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We study the metric backreaction of mass and angular momentum accretion on black holes.
We first develop the formalism of monopole and dipole linear gravitational perturbations around
Schwarzschild black holes in Eddington—Finkelstein coordinates against generic time-dependent
matter. We derive the relation between the time dependence of the mass and angular momentum of
the black hole and the energy—momentum tensors of accreting matter. As a concrete example, we
apply our formalism to the Blandford—Znajek process around slowly rotating black holes. We find
that the time dependence of the monopole and dipole perturbations can be interpreted as a slowly
rotating Kerr metric with time-dependent mass and spin parameters, which are determined from
the energy and angular momentum extraction rates of the Blandford—Znajek process. We also
show that the Komar angular momentum and the area of the apparent horizon are decreasing and
increasing in time, respectively, while they are consistent with the Blandford—Znajek argument
of energy extraction in terms of black hole mechanics if we regard the time-dependent mass
parameter as the energy of the black hole.

Subject Index EOO, EO1, E10, E31

1. Introduction

Black holes in astrophysical situations are usually assumed to be Kerr black holes, and the matter
fields are treated as test fields. This is because the effects of matter distribution on the curvature are
typically small, and then the spacetime is determined from the vacuum Einstein equations which
only admit Kerr black holes as stationary regular black holes due to the uniqueness theorem in
general relativity [1-3]. Nevertheless, if we take into account the effect of matter distribution on the
spacetime, we can discuss the effect of the energy—momentum tensor on the metric by gravitational
perturbations around the background black holes. In particular, if matter accretion on black holes
exists, we expect that the mass and angular momentum of black holes secularly change. In this paper
we would like to clarify this issue by explicitly studying the gravitational perturbations around black
holes. As a first step, we focus on the case of the Schwarzschild black hole background.

The linear gravitational perturbations around Schwarzschild black holes were studied by Regge and
Wheeler [4] and Zerilli [5,6]. For higher-order multipole perturbations, where the degrees of freedom
of gravitational waves exist, the linearized Einstein equations reduce to second-order wave equations
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called the Regge and Wheeler, and Zerilli, equations with the source terms [4-7]. Because we are
now interested in the evolution of the black hole mass and angular momentum by matter accretion,
we need to study monopole and dipole perturbations. In Refs. [8,9], monopole perturbations against
generic stationary accreting matter around Schwarzschild black holes were studied. Recently, in
Ref. [10], it was shown that both monopole and dipole perturbations for generic time-dependent
matter around Schwarzschild black holes can be solved in a static coordinate system. In this paper
we extend the formalism in Ref. [9], where Eddington—Finkelstein coordinates are used, to the
case of monopole and dipole perturbations for generic time-dependent accreting matter. To study
the evolution of black hole mass and angular momentum, regularity of the accreting matter on the
black hole horizon is required and Eddington—Finkelstein coordinates are suitable for checking the
regularity. As shown in Sect. 2, we derive the relation between the time dependence of the mass and
angular momentum of the black hole and the energy—momentum tensors.

As an interesting phenomenon around rotating black holes we can consider energy extraction,
not just increasing the black hole mass. Energy extraction by test particles is known as the Penrose
process [11,12], and that by scattering waves is superradiance [ 13—18]. The energy extraction process
by force-free electromagnetic fields is the Blandford—Znajek process [19], which is a candidate
for the central engine for gamma-ray bursts and active galactic nucleus jets. The various aspects
of the Blandford—Znajek process have been studied in Refs. [20-30]. In this paper we discuss the
metric backreaction of energy extraction from rotating black holes by the Blandford—Znajek process.
Because the discussions in Ref. [ 19] are based on the slow rotation approximation of Kerr black holes,
we discuss the backreaction using non-linear gravitational perturbations around Schwarzschild black
holes, where both the effects of the slow rotation and the backreaction of the Blandford—Znajek
process are taken into account. In studying the non-linear gravitational perturbations, at each order,
we need to solve equations whose forms are the same as those of linear order but the non-linear
effects appear in the source terms. For this reason, our formalism can be applied to this problem.

This paper is organized as follows. In Sect. 2 we develop the formalism by extending the dis-
cussion in Ref. [9]. In Sect. 3, we briefly review the force-free electromagnetic fields considered
in Ref. [19]. Applying the formalism in Sect. 2 to electromagnetic fields in Sect. 3, we study the
metric backreaction of the Blandford—Znajek process in Sect. 4. The black hole mechanics in this
situation are discussed in Sect. 5. Section 6 presents a summary and discussions. We use units in
whichc =G = 1.

2. Backreaction of mass and angular momentum accretion on Schwarzschild black
holes

Let us consider the situation where the effect of matter distribution on curvature is weak. Then, we
need to solve the Einstein equations

Gy = 8meT),, (1)

with the small parameter €. At the lowest order, O ("), the metric is given by a vacuum solution
of the Einstein equations. For later convenience, in this section we choose the lowest-order vacuum

solution as the Schwarzschild metric gpsbf}h:
ghotdiltdx” = —fdt* + f~'dr* + r*(d0* + sin® 0d¢?), )

with f = 1 — ro/r and ro = 2M, where M denotes the background black hole mass. When we
consider the effect of €7),,, the spacetime will be described by the metric with a small deviation
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from the Schwarzschild metric,

Euv = gi?)h + €hyy. 3)

The Einstein tensor of this metric becomes

G = €8Gyy
1 o 1 o o 1 o B a7 B 2
= €| =5 ViVl = SV Vb + VOV + 58un (Y Vel s — V4 VPhap) 1+0(€2)
=1 €L [haplu + O(€), “)
where V,, denotes the the covariant derivative of the Schwarzschild metric gﬁ‘f,h, and we raise or
lower indices by glst,h. At O(e), we need to solve the equations
LN hypl = 8TET,y. (5)
The energy—momentum tensor satisfies
VMT/LU =0, (6)

due to the Bianchi identity. We should note that the following discussion holds if only the basic equa-
tions formally take the form of Eq. (5). In particular, when we discuss the effect of the backreaction for
the Blandford—Znajek process in Sect. 4, we will solve Eq. (5) with the effective energy—momentum
tensor.

For a spherically symmetric spacetime background, we can decompose tensor quantities by the
tensor spherical harmonics characterized by ¢,m (£ = 0,1,2...,m = 0,%1,... &+ £), and we can
separately discuss even and odd parities and different £, m modes when we solve Eq. (5) [4-6]. In
this section we study £ = 0 and ¢ = 1 odd-parity time-dependent gravitational perturbations for a
generic time-dependent matter distribution because those modes are important for the study of the
backreaction of accreting matter on the mass and angular momentum of black holes. In Ref. [9],
the case of a stationary energy—momentum tensor was discussed, and recently, in Ref. [10], the
generic time-dependent case was discussed in the static coordinate system. In this paper we work
in Eddington—Finkelstein coordinates (V,r,0, ®) with dV = dt + f~'dr, d® = d¢, and the line
element becomes

gihdxtdx’ = —fdV? + 2dVdr + r*(d6? + sin 0d D?). (7)

In this coordinate system it is easy to discuss the regularity of tensor quantities at » = ro because the
finiteness of the tensor components at » = ry coincides with the regularity condition at the horizon.

2.1.  Monopole perturbations
The perturbed metric for £ = 0 is given by

hfjv) | _odxtdx" = Ho(V,r)dV?* + 2H\(V,r)dVadr, (8)

where we choose the gauge condition %, = hgg (= hoo/sin?0) = 0 (see Appendix A). In this
gauge choice there is a residual gauge mode Hy — Hy — 2fn(V), Hi — Hi + n(V), where n(V)
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is an arbitrary function of /. We note that this residual gauge mode corresponds to the rescaling of
the coordinate V. The generic energy—momentum tensor for £ = 0 becomes

TIEJ,S) | _dx"dx”
= Tyy(V,1)dV? + 2Ty (V,r)dVdr + T, (V,r)dr? + To(V,r)r?(d6* + sin® 0dd?). (9)
The equation V#T,,y = 0 shows that the quantity
A =477 (fTy + Tyy) (10)
satisfies
3 A= —4wr*oy Ty,. (11)

The quantity A is interpreted as the accretion rate of the energy,

2 b
A= / / T,." (3y)*(dr),r* sin 0d0d ®, (12)
0 0

which is related to the flux associated with the conservation law V#(7,,(dy)") = 0. We note that
(0p)* .= ax*/dV and (dr), := dr/ox*. If the energy—momentum tensor is stationary, .4 becomes
constant. Introducing a quantity £ as

2n  pm
£ = f f Ty (3)* (3y)"r* sin 0d6d @, (13)
0 0
we can write Eq. (11) as
(f8, + dy)A = dy€. (14)

In the static coordinates (¢,7,6, ¢), Eq. (14) becomes f0,.4 = 9,£, and we can easily see that this
corresponds to the local energy conservation law.! The other components of the equations V4T, w =0
show the relation among Ty;., T}, and Tq:

4rTq — 20, (Tyr + fT1)) — r* Tpedyf — 2123y Ty = 0. (15)

In the same manner as Ref. [9], introducing new variables M (V,») and A(V,r) as

Ho(V,r) =

%Alrﬂ +2fA(V,r), HWV,r)y=—=x(V,r), (16)

the (V, V), (V,r), and (r, ) components of the Einstein equations give

M = A, 38M = =4’ Ty, A = —47r Ty (17)

These equations can be solved as

V r
SM = Sm + AWV, rdV — 4x f Ty (Vo, F)dF, (18)

Vo o

"In our definition, A is positive when positive accretion into the black hole exists. The equation can be
written in the conventional conservation form 9,€ + f9,(—.A) = 0.
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.
A= —471/ T (V,rdr + x(V), (19)
7o
where m and Vj are constants and x (/) is an arbitrary function of V. The function x (V) corresponds
to the residual gauge mode, i.e. the rescaling of /. We note that the other components of the Einstein
equations are automatically satisfied. To summarize, the perturbed metric for £ = 0 is described by

26M

WD, _pdxtdx” = (_ + 2fx) dv?* — 2)dvir, (20)
- r

where §M and A are given by Egs. (18) and (19).
If there do not exist £ > 1 perturbations, due to the spherical symmetry of the spacetime, we can

calculate the Misner—Sharp mass? for the metric glsj)h +€hy, at (V,r) as

Mys = M + eSM, Q1)

where 6 M is given by Eq. (18). We can see that the constant §m denotes the deviation of the Misner—
Sharp mass from the background mass parameter M at ¥ = V and » = 9. We note that the degrees
of freedom in choosing dm and Vj are degenerate because if we change Vy, dm is shifted. Also, the
quantity 4 determines the time dependence of the mass:

8VMMS =cA. (22)

2.2.  Odd-parity dipole perturbations
The perturbed metric for the £ = 1 odd-parity modes is given by

W) | dxtdx” = 47 [3ho(V,r) sin6(3Y10)dVd D
= —2ho(V,r) sin> 0dVd D, (23)

where Y19 = 27'/3/7 cosf,’ and we choose the gauge condition /.4 = 0 (see Appendix A). In
this gauge choice there is a residual gauge mode, hy — hy + rzg“(V), where ¢ (V) is an arbitrary
function of V. Note that this residual gauge mode corresponds to the shift of the coordinate ® by
the function of V. The generic energy—momentum tensor for the £ = 1 odd-parity modes becomes

T |, ditdx” = —25in? 0d @[ty o (V,r)dV + t,o(V,r)dr]. (24)

The non-trivial component of V#T,,, = 0 shows that the quantity

16772
= (tyo + fira) (25)
3ro
satisfies
16772
3B =——"" 4,10, (26)
3r

2 The Misner—Sharp mass for spherically symmetric spacetime is given by Mys = (1 — |dr|*)r/2, where r
is the area radius and |dr|* = g (dr),(dr),.

3 The other cases Y+, can be obtained by acting the ladder operators of the spherical harmonics on the
perturbed metric in Eq. (23) if needed.

5/26

1202 1890J00 € UO Jasn yayjol|qiqienusz-AS3a Aq 066.£€9/€03€60/6/ | 20z/o01e/de)d/wod dno-olwapede//:sdyy Wwolj papeojumo(



PTEP 2021, 093E03 M. Kimura et al.

The quantity B is interpreted as the accretion rate of the angular momentum,
1 2w

g
B=—— / T,." (39)" (dr),r? sin 0dOd D, 27
M Jo Jo

where M = ro/2 and (d¢)"* := dx* /9 d. This is related to the flux associated with the conservation
law V#(T,,(00)") = 0. When the energy—momentum tensor is stationary, B becomes constant.
Introducing a quantity J as

1 2 rm
T = v ) /0 Ty (31)" (39)"r? sin 0d6d D, (28)
we can write Eq. (26) as

(o, +0y)B=0rJ. (29)

In the static coordinates (¢, 7,0, ¢), Eq. (29) becomes f9,3 = 9;7, and we can easily see that this
corresponds to the local angular momentum conservation law.* The (r, ®) component of the Einstein
equations becomes

2
OPho — Shy = 167ty (30)
r
The general solutions of this equation are given by
a
ho(v,r) = li A ) 31)

where C1 and C; are arbitrary functions of V', and h{)H is an inhomogeneous solution,

"1
h{)”(V,r)zléan/ ?4[

ro

/ ' Pho(V, ?)d?] dr. (32)

0

The other components of the Einstein equations give
ayC = ”OB|r=r0- (33)

The general solution of this equation is given by

,
C| = roda + ro BV, ro)dV, (34)
Vo

where da is a constant. To summarize, the perturbed metric becomes

2rg sin® 6 v _
W), ydetdx” = =02 gy [Sa + / BT, r0)dV + —(hf + rzCz(V))], (35)
- r Vo ro

where the function C> (V) corresponds to the residual gauge mode.
Ifthere donotexistm # 0 perturbations, we can calculate the Komar angular momentum associated

with the Killing vector d¢ for the metric gﬁf,h + €hyy at the radius r as
v - r
Jomar = €M |:6a + | B@,r)d7 + W(Zk{)}l - ra,th)]. (36)
Vo

*In our definition, B is positive when positive angular momentum accretion onto the black hole exists. The
equation can be written in the conventional conservation form 9,7 + f9,(—B) = 0.
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We note that h{)H = a,h})H = 0 at r = rg. The time dependence of Jxomar at the radius » becomes
Oy JKomar = eMB. (37)

We can see that §a corresponds to a constant shift in the Kerr parameter for slowly rotating cases,
and B determines the time dependence of the angular momentum at the radius .

2.3. Remarks

2.3.1.  Uniqueness of the Kerr metric if Ty, = 0 in the exterior regions for V> Vi

Let us assume that the energy—momentum tensor 7),, for » > rq vanishes for V' > V1 (> Vp). This
corresponds to the situation that the matter fields are electrically neutral and they completely fall
into the black hole at V' = V7. In that case, according to our formalism, the perturbed metric for
£ = 0 and odd-parity £ = 1 modes becomes that for slowly rotating Kerr black holes for » > ry and
V="V

Sch (+) (=)
v Teh, ‘e:o +ehy, ‘ezl)dx”dxv

2M, AM. in 0
—_ [1 . M] AV? 4 2dVdr + > (d6? + sin? 0dd?) — il S T G0y (38)
r r
with
41 "
Mifina) =M + €dm + € AWV, ro)dV, Affinal] = €8a + € / BWV,ro)dV. (39)
Vo Vo

Note that we can evaluate M in Eq. (18) at » = rg for V' > V| because of the relation 9,6M =
—4nr28V Ty, = 0 for V' > Vq. Thus, the integrals of A and B at r = r¢ give the changes of the mass
and the angular momentum of the black hole, respectively.

2.3.2. Vaidya metric
The Vaidya metric [31] is the exact spherically symmetric solution with radiating matter,

dMV)/dV

2
g L (40)

Tuvdxtdx” =

On the other hand, using our formalism with Eq. (40), we obtain

2(M + e M((V))

7

(&5 + eh(D,_p)dxdx" = — (1 - )de + 2dVdr + r*(d6® + sin® 0d %),

(41)
Thus, we can see that our linear perturbation formalism reproduces the exact Vaidya metric [31].
2.3.3. The conservation laws and fluxes

The quantities A in Eq. (11) and B in Eq. (26) are related to the energy and angular momentum fluxes
associated with the conservation laws V#(T,,(dy)") = 0 and V¥ (T}, (d9)") = 0, respectively. We

5 The metric in Eq. (41) takes the Kerr—Schild form [32,33]. It is known that the Einstein tensor of the
Kerr—Schild form is linear to the unknown function (see, e.g., Refs. [34,35]). This is the reason why linear
perturbation analysis can derive the exact solution.
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should note that this discussion holds only if the basic equations formally take the form of Eq. (5). In
particular, as discussed later, equations whose forms are the same as Eq. (5) but with 7, replaced by
the effective energy—momentum tensors 7’ ﬁf,f appear in the context of non-linear perturbations around
the Schwarzschild metric. In that case, the equations V(TS (3y)") = 0 and VA (TS (0g)”) = 0
hold for the covariant derivative with respect to the Schwarzschild metric, and the corresponding

global conservation laws exist.

3. The energy—momentum tensor of the Blandford—Znajek process

3.1.  The force-free electromagnetic fields around the Kerr spacetime

We consider the test electromagnetic field F,, = 9,4, —,.4,, with the electric current density vector
j* on the Kerr spacetime. In this section, g, denotes the Kerr metric and V,, denotes the corre-
sponding covariant derivative. The metric of the Kerr spacetime in the Boyer—Lindquist coordinates
(t,r,0,¢) is given by

A — d? sin? thz 2a sin? 0 +a* — A)

)y
guvditdx’ = — S S drd¢ + Kdrz + =db?
2 27\2 2 il
—A 6
(A aT)” — AaTsinTO 2 a2, 42)
b
with
¥ =r? +d?cos? 0, A =7 +d* —2Mr. (43)

The constants M and a denote the mass and spin parameters. The black hole horizon is located at
r=ry =M + ~/M? — 2. The Maxwell equations on this spacetime are given by

VHF = 47),. (44)
We note that the equations
VipFvp) =0 (45)
are automatically satisfied from F,, = 0,4, — 9,4,. The energy—momentum tensor of the
electromagnetic field,
Tt = FuaFy® — %guuFaﬁF“ﬁ : (46)
satisfies
VAT = —47 Fy 0. (47)

If the right-hand side of Eq. (47), i.e. the Lorentz force term, is neglected, the force-free condition
Fy gt = (48)
is satisfied. Then, the energy—momentum tensor of the electromagnetic field satisfies

VTt = 0. (49)
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We should note that under the condition 7’ E?,mde T E})\A , where T, E?,mde is the particle energy density,

the total energy—momentum conservation equations V#(T, E{aftide +T E},Vl) = 0 reduce to Eq. (49).
This implies that T, Eiﬂide & T;) is a sufficient condition for Eq. (48). To summarize, the force-free
electromagnetic fields 7, can be obtained by solving Eq. (49) with Eq. (46), and the electric current
density vector j# can be calculated from Eq. (44).

Because the Boyer—Lindquist coordinates do not cover the black hole horizon, the location » = r
becomes a coordinate singularity and tensors have apparently singular behavior there. In order to
solve this problem, we introduce the Kerr—Schild coordinates (7', r,0, ®) by dT = dt + 2Mrdr/ A,

d® = d¢ + adr/A. The Kerr metric in the Kerr—Schild coordinates becomes

4Mr

A —a?sin%9 AM; 2M;
STaSY ey —-dTdr - Tra sin2 0dTdd + <1 4 ?r)drz

g}fde“dx“ =—
(2 + a®)?* — Ad?sin’ 6

»d6?
+ + S

-2 2 -2 2Mr
sin“ 0d ®“ — 2asin“ 0 1—|—? drd®. (50)

3.2.  The Blandford—Znajek solutions in the the Kerr—Schild coordinates

In Ref. [19], Blandford and Znajek studied stationary and axisymmetric force-free electromagnetic
fields around a slowly rotating Kerr metric, and the energy and angular momentum extraction though
the magnetic fields, called the Blandford—Znajek process. In this paper we focus on the so-called
split-monopole solution, and the solution in the Kerr—Schild coordinates is given by [19,20]

1
T8 = (FWFU“ — Zg}jvsFaﬁF“ﬂ), (51)

where the explicit forms of F,, are

Fr = iAo, (52)

Fro = wdgAoe, (53)

Fro =0, (54)

Frg = /| det(gf3)|Bo, (55)

Fro = 3, Ao, (56)

Foo = dpAw, (57)

and
® = w1 + O (58)
=01y )
Be = BCDIA% + 0(d), (59)
a\2 4
Ap = Aoo + Ao <M) + O(a™). (60)

The functions 40, Ap2, w1, and Be are given by

Apg = —CcosO, (61)
Agpy = CF(r) cos 0 sin® 0, (62)
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1
_ 63
W) = o (63)
Bor=—(1+2M (64)
<I>]_8Mr2 r )’

where C is implicitly assumed to be of different signs for different signs of cos 6, and the function
JF(r) is a regular solution of the differential equation

d*F N 2M  dF 6F N M@ +2M)
ar:  r(r—=2M) dr r(r—2M) 1@ —2M)

=0. (65)
The explicit form of F(r) is

C(2M 2M r2(2r — 3M)

M2+3Mr—6r1 r +11+M+ r 2
12M2 2M 3r  2M  2M?%’

(66)
where Li; is the second polylogarithm function,

1 _
Liy(x) = — /0 dzM. (67)

The asymptotic behaviors of F at r = 2M and r = oo are

672 —49 672 —61

_ _ _ 2

F= R YTY. (r —2M) + O((r — 2M)?), (68)
M M?In(r/M) M?*(11+4201n2) 3

F= T R 300, + O((Inr)/r), (69)

respectively. We can confirm that 7' EVZ satisfies the equations for force-free electromagnetic fields,
Eq. (49).6 Also, F,, satisfies the degenerate condition

*FRVF,, =0, (70)

where xf,, = F op €apuv/2 and eygyy is the Levi-Civita tensor.” As shown in Refs. [19,20], the
energy and angular momentum extraction rates are given by

202

24 M4

2
Jpz = / f J1det(@K)| TB2 (99 )¥ (dr) dbd d = - 3 M2 o) (72)

We can see that the relation Egy = wJpy holds at this order.

27
Epy = / / |det(gK5)|TBZ"(8T)“(dr) dodd = + O@ah), (71)

% We note that F,, satisfies Eq. (45), and this implies that 4, with F,,, = 9,4, — 9,4, exists.

7 The degenerate condition in Eq. (70) can be derived from the force-free condition in Eq. (48) for non-zero
J" (see, e.g., Ref. [28]). We also note that Eq. (70) is compatible with the ideal magnetohydrodynamic condition
[20].
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4. The backreaction of the Blandford—Znajek process
4.1. Perturbation scheme

The discussions in Sect. 3 are based on the test field approximation around the Kerr black holes.
When we consider the backreaction of the Blandford—Znajek process on the spacetime, we regard
the parameter C? as a small parameter so that the effect of the energy—momentum tensor T’ EVZ (x C?)
on the spacetime is weak. Introducing dimensionless small parameters o, 8 as®

a C?

o= — ﬁ::m,

(73)

the energy—momentum tensor 7' Evz can be written by the Taylor series around («, 8) = (0, 0) as
TR =BTV + BTV + o BTSD + O B). (74)

To discuss the backreaction of the Blandford—Znajek process, we need to solve the Einstein equations

Guy = 8aTpr =8BT0 + 8mapT D + 8w BT + O ). (75)

We expand the metric tensor as

guv =g + &prs (76)
with
ghem = gSh 4 ah(0 + oW ED + O®?), (77)
gy = BhGY + aphD + o2 BhD + 0@ B). (78)
The Einstein tensor becomes
Guv =BGV + GV +?BGTY + 0@’ B) + O(B). (79)

We note that the Einstein tensor at O (8 0y vanishes because the (’)(;30) metric is the Kerr metric. At
each order, we need to solve the following equations:

BGOD = 8xpT Y, (80)
apGD = 8rapT Y, (81)
*BGHD = 8maBTSY. (82)

Schematically, we can write G,SO,;”, G,(),;l), and Gf,}l) as

BGOD = BLINAGD],0, (83)
aBGAY = apL5M G 1 — STapTlY, (84)
@?BGED = o2 BLINNG 1 — 8T BTV, (85)

8 The shape of the letter « is similar to @, and 8 reminds us of the magnetic fields B.
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where 7, ;(le’l) and 7, 152‘;1) denote the effects of the non-linear perturbation, e.g. 7, ,SL’” is constructed from
hf};o) and hfﬂjl). Thus, at each order we solve the following equations, which can be seen as linear
perturbation around the Schwarzschild spacetime with the effective energy—momentum tensors:

BLSPRGE Y, = 8BTSV, (86)
aB LM 1 = SmapTLD + 8mapT(D =: 8mapTeh b, (87)
o2 BLIN NGV, = 8ra? BT + 8w BTEY =: 8ra? BTN 2D, (88)

If we regard «”" B (n = 0, 1,2) as small parameters, we can apply the formalism in Sect. 2 to these
equations at each order.

4.2.  Eddington—Finkelstein-like coordinates

We discuss the backreaction of the Blandford—Znajek process using the formalism developed in

Sect. 2, which is written in Eddington—Finkelstein coordinates. It is convenient to introduce the

Eddington—Finkelstein-like coordinates (V,r,0, ®) by dV = dT + dr. In this coordinate system,

the Kerr metric becomes

% +a*)? — a*Asin? 0
by

2Mr

ghvdxtdx’ = —<1 — ?)de + 2dVdr + %d6* + sin® 0d °

Mr

4
— 2asin? 0drd® — ~= sin? 0dVd . (89)

Then, hfﬁ;o) (n=0,1,2,...)in Eq. (77) can be obtained by taking a Taylor series around a = 0 for
the metric in Eq. (89), i.e.

grndetdx’ = (g5 + ah0 + o?h G0 + O@?))dxt dx”, (90)
with
ghotdxltdx” = —fdV? +2dVdr + r*(d6* + sin® 0d D?), 1)
2M
ah (O dxtdx” = —2aM sin® 0d P (—dV + dr>, (92)
r

2M M — M cos(26)) sin® 6
o h G0 dxt dx” = aZMz[ — =5 cos® 0dV? + cos® 0d6* + s Sl dcl>2].
r r

93)

In the Eddington—Finkelstein-like coordinates (V,r, 8, ®), we obtain the following equations for
the energy—momentum tensors of the Blandford—Znajek process discussed in Sect. 3:

M? 2M
BTGV dxtdx” = > f [(1 — —) dv?* — 2dvdr + r*(d6* + sinzedq)z)], (94)
r

»
3 _8Mm3 2M? 2M
aﬂT(lv’l)dx“dx” = —2aBM sin? 0d P z dv — it )dr ) 95)
n 8> 4r4
BT SV ditdx” = o2 BTGV |,_ dxtdx” + o> BT SV |, dxtdx”, (96)

with

o?p Tl%l) | _dxdx”
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_o’B
9677

— 4r(4M? + ?)(—4M? + 2Mr + r*)dVdr

[(96M5 — 64M*r + 16M31? + 1°)dV?

+ 47 (r 4+ 2M)2dr* — 32M* (M + r)r*(d6* + sin® Qdcbz)], (97)

O‘ZﬂTlszv’l)‘Z:zdx“dx”
2

- —Zgé %Yz,o[<l92M5 — r(32M* + 16M3r + %) + 192M*(—2M + ,,)rzf>dV2
p

+4r(32M* + 8M3r 4+ 2Mr> + ¥* — 96M 22 FYdVdr — 43 (r + 2M)*dr?
7w 4a? BM?0, F

+ 16Q2M> — rM? 4 1213 F)r?(d6?* + sin? 0d®2)} N \/; 3,2 (09 Y2,0)drd0
r
7 o2BM3 (2 + M +2M?) . 1 i g
W3 35 > (V20 — SyyArag ) didd, 98)
ij=0,®

where Y2 = 4=V /57w (—1+3cos? ), ¥ij 1s the metric of the unit sphere, i.¢. Ziz]-:@’q, yij-dxidxj =
do? + sin®0d @2, and the operators @,- and A denote the covariant derivative and the Laplacian on
Vij» Tespectively.

4.3. O(P) corrections
We can read A%V, T I(,g’l), and T, r(ro ‘D from the O(p?) energy—-momentum tensor in Eq. (94) as

pM?

0,1y __ O, _
AV =0, TV = 5,

7Ob =, (99)

From Egs. (16), (18), and (19), we obtain the perturbed metric as

g (100)

26m Y 2 M(r —2M
ﬁhfﬂ;”dx“dx”:ﬁ[ mo T ! ar,
r r

where we set the residual gauge mode as x (%1 (V) = 0. For later convenience we choose §m®D =
—i M ; then, the total metric at this order is

2M  AnM?B
- - _l’_ >
r r

(g5 + BV dxtdx” = —(1 )de + 2dVdr + 12 (d6? + sin® 0dd?). (101)
This is the Reissner—Nordstrom metric with a magnetic charge parameter Q = 2/78M = 2,/ C.

We can see that the mass of the spacetime is M and the location of the event horizon is ¥ = rg, with

rg =M+ M2 —4xM2B2 =2M — 27 M B + O(B>). (102)

One may think it strange for the spacetime to be the magnetic Reissner—Nordstroém metric, because
the Blandford—Znajek solution is globally different from the magnetic monopole, but it describes the
split monopole [19]. The reason is because Birkhoft’s theorem for a specially symmetric spacetime
holds locally, and the energy—momentum tensor of the Blandford—Znajek solution at O(f) is locally
the same as that for the global magnetic monopole.
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4.4. O(ap) corrections: time dependence of the angular momentum

After some calculations, we obtain
~ M4 M3
8TV dxldx” = 16map sin® 0dd (—SdV + —4dr>. (103)
r 2r

Thus, the effective energy—momentum tensor becomes

8na/3T;fvf(l’l)dx“dx” = SnaﬁTlilv’l)dx“dx” + 8noe,6]~"l§1,)’1)dx“dx”

M@ —16M3 M@AM? + 2Mr + r?
— _16rapsin?odo | 1LV ) gy — M@M” +2Mr+ 1)
873 474
(104)
We can read
eff (1,1) M(l"3 — 16M3) eff (1,1) M(4M2 + 2Mr + 1’2)
o =——g5 e ) =— g , (105)
so BT(LD in Eq. (25) and héH(l’l) in Eq. (32) become
BeffLh) — _%’ (106)
2 8M? (—18M? + 4Mr 4 97> — 12Mr In(2M /r
' = [—13 B . LN
7

We note that BT(1.D is constant because T ﬁl,c)f(l’l)

the perturbed metric becomes

is not time dependent (see Eq. (26)). From Eq. (35),

1,1
oz,BhEM; DdxHdx’ =

4Map sin® 6
_ MO oy (800 + BIOD W — o) + = (g M0+ 2P ) | 108)
r
At this order, the Komar angular momentum at the radius 7 is
Jromar = aM? +apM 80D + BTV —vo) + (285" oy V)] (109)

We find that the time dependence of Jxomar coincides with the prediction from the angular momentum
extraction rate of the Blandford—Znajek process in Eq. (72),

afrM

Iy JKomar = a:BMBeff(l’l) = 3

(110)

We set 8a'l*D) = 0; then, Jkomar = aM? at V = V and r = ry. We also choose the gauge mode as
Py = 137/ (36M) so that the divergent behavior 2y " at » — oo is canceled in Eq. (108).

4.5. O(a’B) corrections: time dependence of the mass

In a similar way, we obtain T &21;1) as

81a?pTED = 8wa?pTE|,_, + 8ra?BTEY (111)

le=2-
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with
87r0(2ﬁ7~“152v’1) | _odxdx”
2
- ;‘7_’88 [( — 7 (288M% — 936M°r + 288M*% + 144M> 1> + 26Mr> — 13r%)
r

+ BED (72M% (=3M + 1) — 36M*(OM — 4r)2M — r)r(V — Vp))
+ 18M (M — 1) 2(=3M + )by Y 4+ M — 2r)rarh{)H“’”)>dV2
+ 2r<71(—144M5 +432M4r + 72M3 2 — 36M*P — 135°)
+ BEED (540213 4 36M2r(—IM + 4r)(V — Vy))
+ 18Mr22(=3M + r)hy Y + 3M — 2r)ra,h5H“’”))dVdr
n 36r2<—6Beff D120V — Vo) + MM (—2M? + 2Mr + 12)
— 22D r%,h},”“’”))drz
+ 18M° <4M2n(—3M2 + Mr + 2% + BD (—6Mr + 6Mr(=3M + r)(V — Vo))

+ BM — ry A (—2h D 4 rarhf)ﬂ(l’l))>(d92 1 sin? 9d®2)], (112)

and
2 272,1

8raC T;(w )|e:2dx“dx”

_ 4028 [m

=% gyz,o[(n(144M6 — T92Mr 4+ 144M*2 + 72M3 1 + 13Mr° — 261%)
r

+ BTN 36M? M — 1) + 18M?r(18M? — 1TMr — 2/2)(V — V)

+ M2 Q(6M? — SMr — 22" — (=21 + 1) (=3M + 203, ) ap?
+ g(n(288M5 — 864M*r — 144M>1 + T2M?r + 651°)

+ BT (108M213 + 712M>(OM — r)r(V — Vp))

+36M2((6M + oy Y+ 1(=3M + 21)0,hg ) avar

+ 18Mr? (2M71(2M2 —2Mr — %) 4+ 6B UDpn(y — 1)

+ 220D r33rhg{(l’l))dr2

3 3
+ %(n(144M5 — 264M*r — 96M3r? + 131°) + BEELD (7201213 4 216M3r(V — 1))

+ 12M2((6M + r)hy D+ r(=3M + r)arhéH(l’l))>(d02 + sin? 9dd>2)]

2
M
+2 %azf - <720M4rr + 13774 + BTED 3603 + 36Mr(8M + 3r)(V — Vo))

V p
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+36r°GM + ryhy

a’p
4+ 2\/72% ( — 1808V A2y — 1)

— 183 2M + r)a,nn 1))(39 Y2.0)dVdo

H(1,1)

o+ r(=72Mh D (=137 18M 0, D)) ) B0 Yoo drd6

2
n \/g ;‘7—fs (n(—720M5 — 72MA + 1365 4+ 728D 21 (—OM + 1) (V — Vo)

A 1 ~ L
+36Mr2((—6M + r)hy Y + 3Mrarh{)H<1’“)) > (vivjyz,o ~ Ey,,-AYZ,O) dé'dd. (113)

ij=6,d
The effective energy—momentum tensor 7, @D i given by
8ro BTN D = 8ra? BT 5V + 8wa? BTG, (114)
From the expression for T, ;jf,f(z’l) | 41— We can read AcfF@D 1 ;fm’l), and TET@D 4
ATED = [8M2r>’eff<‘ D(r — 6M) — wr(8M? + rz)], (115)
il @B

o2 BT [—n(288M5 — 1008M*r — 72M312 + 72M% + 18Mr* + 35/5)

~ 432mr7
+ BT (108027 + T2M>r(—9M + 4r)(V — V)

+36Mr2(2(=3M + MY 4 3 — 25y, M0 ”)], (116)
2 preff(2,1 B 4 3 2.2 3, 4
opTIED = 2 6[n(—16M F16M3r + 12M2%2 + 4Mr + Y
Tr
— 248D 21 — Vo) + A (—2h D 4 ra,th“’”)]. (117)

We can see that A°T2D is not a constant but does not depend on 7. The value of ATZD at
r=rpis

5
A2, I)L = 7_72[ (118)

From Egs. (16), (18), and (19), we obtain the perturbed metric as

28M 2D
BRG], _jdxtdx” = B | | ——— +2/a®D Jav? — 2% Vavar |, (119)
r
with
aM@D=MﬂM+Aﬂ@WV—%»4n/'%“@W%Jma (120)
ro

.
A / FTER@D (7 7ydi + D (1), (121)

ro

where §m @1 is a constant and the function x @1 (V) corresponds to the residual gauge mode. We can
see that the “mass term” §M %) depends on time. However, because the spacetime is not spherically
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symmetric at this order, the appropriate definition of the mass is not clear. We discuss this topic in
the next section.
We should note that £ = 2 even-parity metric perturbations also exist at O(a?):

b3
o B 0| _dtd’ = 4o B, | S Yoo HigLhdv? + 205 avar + HyDydr®
+2K2D12(d6? + sin’ 9dc1>2)]. (122)

The perturbed metric can be obtained by solving the Zerilli equation [5—7]. As shown in the next
section, £ = 2 metric perturbations do not affect the area of the apparent horizon, and thus these
modes are not relevant for the discussion of black hole mechanics.

5. Black hole mechanics

In this section we discuss the relations among the area, mass, and angular momentum of a black hole.
In the standard derivation of black hole mechanics [36,37], assuming time-translational and rotational
Killing vectors in a vacuum spacetime before and after the dynamical process, the differences in
the Bondi—Sachs energy and angular momentum, and therefore the energy and angular momentum
of the whole system, are discussed. In the present case, however, we would like to determine the
energy and angular momentum extraction in the presence of force-free electromagnetic fields without
a time-translational Killing vector. We do not assume the stationary stages before and after the
energy extraction. Moreover, to isolate the energy and angular momentum of the black hole from
the ambient electromagnetic fields, we need to discuss them in terms of quasi-local quantities. In the
present situation we show that the apparent horizon is a good candidate for the black hole horizon
for this purpose, and that the first law of black hole mechanics holds if we take the appropriate
time-dependent mass parameter of the apparent horizon.

5.1. Apparent horizon

In this subsection we discuss the apparent horizon for the metric g, = g,{fﬁ“ + gl}ff. Because the
V' = const. surface of this spacetime is timelike at O(a? B), we work in the Kerr—Schild coordinates
(T,r,0,®P). We set the relation between T and V as V' = T + r — 2M. The unit normal to the
T = const. surface is given by

nydxt = F,dT, (123)
where the function F, is chosen so that g#Vn;,n, = —1 and n* is future directed. The induced metric
on the 7 = const. surface is given by

Yuv = guv + nyhy, (124)
and the projection operator y,,” becomes

V' = Va8 (125)

Because

© Yp,0 perturbations come from O(p) and O?B),
© Y perturbations come from O(«) and O(ap),
°© Y, perturbations come from O(«?) and O(a?B)
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in the metric g, = g}fﬁ“’ + gg’f, we can assume that the location of the apparent horizon at each
hypersurface 7" = const. is

r==R@O;T)

= (R(O:O) + ,BR(O’I) + OZZREz:’%) + “2:37%4(32:’1)))
v T
FaRID 4 RO [Tr 4 REY 4 BREDA [Tr0 (120

where the coefficients only depend on 7 [38]. From the results for the Kerr metric and O(8) pertur-
bations, where the location of the apparent horizon coincides with that of the event horizon at this
order, discussed in Sect. 4.3, we obtain

ROD = 2p, (127)
aRD — 0, (128)
2
M
*REY = _“T, (129)
R =0, (130)
BROD = _27BM. (131)

Thus, we need to fix sz’})), RUD and T\’,f:’lz). The unit normal to » = R(0; T) at each T = const.
surface is

su = Fsyu"50, (132)

with 5,dx" = dr — (3p’'R)d6, where the function Fj is chosen so that g""s;s, = 1 and s is an
outward vector. The induced metric on the 7 = const. and » = R(0; T') surface is

Guv = Yuv — SpSv = Guv + Auly — SuSy. (133)
The location of the apparent horizon is determined by
0+ =q¢""Vyu(n, +5,) =0. (134)

After some calculations, we obtain

R =, (135)
2 151Mn
RED = (erff@l) — 5B‘“*ff“’”)(r —To) — +25m®D, (136)
f(1,1) 2
2,1) _ Be SmM 2M @, M @,
Ry =—7 T =T+ 7+ —Hyyslo, — — K|, (137)

as solutions of Eq. (134), where 7o = V). Using our results in the previous section, we have the
relation

2| %Beff(l,l) _ iT_2 (138)
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The area of the apparent horizon is given by

47 Ma?
Ann = 167 M* — 327 M2 — 4w Me® + ”—M[MM + 2R | + 0@ + 0.
(139)

We should note that £ = 2 terms in Eq. (126) do not affect the area because of the orthogonality of
the spherical harmonics. Thus, the time dependence of the apparent horizon area is

@1 47'[2M062,3

d7Aan = 16t Ma?BarRZ,) = 3 (140)
5.2 Angular momentum
The Komar angular momentum at the apparent horizon is
Tiomar|an = aM? + apM BT (T — T). (141)
The time dependence of Jkomar|AH 18
7JKomar|an = apM BT
_apnM
B 3
= —Jns. (142)

where Jgyz is given by Eq. (72). Thus, this reproduces the angular momentum extraction rate of
the Blandford—Znajek process in Eq. (72). This explicitly shows that the total angular momentum
conservation law holds, i.e. the decreasing rate of the angular momentum of the black hole is balanced
with the angular momentum extraction rate of the Blandford—Znajek process.

5.3.  Implications of the black hole mechanics

If we assume the relation of the first law of black hole mechanics [36],
dM = SidA + QudJ, (143)
T

we can obtain the implication of the time dependence of the black hole mass. Setting d4 and dJ as
orAan and d7Jkomar|af in Egs. (140) and (142), the time dependence of the mass is suggested by

42 Mo M
orp = XM o (-2 (144)
8 3 3
If we assume
1 o 2
o=t O(@) + O(B), Qy = ot O(ap) + O@) + O(B), (145)
we obtain
o? B .

where Egy is given by Eq. (71). This reproduces the energy extraction rate of the Blandford—Znajek
process in Eq. (72), although the quantity M in the first law is as yet undefined as a quasi-local
quantity of the apparent horizon.
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5.4. The Hawking mass

Because the spacetime at O(«?f) is neither stationary nor spherically symmetric, it is not obvious
how to define the mass of the black hole. In that case, a possible choice of quasi-local mass is the
Hawking mass. The Hawking mass at the apparent horizon is given by [39,41]

Aan
MHawkinglAH = E
o’p @.1) 3 2
=M - nﬁM—TJrT( aM +3R;2y) + O’) + O(B). (147)
The time dependence of Myawking|AH 1S
2 2
o T
8TMHawking|AH = TﬂaTRézz’i)) = 24IB > 0. (148)

While the absolute value is the desired value, this is positive. This is because the Hawking mass at
the apparent horizon is the square root of the apparent horizon area, which is increasing in time.
Thus, we consider that the Hawking mass is not suitable for the description of energy extraction by
the Blandford—Znajek process. We note that even if we use the Hayward mass [40,41], the mass is
increasing in time.

5.5.  Comparison with the Kerr metric with time-dependent parameters

As shown in Appendix B, the Kerr metric with small parameter shifts of the mass and angular
momentum takes the form of Eq. (B.12). In this subsection we show that the time dependence of g, =
g}fﬁ" + gEf can be understood in terms of the Kerr metric of Eq. (B.12) but with time-decreasing
mass and angular momentum.

Let us consider the Kerr metric in the form of Eq. (B.12), but we replace the constants 53/ (Phys)
and 8J PhYS) by §M (V) and 8J (V), which are functions of 7. We denote this metric by gKerH'(’SM 'SJ)

We would like to compare g, = S” + gBZ with g KerrHaM 87) . We set 8M and 8J as
2o Ol2,37'[ .
a’BM = — V = Vo) = —Epz(V = V), (149)
- ot,BJTM .
afs] = V = Vo) = ~Jaz(V — Vo). (150)

We also choose x (V) in g,IfSrrHSM’Sj) as (see Eq. (B.14))

1
—_ QD B ey oy 151
X=X + 3 ( 0) (151)

Then, after some calculations, we obtain
g+ gnl = gf““‘”” 80 4 goher 4 [¢ = 2 terms] + O(e) + O(B?), (152)

where g°ther does not depend on time. We note that g"ther contains the O(B) effect, i.e. the perturbation
corresponding to the magnetic Reissner—Nordstrom metric discussed in Sect. 4.3. Equation (152)

shows that the £ = 0, 1 time-dependent terms of g,,, = gKerr + g% can be expressed as the Kerr

metric with time-dependent parameters, gKerr+(6M A7) , whose time dependence is determined from

the energy and angular momentum extraction rates of the Blandford—Znajek process. If we regard
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M + 8M as a black hole mass, its time dependence coincides with Eq. (146). Therefore, this gives
an appropriate time-dependent mass for the energy extraction in the present setting.

We have seen that the £ = 0, 1 time-dependent terms of our results can be fitted by the Kerr metric
with time-dependent parameters in Eddington—Finkelstein-like coordinates. We should note that it is
essential which time coordinate we let the mass and angular momentum parameters depend on. For
example, if we let them depend on time in the Boyer—Lindquist coordinates, our results cannot be
fitted by the corresponding spacetime. Finding an appropriate coordinate system is not such a trivial
problem, and what we have shown is that Eddington—Finkelstein-like coordinates are the appropriate
choice.’

Finally, we comment on A®T2D in Eq. (115). While A®T2D is related to the flux associated with
V(T ;;fvf(ay)“) = 0 (see Sect. 2.3.3), at this stage the physical meaning of A°T@D is not clear.
Because M >1) in Eq. (120) is written by A°T2D it is useful to consider the meaning of the “mass
term” 8M >V If we compare the situation with the Kerr black hole case, M D corresponds to
SMI(é’rlr) in Eq. (B.13). As shown in Eq. (B.20), the “mass term” SMI(é’rlr) in the Kerr black hole case
does not directly denote the variation of the mass of the black hole, and the variation of the physical
mass is obtained by subtracting the effect of the spin from 5M1(<2e’r1r)’ the second term on the right-hand
side of Eq. (B.20). This suggests that M 1) also contains information on both the mass and the
angular momentum of a black hole, and this is why A°T2D |r:rO in Eq. (118) does not coincide with

—Egz. In fact, ATZD can be written in terms of £pz and Jgy as

4Mr — 6M?

Q2 BATCD = o
373

aJpz. (153)

6. Summary and discussion

We have developed the formalism of monopole and dipole linear gravitational perturbations around
Schwarzschild black holes in Eddington—Finkelstein coordinates against generic time-dependent
accreting matter. We derived the mass and angular momentum of black holes in terms of the energy—
momentum tensor of accreting matter at the linear order. The time dependence of the mass and
angular momentum are determined by the the accretion rates of the energy and angular momentum.
In particular, after the accreting matter completely falls into the black hole at some finite time, £ = 0
and £ = 1 perturbations represent slowly rotating Kerr black holes, and the final mass and angular
momentum are expressed by the total time integral of the accretion rates at » = 2M. We also showed
that our formalism can reproduce the exact Vaidya solution [31].

Applying our formalism to the Blandford—Znajek process [19], we studied the metric backreaction.
While we need to study the non-linear gravitational perturbations to discuss the backreaction of the
Blandford—Znajek process, our formalism can be applied to this problem because the forms of
equations at each order are the same as those of linear order with the source terms which contain the
non-linear effects. We calculated the time-dependent Komar angular momentum and the area of the
apparent horizon. The decreasing rate of the former coincides with the angular momentum loss rate
estimated in terms of the stress—energy tensor of the force-free electromagnetic fields at infinity.

According to the test-field calculation of the energy and angular momentum extraction rates of the
Blandford—Znajek process [19], there is no doubt that energy and angular momentum are transfered

° In Ref. [42], as an extension of the Vaidya metric [31], the Kerr metric but with time-dependent mass
and angular momentum parameters are discussed in a different coordinate system from this paper. It will be
interesting to discuss the relation with our perturbative solution, but we leave this problem for future work.
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to asymptotic regions. However, it is not clear how to describe the local metric behavior of the
backreaction. We showed that the time dependence of £ = 0,1 modes are expressed by the Kerr
metric but with time-decreasing mass and angular momentum parameters, which depend only on the
ingoing null coordinate V. This suggests that the corresponding outgoing fluxes come directly from
the vicinity of the event horizon. If we regard the corresponding mass parameter as the black hole
mass, we saw that its decreasing rate coincides with the energy extraction rate of the Blandford—
Znajek process, and that the first law of black hole mechanics holds for the apparent horizon in terms
of this mass parameter but not the Hawking mass.

Finally, we comment on future work. It will be interesting to extend our analysis to higher-order
solutions of the Blandford—Znajek process [21-23]. Applications to other situations, ¢.g. the Pen-
rose process or the superradiance phenomenon, is possible. It will also be interesting to consider
applications to modified gravity theories. If we consider some modified gravity theories and they
admit solutions close to the Schwarzschild black holes, we expect that the field equations for the
monopole and dipole gravitational perturbations take the same form as Eq. (5); then, our formalism
can be applied.
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Appendix A. The gauge transformation of monopole and odd-parity dipole
perturbations

A.1. £ = 0 perturbations

The general perturbed metric for £ = 0 linear perturbations in Eddington—Finkelstein coordinates is
given by

WY dxtdx” = Ho(V,r)dV?* + 2H\(V,r)dVdr + Hy(V,r)dr* + 2K (V,r)r?(d6* + sin® 0d d?).

(A.1)
The general gauge transformation for this perturbed metric becomes
WG — b + V6, + Voky, (A2)
with
Edxt =&y (V,rdV + &.(V,r)dr. (A3)
Under this gauge transformation, the components of the perturbed metric change as
Ho — Ho— =56y +1&) +20véy, (A4)
Hy — Hi + 0,6y + 56 + vk, (A5)
Hy — H> + 20§, (A.6)
K = K+ &y +18), A7)
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If we choose the gauge with H; = K = 0, the residual gauge modes become &y = —f7n(V),
& = n(V), where (V) is an arbitrary function of V', and the components of the perturbed metric
transform as Hy — Ho — 2fdy 7 and Hy — Hj + 9y 7).

A.2. £ =1 odd-parity perturbations

The general perturbed metric for the £ = 1, m = 0 odd-parity linear perturbations in Eddington—
Finkelstein coordinates is given by

hdxtdx” = 4y/7/3sin 09 Y1,0)d D (ho(V,r)dV + hi(V,7)dr)
= —2sin? 0d D (ho(V,r)dV + hi (V,r)dr). (A.8)
The general gauge transformation for this perturbed metric becomes
hG) = b + Vg, + Viky, (A.9)
with
g,dxt = —sin 0 (V, r)d P. (A.10)

Under this gauge transformation, the components of the perturbed metric change as
2
ho — ho+apET,  hy— hy — ) 45,60, (A.11)
r

If we choose the gauge with #; = 0, the residual gauge modes become £ = rzg: (V), where E(V)
is an arbitrary function of V', and Aq transforms as hg — hg + rzaVE.

Appendix B. The Kerr metric with small parameter shifts

The Kerr metric has two parameters: the mass M and the spin a. Let us consider shifts of those

parameters in Eq. (89) as

5.7 (Phys)
v

M — M +a?BSMPYY | 4 a4 ap (B.1)

where « := a/M and B are small parameters, and §M P and 8.7 P"Y9) are constants. Introducing
the coordinate transformation

8J®hYs) gy

72

dd — dd —ap (B.2)

and the gauge transformation at O(a? ) as

gEE[M + 012,35M(phys), a+ alg&](ph}’S)/M]

v

— g IM +oa?BSMPYY a4+ apsT P IM] + 0P B(V,&, + Vo), (B3)
with
5/4 = gMIKIO + SM'EIZa (B-4)

Eulemodx® = 770V + =0, (B.5)
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_ _ g_-K:Z
Eplomadx = E[72Yo0dV + /72 Y2 0dr — 25— (39 Y2,0)d6, (B.6)
NG
and
_ 2M 8. (Phys) M\
£50 = S + <1 — T) X)), (B.7)
_ 2.7 (Phys) _
£70 = — = RO, (B.8)
r
£72 =0, (B.9)
_ m4(38M +r)
£=2 = \/;Taﬂrﬂws), (B.10)
g2 = — zw&]@h}@) (B.11)
§ V15 r ’

the metric becomes gje T M) with

4aB8J Phys) gin? o

g O D gkt dx” = (gosh + ahyY + o h G ) det dx” — p dvd®
2, [ 28MG MY e | 2 25, 20
+a°B % +2 (1 — T) Aerr | AV =207 Byl dVdr

+a’B /%Yz,o [Hgfggdez + 2H [T dVdr + Hy ™y dr?

+ 2KKT 2 (d6? + sin? GdCI)Z)] + 0@ + OB, (B.12)
where
SMEY = sM® 4 Mw@hﬁl (B.13)
o = —Wi}%m +x(¥), (B.14)
x(V) =03y x(V), (B.15)
and

_ 8M(6M? — Mr — 3r%)J Phys)

H™, = 33 , (B.16)
HE, = SMGM J;;rw(thS), (B.17)
Hy ) = —w, (B.18)

KKerr _4MeM —’i:4r)8J(phyS). (B.19)
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Here, we choose the coordinate system and the gauge so that O (a8) and O(a?8) terms take a similar
form to Sect. 2 for £ = 0, 1, and the Regge—Wheeler gauge for £ = 2. We obtain the relation

2

(phys)
&l oo/, (B.20)

This implies that the “mass term” 6 M, 2D in the O(a?B) perturbations does not directly denote the

Kerr
variation of the mass of the black hole, and the variation of the physical mass M P9 s obtained

by subtracting the effect of the spin from 6/, 1)

Kerr

References

[1] W. Israel, Phys. Rev. 164, 1776 (1967).

[2] D. C. Robinson, Phys. Rev. Lett. 34, 905 (1975).

[3] B. Carter, Phys. Rev. Lett. 26, 331 (1971).

[4] T.Regge and J. A. Wheeler, Phys. Rev. 108, 1063 (1957).

[5] F.J. Zerilli, Phys. Rev. Lett. 24, 737 (1970).

[6] F.J. Zerilli, Phys. Rev. D 2, 2141 (1970).

[7] K. Martel and E. Poisson, Phys. Rev. D 71, 104003 (2005) [arXiv:gr-qc/0502028] [Search INSPIRE].

[8] V.I. Dokuchaev and Y. N. Eroshenko, Phys. Rev. D 84, 124022 (2011) [arXiv:1107.3322 [gr-qc]]
[Search INSPIRE].

[9] E. Babichev, V. Dokuchaev, and Y. Eroshenko, Class. Quantum Grav. 29, 115002 (2012)
[arXiv:1202.2836 [gr-qc]] [Search INSPIRE].

[10] K. Nakamura, Class. Quantum Grav. 38, 145010 (2021) [arXiv:2102.00830 [gr-qc]] [Search INSPIRE].

[11] R. Penrose, Riv. Nuovo Cim. 1, 252 (1969).

[12] S. M. Wagh, S. V. Dhurandhar, and N. Dadhich, Atrophys. J. 301, 1018 (1986).

[13] Ya.B. Zel’dovich, Zh. Eksp. Teor. Fiz. Pis’ma Red. 14, 270 (1971) [Sov. Phys. JETP Lett.

14, 180 (1971)].

[14] Y. B. Zel’dovich, Sov. Phys. JETP 35, 1085 (1972).

[15] A.A. Starobinsky, Sov. Phys. JETP 37, 28 (1973).

[16] A. A. Starobinsky and S. M. Churilov, Zh. Eksp. Teor. Phyz. 65, 3 (1973) [Sov. Phys. JETP
38,1 (1974)].

[17] J.-P. Lasota, E. Gourgoulhon, M. Abramowicz, A. Tchekhovskoy, and R. Narayan, Phys. Rev. D
89, 024041 (2014) [arXiv:1310.7499 [gr-qc]] [Search INSPIRE].

[18] R. Brito, V. Cardoso, and P. Pani, Superradiance: New Frontiers in Black Hole Physics (Springer, New
York, 2015), 2nd ed. Lect. Notes Phys. 906, 1 (2015); 971, 1 (2020) [arXiv:1501.06570 [gr-qc]]
[Search INSPIRE].

[19] R.D. Blandford and R. L. Znajek, Mon. Not. Roy. Astron. Soc. 179, 433 (1977).

[20] J. C. McKinney and C. F. Gammie, Astrophys. J. 611, 977 (2004) [arXiv:astro-ph/0404512] [Search
INSPIRE].

[21] K. Tanabe and S. Nagataki, Phys. Rev. D 78, 024004 (2008) [arXiv:0802.0908 [astro-ph]] [Search
INSPIRE].

[22] Z.Pan and C. Yu, Astrophys. J. 812, 57 (2015) [arXiv:1504.04864 [astro-ph.HE]] [Search INSPIRE].

[23] J. Armas, Y. Cai, G. Compere, D. Garfinkle, and S. E. Gralla, J. Cosmol. Astropart. Phys.

2004, 009 (2020) [arXiv:2002.01972 [astro-ph.HE]] [Search INSPIRE].

[24] S.S. Komissarov, J. Korean Phys. Soc. 54, 2503 (2009) [arXiv:0804.1912 [astro-ph]] [Search
INSPIRE].

[25] S.Koide and T. Baba, Astrophys. J. 792, 88 (2014) [arXiv:1407.7088 [astro-ph.HE]] [Search INSPIRE].

[26] K. Toma and F. Takahara, Mon. Not. Roy. Astron. Soc. 442, 2855 (2014) [arXiv:1405.7437
[astro-ph.HE]] [Search INSPIRE].

[27] K. Toma and F. Takahara, Prog. Theor. Exp. Phys. 2016, 063E01 (2016) [arXiv:1605.03659
[astro-ph.HE]] [Search INSPIRE].

[28] S. Kinoshita and T. Igata, Prog. Theor. Exp. Phys. 2018, 033E02 (2018) [arXiv:1710.09152 [gr-qc]]
[Search INSPIRE].

[29] T. Jacobson and M. J. Rodriguez, Phys. Rev. D 99, 124013 (2019) [arXiv:1709.10090 [hep-th]] [Search
INSPIRE].

25/26

1202 1890J00 € UO Jasn yayjol|qiqienusz-AS3a Aq 066.£€9/€03€60/6/ | 20z/o01e/de)d/wod dno-olwapede//:sdyy Wwolj papeojumo(


http://doi.org/10.1103/PhysRev.164.1776
http://doi.org/10.1103/PhysRevLett.34.905
http://doi.org/10.1103/PhysRevLett.26.331
http://doi.org/10.1103/PhysRev.108.1063
http://doi.org/10.1103/PhysRevLett.24.737
http://doi.org/10.1103/PhysRevD.2.2141
http://doi.org/10.1103/PhysRevD.71.104003
http://www.arxiv.org/abs/gr-qc/0502028
http://www.inspirehep.net/search?p=find+EPRINT+gr-qc/0502028
http://www.inspirehep.net/search?p=find+EPRINT+gr-qc/0502028
http://doi.org/10.1103/PhysRevD.84.124022
http://www.arxiv.org/abs/1107.3322
http://www.inspirehep.net/search?p=find+EPRINT+1107.3322
http://www.inspirehep.net/search?p=find+EPRINT+1107.3322
http://doi.org/10.1088/0264-9381/29/11/115002
http://www.arxiv.org/abs/1202.2836
http://www.inspirehep.net/search?p=find+EPRINT+1202.2836
http://www.inspirehep.net/search?p=find+EPRINT+1202.2836
https://doi.org/10.1088/1361-6382/ac03f9
http://www.arxiv.org/abs/2102.00830
http://www.inspirehep.net/search?p=find+EPRINT+2102.00830
http://www.inspirehep.net/search?p=find+EPRINT+2102.00830
https://ui.adsabs.harvard.edu/#abs/1969NCimR...1..252P/abstract
http://doi.org/10.1086/163965
http://jetpletters.ru/ps/1604/article_24607.shtml
http://doi.org/10.1103/PhysRevD.89.024041
http://www.arxiv.org/abs/1310.7499
http://www.inspirehep.net/search?p=find+EPRINT+1310.7499
http://www.inspirehep.net/search?p=find+EPRINT+1310.7499
https://doi.org/10.1007/978-3-319-19000-6
https://doi.org/10.1007/978-3-030-46622-0
http://www.arxiv.org/abs/1501.06570
http://www.inspirehep.net/search?p=find+EPRINT+1501.06570
http://www.inspirehep.net/search?p=find+EPRINT+1501.06570
http://doi.org/10.1093/mnras/179.3.433
http://doi.org/10.1086/422244
http://www.arxiv.org/abs/astro-ph/0404512
http://www.inspirehep.net/search?p=find+EPRINT+astro-ph/0404512
http://www.inspirehep.net/search?p=find+EPRINT+astro-ph/0404512
http://doi.org/10.1103/PhysRevD.78.024004
http://www.arxiv.org/abs/0802.0908
http://www.inspirehep.net/search?p=find+EPRINT+0802.0908
http://www.inspirehep.net/search?p=find+EPRINT+0802.0908
http://doi.org/10.1088/0004-637X/812/1/57
http://www.arxiv.org/abs/1504.04864
http://www.inspirehep.net/search?p=find+EPRINT+1504.04864
http://www.inspirehep.net/search?p=find+EPRINT+1504.04864
http://doi.org/10.1088/1475-7516/2020/04/009
http://www.arxiv.org/abs/2002.01972
http://www.inspirehep.net/search?p=find+EPRINT+2002.01972
http://www.inspirehep.net/search?p=find+EPRINT+2002.01972
http://doi.org/10.3938/jkps.54.2503
http://www.arxiv.org/abs/0804.1912
http://www.inspirehep.net/search?p=find+EPRINT+0804.1912
http://www.inspirehep.net/search?p=find+EPRINT+0804.1912
http://doi.org/10.1088/0004-637X/792/2/88
http://www.arxiv.org/abs/1407.7088
http://www.inspirehep.net/search?p=find+EPRINT+1407.7088
http://www.inspirehep.net/search?p=find+EPRINT+1407.7088
http://doi.org/10.1093/mnras/stu1053
http://www.arxiv.org/abs/1405.7437
http://www.inspirehep.net/search?p=find+EPRINT+1405.7437
http://www.inspirehep.net/search?p=find+EPRINT+1405.7437
http://doi.org/10.1093/ptep/ptw081
http://www.arxiv.org/abs/1605.03659
http://www.inspirehep.net/search?p=find+EPRINT+1605.03659
http://www.inspirehep.net/search?p=find+EPRINT+1605.03659
http://doi.org/10.1093/ptep/pty024
http://www.arxiv.org/abs/1710.09152
http://www.inspirehep.net/search?p=find+EPRINT+1710.09152
http://www.inspirehep.net/search?p=find+EPRINT+1710.09152
http://doi.org/10.1103/PhysRevD.99.124013
http://www.arxiv.org/abs/1709.10090
http://www.inspirehep.net/search?p=find+EPRINT+1709.10090
http://www.inspirehep.net/search?p=find+EPRINT+1709.10090

PTEP 2021, 093E03 M. Kimura et al.

[30]

[31]
[32]
[33]
[34]
[35]

[36]
[37]
[38]
[39]
[40]
[41]

[42]

S. Noda, Y. Nambu, T. Tsukamoto, and M. Takahashi, Phys. Rev. D 101, 023003 (2020)
[arXiv:1909.04795 [gr-qc]] [Search INSPIRE].

P. Vaidya, Proc. Natl. Inst. Sci. India A 33, 264 (1951).

R. P. Kerr and A. Schild, Proc. Symp. Appl. Math. 17, 199 (1965).

R. P. Kerr and A. Schild, Gen. Rel. Grav. 41, 2485 (2009).

R. C. Myers and M. J. Perry, Ann. Phys. 172, 304 (1986).

A. Anabalon, N. Deruelle, Y. Morisawa, J. Oliva, M. Sasaki, D. Tempo, and R. Troncoso, Class.
Quantum Grav. 26, 065002 (2009) [arXiv:0812.3194 [hep-th]] [Search INSPIRE].

J. M. Bardeen, B. Carter, and S. W. Hawking, Commun. Math. Phys. 31, 161 (1973).

R. M. Wald, General Relativity (Chicago University Press, Chicago, 1984).

T. Nakamura, K. Oohara, and Y. Kojima, Prog. Theor. Phys. Suppl. 90, 1 (1987).

S. W. Hawking, J. Math. Phys. 9, 598 (1968).

S. A. Hayward, Phys. Rev. D 49, 831 (1994) [arXiv:gr-qc/9303030] [Search INSPIRE].

J. L. Jaramillo and E. Gourgoulhon, Fundam. Theor. Phys. 162, 87 (2011) [arXiv:1001.5429 [gr-qc]]
[Search INSPIRE].

C. G. Bohmer and P. A. Hogan, Mod. Phys. Lett. A 32, 1750189 (2017) [arXiv:1710.01059 [gr-qc]]
[Search INSPIRE].

26/26

1202 1890J00 € UO Jasn yayjol|qiqienusz-AS3a Aq 066.£€9/€03€60/6/ | 20z/o01e/de)d/wod dno-olwapede//:sdyy Wwolj papeojumo(


http://doi.org/10.1103/PhysRevD.101.023003
http://www.arxiv.org/abs/1909.04795
http://www.inspirehep.net/search?p=find+EPRINT+1909.04795
http://www.inspirehep.net/search?p=find+EPRINT+1909.04795
http://doi.org/10.1007/BF03173260
https://doi.org/10.1090/psapm/017
http://doi.org/10.1007/s10714-009-0857-z
http://doi.org/10.1016/0003-4916(86)90186-7
http://doi.org/10.1088/0264-9381/26/6/065002
http://www.arxiv.org/abs/0812.3194
http://www.inspirehep.net/search?p=find+EPRINT+0812.3194
http://www.inspirehep.net/search?p=find+EPRINT+0812.3194
http://doi.org/10.1007/BF01645742
http://doi.org/10.1143/PTPS.90.1
http://doi.org/10.1063/1.1664615
http://doi.org/10.1103/PhysRevD.49.831
http://www.arxiv.org/abs/gr-qc/9303030
http://www.inspirehep.net/search?p=find+EPRINT+gr-qc/9303030
http://www.inspirehep.net/search?p=find+EPRINT+gr-qc/9303030
https://doi.org/10.1007/978-90-481-3015-3_4
http://www.arxiv.org/abs/1001.5429
http://www.inspirehep.net/search?p=find+EPRINT+1001.5429
http://www.inspirehep.net/search?p=find+EPRINT+1001.5429
http://doi.org/10.1142/S0217732317501899
http://www.arxiv.org/abs/1710.01059
http://www.inspirehep.net/search?p=find+EPRINT+1710.01059
http://www.inspirehep.net/search?p=find+EPRINT+1710.01059

