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Abstract
Closed-orbit perturbations and oscillating beam solutions

in storage rings are closely related. While techniques exist

to fit accelerator models to closed-orbit perturbations or to

oscillation data, the exploitation of their relation has been

limited. In this work, two orbit theorems that allow an effi-

cient computation of optical parameters in storage rings with

older hardware are derived for coupled linear beam motion.

The monitor theorem is based on an uncoupled case study

described by the author in an earlier work [1] and has been

generalized as well as simplified in mathematical abstraction

to provide a reliable and computationally stable framework

for beam optics measurements. It is based on a closed-orbit

measurement utilizing 4 dipole correctors (2 for each plane).

The corrector theorem allows to obtain parameters of these

dipole correctors using two turn-by-turn monitors at almost

arbitrary positions in the ring (which do not need to be lo-

cated in a drift space), so that it possible to uniquely resolve

closed orbits into optical parameters without sophisticated

lattice models.

INTRODUCTION
To express the orbit theorems in a reasonable and straight-

forward way, we need to describe coupled optics in the linear

phasor model, instead of the polar-like Courant-Snyder pa-

rameters. Then, the two orbit theorems are formulated and

verified by experimental data obtained using the mapping

method, a diagnostic method containing both theorems.

LINEAR PHASOR MODEL
In a storage ring, a closed orbit exists. For any working

setup, the particle motion around this orbit is bound and

undamped in good approximation. From these assumptions,

we can linearize the bound motion around the orbit as a

M = 3-dimensional harmonic oscillator. In the following,
we will not consider synchrotron motion (M = 2).

Beam Oscillation (Turn-by-Turn)
The deviations �r from the closed orbit at each turn n at a

given longitudinal position s j can be modeled [2] as
(�: real part)

�rn (s j ) =
M∑
m

�
{
�Rjme

inμm
}
, (1)

where the phase advances μm correspond to betatron tunes,
while �Rjm are vectors of complex oscillation amplitudes
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(phasors) that we will call monitor vectors in the following.
The monitor vectors are related to the Mais-Ripken param-

eterization of beam optics [3] [4] and are a fully coupled

representation of spatial linear beam motion.

Closed-Orbit Perturbation (Orbit Response)
The closed orbit can be defined by a fixpoint of the linear

transfer map at a given position. The map has a zero-order

term�tk , which corresponds to a dipole kick, and a first-order
term which is the transfer matrix Tk . If we assume that the

kick is located directly before the corrector, we obtain the

closed orbit vector 〈�r〉 at position s̃k by the equation system

�tk = (1 − Tk )〈�r〉 jk

A computation [2] including the knowledge that the spatial

parts of the eigenvectors of T are indeed the forementioned
monitor vectors �Rjm , while the eigenvalues are e

iμm , leads

to a phasor expression for the closed-orbit perturbation

〈�r〉 jk = �
⎧⎪⎨⎪⎩
∑
m

�RjmE∗jkmD∗km
⎫⎪⎬⎪⎭ , (2)

The phase jump coefficients E jkm = exp{iμ/2 sign(s j− s̃k )}
hold numbers on the complex unit circle. These coefficients

occur as closed orbits are ring-periodic, and may be inter-

preted as correcting the ”fractional tune” of the betatron

oscillations. The corrector parameter Dkm is a complex

quantity that represents the coupling of a given dipole error

or corrector k to each oscillation mode m.

ORBIT THEOREMS
Both orbit theorems are based on solving systems of equa-

tions for all monitors 1 ≤ j ≤ J, or the subset of all turn-
by-turn capable monitors 1 ≤ f ≤ F, and correctors k. In
brief, the first theorem obtains the corrector parameters Dkm

from closed-orbit perturbations turn-by-turn data at moni-

tors f . Then, the second theorem is used to obtain �Rjm at

all monitors j.

Corrector Theorem
In a first step towards the knowledge of spatial optical pa-

rameters at all BPMs, we state that

• it is possible to compute Dkm from a set of closed

orbit data and turn-by-turn data at F ≥ 2 turn-by-turn
capable monitors
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by solving a set of equation systems1 based on (2)

����


〈�r〉1k
...

〈�r〉Fk

����
�
= �

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
����



�R11E∗1k1 . . . �R1M E∗
1kM

...
. . .

...
�RF1E∗Fk1

. . . �RFM E∗
FkM

����
�
����



D∗
k0
...

D∗
kM

����
�

⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭
separately for different correctors k. The systems utilize
monitor vectors �Rf m and modal phase advances μm (for E
coefficients) that can be computed from turn-by-turn data

by (1) and Fourier transform-related methods (e.g. FFT

followed by fitting).

For F > 2, the system is overconstrained and can only be
solved in a least-square sense (e.g. by SVD). The remaining

error creates an opportunity to check the linearity of the

optical system under consideration of monitor errors.

Monitor Theorem
In a second step, we utilize (2) again and conclude that

• with K ≥ 4 known corrector parameters Dkm , it is

possible to compute Rjm at all monitors.
To ease notation, one may define the spatial components d
of �Rjm resp 〈�r〉 jk as Rjmd resp. 〈r〉 jkd . This leads to a set
of DJ = 2J different equation systems

����


〈r〉 j1d
...

〈r〉 jKd

����
�
= �

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
G j

����



R∗
j1d
...

R∗
jMd

����
�

⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭
,

where we have defined J matrices G j with the components

(G j )km = DkmE jkm .

These systems are only solvable for �Rjm if K ≥ 2M. For
each oscillation mode to consider, two correctors are needed.

A decoupled precursor of the monitor theorem in which

the corrector parameters were obtained by turn-by-turn data

in a drift space, has been validated experimentally in [1]. As

the authors discovered recently, another decoupled precursor

of this theorem [5] used lattice model transfer matrices to

estimate corrector parameters.

POSTPROCESSING
Invariants of Motion
To normalize the oscillation amplitudes for obtaining e.g.

Twiss parameters, one would like to express invariants of

motion in form of measurable quantities so that they can be

computed. To compute the invariants, the eigenvectors �Qm

at at least one position in the ring must be known. From

the phasor model [2], the eigenvectors can be computed at

monitor drift spaces between monitors j, j + 1 of length L
by

�Qm =

(
�Rj,m

( �Rj+1,m − �Rj,m )/L

)
.

1 which can be done by elementary means although� is involved

Then, the (real-valued) invariants are given2 by [2] (cmp. [4])

Im =
i

2
�Q†m

(
1

−1

)
�Qm,

where † denotes the conjugate transpose of �Qm . Note that,

as �Rjm can be computed at all monitors, one can also utilize

non-turn-by-turn capable monitors at drift spaces to obtain

the invariants. If more than one drift space between any

monitors occurs, the results can be cross-checked.

Connection to Common Parameterizations
Knowing the invariants, one can connect the eigenvectors

to the Mais-Ripken parameters [3] [4] via

�Q1 =
√

I1(�z1 + i�z2), �Q2 =
√

I2(�z3 + i�z4)

Additionally, in decoupled approximation, the monitor

vectors can be directly related to Courant-Snyder parameters

via Rj11 =
√

I1
√
βxe

iφx so that we can obtain two estimates

that coincide for strict decoupled motion

βAx =
Rj11 · R∗j11

I1
, βBx =

�Rj1 · �R∗j1
I1

.

In the decoupled case, one can also arrive at an equation

for closed orbit perturbation in standard notation by defining

Dkm = Ck

√
βke

iφk ,

whereCk is a corrector-and-tune specific constant. Note that

φk can be determined as a complex angle, and that, if the
corrector is located in a monitor drift space, βk and thus Ck

can be computed to obtain corrector strengths.

2 here, the phase space notation (x, y, x′, y′) is used. For Im to be invari-
ant, we assume that the transfer matrices are symplectic.
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Figure 1: Residual error of corrector equations vs. scaling

of time-of-flight compensation. Almost all minima occur in

vicinity of scaling factor 1, which is equivalent to activated

compensation.
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Figure 2: Preliminary results for invariant-normalized optical parameters in mode m = 0. The upper plot shows normalized
monitor vector components, the lower plot shows two different estimates for the decoupled βx function. ( j = 12 defunct.)

PRELIMINARY RESULTS
The corrector and monitor theorems are currently being

validated as parts of a measurement scheme that we call

the mapping method, as it maps known monitor vectors to

unknown monitor vectors via corrector parameters. The ex-

periments were performed on the storage ring of the DELTA

synchrotron radiation facility [7].

For the experiment, a special set of corrector magnets de-

signed for fast orbit feedback in [6], is used. These magnets

have neglible hysteresis effects for the time scale of ≈ 1Hz,
in which the correctors are operated in the following. The

only necessary a priori information is the basic ring topology,

that is, sign(s j − s̃k ) for all used monitors j and correctors
k. For the invariant normalization, it must be known which
monitors (if any) are part of a monitor drift space, together

with the drift space’s length.

Time-Of-Flight Compensation
In our storage ring, as supposedly in many others, the

turn-by-turn capable monitor data acquisition for each turn

is synchronized by the same trigger, with cable lengths de-

signed to be exactly the same, so that, in theory, all turns

at all monitors are acquired in the same moment. This is

problematic, as the time of flight for the particles travelling

successively through the monitors is not considered.

To compensate this effect, a timing shift ξ f T (circulation
frequency T) can be emulated for the acquisition trigger in
the multiturn data by introducing a phase shift μmξ f for the

measured monitor vectors �Rf m .

At DELTA, a set of four turn-by-turn monitor triggers is

connected to a single optical fibre cable. To circumvent ad-

ditional timing errors created by different fibre cable lengths,

we limit the application of the corrector theorem to the set

around the U250 undulator, which also includes two moni-

tors with the highest signal-to-noise ratio in the ring.

To check the applicability of the corrector theorem, we

scale the time-of-flight correction phases for each monitor

by the same factor and plot the resulting root of the squared

error of the equation system for different correctors in Fig.

1. As can be seen for most correctors, their minimum error

occurs in the range of the scaling factor 1, which shows that

the time-of-flight compensation is necessary.

Optical Functions
The preliminary results for βx are shown in Fig. 2.

3 The

measurements were performed in DELTA’s standard opera-

tion mode with activated DC injection bump for which no

working lattice simulation exists.

We can yet conclude that the results for βx are repro-
ducible throughout different measurement weeks, thus large

random errors can be ruled out. Also, tune-scan measure-

ments [8] with active DC bump show comparable results for

the U250 region (Fig. 3).

Figure 3: Averaged βx values from tune-scan method with-
out (incl. model data) and with DC bump [8]. The U250

region s ∈ [20, 40]m corresponds to BPM 13-16 in Fig. 2.
3 Results for the y plane or phases are not shown due to space limitations.
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