20th International Conference on Computing in High Energy and Nuclear Physics (CHEP2013) IOP Publishing
Journal of Physics: Conference Series 513 (2014) 022026 doi:10.1088/1742-6596/513/2/022026

CMS Geometry Through 2020

I Osborne"?,E Brownson’, G Eulisse’, C D Jones’, D J Lange®and
E Sexton-Kennedy”

2 Fermilab, Batavia, IL 60510-5011, USA
’UPR, Mayaguez, 00680, Puerto Rico, USA
4 LLNL, Livermore, California, USA

E-mail: ianna.osborne @cern.ch

Abstract. CMS faces real challenges with upgrade of the CMS detector
through 2020 and beyond. One of the challenges, from the software point of
view, is managing upgrade simulations with the same software release as the
2013 scenario. We present the CMS geometry description software model, its
integration with the CMS event setup and core software. The CMS geometry
configuration and selection is implemented in Python. The tools collect the
Python configuration fragments into a script used in CMS workflow. This
flexible and automated geometry configuration allows choosing either transient
or persistent version of the same scenario and specific version of the same
scenario. We describe how the geometries are integrated and validated, and
how we define and handle different geometry scenarios in simulation and
reconstruction. We discuss how to transparently manage multiple incompatible
geometries in the same software release. Several examples are shown based on
current implementation assuring consistent choice of scenario conditions. The
consequences and implications for multiple/different code algorithms are
discussed.

1. Introduction

Anticipating several sub-detector upgrades [1] new geometry designs are being implemented and
studied using the CMS software. The CMS geometry configuration software model has been
developed to describe multiple geometry scenarios. The compact, or sensitive detector geometry, and
the expanded, or Geant4 geometry, version of the scenarios used in simulation and reconstruction have
common description of the sensitive detector parts that are physically present in the detector. These
parts provide the interface through which calibration and conditions information pass from the
physical world into the simulation and reconstruction software. The Detector Description (DD) [2] has
been the source for the Simulation and Reconstruction geometry models discussed below. The
corresponding in-memory and persistent models of both have been used by the simulation and
reconstruction. Presently around 30 geometry scenarios are supported in a single software release. To

" To whom any correspondence should be addressed.

Content from this work may be used under the terms of the Creative Commons Attribution 3.0 licence. Any further distribution
BY of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI.
Published under licence by IOP Publishing Ltd 1

20th International Conference on Computing in High Energy and Nuclear Physics (CHEP2013) IOP Publishing
Journal of Physics: Conference Series 513 (2014) 022026 doi:10.1088/1742-6596/513/2/022026

guarantee consistent usage of a particular scenario the scenarios have been versioned and labeled. The
choice of the scenario is flexible and is an option for a workflow configuration builder.

2. CMS detector description software model

The DD is a software model that represents the description of the 'ideal' CMS detector. Ideal is used to
signify that it does not include the detailed alignments of the actual detector. It is the best estimate of
the real detectors' shapes as constructed. The model is implemented as a directed acyclic graph with
Logical Parts as nodes and Positioning Parts or Algorithms as the edges. An Algorithm in this case is a
C++ implementation of a Positioning Part. This provides a hierarchical representation of the detector
with parts positioned inside of other parts in a parent-child relationship. This description is used to
build the Geometry for both Reconstruction and Simulation within the CMS Software framework.

The time dependent alignment corrections and calibration data of the various sub-detectors are
provided by the conditions database. The ideal description is defined using the XML techniques and
formats whereas the conditions database format can be different for different sub-detector domains.

A repository for the XML files contains the information needed by the DD to build the in-memory
detector description model. An algorithmic capability is implemented in C++ as a set of plug-ins. The
Algorithms specific for each sub-detector are implemented deriving from a base DD Algorithm class.
Various parameters in the XML file are passed to the Algorithm plug-in for further processing. The
balance between how much XML vs. C++ is used to specify the Geometry varies greatly by sub-
detector.

3. Simulation and Reconstruction geometries

The Simulation geometry model (Geant4 [3]) requires all parts to be defined in terms of size, shape,
material type and position. The Geant4 geometry to be used in simulating the detector is built from the
DD compact in-memory model (Fig.1).

The Reconstruction geometry model provides sensitive detector identification numbers as well as
extracts from the DD model the relevant coordinate transformations and shape parameters. This part of
the Geometry model is needed to reconstruct an event from information provided by the detector.
Reconstruction requires the parts of the detector to define hits and tracks. The Geometry model also
provides a conversion from local-to-global coordinates of the sensitive detector part in the global CMS
coordinate system.

XML C++
Description Algorithms
DD
Geometry
Scenario
Complete
Geometry Sensitive
(Geant4) Detector
Sensitive Geometry
Detector
Identification
Numbering
Simulation Reconstruction
Geometry Geometry

Figure 1. Reconstruction geometry is a subset of a complete geometry for performance
reasons. The numbering is shared with Simulation geometry.

20th International Conference on Computing in High Energy and Nuclear Physics (CHEP2013) IOP Publishing
Journal of Physics: Conference Series 513 (2014) 022026 doi:10.1088/1742-6596/513/2/022026

3.1. Geometry payloads

The XML is considered the master source of information to build the in-memory model. The sets of
XML files provide a scenario for the simulation software. The scenarios are versioned and labeled. For
example, the as built CMS detector with the forward detectors is the Extended scenario; without the
forward detectors is Ideal.

The in-memory model of the detector description is stored using the CMS conditions database
system [4]. The ‘master’ information from the XML files is loaded into the conditions database as one
binary large object (blob), which is a single XML file generated from the component XML files of a
scenario. Processing this blob is faster than processing the sets of individual files.

Tools are provided to store the transient geometry XML implementation into persistent objects —
records in the database. The records can be accessed via the conditions and calibration framework.
Although the persistent record is considered a derivative of the transient one, it can have versions and
thus is more flexible than the transient geometry XML files tied to a particular release. One set of
loaded objects is used across multiple releases. In theory it means that the XML can change until such
a time when a new approved set of payloads or one payload is required to be changed for production
or reconstruction.

Intermediate database (DB) objects are created, which are written from Reconstruction objects
filled from DD and also read by the geometry builders to directly create Reconstruction geometries.
With the intermediate DB objects severing the connection, reconstruction and analysis jobs do not
need to link, load, or run DD, thus reducing memory use, CPU time, and increasing flexibility. The
Reconstruction geometry records are scenario dependent, and are versioned, however they do not have
DB labels associated with them.

c
DB T S Event Setup: Begin Job
Tag & Label | § g
L o
€=
5
DD Compact O Geometry Geometry
View Record Record
Producer
Topology
Geometry
Alignment Builder
Sensitive
Detector
Identification
Numbering

Geometry Scenario

Figure 2. Job configuration defines which scenario is loaded at runtime.

3.2. Integration with the CMS event setup and core software

The compact DD view is loaded to the CMS event setup [5] at the beginning of the job (Fig. 2). The
geometry record producer instantiates the geometry builder, retrieves the compact DD view record.
The builder creates the geometry record based on current topology and assigns unique identification
numbers (Detlds) to the sensitive volumes. The record is returned to the event setup. The event setup
provides handles to the records for further access by simulation and reconstruction. The records

20th International Conference on Computing in High Energy and Nuclear Physics (CHEP2013) IOP Publishing
Journal of Physics: Conference Series 513 (2014) 022026 doi:10.1088/1742-6596/513/2/022026

register their dependencies with the event setup and are updated during the job if time- and version-
dependent descriptions change.

The labels can be assigned to the records, so that multiple records of the same type and the same
version can be present in one job. The scenario label and the version are defined by the workflow
configuration.

The geometry modules implement the descriptions for its auto-generated Python configuration
fragments. The fragments are used in scenario configuration as described in section 4.

3.3. Multiple/different code algorithms
The algorithms describing geometric positioning are implemented as plug-ins. The choice of the
positioning algorithm is done in the scenario description. The implications are that the different
algorithms should have different names.

The numbering algorithms can be different for different scenarios (sensitive detector identification
numbers should allow extra modules, for example). The choice of the numbering algorithm is done
based on the scenario topology and the topology is defined by the scenario configuration.

4. Scenario configuration and selection

It is a policy that every scenario is assigned a unique label (Fig. 3). The label is an option for a
configuration builder and is passed directly to the DB record loader at runtime. The DB loader chooses
the scenario identified by the label and the version aka Global Tag (GT). The GT is applied to a set of
records’ tags in the DB (see [4] for more details). The GT is also given as an option to the
configuration builder and it is used at runtime to load a consistent set of the geometry-related tags.

DD DD DD DD DD
XML XML XML XML XML

Configuration

Python

Extended Extended2015 Extended2017 Extended2019

blob blob
DB Extended .| Extended2019
Record ‘ Record
Tag V1 Tag V1 N
)
d r— ; 8 ;
Extende Extended2019 E; % 3
Record Record =8B
Tag V2 Tag V2 228
[

Figure 3. Geometry scenario configuration label corresponds to a year.

The CMS geometry configuration and selection is implemented in Python. The Full geometry
configuration is fragmented into a set of modular Python file configurations. The scenario label is
described in a Python configuration file fragment parsed by the configuration builder. It is expanded to
a set of configuration file fragments describing the modules needed to load the simulation and
reconstruction geometries and the numbering. By convention, the label is used in the configuration file

20th International Conference on Computing in High Energy and Nuclear Physics (CHEP2013) IOP Publishing
Journal of Physics: Conference Series 513 (2014) 022026 doi:10.1088/1742-6596/513/2/022026

fragment naming, but this is not strictly enforced. The fragments are kept in a standard location - the
Standard Sequences Geometry package.

The modular description of the CMS world volume is reflected in the number of the XML files.
The file name is used as a namespace. This allows replacing a sub-detector DD in the same parent
volume. As the name of the XML file is used as a namespace, it should be unchanged, but the path to
the file can vary. Physical separation of the files allows co-existence of multiple incompatible
geometries in the same software release. For example several different scenarios for Tracker sub-
detectors in Phase 1 and Phase 2 upgrades have been used in one release, but in different workflows.
Their payloads to the DB have different tags. The tag of a specific scenario is included in a separate
GT that assures a consistent choice of conditions.

The tools collect the Python configuration fragments into a script used in CMS workflow. This
flexible and automated geometry configuration allows choosing either transient or persistent version of
the same scenario and specific version of the same scenario.

5. Integration and validation
The integration of a new geometry scenario is as follows. The consistency of the XML description is
checked where applicable. CMS visualization tools [6] are used to visually inspect the geometry and
detect overlaps. The detector identification numbering is checked and the unit tests and the reference
tests are run. The standard release validation workflows based on the new in-memory scenario are run.
At this point both the scenario and associated C++ code are integrated into an integration build release.
The payloads are produced and uploaded to the DB. The new global tag is requested to include the
payloads.

Finally, newly defined geometry is integrated to a release and is handled to a validation team which
checks data quality and physics based on the new scenarios.

6. Summary

The requirements to maintain multiple Geometry descriptions, flexible access at run-time to a specific
Geometry scenario, its conditions and related simulation and reconstruction algorithms have been
fulfilled.

The full data workflows based on the geometries have been put in place, data simulated,
reconstructed and validated. Flexible configuration to access them has been implemented. Such access
has been provided from within one software release. Thus assuring a smooth transition from current
CMS geometry description to the subsequent ones planned in the upgrades. In addition, it allows
profiting from an ongoing development and improvement of the core, reconstruction and analysis
software. It also minimizes manpower needed for maintaining a number of software releases.

References

[1] CMS Collaboration Upgrade of CMS detector through 2020 CERN-LHCC-2011-06

[2] CMS Detector Description: New Developments M Case et al 2004 CHEP04 conference
proceedings

[3] Geant4 hhp://geant4.cern.ch

[4] Alignment and calibration of CMS detector during collisions at LHC ID 153 this conference
proceedings

[S] Access to Non-Event Data for CMS C Jones 2006 CHEPO6 conference proceedings

[6] Multiple-view, Multiple-selection Visualization of Simulation Geometry in CMS L A T
Bauerdick et al 2012 J. Phys.: Conf. Ser. 396 022052

