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Abstract

Closed-orbit perturbations and oscillating beam solutions
in storage rings are closely related. While techniques exist
to fit accelerator models to closed-orbit perturbations or to
oscillation data, the exploitation of their relation has been
limited. In this work, two orbit theorems that allow an effi-
cient computation of optical parameters in storage rings with
older hardware are derived for coupled linear beam motion.
The monitor theorem is based on an uncoupled case study
described by the author in an earlier work [1] and has been
generalized as well as simplified in mathematical abstraction
to provide a reliable and computationally stable framework
for beam optics measurements. It is based on a closed-orbit
measurement utilizing 4 dipole correctors (2 for each plane).
The corrector theorem allows to obtain parameters of these
dipole correctors using two turn-by-turn monitors at almost
arbitrary positions in the ring (which do not need to be lo-
cated in a drift space), so that it possible to uniquely resolve
closed orbits into optical parameters without sophisticated
lattice models.

INTRODUCTION

To express the orbit theorems in a reasonable and straight-
forward way, we need to describe coupled optics in the linear
phasor model, instead of the polar-like Courant-Snyder pa-
rameters. Then, the two orbit theorems are formulated and
verified by experimental data obtained using the mapping
method, a diagnostic method containing both theorems.

LINEAR PHASOR MODEL

In a storage ring, a closed orbit exists. For any working
setup, the particle motion around this orbit is bound and
undamped in good approximation. From these assumptions,
we can linearize the bound motion around the orbit as a
M = 3-dimensional harmonic oscillator. In the following,
we will not consider synchrotron motion (M = 2).

Beam Oscillation (Turn-by-Turn)

The deviations 7 from the closed orbit at each turn n at a
given longitudinal position s; can be modeled [2] as
(R: real part)

M
Fa(sj) = > R{Rjpe™n], (1)

where the phase advances p,,, correspond to betatron tunes,
while R;,, are vectors of complex oscillation amplitudes
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(phasors) that we will call monitor vectors in the following.
The monitor vectors are related to the Mais-Ripken param-
eterization of beam optics [3] [4] and are a fully coupled
representation of spatial linear beam motion.

Closed-Orbit Perturbation (Orbit Response)

The closed orbit can be defined by a fixpoint of the linear
transfer map at a given position. The map has a zero-order
term 71, which corresponds to a dipole kick, and a first-order
term which is the transfer matrix Ty . If we assume that the
kick is located directly before the corrector, we obtain the
closed orbit vector (7 at position §; by the equation system

i = (1= TE) P jx

A computation [2] including the knowledge that the spatial
parts of the eigenvectors of T are indeed the forementioned
monitor vectors R im» While the eigenvalues are elttm leads
to a phasor expression for the closed-orbit perturbation

<7>fk =R {Z ﬁij;kmDZm}’ @

The phase jump coeflicients Ejy,, = exp{iu/2 sign(s;—5i)}
hold numbers on the complex unit circle. These coefficients
occur as closed orbits are ring-periodic, and may be inter-
preted as correcting the “fractional tune” of the betatron
oscillations. The corrector parameter Dg,, is a complex
quantity that represents the coupling of a given dipole error
or corrector k to each oscillation mode m.

ORBIT THEOREMS

Both orbit theorems are based on solving systems of equa-
tions for all monitors 1 < j < J, or the subset of all turn-
by-turn capable monitors 1 < f < F, and correctors k. In
brief, the first theorem obtains the corrector parameters Dy,
from closed-orbit perturbations turn-by-turn data at moni-
tors f. Then, the second theorem is used to obtain ﬁjm at
all monitors j.

Corrector Theorem

In a first step towards the knowledge of spatial optical pa-
rameters at all BPMs, we state that

e it is possible to compute Dy, from a set of closed
orbit data and turn-by-turn data at F' > 2 turn-by-turn
capable monitors
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by solving a set of equation systems' based on (2)

<F>1k RllEikkl RlMEikkM DZO
SR : :
(P Fk R Ep, RemEfpp) \Pim

separately for different correctors k. The systems utilize
monitor vectors I?fm and modal phase advances p,, (for E
coefficients) that can be computed from turn-by-turn data
by (1) and Fourier transform-related methods (e.g. FFT
followed by fitting).

For F > 2, the system is overconstrained and can only be
solved in a least-square sense (e.g. by SVD). The remaining
error creates an opportunity to check the linearity of the
optical system under consideration of monitor errors.

Monitor Theorem

In a second step, we utilize (2) again and conclude that
e with K > 4 known corrector parameters Dy, it is
possible to compute R;,, at all monitors.
To ease notation, one may define the spatial components d
of R}m resp (F)jk as Rjma resp. (r)jrq. This leads to a set
of DJ = 2J different equation systems

(r)j1a Ly
S [ERNGH
(r)jkd Rirra
where we have defined J matrices G; with the components

(Gj)km = kaEjkm~

These systems are only solvable for I_éjm if K > 2M. For

each oscillation mode to consider, two correctors are needed.

A decoupled precursor of the monitor theorem in which
the corrector parameters were obtained by turn-by-turn data
in a drift space, has been validated experimentally in [1]. As
the authors discovered recently, another decoupled precursor
of this theorem [5] used lattice model transfer matrices to
estimate corrector parameters.

POSTPROCESSING

Invariants of Motion

To normalize the oscillation amplitudes for obtaining e.g.

Twiss parameters, one would like to express invariants of
motion in form of measurable quantities so that they can be
computed. To compute the invariants, the eigenvectors Qm
at at least one position in the ring must be known. From
the phasor model [2], the eigenvectors can be computed at
monitor drift spaces between monitors j, j + 1 of length L
by
ém = = Rj,m_) .
(Rj+1,m - Rj,m)/L

! which can be done by elementary means although ‘R is involved
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Then, the (real-valued) invariants are given2 by [2] (cmp. [4])
i ¢ 1 =
Im = sz (_1 )Qn’b

where { denotes the conjugate transpose of Oy Note that,
as R im can be computed at all monitors, one can also utilize
non-turn-by-turn capable monitors at drift spaces to obtain
the invariants. If more than one drift space between any
monitors occurs, the results can be cross-checked.

Connection to Common Parameterizations

Knowing the invariants, one can connect the eigenvectors

to the Mais-Ripken parameters [3] [4] via
01 =Vh(z +i%), 02 =Vh(Z +iZ)

Additionally, in decoupled approximation, the monitor
vectors can be directly related to Courant-Snyder parameters
via Rj11 = VI VBye'?* so that we can obtain two estimates
that coincide for strict decoupled motion
Rj1-R;

Rjii - R "
Lo

A J11 B
ﬁx = 7 P ﬁx =
1

In the decoupled case, one can also arrive at an equation
for closed orbit perturbation in standard notation by defining

Dim = Cxy/Bre?*,

where Cy is a corrector-and-tune specific constant. Note that
¢k can be determined as a complex angle, and that, if the
corrector is located in a monitor drift space, Sy and thus Cy
can be computed to obtain corrector strengths.

2 here, the phase space notation (x, y, x’, y’) is used. For I,,, to be invari-
ant, we assume that the transfer matrices are symplectic.
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Figure 1: Residual error of corrector equations vs. scaling
of time-of-flight compensation. Almost all minima occur in
vicinity of scaling factor 1, which is equivalent to activated
compensation.
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Figure 2: Preliminary results for invariant-normalized optical parameters in mode m = 0. The upper plot shows normalized
monitor vector components, the lower plot shows two different estimates for the decoupled By function. (j = 12 defunct.)

PRELIMINARY RESULTS

The corrector and monitor theorems are currently being
validated as parts of a measurement scheme that we call
the mapping method, as it maps known monitor vectors to
unknown monitor vectors via corrector parameters. The ex-
periments were performed on the storage ring of the DELTA
synchrotron radiation facility [7].

For the experiment, a special set of corrector magnets de-
signed for fast orbit feedback in [6], is used. These magnets
have neglible hysteresis effects for the time scale of ~ 1 Hz,
in which the correctors are operated in the following. The
only necessary a priori information is the basic ring topology,
that is, sign(s; — §x) for all used monitors j and correctors
k. For the invariant normalization, it must be known which
monitors (if any) are part of a monitor drift space, together
with the drift space’s length.

Time-Of-Flight Compensation

In our storage ring, as supposedly in many others, the
turn-by-turn capable monitor data acquisition for each turn
is synchronized by the same trigger, with cable lengths de-
signed to be exactly the same, so that, in theory, all turns
at all monitors are acquired in the same moment. This is
problematic, as the time of flight for the particles travelling
successively through the monitors is not considered.

To compensate this effect, a timing shift &¢7 (circulation
frequency T) can be emulated for the acquisition trigger in
the multiturn data by introducing a phase shift u,,, &7 for the
measured monitor vectors ﬁfm.

At DELTA, a set of four turn-by-turn monitor triggers is
connected to a single optical fibre cable. To circumvent ad-
ditional timing errors created by different fibre cable lengths,
we limit the application of the corrector theorem to the set
around the U250 undulator, which also includes two moni-
tors with the highest signal-to-noise ratio in the ring.
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To check the applicability of the corrector theorem, we
scale the time-of-flight correction phases for each monitor
by the same factor and plot the resulting root of the squared
error of the equation system for different correctors in Fig.
1. As can be seen for most correctors, their minimum error
occurs in the range of the scaling factor 1, which shows that
the time-of-flight compensation is necessary.

Optical Functions

The preliminary results for 8, are shown in Fig. 2.> The
measurements were performed in DELTA’s standard opera-
tion mode with activated DC injection bump for which no
working lattice simulation exists.

We can yet conclude that the results for S are repro-
ducible throughout different measurement weeks, thus large
random errors can be ruled out. Also, tune-scan measure-
ments [8] with active DC bump show comparable results for
the U250 region (Fig. 3).
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Figure 3: Averaged S« values from tune-scan method with-
out (incl. model data) and with DC bump [8]. The U250
region s € [20,40] m corresponds to BPM 13-16 in Fig. 2.

3 Results for the y plane or phases are not shown due to space limitations.
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