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Abstract

A Large Ion Collider Experiment (ALICE) is one of the four experiments installed at the
CERN Large Hadron Collider (LHC). ALICE was designed and built to study a phase
of the matter called Quark Gluon Plasma, which is formed in heavy-ion collisions at
ultra-relativistic energies. The extreme energy densities reached in hadronic collisions
at the LHC lead to a significant production of baryonic states. Among the thousands of
particles produced, light (anti-)hypernuclei are of special interest. Indeed, the study of
their internal structure represents a direct probe to investigate the strong interaction
among hyperons and the ordinary matter.

This thesis project is focused on the study of the properties of the lightest known hyper-
nucleus, the hypertriton (3

ΛH) which is a bound state of a proton, a neutron and a Λ.
The most precise measurements to date of the 3

ΛH lifetime and Λ separation energy are
performed by exploiting the large Pb–Pb data sample collected by ALICE during 2018.
The 3

ΛH signal is extracted for the first time with a machine learning technique, allowing
for a significant improvement in the discrimination between signal and background. The
combined measurements confirm that the 3

ΛH is a loosely bound state with a large wave
function radius extending up to ∼ 5 fm.

In the second part of this thesis, the first measurement of the 3
ΛH production in p–Pb

collisions is presented. Given the large spread of its wave function, the measured 3
ΛH

yield in p–Pb collisions is a sensitive observable to test the nucleosynthesis in hadronic
collisions and is a powerful tool for discriminating between different production models
of nuclei. The 3

ΛH signal is extracted again with a machine learning approach, leading
to a significance higher than 4 σ. The value of the yield favours a coalescence model to
describe the nucleosynthesis, demonstrating that the 3

ΛH wave function directly influences
its nuclear production mechanism in hadronic collisions.

In the last part of this thesis a new algorithm for tracking the 3
ΛH and fully reconstruct its

decay topology is presented: this method relies on the high granularity of the upgraded
Inner Tracking System of ALICE, installed for the Run 3 of the LHC. Finally, the possibility
to characterise the properties of A ≥ 4 hypernuclei with the proposed NA60+ experiment
is discussed, using the 5

ΛHe as a use case.
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1High Energy Nuclear Physics

Strong interaction is one of the four fundamental forces. It is responsible to keeep
bound the protons and neutrons inside nuclei, and quarks inside nucleons. The
High Energy Nuclear Physics (HENP) was born to investigate the behaviour of
the strong interactions and the constituents of the hadronic matter under extreme
temperatures and energy densities. In such conditions, quarks can not bind together
and a peculiar state of matter, called Quark Gluon Plasma (QGP), is formed. Such
a plasma, consisting of free quarks and gluons, existed for a fleeting moment at
the birth of the Universe, about 1 microsecond after the Big Bang [1][2]. This type
of primordial matter can be recreated in the laboratory through ultra-relativistic
heavy-ion collisions. The theory underlying HENP is the subject of this chapter. In
the following, the natural units are used, thus: ℏ = c = kb = 1.

1.1 Quantum Chromodynamics

The necessity to have a theoretical framework capable to explain the large particle
zoo observed between the 1950s and 1960s led to the development of a new model
proposed independently by Gell-Mann[3] and Zweig[4][5] in 1964. Such a model,
which is one of the foundations of the current Standard Model (SM), was based on
the assumption that hadrons are bound states of finer constituents called quarks.
Under this assumption, Gell-Mann and Zweig were able to explain for the first
time the large amount of particle discoveries, and to predict the existence of the
Ω baryons starting from three quark families (u, d, s). Nevertheless, despite the
phenomenological success, the original quark model could not explain the discovery
of the ∆++ hadron, which should have been forbidden due to the Pauli principle.
The only way to solve this issue was to introduce a new quantum number, the colour
charge [6], as an additional degree of freedom. The resulting extended Quark Model
successfully predicted a modification in the ratio R [7], defined as the interaction
cross section of electron and positron going into hadrons and going into muon
pairs:

R = σ(e+e− → hadrons, s)
σ(e+e− → µ+µ−, s) = nc

∑
Qf (1.1)

where nc is the number of possible colour charges, Qf is the electric charge of the
quark family f , and s is the available energy in the centre of mass frame. The

1



6 52. Plots of Cross Sections and Related Quantities
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Figure 52.3: R in the light-flavor, charm, and beauty threshold regions. Data errors are total
below 2 GeV and statistical above 2 GeV. The curves are the same as in Fig. 52.2. Note: CLEO data
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illustrative purposes with a normalization factor of 0.8. The full list of references to the original data
and the details of the R ratio extraction from them can be found in [100]. The computer-readable
data are available at http://pdg.lbl.gov/current/xsect/. (Courtesy of the COMPAS (Protvino) and
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21st May, 2020 7:49pm

Fig. 1.1: R ratio as a function of the
√
s of the collision between electron and positron [7].

The three pads correspond to three different regions of
√
s: the top pad shows

the region of the u, d and s quarks resonances, the middle one the region of the c
quark resonances and the bottom one the region of the b quark resonances. It is
possible to observe how the ratio changes value when new flavours are available.
The observed ratio fits with the Quark Model expectations with 3 quarks (green
line). The red line shows how the Quark Model predictions are refined taking into
account loop corrections in perturbation theory

experimental results shown in Fig. 1.1 confirm the prediction of the extended quark
model, and the number of different colours turned out to be nc = 3.

2 Chapter 1 High Energy Nuclear Physics



Fig. 1.2: Quark-gluon interaction vertex

All these experimental results and a systematical theoretical effort led in few years to
the development of the Quantum Chromodynamics (QCD), which is nowadays the
theory describing the strong interactions. In QCD, quarks represent the fundamental
matter constituents which carry colour charge in three different colours: red, blue,
green. Gluons act as exchange bosons of the interaction in analogy to virtual
photons mediating the electromagnetic interaction in QED. There are six different
quark flavours: the light flavours u (up), d (down), and s (strange) with masses
in the MeV/c2 regime and the heavy flavours c (charm), b (beauty), t (top), with
masses ranging from few to hundreds GeV/c2. QCD is a non-Abelian quantum gauge
theory that postulates the invariance of its Lagrangian under local SU(3) group
transformations. The QCD Lagrangian[8] can be written as:

LQCD = ψ̄(iγµDµ −m)ψ − 1
4G

a
µνG

µν
a (1.2)

with:
Dµ = ∂µ − igsA

a
µλa. (1.3)

Ga
µν = ∂µA

a
ν − ∂νA

a
µ + gsf

abcAb
µA

c
ν . (1.4)

In these equations λa are the Gell-Mann matrices, gs is the strong interaction coupling
constant, A(x) is the gluon field and fabc are the SU(3) group structure constants.
The first term of the Lagrangian describes the interaction between quarks and
gluons in analogy with the Quantum Electrodynamics (QED) interaction vertices, as
shown in Fig. 1.2: The second term of the Lagrangian describes two new interaction
vertices with respect to the QED theory. Since SU(3) is non-Abelian, the fabc

structure constants are not null, and the additional term gsf
abcAb

µA
c
ν represents

new gluon-gluon vertices, as sketched in Fig. 1.3:

In QED the intensity of the electromagnetic interaction is ruled by the QED coupling
constant. At small values of Q2 its value is α ≈ 1/137, and it weekly increases with
Q2 because of the effects of the vacuum polarization. On the contrary in QCD the

1.1 Quantum Chromodynamics 3



Fig. 1.3: Gluon-gluon interaction vertices

self-interaction processes lead to an opposite and steeper trend as a function of Q2.
The evolution of αs in terms of the transferred momentum is given by the following
equation:

αs(Q2) = αs(µ2)
1 + αs(µ2)(33 − 2nf ) ln(Q2/µ2) (1.5)

where nf is the number of quark families and µ is the mass scale of the renor-
malization, which cannot be determined by the theory. The value of αs decreases
with increasing Q2; at low Q2 (long distances) αs diverges, and it is not possible
to describe the strong interaction by using a perturbative field theory (pQCD). The
equation 1.5 can be arranged in terms of the parameter ΛQCD which represent the
energy limit for using a perturbative approach:

αs(Q2) = 12π
(33 − 2nf ) ln(Q2/ΛQCD) (1.6)

The figure 1.4 shows αs as a function of Q2 in different experimental conditions. For
Q2 > 100 GeV as is small, quarks in hadrons are weakly bound and can be treated
as free particles: this behaviour is called asymptotic freedom. For small Q2 values,
αs increase rapidly and quarks are strongly bound in hadrons, and they cannot be
separated.

1.2 Quark Gluon Plasma

As described in the previous section, one of the most peculiar behaviour of the
running coupling constant is the confinement of the quark matter into colour neutral
hadrons. Nevertheless, under extreme high temperatures or densities it is possible
to create a new phase of matter where quarks and gluons become free and are not
localized in individual hadrons. Hence, a phase diagram of the QCD matter can be
defined by employing observables from thermodynamics, such as the temperature
(T) and the chemical potential (µB). Figure 1.5 shows the phase diagram predicted
by the QCD theory and the values of T and µB. At high temperatures it is possible to

4 Chapter 1 High Energy Nuclear Physics



αs(MZ
2) = 0.1179 ± 0.0009

August 2021
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Fig. 1.4: Values of αs in different experimental conditions [9–12] as a function of the
transferred momentum, taken from [13]. The reference value at the energy scale
of the Z boson mass αs(MZ) has been evaluated using the χ2 averaging method.

create the QCD region where quarks and gluons are deconfined. This new phase of
the matter has been called Quark Gluon Plasma (QGP) [14, 15].

Fig. 1.5: Phase diagram of the QCD matter, taken from [16].

1.2 Quark Gluon Plasma 5



Looking at Fig. 1.5, the origin of the diagram corresponds to the QCD vacuum, while
the ordinary nuclear matter is located at around T = 0 and µB ≈ 1 GeV. Moving
along the T axis, for µB = 0 and T ≈ 200 MeV a continuous crossover transition
from hadron gas to QGP occurs in conditions that are expected be close to those
existing in the primordial Universe. On the contrary, moving along the µB axis, for
T = 0 and µB ≈ 2 GeV theoretical models predict a phase transition to a colour
superconductive deconfined state. This state has been hypothesized to be present in
the core of neutron stars [17]. According to [18], in the early Universe the crossover
transition happened from the QGP phase to hadronic matter at µB ∼ 0.33 eV, caused
by the QGP expansion and the consequent cooling.

In order to reproduce such extreme conditions in the laboratory one has first to
create a system characterized by an extreme energy density. This can be done by
colliding heavy ions at relativistic energies. A simple but powerful description of the
energy density required to create the QGP can be performed by considering a system
composed by massless quarks and gluons confined in a finite volume V [19], the
MIT bag model. The energy density ϵ and pressure p under these approximations is
described by the equation of state of an ideal gas:

p = π2

90nDFT
4, ϵ = 3p (1.7)

where nDF is the number of degrees of freedom of the system and T is the tem-
perature. This simple model foresees a sharp pressure increase in the first order
transition from hadron gas, where nDF = 3, to QGP where nDF =

(
16 + 21

2 nf

)
. A

3p/T4

ε/T4

3s/4T3

 0

 4

 8

12

16

130 170 210 250 290 330 370

T [MeV]

HRG

non-int. limit

Tc

Fig. 1.6: QCD equation of state [20] as predicted by the Hadron Resonance Gas model and
Lattice QCD calculations.

similar trend is also observed for more sophisticated calculations, such as the Hadron
Resonance Gas Model [21] and the lattice QCD one [20], as shown in Fig. 1.6.
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All the currently available QCD calculations, at vanishing or finite µB, predict a
cross-over transition to the Quark Gluon Plasma at a pseudo-critical temperature
(Tc) around 150 MeV and energy density around 1 GeV/fm3.

1.3 Heavy-Ion Collisions

Collisions of relativistic heavy ions provide the only tool to probe matter at such
high temperatures and densities in the laboratory. The first experiment of heavy-
ion collisions (HIC) was performed in the 70s at the Lawrence Berkeley National
Laboratory and the nuclei were accelerated at ≈ 2 GeV/nucleon while the first
observation of a new phase of the nuclear matter (QGP) was announced at the CERN
SPS in Pb-Pb central collisions at ≈ 17.3 GeV/nucleon [22]. Nowadays, there are
two hadron colliders that carry out a HIC experimental programme: the Relativistic
Heavy-Ion Collider(RHIC) at the Brookhaven National Laboratory (BNL)[23] and
the Large Hadron Collider (LHC) at CERN. In addition, there are currently two
accelerators with a heavy-ion physics programme at fixed target: the SuperProton
Syncrotron (SPS) at CERN and the Schwerionensynchrotron (SIS) at the Gesellschaft
für Schwerionenforschung (GSI).

1.3.1 The collision geometry

Thousands of particles are created when two nuclei at ultra-relativistic energy collide
head-on, generating a physics event that has very complex features if compared to a
proton-proton one. Over the years many models were developed in order to estimate
relevant quantities in nucleus-nucleus interactions such as the impact parameter (b),
the number of participating nucleons (Npart) or binary nucleon-nucleon collisions
(Ncoll). One of the simplest but most effective models is the Glauber model [24],
which describes the collision geometry as an incoherent superposition of nucleon-
nucleon interactions, as sketched in Fig. 1.7.

The model assumptions are called Optical limit and consist in:

• Nucleons are independent point-like objects inside nuclei.
• Protons and neutrons are subject only to the hadronic interaction: they are not

distinguishable.
• Nuclei are not deflected after the collision.
• The nucleon-nucleon cross section always remains the same during all the

overlapping process.

1.3 Heavy-Ion Collisions 7



Fig. 1.7: A sketched representation of the heavy-ion collision geometry, taken from [25]

Defining the Thickness function T (s⃗) as the probability to find a nucleon in the unit
transverse area located at s⃗ in Fig. 1.7, given its probability density ρ(s⃗, z):

T (s⃗) =
∫
ρ(s⃗, z)dz (1.8)

the nuclear overlapping function can be written as:

TAB (⃗b) =
∫
TA(s⃗)TB(s⃗− b⃗) d2s (1.9)

The input nucleon probability density is usually described by a Woods-Saxon distri-
bution [26]:

ρ(r) = ρ0
1 + e(r−r0)/δ

(1.10)

where ρ0 represents the density in the centre of the nucleus, δ is a length repre-
senting the surface thickness or skin depth of the nucleus, and r0 is the nuclear
radius. Starting from these quantities and the nucleon-nucleon cross section σinel

the probability of having n binary collisions between the nuclei A and B, having A
and B nucleons respectively, can be computed using the binomial statistics:

pAB =
AB∑
n=1

P (n, b) = 1 − [1 − TAB (⃗b)σinel]AB (1.11)

The total nucleus-nucleus cross section σtot can be obtained by integrating the
probability to observe at least one nucleon-nucleon collision pAB:

pAB =
AB∑
n=1

P (n, b) = 1 − [1 − TAB (⃗b)σinel]AB (1.12)

8 Chapter 1 High Energy Nuclear Physics



σtot =
∫ ∞

0
2π b db [1 − [1 − TAB (⃗b)σinel]AB] (1.13)

The mean number of collisions Ncoll is estimated as the mean value of the binomial
distribution in eq. 1.11:

Ncoll(b) =
AB∑
n=1

nP (n, b) = AB TAB σinel. (1.14)

Similarly, Npart can be obtained by integrating over s⃗ the contribution of the two
nuclei:

Npart(b) =
∫
d2s

{
ATA(s⃗)[1−(1−TB (⃗b−s⃗)σinel)B]+B TB (⃗b−s⃗)[1−(1−TA(s⃗)σinel)A]

}
(1.15)

The last two equations show that Glauber model allows us to extract relevant
parameters of a heavy-ion collision as a function of the impact parameter b, such as
Npart and Ncoll, starting from the knowledge of ρ(z, s⃗) and σinel. The main drawback
of this model is that it uses continuous density functions for quantities that are
discrete in nature, and hence fluctuate event by event. More refined estimates of
Npart and Ncoll are obtained with Glauber Monte Carlo (GMC) Models [25], where
the colliding nuclei geometry is generated by distributing their nucleons in the space
according to their nuclear density functions. A random impact parameter is then
drawn from the distribution dσ/db = 2πb. Finally, the nuclei collision is treated as a
sequence of independent binary nucleon-nucleon collisions. In the simplest version
of the Monte Carlo approach, a nucleon-nucleon collision takes place if the distance
of the nucleons d in the plane orthogonal to the beam axis satisfies d ≤

√
σinel/π.

As shown in Fig. 1.8, as the nucleon-nucleon cross section becomes more point like,
the optical and GMC cross sections converge to the same values, while for high input
σinel the former overshoots the estimated nucleus–nucleus inelastic cross section.
The value of σinel at

√
sNN = 5.02 TeV (the energy of the latest ALICE Pb–Pb sample)

is obtained by interpolating pp data at different centre-of-mass energies and results
to be σinel = 70 ± 5 mb [27].

1.3.2 Collision evolution

The QGP formation and expansion is characterized by a complex evolution in space-
time. The evolution of the collision, as shown in Fig. 1.9, is characterized by five
different phases which can be described as follows [28]:

1.3 Heavy-Ion Collisions 9



Fig. 1.8: (Left) The total cross section, calculated in the optical approximation and with a
Glauber Monte Carlo (MC) both with identical nuclear parameters as a function
of σinel, the inelastic nucleon-nucleon cross section. (Right) Ncoll and Npart as a
function of impact parameter, calculated in the optical approximation (lines) and
with a Glauber Monte Carlo (symbols).

Tkin	 Tchem	

Fig. 1.9: Evolution of the fireball with from QGP formation to the hadronization phase.

• Collision: before the collision, the nuclei are Lorentz contracted (γ ≈ 2700 at
the LHC), and the overlap lasts for a very short time: τc = 2R/γ ≈ 0.004 fm/c.

• Pre-Equilibrium: this is the phase characteristic of the hard processes (high
Q2) between colliding quarks. The constituent partons of nuclei undergo sev-
eral interactions, losing their energy in the mid-rapidity region and escaping at
forward rapidities. The obtained system at mid-rapidity is a hot and interacting
medium with an almost null µB, the QGP. The particles are produced at a time
τf that can be estimated using the Heisenberg uncertainty principle τf ≈ ℏ

mT

where mT =
√
m2 + p2

T is the transverse mass and pT is the momentum in the
transverse plane of the collision. The mean value of mT is calculated starting
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from the rapidity distribution of the particles produced and their transverse
energy ET:

mT = dET/dy

dN/dy
(1.16)

where rapidity y is defined as:

y = 1
2 log

(E + pz

E − pz

)
(1.17)

At the LHC τf ≈ 0.1 fm/c. In heavy-ion collisions at RHIC and LHC the energy
densities can be inferred by using the Bjorken approximation described in
[29] leading to the values of ϵ ∼ 5.4GeV/fm3 and ϵ ∼ 15GeV/fm3 respectively.
These values are much higher than the one required to reach the phase tran-
sition (computed in Sec. 1.2), such that the formation of the QGP state is
expected.

• Quark Gluon Plasma: after the particle production the medium reaches the
thermal equilibrium at a time τeq. If the temperature of the system approaches
TC ≈ 150 MeV the medium undergoes the phase transition from hadron gas
to QGP. At the LHC, τeq is estimated to be ≈ 0.3 fm/c.

• Hadronization: when the plasma expands under the thermal pressure gra-
dients generated at the system boundaries and cools down another phase
transition occurs (τ ≈ 10 fm/c at LHC): quarks and gluons hadronize and
baryons, mesons and nuclei are produced. After the possible mixed phase the
system appears as a gas of hadrons.

• Freeze out: When the particle densities are too low to permit inelastic scat-
terings the abundance of different hadronic species is fixed. This condition
is called chemical freeze-out. At a certain point (τ ≥ 15 fm/c at LHC) also
elastic scatterings cease and the particle momentum spectra are defined: this
condition is named kinetic freeze-out.

1.4 Signatures of the QGP in heavy-ion collisions

Due to its short lifetime, a direct observation of the QGP is impossible. However,
during the last decades numerous experimental evidences of the QGP have been
observed in different experiments at SPS, RHIC, and at the LHC. In this section, few
signatures of the QGP will be outlined briefly. Three different kinds of probes have
been exploited to study the QGP, each of them is sensitive to different frames of the
QGP evolution: hard probes, electroweak probes, and soft probes.

1.4 Signatures of the QGP in heavy-ion collisions 11



1.4.1 Hard probes

Hard probes represent an important tool to investigate the properties of the QGP, as
they are produced in the early stages after the collision, where high exchanges of
momentum take place. As the system evolves and the energy density decreases, hard
probes can no longer be produced. Since these processes involve high transferred
Q2, they can be studied by using the pQCD. When such hard processes occur, either
gluons and quarks with high momentum or heavy-flavoured quarks (charm and
beauty) are created. Since hard probes can be produced only in the first stages
of the collision, they experience the evolution dynamics of the medium. Hence,
hard probes permit us to investigate the parton propagation and the energy loss
in the QGP. Finally quarks and gluons produced in the early stages of the collision
hadronize, bringing to the formation of open heavy-flavoured particles, quarkonia
and jets. Open heavy-flavoured particles are hadrons composed of a heavy quark
(c or b) and light quarks (d, u or s), such as D and B mesons. Similarly, quarkonia
are hadrons formed by a quark and an anti-quark with the same flavour such as the
J/Ψ (cc̄). Jets are instead narrowly collimated bunches of hadrons. The effects of
the energy loss in the QGP and the dynamics of heavy-quark hadronization can be
studied with the comparison of the transverse-momentum differential production
yields in nucleus-nucleus collisions with those obtained in pp collisions, in which
QGP is not expected to form. The difference is typically quantified with the help of
the nuclear modification factor, RAA, defined as:

RAA = 1
Ncoll

d2NAA/(dydpT)
d2Npp/(dydpT) (1.18)

The latest measurements of D mesons RAA from ALICE [30, 31] are shown in Fig.
1.10. The RAA trends are well described by theoretical calculations of charm-quark
transport and energy loss in a hydrodynamically expanding QGP. Two additional
evidences of the QGP formation, which will only be mentioned here, are the obser-
vation of quarkonia [32, 33] and jets suppression [34, 35] due to the interaction
with the medium.

1.4.2 Electroweak probes

Electroweak probes are particles that carry no colour charge, such as leptons, pho-
tons, Z and W± bosons. Since at the extreme energy-density characterizing HIC all
the interactions but the strong one are negligible, the electroweak probes are not
affected by the presence of the medium, and they carry direct information about
the initial state of the collision. For this reason, no modification of the production
spectra of these particles is foreseen in HIC. The CMS Collaboration measurements
of the Z boson RAA in Pb–Pb collisions at

√
sNN = 2.76 TeV [34] and

√
sNN = 5.02
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Fig. 1.10: Nuclear modification factor RAA from [30, 31] of prompt D+
s mesons (left

panel) and non-strange D mesons (right panel) in the 0–10% centrality interval
in Pb–Pb collisions at

√
sNN = 5.02 TeV compared with theoretical calculations

based on charm-quark transport in a hydrodynamically expanding QGP. The
boxes represent the total systematic uncertainties. The colour bands represent

the theoretical uncertainty when available.

TeV [36] confirm the expected behaviour, since the RAA is compatible with unity.
Furthermore, the study of direct photon (i.e. photons not coming from hadron de-
cays) production is particularly interesting because thermal photons are emitted by
the QGP, and are therefore sensitive to the medium temperature. However, thermal
photons can not be distinguished from direct photons coming from other sources and
all direct photons must be studied together. The first measurement of direct-photon
production in Pb–Pb collisions performed by the ALICE collaboration can be found in
[37]: the direct photon production spectra follow the trend indicated by the models
including effects of the QGP formation.

1.4.3 Soft probes

Soft probes are low momentum hadrons representing the majority of the particles
produced in a collision (≈ 99%). They are produced in the latest stages of the
collision, when the energy density of the system is highly degraded and therefore
their study can be performed only with non-perturbative QCD techniques. A strong
signature of the QGP can be observed by looking at the transverse momentum
distributions of low momentum hadrons. Assuming a Boltzmann-Gibbs distribution
for the particle emission at kinetic freeze-out, the particle spectra for the species i
can be modelled as:

1
mT

d2Ni

dmTdy ∝ e
− mT

Tslope (1.19)

where Tslope is a fit parameter. Taking into account only the thermal component
of the spectra and assuming a common emission temperature, the spectra of all

1.4 Signatures of the QGP in heavy-ion collisions 13



Fig. 1.11: Comparison of model calculations with the direct photon spectra in Pb–Pb
collisions at

√
sNN = 2.76 TeV for the 0–20% (scaled by a factor 100), the

20–40% (scaled by a factor 10) and 40–80% centrality classes. All models
include a contribution from pQCD photons. For the 0–20% and 20–40% classes

the fit with an exponential function is shown in addition

the particle species should have the same slope. This simple prediction, called mT

scaling, has not been observed in HIC at RHIC [38] and LHC [39, 40] energies,
where different Tslope have been extracted for different particle species. In particular,
as shown in Fig. 1.12, the slope of the spectra decreases with the mass of the particle.
The breaking of the mT scaling can be explained by adding a component to the
measured temperature for each particle species:

Tslope = Tkin + 1
2m⟨v⊥⟩2 (1.20)

where Tkin is the temperature at kinetic freeze–out and the additional term keeps
into account the mean kinetic energy acquired by the particles of the species i due
to a collective expansion along the transverse plane. This behaviour has been called
radial flow, and it is well described by hydrodynamical calculations describing the
QGP expansion (HKM [41], Krakow [42]).
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Fig. 1.12: Transverse momentum distributions of the sum of positive and negative particles
(box: systematic errors; statistical errors smaller than the symbol for most data
points), fitted individually with a blast wave function, compared to RHIC data

and hydrodynamic models.

Another evidence of the QGP can be observed by studying eventual azimuthal
anisotropies in the particle production spectra. In particular, in a collision between
two nuclei overlapping only partially, a correlation between the emission angles of
the particles and the impact parameter can be found. Such behaviour can be studied
by looking at the azimuthal (ϕ) anisotropies of the particle spectra employing a
Fourier decomposition of the azimuthal distribution dN

dϕ :

dN

dϕ
≈ 1 + 2

∞∑
n=1

vn cos(n(ϕ− ψN )) (1.21)

where vn is the Fourier coefficient and ψN is the azimuthal angle of the reaction
plane. The presence of an expanding QGP medium translates the initial geometrical
anisotropy into strong pressure gradients parallel to the plane defined by the beam
direction and the impact parameter vector. The flow of particles created by these
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pressure gradients is called elliptic flow, and it contributes to the second coefficient
of the Fourier expansion of Eq. 1.21 (v2). A measurement of the v2 performed
by ALICE [43] is shown in Fig. 1.13 and it is in agreement with hydrodynamical
computation. Furthermore, from this comparison it is possible to extract relevant
parameters of the medium such as the shear viscosity over entropy η/s, the bulk
viscosity over entropy ζ/s and its lifetime.

Fig. 1.13: Anisotropic flow vn integrated over the pT range 0.2 < pT < 5.0 GeV/,̧ as a
function of event centrality. Measurements for Pb–Pb collisions at

√
sNN = 5.02

(2.76) TeV are shown by solid (open) markers. The ratios of vn (green) between
Pb–Pb collisions at 5.02 TeV and 2.76 TeV, are shown in the lower panels. Various
hydrodynamic calculations are also presented, showing a good agreement with
data for low ζ/s values. The statistical and systematical uncertainties are summed
in quadrature.

Finally, hadrochemistry, the study of particle species abundances, is a fundamental
tool for understanding the mechanisms driving hadron production. This contributes
to shed light on the latest stages of the collision, when the chemical and kinematic
freeze–out occur. Hadron and nuclei synthesis at the LHC, both from experimental
and theoretical point of view, will be discussed in the next chapter.
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2Hypertriton

Among the thousands of particles produced at the LHC in all collision systems,
hypernuclei represent one of the most exotic and interesting objects. Hypernuclei
were first observed in cosmic rays in 1953 [44] and are formed by a mix of protons,
neutrons and unstable baryons containing strange quarks called hyperons. After
almost 70 years since their discovery, hypernuclei are still a source of fascination
for nuclear physicists since their production is very rare and the measurement of
their properties is extremely challenging. The lightest hypernucleus, the hypertriton
(3

ΛH), is formed by a proton, a neutron and a Λ hyperon, and it is the main focus
of this thesis. In the following, the main properties of the 3

ΛH, as well as its tight
connections with the astro-nuclear physics, will be discussed. Finally, our current
understanding on the 3

ΛH production mechanisms in high-energy hadronic collisions
will be presented.

2.1 Hypernuclei

Hypernuclei are bound states of non-strange and strange baryons. The only hypernu-
clei observed so far contain a Λ or a Σ baryon inside, but future experiments will be
able to access more rare hypernuclei composed by Ξ and Ω baryons. The discovery
of the lightest hypernucleus, the hypertriton (3

ΛH), was published in 1952 by the
Polish physicists Marion Danysz and Jerzy Pniewski [44]. Their event, first reported
at a meeting of the Polish Academy of Sciences in October 1952, was observed in
a balloon-flown, 600 µm thick, glass-backed Ilford G5 emulsion plate. With the
innovation of stacks of stripped emulsion pellicles the first complete event of 3

ΛH was
reported in the following year [45]. The observed decay channel, the one studied in
this thesis, is: 3

ΛH →3 He + π−, and the event is shown in Fig. 2.1

Since then, a dedicated hypernuclear programme has started and many hypernuclei
have been observed, up to the 208

Λ Pb [46], allowing for the extension of the nuclear
chart to a third dimension, the strangeness one. The reason why a complete charac-
terization of the hypernuclear chart is so important is that hypernuclei represent a
unique experimental probe for studying the interaction between strange and non-
strange baryons (Y–N), which is still poorly known. This is not only interesting per
se, but it gives us insights on the core of neutron stars, as it will be shown in the
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Fig. 2.1: The first observation of the 3
ΛH two-body charged decay channel 3

ΛH →3 He + π−,
reported by Bonetti et al. [45].

next section. After the first cosmic-rays experiments, hypernuclei have started to
be produced in the laboratory with reactions producing Λ on a nuclear target, such
as:

• Strangeness exchange: K− + p → Λ + n

• Associated production: π+ + n → Λ +K+

• Photo- or electro-production: γ + p → Λ + n, or e− + p → e− + Λ + n.

This second generation of hypernuclear experiments allowed for the determination
of the energy level of nearly all p-shell Λ-hypernuclei both by γ-ray spectroscopy
from the decay of low-lying excited states and by missing-mass measurements
with magnetic spectrometers at KEK (SKS), JLab (Hall A and Hall C) and LNF-
INFN (FINUDA) [47, 48]. Finally, hypernuclei have been studied in the third
generation of experiments, which study the production of hypernuclei in high-
energy hadronic collisions. As it will be outlined in the next sections, measuring
hypernuclei at accelerators provides a unique opportunity to study the properties
of these exotic objects and its counterparts, the anti-hypernuclei, as well as to
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Fig. 2.2: Schematic representation of the internal structure of a neutron star, taken from
[49].

understand the nucleosynthesis in the hot and dense matter created in high-energy
hadronic collisions.

2.1.1 Probing the core of neutron stars

Neutron stars (NSs) are unique objects to test the fundamental properties of matter
under extreme conditions of density, isospin asymmetry and temperature. NSs are
among the densest objects in the Universe, with a density of about 1014 g/cm3 and a
radius of about 10 km, and they are supported mainly by the neutron degeneracy
pressure [49]. Nevertheless, the expected densities span over a wide range as the
internal structure can be described as an onion-like, as sketched in Fig. 2.2.

Due to the high value of density at the centre of a NS and the rapid increase of the
nucleon chemical potential with density, the appearance of hyperons is energetically
favourable in the inner core of the NSs. The creation of hyperons in NSs has been
hypothesized for the first time in [50], and after that many authors have studied
theoretically the phenomenon with different techniques [51–53]. These approaches
agree that hyperons may appear in the inner core of neutron stars, as the nucleon
chemical potential is large enough to make the conversion of nucleons into hyperons
energetically favourable. This conversion should relieve the Fermi pressure of the
system: the equation of state (EoS) of the NSs with and without hyperons is shown
in the left panel of Fig. 2.3. The lower pressure due to the presence of hyperons
is usually referred to as the "softening" of the EoS. The softer the EoS, the lower is
the maximum mass a NS can reach, as shown in the right panel of Fig. 2.3. Hence,
the formation of high-mass NSs should be inhibited by the presence of hyperons in
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Fig. 2.3: Left panel: the equation of state of a NS with hyperons (red) and without hyperons
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Taylor pulsar and the observed PSR J1614-2230 [54] and PSR J0348+0432 [55]
are shown with horitzontal lines and bands.

the inner core. This is incompatible with the observation of NSs heavier than two
solar masses [54, 55], constituting what is referred to as the NSs "hyperon puzzle".
Many attempts were made to solve this puzzle, e.g. by introducing three-body forces
leading to an additional repulsion that can counterbalance the large gravitational
pressure and allow for larger star masses [56, 57]. Ultimately, to constrain the
parameter space of such models, a detailed knowledge of the Y–N interaction and
of the three-body Y–N–N interaction is mandatory. Numerous particle correlation
analyses [58, 59] directly contribute to the determination of such interactions. In
a complementary approach, the lifetime and the binding energy of a hypernucleus
reflect the strength of the Y–N interaction [60], and their measurement can be
exploited to constrain the Y–N potential and significantly contributing to the solution
of the hyperon puzzle.

2.2 Hypertriton properties

As mentioned in the previous section, the hypertriton (3
ΛH) is the lightest hypernu-

cleus, being composed by a proton, a neutron and a Λ hyperon. Due to its light mass,
3
ΛH is the most abundant hypernucleus produced in high-energy hadronic collisions.
While the first observation of 3

ΛH was made in the early 50s [44], the discovery of
its counterpart, the antihypertriton (3

ΛH), has been achieved only in 2010 at the
Relativistic Heavy-Ion Collider (RHIC) by the STAR Collaboration [61].

In the following section, the main properties of the 3
ΛH will be discussed, such as its

decay channels, binding energy and its lifetime.
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2.2.1 Decay channels of the 3
ΛH

A Λ hypernucleus in the ground state can decay with two different mechanisms:
non-mesonic (NMWD) and mesonic (MWD) weak decays. While the former decay
mode is predominant for A > 5 hypernuclei, the latter is by far the dominant process
for the 3

ΛH [62]. In the NMWD, the hypernucleus decays through processes which
involve a weak interaction of the Λ with one or more core nucleons N . When the
pion emitted in Λ → p + π− reaction is virtual, it can be absorbed by the nuclear
medium, resulting in a non-mesonic decay as:

ΛN → NN. (2.1)

In the MWD, Λ hyperon decays into a nucleon and a pion inside the nuclear medium,
following the weak decay mode in the free space:

Λ → p+ π−, (2.2)

or
Λ → n+ π0. (2.3)

The most complete calculation of MWD (ΓMWD) and NMWD (ΓNMWD) rates is
presented in [60]. In this paper, the authors compute ΓMWD and ΓNMWD starting
from the 3

ΛH wave function and solving the 3
ΛH three-body Faddeev equations, which

describe all the possible interactions in a system of three particles in a fully quantum
mechanical formulation. The equations are solved by employing realistic NN and
Y-N interactions. The results are listed in Table 2.1: it is worth noting that the six
MWD channels are not independent, but according to the empirical ∆I = 1/2 rule
[63], the following ratios for decay rates result:

Γ(3
ΛH→3 He + pi−)

Γ(3
ΛH→3 H + pi0) = Γ(3

ΛH→ p + d + pi−)
Γ(3

ΛH→ n + d + π0)
Γ(3

ΛH→ p + p + n + pi−)
Γ(3

ΛH→ p + n + n + pi0) = 2. (2.4)

From Tab. 2.1, one can compute the branching ratio for the decay channel analysed
in this work, i.e. the decay of the 3

ΛH into a 3He and a π−: B.R.(3
ΛH →3 He + π−) ≃

0.25. Finally, the total decay width Γ3
ΛH can be expressed in terms of the hypertriton

lifetime τ3
ΛH as:

Γ3
ΛH = ℏ

τ3
ΛH

(2.5)

where ℏ is the reduced Planck constant equal to 6.582 × 1016eV · s.
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Channel Γ(sec−1) Γ/Γtot

Mesonic
3He + π−

0.146 · 1010 0.383He + π0

d+p+π−
0.235 · 1010 0.62

d+n+π0

p+p+n+π−
0.368 · 108 0.01

p+n+n+π0

Non Mesonic
d+n 0.67 · 107 2 · 10−3

p+n+n 0.57 · 108 0.01
Tab. 2.1: Partial mesonic and non mesonic decay rates of the 3

ΛH.

2.2.2 3
ΛH structure

More than 60 years after its discovery, the 3
ΛH structure still represents an open

question for the nuclear physics community. As the 3
ΛH represents a direct probe

of the Y–N interaction, since the beginning of the study of this system one of the
main goal of the experimentalists has been to measure the energy that keeps the
hyperon bound to the nucleus. This quantity, which is called Λ separation energy
BΛ, for the 3

ΛH is the energy required to separate the Λ hyperon from the deuteron.
The first precision measurement of BΛ was published in 1973 by Juric et al. [64]:
the value of BΛ was found to be incredibly small, 130 ± 50 keV, hinting that 3

ΛH
is an extreme weakly bound state and that the Y–N interaction is very shallow.
In the same years, the first measurements of the 3

ΛH lifetime (τ3
ΛH) [65, 66] were

found to be compatible with the free Λ hyperon one (τΛ = 263.2 ± 2 ps [13]), and
therefore consistent with the picture of the 3

ΛH as a weakly bound state. After these
measurements, few theoretical calculations were performed, all starting from the
assumption of BΛ ∼ 130 keV, and they were used to compute the 3

ΛH radius, lifetime,
spin, and branching ratios [60, 67, 68]. A BΛ value of around 100 keV provides a
strong constraint on the 3

ΛH structure and in particular on its size: the 3
ΛH radius

under this assumption should be ∼ 10 fm [68, 69], more than five times larger than
the deuteron one. This is why the 3

ΛH has been reasonably approximated as a bound
state of a Λ and a deuteron.

Then, in recent years, the study of the 3
ΛH structure triggered new interest in the

community because of the connection with the hadrochemistry of the neutron stars,
as explained in Sec. 2.1.1, and because of the new experimental measurements of
τ3

ΛH and BΛ in ultrarelativistic heavy-ion collisions and in relativistic ion fragmen-
tation experiments [70]. In particular, the STAR Collaboration measured both τ3

ΛH
[71, 72] and BΛ [73] in Au+Au collisions at the RHIC. All the STAR measurements
seem to indicate that surprisingly 3

ΛH could be more compact than expected: the
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Fig. 2.4: Collection of the 3
ΛH lifetime (left) and BΛ (right) measurements obtained with

different experimental techniques. The horizontal lines and boxes are the statis-
tical and systematic uncertainties respectively. The dashed-dotted lines are the
corresponding theoretical predictions.

average of the two STAR lifetime measurements is more than 2σ lower than the free
Λ lifetime, while the BΛ value, even if affected by a large uncertainty, is more than 3
times larger than the reference value of 130 keV (1.7σ). The ALICE Collaboration
published two measurement of the τ3

ΛH in Pb–Pb collisions at
√
sNN = 2.76 TeV

and
√
sNN = 5.02 TeV, and the last measurement, which has an uncertainty of 17%

(compared with 35% of the first one), is compatible within 1σ with the free τΛ [74,
75]. The collections of the measurements of both τ3

ΛH and BΛ are shown in Fig. 2.4,
together with few theoretical predictions. The new experimental measurements of
the 3

ΛH properties triggered a new interest also in the theoretical community, and
several new calculations based on modern effective field theories have been pub-
lished [76, 77]. In particular, the relation between τ3

ΛH and BΛ has been investigated.
In [76], the authors employed a pionless effective field theory to compute the 3

ΛH
decay rate as a function of BΛ, finding that the full 3

ΛH rate (Γ3
ΛH) should be close to

the free Λ one with little sensitivity to BΛ, as shown in Fig. 2.5.

Different conclusions are drawn in [77], where the 3
ΛH three-body wave functions

are generated in a chiral effective field theory approach to calculate the decay rate:
values of τ3

ΛH for different BΛ values are reported in Tab. 2.2.

BΛ (keV) Γ(3
ΛH →3 He + π−) (GHz) τ3

ΛH (ps)
69 0.975 234 ± 27
135 1.197 190 ± 22
159 1.265 180 ± 21
410 1.403 163 ± 18

Tab. 2.2: Γ(3
ΛH →3 He + π−) (GHz) and τ3

ΛH (ps) calculated for several BΛ values (keV),
up to BΛ = 410 keV from [77].
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and dark (blue) rectangular areas, respectively. The EFT uncertainties are shown
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The general outcome of all these papers is that precision measurements of τ3
ΛH and BΛ

are needed to definitely address the question of the 3
ΛH structure and compactness,

which is the key for understanding the nature of the Y–N interaction.

Finally, an interesting tool for understanding the strength of the Y–N interaction
comes from the study of the available proton-Λ scattering data [78–81] and correla-
tion function [82]. In [83], the authors have employed the proton-Λ measured cross
sections to constrain the Y–N interaction within a next to leading order (NLO) chiral
effective field theory. The BΛ of the 3

ΛH can be extracted from the fit to the proton-Λ
cross sections shown in Fig. 2.6, resulting of the order of 90 keV. These calculations
have also been employed for the study of the proton-Λ correlation function measured
by ALICE in [82], resulting in a qualitative agreement with the data.

2.3 Production of (anti-)(hyper-)nuclei at the LHC

As discussed in the previous sections, since the beginning of the last decade (anti-
)hypernuclei have started to be studied in high energy hadronic collisions. This
led to new exciting results, like the discovery of the antihypertriton (3

ΛH) [61], and
few new open questions. One of the main point to be addressed is the production
mechanism of ordinary nuclei and hypernuclei in such collisions. Two classes
of models are employed to describe such production mechanism: the Statistical
Hadronization Models (SHMs) and the coalescence models. The following two
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sections are dedicated to briefly explain the assumptions and the results predicted
by this two successful models.

2.3.1 Statistical Hadronization Models

The Statistical Hadronization Models (SHMs), also known as Thermal Models, have
the purpose to describe the abundances of different particle species produced in the
collision between particles. The original idea behind the SHMs was formulated by
Fermi [84], and more than 70 years later it has been developed by many authors.
One of the first prototypes of the SHM was proposed by Hagerdorn [85] in 1968,
and it was able to describe the abundances of different particle species produced
in pp collisions. The general principle of the Hagerdorn model, as well as the
modern SHMs, is that the final state of the interaction is composed by all the particle
states compatible with the conservation laws imposed by the theory. The relative
abundance of different particle states is set by the maximization of the total phase

2.3 Production of (anti-)(hyper-)nuclei at the LHC 25



space filled by the system, to which each particle species contributes according to
its partition function. These models, even if originally developed for describing
pp collisions, are suitable for HICs where the presence of an expanding medium
that eventually reaches the thermal equilibrium seems appropriate for the statistical
hadronization approach. Few attempts have also been made to apply the SHM
approach to e+e− collisions [86].

In the modern formulation of the SHMs, depending on the system size, two different
approaches are used: if the system under study is characterized by a large volume,
such as HIC, a Grand Canonical formalism is used. On the other hand in small
systems a canonical approach has to be followed. The two approaches will be
described in the following sections.

Grand Canonical SHM

The Grand Canonical approach will be described in this section following the imple-
mentation from [87]. The size of the system created in relativistic HIC (∼ 10 fm/c)
is large enough to allow the use of the Grand Canonical approach. This formalism
can be used in the central rapidity region where are located most of the detectors
of ALICE: this region can be considered in equilibrium with a thermal reservoir
(the rest of the medium created in a HIC). Hence, quantities like energy, baryon
number, charge and isospin are conserved on average. Within the Grand Canonical
formalism the parameters describing the equilibrium condition of a HIC include the
temperature T, the volume V, and the chemical potentials µi. The partition function
of the system can be written as:

Z(T, V, µ) = Tr
[
e−β(H−ΣiQiµi)

]
(2.6)

with
µ =

∑
i

QiµQi and β = 1
T

(2.7)

where V is the volume of the system at the equilibrium, H is the Hamiltonian and
µQi is the chemical potential associated to the conserved quantum number Qi. In
the formulation adopted in [87], the main conserved quantum numbers are the
electric charge Q, the strangeness content of the system S and the baryon number B.
The Hamiltonian H used in the partition function is the one of a Hadron Resonance
Gas. This Hamiltonian is chosen because it successfully predicts the behaviour of a
strongly interacting medium and reproduces the EoS calculated with lattice QCD
over a wide temperature range, as shown in Sec. 1.2. The partition function of the
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system is the product of the partition functions of all the available particle states in
the Hadron Resonance Gas:

Z(T, V, µ) =
∏

i

Zi(T, V, µi) → logZ(T, V, µ) =
∑

i

logZi(T, V, µi). (2.8)

Each partition function is defined by the spin–statistics theorem as follows:

logZi(T, V, µi) = V gi

2π2

∫ ∞

0
±p2 dp log

[
1 ± λi(T, µi)e−βϵi

]
(2.9)

where (+) is used for bosons (following the Bose-Einstein distribution) and (−)
for fermions (following the Fermi-Dirac distribution). The gi constant is the degen-
eracy state i and ϵi is the energy of one particle of the species i with momentum
p(ϵi =

√
p2 +m2

i ). The fugacity λi term encloses the dependence on the chemical
potentials:

λi(T, µi) = eβ(BiµB+SiµS+QiµQ) = eβµi (2.10)

where Bi, Si and Qi are the baryon number, the strangeness content and the electric
charge associated with the particle species i and µB , µS and µQ are the quantum
charges chemical potentials. Expanding the logarithm and integrating over the
momentum, the partition function for the particle i becomes:

logZi(T, V, µi) = V Tgi

2π2

∞∑
k=1

(±1)k+1

k2 λk
im

2
iK2(βkmi) (2.11)

where (+) is used for bosons, the (−) for fermions and the K2 is the second kind
modified Bessel function of second order. The average number of particles for the
species i for a system described by the Grand Canonical ensemble, is defined as:

⟨Ni⟩th(T, V, µi) = 1
β

∂

∂µi
logZi(T, V, µi)

V Tgi

2π2

∞∑
k=1

(±1)k+1

k
λk

im
2
iK2(βkmi). (2.12)

This equation does not consider the feed–down contributions from all the other
particle species (resonances) j in the thermal system that can decay strongly or
electromagnetically in a final state containing particles of the species i. Therefore,
the total yield is:

⟨Ni⟩(T, V, µ) = ⟨Ni⟩th(T, V, µi) +
∑

j

Γj→i⟨Nj⟩th(T, V, µj) (2.13)

where Γj→i is the decay rate of the state j into the final state i. The Eq. 2.12
and 2.13 indicate the 5 free parameters of the model: the temperature T , the
volume V and the chemical potentials µB, µQ and µS . The knowledge of the initial
collision conditions give the possibility to fix two of them: in Pb-Pb collisions no
net strangeness is present (µS = 0) and µQ is fixed by the initial electric charge
asymmetry. The dependence on the volume V of the system can also be removed
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Fig. 2.7: Thermal model fit to the light-flavoured hadron yields in central Pb–Pb collisions
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√
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(black line), GSI-Heidelberg (yellow line) and SHARE (blue line).

by measuring the ratio between the yields of different particle species (relative
abundances), which depends only on the temperature of the system and on the
baryon chemical potential.

By setting the chemical freeze–out temperature and the baryon chemical potential
the properties of each particle species can be inferred from the SHMs including
the production yield. This mechanism can be naturally applied to the study of the
light (hyper-) nuclei production in HICs. In principle one would not expect to see
any light nuclei in such collisions, since the chemical freeze-out temperature is
much higher than their binding energy. However, the thermal model is blind to
the internal structure of hadrons. The SHM is used to predict hadron yields in a
collision, going from pions to light nuclei. The success of the model is shown in Fig.
2.7: a thermal fit has been performed to describe all the light-flavoured hadrons
measured in central (0–10%) Pb–Pb collisions at

√
sNN = 2.76 TeV up to the 3

ΛH.
The fits are performed with three slightly different implementations of the SHM:
THERMUS [88], GSI-Heidelberg [89] and SHARE [90]. For all of them, the fits
provide a chemical freeze-out temperature Tchem = 156 MeV [91].

Canonical suppression in small collision systems
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In small collision systems, where the typical number of particles produced is up to
few tens, the conditions for the grand canonical approach are not satisfied, and the
description of the collision can be performed only by using the canonical ensemble
[92, 93]. While a complete description of the canonical SHM is given in Refs. [94,
95], here we will focus on the results and the main consequences on the hadron yields
in small collision systems. In the canonical approach, the ensemble is represented
by an ideal hadron resonance gas (HRG) in the Boltzmann approximation and in
full chemical equilibrium. The three quantum charges previously considered - the
baryon number B, the electric charge Q, and the strangeness S - are fixed exactly to
particular values which are conserved exactly across a correlation volume Vc. The
mean particle multiplicity for the species j calculated under this assumption ⟨N th

j ⟩ce

can be written in terms of the Gran Canonical multiplicity ⟨N th
j ⟩gce as:

⟨N th
j ⟩ce = Z(B −Bj , Q−Qj , S − Sj)

Z(B,Q, S) ⟨N th
j ⟩gce, (2.14)

where Z(B,Q, S) is the canonical partition function. The final particle yields, ⟨Nj⟩ce,
are then calculated after including the feed-down from the decays of unstable
resonances as it is done in Eq. 2.13. Looking at Eq. 2.14, the factor before ⟨N th

j ⟩gce

is the chemical factor, which reflects the exact conservation of the charges. The
chemical factor reflects the so-called canonical suppression of the yields of particles
carrying conserved charges, relative to their Grand Canonical values. The effect is
stronger for multi-charged particles, such as multi-strange hyperons or light (hyper-
)nuclei. Fig. 2.8 shows the effect of the canonical suppression for the deuteron over
proton ratio, as a function of the average charged pion multiplicity of the collision
(dNπ/dy). The study has been performed by varying both the correlation volume Vc

and the chemical freeze-out temperature Tchem.

The canonical suppression mechanism is able to reproduce the ALICE measurements
of d/p from central Pb–Pb collisions at

√
sNN = 2.76 TeV to pp collisions at s = 900

GeV.

2.3.2 Coalescence Models

The second approach used to describe the (hyper-)nuclei yields is given by the
coalescence models. Like the SHMs, coalescence models do not provide a dynamic
theory of the interactions that cause the nucleosynthesis, but provide a powerful
description of the formation process. The fundamental idea behind the coalescence
approach is that nuclei constituents which are close enough in phase space at the
kinematic freeze-out can bind to form a nucleus. In 1961 Pearson and Butler [96]
proposed the first coalescence model to explain the deuteron formation in proton-
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nucleus collisions in terms of the production spectra of its constituent nucleons (a
proton and a neutron). Taking into account the p-n force and the nuclear optical
potential, it is possible to evaluate the deuteron invariant momentum spectrum
Ed

d3Nd

dp3
d

as:

Ed
d3Nd

dp3
d

= B2(Ep
d3Np

dp3
p

)(En
d3Nn

dp3
n

) (2.15)

where Ep
d3Np

dp3
p

and En
d3Nn
dp3

n
are the proton and the neutron invariant momentum

spectrum and B2 is the coalescence parameter that encodes the dependence from the
nucleon mass, the binding energy of the final state, and the depth of the potential
well. The model has been extended in 1963 by Schwarzchild and Zupancic [97]
to evaluate the production probability of a light nucleus composed by A nucleons
in a nucleus-nucleus collision. The equation 2.15 for a nucleus of the species i
becomes:

Ed
d3Ni

dp3
i

= BA(Ep
d3Np

dp3
p

)A (2.16)

In Eq. 2.16, the proton spectrum is assumed to be identical to the spectrum of the
constituent neutron: this approximation is particularly useful for experiments that
do not have hadronic calorimeters at mid-rapidity for the identification of neutrons,
and it is well justified in high-energy hadronic collisions at mid-rapidity where the
isospin symmetry is fulfilled. The new proportionality constant BA is no longer
related to the binding energy of the nucleus and the nuclear optical potential, but it
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is interpreted as a function of the radius p0, which is the maximum distance between
two nucleons at which coalescence can happen. In the simplest formulation of the
coalescence models, only the momentum space is considered (not the space-time)
and the coalescence parameter can be expressed neglecting the spin:

BA =
(4

3 π p
3
0
)A−1 mi

mA
p

, (2.17)

where p0 is the aforementioned radius and mi and mp are the nucleus and proton
mass, respectively.

A more realistic coalescence model can be found in [98], where authors explore the
system size (or charged particle multiplicity) dependence of different (hyper-)nuclei
ratios by taking into account the finite size of their internal wave functions. In this
approach, the formation probability of a light nucleus is given by the overlap of the
nucleon phase-space distribution functions in the emission source with the Wigner
function of the light nucleus, which is obtained from the Wigner transform of its
internal wave function. The phase-space distributions of nucleons are taken from a
thermalized expanding spherical fireball of kinetic freeze-out temperature Tk and
radius R:

fp,n(x⃗, p⃗) = Np,n
(2π)3(mTkR2)3/2 e

− p2
2mTk e− x2

2R2 (2.18)

where m is the mass of the nucleon and Np,n is the number of protons or neutrons.
From the full calculation the d/p, 3He/p, 3He/3H and the 3

ΛH/ Λ ratios are extracted.
For example, the d/p ratio is given by:

Nd
Np

≈ 3Nn
4(mTkR2)3/2

[
1 +

(1.6 fm
R

)2]−3/2

, (2.19)

where the last factor in the above equation describes the suppression of deuteron
production due to its finite size relative to that of the nucleon emission source, and
the factor Np,n

(2π)3(mTkR2)3/2 corresponds to the d/p ratio in the limit of large nucleon
emission source.

Finally, for A=3 nuclei, coalescence can arise both from the overlap of three nucle-
ons and the overlap of an A=2 nucleus with a nucleon. These two contributions
are treated separately in [98] and called three-body and two-body coalescence,
respectively. The d/p, 3He/p, 3He/3H ratios as a function of the charged particle
multiplicity are shown in Fig. 2.9: coalescence models are able to reproduce the
available ALICE measurements at the time of the publication of Ref. [98].

2.3 Production of (anti-)(hyper-)nuclei at the LHC 31



 COAL.

 (b)

 (a)

ALICE published
  p+p @ 900 GeV
  p+p @ 2.76 TeV  
  p+p @ 7 TeV 
  Pb+Pb @ 2.76 TeV

d/
p 

 (x
10

-3
)

  COAL. (d-p)
  COAL. (p-p-n)

3 H
e/

p

dNch/d

3 H
/3 H

e

 Two-body COAL. 
 Three-body COAL.
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and in Pb–Pb collisions at 2.76 [100]. Lines are the predictions of the coalescence
model, with theoretical uncertainties on the emission source radius given by the
shaded bands. For 3He/p and 3H/3He the magenta and the blue lines correspond
to two-body and three-body coalescence, respectively.

2.3.3 3
ΛH production in small systems

Both the coalescence and the statisticals model have been used to successfully
describe the nuclei production at the LHC. The d/p ratio as a function of the charged
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.

particle multiplicity has been reproduced quantitatively from 900 GeV pp to 5.02
TeV Pb–Pb collisions, as it is shown in Fig. 2.10. In spite of these remarkable results,
there are still important open questions that need to be addressed: can we define
a range of validity for the parameters and the assumptions of the models? Can
coalescence and SHMs coexist? While SHM provides a statistical description of our
ensemble, coalescence is able to predict the yield ratios starting from microscopic
information. On the other hand, SHMs are able to reproduce the particle species
yield and not only the ratios in terms of their constituents (while coalescence does
not).

The study of the 3
ΛH production in small systems can help us to shed light on some of

these questions. If 3
ΛH is as weakly bound as described in 2.2.2, its wave function can

extend up to a radius of ∼ 5-6 fm. Hence, the size of the 3
ΛH wave function is much

larger than the hadron emission radius estimated with a femtoscopic technique in
pp or p–Pb collisions (1–2 fm, [101, 102]). For this reason, the 3

ΛH yield in small
systems predicted by the coalescence model, where the ratio of nucleus size to source
size directly influences its yield (as shown in Eq. 2.19), is suppressed with respect
to the statistical hadronization model expectations, where the nuclear size does
not enter explicitly and particles are treated as point-like objects. The 3

ΛH/Λ ratio
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prediction as a function of the charged particle multiplicity is shown in Fig. 2.11 for
both the models.

In small systems, where the charged particle multiplicity is lower than 30, the
separation between coalescence and SHM is clearly visible. Hence, the measurement
of 3

ΛH production in p–Pb collisions, which is a subject of this thesis and will be
described in Chap. 6, is a powerful tool for probing the nucleosynthesis mechanism
in high-energy hadronic collisions.
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3A Large Ion Collider Experiment

The Large Hadron Collider is the most powerful accelerator ever built for particle
physics. Thanks to its 27 km ring, the LHC can deliver pp and heavy-ion collisions
at the highest energies ever achieved. The LHC is operated by the European Or-
ganization for Nuclear Research (CERN) and is located in the Canton of Geneva,
Switzerland. A significant part of the LHC physics programme is devoted to the
study of the properties of the Quark Gluon Plasma, that can be produced through
relativistic heavy ion collisions. As mentioned in the previous sections, the LHC can
provide Pb–Pb collisions at a centre of mass energy per nucleon pair of 5.02 TeV. The
ALICE (A Large Ion Collider Experiment) detector has been designed to profit from
the unique opportunities offered by the LHC heavy ion programme. A description of
the LHC and ALICE setup during the Run 2 of the LHC (2015-2018) will be given in
this chapter, while the current status of ALICE, and in particular of its inner tracking
system, will be briefly discussed in Chap. 7.

3.1 The Large Hadron Collider

The Large Hadron Collider (LHC) is the final component of CERN accelerator
complex (Figure 3.1), which progressively accelerates particles to higher energies.
Each machine in this chain increases the energy of a particle beam and then injects
it into the next machine. Protons and heavy ions are brought to their collision
energies through different acceleration chains. Protons are obtained from a source
of ionized hydrogen and are then accelerated up to 50 MeV by LINAC 2 (or LINAC 4
for LHC Run 3). The beam is then directed to the Proton Synchrotron Booster (PSB),
which increases the proton energy to 1.4 GeV and injects the beam bunches into
the Proton Synchrotron (PS). The Proton Synchrotron boosts protons up to 25 GeV
before injecting them into the Super Proton Synchrotron (SPS), where protons are
accelerated up to 450 GeV. After passing through the SPS, protons finally reach the
LHC and are accelerated up to a record energy of 6.8 TeV [104][105].

"The CERN heavy ion programme is based on the use of 208Pb ions. The production
of lead-ion beams at the LHC starts with a 2-centimeter-long pure lead sample that
weighs 500 milligrams. In the first stage, the lead sample is heated to about 500
degrees Celsius to vaporize a small number of atoms. An electric current is then used
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Fig. 3.1: View of the CERN accelerator complex and the LHC experiments [103]

to remove a few of the electrons from each atom to obtain 208
82 Pb29+ ions, which are

accelerated up to 4.2 MeV per nucleon in the Linear Accelerator 3 (LINAC3). Then,
a carbon foil is used to further ionize the 208

82 Pb29+ into a 208
82 Pb54+ beam, which is

then injected into the Low Energy Ion Ring (LEIR). LEIR increases the beam’s energy
to 72 MeV and injects it into the PS. From this point onwards the accelerating chain
used for proton beams is the same to the one describe above. Before reaching the
LHC, the lead ions are ionized again by a second foil to obtain fully ionized Pb ions
[106].

The LHC ring is made up of 1232 dipole magnets and 392 quadrupole magnets
that respectively guide and focus two counter-rotating beams in separate vacuum
pipes. The superconductive magnets operate at a temperature of 1.9 K, and deliver
a peak magnetic field value of 8.33 T. Proton and ion beams are accelerated in the
ring and brought to collisions in the four interaction points corresponding to the
four major LHC experiments. The performance of the collider is evaluated using the
instantaneous luminosity L, which is related to the number of events per second R
and the cross-section σ of the process by the following formula:

R = Lσ (3.1)

The luminosity does not depend on the nature of the studied process but only on the
beam parameters, and it can be expressed as:

L = NbN
2frevγ

4πϵnβ∗ F, (3.2)
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where Nb is the number of bunches in the collider ring, N is the number of charges
in each bunch, frev is the revolution frequency of the beam, γ is the relativistic factor,
F is a geometrical factor, ϵn is the normalized emittance and β∗ is the value of the
amplitude function at the interaction point (IP) where the luminosity is estimated.
The ALICE apparatus requires a peak luminosity of L = 1027 cm−2s−1 in Pb-Pb
collisions [107][108]. Figure 3.2 shows the integrated luminosities collected by
ALICE for different trigger configurations during the Pb–Pb period in Run 2 at the
end of 2018.

ALI-PERF-313415

Fig. 3.2: ALICE integrated luminosity for different trigger configurations.

Each collision takes place in a narrow region around the nominal interaction point,
and the actual position of the collision is called primary vertex. The primary vertex
displacement is due to the finite shape of the bunches, and assuming a 3D Gaussian
profile for the bunches the vertex RMS is computed as:

σver
xyz =

σb
xyz√
2

(3.3)

where σb
xyz and σver

xyz are the bunches and the vertex RMS, respectively. For the ALICE
experiment, assuming that the z axis coincides with the beam axis, typical values for
the vertex dispersion are σver

xy ≈ 50 µm and σver
z ≈ 5 cm.

The LHC physics programme started in 2009 delivering pp collisions up to
√
s =

7 TeV, p-Pb at
√
sNN = 5.02 TeV and Pb–Pb at

√
sNN = 2.76 TeV, before ending in

2013 with the Long Shutdown 1 (LS1). During the LS1, the LHC has been upgraded
in order to increase the collision energy. The Run 2 started in 2015 and the LHC
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delivered Pb-Pb collisions at
√
sNN = 5.02 TeV, p-Pb collisions at

√
sNN = 8 TeV and

pp collisions at
√
s = 13 TeV. In December 2018 the LHC Long Shutdown 2 started,

allowing for the detectors upgrade in view of LHC Run 3 physics programme, that
started in 2022. The analysis of the data collected in Run 2 for the study of the 3

ΛH
properties is the main topic of this thesis, while the last chapter will be dedicated to
the developments ongoing for the analyses of hypernuclei during the LHC Run 3.

3.2 The ALICE detector

ALICE, the LHC experiment devoted to heavy-ion physics at CERN [107], requires
an excellent tracking system with a large acceptance and outstanding Particle IDenti-
fication (PID) capabilities over a wide momentum range. When ALICE was planned,
the expected number of charged particles produced per rapidity unit in a LHC Pb-Pb
central collision was estimated to be between 2000 and 8000 [109]. Consequently,
the ALICE detectors were designed with high granularity [110, 111]. The ALICE
apparatus is shown in Figure 3.3 and has a weight of ≈ 1000 tons, with dimensions
of 26 m length, 16 m height, and 16 m width.

Fig. 3.3: Schematic view of the ALICE layout.

ALICE comprises three different parts: the central barrel, a forward muon spec-
trometer, and a set of detectors at forward and backward rapidity for trigger and
event characterization. The central barrel has an optimized detector sequence for
particle reconstruction and identification, covering a wide pseudo-rapidity region
from −0.9 < η < 0.9 and is surrounded by a solenoidal magnet with a peak magnetic
field of 0.5 T parallel to the beam axis. The detectors, from the innermost to the
outermost, include the Inner Tracking system (ITS), the Time Projection Chamber
(TPC), the Transition Radiation Detector (TRD), the Time Of Flight (TOF) detector,
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the High-Momentum Particle IDentification detector (HMPID), the Photon Spectrom-
eter (PHOS), the Electromagnetic Calorimeter (EMCal), a Di-Jet Calorimeter (DCal),
and the ALICE Cosmic Ray Detector (ACORDE).

The forward muon spectrometer consists of a complex arrangement of absorbers,
a large dipole magnet, and fourteen planes of Resistive Plate Chambers (RPC). It
covers the pseudo-rapidity range of −4 < η < 2.5. The other detectors mainly serve
for global event characterization and triggering and include the Photon Multiplicity
Detector (PMD), the Forward Multiplicity Detector (FMD), the Cherenkov T0 detector,
the plastic scintillator V0 detector, and the Zero Degree Calorimeter (ZDC).

The ALICE coordinate system is a right-handed orthogonal Cartesian system with
the origin located at the nominal beam Interaction Point 2. The x axis is aligned
with the horizontal accelerator plane, pointing to the center of the LHC, and the y
axis is perpendicular to the accelerator plane, pointing upward. Consequently, the
z axis is parallel to the beam direction, and its positive direction is defined by the
chirality of the system. The azimuthal angle ϕ increases counter-clockwise, starting
from ϕ = 0 for x axis looking towards the Compact Muon Solenoid (CMS) side, and
the polar angle θ increases from z (θ = 0) to -z (θ = π).

In the following subsections, the detectors of ALICE that are relevant for the analysis
of 3

ΛH will be described in more detail.

3.2.1 The Inner Tracking System

The Inner Tracking System is the closest detector to the primary vertex, covering a
distance from the beam line from r = 3.9 cm for the innermost pixel layer up to r
= 43 cm for the outermost strip layer [112, 113]. The ITS barrel is composed of 6
cylindrical layers of silicon detectors using three different technologies: two layers
of pixel, drift and strip detectors. The layout of the ITS is shown in Figure 3.4.

The main tasks of the ITS are the localization of the primary vertices with a resolution
better than 100 µm, the reconstruction of the secondary vertices from hyperons and
B and D meson decays, the tracking and the identification of charged particles with
pT < 200 MeV/c. In addition, the ITS helps to improve the momentum and angle
resolution for particles tracked by the TPC. The three technologies used in the ITS
are described in the following.

Silicon pixel detectors (SPDs) constitute the two innermost layers of the ITS. SPDs
are highly segmented in order to obtain a good impact parameter resolution and to
withstand the high multiplicity environment typical of ion collisions.

3.2 The ALICE detector 39



Fig. 3.4: Layout of the ALICE Inner Tracking System, with three different subdetectors:
Silicon Pixel Detector (SPD), Silicon Drift Detector (SDD) and Silicon Strip Detector
(SSD).

Silicon drift detectors (SDDs): they are the intermediate two layers of the ITS.
The SDD use the time necessary to electrons, produced by ionizing particle crossing
the detector, to drift towards the collecting anodes to determine the position of the
particle along the drift direction. This technology provides a good resolution with a
limited number of readout channels and a low material budget.
Silicon strip detectors (SSDs): they are the outer layers of the ITS and are equipped
with double sided silicon detectors, which provide a two-dimensional measurement
of the track position. Their spacial information are used for the matching of the
tracks from the ITS to the TPC, being the closest layers to the TPC.

Further details on the ITS sub-detectors are given in Tab. 3.1.

Parameter SPD SDD SSD

Material budget per layer (%X0) 1.14 - 1.14 1.13 - 1.26 0.83 - 0.86
Spatial resolution rϕ (µm) 12 35 20
Spatial resolution z (µm) 100 25 830
Two track resolution rϕ (µm) 100 200 300
Two track resolution z (µm) 850 600 2400
Active cell size (µm2) 50×425 202×294 95×40000
Number of readout channels (k) 9835 133 2603

Tab. 3.1: Details about the material budget and spatial resolution of the ITS sub-detectors.

The identification of low momentum particles via specific energy loss is entrusted
to the SDDs and SSDs, which are equipped with ADC readout electronics. The ITS
allows a primary and secondary vertex reconstruction with a resolution better than
100 µm and extends the tracking of particles with pT lower than 80 MeV/c.
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3.2.2 The Time Projection Chamber

The ALICE Time Projection Chamber (TPC) is the main detector of the central barrel
covering a sensitive volume of 88 m3. The TPC is 500 cm long, and the inner and the
outer radius are of 80 and 250 centimetres respectively. The acceptance coverage
in pseudo-rapidity of the TPC is |η| < 0.9. Charged particles that travel in the TPC
ionise the gas along their path, liberating electrons that drift towards the end plates
of the detector. Each end plate is equipped with 36 readout chambers, arranged in
18 sectors, covering 20° in azimuth each. The gas mixture employed to fill the TPC
during the LHC Run 2 is composed by Ar and CO2. A schematic view of the TPC
layout is shown in Figure 3.5.

Fig. 3.5: Layout of the ALICE Time Projection Chamber.

Within the drift volume of the TPC, an electric field of 400 V/cm is achieved by
applying -100 kV at the central electrode that divide the gas volume into two specular
drift regions. The finely segmented field cage at the inner and outer wall of the TPC
provides a very high level of homogeneity of the drift field. The end-cap readout
chambers are composed by a system of Multi Wire Proportional Chambers (MWPC)
with cathode pad readout. Each sector is segmented by pads organized in rows and
the longitudinal coordinate is given by the drift time. Thanks to this segmentation,
charged particles can be tracked and identified with up to 159 3-dimensional space
points (TPC clusters), including also the specific energy loss information for the
particle identification.

3.2.3 V0 system

The V0 [114] system consists in two arrays of scintillator counters, V0A and V0C,
covering the pseudo-rapidity regions of 2.8 < η < 5.1 and −3.7 < η < −1.7,
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respectively. The V0A is located 340 cm from the nominal interaction point, on
the opposite side to the muon spectrometer, while the V0C is placed in front of
the hadronic absorber, 90 cm from the interaction point. Each of the V0 arrays is
segmented in four rings in the radial direction, and each ring is divided in eight
sections in the azimuthal direction, as shown in Figure 3.6.

Fig. 3.6: Sketches of V0A (left) and V0C (right) arrays showing their segmentation. Scintil-
lator thicknesses are 2.5 and 2 cm, respectively. The scintillator segments on both
sides of the dashed lines are connected to the same photomultiplier tube.

The main function of the V0 detectors is to provide the Minimum bias trigger
(defined in the following section) of ALICE and to separate beam-beam interactions
from background events such as beam-gas interactions. Furthermore, the signal
collected in V0s is also used to estimate the beam luminosity and the charged-particle
multiplicity in all collision systems.

3.3 Data acquisition and reconstruction in ALICE

3.3.1 Trigger system

The ALICE trigger system is composed by a low level hardware trigger, handled by
the Central Trigger Processor (CTP) [115] and a software trigger managed by the
High-Level Trigger [116] system (HLT). The CTP is in charge of taking a decision for
every bunch crossing and providing a trigger signal to the readout electronics of the
detectors in case of positive trigger conditions. Owing to the different requirements
of the ALICE detectors, there are three global levels implemented in the ALICE
hardware trigger: L0, L1 and L2. The fastest level of the trigger, L0, has a latency
of 900 ns and provides a strobe to detectors with fast electronics. Furthermore L0
is in charge of inhibiting data taking for all detectors in an affected cluster. The
next trigger level, L1, arrives at the detector 6.5 µs after the interaction takes place,
where most of the trigger inputs are available, and therefore major rate reductions
can be made. The final decision is taken after 88 µs, thanks to the L2 trigger, which
gathers input coming from slow detectors such as the TPC. If the L2 decision is
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positive, events are sent to the HLT and to the Data Acquisition (DAQ) system. It is
worth to mention that a dedicated trigger level, called LM, provides the strobe to
the TRD only, with a latency of 650 ns.

When the CTP trigger signal is propagated, the raw data from the detectors are col-
lected through optical connections into local computers nodes, which are connected
to all the ALICE subdetectors. The raw data in the nodes are processed to build a
fraction of the full event. Each fraction is then sent, with a data rate up to 20 GB/s,
to the Global Data Collectors (GDCs) where they are assembled, together with the
HLT output, in the full event.

The HLT performs an online reconstruction of the data, including clusterization and
track reconstruction employing fast algorithm such as Cellular Automata [117] and
Kalman Filters [118]. The reconstructed event is further selected by the HLT, and
events are further compressed. When the event building in the GDC is terminated,
the data are stored in a local disk pool waiting to be transferred to the CERN
computing centre. The data rate of the full chain during LHC Run 1 and 2 was about
2 GB/s after the HLT compression. In Figure 3.7 the compression factor (also called
compression ratio) of the events after the HLT is shown as a function of the number
of clusters found in the TPC for a given event [119].
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Fig. 3.7: Total HLT TPC data compression ratio in Run 2 on 2017 pp data as a function of
the input data size expressed in terms of the number of TPC clusters.

3.3.2 Event reconstruction

The offline event reconstruction starts at the single detector level: all the signals
collected in each sub-detector are converted into a space-time information and
adjacent particle hits are merged to form a cluster. Additional information, such as
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Fig. 3.8: Primary vertex position resolution in pp collision at
√
s = 7 TeV with SPD-tracklets

(SPD) and full tracks (TRK) [108].

the TPC signal amplitude employed for PID, are directly attached to the cluster. After
the clusterization step, primary vertex and track reconstruction start.

The primary vertex can be reconstructed either by using only the ITS SPD, or globally
by exploiting the full reconstructed tracks. While the latter method is more accurate,
the former is employed for a first estimate of the primary vertex position which is
used by the tracking algorithm to speed up the process. The SPD reconstruction
algorithm starts as follows: two clusters belonging totwo different layers of the SPD
within the same azimuthal acceptance window are connected to form a segment
called tracklet. The primary vertex position is then estimated by minimizing the
distance of closest approach among all the tracklets and removing the outliers. If
only one tracklet is found, e.g. in pp collisions, the z position of the vertex can
still be computed by exploiting the nominal beam line position in the transverse
plane as a constraint. Similarly, the global primary vertex reconstruction is obtained
by minimising the distance among the full tracks: the resolution on the primary
vertex position obtained by using SPD tracklets and full tracks is shown in Fig. 3.8.
The resolution depends on the charged particle multiplicity: in Pb-Pb collisions a
resolution of 10 µm is obtained, while the average resolution in pp collisions is
around ∼ 150 µm [108].

The track reconstruction for the central barrel detectors is based on the Kalman Filter
algorithm, which is described in detail in [120]. The reconstruction starts by building
the first track seeds in the outermost pads of the TPC which are then propagated
inwards: the track parameters are updated at each step with every closest cluster
found by the Kalman filter, until the inner wall of the TPC is reached. The TPC
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Fig. 3.9: TPC reconstruction efficiency as a function of the transverse momentum in pp and
Pb–Pb collisions from [108].

reconstruction efficiency as a function of the transverse momentum computed using
Monte Carlo (MC) events is shown in Fig. 3.9: the drop for pT < 0.5 GeV/c is caused
by energy loss in the detector material.

The reconstructed TPC tracks are then propagated to the outermost layer of the ITS,
becoming the seeds for track finding in the ITS. Each seed is propagated inward
and updated at each ITS layer by all clusters within a distance window, taking into
account positions and errors. The result of each update is iteratively saved as a
new seed: for each TPC track a tree of track hypotheses in ITS is built. Once the
complete tree of prolongation candidates for the TPC track is built, the candidates are
sorted according to their reduced χ2: only the highest quality candidate from each
hypothesis tree is added to the reconstructed event. A special treatment is applied
to the track seeds with shared clusters: first an attempt is made to find alternative
candidates in the involved trees. In the case of a failure, the worse track of the two
(in terms of χ2) is labeled with a flag indicating that it may contain wrongly matched
(“fake”) clusters. The ITS-TPC matching efficiencies as a function of pT are shown
in Fig. 3.10 for both data and MC in pp collisions at

√
s = 7 TeV (left panel) and

Pb–Pb collisions at
√
sNN = 2.76 TeV (right panel) [108].

Finally, a standalone ITS reconstruction is performed with those clusters that were
not used in the ITS–TPC tracks, with an algorithm similar to the TPC standalone one.
The ITS standalone tracking is employed to recover the TPC reconstruction efficiency
drop at low pT, where particles are affected by energy loss and multiple scattering
in the detector material. The tracks obtained with clusters in both the ITS and the
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Fig. 3.10: ITS–TPC matching efficiency vs. pT for data and Monte Carlo for pp (left) and
Pb–Pb (right) collisions from [108].

TPC detectors are then back-propagated outwards to match the clusters in the TRD
and in the TOF and the signals in EMCAL, PHOS and HMPID. Then, an inward fit
is performed on the full tracks which are finally propagated to the point of closest
approach to the beam line. At this stage, if the number of tracks is greater than
two, the global primary vertex algorithm is employed to compute the best vertex
position. Fig. 3.11 shows the resolution on 1/pT for tracks, which is related to the
pT resolution by the formula:

σpT

pT
=
σ1/pT

1/pT
(3.4)

Tracks can be reconstructed with a resolution between 1% and 10% in the momentum
range from 0.1 to 100 GeV/c.
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Fig. 3.11: Resolution on the 1/pT parameter as a function of 1/pT in p-Pb collisions. The
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from the Kalman filter fit.

The reconstruction of the secondary vertices, which has been extensively employed
in this work, will be described in the next chapter.
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3.3.3 Particle identification

The ALICE detector is suited for the identification of charged particles (PID). PID is
performed in a wide range of transverse momentum by using the information from
the ITS, the TPC, the TOF and the HMPID. The ITS and the TPC provide the Particle
Identification measuring the specific energy loss of the charged particles while the
TOF detector uses the time of flight. Finally, the HMPID gives the β = v/c of the
particles from the measurement of the Cerenkov angle. In the following, only the
PID with TPC, which is relevant for this work, will be described. The TPC determines
the specific energy loss (dE/dx) and the momentum of each particle traversing
the detector gas. The charge deposited by the passing particle is measured by up
to 159 padrows through the ionisation process. The energy loss as a function of
the momentum in TPC can be derived starting from the Bethe-Bloch formula, and
parametrized following the work of the ALEPH collaboration[121] as:

f(βγ) = P1
βP4

(
P2 − βP4 − ln

(
P3 + 1

(βγ)P5

))
, (3.5)

where β is the particle velocity, γ is the Lorentz factor and P1−5 are parameters ob-
tained from a fit to the experimental data. A more empirical but effective parametriza-
tion for the response function is given employing splines, as it is shown in Fig. 3.12.
To assess if a track is compatible with a specific particle species, 3He or π in the case
of 3

ΛH decays, the difference between the measured Smeas and the expected Sexp

signal is computed as:

nσ
3He,π = |Smeas − Sexp|

σ3He,π
(3.6)

where σ
3He,π is the resolution on the energy loss signal for each species. The dE/dx

resolution is about 5.2% in pp collisions and 6% in Pb–Pb collisions [108].

3.3.4 Centrality determination

As already discussed in Section 1.3.1, the geometry of heavy-ion collisions is charac-
terized by the impact parameter b, which connects the centre of the two colliding
nuclei in the plane transverse to the beam direction. However, this quantity cannot
be measured directly but a Glauber Model has to be used to correlate the impact pa-
rameter to other variables, such as the energy deposited in the ZDCs or the charged
particle multiplicity [122]. A useful quantity to describe the collision is the centrality,
which is defined as the percentile of the hadronic cross section corresponding to
a particle multiplicity, or an energy deposited above a given threshold. Following
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this definition, centrality can be expressed as a percentage of the total hadronic
interaction cross section of the colliding nuclei σAA:

c(b) = 1
σAA

∫ b

0

dσ

db′db
′, (3.7)

where σAA =
∫∞

0
dσ
db′db′. Assuming a monotonic dependence on the impact parameter

of both the charged particle multiplicity (Nch) and the energy deposit at zero degrees
(EZDC), the centrality could be expressed as:

c(b) ≈ 1
σAA

∫ ∞

d

dσ

dN ′
ch

dN ′
ch ≈ 1

σAA

∫ EZDC

0

dσ

dE′
ZDC

dE′
ZDC (3.8)

Under the same assumption the total cross section can be replaced with the number
of observed events n:

c(b) ≈ 1
σAA

∫
d
N∞

ch

dn

dN ′
ch

dN ′
ch ≈ 1

σAA

∫ EZDC

0

dn

dE′
ZDC

dE′
ZDC (3.9)

The centrality determination from the particle multiplicity can be performed with
the V0 detectors as shown in Figure 3.13. The distribution of the sum of the signal
provided by the V0A and V0C detectors is fitted with a function taken from a MC
Glauber model (see Sec. 1.3.1) to connect this experimental quantity with the impact
parameter of the collision.
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Fig. 3.14: Centrality resolution for different estimators in the ALICE experiment [122].

The same fit can be performed on the distribution of the number of the clusters on
the second layer of SPD or on the distribution of the number of TPC tracks. The
performance of the difference centrality estimators are compared in Fig.3.14.

3.3.5 ALICE offline software

The ALICE offline software is based on the ROOT package, which is developed and
maintained at CERN [123]. ROOT is an object-oriented programme originally de-
signed for particle physics research, even though it is also used in other applications
such as astronomy and data mining. It is mainly written in C++ but integrated with
other languages such as Fortran, Python, and R. The ALICE software is included
in a custom extension of the ROOT package named AliRoot. AliRoot is specifically
designed to provide a set of classes and macros to analyze data coming from the
ALICE experiment. It also allows full simulations of pp, p-Pb and Pb-Pb collisions
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using event generator codes such as PYTHIA [124] and HIJING [125] and different
transport codes (FLUKA [126], GEANT3 [127], GEANT4 [128]). The geometry and
material budget of the experimental apparatus are precisely coded by means of the
ROOT geometrical modeler. Finally, the code employed by users in the analysis is
contained in the AliPhysics framework, developed by the ALICE data analysis group.
The reconstruction of the collected data, the data analyses, and the MC simulations
are performed by exploiting the Worldwide LHC Computing Grid (WLCG) [129], a
federation of 170 computing centers in 42 countries designed to cope with the data
collected by all the LHC experiments.
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4Machine learning

The term machine learning (ML) is employed to define a very wide range of algo-
rithms that can automatically learn patterns from the data without requiring an
ad-hoc programming (just like human learning does) [130] [131]. Since this defini-
tion is extremely general, in the last fifteen years ML techniques have been applied
to solve a tremendous amount of problems in different fields: medicine, biology,
finance, marketing, robotics, just to cite a few of them. Nowadays, ML has become a
very popular tool in High-Energy Physics for dealing with the large amount of data
produced by the experiments, and ML techniques have been successfully employed in
all the High-Energy Physics (HEP) sectors: triggering, track reconstruction, particle
identification, event and candidate selection. In this work, the 3

ΛH signal selection
has been performed by using a popular ML algorithm, the Boosted Decision Tree
(BDT). This chapter is dedicated to briefly introduce the main concepts of ML and to
describe the BDT algorithm.

4.1 Supervised learning

Supervised learning is a subcategory of ML well known in HEP. Supervised learning
algorithms are employed for discriminating between two or more classes, signal and
background in our case, starting from a set of examples called training set. Each
element of the training sample, a 3

ΛH candidate in the case of this thesis, has a label
containing its class (signal / background), which is known a priori: the training
process fixes the internal parameters of the learning algorithm in order to maximize
the separation power among the classes. In this thesis, the training set will be
composed by Monte Carlo 3

ΛH particles, which will be labelled as signal, and fake
3
ΛH candidates extracted from real data, which will be labelled as background (see
Sec. 5.3.1). The goal of the training is to teach to the model a common pattern in
data that can be used to classify properly an independent sample, in our case the
real data sample. The output of the supervised model, or score, is evaluated starting
from the candidate properties, which are called features. The score is related to the
candidate probability of belonging to the different classes. The example in figure
4.1 shows the score distribution for a binary classification model. In order to define
which candidates are members of a class and which of the other, it is necessary to
choose a score threshold: candidates below threshold will be classified as belonging
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Fig. 4.1: Generic output of a supervised model for a binary classification problem

to the blue class and those above as red class members. Binary classification models
are widely used in particle physics because are well suited to discriminate between
the signal and the background distributions.

In order to evaluate the performance of the model the entire labelled data sample
is split in two parts: the first one is used to build the training set, the second one
represents the test set. The test set does not participate in the training process, but it
is only used to give an unbiased estimation of the algorithm performance. One of
the most common metrics employed for testing the model is the Receiver Operating
Characteristic (ROC) [132].

4.1.1 Receiver Operating Characteristic

In a sample containing a positive class P and a negative class N (in HEP they are the
signal and the background classes, respectively) the ROC curve is built by plotting
the true positive rate (TPR) against the false negative rate (FPR), as a function of the
score threshold.

To give a definition of TPR and FPR, we observe that the elements of the sample can
be either classified as positive or negative. This classification may be either correct
or wrong, leading to four possible cases as illustrated in Fig. 4.2.

Hence a true positive is an element belonging to class P, correctly classified as such,
while a false positive is an element belonging to class N, wrongly classified as positive.
Similarly a true negative is an element belonging to class N, correctly classified as
such, and a false negative is and element belonging to class P, wrongly classified as
negative.
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Fig. 4.2: Table illustrating the definition of TPR and FPR, taken from [133]

The overall number of the elements that belong to class P is the sum of the true
positives and the false negatives, while the overall number of the elements that belong
to class N is the sum of the true negatives and the false positives. The TPR is the
ratio between the number of the true positive elements and the overall number of
elements that belong to class P. The FPR is the ratio of the false positive elements
and the overall number of elements that belong to class N, namely:

TPR =
∑
TP∑

TP +∑
FN

FPR =
∑
FP∑

FP +∑
TN

(4.1)

In our case, TPR and FPR represent the signal selection and the background rejection
efficiencies respectively. The ROC curve is the set of TPR and FPR values that a
model can assume for all the possible values of the threshold. An example of ROC
curve is in Fig. 4.3. The dashed line represents the ROC curve of a purely random
classifier; a good classifier stays as far away from that line as possible toward the
top-left corner.

Fig. 4.3: Example of a ROC curve taken from [131]. The red dashed line represents the
FPR and TPR for a fixed threshold value.
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The most common way employed to evaluate the performance of a classifier is to
compute the area under the ROC curve, called AUC: a perfect classifier will have
a ROC AUC equal to 1, whereas a random classifier will have a ROC AUC equal
to 0.5. The ROC AUC gives a global estimation of the model performance and
it is not related to the choice of the threshold value: hence it does not provide
any information on the best score threshold to be used for the signal selection.
Furthermore, the ROC AUC is independent of the relative abundances of the classes
candidates in the dataset used for its evaluation: this is particularly useful for this
thesis, where the signal in the training set is far more abundant than in the real data
(see Sec 5.1.2).

4.2 Boosted Decision Trees

Boosted Decision Trees(BDT) [134] are a family of ML algorithms employed both for
solving classification and regression problems. The usage of BDTs has become very
popular in the HEP community in the last years, thanks to their impressive versatility
and robustness. The core of every BDT model is the decision tree algorithm (DT). A
DT is a flowchart-like binary structure where an internal node represents a feature(or
candidate), the branch represents a decision rule, and each leaf node represents the
outcome. The topmost node in a decision tree is known as the root node. The DT
works by combining a sequence of simple binary tests (each branch of the tree), to
classify a data point in terms of its features. Each test consists in a linear threshold
applied to one of the features which helps the model to predict the belonging class
of every candidate. Figure 4.4 shows a simple example of how the DT works. The
training of a DT consists in the automatic procedure that builds the tree recursively
starting from the training set. At each building step, the feature and its threshold
value that maximizes the separation power between the classes are chosen. This step
is then repeated iteratively over the data until all the candidates in a node belong to
the same class or an external stopping condition occurs.

The main flaw of the DT is that it is prone to the so-called overfitting: this means
that the model is able to perfectly classify the training set if deep enough (the depth
is defined as the length of the longest path from a root to a leaf), but it does not gen-
eralize well to new data. Overfitting occurs when the model memorizes the training
set rather than learning a general pattern in the data. To overcome this problem,
BDT algorithms combine numerous shallow trees using for each a subsample of
features. In particular, in the boosting procedure the DTs are constructed sequentially
taking care of compensating the misclassified candidates of the previous trees. The
resulting model, the BDT, maintains high performances both on the training and the
test set.
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Fig. 4.4: Simple scheme of a decision tree. This example uses the Titanic data set for
predicting whether a passenger will survive or not. The model uses 3 features from
the data set, namely sex, age and sibsp (number of spouses or children along).
The decision tree is drawn upside down with its root at the top. In the image,
the text in black represents the test, namely internal node, based on which the
tree splits into branches. The end of the branch that does not split anymore is the
decision/leaf, in this case, whether the passenger died or survived, represented
as red and green text respectively. Since this DT is not a perfect classifier, the DT
leaves contain samples from both the classes. Under each leaf node is probability
of survival given as a decimal value and the percentage of the samples filtered into
each leaf.

4.2.1 XGBoost

One of the most efficient way to perform the boosting is known as Gradient Boosting
[131]. The first step of this technique is to define an objective function f(θ⃗), where
θ⃗ are the undetermined parameters that we need to learn from data. The function
f(θ⃗) indicates how good are the coefficients of model θ⃗ at fitting the training
data. The objective function is composed by the training loss L(θ⃗), which measures
how predictive the model is with respect to the training data, and an additional
regularization term used to control the complexity of the model. A common choice
of L(θ⃗) is the mean squared error, which is given by:

L(θ⃗) =
∑

i

(yi − ȳi)2

where yi is the label of the training candidate and ȳi is the corresponding prediction
of the model. Then the Gradient Boosting algorithm tries to minimize f(θ⃗) by
using the gradient descent method[135]. The optimization of the objective function
is performed iteratively and at each stage the tree that minimizes the loss for the
current model configuration is built. The algorithm used in this thesis is an optimized
implementation of Gradient Boosting available in the popular Python library XGBoost
[136], which stands for Extreme Gradient Boosting. This package was initially
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developed by Tianqi Chen as a part of the Distributed (Deep) Machine Learning
Community (DMLC), and it aims at being extremely fast, scalable and portable.
Indeed, XGBoost is often an important component of the winning entries in ML
competitions. The XGBoost Classifier works assigning to each candidate a score
related to its features for each tree. The output of the BDT is given by the sum of all
the tree scores, as exemplified in Figure 4.5.

Fig. 4.5: Score assignment in the XGBoost BDT: the algorithm tries to determine whether
someone will like a hypothetical computer game. The prediction scores of each
individual tree are summed up to get the final score.

4.2.2 Tuning the BDT

The XGBoost Classifier has many hyperparameters that control the complexity of
the model. Their tuning is important to enhance the performance of the BDT and
to prevent overfitting. In this thesis, the tuning is based on calculating the k-fold
cross validation error for different combinations of the parameters. In the k-fold
cross-validation [131], the training sample is randomly divided into k equal sized
subsamples. The training is then performed k times, each time excluding one of
the subsamples from the training data and using it as a validation sample. The
metrics employed to evaluate the BDT performance on the validation set is the ROC
AUC score. The k ROC AUCs are then averaged to produce a single performance
estimation. An example of 5-fold cross-validation is shown in Figure 4.6.

This process is repeated multiple times, for different combinations of the hyperpa-
rameters. The hyperparameter configuration that maximises the average ROC AUC
among k folds is then chosen for the final training of the BDT. The sampling of the
hyperparameter space can be done randomly or following a grid search scheme,
but in this thesis a more refined approach has been employed, called Bayesian
optimization [137, 138]. The Bayesian optimization is a method for finding a min-
imum/maximum of a computational expensive target function f(x), in this case
the cross-validation error. The method works by building a posterior distribution
of functions for describing f(x) starting from a multivariate Gaussian distribution.
As the number of observations grows, the posterior distribution improves, and the
algorithm becomes more certain of which regions in the parameter space are worth
exploring and which are not. This procedure is designed to minimize the number of
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Fig. 4.6: Schematization of the 5-fold cross-validation procedure

steps required to find a point that is close to the minimum. A brief description of the
hyperparameters that have been optimized in this thesis is reported hereafter:

• n_estimators: Number of trees in the BDT

• max_depth: Maximum depth of a tree

• eta: learning rate of the algorithm: it controls the step size of the gradient
descent algorithm

• gamma: Minimum loss reduction required to make a further partition on a
leaf node of the tree. The larger gamma is, the more tolerant to data-model
deviation the algorithm will be

• min child weight: it is related to the minimum number of candidates needed in
a node in order to be split

• colsample_bytree: it specifies the fraction of features used in each tree

• subsample: it specifies the fraction of candidates to be subsampled in each tree.
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4.2.3 Feature importance

One of the main advantages of using a BDT with respect to more complex algorithms
such as Deep Neural Networks is that the interpretability of the model is easier. In
particular, it is possible to evaluate exactly the impact of each feature on the model
output, the so-called feature importance. In recent years, the evaluation of the feature
importance for tree models made important step forward thanks to an innovative
method based on game theory [139]. The SHAP (SHapley Additive exPlanations)
method is an approach that allows us to evaluate the contribution of each feature
to the model output. The SHAP method is based on the Shapley value, a concept
introduced by Lloyd Shapley in 1953 [140]. The Shapley value is a measure of the
contribution of each player to the total value of a coalition. In the context of machine
learning, the Shapley value is used to evaluate the contribution of each feature to the
model output, and it is calculated by averaging the marginal contributions of each
feature to the model output. The marginal contribution of a feature is the difference
in the model output when the feature is present or absent. The variables that are
more important for the model are those that have a higher marginal contribution,
and Shapley values consequently. An example of SHAP feature importance is shown
in Fig. 4.7.

Fig. 4.7: SHAP feature importance for the BDT trained on the adult census income dataset
available in the Scikit-learn library [141]. The features are ordered by their mean
SHAP value.
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5Precision measurements of the
3
ΛH lifetime and BΛ

In this Chapter, the most precise measurements to date of the 3
ΛH lifetime (τ3

ΛH) and
Λ separation energy BΛ are presented. The measurements have been performed by
analysing the Pb–Pb data sample collected by ALICE at

√
sNN = 5.02 TeV during

2018, and by selecting the 3
ΛH signals with BDTs. The measurements have been

published with a letter on arXiv [142] and are currently under review for publication
in Physical Review Letters.

5.1 Data sample

The measurements presented in this Chapter are based on the data sample collected
by ALICE during 2018, the last year of the LHC Run 2 data taking. The data sample
consists of Pb–Pb collisions at

√
sNN = 5.02 TeV with an interaction rate peak of 7.5

kHz. Two magnetic field configurations were employed during the data taking: +0.5
T and -0.5 T. Three different triggers were used to select the events of interest:

• the Minimum bias trigger(MB): requires a hit in the SPD or in either two
V0 detectors (V0A or V0C): this corresponds to at least one charged particle
anywhere in 8 units of pseudorapidity.

• the Central trigger: a threshold into the charge deposited in the V0 detectors is
set to select the most central collisions. The Central Trigger collects the events
in the 0-10% centrality interval.

• the Semi-Central trigger: uses the V0 detectors to select the semi-peripheral
collisions. It collects the events in the 30-50% centrality interval.

5.1.1 Event selection

The triggered events are selected offline, to reduce possible biases due to different
data taking conditions. First, only the primary vertices within a fiducial region of
±10 cm in the beam direction (z coordinate) from the nominal interaction points are
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considered: this guarantees a symmetric acceptance and the rejection of beam-gas
background events. The distribution of the vertex position in the beam direction is
shown in Fig. 5.1.
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Fig. 5.1: Vertex position in the beam direction: selection of the primary vertices within a
fiducial region of ±10 cm. A shift with respect to the nominal interaction point
position is observed in all the Run 2 Pb–Pb analyses, due to an offset of the LHC
machine.

Beam-gas events are further rejected by using the V0s time information, as explained
in detail in [108]. Few additional selections are applied to reduce the contribution
of pileup events, i.e. events containing more than one primary collision vertex:
these events could potentially bias the determination of the primary vertex, and
consequently the measurement of the decay length of the 3

ΛH candidate. The first
selection is performed on the The first pileup tagging method is based on the
maximum distance between two SPD vertices: if two vertices are spaced more than
8 mm the event is tagged as pileup and it is removed. Further methods are applied
to reduce the presence of pileup for vertices closer than 8 mm. The first one is based
on the number of reconstructed SPD primary vertices with more than n contributors.
The quantity of SPD tracklets used to determine the vertex position is the number of
contributors. In case a vertex is constructed using only a few tracklets, it may be a
fake. Based on previous analyses on the relationship between the number of tracks
and the false positive pileup tagging, the value of the parameter n is adjusted to 5
for events with more than 50 tracklets, 3 for events with less than 20 tracklets, and
4 for all other events. This method removes the pileup of collisions occurring either
during the same bunch crossing or out of bunch pileup within the SPD readout time
(300 ns). The second selection employed to reduce the pileup contribution is based
on the position of the global primary vertex. In fact, it has been observed that in
presence of pileup events the primary vertex reconstruction algorithms might fail to
find the correct primary vertex.
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Tab. 5.1: Summary of the event selection applied for to the data sample employed for this
analysis.

Data sample Selections

Pb–Pb 2018
|Vz| ≤ 10cm
Reject multiple SPD vertices with more than n contributors
|∆Vz| ≤ 20σtrack, |∆Vz| ≤ 10σSPD and |∆Vz| ≤ 0.2 cm

In the left panel of Fig. 5.1 the raw distribution of the difference (∆Vz) between
the reconstructed vertex position obtained with the SPD based method and the
track based vertex finding algorithm is shown. The presence of events in which the
outcomes of the two methods is different is clearly visible. These discrepancies are
filtered at the level of the event selection, picking only events where ∆Vz is less
than 20 σtrack and 10 σSPD, where σtrack and σSPD are the resolution of the primary
vertex computed with the track based and the SPD only vertex finding algorithms
respectively. Furthermore, the ∆Vz is required to be less than 0.2 cm. The effect of
these selections is shown in the right panel of Fig.5.2.
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Fig. 5.2: Primary vertex position in the beam direction: ∆Vz distribution before and after
the event selection.

The event selections previously described and used in this analysis are summarized
in Table: 5.1.

The number of collisions passing the event selection is ∼ 270 million. The centrality
of each collision is determined through the V0M estimator, as it is explained in
Section 3.3.4. The centrality distribution of the selected events is shown in Fig. 5.3:
the enhancements in the central (0-10%) and semi-central (30-50%) regions are
due to the central and semi-central triggers respectively.

For the analysis of τ3
ΛH and BΛ all the selected events in the 0-90% centrality interval

are used.
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Fig. 5.3: Centrality distribution of the analysed events.

5.1.2 Monte Carlo

A dedicated Monte Carlo sample has been produced to perform the 3
ΛH and 3

ΛH
selection and to compute the efficiency and acceptance corrections. The Pb–Pb MC
events are generated by using the HIJING[125] event generator. As HIJING does
not include hypernuclei, 20 3

ΛH and 3
ΛH are injected for each event with uniform

transverse momentum and rapidity distributions. The 3
ΛH decay is simulated by the

transport code, the GEANT4[128] simulation package, using a decay time constant
generated by sampling an exponential distribution with τ3

ΛH chosen equal to τΛ. The
proper decay length ct of the 3

ΛH can be evaluated as:

ct = M

p
L (5.1)

where M is the mass of the particle, p is the momentum, L is the decay length of
the particle in the laboratory frame, and t is the decay time in the rest frame of the
3
ΛH. For a neutral particle, L can be simply computed as the distance between the
production and decay vertex:

L =
√

(xPV − xSV)2 + (yPV − ySV)2 + (zPV − zSV)2, (5.2)

where PV and SV stand for production and decay vertex respectively. However,
for the 3

ΛH, the curvature given by the presence of the magnetic field B should be
potentially taken into account. In this case, the decay length in the laboratory frame
is given by:

L =
√

arc length2 + (zPV − zSV)2, (5.3)
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where the arc length is given by:

arc length = 2R× arcsin

(√
(xPV − xSV)2 + (yPV − ySV)2

2R

)
, (5.4)

with R being the curvature radius of the particle, which is defined as:

R = pT
qB . (5.5)

In our case, taking a B field of 0.5 T, in the transverse momentum range between 1.5
and 10 GeV/c, the curvature radius is between 10 and 67 m, to be compared with
the typical decay length of the 3

ΛH which is of the order of ∼ 10 cm. This means
that the curvature of the 3

ΛH can be neglected, and that the decay length L can be
evaluated by using the Eq. 5.2.

The pT and ct input distributions of the 3
ΛH (3

ΛH) sample are shown in Fig. 5.4.
The input pT distribution, which is uniform in the range 1.5-10 GeV/c, will be
reweighted afterwards in Sec. 5.3.1. The transport of 3

ΛH and 3
ΛH in the detector

material is simulated by GEANT4[128] simulation package. The MC simulation of a
full Pb–Pb event, from the generation of the kinematics of the different particles to
their transport through the detector volumes, is expensive in terms of computing
resources. For this reason only a fraction of the total collected statistics is generated
in the MC samples. For this reason the number of events in the MC samples is
a fraction of 10% of the collected data. The centrality of the simulated events is
computed starting from the impact parameter (b) of the collision provided by HIJING.
In order to optimize the use of the computing resources, three MC samples anchored
to the 2018 Pb–Pb data sample with different b intervals were produced. These
three MC productions correspond to the 0-10%, 10-50% and 50-90% V0 centrality
intervals.
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Fig. 5.4: Input pT and ct distributions of the 3
ΛH sample in the MC production.
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Variable Selection
|η| <0.8
nclus

T P C >70
TPC refit True
χ2/nclus

T P C ≤ 5
Tab. 5.2: Track selection criteria.

5.2 3
ΛH (3

ΛH) reconstruction

5.2.1 Track selection

As anticipated in Sec. 2.2.2, the 3
ΛH is identified by reconstructing the invariant mass

of its decay products. The decay channel analysed in this thesis is the two-body
charged one, in which the 3

ΛH decays into a 3He and a π− with an expected B.R.
of ∼ 0.25. Since at the LHC energies particles and anti-particles are produced in
equal numbers, also the 3

ΛH decay products (3He and π+) are reconstructed. In the
following, 3

ΛH and 3
ΛH will be summed together and simply referred to as 3

ΛH:
only in Sec. 5.7.1 the 3

ΛH and 3
ΛH results will be discussed separately. Before the

decay vertex reconstruction, few track selections are applied to all the tracks in the
event.

First, only tracks with pseudorapidity |η| < 0.8 are considered, as in this acceptance
region the track reconstruction and PID are fully efficient in ALICE. Furthermore,
to guarantee a track momentum resolution better than ∼ 3% and a TPC dE/dx
resolution of ∼ 6%, the selected tracks are required to have at least 70 clusters in
the TPC. The TPC refit step, which is the last part of the global tracking algorithm
(see Sec 3.3.2), is also required. Finally, the χ2 per TPC cluster is computed in the
track fitting procedure and is required to be less than 5. A summary of the track
selections is reported in Table 5.2.

5.2.2 Decay vertex reconstruction

As anticipated in Sec. 2.2.2, the decay channel analysed in this thesis is the two-body
charged one, in which the 3

ΛH decays into a 3He and a π− with an expected B.R. of
∼ 0.25. The 3

ΛH reconstruction is performed starting by the invariant mass of its
decay products.

The reconstruction of the 3
ΛH is performed after the primary vertex reconstruction, by

exploiting the so-called V0 finder algorithm implemented in AliROOT. The V 0 finder
was originally developed for the reconstruction of neutral particles decaying into two
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charged daughters, such as the K0
S and the Λ. The basic principle of the algorithm

is the matching between two tracks of different sign which are close in the phase
space and supposedly come from the decay of the same mother particle. Moreover,
the daughter tracks are required to pass some loose quality selection criteria before
being stored as V 0 candidates. A simple sketch of the 3

ΛH decay topology is shown
in Fig. 5.5.

3ΛH

3He

PV SV
θp

Daughters 
DCA

π−

DCA  
to PV

3He

Fig. 5.5: Sketch of the 3
ΛH decay topology.

Few topological variables that are employed to select the 3
ΛH candidates are shown

in the sketch and described in the following:

• the Distance of closest approach (DCA) between the daughter tracks (DCAdaugh),

• the DCA of the daughter tracks from the primary vertex (DCAPV). Usually
the selection is performed by looking at the DCA projection in the transverse
plane, namely DCAPV

xy ,

• the Cosine of the Pointing Angle(cos(θp)), where θp is the angle between the
total momentum vector of the daughter pair and the straight line connecting
the primary and secondary vertices.

The V 0 finder algorithm has two different implementations in AliROOT: the offline
V 0 and the on-the-fly V 0. The first one is executed after the full track reconstruction
while the on-the-fly V 0 is already operated during the track fitting. In this thesis, a
customized version of the offline V 0 finder is employed for the 3

ΛH reconstruction.
The main difference with respect to the standard V 0 finder is that extremely loose
selections are applied to the decay topology: the main selection will be performed
afterwards by using a machine learning approach. The topological selections applied
at the V 0 level are listed in Tab. 5.3: loose selections are applied to the DCA of the
daughter tracks and to the cos(θp).
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Variable Selection
DCAdaugh <1.5 cm
DCAPV

xy >0.01 cm
cos(θp) >0.9

Tab. 5.3: Topological selections applied at the V 0 level.

The choice of applying soft selections at the V 0 level has a major drawback: the
increase in computing time with respect to the standard V 0 finder is more than a
factor of 10. To speed up the secondary vertex reconstruction, a dedicated selection
on the 3He and π− PID is applied during the vertexing procedure. The PID is
performed by using the TPC dE/dx information, and by selecting only the daughter
tracks with either nσ

3He = |Smeas−Sexp|
σ3He < 4 or nσπ = |Smeas−Sexp|

σπ < 4. To do that,
while the π PID is well tuned for all the ALICE data samples, the PID response of the
3He needs to be carefully calibrated. The calibration is performed in two steps: first
the TPC signal of the 3He candidates is fitted in several rigidity (p/z) intervals by
using a Gaussian function and two exponential distributions to model the tails. An
example of 3He signal extraction is shown in Fig. 5.6: the background on the left
side of the peak is due to residual triton contamination. Before the signal extraction,
a selection on the number of TPC clusters (nTPC

clus > 100) is applied to reduce the
background due to low quality tracks.
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Fig. 5.6: Example of 3He TPC signal extraction for 1.68 ≤ p/z < 1.72 GeV/c.

In the second step, the mean of the Gaussian distribution with its error is plotted as
a function of the rigidity, and the resulting distribution is fitted with the Bethe-Bloch
ALEPH parametrisation already described in Sec. 3.3.3. The resulting parametriza-
tion is shown in Fig. 5.7. The resolution is extracted with a weighted average of
the width of the Gaussian distribution as a function of the rigidity and amounts to
∼ 5%.
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Fig. 5.7: Bethe-Bloch ALEPH [121] parametrization applied to the 3He TPC signal.

The vertexing procedure starts by matching the PID selected 3He track with a PID
selected π track of opposite sign: if the doublet satisfies the selections reported in
Tab. 5.3, the secondary vertex is fitted by minimizing the relative distance between
the daughter tracks. Finally the 3

ΛH momentum and energy is reconstructed by
combining the information of the two daughter particles. The application of the PID
selection to the daughter tracks during the vertexing procedure reduces significantly
the computing time: the time needed to reconstruct the 3

ΛH candidates using the
CERN Grid over the full 2018 ALICE data sample is ∼ one day, while it is more than
2 weeks without the PID selection.

After the vertexing, a dedicated interface (analysis task) has been developed to
store the topological (e.g cos(θp)), kinematic (e.g. pT), and PID (e.g. nσ

3He)
variables of the reconstructed 3

ΛH candidates into ROOT trees. When running over
MC productions, few extra variables (e.g. pT of the generated 3

ΛH particle) are
included in the tree to evaluate the reconstruction efficiency and the resolutions of
the reconstructed variables. The efficiency after the vertexing step (also called pre-
selection efficiency), which includes also the geometrical acceptance of the detector,
is shown in Fig. 5.8 as a function of the pT and the ct of the 3

ΛH candidates. The
efficiency is evaluated by comparing the number of reconstructed 3

ΛH candidates
with the number of generated 3

ΛH particles in the MC sample.

The efficiency grows with the momentum according to the single track efficiency
shown in Fig. 3.9, while the efficiency as a function of the ct slightly increases up to
∼ 0.35.
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Fig. 5.8: Efficiency of the 3
ΛH reconstruction as a function of the pT and the ct of the 3

ΛH
candidates.

5.3 3
ΛH selection with machine learning

The reconstructed and pre-selected 3
ΛH candidates are stored in ROOT trees that are

downloaded to a local server for the offline analysis. As mentioned in the previous
Chapter, the 3

ΛH selection is entrusted to the BDT classifier from the XGBoost package
[136]. Unfortunately, the XGBoost package is not available in the ROOT framework,
so the BDT training and evaluation is performed using the XGBoost Python API. The
ROOT Tree files have been converted into a tabular Python format (Pandas Dataframe
[143]) using the uproot [144] package. The Pandas Dataframe can be directly used
as input for the XGBoost model. The hipe4ml (Heavy-Ion Physics Environment for
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Machine Learning) [145] package has been developed to simplify the application of
machine-learning techniques for analyses similar to those performed in this work.
The library is built on top of commonly used Python packages. In hipe4ml, the
typical steps needed to perform a ML analysis in particle physics, such as the data
preparation, the model training, the hyperparameter optimization and the model
evaluation are implemented in a user-friendly form.

As all the supervised machine learning algorithms, the BDT needs to be trained on a
sample of 3

ΛH candidates that are correctly labelled as signal or background. In the
following, the signal and the background samples are described.

5.3.1 Training sample

Signal

The signal component of the training sample is composed by the 3
ΛH candidates avail-

able in the enriched MC. The MC 3
ΛH candidates undergo to the same reconstruction

and selection steps that are applied to the data: the quality of the data-MC agree-
ment has been studied and validated in several V 0 analyses where the abundance of
particles produced allows a detailed comparison, and it will also be assessed in the
systematic evaluation. The 3

ΛH candidates in the Monte Carlo sample are injected
with a flat transverse momentum distribution in the pT interval 0-10 GeV/c. This is
done because the 3

ΛH pT shape is poorly known and to collect a large sample also
in high pT regions. In order to obtain a transverse momentum distribution closer
to the physical one and that could be utilized in the training process and for the
computation of the efficiency, the signal pT distribution is reweighted by using the
rejection sampling technique. The 3

ΛH pT distribution is sampled from a Blast Wave
(B-W) function, which describes the particle production in a thermalized expanding
medium. More details on the B-W are given in Appendix. 9. The parameters of the
B-W (except for the mass) are taken from the fit to the 3He pT spectra published in
[146]. The choice of the 3He is motivated by the fact that its mass is close to that of
the hypertriton and, unlike the 3

ΛH case, helium B-W fits are published and cover the
whole centrality interval(0-90%). Five B-W fits are extracted from the 3He analysis
and they are shown in Fig. 5.9.

The five different pT shapes are employed to reweight the 3
ΛH signal in the MC. The

final MC sample is further reweighted to take into account the different centrality
distribution between real data and MC: this effect turns out to be negligible for the
measurements presented in this Chapter. The final pT distribution is shown in Fig.
5.10.
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3
ΛH candidates in the MC.
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Fig. 5.10: Transverse momentum distribution of the 3
ΛH candidates in the MC sample after

the B-W reweighting.

Background

The choice of the background sample is crucial for the BDT training. In this work,
the background is extracted directly from the real data sample. The idea behind this
decision is to use real data, where feasible, to avoid a loss in the model predictive
power caused by possible shortcomings of the simulations in describing the real
events. In this work, the background sample is built by pairing an 3He and a pion
tracks of the same sign (like-sign background, or LS) satisfying the same selection
criteria as the 3

ΛH candidates. A modification on the V 0 finder is implemented to
allow the pairing and the fitting of tracks of the same sign. The usage of the LS
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background is fundamental also in the model evaluation, as it allows to assess that
the BDT is not creating a fake hypertriton invariant mass peak in the background
distribution.

The number of signal and background candidates composing the training set is
reported in Table 5.4: the imbalance between the two classes is not a problem
for the BDT training, as it is well known that the algorithm is not sensitive to
the class imbalance (as well as the ROC-AUC metric employed to evaluate the
model performance). However, to speed up the training process only 20% of the
background candidates are employed for the training.

Training candidates in the 0-90% centrality interval

Signal 2 × 106

Background 3 × 107

Tab. 5.4: Number of signal and background candidates that compose the training set.

The variables, or features, used to train the BDT involve the topology, the kinematics,
and the PID of the 3

ΛH candidates and are listed hereafter:

• cos(θp): defined in Sec. 5.2.2

• DCAdaugh: defined in Sec. 5.2.2

• DCAPV 3He: defined in Sec. 5.2.2

• DCAPV π: defined in Sec. 5.2.2

• DCAPV
xy

3He: defined in Sec. 5.2.2

• DCAPV
xy π: defined in Sec. 5.2.2

• nσTPC
3He: defined in Sec. 3.3.3

• nσTPC π: defined in Sec. 3.3.3

• nclus
TPC

3He: number of TPC clusters of the 3He track

• pT: transverse momentum of the 3
ΛH candidate

The distribution normalised to the number of candidates of the training variables for
the signal and the background samples are shown in Fig. 5.11: it is expected that the

5.3 3
ΛH selection with machine learning 71



features which present the stronger discrepancies between signal and background
(such as the cos(θp)) will be more important for the discrimination in the training
process.
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Fig. 5.11: Normalised distribution of the training variables for the signal (from MC) and
the background (from real data) samples.

A similar plot is shown in Fig. 5.12: in this case the training variable distributions
are shown for the LS and the real data samples. As the signal of the 3

ΛH is very small
with respect to the combinatorial background, it is important to verify that LS and
real data distributions are similar. If it were not the case, the learning process would
be biased. As it can be verified qualitatively from the figure, the distributions of all
the training variables result to be compatible between the two samples.

Figure 5.13 reports the linear correlations between the features and the invariant
mass. Variables that carry the same physical information, such as those related to the
DCAs of the daughter tracks, are strongly correlated as expected. Moreover, there
are some differences in the variable correlations between signal and background
candidates, which could be exploited by the model to discriminate signal from back-
ground. It is also useful to evaluate the correlations between the training features
and the invariant mass that could produce a distortion in the signal extraction. The
correlations with the invariant mass in Figure 5.13 are not significantly relevant but
requires further investigations, as it will be discussed in 5.3.3.

Finally, the training set is randomly split in two parts: the first one is used to train
the BDT, while the second one is used to evaluate the model performance, and it is
called the test set. As the feature distributions change as a function of ct, different
trainings are performed in all the ct intervals in which we expect to extract the 3

ΛH
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Fig. 5.12: Normalized distribution of the training variables for the LS background and the
real data samples.
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Fig. 5.13: Linear correlations between the training variables and the 3
ΛH invariant mass,

for signal (left) and background (right) candidates. The colours, from red (fully
correlated) to blue (fully anti-correlated), indicate the correlation level.

signal. Hence, nine different BDTs are trained, one for each ct interval, ranging from
1 to 35 cm.

5.3.2 Training and testing of the BDT

As mentioned in the previous section, the BDT is trained using the XGBoost [136]
implementation of the gradient boosting algorithm. The model hyper-parameters,
are optimized by minimizing the cross-validation error computed with the ROC AUC
metrics as described in 4.2.2. A Bayesian optimizer, described in Sec. 4.2.2, is used

5.3 3
ΛH selection with machine learning 73



to reduce the number of iterations needed to find the optimal hyper-parameters
configuration. As the training is performed in the ct intervals, the hyper-parameters
should be optimized for each ct interval separately. However, similar values of the
hyper-parameters are found in all the ct bins, therefore the same hyper-parameters
are employed for all the bins. The best hyper-parameters configuration is reported
in Table 5.5.

Hyper-parameter Optimization range Values
max_depth [3, 20] 9

n_estimators [50, 800] 280
learning_rate [0.01, 0.3] 0.098

gamma [0.3, 1.1] 0.446
min_child_weight [1, 12] 5.75

subsample [0.5, 0.9] 0.74
colsample_by_tree [0.5, 0.9] 0.57

Tab. 5.5: Optimized hyper-parameters for the BDT.

After the training process, the performance of the BDT are evaluated both on the
training and the test set. It is important to verify that the model is not over-fitting
the training set, and that the performance on the test set is similar to the one on the
training set. The ROC curves for the training and the test sets are shown in Figure
5.14 in the ct interval between 1 and 2 cm.

0.0 0.2 0.4 0.6 0.8 1.0
False Positive Rate

0.0

0.2

0.4

0.6

0.8

1.0

Tr
ue

 P
os

iti
ve

 R
at

e

This thesis
Pb Pb 0 90%, sNN =  5.02 TeV 
1 ct< 2 cm

Test -> ROC (AUC = 0.9951)
Train -> ROC (AUC = 0.9965)
Luck

Fig. 5.14: ROC curves for the training and the test sets for ct between 1 and 2 cm.

The values of the ROC AUCs are similar for the training and the test sets, and
they are always above 0.99, which demonstrates that the 3

ΛH can be easily selected
over a wide ct range by the XGBoost Classifiers employed in this thesis. As already
mentioned, the BDT returns a score for each candidate, which is related to the
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probability of the candidate of being signal or background. In Fig. 5.15 the BDT
outputs for the training and test sets are shown: the red distributions represent the
signal candidates, while the blue ones represent the background candidates.
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Fig. 5.15: Normalized BDT output distributions for the training (shaded area) and test
(points with statistical errors) set. The background is reported in blue, the signal
in red.

All the distributions are normalised to the same area. A high discrimination power
between the two classes is always achieved, and the distributions are well separated.
In all the intervals, an extremely low degree of over-fitting is observed, as the ROC-
AUC of the training set are systematically higher than the ROC-AUC of the test set.
This is taken into account in the next steps of the analyses and in the systematic
uncertainties, as it will be explained in the next sections.

Finally, the analysis of the feature importance provide a powerful tool to assess the
quality of the training. The impact of each variable on the model output is evaluated
by using the Shapley values, as described in Sec. 4.2.3, and it is shown in Fig.
5.16 in two different ct intervals. For small decay lengths (top panel), the leading
variable for the discrimination is the cos(θp) angle. This is due to the fact that the
contamination coming from 3He produced at the primary vertex can be removed
by the simple requirement the alignement between the sum of the momenta of
the daughter tracks and the straight line connecting the primary vertex and the
secondary vertex. This result is in agreement with the previous 3

ΛH analyses done
in ALICE [147, 148] in which the cos(θp) selection represents the "golden cut" for
the 3

ΛH selection. For larger decay lengths (bottom panel), the leading variable is
the number of TPC clusters of the 3He. The reason is that if an extremely displaced
3He track is found, it is likely that the track is the daughter of a 3

ΛH and not a
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3He produced at the primary vertex. The fact that different feature importance
hierarchies are observed for different ct intervals motivates the choice of training
multiple BDT models rather than a single one for the whole ct range.
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Fig. 5.16: Feature importance for the training set for ct between 1 and 2 cm (top) and 18
and 23 cm (bottom).

5.3.3 Application to data

After the training and the testing part, the BDT is finally applied to the real data
sample. For each 3

ΛH candidate the BDT score is computed resulting in a continuous
distribution, as shown in Fig. 5.17.

As the signal extraction is performed by fitting the invariant mass spectrum of the
3
ΛH in each ct bin, it is necessary to define a threshold value (or BDT cut) in order
to reject the background 3

ΛH candidates maintaining a high BDT efficiency. The
BDT efficiency is defined as the number of signal candidates passing the BDT cut
N(BDTout) divided by the number of pre-selected candidates N:

ϵBDT(thr) = N(BDTout > thr)
N , (5.6)

76 Chapter 5 Precision measurements of the 3
ΛH lifetime and BΛ



4 2 0 2 4 6 8 10
BDT output

10 3

10 2

10 1

No
rm

al
ise

d 
Co

un
ts

This thesis
Pb Pb 0 90%, sNN =  5.02 TeV 
1 ct< 2 cm

Fig. 5.17: Normalized distribution of the BDT output of the real data sample for ct between
1 and 2 cm.

The BDT efficiency is computed as a function of the BDT cut value, and it is shown
in Fig. 5.18 for the ct interval between 1 and 2 cm. The BDT threshold efficiency is
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Fig. 5.18: BDT threshold efficiency as a function of the threshold (or score) for ct between
1 and 2 cm.

computed on the test set to avoid the possible over-fitting of the training set. However,
for a given BDT threshold, the discrepancy between the efficiency computed with
the test set and the one computed with the training set is always less than 1%.
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In order to choose the proper BDT cut, an algorithmic procedure is implemented
in the ALICE code, called significance scan. The aim of the significance scan is to
return in output the threshold score value that maximizes the expected significance
(Signexp), defined as:

Signexp = Sexp√
Sexp +Bexp

(5.7)

where Sexp and Bexp are the expected signal and the background obtained with
different BDT thresholds. To obtain an unbiased estimation of the Signexp the
expected signal could not be calculated extracting the raw yield from the real data
sample candidates. Hence, a dedicated expected invariant mass spectrum is built in
the following way:

• The Background region (out of 4σ from the 3
ΛH nominal invariant mass peak)

contains the counts of the candidates from the real data sample

• The Signal region (complementary to the background region) is filled with
pseudodata, which are the sum of:

– Background counts (Bexp) extrapolated from the polynomial fit of the
background in the side-bands

– Signal counts (Sexp) extracted from the SHM expectation [89] and cor-
rected with the current number of events in the real data, the pre-
selection(ϵpresel) and BDT(ϵBDT ) efficiencies, and the expected two-body
branching ratio (∼ 0.25 [60]) as reported in the following equation:

Sexp = YieldSHM×N2018
ev ×ϵpresel × ϵBDT×B.R.(3

ΛH →3 He + π−). (5.8)

In order to find a balance between systematic and statistical uncertainties the
product between Signexp and the BDT threshold efficiency, rather than Signexp only,
is maximized. This guarantees to select a cut region in which the signal variation
is stable enough to have the systematic uncertainty due to the signal extraction
under control (in statistics this procedure derives from the bias-variance trade-off).
Therefore, for each ct interval the BDT threshold is computed as:

BDTthr = arg max[Signexp × ϵBDT(thr)]. (5.9)

The significance scan algorithm samples uniformly the BDT score range and chooses
the value that maximizes the product of the expected significance and the BDT
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efficiency. The result obtained with this method in the ct interval between 2 and
4 cm is shown in Figure 5.19 . The left plot reports the Significance × Efficiency
product as a function of the threshold value. Then the score that maximizes this
product is chosen, and the right plot reports the performance expected with this
technique.
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Table 5.6 reports the BDT threshold with its related efficiency for each ct bin: the
BDT threshold efficiency is typically around 70 %.

ct interval (cm) BDT threshold BDT efficiency
1 ≤ ct < 2 3.71 0.69
2 ≤ ct < 4 4.62 0.76
4 ≤ ct < 6 4.88 0.73
6 ≤ ct < 8 4.73 0.75
8 ≤ ct < 10 4.10 0.81
10 ≤ ct < 14 4.23 0.77
14 ≤ ct < 18 3.48 0.8
18 ≤ ct < 23 4.36 0.67
23 ≤ ct < 35 4.42 0.57

Tab. 5.6: BDT threshold and efficiency for each ct bin.

5.4 Signal extraction

The 3
ΛH candidates that pass the BDT selections are employed to extract the signal

yield in the nine ct intervals covered by the models. The signal extraction process
consists by an unbinned maximum likelihood fit of the invariant mass spectra of the
3
ΛH candidates in the signal region. The package employed for the fitting is RooFit,
which is a ROOT based framework for statistical modeling [149]. Two relevant
parameters are extracted from the spectra:
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• The 3
ΛH signal raw yield (N3

ΛH), that is employed for determining τ3
ΛH

• The 3
ΛH invariant mass peak position (µ3

ΛH), that is the key quantity for com-
puting the BΛ.

The 3
ΛH signal shape, which is particularly important for the extraction of µ3

ΛH, is
determined by the momentum reconstruction scale and resolution. Hence, the 3

ΛH
signal shape is extracted starting from the MC simulation. First, the MC candidates
available in the test set undergo the same BDT selections that are applied to the
real data. Then, the 3

ΛH signal candidates passing the optimal BDT thresholds
are parametrized with two different fit functions (one of the two is used for the
systematic uncertainty evaluation):

• A Kernel Density Estimator (KDE) [149, 150] function, which models the
distribution of an arbitrary input dataset as a superposition of Gaussian kernels,
one for each data point, each contributing 1/N to the total integral of the
probability density function (pdf),

• A Double Sided Crystal Ball (DSCB) function, which consists of a Gaussian
core portion and two power-law low-end tails.

A comparison between the two functions is shown in Figure 5.20: both the pdfs are
able to describe the central part and the tails of the 3

ΛH signal shape.
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Fig. 5.20: Invariant mass distribution of the selected MC sample, for ct between 1 and 2 cm
with superimposed a KDE and DSCB fitting functions. The KDE is shown in blue,
while the DSCB is shown in green.
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The fit to the MC spectra fixes all the internal parameters of the signal shape function,
except for the parameters of interest that are the normalization and the mean value
of the distribution. The background shape is extracted directly from the data: three
different pdfs are employed: a linear function (default), a second order polynomial
and an exponential (for the systematic uncertainty evaluation). The resulting total
pdf (ftot) is a superposition of the signal (fsig) and background (fbkg) ones:

ftot(m;µ3
ΛH, N3

ΛH, Nbkg, θ⃗) = N3
ΛH · fsig(m;µ3

ΛH, θ⃗) +Nbkg · fbkg(m; θ⃗), (5.10)

where m is the reconstructed invariant mass, µ3
ΛH is the 3

ΛH invariant mass peak

position,N3
ΛH and Nbkg are the normalisations of fsig and fbkg, and θ⃗ are the nuisance

parameters of the total pdf. The invariant mass spectra of the selected 3
ΛH candidates

on the real data are shown in Fig. 5.21 in all the nine ct intervals from 1 to 35 cm.
The fitted ftot is the sum of a KDE function for fsig and a linear function for fbkg.
The free parameters of fsig are N3

ΛH and µ3
ΛH, while the shape is fully constrained by

the corresponding MC fit.

As shown in the figure, the 3
ΛH invariant mass spectra are well described by the

total pdfs, demonstrating, in particular, a good agreement between the data and
the MC invariant mass distributions. For each ct bin the significance is computed
as Sign = S√

S+B , where S and B are the signal and background yields in the signal
region, which is defined by taking three times the width extracted from the DSCB fit
of the MC signal shape. A summary of the signal extraction results is shown in 5.7:
in total ∼ 1000 3

ΛH and 3
ΛH are reconstructed and selected.

ct interval (cm) N3
ΛH µ3

ΛHGeV/c2 Sign(3 σ)
1 ≤ ct < 2 87 ± 11 2991.1 ± 0.2 7.6 ± 1.1
2 ≤ ct < 4 206 ± 13 2991.2 ± 0.1 13 ± 1
4 ≤ ct < 6 145 ± 13 2991.6 ± 0.2 10 ± 1
6 ≤ ct < 8 150 ± 13 2991.2 ± 0.2 10 ± 1
8 ≤ ct < 10 99 ± 10 2991.5 ± 0.3 8.5 ± 1.3
10 ≤ ct < 14 156 ± 13 2991.6 ± 0.2 10 ± 1
14 ≤ ct < 18 79 ± 11 2991.7 ± 0.4 6.5 ± 1.1
18 ≤ ct < 23 57 ± 10 2991.7 ± 0.4 5.5 ± 1.0
23 ≤ ct < 35 30 ± 9 2991.2 ± 1.1 3.5 ± 0.8

Tab. 5.7: Results of the fit to the 3
ΛH invariant mass distributions in the nine ct intervals.
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ΛH and 3

Λ
H candidates in nine ct intervals

from 1 to 35 cm. The statistical uncertainties of the bin counts are represented
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the blue line depicts the overall fit, and the orange dashed line displays the
background component.
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5.4.1 Probing the mass shaping effect

As mentioned in Section 5.3.2, the small correlation of the invariant mass with the
other training features should prevent a distorsion in the signal extraction procedure.
Nevertheless a further investigation needs to be done: if the machine learning model
learns the 3

ΛH mass and preferentially selects candidates with an invariant mass
similar to 3

ΛH one, a peak in the background will be present causing a bias in the
extracted yield, which would not be only composed of signal. This behaviour is
called mass shaping. To assess if the training process is affected by this kind of
problem, the BDT is applied to the LS background available in the test set. The
LS candidates are selected using the same BDT selections employed for the signal
extraction and the invariant mass distribution in each ct interval is checked. The
results are shown in Figure 5.22 for the first ct interval of the analysis: the invariant
mass spectrum is well described by a linear background function and no peak is
observed at 2.991 GeV/c2 (the value of the 3

ΛH mass). Hence, the selection process
does not involve indirectly the invariant mass feature.

5.5 Measurement of τ3
ΛH

The 3
ΛH lifetime is measured starting from the number of 3

ΛH extracted in each ct
interval, as described in the previous section. Few corrections are applied to the raw
3
ΛH signals in order to obtain the final ct spectrum:
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• the pre-selection efficiency, which is takes into account the vertexing efficiency
and the acceptance of the ALICE detector, as described in 5.2.2;

• the BDT efficiency, which is the fraction of 3
ΛH candidates that pass the BDT

selection in each ct interval.

A further correction, which has not been mentioned so far, needs to be applied to
take into account the fraction of 3

ΛH that are not reconstructed because of their
absorption in the ALICE detector material. In principle, this correction should be
taken into account in the pre-selection efficiency, as GEANT4 naturally simulates the
inelastic interactions of the particles during their transport. This is what happens for
the 3

ΛH daughters: the 3He and π− that are absorbed in the ALICE detector contribute
to lower the 3

ΛH pre-selection efficiency. However, as the 3
ΛH inelastic cross section is

poorly known, it is arbitrarily set to zero all in the GEANT4 code. This means that
inelastic interactions of 3

ΛH are by default switched off. In the following subsection,
the procedure to estimate the fraction of 3

ΛH absorbed in the ALICE detector material
is described.

5.5.1 Absorption correction

As mentioned before, there are currently no experimental data concerning the 3
ΛH

inelastic cross section with the material (σinel). As the 3
ΛH mass and momentum

distribution are similar to those of the 3He, the naive assumption is that the 3
ΛH

absorption rate should be of the order of that of the 3He nucleus. However, the large
size of the particle could lead to some significant variations: the only calculation
available in the literature is the one performed by Evlanov et al. [151], which treats
the 3

ΛH as a two cluster nucleus (a deuteron and a Λ) with a large RMS radius of
∼ 10 fm. From this work, it can be inferred that the predicted 3

ΛH cross section is ∼
1.5 times that of the 3He (σinel(3He)) measured by ALICE in [152]. The study of the
3
ΛH absorption is performed by using 3He nuclei as a proxy, because different MC
productions are available with altered σinel = σinel(3He), 1.5σinel(3He), 2σinel(3He).
The MC production with σinel = 1.5σinel(3He) is employed to compute the default
correction, while the other two are used to estimate a systematic uncertainty. The
3
ΛH absorption correction is computed as follows:

• for each 3He produced in the MC, the pT spectrum is reweighted according to
the expected 3

ΛH pT spectrum, as it is done in Sec. 5.1.2;

• for each 3He a ct is extracted by sampling an exponential distribution with the
average lifetime equal to τΛ;
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• when the 3He interacts, it, as a hypertriton proxy, is considered “absorbed”
if the interaction occurs before the extracted ct, i.e. before the decay of the
corresponding 3

ΛH.

The fraction of absorbed 3
ΛH (fabs(3

ΛH)) as a function of ct is shown in Fig. 5.23
for both 3

ΛH and 3
ΛH separately. As the 3

ΛH cross section is expected to be larger
than that of the 3

ΛH, the 3
ΛH absorption correction is taken by rescaling fabs(3

ΛH) for
fabs(3He)/fabs(3He). Both the 3

ΛH and 3
ΛH fabs grow with ct reaching a maximum of

∼ 10% in the last ct bin. Such a behaviour is expected, since more material is crossed
by the particles as ct increases. As at the LHC 3

ΛH and 3
ΛH are produced in the same

amount, the average between the two corrections fabs is taken for correcting the
extracted 3

ΛH signal.
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Fig. 5.23: Fraction of 3
ΛH and 3

Λ
H absorbed in the ALICE detector material as a function of

the ct.

5.5.2 Lifetime determination

The corrected ct spectrum dN/d(ct) is obtained as:

dN
d(ct) = 1

∆ct · 1
ϵpre

· 1
ϵBDT

· 1
1 − fabs

·N3
ΛH(ct), (5.11)

where ∆ct is the width of the ct interval, ϵpre is the pre-selection efficiency, ϵBDT is
the BDT efficiency and fabs is the fraction of 3

ΛH absorbed in the ALICE detector ma-
terial. The corrected spectrum is expected to follow the exponential distribution:

N(ct) = N0 · exp(−ct/cτ3
ΛH) (5.12)
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where N0 is the normalization parameter and τ3
ΛH is the average 3

ΛH lifetime. As in
Sec. 5.7.1 the lifetime will be computed separately for 3

ΛH and 3
ΛH, in the following

the sum of the two will be simply referred as τ .

An exponential χ2 fit is performed to the corrected ct spectrum, as shown in Fig. 5.24.
The fit is performed by using the integral of the function in each bin instead of the
value at the bin centre to account for the different bin widths.
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Fig. 5.24: 3
ΛH production spectrum as a function of the proper decay length , the blue points
represent the measured yield, while the orange line represents the best fit to the
measurement.

The fit probability shows that the obtained ct distribution is compatible with an
exponential law. The value of τ extracted from the fit together with its statistical
uncertainty is:

τ = 253 ± 11 ps. (5.13)

The statistical precision of this result improves by about a factor of 3 the previous
ALICE measurement [75], and it is the most precise lifetime measurement to date.
The value of τ is compatible with the previous ALICE measurement within the
statistical uncertainties, as well as with the free Λ lifetime. In the following, the
systematic uncertainties related to the measurement are discussed.
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5.5.3 Systematic uncertainties

The systematic uncertainties on τ originate from (1) the 3
ΛH selection, (2) the signal

extraction, (3) the absorption corrections. In order to take into account the possible
correlations between (1) and (2), a combined systematic uncertainty due to the
signal selection and extraction is computed. Other potential sources of systematic
uncertainties are tested, such as the input pT and ct shape of the 3

ΛH in the Monte
Carlo sample, the choice of the BDT hyperparameters and the discrepancy between
BDT and linear selections, all resulting in a non-significant contribution.

Signal selection and extraction

A multi-trial approach is employed to properly take into account the correlation
between the BDT selection and signal extraction in the 3

ΛH lifetime determination,
and to estimate the related systematic uncertainties. For each ct interval, a variation
range of the BDT efficiency is defined, and different fit functions are used to extract
the signal. In order to precisely define the BDT efficiency range, the BDT efficiency
as a function of the score needs to be parametrized. In this way, for each efficiency
value we want to probe, it is possible to define the corresponding BDT output. The
parametrization is performed by employing polynomial splines that successfully
reproduce the BDT efficiency as a function of the score. In each ct interval the spline
parametrization is obtained from 0.99 down to 0.30: an example is shown in Figure
5.25.
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Fig. 5.25: BDT efficiency as a function of the BDT score parametrized with a spline function,
in the ct interval between 2 and 4 cm.
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ΛH lifetime.

The variation ranges defined for computing the systematic uncertainty in each ct

interval are:

• a BDT efficiency range of ±10% around the nominal value;

• three background fit functions: linear, second order polynomial and exponen-
tial;

• two signal pdfs: a KDE and a Double Sided Crystal Ball.

Hence, for each ct interval there are 21 variations of the BDT efficiency selection
(±10% from the nominal value + the nominal value) and for each of those there are
three and two variations the background and signal fit functions respectively, for a
total of 126 variations. Then, for each ct bin, one random combination is extracted,
and the resulting spectrum is fitted with an exponential to obtain the lifetime value.
Repeating this procedure thousand times it is possible to investigate what is the
effect of these systematic variations on the lifetime. The result of this study is shown
in Figure 5.26: the standard deviation of the systematic distribution can be used
as an estimate of the systematic uncertainty of our lifetime measurement due to
the ML selection and signal extraction. The systematic uncertainty due to these
contributions is 5.2 ps (∼ 2.1%).

Absorption in the detector
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As the 3
ΛH cross section with the material is poorly known, a conservative approach

has been applied to evaluate the systematic uncertainty. Indeed, the 3
ΛH absorption

cross section is varied from the nominal 3He one (σinel = σinel(3He)) up to two times
the value of σinel = 2σinel(3He). For each cross section, the procedure to compute
fabs is repeated as described in Sec. 5.5.1, and the lifetime of 3

ΛH is recomputed.
The fabs correction as a function of ct for the two different cross section variations is
shown in Fig. 5.27: the slope of the correction, which is the quantity relevant for
the τ determination, is mildly affected by the variation of the cross section. Half of
the difference between the two slopes is assigned as systematic uncertainty to the
lifetime measurement, which is 3 ps (∼ 1.2%).
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Fig. 5.27: Absorption correction as a function of the proper decay length for 3
ΛH, for two

different values of the 3
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Additional checks

Additional checks are performed to assess the stability of the results:

• different pT shapes that well describe the 3He data are employed for reweight-
ing the MC sample. For each pT shape the efficiency is re-computed and
the training of the BDT is repeated. In particular, the Boltzmann and the
mT-exponential distributions from 3He analysis [146] are those used for the
systematic uncertainty estimate. The ratio between the nominal efficiency
and the efficiency obtained with the different pT shapes is shown in Fig. 5.28.
The difference between the efficiencies is less than 5%, and it is constant as
a function of the ct. Hence, the τ values computed by assuming the different
shapes differ by less than 0.2%. Furthermore, as shown in Fig. 5.16, the pT is
not a valuable feature for classifying the 3

ΛH signal: hence the difference due
to the training is found to be negligible. The overall systematic uncertainty
due to the pT shape is found to be less than 1 ps.
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• a potential bias coming from the choice of the BDT hyperparameters is in-
vestigated. To do that, the BDT is trained with the default hyperparameters
of XGBoost, which are listed in Tab. 5.8. The lifetime is recomputed ob-
taining a difference of 1.5 ps, which is 4 times smaller than the RMS of the
systematic distribution obtained by varying the BDT efficiency selection and
the signal extraction procedure. The RMS systematic uncertainty due to the
BDT hyperparameters is found to be less than 1 ps.

Hyper-parameter Value
max depth 3

n estimators 100
learning rate 0.1

gamma 0
min child weight 1

subsample 1
colsample by tree 1

Tab. 5.8: Default XGBoost hyper-parameters.

• a potential bias coming from the BDT selection is investigated by performing
the analysis employing linear topological selections. The selections, which are
listed in Tab. 5.9, involve the variables that are used for training the BDT and
are taken from the previous Run 2 3

ΛH published analysis [75].

The signal extraction in the ct interval between 6 and 8 cm is shown in the
left panel of Fig. 5.29, while the corrected ct spectrum of the 3

ΛH signal is
shown in the right panel. The extracted value of τ is fully compatible with
the ML based one, as it is included in the signal selection and extraction
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Variable Selection
DCAdaugh <1. cm

DCAPV 3He >0.05 cm
DCAPV π >0.05 cm
pT(3He) >1.8 GeV/c
pT(π) >0.2 GeV/c

cos(θp) >0.9995
|nσT P C

3He| <3
|nσT P C π| <3
nclus

TPC
3He >80

Tab. 5.9: Topological selections applied at the V 0 level.

systematic uncertainty. Furthermore, the statistical uncertainty obtained with
linear selections is ∼ 35 % higher than the one obtained with the ML based
selections, proving that ML is more efficient in selecting the 3

ΛH signal and
rejecting the combinatorial background.
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Fig. 5.29: Left panel: signal extraction in the ct interval between 6 and 8 cm obtained by
using linear selections. The spectrum is fitted with a DSCB and a linear function
to model the signal and the background components, respectively. Right panel:
corrected ct spectrum of the 3

ΛH signal fitted with an exponential.

Table 5.10 summaryzes the different sources of systematic uncertainty affecting the
3
ΛH lifetime measurement. The total systematic uncertainty is found to be 6 ps, ∼ 2%
of the extracted value of τ .

Systematic contribution Value (ps)
Signal selection and extraction 5.2

Absorption in the detector 3
BDT hyperparameters /

Input pT shape /
Linear selection vs ML /

Total 6.0
Tab. 5.10: Summary of the different sources of systematic uncertainty affecting the 3

ΛH
lifetime measurement.
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5.6 Measurement of BΛ

As mentioned in Sec. 2.2.2, the BΛ of the 3
ΛH is the energy required to separate the

Λ from the deuteron core of the 3
ΛH. Hence, it is defined as:

BΛ = md +mΛ −m3
ΛH, (5.14)

where md and mΛ are the masses of the deuteron and the Λ, respectively. The
3
ΛH mass (m3

ΛH) is measured starting from the mean value (µ3
ΛH) of the signal pdf

extracted from the 3
ΛH invariant mass fits in each ct interval, as described in the

previous section. As it is done for the lifetime, as 3
ΛH and 3

ΛH are summed together,
in the following µ3

ΛH will be simply referred to as µ. The values of µ as a function of
ct are shown in Fig. 5.30.
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Fig. 5.30: Mean value of the 3
ΛH invariant mass as a function of ct.

The raw value of µ3
ΛH extracted in Fig 5.30 has to be corrected for the energy

loss of the 3
ΛH in the detector material. In Sec. 3.3.2, a brief description of the

global track reconstruction is given, which is based on the iterative update of the
track parameters by using a Kalman filter. At each iteration, a noise term is added
to the covariance matrix to take into account stochastic processes such as energy
losses dE/dx. If the track propagation goes outward, (PV to TPC, for example),
taking into account energy losses means substracting energy to the track parameters,
because the charged particle is supposed to loose energy while traversing material.
Conversely, for an inward propagation (TPC to PV, for example), energy needs to
be added to the track parameters. In the last step of the tracking, all the tracks are
propagated inward to the distance of closest approach to the PV, and the energy loss
corrections are applied. Once the tracks and the primary vertex are reconstructed,
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a search for V 0 secondary vertices is executed, as described in Sec. 5.2.2. In
order to get the correct V 0 and cascade parameters, the daughter tracks need to be
propagated (outward) to the secondary vertex. However energy loss corrections
are not applied in this last propagation. This means that the energy added during
the final inward propagation of the tracking between the secondary and primary
vertex is not subtracted, leading to extra energy/momentum in the track parameters
at the secondary decay vertex and therefore to an offset of the invariant mass. This
effect can be corrected a posteriori by using the MC information, as it is done for
the lifetime measurement. Fig. 5.31 shows the µMC parameters extracted from the
fit to MC candidates passing the BDT selections, as a function of ct. The µMC value
is compared with the injected value of the 3

ΛH mass in the MC (mMC), showing an
increase of ∼ 0.8 MeV from 1 to 35 cm.
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Fig. 5.31: Mass shift of the 3
ΛH signal observed in MC as a function of ct.

The observed shift, δMC, can be used to correct the µ values found in the data for
each ct interval as:

m = µ− δMC, (5.15)

where m is the corrected mass of the 3
ΛH + 3

ΛH candidates. The corrected mass as
a function of ct is shown in Fig. 5.32 and it is fitted with a constant (χ2 fit). The
high fit probability indicates that the corrected mass is constant within the statistical
uncertainties. The statistical uncertainty on the measurement is ∼ 10−3 %, and it is
the most precise measurement of the 3

ΛH mass ever done, as it will be shown in Sec.
5.7.

5.6 Measurement of BΛ 93



5 10 15 20 25 30 35

 (cm)ct

2.9905

2.991

2.9915

2.992

2.9925

310×)2 c
 (

M
eV

/
m

This thesis
 = 5.02 TeVNNs90%, −Pb, 0−Pb

2c 0.07 (stat.) MeV/± = 2991.26 m
Fit probability = 0.68

Fig. 5.32: Measured 3
ΛH mass as a function of ct, fitted with a constant.

5.6.1 Systematic uncertainties

The systematic uncertainties on BΛ originate from (1) the 3
ΛH selection and the

signal extraction, (2) the uncertainty on the magnetic field, (3) the residual detector
misalignement, (4) the material budget. The latter contributions are negligible
for the τ computation, as they only affect the position of the 3

ΛH mass peak, while
the choice of input pT and ct shape in the MC is proven to have no impact for the
mass measurement. A data-driven approach is employed to estimate the systematic
uncertainties related to (2) and (3) and (4), as it will be described in the following.

Signal selection and extraction

As it is done in Sec. 5.5.3, a multi-trial approach is implemented to properly take
into account the correlation between the BDT selection and signal extraction. A
variation range of 10% is applied to the BDT selection efficiency, three different
background fit functions (linear, second order polynomial, exponential), and two
different signal fit functions (KDE, DSCB) are also employed. For each trial a random
combination of the variations is chosen, and the corrected 3

ΛH mass is recomputed.
The resulting distribution is shown in Fig. 5.33: the RMS of such a distribution is
taken as the systematic uncertainty due to the signal selection and extraction.

Systematic study of the Λ mass

The uncertainties related to the magnetic field, the residual detector misalignement
and the material budget are estimated by studying the Λ mass distribution. Indeed, Λ
hyperons are ideal probes to study the uncertainties on the reconstruction corrections
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Fig. 5.33: Multi-trial 3
ΛH mass distribution.

implemented in the MC simulated nominal values for material budget, magnetic field,
detector misalignement, which have a relative uncertainty of ∼ 4.5%, ∼ 0.1%, and
∼ 0.1% respectively. Two major advantages of using Λ to check potential systematic
uncertainties are: (1) the Λ mass is known with a precision of ∼ 6 keV [7], and (2)
the statistical precision on the Λ mass is negligible with respect to the systematic
contributions under study. Furthermore, the Λ is well suited to be used as a proxy
for the 3

ΛH, as the decay length is the same within uncertainties, and the Q value of
the Λ decay is very close to the 3

ΛH one. The same analysis procedure of the 3
ΛH is

applied to the Λ candidates of the same dataset (LHC18qr), and a DSCB function is
employed to extract the signal. The raw mass of the Λ (µΛ) extracted as a function
of the ct is shown in the left panel of Fig. 5.34, while in the right panel the raw mass
taken from the MC is shown (µMC

Λ ). The two distributions show a similar trend,
which is also the same as the one observed for the 3

ΛH mass.
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Fig. 5.34: Left: raw mass of the Λ extracted from the data as a function of the ct. Right:
raw mass of the Λ extracted from the MC as a function of the ct.
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Finally, the corrected mass mΛ is shown in Fig. 5.35 as a function of the ct, showing
a little increase as a function of the ct. This clearly represents a systematic due to the
data-simulation mismatch that has to be taken into account. Furthermore, by fitting
with a constant the corrected mass, a shift of ∼ 67 keV is observed with respect to
the nominal PDG mass. This shift is taken as a further data driven correction factor
to be applied to the 3

ΛH mass, which will be referred to as δΛ.

To evaluate the systematic uncertainty related to this correction, the full analysis
chain is repeated separately for Λ and Λ, and with splitted magnetic field polarities.
Different δΛ are extracted for the different cases, and the maximum difference
between the δΛ factors is employed as systematic uncertainty on the data-driven
correction. The result of the systematic study is shown in Table 5.11: in principle
Λ with positive polarities and Λ with negative polarities should exibhit the same
δΛ (and viceversa), but the residual detector misalignement and the uncertainty
on the magnetic and electric fields of the TPC could introduce small but significant
differences as the ones observed. This is why the systematic uncertainty related
to the data-MC mismatch is evaluated in such a conservative way. The obtained
estimate is ∆(δΛ) = 106 − 45keV = 61keV, which corresponds to a systematic
uncertainty of ∼ 10−3 %.

δΛ (keV/c2) Λ Λ
B = +0.5 T 44.5 ± 3.0 82.9 ± 3.1
B = -0.5 T 35.1 ± 3.2 106.3 ± 3.3

Tab. 5.11: Data driven δΛ splitted for matter and antimatter and for different magnetic
field polarities.
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Table 5.12 summaryzes the different sources of systematic uncertainty affecting the
3
ΛH mass measurement. As for the τ analysis, the systematic uncertainties related to
the BDT hyperparameters, the input pT shape and the linear selection vs ML result
in a negligible contribution. The total systematic uncertainty is found to be 6 ps,
∼ 2% of the extracted value of m.

Systematic contribution Value (keV)
Signal selection and extraction 28

Data-MC mismatch 61
BDT hyperparameters /

Input pT shape /
Linear selection vs ML /

Total 67
Tab. 5.12: Summary of the different sources of systematic uncertainty affecting the 3

ΛH
mass measurement.

5.7 Final results

The final 3
ΛH + 3

ΛH τ and m are obtained by summing in quadrature all the different
systematic contributions, resulting in:

τ = [253 ± 11 (stat.) ± 6 (syst.)] ps,

m = [2991.26 ± 0.06 (stat.) ± 0.07 (syst.)] MeV.

The BΛ of the 3
ΛH is computed by subtracting m to the deuteron and the Λ masses

5.14 and it is found to be:

BΛ = [102 ± 63 (stat.) ± 67 (syst.)] keV,

where the deuteron mass is taken from CODATA [153], and the Λ mass from the
PDG [7]. The right and left panels of Fig. 5.36 show the final τ and BΛ results,
together with their statistical and systematic uncertainties.

The new results can be compared with the previous measurements of the τ and BΛ

done so far in Figs. 5.37 and 5.37 : in both cases the most precise measurements of
the two quantities are obtained 1. Both the measurements provide a similar picture
of the 3

ΛH: the 3
ΛH lifetime is found to be compatible within statistical uncertainty

1It is important to remark that the results before [61] lack of a determination of the systematic
uncertainties. Hence, the statement above considers only the statistical precision associated with
the measurements.
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with the free Λ one, while the BΛ is compatible within 1σ with the zero value
(3

ΛH unbounded). Even though some local tensions among a few measurements
of lifetime and BΛ have been reported in the literature as the "hypertriton puzzle",
when performing a global average of the historically available measurements (see
also the Mainz hypernuclear data database [46]), the probability of having such a
set of measurements, computed with a Pearson test, is 23% for the lifetime and 57%
for the BΛ, hence no global tension is found.

As the most recent theoretical calculations [76, 77] provide different relations
between the 3

ΛH lifetime and the BΛ, the new results can be evaluated together as it
is done in Fig 5.38. The new set of measurements presented in this work provides
tight constraints on the 3

ΛH structure, definitely proving that the 3
ΛH is an extremely

weak bound state. Hence, the hypothesis of "compact" 3
ΛH seems to be ruled out

by these measurements, thus solving a long-standing problem in the hypernuclear
physics.

5.7.1 Testing the CPT symmetry

The standard model Lagrangian is invariant under the simultaneous operations of C
(charge conjugation, which interchanges a particle with its antiparticle), P (parity,
which reverses the direction of all spatial axes) and T (time reversal) and no CPT
violation has ever been observed so far [13]. According to the CPT theorem, particles
and their antiparticles should have the same mass and lifetime but opposite charge
and magnetic moment. In the previous sections, 3

ΛH and 3
ΛH signals have been

summed together: in the following, the CPT symmetry will be tested by considering
separately the 3

ΛH and 3
ΛH contributions.
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Fig. 5.36: Left: exponential decay spectrum as a function of the proper decay length for 3
ΛH,
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probability computed with a Pearson test is reported.
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Fig. 5.37: Collection of the 3
ΛH lifetime measurements [61, 65, 70–72, 75, 147, 154–158]

obtained with different experimental techniques. The horizontal lines and boxes
are the statistical and systematic uncertainties, respectively. The dashed and
dash-dotted lines are the corresponding theoretical predictions [60, 68, 76, 77,
159, 160].

The full analysis chain is repeated for both the 3
ΛH and 3

ΛH separately. The BDT
efficiency interval chosen to compute the systematic variations is the same for both
3
ΛH and 3

ΛH, and it is inherited from the 3
ΛH + 3

ΛH integrated analysis. Choosing
different BDT efficiency intervals for 3

ΛH and 3
ΛH would introduce a further systematic

uncertainty due to the different selection efficiencies of the two species. Hence, a
common systematic distribution due to the signal selection and extraction is built for
the (τ3

ΛH- τ3
Λ

H)/τ3
ΛH quantity: for each trial the BDT efficiency and the fit functions are

varied coherently for 3
ΛH and 3

ΛH. In this way, the central value of the distribution is
the quantity that we are interested in, while the spread of the distribution represents
the systematic uncertainty due to the signal selection and extraction. The resulting
systematic distribution is shown in the left panel of Fig. 5.39, while in the right
panel the statistical uncertainties associated to the different trials and summed in
quadrature for 3

ΛH and 3
ΛH are shown. The central value of the statistical distribution

represents the statistical uncertainty associated with the measurement.
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Fig. 5.39: Right panel: systematic distribution of the 3
ΛH lifetime asymmetry (τ3
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H)/τ3
ΛH.

Left panel: statistical uncertainties associated to the different trials and summed
in quadrature for 3

ΛH and 3
Λ

H.

Summing in quadrature the absorption contribution, which amounts to 2 ps, the
final lifetime asymmetry is:

(τ3
ΛH − τ3

Λ
H)/τ3

ΛH = [2 ± 8 (stat.) ± 3 (syst.)] × 10−2 , (5.16)

which is compatible with zero within the statistical and systematic uncertainties.

The same procedure is applied to the 3
ΛH mass measurement: the mass asymmetry

((m3
ΛH − m3

Λ
H)/m3

ΛH) systematic distribution shown in the left panel of Fig. 5.40

provides both the central value and the systematic uncertainty due to the signal
selection and extraction.
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Fig. 5.40: Right panel: systematic distribution of the 3
ΛH mass asymmetry (m3
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and summed in quadrature for 3
ΛH and 3

Λ
H.

The result is:

m3
ΛH −m3

Λ
H

m3
ΛH

= [6 ± 5 (stat.) ± 2 (syst.)] × 10−5, (5.17)
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which is fully compatible with zero within the statistical and systematic uncertainties.
The statistical precision of the 3

ΛH mass asymmetry measurement improves by a
factor of four the only previous measurement available [73]. However, a further
dominant systematic contribution (δm3He) has to be added to the mass asymmetry to
take into account the uncertainty on the 3He and 3He mass difference, as a potential
CPT violation on the decay products would impact the measurement of m3

ΛH −m3
Λ

H.

This uncertainty has been taken from the STAR measurement [73] (δSTAR), and
propagated to m3

ΛH −m3
Λ

H utilizing a Monte Carlo method. Starting from a sample

of one million 3
ΛH generated with a Blast Wave momentum distribution, the two

body decay of the 3
ΛH is simulated by using the ROOT n-body phase space generator

[123]. The 3He daughter mass is then smeared by δSTAR and the 3
ΛH invariant mass

is recomputed. The RMS of the resulting distribution, which is shown in Fig. 5.41, is
then used as a proxy for the systematic uncertainty due to the 3He mass difference
(δm3He).
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Fig. 5.41: Distribution of the reconstructed 3
ΛH mass after smearing the 3He daughter mass

by δSTAR minus the nominal 3
ΛH mass.

As the δSTAR uncertainty is ∼ 6 times larger than the statistical uncertainty coming
from the 3

ΛH mass measurement, the δm3He systematic uncertainty is by far the
dominant contribution to the total uncertainty.

The final result considering this further uncertainty separately is:

m3
ΛH −m3

Λ
H

m3
ΛH

= [6 ± 5 (stat.) ± 2 (syst.) ± 27(δm3He)] × 10−5. (5.18)

Both the 3
ΛH lifetime and mass asymmetry measurements are fully compatible with

zero within the statistical and systematic uncertainties, thus providing a stringent
test of the CPT symmetry in the nuclear sector.
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6First measurement of 3
ΛH

production in p–Pb collisions

As explained in detail in Chapter 2, the extremely low BΛ measured implies that the
3
ΛH has a large radius extending up to ∼ 5 fm [69, 168]. The size of the 3

ΛH wave
function is therefore much larger than the hadron emission radius estimated with
femtoscopic techniques in p–Pb collisions (1–2 fm, [101, 102]). For this reason, the
3
ΛH yield in p–Pb collisions predicted by the coalescence model, where the ratio of
nucleus size to source size directly influences its yield, is suppressed with respect to
the statistical hadronisation model expectations [95, 98, 169]. In this Chapter, the
first measurement of the 3

ΛH production, which was published with a letter on the
Physics Review Letters Journal [170] is presented. The measurement is performed
by analysing the p–Pb data sample collected by ALICE at

√
sNN = 5.02 TeV during

2013 and 2016, and by selecting the 3
ΛH signals with BDTs.

Data sample

The results presented in this Chapter are based on the p–Pb data sample collected
by ALICE at

√
sNN = 5.02 TeV during the 2013 and 2016 data taking periods. The

minimum bias trigger is used to select the events by requiring a hit in the SPD or in
either two V0 detectors. The triggered events are further selected offline with an
analogous procedure to the one used in Pb–Pb analysis (see Sec. 5.1.1):

• Primary vertices in a fiducial region of ±10 cm are selected

• pile-up rejection based on: the number of reconstructed SPD primary vertices,
the difference between the global and SPD primary vertices positions.

The event selections are summarized in Table 6.1: in total, about 750 million
MB events are selected for analysis, corresponding to an integrated luminosity of
LMB

int = 359 µb−1, with a relative uncertainty determined by the van der Meer scan
to be 3.7% [171].
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Tab. 6.1: Summary of the event selection applied for to the data sample employed for this
analysis.

Data sample Selections

p–Pb 2013 + 2016
|Vz| ≤ 10 cm
Reject multiple SPD vertices with more than n contributors
|∆Vz| ≤ 20σtrack, |∆Vz| ≤ 10σSPD and |∆Vz| ≤ 0.2 cm

The centrality distribution of the selected events is shown in Fig. 6.1: the MB trigger
provides an almost uniform centrality distribution between 0% and 90% centrality.
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Fig. 6.1: Centrality distribution of the selected events.

As most of the signal is expected to be produced in central collisions, for this analysis,
the 40% events with the highest multiplicity measured by the V0A detector are used.
It is worth to mention that in p–Pb collisions the V0A estimator does not strictly
measure centrality, but is more used to define the percentiles of multiplicity, as the
centrality in p–Pb collisions is very difficult to determine In total ∼ 400 million
events in the 0–40% centrality interval are selected.

6.0.1 Monte Carlo sample

A MC production anchored to both the data taking periods is used similarly to what
is done for the 3

ΛH lifetime and binding energy analyses (see Sec. 5.1.2). The MC
sample will be employed to compute the efficiency and acceptance corrections. Each
MC event is composed by:
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• the underlying p–Pb event, generated by using the HIJING [125] event genera-
tor;

• five 3
ΛH and five 3

ΛH with a uniform momentum distribution between 0 and 10
GeV/c and η between −1 and 1.

The transport of 3
ΛH and 3

ΛH in the detector material is simulated by using the
GEANT4[128] simulation package. As it is done for the Pb–Pb, only a fraction of
the total collected statistics is generated in the MC samples. The centrality of the
simulated events is computed starting from the impact parameter (b) of the collision
simulated by HIJING. In the MC sample, b is extracted randomly for each event. The
input ct distribution is obtained by sampling an exponential function with τ = τΛ,
and it is shown in Fig. 6.2.
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Fig. 6.2: Input ct distribution for the 3
ΛH and 3

Λ
H in the MC sample.

6.1 3
ΛH (3

ΛH) reconstruction

The 3
ΛH and 3

ΛH are reconstructed in the same way as in the Pb–Pb analysis (see Sec.
5.2), and in the following they will be summed together and simply referred to as
3
ΛH. The daughter track quality selections are listed in Table 5.2, and guarantee a
momentum and TPC dE/dx resolutions better than 5% and 6% respectively. The
3
ΛH candidates are reconstructed by combining the daughter tracks with the custom
offline V0 finder described in Sec. 5.2. As the daughter tracks combinatorics is
much lower than in the Pb–Pb case, only the DCAdaugh pre-selection is applied
during the vertexing: daughter tracks are required to have a minimum distance of
closest approach of 1.5 cm. In addition, the PID selection on the 3He and π tracks
is performed by requiring the nσ

3He = |Smeas−Sexp|
σ3He < 4 or nσπ = |Smeas−Sexp|

σπ < 4.
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The 3He PID response calibration is performed as described in Sec. 5.2.2. The
only important difference introduced at this level is the 3

ΛH rapidity selection: in
p–Pb collisions the centre-of-mass system moves in rapidity by ∆ycms = 0.465 in the
direction of the proton beam. Hence, to match the barrel acceptance of the ALICE
detector, only 3

ΛH candidates with −1 ≤ ycms < 0 are selected: this will also allow
for a direct comparison with other measurements, as it will be explained in the next
sections.

The Monte Carlo sample, which is employed for the efficiency correction and for
training the BDT Classifier, undergoes the same reconstruction procedure employed
for the data. In addition, the reweighting of the pT shape according to the published
3He analysis [172] is applied to the uniform input pT distribution. In [172], different
pT shapes are employed for extrapolating the 3He yield at low momentum: mT-
exponential, pT-exponential, Boltzmann, Blast Wave functions (see the definitions in
9). The one employed for reweighting the 3

ΛH distribution is the mT-exponential one,
which is the one that better describes the 3He data: the other pT shapes are employed
for the systematic uncertainty evaluation. The reweighted 3

ΛH pT distribution is
shown in Fig. 6.3, with superimposed the 3He pT shape from [172].
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Fig. 6.3: Reweighted 3
ΛH pT distribution, together with the 3He pT shape from [172].

Finally, the pre-selection efficiency as a function of the 3
ΛH pT is computed, and it

is shown in Fig. 6.4. The efficiency is computed in the rapidity range −1 ≤ ycms <

0 and in the centrality range 0–40%, and it takes into account the geometrical
acceptance of the ALICE detector, the 3

ΛH reconstruction efficiency, and the 3
ΛH PID

selection. The pT integrated efficiency, which is computed on the reweighted sample
from 0 to 9 GeV/c results to be 29%.

106 Chapter 6 First measurement of 3
ΛH production in p–Pb collisions



1 1.5 2 2.5 3 3.5 4 4.5 5 5.5 6

)c (GeV/
T

p

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

P
re

-s
el

ec
tio

n 
E

ffi
ci

en
cy

This thesis, MC simulation
 = 5.02 TeVNNsPb 0-40%, −p

 < 0
cms

y ≤-1 

Fig. 6.4: Pre-selection efficiency as a function of the 3
ΛH pT.

3
ΛH selection with the BDT Classifier

The 3
ΛH signal selection is performed by using the XGBoost BDT Classifier, similarly

to what is done in the Pb–Pb analysis (see Sec. 5.3.2). The training sample is
composed by:

• the signal sample, built by selecting 3
ΛH signal in the MC sample;

• the background sample, built by pairing a 3He and a π track of the same sign
(Like Sign, LS) in the data sample.

The input variables employed for training the BDT Classifier are the same as the
ones employed in the Pb–Pb analysis (listed here 5.3.1) with one exception: the 3

ΛH
ct is used instead of the pT. This is done because the ct distribution is well known
and measured, while the pT distribution depends on the collision system and is not
measured yet. The combination of both the variables has to be avoided, as it would
allow the model to infer on the mass of the 3

ΛH (ct = mL
p ). The distribution of the

training variables is shown in Fig. 6.5, and it is similar to the one found in the Pb–Pb
analysis (see Fig. 5.11). Variables that present strong differences between signal and
background, such as the cos(θp), the ct, and the nclus

TPC
3He will be the most important

ones for the BDT Classifier.

The correlations among the training variables are also checked: the BDT is able
to exploit the different correlations among the signal and background variables to
properly classify an independent sample. The correlation matrices are shown in Fig.
6.6, and they are similar to the ones found in the Pb–Pb analysis (see Fig. 5.13).
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Fig. 6.5: Distribution of the training variables for the 3
ΛH signal and background.

The ct, which is the new variable introduced in the p–Pb analysis, is correlated with
the DCA variables as expected, and it is not correlated with invariant mass, thus
avoiding potential mass shaping effects.
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Fig. 6.6: Linear correlations between the training variables and the 3
ΛH invariant mass, for

signal (top) and background (bottom) candidates. The colours, from red (fully
correlated) to blue (fully anti-correlated), indicate the correlation level.

6.1.1 Training and testing of the BDT

The BDT Classifier is trained using the XGBoost package, as it is done in the Pb–Pb
analysis (see Sec. 5.3.2). As the signal will be extracted in one integrated pT bin
between 0 and 9 GeV/c, one single BDT is trained for the whole pT range. The
training is performed in two steps: first the best BDT hyper-parameters are found by
employing a bayesian optimizer, and then a final training step is performed using
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the optimal hyper-parameters configuration. The full training sample is split in two
parts: the first one is used for training the BDT, while the second one is used for
testing the BDT performance (test set).

The hyper-parameters are optimized by maximizing the ROC-AUC score evaluated on
five different subsamples, employing the 5-fold cross-validation technique described
in Sec. 5.3.2. The search is entrusted to the Hyperopt package [138], the bayesian
optimizer already described in Sec. 4.2.2. The best hyperparameter configuration
found is summarized in Table 6.2.

Hyper-parameter Optimization range Values
max depth [3, 20] 6

n estimators [50, 800] 350
learning rate [0.01, 0.3] 0.1

gamma [0.3, 1.1] 0.6
min child weight [1, 12] 7.3

subsample [0.5, 0.9] 0.8
colsample by tree [0.5, 0.9] 0.6

Tab. 6.2: Optimized BDT hyper-parameters in the p–Pb analysis.

Once the final training is done, the performance of the BDT are evaluated both on
the training and the test sets: for each candidate the BDT score is computed, and
the resulting distributions, divided by signal and background, are shown in Fig. 6.7.
The distributions, similar to the ones found in the Pb–Pb analysis (see Fig. 5.15),
are well separated, demonstrating that the BDT is able to properly classify the signal
and the background.

A negligible overfitting behaviour is observed, and can be quantified by comparing
the ROC curves obtained on the training and the test sets, as shown in Fig. 6.8.
In both the cases the BDT is able to separate the signal from the background with
ROC-AUC scores higher than 0.999; while the relative difference between the two
scores is ∼ 0.3%.

The feature importance is also evaluated in Fig. 6.9 by using the SHAP algorithm,
showing a behaviour similar to the one found in the Pb–Pb analysis (see Fig. 4.7):
the most important features are the cos(θp) and the nσTPC

3He variables, followed
by the DCA variables.

6.1.2 Choice of the BDT threshold

After passing all the checks performed during the testing part, the BDT is applied to
the real data sample, obtaining a continuous distribution. In order to extract the 3

ΛH
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Fig. 6.8: ROC curves for the training and the test sets.

signal, a threshold is applied to the BDT score. First the BDT efficiency as a function
of the score threshold is computed on the test set, and it is parametrized by using a
spline function between 0.99 and 0.5, as described in Sec. 5.5.3. The result is shown
in Fig. 6.10.

The BDT score threshold is then chosen by employing the Significance Scan algorithm,
which is described in Sec. 5.3.3. For each threshold the expected significance,
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Fig. 6.10: BDT efficiency as a function of the score threshold, computed on the test set (red
markers). A spline function is used to parametrize the efficiency curve (blue
line).

computed by assuming 3
ΛH thermal production, is evaluated and multiplied by the

corresponding BDT efficiency. The result is shown in Fig. 6.11: the expected
significance obtained by assuming thermal production is > 6σ. The BDT threshold
efficiency results to be 72%.
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Fig. 6.11: Expected significance as a function of the corresponding BDT threshold efficiency,
computed assuming thermal production. The significance is multiplied for the
BDT efficiency.

6.2 Measurement of 3
ΛH production in p–Pb

collisions

After passing the BDT threshold, the selected 3
ΛH candidates are employed to popu-

late the invariant mass spectrum. A clear excess of events is observed around the
nominal 3

ΛH mass, and it is reported in Fig. 6.12. In Fig. 6.12, both the selected
candidates for data and LS background are shown. The LS invariant mass spectrum
does not exhibit any peak structure, demonstrating that the excess is not due to the
mass shaping effect.

The signal extraction is performed on the unbinned invariant distribution in order to
avoid biases due to the choice of the binning of the histogram. The signal shape is
extracted from the MC sample and smoothed with a KDE function, already described
in Sec. 5.4, while the background is parametrized by a first order polynomial. The
result of the signal extraction is shown in Fig. 6.13.

The signal is extracted by integrating the KDE function over the full invariant mass
range, and it is found to be: S = 19.1 ± 5.6. As the number of signal events is
extremely low, the simple approximation employed in Sec. 5.4 for computing the
significance (Sign = S/

√
S + B) is not applicable, and a more sophisticated approach

is needed. The significance associated with the signal is evaluated following the
procedure described in [173]: the probability for a background fluctuation to be
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Fig. 6.12: Invariant mass spectrum of the selected 3
ΛH candidates both in the unlike sign

pairs (blue) and in the LS background (red). The data points are shown with
statistical errors. Entries with zero counts are not shown in the Figure.
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at least as large as the observed maximum excess (local p-value) is computed by
employing the asymptotic formulae for likelihood-based tests obtained by Cowan
et al. The formulae have successfully been employed for the Higgs boson discovery
[174], and they are implemented in the RooFit framework [149]. The local p-value
can be expressed as a corresponding number of standard deviations using the one-
sided Gaussian tail convention. The result of the study is shown in Fig. 6.14: the
local p-value in correspondence of the 3

ΛH mass peak results to be higher than 4σ.
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Fig. 6.14: Local p-values as a function of the 3
ΛH invariant mass. The significance is com-

puted by using the one-sided Gaussian tail convention, and it is reported with
horizontal dashed lines.

The capability of extracting the 3
ΛH signal with high significance in p–Pb represents a

huge milestone for the nuclear physics community, as for the first time the hypertriton
is observed in hadronic collisions different from the nucleus-nucleus ones.

Production yield

The production yield (dN/dy) is obtained starting from the signal extracted from
the fit to the invariant mass spectrum (S). Then the fitted signal is corrected for the
pre-selection efficiency (ϵpres, includes the 3

ΛH candidate reconstruction efficiency
and the acceptance of the ALICE detector), the BDT efficiency (ϵBDT), the number
of analysed events (Nev), the branching ratio (B.R.) of the 3

ΛH in the two-body decay
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channel and the fraction of 3
ΛH that are not absorbed in the ALICE detector (1−fabs).

The expression for the production yield is:

dN
dy = 1

ϵpres

1
ϵBDT

1
Nev

1
B.R.

1
(1 − fabs)

× S (6.1)

The values of ϵpres, ϵBDT, and Nev have already been discussed and amounts 27%,
72% and 4 × 108 respectively. The B.R. value is assumed to be 0.25 according
to the calculation published in [60], but uncertainty will be added as it will be
explained in 6.2. Finally, the value of fabs is determined with the same procedure
employed in 5.5.1: the interaction of the 3

ΛH with the ALICE detector is simulated
with GEANT4 by using 3He as a proxy, after properly reweighting the momentum
and the ct distributions. The value of the 3

ΛH cross section given in input to GEANT4
is σinel = 1.5σinel(3He), according to the only calculation available in literature by
Evlanov et al. [151]. A slightly but compatible approach is employed to compute
the ct integrated fabs value since at the time of the analysis there were only MC
samples with increased cross section by a factor 5 and 8. For each of these samples,
the ct integrated fabs value is computed, and the value of fabs corresponding to
σinel = 1.5σinel(3He) is obtained through an exponential interpolation. The resulting
value of fabs is 3%, which is fully compatible with the one obtained in the lifetime
analysis by using the sample with σinel = 1.5σinel(3He) employed in Sec. 5.5.1. The
factor 1 - fabs is shown as a function of the cross section in Fig. 6.15: different
pT shapes have been employed for reweighting the sample (the default one is
mT-exponential), and the differences are taken into account in the systematic
evaluation.

Systematic uncertainties

The systematic uncertainties are evaluated similarly as in the Pb–Pb analysis. Four
different sources are considered: the 3

ΛH signal selection and extraction, the choice
of the 3

ΛH input pT shape, the absorption in the ALICE detector, and finally the 3
ΛH

branching ratio.

Signal selection and extraction

A multi trial approach is employed to evaluate the systematic uncertainty associated
with the signal selection and extraction. As the signal is extracted with significance
> 3 only in a narrow ϵBDT window, the systematic uncertainty is evaluated by
varying the BDT threshold around ±5% from the optimal ϵBDT. For each variation,
the signal is extracted with three different background functions (constant, linear,
exponential), while the signal shape is not varied as it does not affect the signal
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Fig. 6.15: Correction factor 1-fabs as a function of the anti- 3He inelastic cross-section for
the different pT shapes considered in the analysis. The superimposed exponential
fits were used to obtain the correction factor for cross sections that are 1.5 times
larger than the anti-3He inelastic cross section

extraction significantly. Hence, 33 different variations are considered, and for each
of them the factor S/ϵBDT is computed. The RMS of the resulting distribution, which
is shown in Fig. 6.16, is used as an estimate of the systematic uncertainty due to
the signal selection and extraction. This uncertainty results to be 15% of the signal
yield.

Choice of the input pT shape

As mentioned in section 6.1, the pT shape of the 3
ΛH candidates in the MC is reshaped

according to the 3He mT exponential function. The systematic uncertainty due to the
choice of this model is evaluated. Since the pT is not used as a training variable the
main contribution for this source of uncertainty is given by the different pre-selection
efficiencies. To estimate this systematic uncertainty, four different input pT shapes are
employed to compute different pre-selection efficiencies: Boltzmann, pT exponential,
mT exponential and Blast Wave. The parameters of the pT distributions are taken
from the published 3He analysis [172]. The transverse momentum distribution of
the sample reshaped according to the different models is shown in Figure 6.17.
While the Boltzmann and mT exponential distributions present similar shape, the
fitted pT exponential and Blast Wave distributions are significantly different. For
each function the pre-selection efficiency is re-computed, and the standard deviation
between the different corrections is taken as systematic estimate due to the unknown
3
ΛH pT shape, resulting 7%.
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Fig. 6.17: Reconstructed MC sample reshaped according to four different input models.

Absorption in the ALICE detector

The uncertainty due to the unknown 3
ΛH absorption cross section is evaluated by

varying the nominal 3
ΛH cross section of ± 50%. Hence, the full difference between

fabs computed for σinel = σinel(3He) and σinel = 2σinel(3He) is taken directly from
Fig. 6.15, resulting in a systematic uncertainty of 2%.
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Branching ratio

The value of B.R. = 0.25 for the 3
ΛH → 3He + π decay reported in this analysis is

computed theoretically in Ref. [60]. Since there are not direct measurement of the
full 3

ΛH branching ratios, an uncertainty is added by evaluating the relative deviation
between the theoretical R3 and the world average of all the R3 measurements found
in [71], where R3 is defined as:

R3 = B.R.(3
ΛH → 3He + π−)

B.R.(3
ΛH → all π− decay channels) .

This uncertainty on R3 is propagated linearly to the B.R.(3
ΛH → 3He + π−) and

corresponds to a variation range of ±9% around the nominal value. Therefore, the
relative uncertainty due to the choice of the B.R. value is 9%.

Table 6.3 summarizes all the systematic contributions evaluated in this analysis: the
total systematic uncertainty is 19% of the signal yield.

Systematic contribution Value (%)
Signal selection and extraction 15 %

Choice of the pT shape 7 %
Absorption in the detector 2 %

Branching ratio value 9 %
Total 19 %

Tab. 6.3: Summary of the different sources of systematic uncertainty affecting the 3
ΛH yield

measurement.

Results

The resulting corrected 3
ΛH yield in the rapidity interval −1 < y < 0 together with

its statistical and systematic uncertainties is

dN
dy = [6.3 ± 1.8(stat.) ± 1.2(syst.)] × 10−7.

The result is compared with the expectations from the canonical SHM [95], defined
in Sec. 2.3, which assumes exact conservation of baryon number, strangeness and
electric charge across a correlation volume Vc. The SHM predictions are computed us-
ing a fixed chemical freeze-out temperature of Tchem = 155 MeV and two correlation
volumes extending across one unit (Vc = dV/dy) and three units (Vc = 3dV/dy) of
rapidity [95]. The size of the correlation volume governs the influence of exact quan-
tum number conservation, with smaller values leading to a stronger suppression of
conserved charges and Vc → ∞ leading to the grand canonical ensemble. The 3

ΛH pT

118 Chapter 6 First measurement of 3
ΛH production in p–Pb collisions



integrated yield is 1.1x10−6 and 2.0x10−6 with Vc = dV/dy and Vc = 3dV/dy, respec-
tively. The dN/dy predictions by the model were obtained using the code released
together with the publication [175]. While the SHM prediction with Vc = dV/dy is
in agreement with the measured yield within 2.5σ, the prediction with Vc = 3dV/dy
is more than 6.5 σ away from the data, and thus it can be excluded.

As explained above, in the case of the coalescence model it is not possible to compare
directly the measured absolute yield to the model prediction. Hence, this comparison
is attained by computing the 3

ΛH /Λ ratio and the strangeness population factor
S3 = (3

ΛH/3He)/(Λ/p) [176] using previous ALICE measurements of p, Λ and 3He
yields [172, 177], as shown in Figs. 6.19 and6.18. The S3 parameter quantifies
whether there is an extra penalty factor occurring when a bound strange nuclear state
is formed (3

ΛH), compared to a free strange hadron (Λ): hence, a strong suppression
is expected in the case of coalescence due to the large system size of the 3

ΛH nucleus.
Figures 6.19 and 6.18 show the 3

ΛH /Λ ratio and S3 as a function of the mean
charged-particle multiplicity. The mean charged-particle multiplicity associated with
the 0-40% p–Pb collisions is inherited from [178], and it is computed by measuring
the multiplicity in the central barrel, using SPD tracklets, at the corresponding V0A
activity values used in this analysis. For both the S3 and 3

ΛH /Λ quantities, in central
Pb–Pb collisions the data are consistent with both coalescence and SHM predictions,
which are similar. The situation is different for p–Pb collisions where the two models
are well separated.

Taking into account the uncertainties of the measurement as well as the model
uncertainty, the measured S3 ratio is compatible with the 2-body (deuteron-Λ) and
3-body (proton-neutron-Λ) coalescence within 1.2σ and 2σ, respectively. With its
large uncertainties, also due to the large uncertainty on the 3He yield, the S3 is
compatible within 2σ with the SHM calculations too.

On the other hand, the 3
ΛH /Λ ratio is a more sensitive quantity for coalescence and

SHM predictions, as only the precision measurement of the Λ production enters
the ratio. In this case, the measurement is deviating by 3.2σ and 7.9σ from the
SHM with Vc = 1dV/dy and Vc = 3dV/dy, respectively. On the other hand, both the
coalescence calculations are within 2σ of the measured 3

ΛH /Λ (1.16σ for the 2-body
coalescence, 1.92σ for the 3-body one).

Finally, the assumption on the B.R. is released in Fig. 6.20, where the 3
ΛH /Λ x

B.R. factor is reported as a function of the B.R.: the range of the B.R. is limited
by the uncertainty already described in Sec. 6.2. While the 2-body coalescence
calculation is compatible with the data for the nominal or larger B.R., a maximum
deviation of 2σ is observed between the data and the 3-body coalescence prediction.
Furthermore, in the whole B.R. variation interval, the SHM is more than 2.7σ and
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Fig. 6.18: S3 measurement in p–Pb (in red) and Pb–Pb collisions [179] (in blue) as a
function of mean charged-particle multiplicity. The vertical lines and boxes are
the statistical and systematic uncertainties (including the uncertainty on the B.R.),
respectively. The expectations for the canonical statistical hadronization [95] and
coalescence models are shown [98].

6.9σ away from the measured 3
ΛH/Λ × B.R. for the Vc = 1dV/dy and Vc = 3dV/dy

configurations, respectively.

In summary, the first measurement of the 3
ΛH production in p–Pb collisions is achieved

by selecting the 3
ΛH signal with a BDT Classifier. The measured pT integrated

yield excludes, with high significance, canonical versions of the SHM with Vc ≥
3dV/dy to explain the (hyper)nuclei production in p–Pb collisions. It remains to be
seen if advanced versions of the SHM using the S-matrix approach to account for
the interactions among hadrons [180] will be able to solve this discrepancy. The
3
ΛH/Λ ratio is well described by the 2-body coalescence prediction while the 3-body
formulation is slightly disfavoured by the measurement. Similar conclusions can be
drawn for the S3 factor, but wilth much less sensitivity.
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7New avenues in hypernuclear
physics

In the next years, new experimental facilities with a dedicated hypernuclear physics
programme will start operating. In particular, in the low energy heavy-ion sector
(from

√
sNN = 3 up to 20 GeV) two new facilities are going to be built: NICA at the

DUBNA Laboratory [181] and FAIR at the GSI [182]. Additionally a new experiment
at the CERN SPS [183], NA60+, is currently being proposed. At these energies,
the production of hypernuclei is largely favoured because of the stopping of the
baryonic fragments during the ion collisions. At the same time, the ALICE detector
will be able in the next years to fully characterize A<=4 hypernuclear states in all
the collision systems, thanks to the unprecedented integrated luminosity that will
be collected during the LHC Run 3 and Run 4. In this Chapter, the algorithm for
the direct tracking of long-lived hypernuclei developed for the LHC Run 3 will be
discussed. Moreover, the expected performance of the new NA60+ experiment for
the 5

ΛHe reconstruction will be presented: the result has been included in the NA60+
Letter of Intent [183].

7.1 Tracking hypernuclei with ALICE

During the Run 3 of the LHC, the direct tracking of hypernuclei will be made possible
for the first time, thanks to the upgrade of the Inner Tracking System detector of
ALICE (ITS2) [184]. This, together with the reconstruction of the decay daughters,
will determine the full kinematics of the decay, allowing ALICE to perform the
precision measurement of the 3

ΛH 3-body decay channel, now swamped in a huge
combinatorial and correlated background. Furthermore, the direct tracking of the
mother particle will provide the first measurement of incomplete decay topologies
of hypernuclei, e.g. decays with a neutral daughter particle (such as 3

ΛH → 3H + π0).
A brief description of the ITS2 is provided in the following

7.1.1 Upgrade of the ITS

The Inner Tracking System (ITS2) currently in use was commissioned in 2021 and in
the first 6 months of 2022. It was designed to enhance the tracking and readout rate
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capabilities with respect to the ones of the detector that was in operation during the
LHC Run 1 and 2. The ITS2 is composed by seven cylindrical layers (three innermost
layers constituting the Inner Barrel, IB, and four outermost layers constituting the
Outer Barrel, OB) all equipped with ALPIDE Monolithic Active Pixel Sensors (MAPS)
chips of about 30x30 µm2 pixel size, a large reduction of the material budget (∼0.3%
X0 for the IB and ∼1% X0 for the OB), and a reduced distance of the innermost
layer to the interaction point (2.1 cm). A schematic view of the ITS2 is shown in
Fig. 7.1, while Table 7.1 summarizes the geometric characteristics of the detector
layers.

Fig. 7.1: Schematic view of the ITS2 layout.

Radius (cm) Length (cm) # of chips
Layer 0 2.2 27.1 108
Layer 1 3.1 27.1 144
Layer 2 3.8 27.1 180
Layer 3 19.4 84.3 2688
Layer 4 24.4 84.3 3360
Layer 5 34.2 147.5 8232
Layer 6 39.2 147.5 9408

Tab. 7.1: Geometric characteristics of the ITS2 layers.

The ITS2 covers a 10 m2 active surface with 12.5 billion pixels offering a radius
coverage of 22–400 mm and a pseudorapidity coverage of |η| < 1.22. All the above
modifications contribute to the improvement of the impact parameter resolution in
the beam direction z by a factor of six, from 240 µm to 40 µm, and in the transverse
plane rϕ by a factor of three, from 120 µm to 40 µm at pT = 0.5 GeV/c.

The high granularity of the ITS2 allows for the reconstruction of ITS only tracks with
a dedicated algorithm, which is based on the cellular automaton approach for the hit
pattern recognition and a final track fitting done with a Kalman filter. At least four
hits are required by the algorithm to build a track, and the momentum resolution of
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the ITS tracks with hits on all the seven detector layers is less than 6% for pT > 0.5
GeV/c.

To test the 3
ΛH track reconstruction foreseen for the LHC Run 3, a dedicated simula-

tion is built on top of the Run 3 ALICE simulation and reconstruction framework,
Alice O2 [185]. In this simulation, one 3

ΛH particle is injected into a pp inelastic
collision at

√
sNN = 13.6 TeV, simulated with the Pythia8 event generator [124].

Then, all the particles are propagated through the ALICE detector using Geant4,
which takes care of the decay of the unstable particles during the propagation. The
3
ΛH ITS track is then reconstructed with the ITS tracking algorithm, and the tracking
efficiency as a function of the decay radius is shown in Fig. 7.2. As the minimum
number of clusters required to reconstruct a track is four, in principle only 3

ΛH with
decay radius higher than ∼ 19 cm (the radius of the fourth layer of the ITS2) can
be reconstructed. However, since the Q-value of the 3

ΛH is small, the 3He daughter
particle usually points into the 3

ΛH mother direction: this causes a huge number of
fake tracks, i.e. tracks with at least one cluster not belonging to the 3

ΛH particle.
This effect can be observed in Fig. 7.2, where no ITS tracks containing solely 3

ΛH
clusters (referred to as "pure ITS 3

ΛH tracks") are detected with a radius less than
19 cm. However, the tracking efficiency remains around 30% as a result of the
presence of 3He clusters within the track. For decay radii higher than 19 cm, the
tracking efficiency reflects the structure of the ITS2: the highest fractions of fake
tracks correspond to the 3

ΛH that decay close to the layers of the detector.
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Fig. 7.2: Tracking efficiency of the 3
ΛH particle as a function of the decay radius for all ITS

3
ΛH tracks(blue line), pure 3

ΛH tracks (green area), and fake ones (orange area).

The reconstructed ITS tracks are then matched with the TPC ones, and the TOF and
TRD information, when available, to form global tracks. After the primary vertex
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reconstruction, the secondary vertex algorithm is applied to the tracks looking for
particles coming from weak decays, with a similar approach to the one used in the
Run 2.

7.1.2 The 3
ΛH matching algorithm

The 3
ΛH matching algorithm is in charge of matching the 3

ΛH ITS track with the
decay daughters and fitting the full decay topology by means of a kinematic fit. The
development of the algorithm is still ongoing, and the kinematic fit part is not yet
implemented. Nevertheless, in this thesis, a few preliminary results are presented.
The ITS tracker outlined in the previous section is employed to reconstruct the 3

ΛH
ITS track, while the V 0 finder algorithm is used to determine the 3

ΛH decay topology
as it is explained in Sec 5.2.2, and a V 0 track is built by combining the daughter
ones. The matching algorithm starts by organizing the ITS tracks in an ordered grid
based on the ϕ (azimuth angle) and z coordinates of the tracks at their last hit into
the ITS2 detector. Then a loop on the reconstructed V 0 tracks is performed, and
for each V 0, the ITS tracks compatible within a predefined ϕ and z window are
selected. The grid organisation of the ITS tracks allows for speeding up this process.
For each compatible ITS track the algorithm tries to attach its clusters to the V 0 by
using a Kalman filter: at each attachment step, if the track-cluster matching χ2 is
lower than a certain threshold (10 in this case), the V 0 track parameters and their
covariance matrix are updated. An iterative procedure is developed to account for
the presence of fake clusters belonging to one of the daughter tracks: if the decay
radius reconstructed with the V 0 finder is lower than the layer radius corresponding
to the cluster, this cluster is likely a fake. In this case, the cluster is attached to one
of the daughter tracks and not to the V 0. A simple sketch of the decay topology
into the ITS2 is shown in Fig. 7.3: the outermost cluster is wrongly attached to the
mother ITS track, and the algorithm is able to remove it and attach it to the daughter
one.

If all the ITS clusters are attached to the V0 track or to its daughters, the full topology
is re-fitted trying to minimize the DCA between the three tracks: this should improve
the decay vertex position and the momentum resolution of the 3

ΛH particle. This last
step is only partially implemented, and it will be improved by constraining the fit to
the 3

ΛH mass hypothesis.

The topologies that fulfill the previous requirements are then stored in a dedicated
tree and the performance of the algorithm is evaluated. The invariant mass distri-
bution of the simulated 3

ΛH sample before and after requiring the matching of the
ITS track is shown in Fig. 7.4. The spectra are fitted with a Double Sided Crystal
Ball and a third-order polynomial functions to model the signal and the background,
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Fig. 7.3: Sketch of the 3
ΛH decay into the ITS2 detector. The track is wrongly propagated up

to the fifth ITS2 layer and includes the 3He daughter cluster.

respectively. It is worth to remark that since there is one injected 3
ΛH per event, the

3
ΛH peak is visible without applying any selection. However, the matching algorithm
is able to improve the signal over background ratio by a factor 45, thus allowing for
a clean selection of the 3

ΛH signal in the real data.

The algorithm efficiency is evaluated by dividing the number of 3
ΛH candidates with

a matched ITS track by the total number of 3
ΛH with a reconstructed ITS and V0

track, and it is shown in Fig. 7.5 as a function of the transverse momentum (top
panel) and the decay radius (bottom panel) of the 3

ΛH.

The efficiency weakly increases with the pT and the radius of the 3
ΛH from 50% up to

80%. The non-matched 3
ΛH tracks are due to the presence of fake clusters attached

to the tail of the 3
ΛH tracks not belonging to any of its daughters. This is a well

known behaviour of the ITS tracking algorithm affecting the purity of the short-tracks
reconstruction (with less than 7 clusters). However, the current implementation of
the matching algorithm already guarantees that around 30% of the V0 candidates
have their ITS track matched. This algorithm will open the possibility to study in
detail the three body decay of the 3

ΛH (3
ΛH → p+ d+ π−), now inaccessible because

of the huge background coming from the Λ decay products. Furthermore, the direct
tracking of the 3

ΛH will allow for the first time to study decay channels involving
neutral particles, such as the 3

ΛH → 3H + π0 decay.
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Fig. 7.4: Invariant mass distribution of the simulated 3
ΛH sample before and after requiring

the matching of the ITS track.

7.2 Heavier hypernuclei with NA60+

The NA60+ project is a proposal for a new heavy-ion experiment to study the QGP
properties at CERN SPS energies (from

√
sNN = 6 up to 17.3 GeV). While the QGP

studied at the LHC is characterized by a large initial temperature and a null net
baryonic density, collisions at the SPS energies could investigate the QCD phase
diagram in a region with a smaller initial temperature and a non-zero net baryonic
density. In such conditions, a first order phase transition from nuclear matter to QGP
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Fig. 7.5: Matching algorithm efficiency as a function of the pT (top) and the decay radius
(bottom) of the 3

ΛH.

is expected, and the QGP properties could be very different from the ones studied at
the LHC. The main observables employed to study the QGP formation and properties
with high precision are:

• electromagnetic probes of the QGP, via the measurement of the muon pair
spectrum (already described in Sec. 1.4);

• open and hidden charm production, which gives constraints on the transport
properties of the QGP (open charm) and on the modification of the QCD
binding in a deconfined medium (charmonium).
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The concept of the experimental set-up is inspired by the former NA60 experiment
relying on a muon spectrometer, covering one unit of rapidity, and a vertex spectrom-
eter. The muon spectrometer will feature a toroidal magnet, and its tracking system
will be based on six stations: two of them located upstream, two downstream of the
toroid, and the last two stations afterwards a graphite absorber. A schematic view of
the NA60+ detector is shown in Fig. 7.6.

Fig. 7.6: Schematic layout of the NA60+ detector, drawn with Geant4 [183].

The vertex spectrometer, positioned immediately downstream of the targets, will
consist of a series of stations (from 5 up to 10) of high-granularity and low material
budget monolithic active pixel sensors (MAPS), the same technology employed in
the ALICE ITS2. This will guarantee an efficient tracking of the large number of
produced charged particles that are expected to be in the order of ∼ 400 for central
Pb–Pb collisions at top SPS energy.

The NA60+ unique set-up could represent an opportunity to extend the physics
programme of the experiment to study the production of hypernuclei up to A=7.
Indeed, the low energy heavy-ion collisions delivered at the SPS are particularly
interesting for this purpose, since the stopping of the baryonic fragments during the
ion collisions favours the formation of hyper-nuclear clusters. Figure 7.7 shows the
expected production of hypernuclei in Pb–Pb collisions as a function of the centre
of mass energy according to the SHM in [186, 187]: the green band highlights
the energy range accessible to the NA60+ experiment. The production rate of
hypernuclei in NA60+ is expected to be enhanced with respect to the ALICE one
by more than two orders of magnitude for all the hypernuclei. In the following, the
expected production of 5

ΛHe is used as an example to illustrate the potential of the
NA60+ hypernuclear physics programme.
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7.2.1 Production of 5
ΛHe

The analysed decay channel of the 5
ΛHe is: 5

ΛHe →4 He + p + π−, which has an
expected branching ratio of approximately 32% [188]. In principle, the current
concept of the NA60+ detector does not include a PID system, even if the possibility
to add silicon timing layers after the MAPS stations is currently under investigation.
However, the proposed minimal configuration of the vertex spectrometer (VT) of
NA60+, with five tracking stations using MAPS detectors, allows for the separation
of heavily ionising particles from ordinary hadrons by looking at the size of the
clusters associated with the tracks. This interesting property was studied at the time
of the ITS2 TDR [184], and it is confirmed by the preliminary studies performed
on the ALICE Run 3 data. In order to study the performance of the NA60+ VT, a
dedicated fast simulation and reconstruction tool has been developed featuring:

• layout description module, which allows describing the experimental set-up as
a combination of thin sensitive and extended passive material layers;

• a fast simulation engine that, starting from the initial kinematics and position
of the particle, performs its transport through the detector and registers the
hit positions at all the sensitive layers;

• a Kalman filter based track reconstruction engine, inherited from the ALICE
one.
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The expected yield and the momentum distribution for the 5
ΛHe are sampled from the

Thermal-FIST event generator [175], which produces particles according to the SHM
abundances and with a momentum distribution given by the MUSIC hydrodynamical
model [189]. The particle is then propagated through the NA60+ detector, and the
reconstructed daughter tracks are employed to estimate the projected performance
for identifying the 5

ΛHe. The signal expected in 1010 Pb–Pb collisions at the lowest
collision energy provided by the SPS is generated and reconstructed. In order to
estimate the background, a sample of 106 central Pb–Pb collisions is generated:
under the assumption that Z=2 nuclei can be cleanly identified by means of their
cluster size, the main background is expected to come from the combinatorics of
primary and secondary Z=2 nuclei with other hadrons from secondary vertices. A
sharp selection on the cos(θp) (0.9999) of the decay products can be applied to
reduce the combinatorial background, which is then parametrized with a constant
function and rescaled to match the number of events simulated for the signal.

Figure 7.8 shows the projected performance for the 5
ΛHe: the reconstructed invariant

mass spectrum is fitted with a DSCB and a constant function, to model the signal
and the background contributions, respectively.
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Fig. 7.8: Invariant mass spectrum of the 5
ΛHe reconstructed in NA60+ with a minimal

configuration of the vertex spectrometer.

The number of reconstructed 5
ΛHe will be ∼ 7 times larger than the number of 3

ΛH
analysed in this thesis in the same collision system. Hence, a complete characteri-
zation of this hypernucleus will be achieved. Furthermore, the 90 keV uncertainty
associated with the mass peak position (the µ parameter in Fig. 7.8) will allow for a
precision study of the binding energy of the 5

ΛHe, which is almost unexplored in the
literature (see [46]).

Similar analysis strategies can be adopted to study lighter and heavier hypernuclei
and to look for evidence of the existence of light Ξ hypernuclear states [190].
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Furthermore, the possibility of directly tracking the hypernucleus, as illustrated in
the previous section, is here not discussed but it will allow NA60+ to dramatically
reduce the background for the hypernuclear measurements.
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8Conclusions

This thesis was focused on the measurements of the properties of the hypertriton
(3
ΛH), the lightest Λ-hypernucleus. The goal was to measure with the highest possible

precision the 3
ΛH lifetime τ and the Λ separation energy BΛ. These quantities, if

measured together, can be used to test different theoretical models describing the 3
ΛH

structure, and to constrain the value of the 3
ΛH radius. Both τ and BΛ of the 3

ΛH have
been measured by exploiting the large Pb–Pb dataset collected by ALICE during 2018,
the last year of the LHC Run 2. The 3

ΛH signal was selected by employing a Boosted
Decision Tree classifier, which was shown to improve the statistical significance
of the 3

ΛH signal with respect to the previous selection method. The combined
measurements of the 3

ΛH lifetime and BΛ are presented in Fig. 8.1, and they are
shown together with state-of-the-art theoretical predictions based on chiral effective
field theory.
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Fig. 8.1: The 3
ΛH lifetime relative to the free Λ lifetime as a function of the BΛ for pionless

EFT [76] (green), χEFT [77] (light blue), and the original π exchange calcula-
tions [159] (blue). The red point represents the measurement presented in this
work with the statistical and total uncertainties depicted with lines and ellipse,
respectively.

Both the measurements definitely demonstrate the weakly bound nature of the
3
ΛH, thus rejecting models predicting a compact structure for this hypernucleus.
Furthermore, the BΛ value of 102 ± 63 (stat.) ± 67 (syst.) keV is in close agreement
with the BΛ value traditionally used by the theoretical community to describe the 3

ΛH
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structure, BΛ = 130 ± 50 (stat.). According to [69], this translates into an extremely
wide deuteron-Λ radius of ∼ 11 fm.

One of the main consequences of the weakly bound nature of the 3
ΛH is that the 3

ΛH
yield in p–Pb is a sensitive probe to discriminate among the nucleosynthesis models:
while coalescence is directly influenced by the ratio of nucleus size to source size,
the SHM treats all the particles as point-like [95, 98, 169]. In this thesis, the first
measurement of 3

ΛH production in p–Pb collisions was achieved: the use of the BDT
Classifier allows for the first time to extract the 3

ΛH signal with a significance higher
than 4σ. The 3

ΛH/ Λ yield ratio measured in this thesis favours the coalescence
models, and it excludes a very popular interval of configurations of the SHM that
successfully describes the light flavour hadron yields. This result is supported by the
first measurement of the 3

ΛH/ Λ yield ratio in high-multiplicity pp collisions, which is
still in a preliminary stage. The ratios are shown in Fig. 8.2: the 2-body coalescence
model clearly describes the suppression of the 3

ΛH production at low charged-particle
multiplicity.

ALI-PREL-495342

Fig. 8.2: 3
ΛH/Λ measurement in p–Pb (in red), pp (in orange) and Pb–Pb collisions [179]
(in blue) as a function of mean charged-particle multiplicity. The vertical lines and
boxes are the statistical and systematic uncertainties, respectively. The expecta-
tions for the canonical statistical hadronization [95] and coalescence models are
shown [98].

The main remaining issue to be addressed for the 3
ΛH is the precise measurement

of its two-body / three-body decays relative branching ratios. Indeed, the 3
ΛH

signal extraction from its three-body decay channel is a challenging task due to
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the presence of a Λ-deuteron correlated background, biasing the shape of the 3
ΛH

invariant mass spectrum. This will change during the LHC Run 3, when the 3
ΛH track

will be reconstructed together with decay products. The new tracking and matching
algorithm was presented in Chapter 7, and it will allow for the measurement of the
3
ΛH three-body decay channel. Finally, the possibility to start a wide hypernuclear
physics programme with the NA60+ experiment was discussed in Chapter 7: a
dedicated performance study was done for the 5

ΛHe, employed as a case study. The
study showed that the NA60+ apparatus will be capable to measure the properties
of poorly known hypernuclei, such as the 6

ΛHe (see the Mainz hypernuclear database
[46]), and possibly to observe for the first time light double-strange Ξ and ΛΛ
hypernuclei.
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9Appendix

Several pT distributions have been employed in this thesis to model the 3
ΛH pT shape.

In this appendix these functions are briefly described.

9.1 Blast-Wave distribution

The phenomenological model for producing hadronic matter in heavy ion collisions,
as described in [191], serves as the basis for the Blast-Wave distribution. The model
is developed by starting out with thermalization as the basic assumption and adding
more features as they are dictated by the analysis of the measured hadronic spectra.
The distribution is written as:

1
pT

dN

dpT
=
∫ R

0
rdrmTI0

(pTsinhρ

Tkin

)
K1
(mTcoshρ

Tkin

)
(9.1)

where the parameter ρ contains the dependence on the velocity profile, since it is
expressed as:

ρ = tanh−1
[( r
R

)n
βT
]

(9.2)

In the previous equations, mT is the transverse mass, I0 and K1 the modified
Bessel functions of the first and second kind, respectively, r is the radial distance on
the transverse plane, Tkin is the kinetic freeze-out temperature, βT is the average
transverse velocity, and n is the exponent of the velocity profile.

9.2 Maxwell-Boltzmann distribution

The Maxwell-Boltzmann statistics describes the distribution of transverse momentum
of particles in a thermalized medium. It is defined as:

1
pT

dN

dpT
= pT ·

√
p2

T +m2
T · exp

(
−

√
p2

T +m2

T

)
(9.3)
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9.3 Transverse momentum and mass exponential
distributions

The pT andmT exponential distributions have been successfully employed to describe
the pT shape of identified particles in high-energy collisions [172, 192, 193]. The pT

exponential is defined as:

1
pT

dN

dpT
= pT · exp

(
−

√
p2

T
T

)
, (9.4)

while the mT exponential is:

1
pT

dN

dpT
= pT ·

√
p2

T +m2
T · exp

(
−

√
p2

T +m2

T

)
. (9.5)
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