ VA. Moreover, if we also want to fix the VEV of the ¢ field

3E 8 Am?
vwzﬁ(l%— 1—5252) (6.9)

then we see that we must let m? ~ & ~ X\ — 0. In this limit, the mass of the ¢

field

9&? 8 Am? 8 Am?2
2=""(1-- 1—— 1

e T N ( 9282 © 9 267 (6.10)
also scales like A and goes to zero. Thus, there there will be a light scalar field
associated with the ¢ field direction. The light scalar runs into two phenomeno-

logical constraints. If ¢ represents a mixture of the Higgs with a hidden sector
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Figure 6.3: An illustration of the behavior of Vg as the limits A\ — 0 and Au?/2E? — 1
are taken. The former leads to an EcSP whereas the latter leads to an EdSP.

scalar field, then a light Higgs is excluded by searches at LEP and at tension
with the LHC Higgs discovery. On the other hand, even if there is no mixing,
provided that the light scalar is mostly a SM singlet, then this limit runs into
constraints on Higgs invisible decay imposed by the LHC Higgs discovery. We
will discuss this scenario further in an example below.

It is important to note that as we take this limit in which m? ~ & ~ X\ — 0,
the effective potential develops a shift symmetry. Thus, we can identify the
A — 0 limit with a enhanced symmetry point of the theory at which a contin-
uous symmetry emerges. We will refer to this parametric limit as a enhanced

(continuous) symmetry point (EcSP), which is also illustrated in Figure [6.3]
In order to illustrate how these limits and constraints may be realized in a con-
crete model, we consider the Z,xSM (176). This model extends the SM by a real
scalar field S which is a singlet under the SM gauge group, but which respects a Zs

discrete symmetry that takes S — —S. The most general, renormalizable Lagrangian
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consistent with the SM gauge group and Z, is given by®

_b
2

by

1
Lonsu = Loni + 5 (9,8) (9"5) = |- 58" + 5% + %HTHSQ , (6.11)

where Lgy is the Lagrangian of the SM. We assume that S does not acquire a VEV.
Thus the Z, is unbroken, thereby ensuring stability of S if it is lighter than 2my and
preventing mixing with the Higgs. Although S does not have a VEV, we will allow
it to obtain a non-zero EV at finite temperature so that it may participate in the
EWPT and render it strongly first order.

With this Lagrangian, we can calculate the effective potential as a function of both
the Higgs condensate (H) = (0, h/\/§)T and singlet condensate (S) = s. Working
to the same level of approximation as in Eq. , we neglect the loop-suppressed

contributions and include only the leading thermal contributions to obtain®

—u? T2 A —b T2 b
u}ﬂ + _h4+ 2+—C$82 + _454+ %h232.

Ver (h, 5, T) = 2 A 2 A A

(6.12)

The thermal mass terms ¢, 7? and ¢, T? ensure symmetry restoration at sufficiently
high temperature.

In light of the general analysis of the preceding subsections, we are motivated
to seek out enhanced symmetry points. In the following discussion, we will identify
the EcSP, justify the claim that SFOPT are found in its vicinity, determine the
phenomenology in this limit, and assess the impact of collider constraints. We will
then repeat the analysis for a neighborhood of the EdSP.

The parameters of the ZyxSM are the SM gauge (g;) and Yukawa couplings (y;),
the Higgs sector parameters (u? and )), the singlet sector parameters (by and by),

and the “Higgs portal” coupling (as). The symmetry group of the Z,xSM Lagrangian

5Since the one-loop phase transition analysis does not depend upon the quantum numbers of S,
the analysis here will also apply to the more general case of a non-singlet S coupled via the “Higgs
portal” operator HTHS*S.

6Note that we now use the convention Lgy O +p2HTH where y? > 0 triggers SSB.
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is Gsym X Zo where Gy is the gauge group of the SM. For a particular choice of pa-
rameters, an additional continuous symmetry arises. We find this EcSP by requiring

the parameters to satisfy

EcSP : {bo=p® , ba=X , a=2\} and {g=0 , y =0},
(6.13)
where A = m?% /(2v?) and pu? = m? /2 are not constrained by the symmetry, but are
restricted by measurements of the Higgs mass and VEV. At the EcSP, the Lagrangian

can be written as
1
Lot 2 (OuH) (0"H) + 5 (9,) (95)
— [ (T H 4 82/2) £ X (HTH + 52/2)°] (6.14)

up to kinetic terms for the other SM fields. This Lagrangian is invariant under the

continuous symmetry transformation

50(2) V2 H cosf) sinf V2 H (6.15)
S —sinf cos6 S

The symmetry ensures that ¢, = ¢, = ¢y and the effective potential may be written
as

_ 1 (—1® +coT?) (B* +5%) + % (R* + 32)2 : (6.16)

Verr(h, 5,T) EesP 2

However, the restriction to vanishing gauge and Yukawa couplings is unphysical, and
once these couplings are turned on, radiative corrections to Vg will break the symme-
try Eq. . However, the symmetry breaking terms will carry a loop suppression
factor of 1/16m% and can be neglected at this level of approximation. On the other
hand, contributions to the thermal masses are not loop-suppressed and will gener-
ically induce ¢, # cs. Therefore, in the following discussion we will neglect loop

suppressed corrections to Vg, but we will treat ¢;, and ¢, as independent parameters.



145

We will see that there are SFOPT in a neighborhood of Eq. , but first it
is interesting to remark that the pattern of symmetry breaking is controlled by the
symmetry that arises at this EcSP. Provided that p? > 0, the SO(2) will be sponta-
neously broken. The resulting Goldstone boson is associated with a flat direction in
the potential connecting |H| = v/v/2 with S = v. Thus, we anticipate that we will
find phase transitions that occur in two steps: first S acquires an EV breaking the
Zso, and second the EV of S returns to zero as H acquires an EV breaking the EW
symmetry.

We can proceed to perturb away from the EcSP by writing the parameters as
{bo=p*(1+e,) , b=A1l+4e,) , a=22(1+ey,)}. (6.17)

What sort of perturbations will yield SFOPT? At the EcSP, the EW-broken and
EW-symmetric vacua are degenerate, and if ¢, = ¢, then the thermal corrections will
maintain that degeneracy. As we perturb away from the EcSP looking for SFOPT,
we will need to ensure that degeneracy breaking causes the EW-broken vacuum to
be energetically favored and also ensure that the breaking of ¢, # ¢, causes the EW-
symmetric vacuum (in which Z, is broken) to become (free-)energetically favored
above some temperature. Keeping this picture in mind, we can proceed to calcu-
late the phase transition parameters. In this neighborhood of the EcSP, the phase

transition temperature and EW order parameter are given by

mp -y

u(T,) v 1
= 2./ —
Tc “h Cs mg VEby — 261,2

See also Figure As we anticipated, T, is arbitrarily small and v(7,)/T. is arbi-

(1 + O(ey,, eb4)> . (6.19)

trarily large for arbitrarily small perturbations away from the EcSP (e, — 2¢,, < 1).

The particular combination of parameters €,, — 2¢,, appears, because it controls the
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degree of degeneracy breaking between the EW-symmetric and EW-broken vacua.
We can verify this by calculating

%ff (07 Vs, T) - ‘/;sz (Ua O7T)

4 2
N R 2 ~ €y, ~ T?
= [4)\ (€, — 2€p,) o (cp —cs)T } (1 +O0(e, ~ep, ~T )) : (6.20)

where v, = \/M is the expectation value of s in the EW-symmetric vacuum and
v =/pu?/\ =246 GeV is the Higgs VEV. Thus if ¢, — 2¢,, = 0, the two vacua are
degenerate at T' = 0. If €, — 2¢;,, > 0, the broken vacuum is energetically favored
and the PT occurs at the temperature 7, given by Eq. , but if €, — 2¢,, < 0,
the symmetric vacuum is energetically favored and the PT does not occur. From
this discussion, and particularly Eq. , we conclude that SFOPT are found in
the neighborhood of the EcSP, but additionally the EcSP demarcates a boundary
between physical models (€, —2¢;,, > 0) in which EWSB occurs and unphysical models
(€p, —2€p, < 0) in which EWSB does not take place. The singular factor of 1/+/c;, — ¢
in Eq. can also be understood in light of Eq. . If ¢, = ¢,, then thermal
corrections lift the EW-broken and EW-symmetric phases together maintaining their
degeneracy. One needs ¢, > ¢, to ensure that Vg at the EW-broken phase (free energy
density) is lifted more greatly with increasing temperature than the EW-symmetric
phase. Conversely, if ¢, < ¢s then the EW-symmetric phase in which the Z, is broken
never becomes (free-)energetically favored.

We can begin to investigate the phenomenology near the EcSP by calculating the
mass of the singlet scalar field. The tree-level relationship can be read off of the
Lagrangian Eq. (6.14)), which gives

2
D22 BSP, TH (e e (6.21)

2
= ) =
Mmg 2-'-211 9

Since this scalar field corresponds to the Goldstone boson of the spontaneously broken

symmetry Eq. (6.15)), we are not surprised to find that it is light when deviations away
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Figure 6.4: A neighborhood of the EcSP. In both panels, the dashed lines corresponds
to mg = 60,45, 30, and 15 GeV as €, is increased. Left. The EW order parameter,
for which Eq. is the leading order expression, grows as €, increases and e,
decreases. Right. The branching fraction of Higgs to an invisible S-pair, calculated
from the width Eq. . The BR grows with increasing ey, .

from the EcSP are small ¢,, —¢;,, < 1. Since the Higgs is coupled to this light singlet,

there will generically be a large Higgs invisible decay width. The expression is given

by (113)

2,2 2
v 4mg
P(H =~ 55) = 32mmy B m3
3
EcSP M
327:;2 (1 + (€ay + €3,) + 0(622, ei)) : (6.22)

See also Figure [6.4. Since S only couples to the SM via the Higgs, the width for
Higgs decay into SM fields, I'(H — SM), is only affected by its coupling to S at
the multi-loop level. Thus, we can approximate I'(H — SM) by the SM Higgs total
width, which is TPM ~ 5 MeV for my ~ 125 GeV (227). We find that the invisible
branching ratio is

I'(H — S9)

B . fry
Rine = 507 = SM) + T(H = 89)

~ 0.985 , (6.23)




148

where we also neglect kinematically suppressed 3-body (and greater) final states.
Such a large invisible decay greatly exceeds the 95% CL limits set by analyses of the
LHC and Tevatron Higgs data, which were discussed in Sec. [6.2] Thus, the tension
which we had discussed between the EcSP limit and invisible decay is illustrated in
a concrete setting.

We can attempt to evade the collider constraints on Higgs invisible decay by
suppressing the channel H — SS. This can be accomplished by either lifting the
singlet mass above the kinematic threshold mg > mg/2 or by reducing the coupling
of the Higgs to the singlet a; — 0. Either of these approaches requires us to depart
from the EcSP limit which guarantees us SFOPT, but also brings in the dangerous
light scalar. In the following, we will discuss two ways of evading the invisible decay
constraint by deviating away from the EcSP in a particular way to maintain SFOPT.

It was discussed in the preceding subsection that SFOPT may also be found in
the neighborhood of an EASP. We can perturb away from the EcSP such that the
continuous symmetry is broken to its discrete subgroup S, which exchanges v2H <

S. The EdSP is given by
EdSP : {by=p*> , by=A} and {g=0 , y=0}. (6.24)

Now 2, A\, and ay are free to vary, and therefore the EASP represents a 3-dimensional
submanifold of the full Z,xSM theory space. As before we can consider perturbations

away from the EASP,
{bo=p*1+e,) , ba=A(1+e,)} . (6.25)

The singlet is no longer the Goldstone boson of the spontaneously broken SO(2)

symmetry, so its mass need not be small

2
Az o EdSP M 2)
mg = —by + 51)2 — 4—;\{ (az —2)) (1 T o — 2)\662) : (6.26)
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From this expression we can see how the variation of ay affects the vacuum structure.
For ay = 2\ we return to the EcSP and the singlet is the massless Goldstone boson.
For a, < 2\, the singlet becomes tachyonic, signaling that the true vacuum of the
theory is one in which the Z, is spontaneously broken. This is an undesirable limit,
because without the Z, preventing the Higgs and singlet from mixing, we run into
the collider Higgs mixing constraints, which were discussed in Sec. [6.2] For ay > 2,
the vacuum preserves the Zy and the singlet is massive. Provided that ay > 3,
the singlet mass mg > mpy/2 will exceed the kinematic threshold and block the
invisible decay H — SS. Using my ~ 125 GeV and A = m3% /(2v?), this bound is
approximately as 2 0.39. Moreover, since the expressions for the phase transition
temperature and EW order parameter, Eq. and Eq. , were independent
of as, we still expect to find SFOPT in this corner of parameter space near the EdSP.
Thus a departure from the EcSP along the EASP allows for SFOPT while avoiding
Higgs invisible decay by kinematically blocking the H — SS channel.

A second approach toward avoiding Higgs invisible decay is to reduce the Higgs
portal coupling ay and thereby suppress I'(H — SS). In the previous discussion we
saw that if we moved away from the EcSP along the direction of the EASP, then
taking a, < 2\ would change the vacuum structure such that the Z, is spontaneously
broken and allow the Higgs and singlet to mix. Thus, we must find a different path
that continuously connects the EcSP with a; = 0 but maintains the vacuum structure.

This is accomplished with the following parameter choice,
=5 . _ a9 9 - <(I2 )2
EcSP : by = — by=(=) Ap. 2
cS { 2 2)\M ) 4 2\ } (6 7)
At the parameter point Eq. (6.27)), the scalar sector Lagrangian can be written as
1
Lo 2 (0,H) (9"H) + 5 (9,5) (9S)

[ G g a(mae )] o
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From this expression we see that the scalar potential is invariant under a continuous

symmetry transformation which rotates and dilates the fields H and 5,

V2 H cosf siné V2 H
— ) (6.29)

\/% S —sinf cosf \/;‘_—i S
However, the scalar kinetic terms are not invariant under this transformation (unless
as = 2)), and thus Eq. is not a true enhanced symmetry point of the ZyxSM.
That is, radiative corrections will spoil the symmetry Eq. , and therefore we do
not expect the effective potential to respect this symmetry (even if we were to also
set g; = y; = 0). Nevertheless, since in this class of models, the phase transition pa-
rameters are dominantly controlled by the structure of the tree-level scalar potential,
we expect that SFOPT may still be found in the vicinity of Eq. . However, it
turns out that the loop corrections which break Eq. and split the degeneracy
of the EW-symmetric and EW-broken vacua tend to render the EW-broken vacuum
metastable. In this case, the universe becomes trapped in the energetically favored
EW-symmetric phase and the electroweak phase transition does not occur. To avoid
this outcome, we must allow for a finite perturbation away from the EcSP parameter

point. We consider instead

as s 2
{bg = ﬁﬂ2 (1+€b2) s b4 = (ﬁ) )\(1+€b4) } s (630)
where we will allow « to vary and keep €, = €,, = —1/2.

Along the trajectory Eq. (6.30) we can take as — 0. The singlet remains light

m% = —by + agv?/2 = ayv’e, and the invisible width is approximately given by

a2y? 4m? BesP M3 [ag\2
I'(H — §9) = 22 1 — s Ec H (-) . 6.31
(= 59) = o " e 32702 \2) (6:31)

To bring the invisible branching fraction below BRy,, < 0.64 (the weakest 95% CL

limit (215)) we need ay < 0.043. Furthermore, since the expression for the EW order
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Figure 6.5: The EW order parameter v(T,)/T, and invisible branching fraction BRj,,
in the Z,xSM at the EcSP parameter point Eq. - As ay/2) is decreased below
about 0.15, Higgs invisible decay becomes sufficiently suppressed to evade collider con-
straints which impose BRy,, < 0.64. This threshold corresponds to ay =~ 0.04. At the
same time, the electroweak phase transition remains strongly first order v(7,)/T. > 1.

parameter Eq. (6.19) is independent of ag, we still expect to finds SFOPT in this
limit. This can be verified by calculating the EW order parameter numerically, and

the result is shown in Figure

Tree-Level (Non-Renormalizable Operators) Driven

The second way of obtaining a SFOPT using only tree-level operators is to employ
higher order, non-renormalizable terms in the potential. If the scale of new physics
A is not much larger than the EW scale, then the leading correction to the scalar po-
tential, (H'H)?, may dramatically change the nature of the EWPT. In this scenario,

the effective potential may be written as

1
(1* +cT?) W + ih4 + ——h° (6.32)

Ver(h, T) 4" T2

1
2
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up to terms which are O(h%/A%). By minimizing the potential, the parameters p?

and A may be exchanged for the Higgs VEVv and mass my as

2 2 2 2
_my 3v _omy AL
AS 002 TR T o (1 A2 ) (6.33)
2 4 2 2
2 _mH 3v _ my Amax o
pnoo= 5 +4A2 =3 (2A2 1) ) (6.34)

In the second equality we have introduced Ay.x = V302 /my, this meaning of which
will become clear presently. Since we are interested in the limit that will yield a
barrier in the effective potential, we will focus on the case of a low-scale cutoff such
that p? > 0 stabilizes the EW-symmetric vacuum, A < 0 causes the potential to turn
over, and the O(h%) term stabilizes the EW-broken vacuum. In order to obtain A < 0,
we must have A < A,.x, where the upper bound evaluates to A, ~ 800 GeV for
mpy =~ 125 GeV. A potential of this form is illustrated in Figure[6.1] The electroweak
phase transition in this effective theory was studied by (183} [184; 228]).

As in the Tree-Level (Renorm. Op.) Driven Model Class, the presence of the tree
level barrier allows v(7,) ~ v and therefore v(T,)/T. may be enhanced by reducing 7.
Once again using standard techniques, we calculate the phase transition temperature

and the EW order parameter to be

2 )\ZAQ
T, = w/’“‘?,/ TR (6.35)

T, 2
Ty _ e 2 ‘ (6.36)
T. A 1 42
Y X272
The optimal limits for enhancing v(7.)/T. are given by:
c> A This limit was discussed previously in the context of the Tree-Level

(Renorm. Ops.) Driven Model Class.
4p?/A2A%2 — 1 Using the relationships Egs. (6.33) & (6.34)), this combination
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of parameters can be expressed as

42 41— 2A2/A2,
NAZ T 3(1—AZ/AZ, )2 (6:37)

max

Then, the limit is obtained when A — Ay, where Ay = Apax/V3 = v?/my.
For my ~ 125 GeV this evaluates to Ay, ~ 480 GeV. As we approach this
limit, the phase transition temperature, given by Eq. , goes to zero. We
found a similar behavior in the Tree-Level (Renorm. Op.) Driven Model Class,
and once again we can identify this degeneracy limit with an EASP (176).

The (HTH)? operator is able to evade the standard phenomenological con-
straints. Since it preserves the custodial SU(2), there is no anomalous contribu-
tion to the p parameter, even for a low cutoff (183)). However, if other dimension
six operators are not forbidden, they may be constrained by electroweak preci-

sion tests. The Higgs cubic self-coupling, given by

2 2
My Amin
—([1+2 .
" ( + A2 ) ) (6.38)

receives O (1) corrections in this limit. However, it is unlikely that the LHC

will be able to measure the Higgs self-coupling.

A—0 We would like to take this limit A — 0 while fixing 44%/(A?A?) such that
Eq. just scales like 1/ VA Using the relationship Eq. , this implies
that we must let A/Ay. = const.. Then, Eq. reveals that in order to
take \ to zero we would have to take my ~ v/A to zero. Obviously, this limit
is not viable. However, it is interesting to note that this limit corresponds to
an EcSP. Since both A, y?, and 1/A? all vanish, the potential becomes flat.

This extension of the SM by an O [(H"H)?] term has been studied by (183} [184)
in the context of the electroweak phase transition and phenomenology. We have

calculated v(7.)/T. in the two limits discussed above. First, we allow A to vary

while fixing 4p%/A*A? = 0.2. The results, shown in Figure (left panel), indicate
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Figure 6.6: Left: The EWPT order parameter Eq. (red), Higgs mass my (blue),
and UV cutoff A (green) in the vicinity of the EcSP A = 0. Right: The EWPT order
parameter with my = 125 GeV in the vicinity of the EASP A = A, ~ 480 GeV.
The solid line shows the result of a calculation using the full one-loop thermal effective
potential whereas the dashed line shows the approximation Eq. (6.36]).

that v(T,)/T. grows like 1/y/—X as A approaches zero. For A ~ —0.15 the Higgs
mass is consistent with the LHC signal at my ~ 125 GeV, the phase transition is
strongly first order, and the cutoff is low A ~ 500 GeV. The behavior of v(7,)/T.
nearby to the EASP is shown in Figure (right panel) where we have fixed my =
125 GeV and varied A. This figure illustrates that v(7.)/T. grows as A decreases
toward the EASP where A, ~ 480 GeV and T, vanishes. For smaller values of A,
electroweak symmetry breaking does not occur. For large values of the cutoff, the
Higgs self-coupling A becomes positive and the PT proceeds as in the SM without

any enhancement.

Loop Driven

In the presence of large quantum corrections, a competition between the terms h*
and h*Inh? can generate a barrier in the effective potential. Alternatively, we can

say that A is positive at high scales and runs negative at the electroweak scale. In
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this model class, the effective potential may be written as
Ly Noo Aa, Koa P
Ver(h, T) m 5 (i + ¢ T?) h* + Th' + 2 Wi -5 (6.39)

Unlike in the previous model classes, the loop-suppressed quantum corrections will

play an important role here, and they are not dropped. The parameters p? and \

may be exchanged for the Higgs VEVv and mass’ my = (v, T =0) using
2 2
mi v 3
2
pt = —% + R (6.41)

The dimensionless parameter s parametrizes loop-suppressed corrections to the effec-
tive potential arising from interactions between the Higgs and the other fields. For
example, in the SM one finds kgy ~ (6M;, + 3M 3 — 12M})/(167%v?) ~ —0.018.
The loop induced term can help provide a barrier, as shown in Figure 7 if 4?2 >0
stabilizes h = 0, A < 0 turns the potential over, and x > 0 stabilzes h = v. To allow
k > 0, the BSM physics contributions should be dominated by bosonic fields, since
fermion loops bring in an additional minus sign. If kK — kgy = 0 the SM is regained
and the PT will not be Loop Driven. A model which relies on large loop corrections
to generate an SFOPT was studied by (110).

From Eq. (6.39) we can calculate the PT temperature and EW order parameter

"Since the loop contributions are important in this model class, we must be careful to distinguish
the parameter my from the Higgs pole mass. They differ by a correction that depends on the
renormalization conditions. Since we are primarily interested in the parametric scaling behavior
and not numerical precision, we use my to characterize the mass scale of fluctuations about h = v
and implement LHC Higgs data by setting mpy ~ 125 GeV.
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to be 8

myg
T.~ ——=/1— kv?/m? (6.42)
2,/c "
v(T,) 3 v Ve 1 ko?
~ 2 142 4
< + 32, (6.43)

T. " 2mp/1— kv?/m?,

A comparison of the approximations and the exact values is shown in Figure[6.7} The

optimal limits for enhancing v(7.)/T. are given by

kv?/m?2;, — 1 In this limit, the quantum corrections are large, i.e., K — Fmax =
m?%/v? =~ 0.26 for mg = 125 GeV. Since x contains a suppression factor of
1/1672, obtaining k = O (1) requires either many additional (bosonic) degrees
of freedom and/or large couplings to the Higgs. This limit is then bounded
by perturbativity constraints. Moreover, the large loops which generate x may
also contribute to Higgs production and/or decay processes. We discuss this
scenario further in Sec. [6.4]in the context of Higgs diphoton decay. Finally, we
can once again identify this limit as an EASP in which 7, vanishes and the EW-
broken and EW-symmetric vacua are degenerate. Above k = K. electroweak
symmetry breaking does not occur.

mpyg < v This limit is excluded in light of the Higgs discovery.

As an example of a model in the Loop Driven class, we will discuss a singlet

extension of the SM presented in (I10). The SM Lagrangian is extended by

N N

AL=Y (08)*—CH'HY S} (6.44)
= =1

=1
where the N real, scalar fields .S; are singlets under the SM gauge group. We assume
that (2 > 0 and the S; do not acquire VEVs. Instead, they modify the electroweak

phase transition by radiatively generating a correction to the effective potential given

8In deriving these expressions we have assumed the that PT temperature is low and performed
an expansion in ¢T?/m?%. In the optimal limits kv?/m?, — 1 and my < v, the PT temperature is
low and this expansion is a good approximation.
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Figure 6.7: A comparison of the approximations Eqgs. (6.42)) & (6.43]) (dashed lines)
with the full toy-model potential Eq. (6.39).

by

AVeg(h,T) = (6.45)

6an2 | QF 2

NCRA {1 C2R2 3}
which is calculated in the MS scheme with a renormalization scale (). This term
can be matched onto the O(h?1n h?) term in the generic potential Eq. to find
k = N(*/167? and M? = Q?(2%exp [3/2}. With this identification, the optimal
limit xv?/m2 — 1 corresponds to ¢ — Cuax = 24/ 7y /(v Nv), which evaluates to
Cmax &~ 2.5N V4 for my = 125 GeV.

Choosing myg = 125 GeV, N = 12, and Q = m; = 172 GeV, we calculate
v(T.)/T. and present the results in Figure . As expected, v(T.)/T. grows upon
approaching the EASP (.. ~ 1.36. For larger values of (, electroweak symmetry
breaking does not occur. Comparing the analytic approximation Eq. with the
full one-loop numerical calculation, we find qualitative agreement. However, they
disagree at small ¢ where the low 7, expansion used in deriving Eq. breaks

down, and they disagree at large ¢ < (nax Where T is low and the high-temperature

expansion, implicit in Eq. (6.39)), begins to break down.



158

Figure 6.8: The EW order parameter evaluated numerically (solid) with the approx-
imation Eq. (6.43)) (dashed) in the vicinity of the EASP ¢ = (pax =~ 1.32.

6.4 Diphoton Excess and SFOPT in the Higgs
Portal

One of the most exciting revelations to come out of the recent LHC announcement is
the appreciable excess of events the final states with two photons. The v~ final state,
which is associated with Higgs production by gluon fusion, is observed at a rate that
exceeds the SM prediction by a factor of approximately 1.5, while the yv77 final state
is enhanced by a factor of approximately three (211)) . Consequently, fits to the entire
data set favor an enhancement of the diphoton decay rate I'(h — 77) by a factor of
approximately 2 — 3 with respect to the SM prediction, as well as a suppression of the
rate of Higgs production by o(gg — h) by a factor of approximately 0.5—0.6 (see, e.g.,
(211}, 226)) and references therein). Since gg — h and h — v are both loop-induced
processes in the SM these channels are particularly sensitive to new physics. For
instance, the appropriate enhancement and suppression can be achieved by letting

the Higgs couple to a new charged scalar or scalars S via the Higgs portal (229-23T]).
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Then, graphs containing an S loop will contribute to the amplitudes for gg — h
and h — v, and they will interfere with the t— and W —loops that dominant the
SM contributions to those processes. Generally, a negative value of the Higgs portal
coupling is favored by the data. This choice of sign ensures that the interference in
the h — ~7 process is constructive and that it is destructive for gg — h. As we have
seen, the Higgs portal operator also provides a means of rendering the electroweak
phase transition strongly first order. It is then interesting to ask whether or not
the region of parameter space that can accommodate a SFOPT can also allow for
enhanced diphoton decay. We will see that generically, the SFOPT condition favors
a positive value of the Higgs portal coupling and, therefore, is at tension with the
diphoton enhancement.

In order to demonstrate that SFOPT favors a positive Higgs portal coupling, let
us consider a Higgs portal coupling between the Higgs and a scalar field .S, which is

given by the Lagrangian
—L D piS*S + 2 \H'HS*S . (6.46)

The phase transition calculation is independent of the quantum numbers of S at
the one-loop order, but instead only depends upon the coupling of S to the Higgs®.
However, in order to obtain an enhanced diphoton decay rate, we need S to carry an
electric charge. Consequently, we must ensure that S does not acquire a VEV!?. In

that case, the field-dependent squared mass of the S field is given by

meg s(h, T) = pg + Ah* +Ts(T) (6.47)

91f S is colored, then the two-loop contribution from gluons can have an appreciable impact on
the order of the phase transition. This is, for example, the case in the MSSM (92).

10T his discussion presumes that S is a singlet under weak isospin. More generally, the electrically
neutral component of S may acquire a VEVwithout breaking U(1)c,,. However, unless this VEVis
much less than v, it will induce unphysical corrections to electroweak precision observables. Thus,
we will restrict ourselves to the case of vanishing VEV.
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where Ilg(7T) is the thermal self-energy correction. In the appropriate limits, this

simple extension of the SM Lagrangian can yield any one of the phase transition

models classes discussed above. These are as follows:
I. Thermally (BEC) Driven. The BEC term receives a contribution (u% +
M2+ T15(T))%2.  As discussed in Sec. we must tune p? ~ —Ilg(T,).
However, in this limit the zero-temperature squared mass of the S field is
—I(T.) + Av? We cannot let A < 0, because this would cause S to acquire a
VEV.
ITA. Tree-Level (Ren. Ops.) Driven. Since S cannot acquire a VEV| the
only way in which tree-level terms can enhance the strength of the phase transi-
tion are if S had a VEVin the early universe and its VEVreturned to zero during
the electroweak phase transition. This scenario is realized by letting p% < 0
such that S obtains a VEVin the early universe, but ensuring Av? > —pu% > 0
such that S has a vanishing VEVtoday. Once again, we find that A > 0 is
required for a SFOPT in this model class as well.
IIB. Tree-Level (Non-Ren. Ops.) Driven. The non-renormalizable opera-
tor (HYH)?/A? may be generated by integrating out the field S. The leading
order contribution to this operator is then given by A*/MZ. Since this model
class relies upon (H'H)? having a positive coefficient in order to stabilize the
potential against a runaway direction, we must take A > 0.
III. Loop Driven. This model class relies upon the addition of a term to the
effective potential that goes like h*Inh? and its competition with the h* term
to generate a barrier in the effective potential. The Higgs portal operators
Eq. will instead generate a term of the form A*In(u% + Ah?). Unless
|| < |Av?|, this term will simply scale like 2* and there will be no competition

between terms and no barrier. However, if A < 0, then in this limit the S field
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develops a tachyonic instability and acquires a VEV.

This analysis may seem to suggest that A > 0 is generally favored by SFOPT.
However, this is not the case. If we were not interested in enhancing Higgs diphoton
decay, then we could achieve a SFOPT by coupling the Higgs to a singlet scalar field
using the operators Eq. . Since there are no restrictions on the VEVof a singlet
field, we could have found SFOPT in the IIA. Tree-Level (Ren. Ops.) Driven model

class (see, e.g., (I11))).

6.5 Summary of the Chapter

In this paper we have proposed a scheme for classifying models of the electroweak
sector which may yield a strongly first order phase transition — a necessary ingredient
for electroweak baryogenesis. For each model class, we investigated the impact of
the data that is currently available from the LHC: 1) the discovery of a 125 GeV
Higgs-like scalar, 2) the absence of a large invisible width, and 3) the absence of a
universal suppression, which would indicate mixing between the Higgs and a hidden
sector scalar field. We find that the mass measurement severely constraints models
(such as the MSSM (91)) which drive a strongly first order phase transition with
thermal loop effects'!. The invisible decay and mixing constraints are at tension with
models which rely on light singlets coupled to the Higgs.

One recurring theme of our analysis is the ubiquity of enhanced symmetry points.
We find that the “optimal” limit for SFOPT often corresponds to a parameter point
at which the symmetry group of the theory is extended. In the case that the group is
enlarged by a continuous symmetry, either the Higgs mass constraint or the invisible

decay and mixing constraints will come into play. The case of a discrete symmetry is

HHowever, it may be possible to weaken the tension between the Higgs mass measurement and
the baryon asymmetry washout condition in non-standard cosmologies (232).
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less restricted (176]).

We have also discussed the possibility of employing the Higgs portal operator to
both render the EWPT strongly first order and to account for the diphoton excess
observed by ATLAS and CMS. We find that these two goals are at odds with one
another: the phase transition favors a positive Higgs portal coupling whereas the
diphoton enhancement favors a negative coupling. A model which can accommodate
EWBG as well as fit the LHC data will most likely require two distinct new physics
operators. However, it is worth noting that the diphoton excess does not have a great
statistical significance, and the data remains consistent with the SM at the 75 % CL
(216)) or approximately 20 (211; 217). It remains entirely possible that the particle
recently discovered by ATLAS and CMS is the SM Higgs (233)).
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Part 11

Dark Matter, Cosmological Constant,

and the Electroweak Phase Transition
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Chapter 7

Introduction to the Dark Side

As we have already discussed in the previous part of this manuscript, the Standard
Model of particle physics fails to explain the asymmetry between matter and anti-
matter in our universe. The observed baryon asymmetry of the universe, therefore
provided a strong motivation for studying physics beyond the Standard Model. How-
ever, the BAU is not the only situation in which the SMcannot describe Nature in its
entirety. A cosmology constructed with ingredients drawn from the SMalone is inca-
pable of accounting for the two dominant components of our universe: dark matter
and dark energy. In this chapter, we will discuss the physics of the dark side of the
universe. In the subsequent chapters, we will bring our discussion back to the topic
of the Higgs boson and investigate connections between dark matter, dark energy,

and the electroweak phase transition.

7.1 Dark Matter

Throughout the 20" century, mounting evidence suggested that the universe contains

much more matter than that which can be seen in stars and galaxies. This missing,
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non-luminous matter was given the name dark matter. Today it is known that dark
matter constitutes approximately 22 % of the total energy density of the universe,
roughly five times more than the fraction allotted to baryonic matter (14]). Despite
years of searching, dark matter particles have not been observed directly, and therefore
the properties of dark matter — such as its mass and couplings to visible matter —
remain undetermined, although constrainted. This uncertainty has allowed for the
proliferation of dark matter models. Variants include Cold Dark Matter (234), Warm
Dark Matter (235]), Hot Dark Matter (236} 237), WIMPs, WIMPzillas (238), Unified
Dark Matter (239), Inelastic Dark Matter (240)), Quirky Dark Matter (241]), Atomic
Dark Matter (242)), Millicharged Atomic Dark Matter (243)), Bound Dark Matter
(244), Asymmetric Dark Matter (245)), and Dynamical Dark Matter (246} 247) — just
to name a few.

We will restrict ourselves to the minimal cold dark matter (CDM) model featured
in the ACDM concordance model of cosmology. That is, we will suppose that dark
matter is a particle, which we represent by y, that 1) interacts only weakly with
visible matter (i.e., it does not carry electromagnetic charge), 2) is not baryonic, 3)
is stable, and 4) has mass m, # 0. On cosmological scales, we can treat dark matter
as a pressureless “fluid” with number density n, and energy density p, = myn,. It
will be useful to quantify the amount of dark matter in the universe using the dark
matter relic abundance defined as

Qn? = x (7.1)

Per
where pl, = (87Gx/3)1(100 kms~! Mpc™')? and Gy is Newton’s gravitational con-
stant. In the remainder of this section, we will discuss the evidence for dark matter
and the freeze out process which took place in the early universe and thereby deter-

mined the cosmological dark matter relic abundance that we observe today.
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Evidence for Dark Matter

There is a multitude of evidence in astrophysical and cosmological systems to support
the hypothesized presence and predicted abundance of dark matter in our universe.
Thus, it commonly accepted that particle dark matter exists. In the spirit of full
disclosure, however, it is worth mentioning that this is only indirect evidence, which
could perhaps be explained by some other physics, such as a modification of gravity.
Moreover, there has not been a convincing signal from dark matter direct detection
experiments. Nevertheless, nearly a century of evidence points toward a model of
particle dark matter. Therefore, having made this disclaimer, we will speak no further

of alternate scenarios.

Galactic Rotation Curves

The existence of dark matter was famously postulated by Fritz Zwicky in 1933 (248).
Zwicky had applied the virial theorem to infer the total mass of the Coma galaxy
cluster. Upon comparing this value with the observed amount of luminous matter in
the galaxies composing the cluster, Zwicky noted the “somewhat unexpected” result:
that the luminous mass was on the order of one-hundred times too small (249). He
dubbed the non-luminous matter “dark matter.”

Decades later, similar techniques were used to “weigh” individual galaxies as well
(see, e.g., (2500). The rotation curve of a galaxy represents the rotational velocity
V(R) of the matter in the galaxy as a function of distance R from the galactic center.
For small R, the velocity can be inferred from the Doppler shift of starlight, whereas
for larger R, where there are no stars, the velocity may instead be inferred from the
21 cm emission line (hyperfine transition) of neutral hydrogen gas (HI regions). The
measured rotation curve V(R) allows for a determination of the mass of the galaxy.

The back-of-the-envelope calculation is performed by equating the gravitational force
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on a mass m at radius R with the centripetal force,

GM(R)m _ V*(R)
IE =m—p—, (7.2)

and solving to obtain M (R) = RV?/G, the mass contained within a radius R. If most
of the mass of the galaxy were collected near the core, then M(R) would approach a
constant at large R and V(R) ~ 1/v/R. However, observations of over one-thousand
galaxies (251)) revealed that in actuality V(R) does not drop like 1/v/R but remains
nearly constant at large R. Since the calculation only relies upon elementary kine-
matics, gravitation, and electromagnetism, this observation provides strong evidence

for the presence of a large dark matter halo surrounding the visible galaxy.

Gravitational Lensing

General relativity predicts that light passing by a massive body will be deflected,
in analogy to the passage of light through an optical lens. The phenomenon was
the central topic of Einstein’s 1936 paper in the journal Science (252)). The first
gravitational lens, dubbed “Twin QSO,” was not discovered until 1979 (253). Since
the lensing is a purely gravitational effect, it provides the opportunity to measure the
matter distribution directly.

Strong lensing occurs when a massive galaxy cluster in the foreground — the lens
— greatly distorts the image of a background galaxy or galaxies. Just as with an
optical lens, the gravitational lens may produce multiple images, which are arranged
on a ring. The radius of the ring is related to the mass of the lens M by R o /M.
This relationship allows for the measurement of mass and distribution of dark matter
in the galaxy cluster. For example, in 2004 the observation of a set of four multiple
images in the cluster lens Abell 2218 yielded a constraint on the cosmic matter fraction

(dark plus baryonic) €2, < 0.33 (254)) However, strongly lensed systems with multiple
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images are rare. Moreover, when they do occur, the lensing may be due to the dense
baryonic core instead of the sparse dark matter, as in the case of the famous Einstein
cross system (255).

Weak lensing, on the other hand, provides a means of probing the spatial distri-
bution of diffuse dark matter in a galaxy cluster. In this scenario, a field of galaxies
in the background becomes lensed by the inhomogenous distribution of dark matter
in a foreground object, such as a galaxy cluster. In order to infer the distribution of
dark matter, a sky survey must measure the ellipticities and magnitudes of millions
of galaxies over a small patch of sky. The lensing introduces correlations between
the orientation and brightness of nearby galaxies in the field. A statistical analysis
allows one to extract the distribution of matter. Weak lensing is typically employed
in conjunction with a measurement of the visible matter in order to ascertain the

deficit associated with dark matter.

Bullet Cluster

Perhaps the most striking evidence for dark matter, as well as a brilliant demonstra-
tion of the utility of weak lensing, is the Bullet Cluster. In 2003, the group (256l)
reported the high-velocity merger of two galaxy clusters, dubbed the Bullet Cluster.
Imaging the bullet cluster reveals a spatial separation between the sources of galactic
starlight in the visible and the regions of hot gas in the X-ray. This is consistent with
a two-component model of the system, in which the stellar component is treated as
pressureless and the X-ray emitting component is treated as a fluid-like. Moreover,
the gas displays a distinct bow shock, suggestive of the recent collision. Using weak
lensing, the distribution of matter may be inferred directly. A 2006 analysis (257),
revealed that the matter distribution more closely follows the distribution of galaxies

than the distribution of X-ray emission, and they identified the spatial offset as an 8¢
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effect. This is consistent with the hypothesis that the two clusters contained a large
amount of non-luminous, pressureless matter. For most cosmologists (but not all
(258))), the Bullet Cluster constitutes sufficient evidence for the existence of particle

dark matter.

CMB Power Spectrum

As we have discussed in the context of the BAU, the CMB power spectrum provides
the best probe of the composition of the universe on cosmological scales. During the
formation of the baryon acoustic oscillations, dark matter acted like a driving force by
sourcing the gravitational potential wells in which the baryon-photon plasma would
oscillate. Thus, the CMB power spectrum that we see today holds information about

the amount of dark matter present in the universe. Precise measurements of the CMB

by the WMAP satellite (71)) allow us to determine 2, = 0.222 + 0.026.

Dark Matter Freeze Out

In the ACDM cosmological model, it is assumed that the dark matter present in the
universe today is a thermal relic which underwent the process of freeze out in the
early universe.

The freeze out calculation allows us to relate the relic abundance of dark matter
Q) h?, which may be inferred from the astrophysical and cosmological systems dis-
cussed above, with properties of the dark matter particle, which can vary significantly
from model to model. In this way, even without a direct detection of the dark matter
particle, it is possible to strongly constrain models of dark matter. In this section,
we will discuss the dark matter freeze out calculation (see, e.g., (72)).

We suppose that the dark matter is weakly coupled to visible matter. This as-

sumption ensures that at a sufficiently high temperature 7" in the early universe, the
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dark matter was in thermal equilibrium with the plasma and the number density of
dark matter particles n,(T") remained very nearly equal to the equilbrium number
density ngf 9 We further assume that the dark mater was non-relativistic (cold) at

the time of freeze out. This lets us write the dark matter equilibrium number density

n(E)(T) = %(mXT)?’/2 exp[—my/T] (7.3)

where ¢ is the number of dynamical degrees of freedom, which depends on the spin
and quantum numbers of y. As the universe expands and its temperature decreases,
n, must fall exponentially quickly in order to remain equal to ngc%‘). The reduction

in the number density of dark matter is primarily accomplished by the annihilation

of dark matter into SM particles
X+ x — SM+ SM. (7.4)

Since two DM particles must find one other in order to annihilate, the rate at which
this process occurs should scale like (n,)?. This rate falls exponentially rapidly, and
eventually it become smaller than the rate of expansion of the universe, given by the
Hubble parameter H. At this point, DM annihilations must cease and we say that
the dark matter has frozen out. Since we have also assumed that the DM particles
are stable, the number of DM particles in the universe just after freeze out is the
same as the number today.

We calculate the relic abundance of dark matter by solving the thermally averaged
Boltzman equation in the presence of an expanding universe. Working in the ho-
mogenous, isotropic Friedmann-Robertson-Walker (FRW) metric, this equation may

be written as

a” — T (ov) [(nx)2 - (n§fQ))2] (7.5)
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where a is the FRW scale factor and (ov) is the thermally averaged dark matter anni-
hilation cross section. To proceed, we make a series of variable changes. First define
Y, = n,/s where s = (272/45)g.s(T)T? is the entropy density and g.s(7) counts
the number of relativistic species at temperature 7. In general, ¢.5(T") varies with
temperature from a value of approximately 106.75 in the early universe to approxi-
mately 3 today. However, assuming that freeze out occurs rapidly compared to the
time scale on which other species are becoming non-relativistic, we can approximate
gxs as a constant. Next, we eliminate ¢ in favor of a using da/dt = aH where H is

the Hubble parameter that represents the expansion rate of the universe. Provided

that freeze out occurs during the radiation dominated era of the universe, H is given

by H = /(87Gx/3)(72/30)g.(T)T* where g, ~ g.s. We eliminate a in favor of T

3

using the fact that the entropy per comoving volume S = sa” is conserved. Finally

we introduce the dimensionless variable x = m, /T. After the dust settles, we find

] LAY (7.6)
where
oy = et -

In general, (ov) will depend on temperature, but assuming that the dominant anni-

0

hilation channel is through the s-wave, we can approximate (ov) ~ x” as a constant.

3 we see that A\ ~ 2V is

Since we also have the scaling relations H ~ 272 and s ~ 2~
approximately constant.
We solve for the relic abundance long after freeze out by integrating Eq. (7.6]). We

suppose that freeze out takes place “abruptly” at x = z, and that after freeze out

the equilbrium term is exponentially suppressed and negligible. Dropping this term,
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we obtain the solution by integrating from z; to x = oo

1 Y
Y(r=00) Y(zx=uz5) ’

(7.8)

where A\f = A(zy). After freeze out occurs, residual annihilations cause Y, to decrease
further. This allows us to neglect the Yx_l(x ) term. Moreover, we have assumed that
various quantitites are constant or scale in a particular way, but these assumptions
break down long after freeze out. Thus, Y, (z = oo0) does not represent the relic
abundance today, but instead the abundance long after freezeout but still early enough
that our assumptions are valid. Thus, we have

H(xy)

i
Y, (after f.o.) ~ Tf ~ W.

We can relate this to the relic abundance Eq. ([7.1)) as

Q h2 — pX(t?day)
Per

X

= m, Y, (today)s(today) (Pér)fl

8wG 2
. "5 1 g,s(today)T3 ()
Yo ov)  ges(z)TP T

_1 ges(today) [87G , , 4
sliode) JE2C (710

Q. h? = 2,73 (ov)

Finally our work has paid off; Eq. is a very revealing equation. We can see that
the relic abundance is inversely related to the annihilation cross section. This means
that dark matter which interacts more strongly with the SM will remain coupled to
the plasma longer and will consequently have a smaller relic abundance. Conversely,
models which predict too small of a coupling between the dark matter and SM parti-
cles will generate too great a relic abundance. We also see that Q,h? is only indirectly
dependent on m, the dark matter mass. One can show that z; ~ 1/10 is only log-

arithmically sensitive to m, (72). In this way, the freeze out calculation provides a
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robust prediction of the relic abundance for a given model. In the subsequent chap-
ters, we will explore how the various assumed used in this derivation break down if
freeze out occurs during the electroweak phase transition, and we will investigate the
resulting relationships between parameters of the EWPT and the dark matter relic

abundance.

7.2 Dark Energy & the Cosmological Constant

We have already seen that our universe is full of surprises and challenges — the per-
plexing baryon asymmetry, the interesting origin of mass and electroweak symmetry
breaking, and the mysterious abundance of dark matter. But, perhaps the most re-
markable surprise of all is that for the past few billion years, the rate of expansion
of the universe has been accelerating. This is quite astounding, in light of the pre-
diction that if the dominant source of energy in the universe were dark matter, then
the induced gravitational attraction would cause the expansion to decelerate. The
cosmic acceleration tells us that the dominant source of energy in the universe is, in
fact, something else all together. The term dark energy was introduced as a “catch
all” to refer to whatever the origin of cosmic acceleration may be. The extent of our
knowledge about dark energy is incredibly limited, and can be summarized as follows:
most of the energy density of the universe arises from a “substance” with an energy
density pp =~ %pcr and an equation of state w ~ —1 that are, as best as we can tell,

homogenous and static. Needless to say, dark energy is very poorly understood.

Evidence for Accelerated Expansion

The expansion of the universe was discovered long before it was known that the

expansion is accelerating. In 1929, Hubble used distance and velocity data for 24
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nearby galaxies (out to 2 Mpc) to infer that their their recession velocity grew linearly
with distance from the Earth (259). This is formulated as Hubble’s law v = Hyl where
Hy is the recession rate (Hubble’s constant) and ¢ is the distance between the Earth
and the galaxy. With the available data, Hubble estimated Hy ~ (50—60) km/s/Mpc.
Today, Hubble’s constant is measured directly via the magnitude-redshift relation of
240 low-redshift (z < 0.1) SNe Ia Hy = (74.2 £ 3.6) km/s/Mpc (260)) and improved
to Hy ~ (70.4 + 1.3) km/s/Mpc (71)) with CMB data.

The first evidence for accelerated expansion (and thereby for dark energy) began
to appear in the early 1990’s. At that point, the matter abundance was estimated to
be €, ~ 0.15 — 0.4 through galaxy clustering surveys (261]), but inflationary models
predicted (and the homogeneity of the CMB later confirmed) that oy ~ 1 (ie.,
flat universe). There needed to be an undiscovered energy component to make up
the difference. As early as 1990 (262H264), cosmologists began to suggest that the
missing energy may be in the form of a cosmological constant. The breakthrough
came in 1998 when Riess (265) & Perlmutter (266)), et. al., measured the distance to
high redshift (z ~ 0.5) Type la supernovae and used this observation to infer that
the expansion of the universe was accelerated. Today, a combination of supernovae
data as well as measurements of the cosmic microwave background, baryon acoustic
oscillations, and measurements of Hy provide good measurements of the parameters
of dark energy: pp = (0.728 £0.015)pe; and w = (—1.10 4+ 0.14) (7I). Note that this
energy density corresponds to p, ~ 10meV?. For a historical review of the evidence

for accelerated expansion, see (267)).

The Cosmological Constant

In the two decades since the discovery of dark energy, theorists have remained very

active. Many models have been proposed which attempt to model the dark energy
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as the energy density of a scalar field (e.g., (268; 269)) analogous to inflationary
models. Other models seek to unify dark matter and dark energy in a single framework
(270}, 271)) or to implement dark energy as a modification to gravity (272)). However,
the oldest and most minimal model of dark energy is still the cosmological constant
(CC). In 1917, Einstein attempted to create a theory of a static universe by adding
a term to the gravitational action of the form

Sy = —1673GN /d4$\/—_g(2A) (7.11)

where A is the cosmological constant. Although Hubble’s observation of the expansion
of the universe obviated the need for a cosmological constant, it has been revived to
model the accelerated expansion of the universe. The action Sy may arise from the

energy-momentum tensor

where py = A/(87Gy). As a phenomenological model, A is a free parameter, and
may be chosen appropriately to reproduced the observed value of py ~ 10meV*.
Moreover, since T, is proportional to d,,, the equation of state of the cosmological
constant is precisely w = —1. In this way, the CC model of dark energy has been
able to fit all available data.

A negative equation of state is very unusual since it implies that the pressure
pa = wpy is negative. As the universe expands, instead of doing work and loosing
energy, the dark energy exerts a negative work and thereby gains energy. In fact
for w = —1, it gains just enough energy to compensate for the expansion such that
the energy density remains fixed. To understand the behavior of a DE dominated

universe, by solving Friedmann’s equation

o 87TGN
3

H2

PA (7.13)
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to find

87TGN
3

a(t) = agexplt pa] - (7.14)

We see now that not only is the expansion accelerated, but it is growing exponen-
tially. This reveals the fate of our own universe: the exponential expansion phase
has already begun, and if DE truly is a cosmological constant, the expansion will

continue indefinitely.

CC Problem and Fine Tuning

Although the CC model of dark energy provides an excellent fit to all available data, it
suffers from a major theoretical shortcoming. From the phenomenological perspective,
we think of the CC as a homogenous, static, energy density with equation of state
w = —1. However, we would also like to have an understanding of the physical origin
of the cosmological constant as well. In the context of quantum field theory, we can
understand the CC as the energy density of the vacuum state, and, moreover, we
can even predict the value of the cosmological constant. In fact, we have already
encountered this calculation. The vacuum energy is just the non-thermal part of the
effective potential, which we evaluated in Chapter [3] by summing the “vacuum bubble
graphs” shown in Figure . The non-thermal contribution to these graphs (which

we did not write down explicitly earlier) is given by

d*q 2 2
prc ™ | )i In (¢* + M?) (7.15)

where M is the mass of the particle in the loop. The divergence of this integral is
problematic but not all together unexpected. We had no reason to think that our
QFT would be an accurate model of the physics at very high energies, because it

does not — for instance — incorporate gravity, which we anticipate to be relevant at
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energies above the Planck scale Mp. Thus, cutoff the integration at ¢ < Mp, and
find that the integral evaluates to py.c ~ Mp ~ 10™ GeV*. Comparing this with the
measured value, py ~ 10 meV* ~ 10~%" GeV*, we find that they disagree by 120 order
of magnitude. This enormous discrepancy between theory and observation is known
as the cosmological constant problem. The history of the problem was discussed by
Weinberg in 1988 (273), even before the CC was fully revived in the 1990’s.
Resolving the CC problem is not an easy task. One proposed solution is that a can-
cellation occurs between the enormous py,. predicted by QFT and another enormous
number pyune Which is finely tuned to leave behind the tiny value of px = pvac — Prune
that we measure. Such a cancellation seems astronomically unlikely (for most def-
initions of unlikely) and marginally unphysical. However, it is very fortunate that
our cosmological constant is finely tuned, because if its value were much larger or
smaller, we would not find ourselves in a universe with conditions hospitable to life.
This has lead some to invoke the anthropic principle, that is, we find ourselves in this
unimaginably rare universe, because in any other universe, we would not be around
to talk about it. At face value, the anthropic principle is somewhat unpalatable and
seems like a “cheat.” However, in order to justify the anthropic principle, some people
have turned to an idea known as the string landscape (274). In the type IIB limit
of string theories, each compactification of the internal space is associated with a
different vacuum state of the theory, and there are on the order of 10°% such vacua.
Although the physical parameters of each of the vacua are not known, it is reason-
able that with such a large number of possible vacuum state, one of them may have
conditions similar to our own universe. Moreover, if our universe entered a phase of
eternal inflation (275; 276), then it is reasonable that each of the vacua will have
been populated at some point. In this way, a combination of the anthropic principle,

string landscape, and eternal inflation may be able to explain why the cosmological
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constant is so finely tuned.
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Chapter 8

Probing the Cosmological Constant
and Phase Transitions with Dark

Matter

The Standard Model and its extensions predict multiple phase transitions in the
early universe. In addition to the electroweak phase transition, one or several of
these could occur at energies close to the weak scale. Such phase transitions can
leave their imprint on the relic abundance of TeV-scale dark matter. In this paper,
we enumerate several physical features of a generic phase transition and parameterize
the effect of each on the relic abundance. In particular, we include among these effects
the presence of the scalar field vacuum energy and the cosmological constant, which
is sensitive to UV physics. Within the context of the Standard Model Higgs sector,
we find that the relic abundance of generic TeV-scale dark matter is affected by the
vacuum energy at the order of a fraction of a percent. For scalar field sectors with
strong first order phase transitions, an order one percent apparent tuning of coupling

constants may allow corrections induced by the vacuum energy to be of order unity.
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8.1 Introduction to the Chapter

Phase transitions (PTs) are expected to be generic in the early universe (277). The
high temperature environment gives rise to significant corrections to the vacuum
structure, and symmetries which are broken in the universe today can be restored
at earlier times (59H61)). The Standard Model (SM) predicts early universe phase
transitions in both the electroweak and QCD sectors. Beyond the SM, it is well-known
that additional degrees of freedom can modify the dynamics of the electroweak phase
transition significantly (92; 04H97; 103}, 106, TO9-111; 139; 278-285). Furthermore,
because almost all scenarios beyond the SM have extended symmetries, an even richer
thermal history is expected in general (e.g., (60; [180; 286H290)).

Most phenomenologically viable, cosmological PTs do not leave significant ob-
servable signals today. The successful and precisely measured theories of big bang
nucleosynthesis, cosmic microwave background, and large scale structure formation
strongly constrain late time PTs. At earlier stages of the cosmic evolution, thermal
equilibrium erases most of the traces of PTs. Therefore, particle species which decou-
ple early offer us perhaps the best probe PTs in the early universe. Among candidate
particles, possibly the most obvious is the TeV-scale dark matter (DM), which is ex-
pected to freeze out of thermal equilibrium around O(10 — 100) GeV. The successful
prediction of its relic abundance, sometimes referred to as the WIMP miracle, is con-
sidered to be one the most important hints of new physics at the TeV-scale. Such a
scenario is expected to be thoroughly probed at the LHC.

In this paper, we assess the sensitivity with which DM may probe the physics of
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PTs by exploring how PTs occurring nearly coincident with freeze out can modify the
relic abundance calculation and alter the predicted relic density. In PTs for which
supercooling is non-negligible, we find that several competing effects contribute to
an overall shift in the DM relic abundance (as compared to the usual calculation
without a PT). Two of these effects, the decoupling of non-relativistic species and
the vacuum energy contribution to the Hubble expansion rate, tend to increase the
relic abundance, while the entropy produced by the PT tends to decrease it. The
principal result of this paper is summarized in Eq. , and the central discussion
will emphasize the role of vacuum energy during the PT (297)), since that is the most
novel aspect of this letter as compared to previous studies. We find that a parametric
tuning of order one percent can lead to an order unity dark matter abundance shift
due to the presence of vacuum energy, assuming that a tuning of the cosmological
constant sets the vacuum energy today. In such situations, it may be possible to use
DM as a probe of vacuum energy during the early universe by measuring the DM
properties at terrestrial experiments and making mild assumptions about cosmology
and UV completions of the effective field theory.

This work is related to past papers which discuss moduli dilution, such as (298))
(and hundreds of inflationary papers), in that we calculate how the PT effects (in-
cluding the vacuum energy) alter the relic abundance.! However, unlike the present
work, most of these papers do not consider the case of a PT which nearly coincides
with freeze out, nor do they consider the case of a low scale (e.g., electroweak scale)
PT with electroweak scale vacuum expectation values. As in (179; [302)), our calcula-
tion incorporates the possibility that the dark matter annihilation cross section may

change after the freeze out, and as in (I78)), we estimate the dilution of dark matter

Tt is also related to papers such as (299-301) and many others which consider the change in the
relic density due to a change in the equation of state during the freeze out process. Instead of listing
all papers, interested readers can consider finding citations to and references within these papers.
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due to a release of entropy at the PT. However, we also include additional features
of the PT such as the changing vacuum energy.

This paper is organized as follows. In Sec. [8.2] we derive a generic parameteriza-
tion with which one can discuss the effects of a PT on the DM relic abundance. In
Sec. [8:3] we use this parameterization to estimate the correction to the relic abun-
dance in two toy models in which a real scalar field experiences a phase transition. In
Sec. [9.5 we summarize and briefly discuss which aspects of a generic model could be
favorable for enhancing the effect of vacuum energy on the relic abundance. Being a
letter, we restrict ourselves to the highlights.

Throughout the paper, we work in the FLRW spacetime ds? = dt* — a*(t)|dx/|? in

which a(t) is a monotonically increasing function of ¢.

8.2 General Framework

In this section, we discuss the various ways in which phase transitions can affect the
relic density, and we provide a general parameterization which is useful for analyzing
specific models.

Integrating the thermally averaged Boltzmann equation, we obtain the number

density of dark matter today (a = ag and t = t)

-1

nx(to) = 25 (/01 dh;f) (mz)) o a= c% =2 (31

ar

where ay corresponds to the scale factor at the time of the freeze out. We define the

fractional deviation of the relic abundance as

nx(t
Snx(to) = % —1 (8.2)
nx " (to)
where ngg) (to) is the “usual” relic density that one finds assuming that the PT does

not occur. In Eq. , the quantities that will be affected by the PT are the Hubble
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expansion rate H (a), the thermally averaged cross section (ov) (also a function of a),

® = (as/ag)® < 1, which accounts for the expansion of the

and the dilution factor x
universe from freeze out until today (related to 7'(a)).

Suppose that a PT occurs after the time of the freeze out. This PT can affect H(a)
(though the energy density) in three ways: exotic energy, reheating, and decoupling.
First, the PT is a change in the vacuum state and is typically accompanied by a
decrease in the vacuum energy. For all (cosmological) intents and purposes, this
vacuum energy behaves as a cosmological constant (CC). Speaking more generally,
we can collectively refer to the vacuum energy, cosmological constant, and any other

non-thermal sources of energy (e.g., quintessence) as “exotic energy.” We assume that

the exotic energy density can be written as p(z) = pexk(x) with

Rx)~O((1+9) —z)+6(x—(1+90)) <1 — A'Oex) Ko(x) , (8.3)

ex

where O(z) is a step function and 0 = “C’l';fT —1 < 1 quantifies the delay between freeze
out and the phase transition. During the phase transition, the exotic energy decreases
by Apex > 0, and the step function approximation corresponds to restricting ourselves
to only phase transitions that occur on a time scale much shorter than 1/H. Such
short time scale phase transitions are expected to be generic for models in which
the thermal bounce action has a strong temperature dependence.? In the case that
the exotic energy is simply composed of vacuum energy plus a tuned cosmological
constant,® we have Ape ~ 0 if the phase transition is of the second order or a smooth
cross over and Apey & pex if the phase transition is first order with large supercooling.
In the case Apex # pex, the behavior of ky(x) can parameterize quintessence dynamics

which we assume decreases approximately as (zay/apr)”"* where ng is a computable

2For a recent discussion of situations with a longer time scale transitions, see for example (303).
3This has been considered as an acceptable possibility (39; [304), and it is a consequence of
recently proposed string landscape scenario (305).
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model dependent parameter. We focus on phase transitions that can be parameterized
by a weakly coupled scalar field description.

The remaining ways in which a PT can affect H(a) are via the radiation energy
density. From energy conservation, the change in exotic energy Ape, must be com-
pensated by a release of radiation energy, or equivalently, a reheating with entropy
release As. In addition, generically particle masses may depend upon the scalar
field vacuum expectation value (VEV) and may increase during the phase transition
(e.g., this is the case in the SM electroweak phase transition). The heavier degrees
of freedom can become non-relativistic and decouple. Consequently, the remaining
relativistic species have a relatively lower energy density. We can parameterize this
decoupling effect by writing the effective number of degrees of freedom for radiation

energy gp and entropy gs as

9e/s (r) = ge/s(1) — h(x) (8.4)
h(z) = ngT O — (1+0)) + ng(a:) | (8.5)

where (Npr) N represents the number of fermionic degrees of freedom which have
(non-) adiabatically decoupled, and f(x), which rises from 0 to 1, is given by Eq. (9.125)).
Treating all of the aforementioned effects as small perturbations and using 7'(a)

from Eq. (9.121)), the modification to H(a) can be expressed as

H~ HO ) [1+ Lot w(e) + 260(x — (1+6))

2 3
 nble =4+ 8) + cnf <x>] 56
where
W (@)= 3 ]\Zf . %gE(Tf) (8.7)
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is the “usual” Hubble parameter in the absence of a PT, T} is the temperature at

freeze out, and

Pex

€1 = ——, ——— = [ractional energy of the exotic during freeze out (8.8a)
96(TY) Ty

€2 = (14 30) WA—S?) = fractional entropy increase during PT (8.8b)

EQS(Tf ) Tf

tNpr

€51 = > = fractional decoupling degrees of freedom during PT (8.8¢)
9e(Ty)

N

€9 = —5 = fractional decoupling degrees of freedom (8.8d)

9e(T})

are small, dimensionless quantities.
Furthermore, if the dark matter is coupled to the scalar sector directly, a PT in
the scalar sector may alter the annihilation cross section (ov). This effect can be

parameterized by

(o) = (o0) V) (1 O —(1+ 5))) with e =— . (8.9)

Since the derivation of Eq. assumes that the dark matter is decoupled after T,
we will assume that ¢4 = 0 in order to prevent re-thermalization due to an increase
(ov).

Finally, we turn our attention to the dilution factor z5°. Phase transitions occur-
ring close to the freeze out can change the Hubble expansion rate, which in turn can
cause dark matter to freeze out earlier or later. We can parameterize this effect by

approximating the freeze out temperature as

mx

-~ €1 1 _9
[y~ A [1 + B) (_ln + 0 ((ln A) ))] (8.10)
where

NDM?)\/gMp\ / mfo<O'U>

A 2
47T5/ gE(Tf)

~ exp|[]20], (8.11)
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mx is the dark matter mass, and Npj; counts the real dynamical degrees of freedom
of the dark matter. By also taking into account the effect of a late time entropy

release associated with the PT, we obtain

~ 4 I+ o=+ 8.12
o af usual>< |: +21nA+3} ( )
where
ol = (gS(Tf))1/3 T (8.13)
af | usual gS(TO) To In A

is the “usual” dilution factor in the absence of a PT, and T, is the temperature
today. In this paper we assume that the PT described by Eq. is the last
PT that generates appreciable entropy, but one can easily generalize Eq. to
accommodate later PTs that generate more entropy.?

Putting everything together, we obtain a general parameterization of the changes

to the dark matter relic abundance which are induced by a PT:
onx(to) =crer +caea+ 131 +Capezn+caey (8.14)

where the coeflicients

o = % <5+ d+3) (1 - Ape")) oL (8.15a)

ng — 3 Pex 2In A
1
cy = —5(1 + 20) (8.15b)
1
c31 = 6(1 —0) (8.15¢)
1 ao/af\usual d$
C39 = 6/1 ﬁf (x) (8.15d)
ct=1-90 (8.15¢)

are order one numbers that account for the delay between freeze out and the PT

(recall 0 = apr/ay —1 2 0). Note that ¢z receives most of contributions from

4In particular, we assume that QCD phase transition is not a significant source of entropy (306).
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near the freeze out temperature. The usefulness of this parameterization is that it
is general enough to classify most phase transitions that can affect the DM relic

abundance. This is one of the main results of this paper.

8.3 Phase transition effects as a function of
Lagrangian parameters

In the section, we discuss how the parameters of a scalar field theory map to the
freeze out modifying effects discussed in the previous section. In particular, we focus
on a generic real scalar field for which the one-loop thermal effective potential is

well-approximated by

1 A
Ver (0, T) = pex + 5M 29? — ¢ + Z¢’4 + cT?¢? (8.16)

5 This can be viewed as the effective

where M2, &, )\, and c are free parameters.
description of the dynamics of a large class of PTs with a tuned cosmological constant.
This simple description contains all the information that is necessary to discuss the
vacuum energy contribution (c;€;) and reheating contribution (ceez) to onx(ty). The
contributions from the decoupling (c31€3; and c3z€32) depend on additional details of
the model and, as we will see, they have the dominant effect on the DM abundance.
Therefore, as far as we are concerned with the mapping of Lagrangian parameters

to ¢;e;, we will focus our discussion on just cie; and coes. Here, we also follow the

traditional abuse of language in classifying the cosmological phase transitions as first

5 In order to treat c as a free parameter, we must suppose that the ¢-sector is coupled to another
sector, call it sector X, which is not strongly constrained phenomenologically. The interaction
between ¢ and sector X can then be considered a nearly a free parameter and generates the thermal
mass ¢T?2. For instance, suppose a Yukawa coupling £ > y¢i1) where v is a spin-1/2 X-sector field
with N dynamical degrees of freedom, and then ¢ ~ Ny?/48. E.g., to obtain ¢ ~ 0.1 one needs
y ~ 1.1 if N =4 (Dirac fermion) and y ~ 0.6 if N = 12. Moreover, the X-sector particles must be
lighter than the PT temperature. Otherwise, Boltzmann suppression drives ¢ — 0.
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order or second order dependent on whether or not (transient) bubbles are involved

during changes in the vacuum determining the 1-particle state.

£ =0, “second order” phase transition

We first restrict our analysis to the case of £ = 0. In this limit there is a Z, symmetry,

and the finite temperature effective potential can be written as

A

~ (00— 0f) T, (8.17)

%H(gba T)

where vy = \/TQ/)\ is the VEV in the Zy broken phase at 7' = 0. Because there
is no cubic term, no sub-horizon bubbles are involved as the vacuum changes from
¢ = 0 to ¢ = vy at the PT.% The temperature at the beginning of the PT can be
approximately mapped to the Lagrangian parameters as (Tpp)? = %v; By requiring
that the exotic energy be zero today when 7" = 0, we find the exotic energy at the

time of the phase transition to be

Pex = ‘/;ﬁ(oa 0) =

| >

4 o 4
v, = X(TPT) . (8.18)

Therefore using Eqs. (9.26a) and (9.48a]) the exotic energy contribution is given by

(for § < 1)

5 11 ,v;
~ ~— 2 ? 8.19
“el QgE A 10 gEC 7”35 ( )

where mi = 2)\1)35 is the approximate scalar mass in the ¢ = v, vacuum, and typically
g 2 100.

In the minimal scenario of the SM supplemented by a DM sector, one finds
cty/dsm ~ 0.28 where cgy is dominated by the top Yukawa and does not take into

account the coupling of DM to the Higgs sector. If electroweak symmetry breaking

SHorizon sized domain walls do form, however (180).
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occurs soon after the dark matter freeze out, Eq. allows us to estimate that
the DM relic abundance will experience a fractional change at the order of 1072 due
to each of the CC effect. Moreover, soon after the electroweak phase transition, the
heavy quarks decouple and N ~ 20 fermionic degrees of freedom are lost from the

tally of relativistic species. Consequently, the ratio

~——— < (8.20)

is small, and we expect that the shift in the relic abundance is dominated by the
decoupling of these heavy degrees of freedom.

In the SM, the exotic energy effect is subdominant, but Eq. provides a
guide to constructing models with enhanced ci¢;. This term can be made larger
if vi / mi > 1, which could be realized by invoking fine tuning or some additional
symmetry to generate a flat potential. Alternatively, one could contrive a model in
which pe > TJ‘} > (Th )4 and thereby enhance €; directly. Such a scenario can be
naturally realized if supercooling occurs, as in the case of a “first order” PT. We now

turn our attention to this scenario.

£ # 0, supercooling and “first order” phase transition

At T = 0, the general potential in Eq. (9.68) has extrema at

3E / 8
¢=0 and ¢—v¢—5<1+ 1—§a0>, (8.21)

where we have introduced the dimensionless quantity ag = AM? /22, which controls
the vacuum structure. For oy > 1, ¢ = 0 is the true vacuum; for 0 < ap < 1, ¢ = v, is
the true vacuum while ¢ = 0 is metastable; and for ay < 0, ¢ = 0 becomes unstable.
The barrier separating the metastable and true vacua has a height (for 0 < oy < 1)

4

Vi arrier —
b 27\3

(1+0 () (8.22)
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which vanishes rapidly as cy — 0. As in Eq. (8.18)), by requiring the exotic energy to

vanish today, we calculate the exotic energy prior to the PT to be

£ ) 8\
Pex = @ 27 — 36 oo + 8 o + 27 (1 — §CKO) (823)

and note that all of this energy is converted into radiation at the phase transition
(i-e., Apex = pex)-

In order to compute the CC’s effect on the relic abundance, we need to know
the PT temperature T, or equivalently the amount of supercooling, which has an

interesting dependence on ay. We require oy < 1 such that there exists a temperature

1-0(0

T. =
£ e

(8.24)

below which the symmetric phase ¢ = 0 becomes metastable. The PT begins at a
temperature Ty < T, when the bubble nucleation rate per Hubble volume I' H~3 ~
T4e~5“/T H-3 is comparable to Hubble expansion rate H ~ T2/M,. Here S® is the
action of the O(3) symmetric bounce. For an electroweak scale phase transition this
condition is satisfied when S®) /T drops below approximately 140 (209). Provided
that the potential can be expressed in the form of Eq. , then the action is

well-approximated by the empirical formula (307

? ~ 13.7% (%)3/2 (o) (8.25)
2.4 0.26
f(a)zl+%(1+1_a+<1_a)2) (8.26)

where the temperature dependence is parameterized by a(T) = ao(1 — T?/T¢), and
T2 = —M?/(2¢) can be positive or negative.

The PT temperature is constrained by Max [T3,0] < (Tp;)? < T? where the
lower bound depends on the sign of ag. We will discuss the two cases separately.

For ag > 0 (or T¢ < 0), the vacuum ¢ = 0 remains metastable as T — 0. This
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suggests that the PT temperature can be arbitrarily low, and in this limit of large
supercooling the CC effect may be arbitrarily large. Unfortunately, if the barrier
persists as T' — 0, it is possible that the PT does not occur at any temperature — a
obviously unphysical scenario in the case of the electroweak phase transition. This
follows from the observation that for ag > 0, S® /T has a minimum at T’ # 0: at low
temperatures S® /T grows due to the explicit factor of T in the denominator, and
at high temperatures f(a) diverges as & — 1. Over some of the parameter space,
the inequality S®) /T < 140 is not satisfied at any temperature, and the PT does
not occur. In particular, if aq is close to one, then a@ > oy ~ 1 at all temperatures,
and it is very difficult for the PT to proceed. Therefore, if we require that the PT
must occur via thermal bubble nucleation, we obtain an upper bound on «y. For the
case ag < 0, the PT necessarily occurs at a temperature T, > Ty > 0, since the
¢ = 0 vacuum becomes perturbatively unstable below 7. This case has the drawback
that supercooling cannot last an arbitrarily long time, but on the other hand, one is
guaranteed that the PT proceeds.
Provided that the PT does occur, we define

7=
bsc =1— % (8.27)

which ranges from 0 to 1 and quantifies the amount of supercooling. Using ds¢ to

parameterize the temperature dependence, we can rewrite Eq. (9.71]) in the form

SB3)

A\ 1 a_g  G_q
~|— 0 O (62 8.28
() ve= i i e s 29

Tpr
where the a; are functions of . We require S® /T |TI;T = 140 and solve for dgc,
which we have plotted in Figure [9.5] The supercooling grows with increasing oy and
decreasing \/y/c as the barrier and bounce action are made larger. In the shaded

region the lower bound on 7T > Tj is not satisfied. The amount of supercooling is
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Figure 8.1: We have plotted the amount by which the phase transition temperature
drops below the critical temperature, quantified by dgc, against the parameter ay
which controls the height of the barrier. These curves only depend on the parametric
combination A/y/c. The amount of supercooling grows as «g is made larger, but

reaches a finite maximum 652™ < O (1) at a value of oy that depends on the ratio

AJVe.

typically of the order dsc <

~

0.5 which implies T 2 T./2. Above a finite value of
ap (indicated by a dot) the barrier becomes insurmountably large, and the universe
becomes trapped in the metastable vacuum. The existence of this upper bound on ay
does not allow a phenomenologically viable, arbitrarily large supercooling, contrary
to naive expectations. The largest amount of supercooling is achieved for A/y/c < 1
and op 2 0. In this parameter regime the exotic energy is large (see Eq. ), and
the metastable vacuum is separated from the true vacuum by a small barrier (see

Eq. (9.67)).

We have calculated the exotic energy and reheating contributions to the relic
abundance shift by using Eq. (9.47), and we present the results in Figure 8.2 In
generating these plots, we have fixed ¢ = 0.1, £ = 5 GeV, and gg/g = 106.75 (SM

degrees of freedom”) while allowing g to vary. We select two values for the dark

"We choose this value as a fiducial reference. Realistically, for these parameters the PT occurs
at Tpp = 1 — 100 GeV, which could be later than the electroweak phase transition. In that case,
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Figure 8.2: The fractional shift in the dark matter relic abundance due to the exotic
energy (dashed, ci€1) and the reheating (solid, cz€5). Note that the two figures have
different scales, and that we have plotted |ca€5] since this quantity is negative. When
A/y/c is smaller than 0.04, then one may enter a regime of large supercooling for
tuned values of ay. The reheating effect dominates by an order of magnitude or
more. The contours extend over a finite range of ag because for larger g the PT does
not occur, and for smaller ay the PT occurs before freeze out. Since our analytical
approximation breaks down when c¢;e; ~ O(1), the extrapolation into this region
should only be treated as an indication of possible size of the effect.

matter mass, which in turn fixes the freeze out temperature via Eq. . For the
heavier case mx = 2 TeV, the freeze out occurs quite early, and if A/+/c = 1.00,5.00
(which are not shown) the PT would occur much later, in the limit where our analytic
approximations break down (i.e., 4 > 1). Some of the curves are truncated at small
ap, because we require that the PT occur after the freeze out (i.e., 6 > 0), and the
phase transition temperature increases with decreasing «q (see Figure . It is also
for this reason that, the A\/y/c = 0.04 and 0.2 curves are entirely absent from the
mx = 500 GeV plot.

These figures indicate that the exotic energy effect on the relic abundance is
typically on the order of 1072 and is subdominant to the reheating effect by an order of

magnitude. Both contributions become larger in the limit of large supercooling where

some of the SM degrees of freedom would have decoupled, gg,s would be smaller, and the ¢; would
be relatively larger.
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A/+y/cis small and o approaches its maximal value. For smaller values of \/+/c a brief
period of inflation might even be possible. The curves {\/\/c = 0.04,myx = 2 TeV}
and {\/y/c =1.00,myx = 500 GeV} illustrate the parametric tuning of g that is
required to achieve a large correction to the relic abundance. If o is made too large,
the PT does not occur, and if «g is made too small, the PT occurs before freeze out.
Comparing the myx = 2 TeV and myx = 500 GeV plots reveals the parametric tuning
that must occur between the DM and scalar sectors. If the DM mass is small, for
example, then the parameters of the scalar sector must conspire to generate a low
scale PT, otherwise the PT occurs too early and decouples from the physics of the

freeze out.

8.4 Summary of the Chapter

If the properties of dark matter can be measured accurately in laboratories, the
information that these experiments yield can be used to probe the properties of
early universe phase transitions. This is a particularly exciting prospect given that
phase transition physics incorporates the energy densities of the false vacuum and
the cosmological constant, and thereby it provides an empirical method to directly
probe the tuning of the cosmological constant. With this in mind, we have developed
a general parameterization to characterize the effects of a single field phase transition
on the thermal dark matter relic abundance in a freeze out scenario.

In the context of the SM (supplemented by a DM candidate) and assuming a tuned
cosmological constant, we find that the exotic energy (i.e. the Higgs field vacuum
energy plus the cosmological constant energy) leads to a fractional increase in the dark
matter abundance by O(107%). The dominant change in the dark matter abundance

comes from a decoupling of relativistic degrees of freedom near the time of the freeze
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out, which leads to a fractional increase in the relic abundance of order 10~2. Without
extreme tuning, we expect that most second order PTs share the characteristics of
the SM case.

In the case of a second order phase transition, models with a very flat potential
(i.e., m3 < Hpr) generally give a large dark matter abundance shift via the exotic
energy contribution. In this limit, Hubble friction can enhance the supercooling as
in the case of slow-roll inflation (as signaled by the enhancement attendant with
large vy/my in Eq. ) Although pseudo-Nambu-Goldstone boson models may
be useful for producing such flat potentials, the required hierarchies can be somewhat
unnatural during the electroweak phase transition since Hpp ~ 10714 GeV.

In first order phase transitions with supercooling, there is a somewhat surprising
theoretical upper limit on the duration of supercooling which follows from the fact
that the bubble nucleation rate is not a monotonically decreasing function of time.
In certain parametric regimes, the phase transition never occurs. Close to this failed
phase transition case, the maximum fractional increase in the relic abundance due to
the exotic energy effect can become O(0.1) and due to the reheating effect can become
O(1). However, reaching these large magnitudes requires some degree of parametric
tuning. As the parameters deviate from their tuned values, either the PT will not
occur at all, or it will occur before the freeze out.

In order for dark matter freeze out to act as a probe of the phase transition,
as we have considered, it must be the case that freeze out occurs soon before or
concurrently with the phase transition. Since phase transitions typically occur at
electroweak scale temperatures or higher and since the mass of weakly interacting
dark matter is typically 20 times larger than the freeze out temperature, these DM
particles must be heavy, and they may be difficult to discover at the LHC.

It is nonetheless an exciting prospect that LHC and other experiments sensitive
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to dark matter’s non-gravitational interaction properties may unveil a new probe of
dark energy. This is particularly interesting given that there is almost no other way

to probe the conjecture of a tuned cosmological constant.®

8There are generic theoretical limitations on empirical reconstruction of the phase transition
scenario. This study will be presented elsewhere (308]).



197

8.A Appendix A. Derivation of PT induced change
in the degree of freedom

We begin with the well-known formula for the energy density of a gas of fermions at

temperature 7" with N dynamical degrees of freedom:

d3p E,
p(T) = N/ 2r) 1 ebelT (8.29)

The gas has an effective number of degrees of freedom gg given implicitly by p(T') =

% ge(T)T*. We can parameterize the decrease in g due to the decoupling of the

fermionic gas by writing

7
9e(T) = 96(Ty) — g Nf (a/ay) (8.30)
where
72\ [ d3p 11 1 1
f(x=a/ay) = (——) /—Ep ey — . (8.31)
830 (2m)? Ty e% 4 T*(asx) e%f“”) 41

The temperature T' = T'(a) is given by Eq. (9.121) to leading order in the pertur-
bations €;. Since f already multiplies a small term in Eq. (9.22)), we need only keep
the leading factor in Eq. (9.121) which is 7" = Tyay/a = Ty/x. This lets us write

Eq. (9.124]) as
8 (30 dp E 1 x?
Fle™s+1 e™n +1

Note that f(x) increases from f(1) = 0 to f(co) ~ 1. Due to the exponential
temperature dependence, the transition to f ~ 1 occurs at T' &~ my and is smoothly
steplike over a time scale At ~ 1/H. In this discussion we have assumed E, =
\/m with my constant, that is, we neglect any change in the mass of the
particle as a function of time. This assumption is valid sufficiently far after the PT
such that the scalar VEV and field-dependent masses have approximately stopped

varying.
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8.B Appendix B. Derivation of 75, As, and T'(a)

In this appendix, we calculate the temperature after the phase transition Th, by
imposing energy conservation at the PT. This allows us to calculate As and €5 in
terms of Ape,. Provided that there is a negligible change in a &~ apr during reheating,

energy conservation can be written as
2 2

= 95(Tpr) (Tpr)" + Dpex = %

30 gp(Tir) (Tir)" (8.33)

Using the perturbative expansions introduced in Sectlonm 8.21 Eq. (9.110 m can be solved

for T, at leading order to obtain

1 1 Ap
T ~Ton |14+ =e€31 + = =
PT PT 4 31 4 7r2 gE(Tf) (T )4

(8.34)

where €37 is given by Eq. . As expected, the amount of exotic energy released
Apex > 0 controls the reheating from Thp to Th,. Additionally, the reheating is
larger when more species non-adiabatically decouple (larger e3;1), because there are
fewer degrees of freedom after the PT to distribute Ape, over, which makes them
comparatively hotter.

Similarly, we can calculate the entropy density increase at the PT. Writing the

entropy density as s(7) = %gS(T )T3, we can calculate As as

8o = 2L 4o (T (T - 05(To) (T .
L) oge(Ty) 3 Apex L
4 { gs(Tp) ™ 1| 1) (@) }95<Tf> (Tpr)”  (8:36)

where we have used Eq. (9.112)) and linearized in perturbations. We can calculate e,
given by Eq. (9.26b), by noting Tpyapr =~ Ty as and gs(Ty) = gr(T) up to higher
order terms. Doing so yields

1 3 Apex
i 5098(T5) (Tpr)!

(8.37)

€y N ——
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These expressions for As and e, illustrate that the entropy increase at the PT is
controlled by the amount of latent heat released and the number of particles that
non-adiabatically decouple.

Lastly, we will solve the equation of entropy conservation for 7'(a). The entropy

3 is conserved except for the entropy injection at re-

per comoving volume S = sa
heating, which is assumed to occur rapidly at apr. Entropy conservation may be

expressed as

22\ !
gS(T) T3a3 — gS(Tf) Tfa;’c + @(a — CLPT) CI/?F))T (4—7;) As (838)
and implicitly defines T'(a). To solve for T' we use Eq. (9.21)) to expand gs(T) then
linearize in h and As to obtain

|, Lhla/ay) 1 (apT)3 As

+ @ (CL - CLPT) - ) (839)
3 gs(Ty) ar ) Eegs(Ty) T}

a
T(a) ~ Tf;f

3

Further expanding h using Eq. (9.22)), approximating gs(7) ~ gr(T), and applying
Eq. (9.26b)) we obtain the final expression,

T(a) ~ 1, {1 + %@,2 flajas) +© (a— apr) % (e31 + @] S (840)

After the PT, the exotic energy component behaves approximately adiabatically.
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Chapter 9

Cosmological Constant, Dark Matter,

and Electroweak Phase Transition

Accepting the fine tuned cosmological constant hypothesis, we have recently pro-
posed that this hypothesis can be tested if the dark matter freeze out occurs at the
electroweak scale and if one were to measure an anomalous shift in the dark matter
relic abundance. In this paper, we numerically compute this relic abundance shift
in the context of explicit singlet extensions of the Standard Model and explore the
properties of the phase transition which would lead to the observationally most favor-
able scenario. Through the numerical exploration, we explicitly identify a parameter
space in a singlet extension of the standard model which gives order unity observable
effects. We also clarify the notion of a temperature dependence in the vacuum energy:.

This work was performed in collaboration with Daniel Chung. It was published

in the journal Physical Review D in November of 2011 (119).
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9.1 Introduction to the Chapter

The hypothesis that the cosmological constant (CC) energy density today is a result
of a tuning between UV and IR contributions (39} 804)) is favored according to some
versions of the string landscape proposal (see e.g. (305)). Furthermore, this hypoth-
esis has always been the default assumption in particle physics model building (see
e.g. (273;309)). Unfortunately, this conjecture is notoriously difficult to test with lab
experiments, such as those at colliders.

One of the predictions of the tuning hypothesis is that there can be an electroweak
scale effective CC in the early universe if there was a phase transition (PT) at that
scale. A well-known reason to suspect that there was an electroweak scale PT in
the early universe is the thermally supported electroweak symmetry restoration phe-
nomenon in the context of the Standard Model (SM) of particle physics (58; 59).
Hence, if lab experiments, such as particle colliders, can eventually measure the field
content and couplings of the scalar sector at the electroweak scale with sufficient ac-
curacy, then one may be able to predict the CC energy density existing at around
the time of the PT. Such an energy density would interact with gravity to modify
the expansion history of the universe. Indeed, Kolb and Wolfram (297) were one
of the first to state that this computable energy density arising from the Standard
Model Higgs condensate may have an observationally acceptable yet significant effect
in cosmology.

In a recent paper ([177)), we proposed that dark matter freeze out can be used to
probe PTs, including the properties of such a computable CC, through its effect on
the expansion rate of the universe during freeze out. Such an idea is abstractly very
similar to the well known big bang nucleosynthesis idea, as well as generic particle

probes of cosmology (see e.g. (277 299; BI0-312)). In particular, if a weakly
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interacting massive particle (WIMP) dark matter candidate is discovered with a mass
of the order of TeV, then its freeze out dynamics would be sensitive to the value of
the CC during the electroweak scale PT at a temperature of the order of 100 GeV.
Therefore accurate measurements of the dark matter and scalar sector properties will,
in principle, make possible a lab test of the tuning of the CC. More accurately, what
is being tested is the absence of self-tuning mechanisms and /or modified gravitational
theories (313H325) that would eliminate or significantly change the effects of vacuum
energy during a PT.

For non-first order PTs, it was found that the shift in the relic abundance due to
the CC energy density effects is suppressed by Any/ny = O (ggl) where gp is the
number of of relativistic degrees of freedom contributing to the energy density. For
first order PTs, it was found that this fractional shift can be generically enhanced
by supercooling such that the CC effects can be O(1) with a 1% parameteric tuning.
In all cases, the sought after CC “signal” is buried in the dominant “background”
coming from the adiabatic change in the number of degrees of freedom and possibly
the entropy release near the time of the dark matter freeze out. The adiabatic change
in the number of degrees of freedom and the vacuum energy effect tend to increase
the relic density today while the entropy production effect decreases the relic density.

The purpose of this paper is to complement the previous short paper (I77) in
several ways:

1. Present an explicit singlet extension of the Standard Model (SM) that gives a

large supercooling with a first order PT at the electroweak scale.

2. Clarify the notion of how an effective vacuum energy (which is Lorentz invariant

in the flat space limit) can depend on temperature (which manifestly breaks
Lorentz invariance).

3. Compare numerical results with analytic results presented in (I77).
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4. Provide relevant technical details that were left out in (I77) to aid future re-
search efforts in this direction.
In addition to giving a generic singlet scalar model coupled to a Dirac fermion that
gives a significant supercooling, we analyze xSM, i.e. a real singlet coupled to the
SM, and identify a parametric region in which significant supercooling occurs. As
anticipated in (177), an O(1072) tuning is sufficient to induce an O(1) supercooling
effect on the relic abundance.

The order of presentation is as follows. In Section [9.2] we review the physics of
PTs and focus on the myriad ways in which a PT may impact dark matter freeze out.
We clarify the notion of a temperature dependence of vacuum energy density in this
section. In Section [9.3| we analytically compute the fractional shift of the relic abun-
dance dnx (o) due to an electroweak scale PT in the limit in which the PT represents
a small perturbation to the usual freeze out. In Section [0.4 we compute the relic
abundance deviation in the SM and minimal singlet extensions (both supplemented
by a generic dark matter which is assumed to play a negligible role in determining the
properties of the PT). In Section we conclude with a summary and suggestions
for future work. An extensive set of appendices detail technicalities useful for the
material presented in the body of the paper.

Throughout the paper, we assume a flat Friedmann-Robertson-Walker (FRW)
metric, ds* = dt* — a*(t)|dx|?, and use the reduced Planck mass M, ~ 2.4 x 10'®

GeV.
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9.2 A Brief Review of the Physics of Phase
Transitions

In this section, we review the physical features that accompany a cosmological PT.
Each of these features modifies one of the relationships, p ~ T4 T ~ a7!, or
(ov) = (ov) (T), which are assumed in the usual freeze out calculation. One of
the topics discussed in this section is how to understand the thermal dependence
of vacuum energy, which a priori is an oxymoron. Readers interested in mostly the
phenomenology can skip to the next section.

The standard cosmological model assumes an expanding FRW universe which
leads to the temperature of the relativistic species in the universe decreasing as a
function of time except during the time periods when entropy is generated. As the
temperature decreases, there may exist critical temperatures at which the thermody-
namic quantities are not analytic as a function of temperature and/or the symmetries
of the effective Lagrangian governing the dynamical degrees of freedom changes. Fol-
lowing the typical convention in the literature, we refer to the passages through these
critical temperatures as PTs.

In order to calculate thermodynamic quantities in the system described above,
we will use the thermal effective potential (see (209)) for a review). The thermal
effective potential Vog (¢, T'), derived from Legendre transforming the partition func-
tion coupled to external sources, represents the free energy density of the plasma at
temperature T dynamically interacting with a homogeneous scalar field background
¢. which may affect the masses and interactions of particles in the plasma. A lo-
cal minimum ¢. = v(7T) is called the thermal vacuum, and PTs occur near critical

temperatures T, which will be defined more precisely below.

'We will leave out the adjective “thermal” in “thermal vacuum” whenever no confusion should
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The critical temperature T, in the case of what is conventionally referred to as a
first order PT is defined by the existence of two or more degenerate minima ¢ = v(7,)
existing for the thermal effective potential Vog (¢, T.). In such cases, we refer to the
vacuum of the universe just prior to the PT as v®)(T) (where the “s” superscript
denotes “symmetric” vacuum) whether or not there is a symmetry in the thermal
effective potential prior to the PT. The vacuum solution after the first order PT is
referred to as v®(T) where “b” denotes “broken.” A non-first order PT (sometimes
loosely referred to as a second order PT) is characterized by a single continuous
function v(7") before and after the PT: i.e. v(®)(T..) = v(*)(T}). Even in such situations,
it is sometimes useful to define v(*)(T") to be the vacuum before the PT whenever there
is a restored symmetry prior to the PT. The quantity v*)(T) can then be taken as
an order parameter associated with spontaneous symmetry breaking.

The thermal vacua v*/*)(T) can be obtained from summing up thermal tadpole
corrections obtained from expanding perturbatively about the zero temperature vacua
v®/Y)(0). Despite the suggestive notation of the thermally shifted vacuum v/%(T),
the resummation of tadpoles is nothing more than a reorganization of perturba-
tion theory, and the vacuum energy represented by the Lorentz-invariant part of the
energy-momentum tensor, is not shifted by the manifestly Lorentz-noninvariant ther-
mal tadpoles. Note that symmetry restoration cannot be inferred from the thermal
tadpole resummation alone since the thermal perturbation theory breaks down when
the perturbations are expanded about the inflection points of the effective potential.

Let us now establish some more notation for the quantities introduced above. The

thermal effective potential and v(*/%)(T") can be used to construct the thermodynamic

arise.
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quantities
FOP(T) = Vi (0/(T), T) (9.1)
d
(/) (Y — _ % Fls/b) 1b
sUUT) =~ F (9.1b)
p(s/b)(T) = F/b) 4 gls/b) (9.1c)

representing the free energy density F, entropy density s, and energy density p in the
symmetric and broken phases. A typical PT occurs as the universe cools, and the
free energy of the broken phase, in which the entropy and energy densities are high,
drops below the free energy of the symmetric phase, in which the entropy and energy

densities are low. It will be useful to define the critical temperature of the PT T, by
FENT,) = FO(T), (9.2)

but note that the PT may not actually occur until a much lower temperature if the
symmetric phase experiences supercooling. The PT is accompanied by a number of
physical features, which we will outline in the remainder of this section and which
each have an impact on dark matter freeze out.

The first feature that we would like to discuss is the vacuum energy associated
with the PT. We assume that the energy density p*/%)(T') can be partitioned into
the energy associated with the plasma and the energy associated with the condensate
(i.e. the vacuum energy with an effective equation of state of —1), and we define the

latter as

(/0(T) = Ve (v*/0(T), 0) (9.3)

cc

which has an observable consequence when coupled to gravity. This equation is
artificial because the vacuum energy cannot be rigorously separated from the particle

energy with which it is associated for most of the states populating the density matrix.
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Nonetheless, it is useful because it captures the CC type of contribution (i.e. negative
equation of state contribution) to the energy-momentum tensor.

Note that flat space thermal corrections to the zero temperature effective poten-
tial cannot generate Lorentz invariant contributions to the energy-momentum tensor
because temperature T' dependent quantities are not Lorentz invariant. Since the CC
contribution to the energy-momentum tensor in the flat space limit is Lorentz invari-
ant, one may wonder whether Eq. is valid since it implies that thermal tadpoles
are contributing to the vacuum energy. Furthermore, the fact that the effective vac-
uum energy takes on a continuum of values while the only non-perturbatively stable
vacuum state is at v(®(0) (which we will assume to be associated with negligible
vacuum energy) also leads one to be suspicious of Eq. .

To semi-quantitatively resolve this puzzle, one notes that near the time of the
PT, there are A < B processes in equilibrium where A and B schematically corre-
spond to states of the form |particles + vacuum energy) and |particles), respectively.
These transitions are mediated by non-perturbative processes since they are vacuum
changing processes. Classically, the plasma (when these transitions are efficient) is
approximately described by inhomogeneous solutions in Minkowski space. This can
easily be characterized by computing for example the thermal two-point function.

The equation of state for such a plasma in the classical approximation corresponds
to neither that of quantum expectation values with respect to states A nor B, but is a
mixture which from the quantum perspective depends on the non-perturbative tran-
sition operators as well as the relative statistical and/or coherent weighting of A and
B type of states. The incoherent aspect of this mixture is what the 7" dependence of

Eq. (9.3) reflects.? To corroborate this picture, one can easily solve classical equations

2Note also unlike in flat spacetime, there are IR cutoffs associated with the expansion rate H
for a single causal domain during the PT and H associated with the presently observable universe.
The former scale H is also associated with one of the scales at wich quasi-equilibrium assumption
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of motion in models with spontaneous symmetry breaking to obtain inhomogeneous
background field solutions which have an inhomogeneous equation of state. Since the
Friedmann equation (which is the only gravitational probe we will be concerned in
this paper) approximately describes the gravitational response to the spatial average
of the energy-momentum tensor, one can spatially average the energy density and the
pressure. This leads to an effectively homogeneous energy density and pressure which
is approximately the same as that due to particles plus a vacuum condensate energy
density. The resulting effective vacuum condensate energy density is somewhere be-
tween Veg(v*)(0),0) and Veg(v®(0),0), justifying the diagnostic quantity defined by

Eq. .

To renormalize the CC, we impose the tuning condition
p(T =0) =0, (9.4)

which states that the vacuum energy density today is on the order of the meV* dark
energy density (71 [326) and negligible as compared to the PT scale. Hence, we will
refer to pﬁi/ b (T') as the “effective CC energy density.” With this normalization, the

CC energy density before a PT at scale M will typically be
oD (T 2 M) ~ M, (9.5)

which can be measured, in principle, by gravitational probes such as the Hubble
expansion rate and its impact on dark matter freeze out.® Any self-tuning/modified-
gravity mechanism which decouples the vacuum energy or significantly modifies the
vacuum energy effect on gravity on a time scale shorter than that of the expansion

(s)

scale will have an effective pee’ significantly different from Eq. (9.5). It would be

breaks down.

3 Although an in depth discussion of UV sensitivity of the CC is beyond the scope of this paper,
one should keep in mind that using Eq. as a quantum renormalization condition leads to
Eq. as a prediction only if assumptions about analyticity of the effective potential as well as
Lorentz invariance structure of the UV cutoff is assumed.
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interesting in future studies to compare various self-tuning/modified gravity models
which may have non-trivial time dependence in the effective vacuum energy different
from that in this paper.

The second PT feature is the decoupling of heavy degrees of freedom which become
non-relativistic after the PT and cause the number of relativistic species, denoted here
as ¢, to decrease. This has two consequences for the dark matter freeze out calcu-
lation. First, the energy density of the plasma p ~ ¢ T* and Hubble expansion rate
H ~ /p decrease more rapidly than usual after the PT. Second, since temperature is
related to the FRW scale factor by entropy conservation, which gives T ~ ¢~ '/3a~1,
the temperature decreases less rapidly than usual after the PT. To estimate the mag-
nitude of the effect on dark matter freeze out, consider the SM electroweak PT at
T ~ 100 GeV and suppose that freeze out occurs at the same temperature. Then
during the residual annihilation stage of freezeout, which lasts until 7' ~ 10 GeV,
g will decrease by approximately 20% corresponding to the decoupling of the top,
Higgs, and massive gauge bosons. In the usual freeze out calculation, changes in g
are neglected, because freeze out occurs much later than the electroweak PT when g
is insensitive to 7. When we arrange for the two events to occur at the same scale,
g decreases significantly and can have a large effect on the relic abundance.

The third feature is related to the coupling between the PT sector and the rest of
the particle physics model. As the phase changes at the PT, in general the masses and
interactions of particles in the plasma can change as well. In particular, it is possible
for the scalar field to couple to dark matter in such a way that the dark matter’s mass
and/or annihilation cross section is different in the symmetric and broken phases.
This scenario, studied by (179} 802)), may allow dark matter to rethermalize and can
have a significant effect on the relic abundance.

If the PT is of the first order, then it possesses a number of additional features
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(see e.g. (303) for a more detailed discussion). A first order PT can be divided
into two stages. The first stage, known as supercooling, occurs while the universe
remains in the symmetric phase after it has become metastable at T' ~ T.. As the
temperature decreases and the CC energy density remains approximately constant,
the total energy density can deviate from the standard p ~ T* scaling (i.e., first
feature above). Supercooling ends when it becomes energetically favorable for bubbles
of the broken phase to nucleate. Determining the temperature 7, at which bubble
nucleation begins requires one to solve for the non-perturbative bounce solution and
evaluate the decay rate of the metastable phase (203). During the second stage,

known as reheating, the expanding bubbles release an energy density

Apex = Pgi) (TI;T) - Pg?:) (TIi_T) (9‘6>

which is converted into radiation and heats the gas from T, before the PT to Thy >
Top after the PT. We assume that reheating occurs rapidly as compared with the
expansion rate of the universe?, which allows us to treat reheating as an abrupt
process at time tpr when a = apr. Reheating is accompanied by a non-adiabatic
entropy increase. This entropy growth modifies the relationship between temperature
and the FRW scale factor in such a way that the universe is relatively larger for a
given temperature. As a result, the dark matter number density undergoes a longer
period of dilution and the relic abundance can be significantly smaller (I78)). Finally,
just as massive species can adiabatically decouple after the electroweak PT occurs,
heavy particles can undergo a non-adiabatic decoupling at the time of a first order

PT if they abruptly acquire a mass m 2 Tpr.

4 A third stage, known as phase coexistence, can occur if a large latent heat is released by the
expanding bubbles and the plasma is reheated to the point where the pressure gradient across the
bubble wall vanishes (144). Subsequently, the bubbles expand only insofar as the universe expands,
and the PT completes on a time scale ¢t ~ H~!. Typically, this stage does not occur during an
electroweak-scale PT because the number of relativistic species O (100) is too many to allow for
sufficient reheating.
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9.3 An Analytic Estimate of the Change in the

Dark Matter Abundance

In this section, we estimate the change in the dark matter relic abundance due to the
presence of a PT, and the CC energy density in particular, during freeze out. Our
final result is the fractional deviation of the relic abundance, denoted dnx(ts) and
given by Eq. (9.47)), in which we have linearized in the various effects of the PT on
freeze out. Although most of the results in this section have already been presented
in (I77), we repeat some of the results for self-containedness as well as serving as
introduction for more complete results such as Egs. and . The main
point of this section is to present a formalism to understand analytically the effects
outlined in Sec. 0.3l

Throughout the calculation, we will take a as the independent variable and rewrite
functions of temperature using 7' = T'(a) given by Eq. (9.121). In particular, we will
assume that freeze out occurs at a temperature Ty = T'(ay) before the PT at a = apy.
Since all of the thermodynamic quantities depend on the phase of the system which
changes at a = apr, the formulas in this section would become unnecessarily obscure
if we persisted in writing all the (s/b) superscripts and distinguishing the a < apr
and a > apr cases. Therefore, we introduce the following shorthand. Whenever a
temperature-dependent function F/%(T") appears without the (s/b) superscript, the
intended meaning is

FO(T(a)) a < app
F(a) = . (9.7)

F®(T(a)) a> apr

In particular, one always has F(ay) = F®)(T}) since a;y < apr by assumption.

We calculate the thermal relic abundance of dark matter by integrating the ther-
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mally averaged Boltzmann equation,

1d,, - 2 eq2
peien (a’nx) = —(ov) (nk —n¥"), (9-8)

over the era of residual annihilations from freeze out at a = ay until today. Subject

to general assumptions (see Appendix for more details), we obtain

B mao/es din(a/ay) a; -
nx(to) = (/0 Tf (ov) —) (9.9)

a3
for the number density of dark matter today at a = ag and t = ¢y. In this expression,
the quantities that will be affected by the PT are the Hubble expansion rate H(a),
the thermally averaged cross section (ov) (a), and the dilution number since the time
of the freeze out to today ag/ay, which is related to T'(a). As a fiducial reference
value, we also calculate the “usual” relic abundance ng(U)(tO) by assuming that the PT

does not occur, but instead that the universe remains radiation dominated and has

the standard scaling relations
HY ~a2 (o)) = (o0) (T(a)), and TW ~q* (9.10)

throughout freeze out. We define the relic abundance fractional deviation as

nx(to)
¥ (to)

and expect this quantity to depend on the way in which H, (ov), and ag/a; deviate

onx(to) = (9.11)

from the usual freeze out scenario. We will consider each effect in turn.

Before addressing each of the factors in Eq. , let us discuss the partitioning
of energy. The Hubble expansion rate, which appears in Eq. , is related to the
total energy density p*/*)(T). However, we are particularly interested in determining
the impact of the effective CC on the calculation of dark matter freeze out. Therefore

we will assume that the energy can be partitioned as

p ~ (particle degrees of freedom + exotic energy component) . (9.12)
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In general, the exotic energy component can arise from physics other than the ef-
fective CC, such as quintessence (e.g. (299 B12; 327H331))) or late-decaying massive
particles (e.g. (332H339)). To maintain a minimal degree of generality throughout
our analytic estimates (without accumulating distasteful notational complication), we
will parametrize the exotic energy component as pe, k(a). However, since our primary
interest is in the case that the exotic energy component represents an effective CC,

we will write

Pex k(@) = pec(a) (9.13)

where pl/" (T) is defined by Eq. (9.3), and we have used the shorthand Eq. (9.7).
The remaining energy density can be attributed to relativistic particles in the plasma,

which we will denote by®
pg/b) (T) = p/"(T) = pl/(T) . (9.14)

To connect with a familiar and intuitive notation, we let the functions gg and gg be

defined implicitly by

2
P/ () — ;T_O gy T (9.15)
212
S (T) = = ge"(ryT? (9.16)

such that they represent the number of relativistic degrees of freedom at temperature
T in either the symmetric or broken phase. As shown in Appendix [9.C] one must
have gs(T') # gr(T) if entropy and energy are to be conserved during the time when

a species adiabatically decouples.

pg/ ® includes a term proportional to duv(s/?) /dT which arises from the derivative in Eq. (|
This term represents kinetic energy in the scalar field and, strictly speaking, should not be included
in pr. Nevertheless, we do not separate out the kinetic term, because it is typically negligible.

5 Contributions from non-relativistic species are Boltzmann suppressed. Defined in this way,
i
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Now, we will begin our investigation of the quantities in Eq. . First, consider
the effect on the Hubble expansion rate H(a) which is obtained by solving the Fried-
mann equation. To do so, we partition the energy as described above and assume
that pex < pr(ay) such that we can treat the CC energy density as a perturbation.

With these assumptions, we obtain

H(a) = V;M Vo) (9.17)

T |72 1 pex k(a)
%?)M EQE(G’) 1+§7r2 4
P 59 9e(a) T'(a)

where we have used the shorthand Eq. (9.7). During the PT, we can approximate

(9.18)

k(a) as

k(a) ~ O(apr — a) + O(a — apr) (1 - Apf:’() k(@) (9.19)

where ©(z) is a step function, Ape, > 0 is given by Eq. (9.6), and k2(a) is a function

which starts from ky(apr) = 1 and decreases as fast as

<#> - (9.20)

with ng 2 4. If Ape, = 0, we have a continuous second order transition or a crossover.
If Apex = pex, then the supercooling is sufficiently strong as to end up with no
CC energy just after the PT. The step functions represent the fact that the PT
occurs with negligible change in the scale factor. With this assumption, As and
the corresponding change in the temperature become functions of Ape, according
to Eq. in Appendix [0.D] Finally, the ©(apr — a) term in Eq. should,
in general, be multiplied by another smooth function unless there is some symmetry
fixing v*)(T'), and consequently pé‘? (T'), to a particular value in the high energy limit.
However, we will neglect this detail in favor of cleaner notation, since the final result

will be approximately unchanged.
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As discussed in Section particle species start becoming non-relativistic after
the (electroweak) PT which causes gg/s(a) to decrease. We will parametrize this de-
crease by focusing on the (non-)adiabatic decoupling of (Npr) N fermionic dynamical

degrees of freedom and write

ge/s(a) = gp/s(ag) — hia) (9.21)
h(a) = ngT Oa — apr) + gzv f(a) (9.22)

where f(a), which rises from 0 to 1, is given by Eq. (9.125)). Note that in reality, h(a)
is a smooth complicated function (particularly N f(a)), but here we are accounting
for the change in the number of degrees of freedom in a physically suggestive approx-
imation. As we will see below, this effect will be one of the dominant “backgrounds”
to the “signal” of measuring the effects of the cosmological constant. We treat this
effect as a perturbation to linear order, and we estimate the Hubble expansion rate
to be

T@? [r* i1 Ma 1 perle)
3, V 107 [1 298(0s) " 252g(ay)T(a)

H(a) =~ (9.23)

Writing T'(a) using Eq. (9.121]) and linearizing further with respect to small quantities,

we have
€ a 4 2
H(a)~ HY)(a) [1 + - (—) k(a) + =€0(a — apr)
2 CLf 3
1 1
+ 6631@(& — CLPT) + 6632f (CL)] (924)
where
TJ% 2
HY(a) = —L—1\/ = gr(ay) (9.25)

2
su, (2) V1

af
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and
€ = QL = fractional energy of the exotic during freeze out (9.26a)
So9e(as) T}
apr 3 As . . .
€ = ( > 53 S = fractional entropy increase during PT (9.26b)
ar ) F=gslap) T}
%NPT : . .
= g(ay) = fractional decoupling degrees of freedom during PT (9.26¢)
N
€39 = J 8 @) = fractional decoupling degrees of freedom near freeze out (9.26d)
E\%f

where As, denoting the entropy density change at the time of the PT, is given by
Eq. (9.117). Although H (a) appears to vary discontinuously at a = apr, its continuity
is ensured by the conservation of energy. At the PT, the CC energy converts into
radiation, which generates an entropy but leaves the total energy density fixed (i.e.,
€o compensates for the discontinuity of the €; term) because the volume remains
approximately constant through the duration of the PT. The fact that H is boosted
by €31 and €35 is intuitive for the following reason. When a particle species becomes
non-relativistic, the effective equation of state becomes smaller, such that the energy
dilutes less, which in turn leads to a larger expansion rate for the same scale factor.
The term e3; accounts for the non-adiabatic change in the number of degrees of
freedom during the PT, while the term €35 accounts for the adiabatic change in the
number of degrees of freedom.

Next, consider the change in the cross section due to the PT. We parametrize this

effect as
(ov) = (o)) (1 — 60— apT)) (9.27)

where

(9.28)
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and A, is the change in (ov) due to the PT. Since the derivation of Eq. assumes
that the dark matter is decoupled after Ty, we will assume that ¢, 2 0 in order
to prevent re-thermalization due to an increase in the cross section. Hence, we can

evaluate Eq. by linearizing in the €’s to obtain

3 Inag/ay dl
ar na/as (ov)
to) =~ | —
o)~ () </ HO(a) | a/af

where

1+Ze D (9.29)

Y bu(a) e = — %1 (i)4 k(a) — O(a — apT)geg

afr

1

5 €31 ©(a — apr) + €32 f (a)] — €4©(a — apr) (9.30)

implicitly defines the 6,,. Note that the integral is dominated by contributions around
Ina/a; = 0. On the other hand, the (ay/ag)® prefactor should be evaluated with all
the gs changes accounted for, not just the effects around Inx = 0.

Next, let’s consider the effects on the ay/aq factor determined by the freeze out

condition itself. The freeze out temperature Ty can be solved using (297)

(ov) n(Ty) = C—f (T}) (9.31)
mx 3/2 mx
) =ax () el 9.32)

where C' is an order unity number whose optimum value to reproduce numerical
integration is cross section dependent (e.g., C' & 2), gx counts the real dynamical
degrees of freedom of the dark matter, and mx is the dark matter mass. Evaluating
H(Ty) with Eq. and assuming freeze out occurs before the PT, Eq.

becomes

3/2
(o) gx [ TLs /exp[—@}
271' Tf

me Tf €1
~ "o EgE( )[1 n 5] . (9.33)
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Although not solvable in closed form, one can linearize in the perturbation again to

obtain

Ty~ [1+ 5 (lnA—i-O((lnA) ))] (9.34)
where

A= gX3\/5Mp« /mxTs(ov)
207‘(’5/2 gE(af)

~ exp|[20] (9.35)

for electroweak mass scales. If we assume that there is only one period of entropy
production between freeze out and today, and that it occurs at the PT temperature
Tpr, we can use entropy conservation in the form of Eq. (9.119) to write
1/3
T 1
o (sl T 1 L] (9.36)
ay gs(ap) Ty 3
where T} is the temperature today. Combining this with Eq. (9.34)), we find
) 1 1
) {1 +2 - —62} (9.37)

Qo

ap  \ ay

)  (gslay) 1/3mX 1
) - (95(%)) Ty InA° (9.38)

2InA 3

where

-3
@ 1— 361 1 _
2 InA 62

e +/1n(a0/‘1f|(U)) dlna/ay <UU>(U)
A H)(a) (a/ay)?

1+ 9n(a)en]> (9.39)

where the endpoint contribution to the integral has been written as

(9.40)
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The term Fj is negligible because of the volume dilution factor in its denominator.

Linearizing the small factors gives

) 3er 1 SN
~ -2 - 41
nx(to) ~nx’(to) [ s a2t 4 Onen (9.41)

where

Fy

/ln(ao/aﬂw)) dlna/ay <UU>(U) (9.42)
0

H®)(a) (a/ay)®

GO
) F ! = usual computation of relic abundance (9.43)

- In(ao/ag|)) ()
g _/ dlna/as (ov) 0 (9.44)
0

= a).
" H(a) (o/a)?""
In particular, if we assume an s-wave cross section (i.e., constant (ov)), we can express

6, explicitly as

Folfy ~ - [5 MG <1 - Ap‘”‘)} (9.45)
2 na — 3 Pex
where we have expanded in § = apr/ay — 1 2 0 which represents the delay between
freeze out and the PT. The first term in square brackets comes from integrating the
CC energy density from as to apr, and the second term comes from integrating the
decreasing CC energy density after the PT. This equation shows that if % ~ 1
(large supercooling) there is a suppression of the €; effect by a factor of order 4.
Although we have linearized in ¢ along with ¢;, terms of the form ¢; § are not higher
order. The expansion in ¢; reflects the fact that we treat the PT as a perturbation,
whereas the expansion in § is performed merely to simplify the expressions. With the
same assumptions, we can evaluate the other £~ 19, terms:

2 1

Fuiléé%—g (1—5) s Fuilégl %—6(1—6),
. ~ 1 [nlao/as|) dlna/a
F'0y~—(1-0 F;'0 %——/ L fa). (946
u 4 ( ) ) u 32 6 0 ((l/(lf)2 f(a) ( )
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Hence, for s-wave cross sections, the change in the relic abundance due to small

changes made by the PT can be expressed as

(Snx(to) = C1 €] +Cy€y+ C31€31 + C39€39 + C4€y4 (947)
where
1 (1+39) Apex 31
== 1— — o 4
=3 <5+ n—3 ( Pex )) 2InA (9.482)
1
Cy = _5(1 + 26) (9.48Db)
1
31 = 6(1 —0) (9.48¢)
1 [nao/ar ) g1p ajay
= _ ) 9.48d
C32 6/0 (a/af)2 f (a) ( )
a=1-34. (9.48¢)

The key point of Eq. is that despite the “background” represented by €41,
the “signal” contained in €; can be “measured” and represents a prediction of the
hypothesis of a tuned CC. It is a tuned but striking statement, nonetheless. Since
this term is central to the rest of our calculation, we have reproduced the so called

“CC effect” term here as

Pex 1
C1 €1 = >
S9mlag)Thy ) (1+0)!

L () ) v

without linearizing in 9. We also write the so called “entropy effect” as

o+ % As
0+ 12 go(apr) Thy

(9.50)

Co €2 =

Note finally that we can obtain a smooth non-first order PT by taking the limit

Apex =€ =€z = €4 = 0.
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One should remember that all of the analysis has assumed that the entropy re-
leased from the PT (in the case of a first order PT) did not reheat the system to
the point that the dark matter rethermalized after freeze out, i.e., T, < Ty. This

provides a lower bound on ¢ for a given Ap.,, which can be expressed as

1

1 Apex
€31+ —— — < (9.51)
4 475 gp(ay) (Tpyp)*

by using Eq. and assuming that f(apr) is negligible.

Note also that the range and independence of {¢;, 0} that is achievable by choosing
a beyond the SM Lagrangian is not easy to compute nor to generalize. For example,
suppose we want to increase § while keeping ¢; fixed. To increase d, we increase apr
more than ay. Since ay is mostly determined by the mass of the dark matter mx
while apr is determined in part by the competition between the thermal mass support
and scalar field mass at the field origin, we can keep ay fixed and increase apr by
decreasing the scalar field mass competing with the thermal support. This, however,
typically changes the fractional entropy increase €, during the PT. Furthermore, this
will change the index ny (defined in Eq. ) which depends partly on the flatness
of the non-thermal part of the scalar potential. Indeed, we see that if this ny can
be engineered to be as close to 3 as possible (i.e. a flat potential with no thermal
particles decoupling), then the €; signal can be enhanced. One also sees that in the
case of a first order PT, the prediction for the effect of the cosmological constant
(i.e., the € piece) depends on Ape, and §, both of which depend on knowing exactly
when the PT occurs. As described in Sec. an accurate computation of this will
require a non-perturbative numerical treatment. Hence, the first order PT situation,
which can give a larger CC dependent signal, presents an interesting computational

challenge of its own.
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9.4 Illustrative Models

In this section, we present numerical calculations of dnx (ty) for various models. This
section represents one of the key features of the paper that distinguish it from (177), as
discussed in the introduction. For each model we specify the parameters of the scalar
sector, which appear in the thermal effective potential Vog (., T'), and the parameters
of the dark matter sector, mx, gx, and (ov). We then calculate the relic abundance
shift using the methods of Section [9.3] Most of the numerical results have not been
reported previously, and the model dependent analysis of a real singlet extension of

the standard model is entirely new.

Standard Model with Dark Matter

We calculate here the relic abundance deviation due to the SM electroweak PT.
The qualitative results were already given in (I77). The numerical details that we
discuss in this section can be summarized as dnx (o) = O (107 — 10~2) with the CC
contributing c;e; = O (107 — 1073). With m; = 115 GeV, the largest CC effect
occurs for my ~ 4.2 TeV where cie; ~ 9.5 x 107, Our results are summarized in
Figure [9.2] In this section, we first discuss this figure and then extend the analytic
estimate of Section , now in the context of a concrete model, to obtain Eq. ,
which lets us motivate extensions of the SM that achieve larger dnx (to). Some of the
qualitative discussion of (I77) is reproduced for completeness.

In Appendix[9.F| we compute the SM thermal effective potential Veg (h., T') through

one-loop order®, where h(z) = V2 ’HTH !1/ ? is the radial component of the Higgs

6Tt is well known that the one-loop approximation breaks down at the temperature of the SM
electroweak PT (340), and that accurate results require lattice calculations (89 B41; [342]). How-
ever, since the CC contribution already represents perturbative correction to dark matter freeze
out, we will neglect higher-order corrections to the PT physics and simply apply the mean field
approximation described in Section
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Figure 9.1: The energy density at the SM PT, p(T) = pe.(T) + pr(T), relative to

the energy density when the entire SM is relativistic, p,(106.75) = %106.75 T*. Just

before the PT at T' 2 150 GeV, the energy density grows relative to p, due to the
temperature independent CC contribution, p..(T" > Tpr) ~ const. After the PT, the
top, bottom, Higgs, and massive gauge boson adiabatically decouple causing p/p, to
drop below one. This adiabatic decoupling is the dominant feature of the SM PT
that is relevant for freeze out.

field and h. = (h(x)). It is important to point out that the renormalization con-
ditions, given by Eq. (0.130)), are chosen such that Vig(he,0) has a minimum at
v = 246 GeV where the curvature is m? and, most importantly the CC is tuned by
requiring Veg(v,0) = 0.

Before discussing the numerical results, it is useful to recall from Section [9.3| that
for a non-first order PT, freeze out is only affected by modifications to the relations
H(T) o< \/p(T) < T? and T% < g5 a= ~ a3, These modifications arise when the
energy partitioning deviates from radiation domination and the number of relativistic
degrees of freedom deviates from a constant value. These deviations can be visualized
in Figure [0.1] where we plot p(T) normalized by p,(106.75) = (7%/30)(106.75) T*,
the energy density of the SM as if all particles were relativistic. We have taken
myp, = 115 GeV which gives a PT at Tpr ~ 148 GeV. As the temperature decreases

toward Tpr from above, p/p, grows to approximately 1.006 due to the presence
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Figure 9.2: Fractional deviation of the relic abundance and due to the SM electroweak
PT plotted against my, (left) and mx (right). The numerical calculation is represented
by the solid curve, the analytic estimate Eq. by the dashed curve, the CC effect
(c1€1 term) by the dot-dashed curve, and the adiabatic decoupling effect (c3z€32 term)
by the dotted curve. The right axis shows the values of the c;€; curve only, and the
left axis shows the values of the three other curves.

of the additional CC energy density (i.e., Av*/(106.75Tps) ~ 1073). Below Tpr
the massive species decouple, the plasma loses about twenty relativistic degrees of
freedom, and p/p, decreases to approximately 0.8. This figure illustrates that the
adiabatic decoupling has an effect on p which is two orders of magnitude larger than
that from the CC. Therefore, we expect that the Standard Model electroweak effective
CC will have a subdominant effect on the relic abundance as well.

The fractional shift dnx(¢y) is calculated using the perturbative, analytic expres-
sions in Section [9.3| as well as by solving the Boltzmann equation numerically. In the
left panel of Figurewe have plotted dnx (to) by varying m;, and fixing myx = 6 TeV,
gx = 2, and (ov) = 2.33 x 1073 cm?. As seen in the figure, the PT causes an
O (1073 — 107?) fractional increase in the relic abundance. We have chosen the DM
mass to be 6 TeV such that freeze out and the PT coincide at T' =~ 303 GeV for
myp = 300 GeV. For smaller my, the PT is delayed with respect to freezeout. The
analytic estimate, given by Eq. , only receives contributions from the CC ef-

fect (cie; term) and the adiabatic decoupling effect (cspezp term), because the PT
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is not first order. As we anticipated in the discussion of the preceeding paragraph,
the €35 term dominates. The analytic formula consistently underestimates the nu-
merical calculation by 2 — 3%, and moreover, in the large mj, limit where 0 ~ 0,
the deviation grows to approximately 4.5%. Both of these features can be traced
back to approximations we have made in the analytic estimate. The first is asso-
ciated with the approximation Eq. , which assumes the number density per
comoving volume decreases significantly due to residual annihilations and introduces
an O (Ty/mx) < 5% error at all my,. The second is associated with neglecting the
equlilibrium term n% in Eq. , which is not negligible at the start of the residual
annihilation era. The scaling with m;, also has a simple, intuitive explanation. One
can understand why dnx (to) is small at small my,, because in this limit the PT occurs
too late and becomes decoupled from freeze out. Considering the opposite limit, one
may wonder if 0nx(to) continues to increase for my 2 300 GeV where 6 < 0. For
0 < 0 the PT occurs before freeze out, as in the usual cosmology, and one would
naively expect dnx(ty) = 0. Nevertheless, dnx(ty) does continue to grow because
of the way we have defined ng(U). To calculate the usual relic abundance ng(U) we
assume that there are 106.75 relativistic species at freeze out. If the PT occurs much
earlier, the number of relativistic species at freeze out will be significantly less than
106.75 and dnx (to) will be non-zero. The CC contribution grows monotonically with
decreasing my,, since in this limit the PT temperature decreases and c¢1€; ~ pex/ TﬁT.

On the right panel of Figure [9.2] we plot the relic abundance shift by fixing mj, =
115 GeV and varying my. At large my, freeze out occurs well before the PT, the
two events decouple, and the relic abundance shift is small. At small my < 2.8 TeV,
freeze out occurs after the PT, and the analytic estimate fails. The CC effect ¢;¢; has
a maximum of approximately 1072 at 0,00 ~ 0.5. For 6 > ,,q, the factor €, given

by Eq. (9.26a]), is small because T in the denominator is large. For 0 < 4,4, the
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factor ¢, given by Eq. , is small because the CC is only present over a short
time during WIMP residual annihilations. The presence of this maximum suggests
that cye; will typically be more sensitive to variations in the parameters of the scalar
sector (e.g., my,) than in variations of the DM sector (e.g., myx). With this in mind,
we will focus the remainder of our discussion on determining the conditions that a
scalar potential must satisfy to maximize c;€;.

We will now extend the estimates of Section [9.3] in order to understand Figure
09.2] through a simple analytic approximation. We focus on the CC contribution to

onx(to), given by Eq. (9.49), which is

I pex
10 gE TJ%T

6nx<t0) D C1€1 (952)

up to multiplication by an O (1) function of . The factor of gg ~ 106.75 represents
the SM relativistic degrees of freedom before the PT. If we assume that before the PT,
the SM particles are light with respect to the temperature, then we can approximate

Veg using the so-called high-temperature approximation

Ae
Veg(he, T) =~ % (h2 = v?)* + eT?h? (9.53)

Here we have defined Acpp = = [Veg(0,0) — Veg (v, 0)] to be the one-loop effective self-
coupling and 2 c¢T? is the thermal mass acquired by Higgs particles passing through
the plasma. In the SM and subject to our renormalization scheme, these dimensionless

numbers are A.fr &= gy and ¢ & cgy where

1 3
CsM = 55 (6m? + 6mj + 6m2, + 3m? + Emi) (9.54a)
m3  48m} + 48m} — 24ml — 12m? — (15 + log4)m}
Neny — b t b w z h 9.54b
M= g T 128720 ’ (9-54b)

which yield cgp &~ 0.18 and Mgy =~ 0.12 for my, =~ 115 GeV. The PT occurs at a

temperature Tpr where 8ﬁc Vet (0, Tpr) = 0. Solving for this temperature one obtains

Ae
¢T3, = fo 02 (9.55)
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Before the PT, the CC energy density is

Ae
pex = Vet (0,0) = %v‘l (9.56)

and we can estimate the deviation in the relic abundance using Eq. (9.52) to be

11 ¢
10 gg Aer

(9.57)

C1€1 ~

For natural couplings one expects ¢?/A.pp ~ O (1) (e.g., %y /Asm = 0.28) and finds
c1e1 ~ 1/(10gg) ~ 107, Recalling also that A.;; ~ m37, one sees that this estimate
agrees well with both the magnitude and scaling shown in Figure Note that in the
Aefs — 0 limit, we find that both pe, and Tpr approach zero, but the ratio pex/Tps
becomes large. This simple approximation suggests that the region of parameter
space that maximizes the CC contribution to dnx (ty) will have low temperature PTs.
This is evident in Figure [9.2 because the CC effect grows at low m;, where the PT
temperature is low. Hence we will next consider a model in which a scalar singlet

coupled to the Higgs is introduced to lower the PT temperature.

SM Singet Extension with Z,

In this section, we briefly discuss an extension of the Standard Model in which the
presence of an additional scalar field modifies the electroweak PT dynamics. However,
we show that the dark matter relic abundance is not significantly enhanced, and we
argue that we should consider models with first order PTs. Consider an extension of
the SM in which a real, singlet, scalar field s(z) is coupled to the Higgs h(x) through
interactions which respect the Zy symmetry s — —s. The renormalized potential for
this theory can be written as
2

by, 1
U{h,s}) =g (h = 0*)" 4 =st 4 Smls? + 262 (12 =0?) - (9.58)
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such that 9,U({v,0}) = 0, 3?U({v,0}) = m? and 9°U({v,0}) = m?. We require

2

m? — agv? > 0 and 205 + by + % >0 (9.59)
v

to ensure (s) = 0. This model, known as the ZyxSM, has been previously studied
in order to determine the viability of s as a dark matter candidate (108} T86-191).
We will not restrict ourselves to this scenario, but instead treat the dark matter as a
separate sector. The role of s is simply to modify the PT dynamics (107; 110; 112}
117 [118)°.

Since this model possesses a greater parametric freedom than the SM, we can
attempt to verify the relationship Eq. , derived in the previous section, which
relates cre; ~ ¢?/Acpp. This is accomplished by first mapping the parameters of the
Z9xSM to ¢ and A.s¢, and second by performing a parameter scan while calculating
ci€1. We obtain c and A.ss by calculating the thermal effective potential as described
in the previous section (see also Appendix . If we assume that the quanta of s(z)
are light with respect to the temperature, we can then extract c and A.ss by matching

the effective potential to Eq. (9.53]). Doing so yields the expressions

a2

c=csm+ 2 (9.60)
a? asv?
Aeff = Asm — 7 61
1= s - g ( mg) (9.61)
2 2 1
w(x)53—5—2(1—5—1—;)1%[1—9&] (9.62)

where the terms containing as arise from 1-loop diagrams with an s-particle in the
loop, and the function ¢ varies from (0) = 0 to ¥(1) = 1. As a result of the

minus sign in Eq. (9.61]), there is an upper bound ay < 5 given by the constraint

~

Aefr > 0. Now we can see the impact of the singlet field on the PT. For ay > 0,

"See also (99-101; [114) for PT studies of the similar singlet Majoron model and (98; 102} [104)
for the complex singlet.
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the parameter c is slightly larger and A ;s is slightly smaller than in the SM. Recall
that the PT temperature, given by Eq. , scales like T3, ~ Ass/c. Hence, the
singlet field lowers the PT temperature and makes the CC energy density relatively
more significant, which causes the relic abundance shift to be greater.

To verify these analytic arguments, we calculate the PT temperature and cie;
numerically over a region of the theory space. We allow m? and ay to vary in the
ranges m: € [(50 GeV)?, (300 GeV)?] and ay € [—0.1,4.0], and we fix by = 0.25 and
m?2 = (500 GeV)Q. The range for my, is chosen to prevent the Higgs from becoming
unacceptably light®, while the range for a, is chosen to satisfy Eq. and to
avoid the unitarity bound. We map m} and ay to ¢ and A.s; using Egs. and
(9.61). In Figure we have plotted the contribution to dnx(¢y) from the CC effect
(c1€1) over the ¢?/Aesp—my plane. This figure shows that the CC effect grows with
increasing ¢*/).s; and decreasing my,, as we anticipated in Eq. . The largest
value of ce; is approximately 1.3 x 1072, which is only about 40% larger than in the
SM. The insignificant enhancement can be understood by observing that although
as > 0 tends to decrease ¢, given by Eq. , its contribution is suppressed by
a factor of 24. Since cgy =~ 0.18 we run into the unitarity bound on ay before it
contributes significantly to c. If we were to add N light singlet fields instead of one,
the contribution to ¢ would be Nas/24, which can be order one even for small as.
We have not take this approach here because the N additional relativistic degrees of
freedom would have a larger effect on the relic abundance by increasing the energy
density of radiation than through the CC. We have also plotted c;¢; for three different
values of the WIMP mass from 4 to 8 TeV. This narrow range of viable parameters

illustrates the tuning that is required to ensure that the PT and freeze out occur

8Mixing with the singlet does not significantly reduce the LEP Higgs search bound (108). More-
over, for small my, the electroweak breaking minimum may become metastable (I17 [186), and the
PT becomes first order (90). Nevertheless, we have allowed my, to be as small as 50 GeV to illustrate
the parametric dependence of the CC effect.
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Figure 9.3: The CC contribution to dnx (o), given by the c¢1e; term of Eq. (9.47),
plotted over the ¢?/A.;p—my, plane for three values of myx. The black line represents
the SM (CLQ = 0)

at the same time. If the WIMP mass is too large, freeze out occurs too long before
the PT when the CC energy density was subdominant to the energy density of the
plasma. As the WIMP mass is lowered, the delay between freeze out and the PT
decreases and ci€; grows. If the WIMP mass is too small, freeze out occurs after the
PT when the CC energy density has been converted into radiation. This is the case
in the my, 2 200 region of the mx = 4 TeV plot.

The examples of the SM and the Z,xSM demonstrate that it is challenging to
obtain c;e; larger than O (1073). Our discussion at the end of Section 9.4 and simple
dimensional analysis illustrate why this is the case. In that calculation we obtained
Eq. which can be written schematically as c1€1 ~ pex/Tpr ~ ¢*/Aess. Note that
the mass scale v, which controls both pe, and Tpr, cancels out in the ratio peyx /Ty
In light of Eq. we propose that the CC effect can be enhanced by working in
a model that has multiple mass scales if there exists a hierarchy between them. We

will explore different applications in the remainder of this section.



231

Generic Single Scalar Model

In this section we calculate the CC contribution to the relic abundance shift in a
generic single scalar model. Although extensions of the Standard Model typically
contain multiple scalar degrees of freedom related by symmetries, the thermal dy-
namics (supercooling and reheating) of a symmetry breaking PT can often be mod-
eled by a single scalar degree of freedom which does not display the symmetries of
the full theory (111; [I77). With this motivation in mind, we consider the theory of a
real scalar field p(z) coupled to N Dirac fields ;(z). The scalar field will experience
a first order PT during which dark matter freezes out, and the light fermions will
compose the hot thermal bath. Using this construction, we will be able to calculate
the CC effect, which is related to the non-thermal energy density and the amount of
supercooling, but we cannot estimate the entropy and decoupling effects since these
depends on how ¢ is coupled to the full theory. Therefore, in this section we assume
no decoupling occurs near the time of the PT and that the number of relativistic
species is fixed to gg/s ~ 106.75, the relativistic SM background. Let the action be

given by

Slel = /d4w {%(&0)2 —U(p) — Z bi (i@ — mi — hip) i + Ect} (9.63)

1 A
U(p) = pex + §M2902 — & + Zs@”‘ (9.64)

is the renormalized potential and L. is the counterterm Lagrangian. Note that
we have eliminated the tadpole term in U(y) by defining the origin in field space
appropriately, but there is still a counterterm for the tadpole in L. As discussed in
Section [9.4] we expect that there will be a greater impact on the dark matter relic

abundance if freeze out occurs during a first order PT with large supercooling. Hence,
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we would like to understand what region of parameter space yields a PT of this kind.
In particular, we expect that large supercooling can be obtained if the theory S[y]
possesses two vacua, which will correspond to the low- and high-temperature phases,
and that the vacua are separated by a barrier (106} [115; [118]).

We can determine the vacuum structure by identifying the minima of the effec-
tive potential, which is calculated in Appendix [9.F] Provided that the non-thermal
radiative corrections are negligible, the effective potential can be approximated as
Veg(pe, T = 0) ~ U(p.). It is convenient to eliminate M? for the dimensionless
quantity ag = AM?/2E?* while assuming A€ # 0. We now see that the parameter ag
controls the shape of the potential U(p): for oy = 1, the potential has two degenerate

minima at p. = 0 and ¢, = v|, _, where

3& 8

for ag > 1, . = 0 is the global minimum; for 0 < ay < 1, . = v is the global
minimum; and for oy < 0, . = 0 becomes a maximum (see also Figure . There-
fore, provided that we take 0 < ag < 1, the theory possesses a metastable vacuum in
which ¢, ~ 0 and a stable vacuum in which ¢, ~ v. In the stable vacuum, we impose

the tuning condition Veg(v,0) = 0 to solve for

4

g 8 3/2
Pex A —— |27 — 36 a9 + 8 a2 + 27 (1—§a0> +0(n), (9.66)

83

which represents the CC energy density prior to the PT. Finally, the barrier separating

the two vacua has a “height”

4 4.3
Viarrier = U (barrier) — U(0) ~ 257;;0

{1 +0 (ao)} (9.67)

relative to the metastable vacuum. Due to the factor of af, the barrier vanishes
rapidly as «p approaches zero. This is illustrated by the ay = 0.5 curve of Figure [9.4]

in which the barrier is already almost imperceptible to the eye.
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Figure 9.4: An illustration of the oy dependance of the potential given by Eq. (9.64]).
The curves represent g = —2 (red), ap = 0 (green), ap = 0.5 (blue), ap = 1 (purple),
and ag = 9/8 (black).

Having established that this theory admits two vacua, we will study the PT us-
ing the thermal effective potential. Although the numerical calculations use the
full effective potential, we can gain some intuition by making the high temperature
approximation. We assume that the 1;-particles are light with respect to the tem-
perature of the thermal bath, m? < T?, and that the y-particles are heavy. In this
limit, then the one-loop thermal effective potential may be approximated by the high

temperature expansion
Ve (e, T) = U(pe) + ¢ T?02 + O (m?/T?) + O () (9.68)

where ¢ ~ Zf\il h?/12 is related to the couplings between ¢ and ;. Just as we
introduced o to reparametrize Vg (e, 0), we can now introduce

Ac
82040

a(T) = ag (1 + T2) > ay (9.69)

to parameterize Vog(p., T'). This definition is particularly convenient, because now
Figure[9.4]also illustrates the temperature dependence of Veg (e, T') (up to ¢.-independent

terms) if one replaces oy with «(7T"). We obtain the expectation values of ¢ in the
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“symmetric” and “broken” phases, v(*)(T") and v®(T"), by solving (0/0¢.) Ve (e, T) =
0 subject to the boundary conditions v®(0) = v and v)(0) = 0. We use the terms
“symmetric” and “broken,” eventhough S[¢] does not display a symmetry in order to
connect with the notation of Section 0.2

Provided that this model experiences a first order PT, the CC’s effect on the relic
abundance will depend sensitively on the amount of supercooling at the PT (T12]).
This is seen by the factor of (T})* ~ (Tpy)* in Eq. . Therefore, we will begin
by investigating the parametric dependence of the amount of supercooling, and we
will see that it has an interesting dependance on the parameter ap. The supercooling

stage begins when the temperature drops below

1—&0
T. ~ .
A (9.70)

defined by Eq. (9.2), or equivalently when «(7.) = 1. During supercooling, the

universe remains in the metastable, symmetric phase until bubbles of the broken
phase begin to nucleate. Bubble nucleation is a non-perturbative process (343), and
it occurs at a rate per unit volume which carries the standard exponential suppression
I' ~ T'exp [-S®)/T], where S®)(T) is the action of the O(3) symmetric bounce
(202; 204 205). Provided that Vg (¢, T') can be expressed in the form of Eq. (9.68),

then S® is well approximated by the empirical formula (307)

SG) £ /

S~ 13T (%)3 " @) (9.71)
24 0.26

f(a)zl+%(1+1_a+(1_a)2) (9.72)

with o = «(T'). Bubbles form rapidly once the bubble nucleation rate averaged over
a Hubble volume I" H 3 is comparable to the Hubble expansion rate H ~ T?/M,,. For
an electroweak scale PT, this equality occurs when S®) /T drops below approximately
140 (98; 206]). Therefore, we can determine the amount of supercooling by solving

SG) /T a2 140 for T = T and comparing this temperature with 7.
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Considerations of the equation S®) /T ~ 140 demonstrate that the nature of the
PT is strongly dependent upon the vacuum structure of the theory, as parametrized
by ag. We will discuss the two cases ap > 0 and oy < 0 separately. For ag > 0, the
vacuum with ¢, = 0 remains metastable as 7" — 0. This implies that T, can be
arbitrarily low, and in this limit of large supercooling the CC effect may be arbitrarily
large. However, in this case the barrier in Vg(p., T') persists as T — 0, and it is
possible that the PT does not occur at any temperature, but instead that the universe
becomes trapped in the metastable vacuum. This follows from the observation that
for ag > 0, S® /T has a minimum at finite 7: at low temperatures S® /T grows
due to the explicit factor of T" in the denominator, and at high temperatures f(«)
diverges as T approaches 7. and o — 1. For oy < 1 the inequality S® /T < 140

9 Therefore, if we

is not satisfied at any temperature, and the PT does not occur
require that the PT must occur via thermal bubble nucleation, we obtain an upper
bound on «g. On the other hand, for the case ag < 0, the PT necessarily occurs at a
temperature T > 0, since the symmetric phase becomes perturbatively unstable at
low temperatures. This latter case has the drawback that supercooling cannot last
an arbitrarily long time.

Assuming that the PT does occur, we can quantify the amount of supercooling
using
Ty
T. ’

Ssc =1— (9.73)

which takes values between 0 and 1. Parametrizing the temperature dependance with

9At least, the PT does not occur as a thermal process, although it may still occur as a quantum
tunneling process (204). However, since quantum tunneling typically proceeds on a longer time
scale, the universe could enter an inflationary phase, which leads to a cosmological history that
deviates significantly from the perturbations we consider in Section @
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Figure 9.5: The amount by which the PT temperature drops below the critical
temperature, quantified by dgc, is plotted against the parameter oy which controls
the height of the barrier. The curves represent A\/y/c = 0.04 (purple), 0.20 (green),
1.00 (blue), and 5.00 (red). The square indicates the especially tuned parameter set

given by Eq. (9.78)).

dsc, we can rewrite Eq. (9.71]) as

S3) A\ a3 fla)

-— ~13.7( — .74

T Thy 37(\/6) \/1—0401—550 (97>
a=ay+ (1—a)(l—dsc)?, (9.75)

which is now only a function of ag, A\/y/c, and dsc. Of course, this expression is
approximate, since we assumed Vg took the form of Eq. , but it suggests that
the amount of supercooling will depend most sensitively on ag and \//c. Now using
the full thermal effective potential, we impose S®) /TlT};T = 140 and solve for ds¢,

which we have plotted in Figure [9.5] for various parameter sets:

£=5GeV  A={0.004, 0.02, 0.10, 0.50}

N=1 m=10GeV h=0346 c~0.01l. (9.76)

The supercooling grows with increasing o and decreasing \/+/c as the barrier height

and bounce action are made larger. The amount of supercooling is typically dgc =
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Figure 9.6: The CC effect on the relic abundance cy¢e; plotted against ag for myx = 17
TeV (solid), 6 TeV (dashed), and 0.3 TeV (dotted), and for four values of A/ /c as
indicated by the shape used to denote the endpoint. For the contours which are
absent, freeze out occurs after the PT when the CC is not EW-scale.

O (0.5) which implies Tp, = O (1,/2). Above a finite value of o (indicated by a
dot) the barrier becomes insurmountably large, and the universe becomes trapped in
the metastable vaccum. The largest amount of supercooling is achieved for A/ /c <
1 and 0 < a9 < 1. In this parameter regime the CC is large (see Eq. (9.60)),
and the metastable vacuum is separated from the true vacuum by small barrier (see
Eq. (9-67)).

Having come to understand the parametric dependance of the amount of super-
cooling as ¢ experiences a first order PT, we turn our attention back to calculating
the impact of such a PT on dark matter freeze out. Using Eq. we calculate the
effect of the CC on the relic abundance shift and present the results in Figure [9.6]

We have chosen the same parameters as indicated in Eq. (9.76)) and have taken
mx = {0.3, 6.0, 17} TeV  gx =2 (ov) =2.33 x 10" ¥em ™2 (9.77)

as well. The figure illustrates that is possible to achieve ¢;¢; = O (0.01) in the tuned

parametric regime where \/y/c is small and «q approaches its maximally allowed
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value. Some of the curves are absent for the smaller WIMP masses. This occurs
because as my is lowered, the temperature of freeze out decreases as well. In the case
that A/y/c is small and the PT temperature is high (see Eq. (9.70)), freeze out will
occur after the PT for small my. This statement about the relative times of freeze out
and the PT also explains why c; € is insensitive to o for certain parameter sets (e.g.,
AyVe =1, my =17 TeV) and very sensitive for others (e.g., \/y/c =5, mx = 0.3
TeV). In the first case, freeze out occurs long before the PT while in the latter case,
freeze out occurs just before and during the PT and there is a large impact on the
relic abundance.

To conclude this section, we present a particular tuned parameter set which yields
c16; = O (1). Suppose that we have only one fermion ¢ and the parameters of S[y]

are given by

A=54x10"" h=0.1
E=027GeV  M?= (189 GeV)> m =10 GeV (9.78)
which leads to
v~ 1497 GeV g ~ 0.007
A
c~83x107* ~— ~0.018 (9.79)

NG

and PT temperatures
T, ~ 374 GeV Tor =~ 16 GeV 0sc ~ 0.96. (9.80)

This parameter set is represented on Figure by a square marker. In the dark

matter sector we take

mx = 600 GeV  gx =2 (ov) =2.33 x 107 ¥em ™2 (9.81)
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such that
Ty ~ 34 GeV and o~ 1.12. (9.82)
Using these values we can estimate the CC effect as
cre; ~ 6.1 (9.83)

Note that the potential obtained with these parameters has a very shallow metastable

vacuum at . ~ 0, separated from the global vacuum at ¢, &~ v by a very small barrier.

Singlet Extension with First Order PT

In this section, we consider a generalization of the SM extension studied in Section
, in which we do not impose a Zs symmetry on the singlet field s(x). This leads
to model known as the xSM (108; [186). The xSM admits a first order electroweak
PT (103; 105-107; 109 1T} 115} 116} 118), and we seek to compute the effect on the
relic abundance due to the effective CC at the PT. As discussed in Section [9.4], the
CC effect grows with the duration of supercooling. With this in mind, we will focus
on a region of parameter space in which we expect to have first order PTs with large
supercooling. Supercooling is an example of the hierarchy of mass scales which we
argued in Section [0.4] helps to obtain a larger CC effect.

We generalize the ZoxSM potential Eq. by relaxing the Zy symmetry. This
allows us to write down the three additional operators sh?, s%, and s, but we eliminate
the tadpole by an appropriate shift in the field space. We are left with the xSM
renormalized potential

m3 2 b 1
U{h,s}) =g 5 (0° = 0")" + 5" + omis’

b 1
+ 3333 + 38 (h* = v*) (a1 + ass) . (9.84)
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The thermal effective potential Vg is calculated in Appendix[0.F] With this parametriza-
tion, Veg({he, sc},T = 0) has a minimum at {h., s.} = {v,0} where Veg({v,0},T =
0) = 0 and the curvatures in the i and s directions are m? and m? respectively. The
Higgs vacuum expectation value is fixed by electroweak constraints, but the six real
numbers {m?, m?, by, b3, a;,as} are free parameters.

As in the previous section, we compute the bounce action S® in order to estimate
the PT temperature T, by solving S® /T = 140. This calculation is made more
challenging by the presence of the additional field direction. To obtain S® we make
the approximation that the PT occurs along the trajectory s(h.) satisfying

dU ({he, sc} ,0)
ds -

Sc

=0 and S5.(v) =0, (9.85)

which reduces the problem back to solving for the bounce in one dimension. In the
region of parameter space on which we are focused, this approximation gives T,
to within a few percent (see Appendix for details). Note that the empirical
formula Eq. cannot be applied here, because the effective potential is not well
approximated by the form Eq. (9.68)).

We have performed a parameter space scan and searched for a region with large
corrections to the relic abundance from the CC. In the scan we fix the parame-
ters by = —20 GeV,by = 0.2,a; = —25 GeV, and ay = 0.2, and we vary mi €
[(65 GeV)?, (170 GeV)?| and m% € [(40 GeV)?, (140 GeV)?]. In order to connect with
the intuition garnered from the single field model of Section [9.4] we have mapped the
xSM parameter space to a single parameter M?2. This is accomplished by restricting
to the trajectory given by Eq. and defining
d

M= —
da?

Vet ({hc(x)v gc(hc(*T))} 7T = 0) (986>

=0

where z parametrizes the position along the curve 5.(h). The parameter M? controls

the stability of the electroweak preserving vacuum: if M? > 0 the symmetric phase
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Figure 9.7: The fractional deviation in the relic abundance of a 2 TeV WIMP due
to the CC at the xSM electroweak PT. The parameter M? controls the curvature of
the zero temperature effective potential along the PT trajectory. For M? < 0 large
supercooling enhances the CC’s effect. For M? > 0 the PT does not occur, and for
M? < —2500 GeV? the PT occurs before freeze out leading to a suppression of the
relic abundance shift.

remains metastable as T — 0, whereas if M? < 0 the symmetric phase becomes
perturbatively unstable at some finite temperature Ty > 0. In this way, the potential
depends on the parameter M? in the same way as the parameter o from Section
0.4, We cannot map the xSM parameter space to «q directly because the effective
potential along the trajectory Eq. cannot be expressed in the form of Eq. .

In Figure we have plotted cy€q, given by Eq. , by projecting onto the
M? axis and choosing mx = 2 TeV. For M? < 0 the CC has an O (1) impact on
the relic abundance. In this region, the supercooling is maximal'® and Th, = Ty =
O (few GeV). For smaller values of M2, the CC effect rapidly decreases and drops
below 1% for M? < 500 GeV?2. Therefore, in order for the CC to have a significant
impact on the relic abundance, the parameters of the scalar sector must be tuned into

a narrow band where supercooling is large. In Figure[9.8] we have allowed the WIMP

10A recent phase transition analysis of this model (I18) also concluded that the order parameter
is enhanced in the limit in which the potential possesses a flat direction.
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Figure 9.8: This figure shows a subset of Figure as well as the CC effect for a 500
GeV WIMP represented by squares. As the WIMP mass is reduced, freeze out occurs
at a lower temperature. This increases cje; for M? < 0 where the PT temperature is
low, but excludes points M? < —100 GeV? where freeze out occurs after the PT.

mass to decrease to 500 GeV. This change lowers the freeze out temperature, reduces
the delay 0 between freeze out and the PT, and therefore increases the CC effect.
However, this increase is small compared with the amount by which c;€; varies with
M? in the M? < 0 region. For smaller values of M?, the PT temperature is higher
and for the 500 GeV WIMP, freeze out occurs after the PT causing the CC effect to
be suppressed. These calculations lead us to the conclusion that the optimal region of
parameter space is one in which the symmetric phase becomes perturbatively unstable
at a low temperature and the effective potential is concave at zero temperature. We

were unable to find any points with A/? > 0 in which the PT completes.
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The following is a benchmark parameter point:

{ay, bs, mp, mg, mx} = {—25,-20,128,91.1,2000} GeV,
{ag,b,} = {0.2,0.2},

M? = —47.7 GeV?,

{T}, 1., Tip, Tpp, To } = {107,70.7,30.0,13.7,12.7} GeV,
cre; = 0.390,

pex = (69.7 GeV)* (9.87)
The scalar masses are given by the eigenvalues of Eq. (9.141]) which are

My = 141 GeV, {0.78,0.22}

Mg =70.7 GeV, {0.22,0.78} (9.88)

with the respective squared eigenvectors indicated to the right.

9.5 Summary of the Chapter

We have considered a way to probe the hypothesis that the present-day, minute CC
energy density is the result of a tuning between UV contributions of unspecified origin
and IR contributions that arise from cosmological PTs. Prior to the electroweak
scale PT, the UV contribution would have been partially uncancelled leaving an
O (M) energy density. It is possible to probe this energy density with the physics
of dark matter freeze out provided that the dark matter mass is greater than a few
hundred GeV. The dark matter relic abundance is increased due to the effective CC’s
contribution to the Hubble expansion rate during freeze out.

The notion of how an effective vacuum energy (which is Lorentz invariant in

the flat space limit) can depend on temperature (which manifestly breaks Lorentz
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invariance) has been clarified. The temperature is an approximation to the mixed
vacua, inhomogeneous states whose occupation is very probable near the time of the
PT. This leads to a spatially averaged equation of state that is expressed in terms
of an effective vacuum energy density that is somewhere between the false and true
vacuum energy densities. The true inhomogeneous field configurations may also lead
to additional dark matter freeze out effects that have not been investigated in this
paper. This would be an interesting avenue for future investigations.

To provide a generic prediction associated with the established physics and to
provide the computational details missing in (177)), we have analyzed the Standard
Model with a 115 GeV Higgs and a single WIMP dark matter degree of freedom,
assuming that the WIMP interaction effects on the dynamics of the PT is negligi-
ble. We have found that the CC causes an O (107?) fractional increase in the relic
abundance of a 4 TeV WIMPs. This is typical of non-first order PTs.

We have also investigated minimal singlet extensions of the SM and searched for
parametric regimes in which the CC effect on the relic abundance is enhanced. We
find that a low temperature, first order PT with large supercooling is the optimal
scenario for maximizing the CC effect. In this limit, the effective CC energy density’s
contribution to the Hubble expansion rate can be comparable to the radiation energy
density, and the CC effect can become order one. In the context of a generic single
field model, we find that reaching this limit requires a tuning of the scalar sector
parameters and the WIMP mass. Without appropriate tuning, either 1) the PT will
not occur at all by thermal bubble nucleation, 2) the PT will occur before freeze out
(when the dark matter is still in equilibrium and the CC effect is suppressed), or 3)
the CC effect will not be large.

As a specific example, we have considered the xSM, an extension of the SM that

adds a real scalar singlet. In that model, we find that the CC may increase the
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relic abundance by as much as a factor of order few. To maximize the CC effect,
the scalar parameters must be tuned into a narrow band where fluctuations around

4

the symmetric “vacuum” are slightly tachyonic, which allow for a long period of
supercooling. The magnitude of the CC effect is relatively insensitive to the WIMP
mass provided that the latter is sufficiently large such that freeze out begins before
the PT occurs.

The tests of CC fine tuning hypothesis are notoriously rare. In the context of
a dark matter probe, it is encouraging that parametric possibilities do exist within
simple extensions of the SM. It would be interesting to further advance this explo-
ration by computing the dark matter implications of modified gravity/self-tuning
models and comparing the results with those of this paper. Furthermore, it would be
interesting to cross correlate other astrophysical tests of those modified gravity /self-
tuning models with the dark matter predictions made within those models. Note also
that there are other probes of the cosmological constant during a PT such as gravity

wave probes (167) that will need more development as the gravity wave spectrum

calculational technology improves (159} 161} 164)).
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9.A Appendix A. Renormalization Scale

Any measurable quantity is independent of the renormalization scale. Hence, one
should not expect that the running of the cosmological constant parameter should
affect any physical observable. Indeed, the running of the other parameters in the
Lagrangian will compensate the running of the CC parameter to yield the same Tjg
governing the expansion rate H which can be measured for example by a test photon
redshift. The renormalization scheme and scale does however determine the manner
in which radiative corrections play a role. Furthermore, in any practical computa-
tions involving finite order truncation in A expansion, there is a renormalization scale
dependence to next order in the perturbation power unless one is able to explicitly
keep exactly the terms of the relevant order in A.

Given that we are computing homogeneous quantities, one might also naively
worry that there is a coarse graining requirement down to length scales of H~!. To
see why this is not the case and to see what renormalization scales would minimize
the radiative correction dependence, consider the effective action generating the grav-

itational equation of motion for the metric g:
eiSertl9]l — iSEH]] /DAqb eSml9,9] (9.89)

where Sgp is the Einstein-Hilbert action, the matter field schematically written as
¢ satisfies the appropriate boundary conditions relevant for the matter distribution,
and we assume a renormalization scale at A. Since we are going to resolve the one-
particle thermal states with masses of order the freeze out temperature 7', we should
have A 2 T. Semiclassically expanding about the classical path ¢y on the right hand

side of Eq. (9.89)), we have

iz 592 (w) 828 (9.9]

giSelel _ (i(Senla+Snlo.dol) A7 / Dy 5] DT T o=t (9.90)
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where the path integral will have the usual perturbative renormalization. Hence, one

can consider the physical observables to be defined through

2 )
Tuu(y) = \/@69#,,<y)

—iln {N / Dy Sexpli / d4x5¢22(x> 52{%5 ’)¢]|¢:¢O +...}}>.

(SM 9, ¢o]

(9.91)

Note that in practice, we are expanding g,,, perturbatively about a homogeneous and
isotropic FRW background before doing the path integral. Hence, the inhomogeneities
can be computed using classical perturbation theory and the renormalization scale
need not be at A = Hpr even though it is at length scales longer than Hp. for which

homogeneity and isotropy are typically a good assumptions.

9.B Appendix B. Derivation of Eq. (9.9)

Start with the thermally averaged Boltzmann equation for nyx ()

1 d 3y 2 eq2
Py (nxa®) = —(ov) (nk —nY") (9-92)

which says that nx tracks the equilibrium number density n until freeze out occurs

at t = t;. Long after freeze out, the equilibrium term can be neglected, and the

equation asymptotically approaches

d 3y 52 1
= (nxa®) = —(ov) (nxa®)’ —. (9.93)

One can solve for ny(tg) by integrating

nx(to) = nxliy) <_f> . (9.94)

a 3 (13
1+ nx(ty) <_f> [ dt (ov)
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The integral in the denominator accounts for residual annihilations of dark matter
particles after freeze out. The freeze out time ¢; is not fundamental but instead an
artifact of defining when the solution deviates “significantly” from the equilibrium dis-
tribution. For temperatures away from resonances and thresholds, one can typically

parameterize (ov) as

T
(ov) =a+ bm—X, (9.95)

where T is the temperature and myx is the mass of the dark matter. To further

reduce Eq. (9.94) we apply Eq. (9.31), which implicitly defines ¢, and approximate
nx(ty) = nd(ty). Then, the denominator of Eq. (9.94) satisfies

3 rto 3 d+§ﬂ
nx(ty) (Z—z) /t dt(av)%zﬂ;f <a+;£ >1 (9.96)
f mx

for Ty ~ mx /20 the freeze out temperature. Using this approximation we can express

the relic abundance as

mao/es qn(a/ay) ag B
nx(to) = (/0 Tf@@g) (9.97)

after also applying dt = H='dIna.

9.C Appendix C. Difference Between Entropy and
Energy Degrees of Freedom

In this appendix, we show that as the universe expands adiabatically during radiation
domination, the relationship gg(7") = gs(7) hold iff

dlngg dlngs
dinT  dnT =0 (9.98)

where g is the effective number of degrees of freedom for the thermal energy density
and gg is the effective number of degrees of freedom for the entropy density. We also

justify an ansatz that can be used to relate gg and gg.
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Assume that the CC energy density is negligible so that p =~ pg, which is the case

sufficiently far before or after the PT. The entropy and energy densities of a gas are

related by Eq. (9.1c]), which can be written as

p+P—Ts=0

(9.99)

where the pressure P of the gas is given by P(T') = —F(T'). The functions gg and gg

representing the number of relativistic degrees of freedom were defined by Eq. (9.15))

and Eq. (9.16]) and are reproduced here for convenience:

w2 272

= — TT4 d - = TT3
p= T and 5= ()

As the universe expands, energy conservation is enforced by
d(pa3) +Pda*=0.

Using Eq. and Eq. (9.100)) this becomes

dIn gg(T) dinT gs
4 495 _
dlna * dlna + JE 0,

which can be resolved as

me__ggl+1dm%uU*1
dlna  gg 4 dInT '

Next, impose adiabaticity d(sa®)/da = 0 by first using Eq. (9.100) to write

dln(5a3):_ dlngg+3 9s |4 1dnggp(T) _1+37
dlna dinT JE 4 dInT

and then setting this to zero and solving to find

gs ldlngg 1dlngg

gr  4dWnT 3dlnT "

This equation implies gp = gg iff

dingg  dlngs
dinT  dlnT

(9.100)

(9.101)

(9.102)

(9.103)

(9.104)

(9.105)

(9.106)
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as claimed.

To obtain some intuition for this theorem consider the SM electroweak PT. Be-
fore the PT, the entire spectrum is massless and Eq. is satisfied exactly so
ge(T) = gs(T) = const for T > Tpr. After the PT, we can estimate how much
difference between gs and gg is required for self-consistency and to justify an in-
tuitive parameterization, by considering a hypothetical situation in which one can

approximate
9e/s(T) = gr/s(T;) [T/, " (9.107)

where K is a constant and 7; is an initial condition temperature. Then, one can solve

Eq. (9.105) as

gS(T) o 1-3K

(1)~ 14K (9.108)

Hence, if 0 < K < 1, we have a situation in which gz (7") decreases slowly as a function
of time while satisfying both entropy conservation and gs(7") ~ gg(T'). Presumably,
K can be viewed as a leading term in a Taylor expansion regarding gs/gr. Hence,

we will approximate
95(T) =~ (1 + K) gp(T) (9.109)

even though we are not necessarily making the assumption of Eq. (9.107) throughout

the paper.

9.D Appendix D. Derivation of 75, As, and T'(a)

To find T'(a), we start with the temperature before the PT T and impose energy

conservation to solve for the temperature after the PT Tp,.. This allows us to calculate
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As and € in terms of Ape. Then, we require the entropy per comoving volume
S = sa® to be conserved before and after the PT to find T'(a).
Assuming that there is a negligible change in a during reheating, we can impose

energy conservation at apr. Using Egs. (9.6), (9.14), and (9.17)), energy conservation

can be written as

7T2 s _ _ 71'2
55 98 (Ter) (Trp)" + Apex = 9 (i) (T)" (9.110)

which implicitly defines T4,. This equation can be solved analytically by expanding

Ty = Tpp (1 + A7) and linearizing in A7 along with other small quantities. Using

Eq. 1) to expand gg) (T") around gg) (Ty), Eq. (9.110]) becomes

2
% |:11HOI h(apT + 6) — h(apT — 6):| (TI;T)4 + Apex

71'2 s _\4
z4%gg)(Tf) (Tpr)" A7 (9.111)

where we have dropped higher order terms. Using Eq. (9.22)), the term in brackets is

(7/8)Npr. Finally, the equation can be solved for AT = T#,./Tp, — 1 to obtain

1 1 Apex
1+—631+— Pe

477 A (T (Thp)

(9.112)

where €37 is given by Eq. . As expected, the energy released Ape, > 0 controls
the reheating from Tp, to Thy. Additionally, the reheating is larger when more
particles non-adiabatically decouple (larger €3;), because the latent heat is distributed
over fewer degrees of freedom after the PT.

Next we can calculate the entropy density increase at the PT given by

As = s(Ty) = s (Tpy) (9.113)
= O T o (T (T (9.114)
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Once again we will linearize in the perturbation by expanding gs using Eq.
and writing Tp, using Eq. . This gives
As = i—ﬁ; {—% [lim h(apr + €) — h(apr — e)} + SAT} g(Ty) (TIST)3
95" (Ty)
(9.115)
1 1 Apex

€1+t 15 —
4 4 %91(5) (Tf)<TPT)4

s {_g?(Tf)E
B gy

As discussed in Section , we can approximate ggs) (Ty) =~ gg) (T¥). Then finally As

}g‘;> (Ty) (Tpr)* (9.116)

becomes

27T2 (5) — 13
As~ Egs (T) (TPT)

1 n 1 APy
— €31 T — 5 _
4 4 Q—SQE)(TJ‘)(TPTV‘

(9.117)

Using Eq. (9.26b) and noting Tppapr = Tray up to higher order terms, we also

obtain

1 1 APy

€)X —— €

31+ — " —.
4 4 Q—SQE)(Tf)(TPT)“

(9.118)

Both of these equations illustrate that the entropy increase at the PT is controlled by
the amount of latent heat released and the number of particles that non-adiabatically
decouple.

Finally we will solve the equation of entropy conservation for 7'(a). The entropy
per comoving volume S = s a? is conserved excepting the entropy injection at reheat-
ing which is assumed to occur rapidly at appr. Entropy conservation may be expressed
as

s 272\ 7!
gs(a)T(a)’a® = gfg)(Tf) Tja} +O(a — apr) apy (E) As, (9.119)

which implicitly defines T'(a). To solve for T we use Eq. (9.21)) to expand gg(a) then
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linearize in h and As to obtain

1 h(a)
395(Ty)

1 apr 3 As
‘|—@(CL—(IPT)§( . ) o2 () .
f 5 9s (Tf) Tf

T(a) ~ Tf% 1+

(9.120)

Further expanding h using Eq. (9.22)), approximating gs(7f) ~ gr(T¥), and applying
Eq. (9.26b)) we obtain the final expression,
% 1 1
T(a) ~ Tf; 1+ 5632 f(a) + 6 (CL — apT) g (631 -+ 62) (9121)

After the PT, the exotic energy component behaves approximately adiabatically.

9.E Appendix E. Derivation of PT induced change
in the degree of freedom

We begin with the well-known formula for the energy density of a gas of fermions at

temperature 1" with N dynamical degrees of freedom:

d*p E,
p<T):N/(2W)31+eEp/T' (9.122)

The gas has an effective number of degrees of freedom gg given implicitly by p(T') =
% ge(T)T*. We can parameterize the decrease in gg due to the decoupling of the

fermionic gas by writing

7
96(T) = gu(Ty) = £ NJ (a/ay) (9123)
where
T\ [ dBp 11 1 1
fla) = (--) /—E — - . (9.124)
830 (2m)3 " T}Le%}:%—l T%(a) €%+1
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The temperature T' = T'(a) is given by Eq. (9.121)) to leading order in the perturba-

tions €;. Since f already multiplies a small term in Eq. (9.22)), we need only keep the

leading factor in Eq. (9.121)) which is 7' = Ty as/a. This lets us write Eq. (9.124)) as

f(@)z?(%) / <§i§s% 1 (afap)’

Note that f(a) increases from f(ay) = 0 to f(oo) =~ 1. Due to the exponential

(9.125)

Ep aEp

eTr +1  eu™r +1

temperature dependence, the transition to f &~ 1 occurs at 7'~ my and is smoothly
steplike over a time scale At ~ 1/H. In this discussion we have assumed E, =
\/m with my constant, that is, we neglect any change in the mass of the
particle as a function of time. This assumption is valid sufficiently far after the
PT such that the scalar field expectation value and field-dependent masses have

approximately stopped varying.

9.F Appendix F. Thermal Effective Potential
Details

We have calculated the thermal effective potential through one-loop order for each
of the models in Section . Our calculation employs the standard techniques (61}
124}, [126)), and the case of the Standard Model is particularly well documented (175}
340; [344)). As such, we do not feel the need to reproduce the entire calculation here.
However, we have chosen to use renormalization schemes which are convenient for
our calculation, but not standardly employed. Hence, we will use this appendix to
write down the thermal effective potentials for each of the models in Section and
to spell out our renormalization conditions.

In calculating thermal corrections to the scalar effective potential, we do not

include contributions from the dark matter sector. This is an excellent approximation
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provided that freeze out occurs prior to the phase transition (as we have assumed),

such that the dark matter is decoupled from the plasma during the phase transition.

Thermal Effective Potential: Standard Model

1/2

Let h(z) = 2 |HTH} be the radial component of the SM Higgs field and let h, =
(h). In calculating the radiative corrections, we need not include the contributions
from every field in the Standard Model. With regards to the non-thermal corrections,
light particles which couple weakly to the Higgs can be neglected, and with regards to
the thermal corrections, particles which are light and do not decouple during freeze
out can be treated as massless. Since we expect that freeze out will coincide with the
PT at a mass scale of about 100 GeV and that residual annihilations will occur down
to a mass scale of about 10 GeV, we can neglect particles with a mass below that of

the bottom quark (i.e., 4.2 GeV). We retain the top quark, bottom quark, physical

Higgs, and massive gauge bosons!! which have field dependent masses

M /o) 2w\ 2
Mt2/b/Z/W(hc) = <+> h? (9.126a)
2
M2(h,) = ;n—v’; (3% — 0?) (9.126b)

where m; = 172.6 GeV,m, = 4.2 GeV,myz = 91.2 GeV, and my = 80.4 GeV (14).
The non-thermal corrections can be expressed as functions of the Coleman-Weinberg
potential (124). Regulating in (d = 4 —2¢) spacetime dimensions, the unrenormalized

potential is given by

M* M? 3
2

H'We work in the Landau gauge (¢ = 0) for which the scalar polarization mode and ghost
propagators are independent of h. (124).
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where Cyy = € ! — g +1In4m and p is the t'Hooft scale. The thermal corrections can

be expressed in terms of the bosonic and fermionic thermal functions (61} [182)

Jg (y) = /000 dz 7* log <1 - e‘m> =— i %y K5 (ny/y) (9.1284a)

Jr(y) = /OOO dz 2% log <1 + e_m> =— Z (_71—12)"1/ Ky (n/y) (9.128b)

where K5(z) is the modified Bessel function of the second kind. Putting the pieces
together, the Standard Model thermal effective potential (through one-loop order and

before renormalization) is given by

2
(SM) oy o (2 22 lez 0A 4
Vg (he,T) SUQ(hC v?) +{6 +25m hc+4hc

— 12 Ve (MZ(he)) = 12 Vew (M2(he)) + 3 Ve (M3 (he))

+ 6 Vew (M7 (he)) + Vew (M7 (he)) }

4

Y 75T4+T—[—12J (MZ2(h,) T~?)
90"~ 22 P e

—12Jp (M2(he) T™2) + 3 J5 (M2(he) T™2)

+ 605 (M2 (he) T2) + Ji (ME(h,) T‘2)] } (9.129)

where 69, m?, and d\ are counterterms. We have also included the term (—3—375.75 T,
which represents the thermal radiative contribution from light quarks, leptons, and
massless gauge bosons which are relativistic at temperatures 7" 2 10 GeV. The

renormalization conditions,

)
o v (h,0)| =0 (9.130a)
c he=v
RPICUTI = m? 9.130b
ahg eff ( C) ) . = my ( : )

VM (y,0) =0, (9.130¢)
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are chosen such that tadpole graphs vanish and Ve(f?M) (he,0) has a minimum at h, = v,

self-energy graphs vanish and the Higgs mass'? is m;,, and the CC is tuned against

the vacuum energy density to zero.

Thermal Effective Potential: Z,xSM

The ZoxSM potential was specified by Eq. (9.58]). Since we focus on the case (s) = 0,
we need only calculate the effective potential as a function of h. and not s. = (s).
That is, the presence of the singlet in this model simply add an additional degree of

freedom, with field dependent mass
MZ(he) = (m? — asv®) + ash? (9.131)

to the radiative corrections. We can construct the effective potential from the SM

effective potential Eq. (9.129)) as

€

X T B
VA (s T) =VE™ (e, T) 4 Ve (ME(h)) + 55T (ME(R)T™?) . (9.132)

An additional UV divergence arises from the term V., (M?2), and is cancelled by

solving the renormalization conditions Eq. (9.130) once again for the counterterms.

Thermal Effective Potential: Generic Singlet

For the theory specified by the action Eq. (9.63)), we have the field dependent masses

2 _ 2
Mz (pe) = M= — 6Ep + 3\p. (9.133)

M, (pe) = (mi + i) . (9.134)

12Gince the effective potential is computed from diagrams with zero external momentum, the
mass 9 Veg(he = v,0) = mj differs from the Higgs pole mass by logarithmic corrections (345),
which we verify are O (few %). As such, we will neglect this distinction and continue to refer to my,
as the “Higgs mass.”
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We construct the thermal effective potential as

Ve(ff )((PUT) =Pex T M2 Sgpc +

B 4<Pc

T
4+ —

=1

o

2 3 6/\ 4

5+ 6t @ + 5M -0+ el
Vi

(M2(0e)) =4 Vew (M (20)) }

i=1

where 692, 6t, IM?, 6€, and ) are counterterms. We do not renormalize using the
same renormalization conditions as we did for the SM. To simply the discussions
of Section we have attempted to choose the renormalization conditions such
that the effective potential preserves certain features of the renormalized tree-level
potential. For example, the renormalization conditions that we applied to the SM,
Eq. , ensured that the effective potential and the tree-level potential agreed
to order h? as an expansion around h. = v. In our analysis of Section , we found
it convenient to define the parameter g which controls the shape of the effective
potential. This parameter is defined using the tree-level potential U(p), but we
claim that it also describes the shape of the one-loop effective potential provided
that the radiative corrections do not significantly distort the shape of the potential.
For the tuned limit 0 < g < 1, this parameter is particularly sensitive to the
shape of the potential near the origin ¢, = 0 since the barrier is very small. The
radiative corrections grow as . — 0, because the fermions 1; become light, but
these logarithmic corrections remain subdominant. However, with a renormalization
scheme of the form of Eq. , the counterterms pick up a finite piece, which
depends on derivatives of logarithms at the renormalization point ¢, ~ v, and which
contributes non-negligibly near ¢, ~ 0. If we were to use such a renormalization

scheme in the limit where U(¢.) has a small barrier so 0 < ap < 1, then the radiative
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corrections may lift the minimum at . =~ 0 and eliminate the barrier. Of course,
there is nothing incorrect with using such a renormalization scheme except that it is
inconvenient since we would not be able to characterize the shape of the potential
using o derived from U(p,).

In light of this discussion, we will use a renormalization scheme which preserves
the location of the minimum at ¢, = v and also preserves the shape of the potential
near . = 0. This is accomplished by first writing Eq. for T'=0 as

Sed

_ _ 1- _
Var™ (0,0) = Qo) + Hee) pe + 50 (o) ol — Elpe) o+ =

: (9.136)

where
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_ horl
Q(SOC) = Pex + + 60 + - [_ fcp QOC - Z ftm Pe :| (9.137&)
h 2
) = 3t + [enrr (e ;m hifu(e)| (9.137h)
_ hor3
M2 (pe) = M? + M + 5 | TMAf,(p0) + 52 fole) 3Zm2h2 fuuee)]
(9.137c¢)
hor9 al
o h9 »
E(pe) = €+08 + | 1EMful0) + Zl mih fu,(00)| (9.137d)
h
M) = A+ A+ p[ N fo(ge) Z ()] (9.137¢)
and
Mz(SOC) 3
f@(gpc) = (lIl 22 - 9 - C’uv) (9138>
M3 (o) 3
_ vi\Pe) 90
foi(pe) = (ln - 5 Cuv) . (9.139)
Then the renormalization conditions can be expressed as
Q(v) = pex (9.140a)
f(v) =0 (9.140b)
M?(v) = M? (9.140c)
Ew)=¢& (9.140d)
AMv) = \. (9.140e)

Near ¢, =~ 0, the radiative corrections are at most logarithmic.

Thermal Effective Potential: xSM

In Section we wrote down the xSM renormalized potential in Eq. (9.84). For

general h. and s., the Higgs and singlet fields mix. In order to calculate the radia-
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tive corrections, we must generalize the field-dependent Higgs mass M7, given by

Eq. (9.126D)), to the Higgs-singlet mass matrix M7, which has components

(M ({hes se})]y, = mi/(20°) (302 — 0%) + 5. (a1 + az 5.) (9.141a)
(M ({e, 5 D)),y = [Mits({e; 5e})] 5y = he (a1 + 2 az 5) (9.141D)
(M ({he, Sc})] gy = m? + as (h? — v*) + 2by s, + 3bs 57 (9.141c)

Now we can write down the thermal effective potential in terms of V;(;M) by subtract-
ing the contribution from the SM Higgs and adding the contribution from the mixed

Higgs and singlet. Doing so we obtain

b 1 b
VSN (hesse} T) = VY (e, T) 4 2t 4 Smis? 4 258
1
T 58 (h2 = *) (a1 + ass,)

0b 0b 1 1
+ {fSZL + ?383 + 55()283 + 5[)180 + §5a28(2:h3

+ %&Llschg + 00 — Vo (M5 (he)) + Tr Voo (M7, ({ e, sc}))}

+ r [—Jp (M (h)T™?) + Tr Jg (M7, ({he, sc})T77)] (9.142)

2m2
where €2, db;, and da; are counterterms. The trace is interpreted to mean evaluat-

ing Vi, or Jp with the eigenvalues of M7?,. We generalize the SM renormalization

conditions Eq. (9.130)) to incorporate the additional fields,

ON" (0N xsm
(50) () ve™neshl
ON\N"™ [/ o0\™
= (ahc) (asc) U({hC7SC})|{v,O}

(np,ng} = {1,01,{2,0},{0,1},{0,2}, {1,1},{1,2}, 10,3}, {0,4}, {0,0} (9.143)

where U ({h, s.}) is given by Eq. 1} Once again, we require Ve(f’f(SM)({v, 0},0)=0
which tunes the CC.
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9.G Appendix G. xSM Bounce Calculation

As discussed in Section the xSM electroweak PT is first order in the parametric
regime of interest and proceeds through thermal bubble nucleation. In order to de-
termine the bubble nucleation temperature 7, we estimate the action of the three
dimensional bounce S®(T") and require S /T oy ™ 140. The bounce field config-
uration ¢g(r) is a saddle point solution of the Euclidean equation of motion with an
O(3) symmetry. Let ¢ = {h, s} be the field space coordinate and let $sym = o()(T)
and ngrk = v (T) be the location of the symmetric and broken phases at temperature

T'. In this notation, the field equation and boundary conditions can be written as

26 2dp = -
S LV V(o T) = 144
dr?  rdr ¢ w(¢,1) =0 (9.144)

=0,  lim ¢(r) = deym (9.145)

r—00

where 7 is the radial coordinate and Vg is the thermal effective potential. The bounce
solution is a curve QEB(T) which starts nearby to (Ebrk at r = 0 and approaches ggsym
as r — 00. Once the solution (EB(T) is obtained, the bounce action is calculated as

- 2
5(3)(T):47r/ r2dr %(%) + Vag(o5(r), T)| . (9.146)
0

It is difficult to solve Eq. by brute force numerics, because the solution is
unstable to perturbations about the initial point Q;B(O), and the over shoot / under
shoot method is non-trivial to apply in two dimensions.

Profumo et. al. (II7) have outlined a numerical procedure which reduces the
calculation to iteratively solving the one-dimensional analog of Eq. . They
suggest that one should decompose the field equation into a basis with unit vectors

parallel and perpendicular to the solution curve gg(r) Suppose that there exists a
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curve 5(33) that interpolates between 5(0) = &;ym and $(L) = dpri. Let

),
:L':/ ‘dgb’ (9.147)

-

d)sym

be the distance along the curve such that L is the total length and

=0

0 1) a¢
ell_dm dr

(9.148)
1 0 dx

and e =

are the unit vectors parallel and perpendicular to the curve at x. In this basis,

Eq. (9.144]) becomes

Pr  2dr dV(o(x) | .
{—drﬁ;%——m }6“0 (9149
26| (dz\? /= )
{@ (d_) B (%’V)L}@FO- (9.150)

The authors of (I17) solve these equations numerically using an iterative procedure.

Since we compute T’ by calculating the bounce at various temperatures in order
to solve S®) /T ~ 140, the iterative procedure is too computationally intensive for
our purposes. Fortunately, in the parametric regime of interest the bounce solution

¢5(r) can be approximated by @app(2) = {h(x),5(h(x))} where 5(h) satisfies!3

dU({h,s},0)

P =0 and 5(v) =0, (9.151)

5

U is the classical potential, and gapp(x) is parametrized by its length = given by
Eq. (9.147). Using gapp(x), we solve Eq. for z(r) and calculate S® using
Eq. .

To check our approximation, we also compute the PT temperature using the

method of (I17) for a few parameter sets. In Figure[0.9we contrast our approximation

13 In the parametric region described in Section the solution of dU/ds = 0 is not generally a
single-valued function of h. However, the boundary condition §(v) = 0 selects out a unique trajectory
which tends to stay in the “valley” connecting the two minima and passes through the saddle point.
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Figure 9.9:  Comparisons of bounce calculations for the xSM benchmark point
Eq. . On the left, the bounce action computed at various temperatures be-
tween Tp = 12.7 GeV and T, = 70.7 GeV using the method of (117) (squares) and
our approximation (circles). On the right, the xSM thermal effective potential at
Tpp = 13.7 GeV. The solid curve shows the trajectory $B(x) obtained using the

method of (117), and the dashed curve shows the approximation ¢,,,(z) given by
Eq. . The curves do not coincide at small h because the minimum along the
h = 0 axis shifts as the temperature is raised. Nevertheless, the action along the two
paths still agrees remarkably well.

with the procedure of (117) for the xSM benchmark point Eq. (9.87). We find that
our approximation tends to overestimate S®) by a few percent generically. However,
S®) is a rapidly increasing function of temperature, and even an O (5%) deviation in

SG) does not causes T »r to deviate appreciably.
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