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Abstract

For any factorisation proof, a crucial step is a demonstration of the cancellation of so-called
Glauber gluons. We summarise a recent paper in which we demonstrated this cancellation
for double Drell-Yan production (the double parton scattering process in which a pair of elec-
troweak gauge bosons is produced), both for the integrated cross section and for the cross
section differential in the boson transverse momenta.

1 Introduction

In order to make predictions at the LHC one relies on factorisation formulae that separate the
short distance/high scale dynamics of interest, from the low-scale nonperturbative physics.
The short distance physics is encoded in perturbatively-computable partonic cross sections,
whilst the infra-red physics is encoded in parton distribution-type objects (and possibly also
soft functions). In single parton scattering, factorisation has been rigorously proven for Drell-
Yan production (or, more generally, colour-singlet production), for the total cross section and
cross section differential in the pr of the colour singlet system [1-4]. These factorisation for-
mulae are correct at leading power —i.e. up to corrections of order A% /Q?, with Q the hard
scale of the process. For the analogous process in double parton scattering, namely double
Drell-Yan (dDY) production, a factorisation formula was written down long ago for the total
cross section [5, 6] based on the analysis of the lowest-order Feynman diagrams. A factorisa-
tion formula for the cross section differential in the prs of the colour singlet systems has also
been written down using the same method [7]. However, serious attempts to rigorously justify
these formulae have only begun in recent years [7-10].

One approach to proving factorisation formulae at leading power (and potentially beyond)
is the so-called Collins-Soper-Sterman (CSS) approach, which is the one that was employed
in [1-4] (there exists an alternative approach that we will not discuss based on effective field
theories — see e.g. [11-17]). Let us give a brief review of this method. The first goal is to identify
leading infra-red contributions in Feynman graphs contributing to the process of interest —
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contributions from small regions around the points at which certain lines go on shell, which
despite having a smaller phase space are leading due to propagator denominators blowing up.
These infra-red contributions are the ones that will have to be absorbed in the PDE-type objects.
To be more precise, one needs to identify regions around pinch singular surfaces (PSSs) — these
are points where propagator denominators pinch the contour of the Feynman integral [strictly
speaking the singularities only appear in the limit in which parton masses and the boson pr (if
appropriate) are set to zero]. If poles all converge on the Feynman contour from one side, one
can perform a contour deformation to avoid them (in that case the contribution originally in the
vicinity of the poles is subsumed into another region). The identification of PSSs is facilitated
by the Coleman-Norton theorem [18], which states that PSSs in Feynman graphs correspond
to classically allowed processes, and the PSSs for single Drell-Yan (sDY) and dDY are known.

The pinch singularity analysis tells us nothing about the strength of the singularities, and
so must be complemented with a power counting procedure to identify the leading power
regions around the singularities. Doing this, one identifies several types of loop momentum
scaling that can give rise to a leading power contribution. These are collinear (momentum close
to some beam/jet direction), (central) soft (all momentum components small and of the same
order), hard (all momentum components large and of order @) and Glauber. The kinematics of
Glauber particles is that of those mediating forward or small-angle scattering —i.e. a Glauber
momentum r satisfies [r*r~| < r?, where r* = (r° £73)/v/2,r = (r!,r?).

Initially, there are many longitudinally-polarised gluon connections between parton lines
in the collinear region and the union of the soft and Glauber regions, as well as between lines
in the collinear region and the hard region. The next step of the factorisation procedure is to
apply approximations appropriate to these momentum regions, followed by Ward identities in
the sum over graphs to strip away these multiple attachments, yielding the separate functions
that appear in the factorisation formula. Unfortunately, this procedure does not work for the
Glauber modes, since the approximations needed to apply the Ward identities may not be
made in this case. Thus, to achieve factorisation one must demonstrate that the contribution
from the Glauber region cancels for the given observable. Note that by ‘cancels’ here, we
mean that there is no remaining ‘distinct’ (pinched) Glauber contribution — there can (and will)
be remaining contributions associated with the Glauber kinematic region, but these can be
absorbed into the collinear or soft functions (this was re-emphasised recently in the effective
field theory context in [17]). The cancellation of Glauber exchanges was achieved in sDY (total
cross section and cross section differential in colour singlet pr) by CSS, and recently in dDY
(total cross section and cross section differential in colour singlet prs) by us in [10] — here we
summarise this latter work. In this short proceedings contribution we mainly limit ourselves
to a discussion of the cancellation of Glauber modes at the one-gluon level in section 2 — this
is useful to illustrate why the cancellation works for dDY as it does for sDY. We very briefly
mention how the all-order proof works in section 3.

2 Glauber cancellation for one-gluon exchange

In order to show the cancellation of Glauber modes at the one-gluon level, we adopt a model
in which all partons (except the exchanged Glauber gluon) are scalar (represented by a solid
line), and the hadrons are also scalars (represented by a dashed line). These partons may be
predominantly collinear to the lower hadron travelling in the plus direction (we colour plus-
collinear lines in red), or collinear to the upper hadron travelling in the minus direction (we
colour minus-collinear lines in blue). As the Glauber cancellation argument below depends
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Figure 1: Lowest order diagram contributing to dDY in the model described in the text (a), and the nonzero
virtual one-gluon corrections to this (b)-(e).

only on the analyticity properties of the Feynman integrands, which is determined only by the
propagator denominators, this argument applies beyond the model, also to diagrams in QCD.

The lowest-order diagram contributing to the dDY amplitude (which one simply squares
to get the lowest order contribution to the cross section) is given in figure 1, along with the
nonzero virtual one-gluon corrections to this (these are combined with the tree-level amplitude
to get the virtual one-gluon corrections to the cross section). The real one-gluon corrections to
the tree-level amplitude squared are zero by colour considerations, and anyway can have no
contribution associated with the Glauber kinematic region due to the on-shell constraint for
the gluon. Let us consider the virtual corrections in turn, starting with the ‘double box” graph
in figure 1(b). In this graph, the gluon momentum ¢ runs ‘against’ and ‘with’ a large minus
momentum - this results in / being trapped at small values, as one can see by looking at the
propagator denominators associated with these minus-collinear lines:

20t ky + ... +ic — 2Tk 4 ... +ic (1)

The terms indicated by “..." are products of small components only. This is a general principle -
to trap the plus/minus component of a soft momentum at small values, the momentum must
run both ‘against” and ‘with” a collinear line (or multiple lines) with large minus/plus momen-
tum. Now, since / in figure 1(b) only runs against a large plus momentum, £~ is not trapped,
and we can deform ¢~ until ¢ is out of the Glauber region (and is in the collinear region). So
there is no distinct Glauber contribution associated with figure 1(b).

In the gauge boson vertex correction graph, figure 1(c), neither £* nor ¢~ is trapped, so we
can deform the contour out of the Glauber region there too. This leaves us only with the hadron
vertex correction and parton self-energy graphs in figures 1(d) and (e), which are topologically
factorised already, and thus can present no problem. Thus, for the one-gluon corrections to the
tree-level graph, there is no problematic pinched Glauber contribution in the first place.

This kind of consideration can be extended to arbitrarily complex one-gluon diagrams in
the model, some of which are sketched in figure 2. For many types of diagram, a routing can be
found for the gluon momentum ¢ such that /* and/or ¢~ is not trapped at small values. This is
the case for diagrams (a) - (e) in figure 2 — for each of these diagrams a routing for ¢ that leaves
one light-cone component untrapped is given by the green dashed arrow. The only graphs for
which both ¢ and ¢~ are always pinched are the ones in which the gluon attaches to spectator
partons that either go directly into the final state or only split into partons that go into the final
state, both in the upper and lower parts of the graph. An example of this type of graph is given
in figure 2(f) (with a routing that gives ¢, ¢~ trapped denoted by the solid purple arrow).
However, these graphs are of essentially the same nature as the Glauber-pinched graphs that
appear for sDY (only with the dDY production subgraph, as on the left of figure 2(f), replaced
by a simpler sDY production). For these graphs one can use the same unitarity-based argument
as was used by CSS for sDY (reviewed in e.g. [19]), to cancel the Glauber contribution after the
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Figure 2: Example graphs for the dDY amplitude within the model described in the text. The incoming
lines on the left of each graph could represent the proton, or partons emerging from the proton.

a b
Figure 3: Spacetime structure of the pinch surfaces for sDY (left) and dDY (right). Figure taken from [7].

sum over possible final-state cuts. For this argument to work it is essential that the observable
be insensitive to the position of the cut in the ‘final state’ spectator-spectator system.

3 Glauber gluon cancellation at all orders

In order to demonstrate the cancellation of Glauber exchanges in dDY production to all orders
in QCD perturbation theory, we made use of the same techniques as were used in [3, 4] to
show the all-order cancellation in sDY — in particular, we used the light-front ordered version
of QCD perturbation theory (LCPT). We do not discuss the details of this proof here, referring
the interested reader to [10]. The general idea is the same as the one-loop proof discussed
above, however. Also in the all-order LCPT picture, one sees that from the point of view of
the Glauber gluons, single and double scattering look rather similar, and that the troublesome
‘final state” poles obstructing the deformation out of the Glauber region cancel after the sum
over cuts. The argument is based on unitarity, and it can be cast into a form in which it is
essentially the same for sDY and dDY.

One can get some insight into why the Glauber cancellation proceeds for dDY as it does
for sDY by looking at the PSSs for the two processes in spacetime, given in figure 11 of [7] and
reproduced here as figure 3. In the diagrams are drawn the collinear lines (black and red lines)
as well as the hard vertices producing the colour-singlet particles. One observes that the hard
vertices occur at the same point in spacetime for dDY, and that the locations of the collinear
lines and hard vertices are the same for sDY and dDY. Thus, from the perspective of soft long-
range gluons the two processes look essentially the same, and the Glauber cancellation that
works for sDY should also work for dDY, as we indeed found.
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