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Abstract: We propose a new expression of the cooperative decay rate of a one-dimensional chain

of N two-level atoms in the single-excitation configuration. From it, the interference nature of

superradiance and subradiance arises naturally, without the need to solve the eigenvalue problem

of the atom–atom interaction Green function. The cooperative decay rate can be interpreted as the

imaginary part of the expectation value of the effective non-Hermitian Hamiltonian of the system,

evaluated over a generalized Dicke state of N atoms in the single-excitation manifold. Whereas the

subradiant decay rate is zero for an infinite chain, it decreases as 1/N for a finite chain. A simple

approximated expression for the cooperative decay rate is obtained as a function of the lattice constant

d and the atomic number N. The results are obtained first for the scalar model and then extended to

the vectorial light model, assuming all the dipoles aligned.

Keywords: superadiance; subradiance; cooperative emission

1. Introduction

Cooperative spontaneous emission by N excited two-level atoms has been extensively
studied since the seminal works by Dicke in 1954 [1] and Lehmberg in 1970 [2]. Whereas su-
perradiance, i.e., enhanced spontaneous emission due to constructive interference between
the emitters, has been well understood [3,4], subradiance, i.e., inhibited emission due to
destructive interference between the emitters, is more elusive and difficult to observe [5–7].
Nevertheless, the number of studies on subradiance has seen a large increase in the last
few years, as it offers the opportunity of storing photons in emitter ensembles for times
longer than the single emitter lifetime [8–15].

In disordered systems, the cooperative decay must be studied numerically, usually
by solving the dynamics of an initially excited ensemble [16]. Eventually, in the linear
regime of weak excitation, useful information can be obtained from the spectrum of the
eigenvalues of the system [17], determined numerically by diagonalizing the finite matrix
associated with the Green operator describing the coupling between the emitters. Things
are apparently more simple when atoms form ordered arrays, which are easier to treat
theoretically. This is also the reason why propagation of excitations in lattices with different
dimensionalities has been generally investigated more than in disordered systems. In fact,
the existing literature on the interaction of coherent light with atomic lattices is very
rich [18–22]. Most of it presents a ‘solid-state physics’ point of view, investigating the
transport of particular photonic (but not necessarily) modes through ordered samples,
often taken as infinite but finite in a few exceptions. For instance, infinite and finite chains
of two-level atoms have been considered in ref. [12]. Conversely, cooperative effects as
superradiance and subradiance are typically interpreted as quantum optics phenomena,
and are seen associated with cooperativity in the emission or light scattering of ensemble
of atoms [3,8]. The bridge between these two complementary descriptions is not yet
completely established.

The aim of this paper is to add some further insight on the study of a one-dimensional
array of atoms in the single-excitation configuration, i.e., with only one atom excited
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among N. Starting from the effective non-Hermitian Hamiltonian, which includes an
imaginary part describing the cooperative spontaneous decay and a real part describing the
cooperative energy shift [2,23], we focus on the cooperative decay only, without solving the
eigenvalue spectrum problem, but adopting a different approach: we introduce a collective
decay function Γk, parametrized by a continuous label k which, in the case of an infinite
chain, represents the Fourier transform of the system. For a finite chain, the collective
decay Γk is able to catch the main characteristics of the superradiant and subradiation
emission by the excited atoms in the chain, enlightening the symmetry properties of the
N-atoms state associated with such cooperative phenomena. In particular, starting from
the solution for an infinite chain, obtained as a limit case of the general solution, we obtain
an approximated analytical expression for the cooperative decay from a finite chain of N
atoms when N is large. The analysis is carried out, initially assuming the scalar model of
light and neglecting the vectorial nature of the dipoles. The scalar model is particularly
attractive because, since the polarization direction does not play any role, it is able to catch
the main features of cooperativity just considering the relative phases of the emitters, taken
at a fixed distance along the chain. So, the control parameters are, in this case, only the
lattice constant d and the atom number N. Then, we extend the results to the vectorial
light model for a set of N equally oriented dipoles. We see that the scalar light model still
provides a good approximation of the vectorial light model, either when the directions of
the dipoles are randomized or in the limit of large lattice constant.

2. Scalar Model

We consider N two-level atoms with the same atomic transition frequency ω0 = ck0,
linewidth Γ and dipole µ. The atoms are prepared in a single-excitation state; |gj⟩ and |ej⟩
are the ground and excited states, respectively, of the j-th atom, j = 1, . . . , N, which is placed
at position rj. We consider here the single-excitation effective Hamiltonian in the scalar
approximation, whereas the exact vectorial model will be considered in the next section.
If we assume that only one photon is present, when tracing over the radiation degrees
of freedom, the dynamics of the atomic system can be described by the non-Hermitian
Hamiltonian [24,25]

Ĥ = −i
h̄

2 ∑
j,m

Gjm σ̂†
j σ̂m, (1)

where σ̂j = |gj⟩⟨ej| and σ̂†
j = |ej⟩⟨gj| are the lowering and raising operators, and Gjm is the

scalar Green function,

Gjm =

{

Γjm − i Ωjm if j ̸= m,

Γ if j = m,
(2)

and

Γjm = Γ
sin(k0rjm)

k0rjm
, Ωjm = Γ

cos(k0rjm)

k0rjm
, (3)

where rjm = |rj − rm|. Ĥ contains both real and imaginary parts, which take into account
that the excitation is not conserved, since it can leave the system by emission. We focus
our attention on the decay term Γjm. It can be obtained as the angular average of the
radiation field propagating between the two atomic positions rj and rm, with wave-vector
k = k0(sin θ cos φ, sin θ sin φ, cos θ),

Γjm =
Γ

2

〈

e−ik·(rj−rm) + c.c.
〉

Ω
(4)

where the angular average is defined as

⟨ f (θ, φ)⟩Ω =
1

4π

∫ 2π

0
dφ

∫ π

0
sin θ f (θ, φ)dθ.
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Equation (4) provides a simple interpretation of Γjm as the coupling between the jth atom
and the mth atom, mediated by the photon shared between the two atoms and averaged
over all the vacuum modes [26–28]. The interaction also includes the energy shift Ωjm,
which we will not consider here, since it is not relevant for our study. The important
technical point is that Equation (4) allows us to factorize Γjm in the product of two terms,
before averaging them over the total solid angle.

Things become particularly simple if we consider N atoms placed along a linear chain
with lattice constant d, i.e., with positions rj = d(j − 1)êz, with j = 1, . . . , N. Then, we
can write

e−ik·rj = Ej = e−ik0d(j−1) cos θ (5)

and

Γjm =
Γ

2

〈

EjE
∗
m + c.c.

〉

Ω
. (6)

2.1. Collective Decay Rate

We introduce the following collective variable,

Γk =
1

N

N

∑
j=1

N

∑
m=1

Γjmeikd(j−m) (7)

depending on the continuous index k ∈ [0, 2π/d). Equation (7) represents the Fourier
transform of Γjm only in the case of the infinite chain, such that the system is periodic and k
discrete; nevertheless, the continuous variable k is still a good label for the modes when
N is sufficiently large [12]. We refer to Γk as the ‘continuous spectrum’ of the decay rate,
outlining that we are not referring to the discrete spectrum of the eigenvalues of the system,
described by the non-Hermitian Hamiltonian (1), but we introduce a quantity related to
the phase of the collective state of the N atoms emitting a single photon. A more precise
interpretation of it will be provided at the end of the section. For the moment, let us just
proceed in its evaluation. By using Equation (6) in Equation (7), we can write

Γk =
Γ

N
⟨|Fk(θ)|2⟩Ω (8)

where

|Fk(θ)|2 =

∣

∣

∣

∣

∣

N

∑
j=1

ei(k−k0 cos θ)d(j−1)

∣

∣

∣

∣

∣

2

=
sin2[(k − k0 cos θ)dN/2]

sin2[(k − k0 cos θ)d/2]
(9)

and

Γk =
Γ

4πN

∫ 2π

0
dφ

∫ π

0
sin θ|Fk(θ)|2dθ =

Γ

k0dN

∫ (k+k0)d/2

(k−k0)d/2

sin2(Nt)

sin2 t
dt (10)

where we changed the integration variable from θ to t = (k − k0 cos θ)d/2. For large N, we
can approximate in the integral of Equation (10),

sin2(Nt)

sin2 t
≈ N2

+∞

∑
m=−∞

sinc2[(t − mπ)N], (11)

where sinc(x) = sin x/x, so that

Γk = =
ΓN

k0d

+∞

∑
m=−∞

∫ (k+k0)d/2

(k−k0)d/2
sinc2[(t − mπ)N]dt. (12)
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2.2. Infinite Chain

In the limit N → ∞,

sinc2[(t − mπ)N] → π

N
δ(t − mπ) (13)

where δ(x) is the Dirac delta function. Thus,

Γk =
Γπ

k0d

+∞

∑
m=−∞

Π[2mπ − k0d < kd < 2mπ + k0d] (14)

where Π(a < x < b) is the rectangular function, equal to 1 for a < x < b and 0 elsewhere.
Equation (14) is the solution for an infinite chain, where k is the true index of the modes.
The fact that Γk is a Fourier transform in the continuous variable k is a consequence of
Bloch’s theorem. Although the result (14) is not new (see, for instance, ref. [12], obtained
analytically using the vectorial model, but only for k0d < π), it will be useful for our study
for two reasons:

(a) We aim to compare the scalar model with the vectorial model and see what are the
most relevant differences; the scalar model is more appealing, since it neglects the
vectorial nature of the dipoles composing the chain, focusing only on their phases.
Also, the scalar model is not completely unrealistic, since we will see that it can be
recovered from the vectorial model assuming the dipoles randomly oriented.

(b) We are interested in describing a finite chain, with a finite number N of atoms, where
the infinite chain represents a limit case of it. Many previous studies of infinite and
finite chains (usually based on the numerical evaluation of the complex eigenvalues of
the matrix Gjm in Equation (1)) have a ‘solid-state physics’ approach [12], investigating
the guided propagation of photonic modes along the chain. On the contrary, we are
interested to the point of view of the atoms, where superradiance and subradiance
arise from constructive and destructive interferences of N emitters, respectively. In the
paper by Bettles et al. [11], these two points of view are equally well discussed.

From the result (14) we see that, when k0d < π (i.e., d/λ0 < 0.5), Γk = 0 for k0 < k <

2π/d − k0, i.e., full subradiance (see Figure 1a), whereas for 0 < k < k0 and 2π/d − k0 <

k < 2π/d, Γk = Γ(π/k0d) > Γ, i.e., enhanced radiance [12,14]. For larger lattice constant,
slight subradiance and enhanced radiance alternate every half-wavelength, i.e., at increasing
interval π of k0d (see Figure 1b–d): it results then that, when mπ < k0d < (m + 1)π in the
interval (m + 1)π < (k + k0)d < (m + 2)π, Γk = Γ(m + 1)π/k0d > Γ for m odd and Γk =
Γmπ/k0 < Γ for m even. In the external intervals (k + k0)d < π and (k + k0)d > (m + 2)π,
Γk = Γmπ/k0d < Γ for m odd and Γk = Γ(m + 1)π/k0d > Γ for m even. Hence, for each
subsequent π interval of k0d, two regions of the spectrum can be identified: one where Γk

is less than Γ, and the other one where Γk is larger than Γ. The difference between these
two values is ∆Γ = π/k0d. The only case of full subradiance, with zero decay rate, occurs
for k0d < π.

2.3. Finite Chain

The case of a finite chain requires the evaluation of the integral in Equation (12).
Figure 2 shows Γk/Γ vs. k0d for k = 0 (blue line) and kd = π (red line), for N = 10
(Figure 2a) and N = 100 (Figure 2b). The dashed line in Figure 2a is the analytic solution (14)
for infinite chain. We see that, for an infinite chain and k0d < 2π, Γk=0 = Γ(π/k0d),
whereas for π < k0d < 2π, Γk=π/d = Γ(2π/k0d). We now have the elements to discuss
superradiance and subradiance in a finite chain in detail. Let us consider the blue line of
Figure 2a,b, corresponding to k = 0. For k0d ≪ 1/N, Γk=0 ∼ ΓN, which corresponds to the
Dicke superradiance of N atoms confined in a region smaller than the optical wavelength,
such that they emit all in phase. Increasing k0d, the distance between the atoms increases
and they become less correlated: the cooperative emission rate decreases until, at k0d = π,
it reaches the uncorrelated value Γ (see Figure 2a). Then, beyond k0d = π, the interference
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between the emitters becomes destructive and Γk=0 drops below Γ (‘slight’ subradiance),
until k0d reaches the value 2π. At this value of the lattice constant, Γk=0 has a rapid jump
from the minimum Γ(π/k0d) to the maximum Γ(3π/k0d) (see Figure 2b, blue line). Then,
the process repeats itself, with a jump of Γ(m + 1)/m each time k0d crosses the value m(2π).

0 1 2 3 4 5 6
0.0

0.5

1.0

1.5

2.0

2.5

3.0

Γ k
/Γ

kd

k0d 2π-k0d

(a)

0 1 2 3 4 5 6
0.0
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0.4

0.6
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1.0
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1.4

Γ k
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2π-k0d 3π-k0d

(b)
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1.0
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Γ k
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4π-k0d 5π-k0d
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Figure 1. Γk/Γ vs. kd for (a) k0d = π/2, (b) k0d = 3π/2, (c) k0d = 5π/2 and (d) k0d = 7π/2,

obtained from Equation (12) with N = 10 (blue line) and N = 50 (red line). Black line: solution (14).

0 1 2 3 4 5 6
0

2
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6
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Γ k/
Γ

k0d

(a)

0 5 10 15 20 25 30
0.0

0.5

1.0

1.5

2.0

Γ k/
Γ

k0d

(b)

Figure 2. Γk/Γ vs. k0d for k = 0 (blue line) and k = π/d (red line), obtained from Equation (12) with

(a) N = 10 and (b) N = 100. The dashed line in (a) is the analytic solution (14) for N → ∞.
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Conversely, subradiance is described by the red line of Figure 2a,b, with kd = π:
when k0d ≪ 1/N, the nearest neighbor atoms emit with opposite phases, and spontaneous
emission is inhibited. Surprisingly, this destructive interference is also preserved for larger
values of the lattice constant, up to k0d = π. Then, beyond k0d = π, we observe an alter-
nation of enhanced and inhibited emission, mirroring the behavior of Γk=0. Although full
subradiance, Γk = 0, has a transparent interpretation as modes guided without radiative
losses beyond the light line k = k0 [12], the interpretation ‘from the point of view of the
atoms’, in terms of destructive interference between the emitters in a finite chain, is less intu-
itive, as discussed, for instance, in ref. [11]. To this aim, we need to consider the superradiant
and subradiant states of the system, as originally defined by Dicke [1]. Before treating them
in the next subsection, it is useful to obtain further analytic expressions of the collective
decay rate Γk for the finite chain. An approximated analytic expression can be obtained
replacing the function sinc2(x) in Equation (12) with the Lorentzian function 1/(1 + x2),
which has the same peak value of unity and the same normalization value of π. Then,
the integral in Equation (12) yields

Γk =
Γ

k0d

+∞

∑
m=−∞

[arctan(bm)− arctan(an)] (15)

where am = [(k − k0)d/2 − mπ]N and bm = [(k + k0)d/2 − mπ]N. Equation (15) approx-
imates the behavior obtained from the exact result of Equation (12) well, as shown in
Figure 3 for k = π/d and N = 10.

0 5 10 15 20 25 30
0.0

0.5

1.0

1.5

2.0

Γ k
/Γ

k0d

Figure 3. Γk/Γ vs. k0d for k = π/d for N = 10, obtained from exact expression of Equation (12) (blue

continuous line) and from the approximated solution of Equation (15) (red dashed line).

This expression allows to evaluate the subradiant decay rate in the limit of large N,
using the identity arctan(z) = ±π/2− arctan(1/z), where the positive sign is for z > 0 and
the negative sign for z < 0. Then, for k0d < π and the band interval k0 < k < 2π/d − k0,
the main contribution in the sum in Equation (15) comes for the terms m = 0 and m = 1
which, for large N and far from the interval edges, yields

Γk ≈ 4Γ

N

[

1

(kd)2 − (k0d)2
+

1

(kd − 2π)2 − (k0d)2

]

. (16)

We observe the dependence on 1/N, typical of subradiance [6]. In particular, at the center
of the band, k = π/d, and for k0d = π/2, Γk ≈ (32/3π2N)Γ. Conversely, superradiance is
obtained from Equation (15) for k = 0 and m = 0,

Γk=0 =
2Γ

k0d
arctan

(

k0dN

2

)

. (17)
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In the limit k0d ≪ 1/N, Γk=0 ≈ ΓN[1 − (k0dN)2/12 + . . . ], as can be observed in
Figure 2a.

2.4. Symmetric and Anti-Symmetric States

It is easy to prove that

Γk = −2

h̄
Im⟨k|Ĥ|k⟩, (18)

where Ĥ is the non-Hermitian Hamiltonian (1) and

|k⟩ = 1√
N

N

∑
j=1

eikd(j−1)|j⟩, (19)

where k ∈ [0, 2π/d) and |j⟩ = |g1, . . . , ej, . . . , gN⟩. For k = 0, the state (19) corresponds to
the Dicke state [1], whereas for k = k0 is the timed Dicke state introduced by Scully and
coworkers [29], corresponding to the entangled state of N atoms, where a single photon
with momentum h̄k0 along the axis chain has been absorbed. For kd = π the state (19) is
subradiant, since nearest-neighbor atoms have opposite phases. This picture is in agreement
with the analysis of ref. [11], where the nearest-neighbor phase difference φℓ

i+1 − φℓ
i for

i = 1, . . . , N is determined for the N eigenmodes of the system, with index ℓ = 1, . . . , N
ordered from the largest to the smaller decay rate. In our case, the nearest-neighbor phase
difference for the state |k⟩ is kd, which provides a simple interpretation of enhancement or
inhibition of spontaneous emission by N in-phase or out-of-phase atoms in the chain. It is
interesting to observe that, for an infinite chain and in the scalar model, the imaginary part
of the expectation value ⟨k|Ĥ|k⟩ is constant. This is not true for a finite chain, but it is a very
good approximation for a sufficiently large N (see Figure 1a). Moreover, the fact that Γk is
independent on k for the infinite chain is a consequence of the scalar model, for which the
spontaneous emission in the vacuum modes is isotropic. This is not true for the vectorial
model, as we will see in the next section.

It is interesting to note that the states |k⟩ form a complete basis of the single-excitation
manifold. In fact,

d

2π

∫ 2π/d

0
dk|k⟩⟨k| =

N

∑
j=1

|j⟩⟨j| = 1. (20)

As expected, the states |k⟩ are not orthogonal for a finite chain, since

⟨k′|k⟩ = sin[(k − k′)dN/2]

sin[(k − k′)d/2]
ei(k−k′)d(N−1)/2, (21)

but they become so for an infinite chain, ⟨k′|k⟩ → δ(k − k′) for N → ∞.

2.5. Spectrum and Eigenvalues

Finally, it is interesting to see how Γk approximates the eigenvalues spectrum of a
finite chain. Figure 4 shows Γk, as calculated from Equation (12), and the N eigenvalues
λi of the N × N matrix Γjm, ordered from the largest to the smallest, as function of kd =
π(i − 1/2)/N, with i = 1, . . . , N for k0d = π/2, N = 10 (a) and N = 50 (b). We see that
Γk rather satisfactorily reproduces the features of the eigenvalues of the matrix Γjm and
describes the transition from superradiance to subradiance going from kd = 0 to kd = π, a
transition that becomes sharper by increasing N.
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Figure 4. Continuous blue lines: Γk/Γ vs. kd for k0d = π/2, obtained from Equation (12) with

(a) N = 10 and (b) N = 100; red circles correspond to the eigenvalues λi of Γjm, ordered from the

largest to the smallest, plotted as a function of kd = π(i − 1/2)/N.

3. Vectorial Model

We now extend the previous analysis to the vectorial model, taking into account the
polarization of the electromagnetic field. The non-Hermitian Hamiltonian is now

Ĥ = −i
h̄

2 ∑
α,β

∑
j,j′

Gα,β(rj − rj′) σ̂†
j,ασ̂j′ ,β. (22)

where α, β = (x, y, z). Here, σ̂j,x = (σ̂
mJ=1

j + σ̂
mJ=−1

j )/2, σ̂j,y = (σ̂
mJ=1

j − σ̂
mJ=−1

j )/2i and

σ̂j,z = σ̂
mJ=0

j , where σ̂
mJ

j = |gj⟩⟨e
mJ

j | is the lowering operator between the ground state

|gj⟩ and the three excited states |emJ

j ⟩ of the jth atom with quantum numbers J = 1 and

mJ = (−1, 0, 1). The vectorial Green function in Equation (22) is [2,13]

Gα,β(r) =
3Γ

2

eik0r

ik0r

[

δα,β − n̂αn̂β +
(

δα,β − 3n̂αn̂β

)

(

i

k0r
− 1

k2
0r2

)]

(23)

with r = |r| and n̂α being the components of the unit vector n̂ = r/r. We consider the linear
chain with lattice constant d, i.e., rj = d(j − 1)êz, with j = 1, . . . , N, and all the dipoles
aligned with an angle δ with respect to the chain’s axis, so that n̂α = n̂β = cos δ and

Gα,α(r) =
3Γ

2

eik0r

ik0r

[

sin2 δ + (1 − 3 cos2 δ)

(

i

k0r
− 1

k2
0r2

)]

. (24)
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Notice that if the dipoles are randomly oriented, ⟨Gα,β(r)⟩Ω = 0 for α ̸= β and in

Equation (24) ⟨cos2 δ⟩Ω = 1/3, so that ⟨Gα,α(r)⟩Ω = eik0r/(ik0r), i.e., we recover the scalar
model. This, in general, is not true in disordered systems, where the short-range terms 1/r2

and 1/r3 play a role at large densities [30].
The decay rate for the vectorial model is given by the real part of Gα,α,

Γ(δ)(rjm) =
3Γ

2

[

sin2 δj0(k0rjm) + (3 cos2 δ − 1)
j1(k0rjm)

k0rjm

]

(25)

where j0(x) = sin x/x and j1(x) = sin x/x2 − cos x/x are the spherical Bessel functions of
order n = 0 and n = 1. As before, it is possible to write Γ(δ)(rjm) as angular average of the
radiation field emitted between the two atoms. By using the identities

⟨eix cos θ⟩Ω =
1

4π

∫ 2π

0
dφ

∫ π

0
sin θeix cos θdθ = j0(x) (26)

⟨cos2 θeix cos θ⟩Ω =
1

4π

∫ 2π

0
dφ

∫ π

0
sin θ cos2 θeix cos θdθ = j0(x)− 2

j1(x)

x
. (27)

we can write

Γ(δ)(rjm) =
3Γ

4

{

1 + cos2 δ

2
⟨EjE

∗
m⟩Ω +

1 − 3 cos2 δ

2
⟨cos2 θEjE

∗
m⟩Ω + c.c.

}

(28)

where Ej has been defined in the previous section. The collective decay rate of the dipoles
oriented with the angle δ is

Γ
(δ)
k =

1

N

N

∑
j=1

N

∑
m=1

Γ(δ)(rjm)e
ikd(j−m) (29)

with k ∈ [0, 2π/d]. Then,

Γ
(δ)
k =

3Γ

4N

[

(1 + cos2 δ)⟨|Fk(θ)|2⟩Ω + (1 − 3 cos2 δ)⟨cos2 θ|Fk(θ)|2⟩Ω

]

(30)

where |Fk(θ)|2 is defined in Equation (9). By evaluating the angular average and using the
approximation (11),

Γ
(δ)
k =

3ΓN

2k0d

+∞

∑
m=−∞

∫ (k+k0)d/2

(k−k0)d/2

[

sin2 δ +
1

2
(1 − 3 cos2 δ)

(kd − 2t)2 − (k0d)2

(k0d)2

]

× sinc2[(t − mπ)N]dt. (31)

In the limit N → ∞, using (13),

Γ
(δ)
k =

3Γπ

2k0d

+∞

∑
m=−∞

{

sin2 δ +
1

2
(1 − 3 cos2 δ)

(kd − 2πm)2 − (k0d)2

(k0d)2

}

× Π[2mπ − k0d < kd < 2mπ + k0d], (32)

which is the Fourier transform of the decay rates for an infinite chain. We observe that,

for k0d < π, Γ
(δ)
k is still zero in the interval k0 < k < 2π/d − k0 (full subradiance). Instead,

Γ
(δ)
k is no more uniform in k as in the scalar model. In particular, for k0d < π and in the

intervals 0 < k < k0 and 2π/d − k0 < k < 2π/d,

Γ
(δ)
k =

3Γπ

2k0d

{

sin2 δ +
1

2
(1 − 3 cos2 δ)

(

k2

k2
0

− 1

)}

(33)
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Equation (33) is in agreement with the results of ref. [12]. In Figure 5, we compare the
results of the vectorial and the scalar models for an infinite chain, for the same values of
k0d as in Figure 1 and for δ = π/2. We observe that increasing k0d the differences between
the scalar and the vectorial models become less important, and the spectrum becomes more

flat. Also, the behavior of Γ
(δ)
k vs. k0d for k = 0 and k = π/d, shown in Figure 6, is similar

to that obtained from the scalar model (see Figure 2). We observe that Γ
(δ)
k reduces to the

scalar model’s value, Γk, for the special angle δ = arccos(1/
√

3).
Finally, as performed for the scalar model, we can obtain an approximated expression

of Γ
(δ)
k for a finite lattice, substituting the function sinc2(x) with the Lorentzian func-

tion 1/(1 + x2) in Equation (31) and solving the integral. A long but straightforward
calculation yields:

Γ
(δ)
k (x, a) =

3Γ

2a

+∞

∑
m=−∞

{[

sin2 δ +
1

2a2
(1 − 3 cos2 δ)[(x − 2πm)2 − a2]

]

× (arctan bm − arctan am)

+
2

Na
(1 − 3 cos2 δ)− 1

Na2
(1 − 3 cos2 δ)(x − 2πm) ln

1 + b2
m

1 + a2
m

− 2

N2a2
(1 − 3 cos2 δ)(arctan bm − arctan am)

}

(34)

where we defined x = kd, a = k0d, am = (x − 2πm − a)N/2 and bm = (x − 2πm +
a)N/2. A numerical analysis shows that the approximated expression (34) reproduces
satisfactorily the exact solution (31). We have verified the 1/N scaling of subradiance by
evaluating numerically the exact solution (31) for kd = π and k0d = π/2, and two different
polarization directions, δ = π/2 and δ = 0, shown in Figure 7. The linear fit confirms the
subradiant law Γsub ∼ 1/N, independently from the polarization direction.

0 1 2 3 4 5 6
0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

Γ k
/Γ

kd

k0d 2π-k0d

(a)
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(b)
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4π-k0d 5π-k0d

(d)
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Γ k
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3π-k0d 4π-k0d

(c)

Figure 5. Γk/Γ vs. kd for δ = π/2 and (a) k0d = π/2, (b) k0d = 3π/2, (c) k0d = 5π/2 and

(d) k0d = 7π/2 for an infinite chain, obtained from the vectorial model, Equation (32) (red line),

and from the scalar model, Equation (14) (blue line).
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Γ k
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k0d

Figure 6. Γk/Γ vs. k0d for δ = π/2, for k = 0 (blue line) and k = π/d (red line), obtained from

Equation (31) with N = 100.

10 100

0.01

0.1

Γ k
(δ

) /Γ

N

Figure 7. Scaling with atom number N of the subradiant decay rate Γ
(δ)
k /Γ for k = π/d and

k0d = π/2. A fit for large N yields Γ
(δ)
k ∼ 1/N, both for perpendicular (δ = π/2, blue circles) and

parallel, (δ = 0, red squares), polarization.

4. Conclusions

We have presented a different approach to the study of the cooperative decay in a
one-dimensional chain of N atoms in the single-excitation configuration. We have defined a
collective function Γk, containing the phase information among the emitters. In particular, it
reduces to the Fourier transform of the decay rates in the case of an infinite chain. For a finite
chain, it gives an intuitive interpretation of superradiance and subradiance as constructive
or destructive interference of the emission by N atoms in the chain. More specifically,
Γk is proportional to the imaginary part of the expectation value of the non-Hermitian
Hamiltonian operator, evaluated on a generalized Dicke state of N atoms with nearest-
neighbor phase difference kd, where d is the lattice constant: superradiance and subradiance
occurs for k = 0 and k = π/d (but only for d/λ0 < 1/2), respectively. Our analytic results
are in agreement with the numerical results of [11,21]. More importantly, this approach can
be complementary to the study of the discrete eigenvalue problem, generally numerically
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limited by the size of N. We have derived an explicit expression of Γk, both for the scalar
and vectorial light models. From it, subradiance shows a dependence as 1/N, similar to
that predicted and observed in disordered systems [6,7] and in a 2D lattice [10]. This result
seems to be at odds with the analysis of ref. [12], where a dependence as 1/N3 is found
for the most subradiant eigenvalues. However, that scaling refers to discrete eigenvalues,
whose behavior depends in general on the microscopic details, such as, for instance, the
polarization of the atoms. On the contrary, Γk is a mean-field quantity, obtained as an
expectation value of the non-Hermitian Hamiltonian operator, evaluated over a collective
state with a well-defined phase relationship between nearest-neighbor atoms. In this sense,
Γk could be associated with measurement of the average subradiant decay in a finite linear
chain, rather than the less accessible eigenvalues of the non-Hermitian Hamiltonian. It
will be interesting to extend this approach of the study of the cooperative decay from
one-dimensional chains to two- and three-dimensional finite arrays, eventually also in the
presence of disorder.
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