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Abstract

In typical laser communications classical information is encoded by modulating the amplitude of
the laser beam and measured via direct detection. We add a layer of security using quantum physics
to this standard scheme, applicable to free-space channels. We consider a simultaneous
classical-quantum communication scheme where the classical information is encoded in the usual
way and the quantum information is encoded as fluctuations of a sub-Poissonian noise-floor. For
secret key generation, we consider a continuous-variable quantum key distribution protocol
(CVQKD) using a Gaussian ensemble of squeezed states and direct detection. Under the
assumption of passive attacks secure key generation and classical communication can proceed
simultaneously. Compared with standard CVQKD, which is secure against unrestricted attacks, our
added layer of quantum security is simple to implement, robust and does not affect classical data
rates. We perform detailed simulations of the performance of the protocol for a free-space
atmospheric channel. We analyse security of the CVQKD protocol in the composable finite-size
regime.

1. Introduction

There has been increased interest for modern satellite systems to adopt optical communications, also known
as laser communications in space (LCS). The advantages include higher rates, longer distances, increased
security because of strong directionality, and lack of frequency license regulations since the radio frequency
bands are close to being saturated [1]. In typical laser communications, information is encoded by
modulating the amplitude of the laser beam and measured via direct detection.

An additional feature of LCS is that the optical channel is also suitable for quantum communications
allowing the possibility to combine classical and quantum communications [2]. Previous work on this topic
has started with quantum communication, which is complex and has poor tolerance to noise, and added
classical communication [3]. Here, we consider an alternative approach in which we start with a standard
classical communication set-up, and then introduce quantum techniques to enhance security.

Specifically, in this work, we incorporate quantum key distribution [4, 5] with a standard classical
communication set-up. Quantum key distribution (QKD) [4-7] is the most mature and accessible quantum
technology. Its goal is to distribute a secret random key between two physically-separated parties. Its
unconditional security relies on quantum physics, a promising solution to the vulnerability of current
classical cryptosystems to quantum computing.

Encodings of quantum information can be characterised as discrete variable (DV) and continuous
variable (CV) [8-12]. CV encodings exploit the infinite-dimensional Hilbert space of an oscillator, i.e. they
encode information into the CV quadratures of the light, such as amplitude g and phase p which have a
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continuous spectrum. CV [13] has the advantage of easier state preparation and manipulation [8] as well as
being compatible with existing infrastructure [14]. Compared with standard CV QKD [15-18] our layer of
quantum security is easy to implement, has robust performance and is directly compatible with LCS. The
trade-off is our protocol is only secure against passive attacks, unlike standard CV QKD which is secure
against unrestricted eavesdropping attacks [19-22].

Satellite-based quantum communication [23, 24] promises global-scale quantum networks by being able
to connect any two points on Earth. The dominant source of noise for quantum communication comes in
the form of losses [10], for instance, scattering and absorption loss in fibres, beam wandering and scattering
in atmospheric links, and beam spreading in free space. Unlike fibre links, the direct line-of-sight link can be
monitored by the trusted parties, meaning the eavesdropper (Eve) has limited access to the channel. As a
result the only plausible attack on an LCS system is a passive one in which lost light is intercepted by the
eavesdropper [25, 26].

During a point-to-point quantum communication protocol, quantum correlations exist between all
three parties; the sender (Alice), the receiver (Bob), and the potential eavesdropper (Eve). Since information
is inevitably leaked to Eve, the correlations between Bob and Eve must be suppressed to maintain security;
for example, via privacy amplification. This can only work if Alice and Bob’s mutual information is greater
than Eve’s maximal information with Bob [27]. Alternatively, Alice and Bob could use entanglement
purification [28, 29] or entanglement distillation [30] to suppress Eve’s information [8] in an
entanglement-based QKD protocol.

In [31] a different approach was taken whereby they introduced a zero-leakage protocol, with zero
information leakage at all times in a pure-loss channel, by encoding quantum information in a particular
way. In this protocol the signal is only on one quadrature, although the noise properties of both quadratures
are monitored. Winnel et al [32] introduced a symmetric version of this protocol whereby information is
encoded on both quadratures. However, this is experimentally more complicated. Hosseinidehaj et al [26]
investigated the zero-leakage protocol in the context of satellite-based CV QKD, restricting Eve to passive
attacks; thus, simplifying generation of a secret key and increasing tolerance to loss and noise, while also
eliminating the need for a local oscillator.

In this paper, we show how a satellite-based zero-leakage quantum communication protocol can be
combined with a LCS system without affecting the classical data rates. To be consistent with the zero-leakage
protocol we restrict to a passive eavesdropper (Eve), who may collect all the light lost but may not perform
any active attack. For example we do not allow Eve to intercept and resend Alice’s beam as she could be
observed in the line of sight. More sophisticated entangling cloner attacks [33] are not allowed as they also
require intervention in the line of sight. We make a detailed evaluation of our dual classical/quantum LCS
system in the context of a satellite to ground down link.

The rest of this paper is organised as follows. In section 2 we specify the protocol in detail and describe its
performance under ideal conditions. In section 3 we consider the satellite-to-ground communication set-up
and investigate atmospheric effects. In section 4 we combine our protocol description with our atmospheric
characterization and compute secret key rates in a realistic finite-size regimes. In section 5 we conclude.

2. The protocol

The protocol consists of sending classical information and quantum information simultaneously. Both the
classical information and quantum information are encoded as amplitude modulations of a bright laser
beam. The classical information is encoded as discrete modulations whilst the quantum information is
encoded as smaller Gaussian modulations. To optimize capacity we assume the classical and quantum
modulations are encoded onto the same frequency side bands. The quantum modulations effectively set the
noise floor for the classical modulations. Using squeezing it is arranged that this noise floor is the quantum
noise limit (QNL), also known as shot noise. Both quantum and classical signals are read out via direct
detection. A diagram of the set-up is shown in figure 1. Alice is the sender, Bob is the receiver and Eve is a
passive eavesdropper who captures all the lost light.

While any quantum communication encoding can be used to also encode classical information, it is not
optimal to let the low amplitude quantum modulations for QKD directly carry the classical signals due to the
low signal to noise. Here, we combine using low amplitude quantum signals with the higher amplitude
classical signals for efficient transmission of both quantum and classical information.

2.1. Classical part

For the purpose of classical optical communications, the Intensity Modulation (IM) technique (which maps
a classical information bit to one of the output intensities of a laser beam), together with the Direct Detection
(DD) technique (which directly measures the intensity of the received signal using a photodetector),
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Figure 1. Protocol set-up. Alice mixes an amplitude squeezed vacuum state, X;, (with Vs < 1) and a bright beam with
anti-squeezed amplitude fluctuations, X,, (with V,; > 1) on a beamsplitter with transmissivity e. Classical information, Xc, is
then encoded on the transmitted beam as shown. Direct detection of the reflected beam reveals Alice’s copy of the quantum
signal, X4. The transmitted beam travels through the channel which is monitored by Eve who obtains X5. Bob measures the state
after the channel with direct detection to obtain his copy of the classical information, X}. After determining the classical bit values
he can extract his copy of the quantum signal, Xg. When the variance of the transmitted ensemble equals the QNL, there is no
correlation between Xg and X for a pure-loss channel.

constitutes the widely-used IM-DD scheme. Despite its low implementational complexity, the IM-DD
scheme is not desirable for our purpose mainly due to the IM technique’s incompatibility with the quantum
part of our protocol.

Instead, in this work we adopt a discrete modulation scheme where every classical information bit is
mapped to one of the two real-valued displacements {«, —a} applied to a continuous-wave single-mode
laser beam with optical frequency €2 and overall amplitude § >> |a/|. This scheme resembles the Binary
Phase-Shift Keying (BPSK) modulation scheme since it only encodes information onto one quadrature
(i.e. the X quadrature) of the laser beam. Our modulation at a specific sinusoidal modulation frequency, w,
creates an upper sideband and a lower sideband at )y + w and €y — w, respectively. The component
remaining at €2y is known as the carrier, which can be considered as a strong coherent component [34, 35].
We will show in the following that although our protocol does not use IM for modulation, it can still benefit
from a reduced implementational complexity provided by the use of DD for detection.

Traditionally, the extraction of quadrature-encoded information requires a coherent homodyne detection
involving the mixing of the signal with an independent Local Oscillator (LO). By independent LO, we mean a
bright laser beam that is phase-locked to the signal and typically sent along with the signal via multiplexing.
In this work, we eliminate the need for such an independent LO by adopting the DD technique, which
effectively measures the X quadrature (i.e. the only quadrature used for information encoding in our
scheme) using a photodetector, for signal detection. To see how the DD technique works, we first consider a
propagating continuous-wave laser beam in a single mode represented by the continuum operator A:

A=B+0A(), (1)

where (3 is the mean value of the carrier amplitude (taken to be real) and §A(t) represents the modulations
(including both the discrete classical modulation and the quantum fluctuations) around the mean value. The
notation J emphasises that the modulations are small compared with 3 (note that (A) = ). The operation
of DD using a photodetector is represented by the number operator, N. Linearising the operator by assuming
> 1, we have
N=At (A ()

= (84841 (1) (8+04(»)

= 32+ BOAT (1) 4+ BOA (1) + 5AT (1) 6A (1)

= B>+ BoX (1)

(2)

where 0X(t) = 0AT(£) + 6A(¢) is the X quadrature operator, and we have neglected the higher-than-first-
order terms in the modulations due to the assumption that the fluctuations are small (i.e. the contribution to
the expectation value from the higher order terms is negligible). The last line of equation (2) indicates that
the use of DD effectively measures the X quadrature. Equation (2) also explains the counter-intuitive concept
of using DD to measure the X quadrature—in the same beam, the small signals (i.e. the modulation-induced
fluctuations) beat with the carrier (i.e. the strong coherent component) and can be read out at a particular
sideband frequency w. The technique for side-band readout proceeds as it would for homodyne detection
and is described in, e.g. [36, 37].

According to our Classical-Quantum Dual Encoding protocol, we are interested in the modulations
around side-band frequency w, hence we focus our attention on the evolution of the Fourier space operator
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5(/% (w) which is the Fourier transform of 55(/§(t), representing the modulations of the field leaving Alice’s

station. We can write this Fourier space operator as:
X5 = Xc+Xa, (3)

where (X¢) = 420 is our discrete classical modulation, and X3 represents quantum fluctuations. After
traversing the channel to Bob this operator evolves to

=1 (Xc+Xz) +/1—nX,, (4)

where 7 is the transmission of the channel and X, represents vacuum fluctuations that couple in due to the
loss. As will be described shortly it is arranged that the variance of the quantum fluctuations of the beam
leaving Alice’s station are at the QNL, i.e. <)A(%> = V3 = 1. As a result the signal to noise ratio (i.e. the signal
power divided by the noise variance) of the classical signal received by Bob will be SNR = n(X%)/ (n(f(%) +
(1—1)(X2)) = 4na?, where we have used that the vacuum fluctuations also have unit variance. By choosing
o sufficiently large the resulting bit error rate will be small and faithful transmission of the classical signals
can be achieved.

2.2. Quantum part

To generate a key, we need to extract the quantum fluctuations from the combined classical and quantum
signal that has been mixed down at our chosen side-band frequency w. Notice that the carrier power detected
by Bob over the signal length will be proportional to 773* where 7 is the channel transmission for that
particular time-bin (assumed constant over the signal length). Thus 7 can be measured shot-by-shot. Also,
provided « is sufficiently large, we know X¢ shot-by-shot from the sign of the signal displacement. Thus we
can extract the quantum signal by subtracting the weighted classical signal via

XB:\/ﬁXé‘F\/l*an*\/’T]XC
= ViXi +/1-1X,, (5)

where we have used equation (3) in going from the first to the second line. Note that the shot-by-shot carrier
power also enables us to calibrate the QNL level for each signal. The time bin length should be chosen
appropriately; short enough so that the fluctuating power due to the atmosphere is approximately constant
over the time bin but long enough to acquire sufficient signal strength.

2.3. Global average quantum state

We now analyse the generation and evolution of the quantum signal as shown diagrammatically in figure 1.
As shown, Alice begins with two phase-locked beams, one of which has super-Poissonian amplitude noise,
(X2) = V, > 1, and the other has sub-Poissonian amplitude noise, (X2) = V; < 1. One of the beams has a
bright carrier—it does not matter which but we will assume here that it is the super-Poissonian beam. The
sub-Poissonian, or squeezed beam is intrinsically quantum, however the noise on the super-Poissonian beam
could either be quantum, e.g. anti-squeezing or amplified spontaneous emission, or it could be induced via
classical modulations. The most important thing is that the noise has a Gaussian distribution. Alice mixes
her two beams on a beam-splitter, retaining the reflected beam which she directly measures and sending the
transmitted beam (after imposing the classical signal) through the channel to Bob. Eve intercepts all the lost
light. We can then write the evolution of the quantum parts of the amplitude quadrature operators as

Xa=V1—eX,+ VeX, (6)

Xp=/1—n(VeXo+ V1 —eX)) +/nX, (7)

XB = \/ﬁ(\ﬁxa +vI1-— 55(5) +v1- ana (8)
where ¢ is the transmissivity of Alice’s beamsplitter, 7 is the transmissivity of the channel, X4, Xg, and X are
the X-quadrature operators for Alice, Bob, and Eve, respectively, and X and X, are the X-quadrature
operators for the squeezed (sub-Poissonian) and antisqueezed (super-Poissonian) beams, respectively.

For zero information leakage we require that the modulation Alice prepares to send to Bob has the same
variance as the vacuum state (i.e. the QNL). That is, we require

Vi=eV,+(1—¢e)Vi=1. 9)
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For the modulation to be QNL we need

(10)

Then,

(XaXp) = VWV, — 11—V, (11)
(XpXp) = 0. (12)

That is, there are correlations in the g quadrature between Alice and Bob, but there are no correlations in the
g quadrature between Eve and Bob. This means the Holevo information ygg = 0. The Holevo information,
XEB» represents the maximum information that Eve can extract from her signal about Bob’s measurements.
Since (XpXp) = 0, Eve’s system is not correlated with Bob’s system in the X quadrature.

Given no information leakage to Eve about Bob’s measurement results we will find we only need Alice
and Bob’s covariance matrix. Alice and Bob’s covariance matrix is as follows:

) (b (k) (Raby)
bl @0 B (Bie) (B
A (XsXa) (XpPa)  (X3)  (XpPp)
| (PsXa) (PgPa) (PsXp)  (P})
a 0 ¢ O
0 a 0 ¢
- ¢ (f b, g ’ (13)
10 ¢ 0 b
where
a,=Vie+V,(1—¢) (14)
€ 1—¢
ﬂpzvs Vu (15)
by = np[Vae + Vi (1—¢)] —np+ 1+ Var (/) (Vae + Vi (1—¢) — 1) (16)
bp_nf(é 1V€)nf+1+Var(\/ﬁ)<5+1V€1> (17)

¢ = IVeV1—e(Va—Vy) (18)

¢ = /pVeV1—¢ (;—3}) ) (19)

Here we have allowed for a fluctuating channel transmission as expected for an atmospheric channel, where
np=(/n)* and Var(/n) = (n) — 1, and where (1) = [("* np(n) dn and (/7) = [ /ip(n) dn. Notice

that given the no information leakage condition (equation (10)). we find b, = 1, so the fluctuating channel

transmission does not add noise to the quantum amplitude correlations.

2.4. Asymptotic secret key rate

The secret key protocol we propose is an adaption of CV-QKD with reverse reconciliation [33], using the no
leakage protocol [31] and a passive eavesdropper [26]. In the reverse reconciliation protocol Alice guesses the
value of Bob’s quadrature measurement outcomes based on her own outcomes. They then perform a
reconciliation protocol which corrects errors in Alice’s guesses at the cost of shortening the data string. In the
limit of an infinitely long string this process does not leak any information to the eavesdropper—this is called
the asymptotic limit. The asymptotic secret key rate with reverse reconciliation is [27]

Kasym‘ = Blap — XEB, (20)

where (3 is the reverse reconciliation efficiency, 5 is Alice and Bob’s mutual information, and xgp is a bound
on Eve’s maximal information given by the Holevo Bound. For the no leakage protocol with a passive
eavesdropper we have Xz = 0 and 5o Kysym, = Blap.

The best possible performance of our key protocol will be in this asymptotic limit, with ideal
reconciliation (5 = 1), strong squeezing (V; << 1) and ideal detectors. Under these conditions we have
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Ing = §log, aq%%/b, Substituting the values in this limit we find the highest achievable rate of the

zero-leakage protocol is

1
Kideal = —51082 (1—np). (21)

In order to include the effects of finite data block lengths a more sophisticated analysis is required, as will be
introduced in section 4.

3. Free-space optical propagation and atmospheric effects

In this section, we model realistic satellite-to-Earth channels via numerical simulations. In the following
section we will use these results and realistic efficiencies and data block lengths to verify the feasibility and
evaluate the performance of our proposed scheme.

3.1. System model
As a specific example, we consider the satellite-to-Earth communication setup shown in figure 2—it should
be noted that our system is not restricted to such an arrangement. In this work, the ground-station altitude is
denoted as hy, the satellite zenith angle at the ground station is denoted as #,, and the satellite altitude at
6, = 0 is denoted as H. The channel distance can then be given by L = (H — h)/ cosf,. We assume a
restricted eavesdropping scenario where the channel is monitored [25], and hence Eve is passive and not able
to perform an active attack [38]. However, as indicated in figure 2, we allow Eve to capture all the lost light.
The random inhomogeneities (i.e. turbulent eddies) within the Earth’s turbulent atmosphere (which can
be seen as a random medium) give rise to small random refractive index fluctuations (i.e. optical turbulence)
that cause continuous phase modulations on an optical beam, imposing amplitude and phase distortions on
the optical beam as it propagates through an atmospheric channel. Specifically, the family of turbulent eddies
whose sizes are bounded above by the outer scale Ly and below by the inner scale I, constitutes the inertial
subrange [39]. It is commonly assumed that atmospheric turbulence satisfies

(n(R))=1, én(R)< 1, (dn(R)) =0, (22)

where R = [x,y,2]T is the three-dimensional position vector, n(R) denotes the refractive index at R, and
dn(R)=n(R) — (n(R)) denotes the small refractive index fluctuations [39]. Under the paraxial
approximation and the assumptions in equation (22), the propagation of a monochromatic optical beam
1(R) through the turbulent atmosphere is governed by the stochastic parabolic equation [39]

oY (R
V24 (R) + izkwai() +26n(R) K2 (R) =0, (23)
z
where V4 = 82 /0x*> 4+ 0? /0y is the transverse Laplacian operator.
In this work, we assume that all the transmitted optical beams are in the fundamental Gaussian mode.
The general form of a Gaussian beam propagating along the z axis is given by

Ye (r,2) = 2 1 exp [ —r|2] expli¢ (r,2)], (24)

T w(z) w2 (z)

where r = [x,y]” denotes the two-dimensional position vector in the transverse plane,

w(z) = wor/1+ (z/zr)?%, Wy is the beam-waist radius, zg = 7 wj/\ is the Rayleigh range, ) is the (central)
k|r|*z
2(z|2-l—zzR)
Although our scheme is, in principle, robust against the random phase distortions (recall that no local
oscillator is required in our direct detection setup—the wavefront matching between the local oscillator and

the signal beam is not required), turbulence-induced effects related to amplitude distortions can still
negatively affect the performance of our scheme. Indeed, these effects (e.g. beam wandering, beam-shape
deformation, beam broadening, and intensity scintillation) can introduce substantial losses in real-world
scenarios where a finite-sized aperture is used at the receiver [39]. Due to the random nature of atmospheric
turbulence, such losses are also randomly fluctuating, giving rise to non-Gaussian excess noise and thus
further degrading the system performance (see discussions in e.g. [40, 41]).

We adopt the standard notation ‘loss’ for visualization purposes; however, in our calculations, we always
use the transmissivity 7 (with the relation Loss [dB] = —10log,,7) to maintain consistency with our analyses

optical wavelength, and ¢(r,z) = —arctan(Z) with k = 27 /A being the optical wavenumber.
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Figure 2. Satellite-to-Earth QKD link with a passive Eve. Classical and quantum information is encoded into a beam of light sent
from the satellite (Alice) to the ground station (Bob). The channel is modelled as a free-space optical channel with the satellite at
zenith angle 6, (deg), as shown. We model this downlink scenario as a concrete example, but our system is suitable for uplink or
inter-satellite communications as well.

in the previous sections. Assuming the transmitted beam is denoted by 1 (r,0) and the received beam is
denoted by tg«(r, L), the (fluctuating) transmissivity is given by

7= /A e (D) (25)

where L denotes the channel distance, and A denotes the aperture area at the receiver. Note that we assume a
circular receiver aperture whose radius is r, in this work.

3.2. Satellite-to-earth atmospheric channel

3.2.1. Turbulence characterization

The optical turbulence within the Earth’s atmosphere must first be appropriately characterized. In this work,
we adopt the widely used Hufnagel-Valley (HV) model to determine the structure parameter C2(h) that
describes the strength of the optical turbulence within a satellite-based atmospheric channel. The HV model
expresses C2(h) as the following function of altitude h [39].

C2 (h) = 0.00594 (vims /27)” (h x 107°) " exp (—h/1000) +2.7x 10~ exp (—h/1500) + A exp (—h/100),
(26)

2

where A is the ground-level turbulence strength in m™ /3, and vy is the root-mean-square (rms) wind

speed in m s~ !. The rms wind speed is given by

1 20%10° 1/2
Vims = l / V2 (h) dh] , (27)
5

15 % 103 J5, 100

where V(1) is the altitude-dependent wind speed profile. In this paper we adopt the Bufton wind profile [39]

2
V(h) = Vg + 30exp l— <h;8?;f)00) ] , (28)

where V is the ground-level wind speed.

Utilizing the structure parameter profile of the Earth’s atmosphere, we adopt the scintillation index o7
(which is the normalized variance of intensity) and the Fried parameter rq (which quantifies the coherence
length of turbulence-induced phase errors in the transverse plane) to quantify the effect of atmospheric
turbulence on a propagating beam. For satellite-to-Earth channels, the scintillation index is given by [39]

0.490% 0.510%
7/6 5/6
(1+1110) 7 (14+0.69077)

7

012 = exp , (29)
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with of being the Rytov variance,
H
0% =2.25k/sec''/® (6,) / C2 (h) (h— hy)*'® dh. (30)
ho
For satellite-to-Earth channels, the Fried parameter is given by [39]

—3/5

H
ro = [0.423k25ec92 / C2 (h) dh] . (31)
ho

The rate at which atmospheric turbulence changes with time is commonly quantified by the Greenwood
frequency [42, 43]

3/5
fo=231A"%"° [sec@z / C2 (h) V73 (h) dh} . (32)
Correspondingly, the time interval over which atmospheric turbulence remains essentially unchanged can be

quantified by the atmospheric coherence time [43]

0134

To = fG

. (33)

3.2.2. Method of numerical simulations

In this work, the implementation of our numerical simulation largely follows our previous work [44]

(see, e.g. the appendix of [44] for more discussions). Specifically, we numerically solve equation (23) using
the split-step method [45] (also referred to as phase screen simulations) in order to faithfully capture the
effects imposed by the optical turbulence on an optical beam propagating within the Earth’s atmosphere. The
main idea of this method is to model an atmospheric channel using a set of slabs with a random phase screen
located in the midway of each slab. Two vacuum propagations with one random phase modulation in
between are repeatedly performed until the beam reaches the receiver.

The implementation of our phase screen simulations requires careful configuration and optimization
based on the evaluation of the scintillation index (recall equation (29)) and the Fried parameter (recall
equation (31)) for both the whole channel and each individual slab. In order to characterize the atmospheric
turbulence within the jth slab, both the scintillation index (denoted as o) and the Fried parameters
(denoted as ry;) have to be evaluated locally for the turbulent atmosphere within that slab. For the actuate
modelling of the atmospheric channel, we set the width of each slab based on the two conditions
(ie. olzj < 0.1and afj < 0.10%) described in [46].

After determining the widths of the slabs, we use a well-known Fast-Fourier-Transform (FFT)-based
spectral-domain algorithm [47] to generate (random realizations of) the phase screen for each slab using its
corresponding phase Power Spectral Density (PSD) function. In this algorithm, the generation of each
individual phase screen starts with the spectral-domain generation of a uniform square grid of random
complex numbers sampled from a complex Gaussian distribution whose real and imaginary parts each have
zero mean and equal variances with zero cross-covariances. This grid of random numbers is further weighted
by the corresponding phase PSD function of the atmospheric turbulence within the corresponding slab. A
FFT is then performed to transform this spectral-domain grid of weighted random complex numbers into a
spatial-domain grid of random phase values (corresponding to an array of sample points of the phase screen)
with the same statistics as the turbulence-induced phase variations within the corresponding slab. In this
work, we adopt the widely-used modified von Karman model for the atmospheric turbulence, giving the
following phase PSD function for the jth slab

k(o003 P (S /)
(I’¢j K (f) = 0.023roj (fz +f02)11/6 )

where f is the magnitude of the two-dimensional spatial frequency vector in the transverse plane in cycles/m,
fo = 1/Louter» and f, = 0.9422 /Iipner [45].

For the free-space propagation, we utilize a physical optical propagation library named PROPER, whose
routines implement FFT-based angular-spectrum and Fresnel-approximation methods to propagate a
wavefront in near-field and far-field conditions, respectively [48]. As a fully numerical approach to solving
the stochastic parabolic equation, despite its computationally intensive nature, the split-step method can take
into account most of the important effects (e.g. beam wandering, beam broadening, and scintillation) in

(34)
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Table 1. Simulation parameters.

A Louter  linner Vg Vrms A wo ho H 0, Ta

9.6x107"m™*% 5m lcm 3ms~' 21ms™' 1064nm 15cm Om 500km 0°to60° {15cm,30cm, 50cm}

atmospheric optical propagation. Although this method can also be adopted to characterize the temporal
profile of the turbulence (i.e. the temporal turbulent fluctuations within one coherence time 7(), we notice
that such a temporal profile characterization is not required within the scope of this work since an
atmospheric channel can be considered constant for a large number of sequential signal pulses (more
discussions will be provided in section 3.4). The split-step method has been widely used to study the problem
of atmospheric optical propagation under various channel conditions, providing quantitative agreement
with both analytical results (e.g. [49, 50]) and real-world experimental data (e.g. [51]). More technical details
regarding the implementation of our numerical simulations can be found in [44, 50-52] and the references
therein.

3.3. Simulation settings

We restrict ourselves to the case of a low-Earth-orbit (LEO) satellite with a satellite altitude H = 500 km, and
we consider zenith angles 6, ranging from 0° to 60°. For the atmospheric parameters, we follow previous
works (e.g. [44, 52]) and set A = 9.6 x 10~ m~2/3, Lyyier = 5m, and lipner = 1cm. For the wind speed
profile, we set V, = 3m s71, giving a value of vy = 21 ms~!. For the optical parameters, we set

A = 1064 nm, and we set the beam-waist radius to wy = 15 cm. Particularly, our setting of the 1064 nm
wavelength is due to the existence of high-quality sources of squeezed light at this wavelength (see, e.g. [53]).
This wavelength also falls within the atmospheric transmission window and is currently one of the most
widely used operating wavelengths in real-world space-based optical communication systems (see
comprehensive review papers, e.g. [54]). For real-world implementations, we consider three reasonable
receiver aperture radii, namely, r, = 15cm, r, = 30cm, and r, = 50 cm, at the ground station. We further fix
the ground-station altitude to hy = O m. In our numerical simulations, we generate 10 000 independent
realizations of the satellite-to-Earth channel under each simulation setting. Our simulation parameters are
listed in table 1.

Although the existence of pointing errors can lead to an additional loss penalty in a real-world system,
the resulting loss penalty can be significantly reduced by the use of state-of-the-art tracking techniques.
Indeed, via the use of feedback-based tracking techniques, the loss penalty resulting from pointing errors
over a 1200km satellite-to-Earth channel is estimated to be smaller than 3 dB (which is lower than the
turbulence-induced loss and much lower than the diffraction loss) in a well-known real-world
demonstration of satellite-to-Earth QKD [55]. Therefore, in this work we ignore the pointing-error-induced
loss as we expect that including such a loss will not significantly change any of our observations.

3.4. Channel loss statistics
Before presenting our main results, we first provide a visualization of the channel loss statistics (predicted
from our numerical simulations) over a satellite-to-Earth channel.

To illustrate the time-dependent fluctuation of channel loss, in figure 3 we first plot the fluctuating loss
over a satellite-to-Earth channel (, = 60° and r, = 15cm) within a 0.5s time period. It should be noted that
figure 3 presents the channel loss fluctuation as a step function, with step size being the atmospheric
coherence time 7,—this is because the channel loss can be considered constant within the time interval
specified by 7. Specifically, the atmospheric coherence time under this setting is found to be 7o = 2.29ms.
Given that the coherence timescale of an atmospheric channel is on the order of milliseconds (see, e.g. [39])
and that a pulsed source with a 100 MHz repetition rate (which corresponds to a pulse period of 0.01 us) is
readily available, the channel can be considered constant for a large number (~ 10°) of sequential signal
pulses.

In figure 4, we plot the Probability Density Function (PDF) of the channel loss, achieved with different r,
values under different 6, values, over a satellite-to-Earth channel. From this figure, we can observe that both
the average channel loss (indicated by the centre of a PDF curve) and the fluctuation of channel loss
(indicated by the spread of a PDF curve) decrease as the receiver aperture radius r, increases. The former
observation is intuitive since a larger receiver aperture can capture a larger portion of the beam on the
ground. The latter observation is due to the well-known effect of aperture averaging in free-space optical
communications—the level of power fluctuation decreases as the receiver aperture size increases (more
details can be found in many good textbooks, e.g. [39]). It can be also seen that under each setting, the
distribution of channel loss is approximately centred at diffraction loss, and the spread of distribution (which
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Figure 3. Fluctuating loss within a 0.5s time period over a satellite-to-Earth channel. The atmospheric coherence time is found to
be 70 = 2.29 ms. Note that the channel loss is assumed to be constant within the atmospheric coherence time.

L L
—-=-0,=0° ,r,=15cm
—-=-0,=15° r, = 15cm
—-==0, =30° r, = 15cm
—-==0, =45° 1, = 15cm
—-=-0, =60° 1, = 15cm
0,=0°,r,=30cm
0, =15° r, =30cm
0, =30° r, =30cm
——0, =45°, 1, = 30cm
0, =60° r, = 30cm

Probability Density

<T__||||
I';_

0.5

12 14 16 18 20 22 24 26
Loss (dB)

o0
S

Figure 4. PDF of the channel loss achieved with different r, values under different 8, values over a satellite-to-Earth channel. The
PDF curves are generated by fitting a kernel probability distribution to our discrete simulation data on channel loss using the
fitdist function provided by MATLAB.

indicates the fluctuation of channel loss) is generally minimal. Such observations indicate that diffraction
loss (a deterministic loss) is the dominant source of loss over a satellite-to-Earth channel. Indeed, it is well
known that beam wandering, which is the major source of turbulence-induced channel loss fluctuations, is
negligible in a satellite-to-Earth channel (see, e.g. [39, 50, 55, 56]). This phenomenon is because an optical
beam transmitted from a satellite becomes very large when it enters the Earth’s atmosphere, and the
turbulence-induced effects are imposed on the optical beam only in the last segment of its propagation (note
that the effective thickness of the atmosphere is only around 6 km—see, e.g. [57]).

In figure 5, we plot the mean channel loss, achieved with different r, values under different , values, over
a satellite-to-Earth channel. The results in this figure are consistent with those in figure 3 and provide a
quantitative representation of the mean channel loss and the channel loss fluctuation over a satellite-to-Earth
channel.

4. Secret key rate results

The composable, finite length secret key rate is reduced from the asymptotic rate due to finite size effects on
the entropy, leaking of information through the public classical reconciliation of the raw key and the sacrifice
of data bits in estimating the signal to noise (SNR) of the quantum signal. For our protocol it is given by [26]

1
K=+ (N’ﬁIAB — VN Augp — 2log, [1/ (2@)]) , (35)
which is e-secure [58, 59] where € = 2€4y, + € + €pg + €cor- Here €4y, 1s the entropy smoothing parameter and

€cor and epg are the maximum failure probabilities for the error correction and parameter estimation,
respectively. For our protocol, Eve obtains no information from the optical communication hence parameter
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Figure 5. Mean channel loss achieved with different r, values under different 6, values over a satellite-to-Earth channel. Error bars
represent one standard deviation.
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Figure 6. Finite-size secret key rate (bits/use) as a function of zenith angle (deg) for the squeezed-state protocol, secure against
passive individual and collective attacks, with 6 dB and 10 dB of squeezing as shown. The beam-waist radius is set to 15 cm. The
parameters are security parameter € = 10~7, the discretisation parameter d = 5, Bob’s detector efficiency nz = 0.61, electronic
noise vg = 0.12, reconciliation efficiency 3 = 0.98, and block size N = 10'°, half of which is used for parameter estimation. The
transmissivity data are simulated for 15 cm, 30 cm, and 50 cm receiver aperture radius size s, as outlined in section 3.4. The
highest achievable rate of any QKD protocol (the quantum capacity or PLOB bound) [61] and the highest achievable rate of our
squeezed state protocol are also plotted (in red and blue, respectively, assuming a 50 cm aperture). Rates are simulated at discrete
intervals only shown by points in the figure. Lines are added to guide the eye.

estimation is unnecessary and we can set epg = 0. In addition € is required by the left over Hash lemma. As
before, ( is the reverse reconciliation efficiency and I4p is Alice and Bob’s mutual information. The block size
is N and N’ is the length of Bob’s string after the SNR estimation. Also, Aagp = (d+ 1)> +4(d + 1)

log,(2/2¢€2,) + 2log,[2/(2€%€xm)] + 4€smd/ (€V/N'), where d is the discretisation parameter used by Bob to
extract key values. Alice and Bob’s mutual information is

aq
ag— 3/ [bg+ (1 —1p)v]’

1
IAB = Elogz (36)

VB

where 7)p is the efficiency of Bob’s detector, and v =1+ o with vg the electronic noise of the detectors.
The finite-size secret key rate is shown in figure 6. We use state-of-the-art parameters for our calculations
[60] with the caveat that these parameters, in particular the reconciliation efficiency, may be difficult to
realize in the field. The parameter are: security parameter € = 10~7; the discretisation parameter d = 5; Bob’s
detector efficiency 1 = 0.61; electronic noise vg = 0.12; reconciliation efficiency 5 = 0.98; and block size
N = 10", half of which is used for parameter estimation. These calculations use simulated transmissivity
data (10 000 realisations) as discussed in section 3.4. With the simulated data and parameters outlined in the
caption of figure 6, we obtain positive secret key rate for 30 and 50 cm receiver aperture radius sizes, and
obtain positive key for 15 cm receiver aperture radius size but not for large zenith angles. Turbulence has
little impact on the key rate. In figure 6, we also plot the capacity (red) and the ideal asymptotic key rate
(equation (21)) (blue) for comparison. The capacity (i.e. the ultimate limit given by the two-way
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(classically-assisted) quantum capacity of the pure-loss channel [61]) and the asymptotic key rate are both
plotted using loss parameters for the 50 cm aperture radius. We can estimate that for larger block sizes, say
N = 10" uplink becomes possible since the maximum amount of tolerable loss is then about 40 dB.

5. Conclusion

We have considered a typical optical classical communication scheme based on amplitude modulation and
direct detection, and incorporated a simultaneous CV QKD protocol. With the assumption of a passive Eve,
we predict positive finite size secret key rates for realistic downlink free-space channels without affecting the
SNR of the classical data. Given a classically monitored channel active eavesdropper attacks are deemed
unrealistic, so the security of the secret key is strong. No optical local oscillator is required for our protocol.

Our scheme requires the injection of squeezed light at the sender and efficient, low noise photo-detection
at the receiver in order to enable encoding and read out of a quantum signal with a QNL variance. The purest
current sources of squeezing are inefficient and so could add significantly to the local energy budget of the
satellite. However, as the squeezing is only needed on one quadrature, purity is not a major issue, and so in
principle a high efficiency squeezed laser [62] might be used as the source (i.e. X; in figure 1), adding very
little to the local energy budget.

In principle, given a passive Eve, a super-QNL encoding variance is possible, avoiding the need for
squeezing. However, there are the following significant advantages to using a QNL encoding: (i) greater range
and higher key rate for the QKD; (ii) the classical signals always have a QNL noise floor; (iii) the atmospheric
fluctuation noise is cancelled; and (iv) there is reduced computational overhead and increased efficiency in
the reconciliation protocol due to the zero information leakage of raw key information to Eve.

We believe our system features the minimum addition of quantum resources needed to combine classical
communication and QKD in a system with practical performance and good compatibility with existing
satellite-based communication infrastructure. As such we expect it may play a role in next generation LCS
systems.
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