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Abstract. The Diagnostic Subsytem in the LISA Technology Package (LTP) on board the
LISA Pathfinder mission (LPF) will characterise those external disturbances with a potential
impact on the performance of the experiment coming from either thermal, magnetic or charged
particles perturbations. A correct design of the experiments to measure these effects in flight
requires a closed loop analysis that takes into account the dynamics of the test masses, the
force applied by the controllers and those noisy terms (coming from sensing or force noise) that
enters into the loop. We describe this analysis in the thermal case and we give a first numerical
example of the instrument response to controlled thermal inputs.

1. Introduction
The LISA Technology Package Experiment (LTP) [1] on board LISA Pathfinder (LPF) mission
will test key technologies for the future space borne gravitational wave detector LISA [2], a
collaborative project between ESA and NASA. The LTP main concept consists in two test
masses in nominally geodesic motion inside two separate high vacuum chambers; an optical
metrology subsystem (OMS) [3] senses the relative distance to a given level of resolution that
fixes the instrumental sensitivity. The test mass position relative to the spacecraft is controlled
by the surrounding electrodes which act both as sensing and actuator elements; jointly with
the micropopulsion thrusters they conform the Gravitational Reference Sensor (GRS) [4]. The
high gain drag-free control loop forces the spacecraft to follow one test mass whereas the low
frequency suspension loop allows to keep the differential acceleration noise between both test
masses in the required top level performance sensitivity. For the LPF this value is expressed as

S1/2
∆a (ω) ≤ 3× 10−14
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)2
]

m s2/
√
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in the bandwidth 1 mHz ≤ ω/2π ≤ 30 mHz. There are various noise sources contributing to
this noise budget and, among these, there are some that will be monitored by the Diagnostic
Subsystem of the LTP [5], which is designed to measure temperature and magnetic fluctuations
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in those places where these magnitudes have a particular strong coupling with the main geodesic
measurement, and that also will characterise the charged particle shower hitting the test mass.
Diagnostics will play an active role as well in the noise model investigation process during
the mission lifetime. The temperature and magnetic subsystem will count with heaters and
coils which will allow, not only an environmental characterisation, but a full noise projection
campaign. In particular, we will address here the thermal diagnostic case, consisting on 24
NTC (Negative Temperature Coefficient) sensors, 14 heaters and the front-end electronics [6]
already tested to achieve the required performance [7]. Although on ground characterisation of
these environmental coupling have been already performed, the experiment design on board the
satellite needs to take into account the in-loop operation of the mission. In the following we
will briefly describe how thermal experiments enter into the LTP control loop and give some
numerical examples of the kind of signals planned to be injected. Before that, we first summarise
the experimental results of some thermal coupling factors obtained so far.

2. Open loop characterisation of thermal effects
Thermal experiments on board the LTP can be split in three different groups: (1) experiments on
the Electrode Housing (EH), (2) experiments on the Optical Window (OW) and (3) experiments
on the CFRP (Carbon Fiber Reinforced Plastic) struts holding the LTP Core Assembly inside
the thermal shield. Among these, experimental results exist for the two first ones and those will
be the ones addressed here. The third one is more of a structural kind and has been studied by
means of FEM simulations [8].

Heaters and temperature sensors in the electrode housing will test the coupling of the test
mass motion against temperature dependent effects as radiation pressure, radiometer effect and
outgassing. Experiments on ground set the coupling factor related to this effects to be of the
order '100 pN/K in a torsion pendulum experiment [9].

The optical window is an interface which seals the vacuum enclosure containing the electrode
housing and, at the same time, lets the laser beam go through for interferometric metrology
with the test mass. The optical window is the only non-bonded optical element in the optical
metrology subsystem and, since it is clamped in a titanium flange, it will be sensitive to thermal
and stress fluctuations. Experiments on ground have allowed modelling the response of the
interferometer phase when a heat pulse is applied to the window. The analysis showed that
the response can be described by an ARMA(2,1) transfer function relating temperature and
phase [10]:

G(α0, α1, β1) =
α0 + α1 z

−1

1 + β1 z−1
(2)

The model parameters were found to be related with the mechanical (Young modulus) and
thermal properties (thermal expansion) of the materials forming the window.

3. Closed loop analysis of thermal disturbances
The LTP dynamics control loop is shown in figure 1. The scheme shows two control loops for
the two measurement channels: the distance from the first test mass to the spacecraft (x1) and
the distance between the two test masses (x12). Following the notation in [11], we can describe
the dynamics of the two measurement channels in terms of the following set of equations

D · ~q = ~g (3a)
~g = −C · ~o− ~gn (3b)
~o = S · ~q + ~on (3c)
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Figure 1. Simplified scheme for the dynamics control loop in the LTP. Boxes describe the
interferometer (IFO), controllers (C) and dynamics (D). Rhombus represent noise contribution
and triangles stand for cross-coupling between first (ox1) and second channel (ox12).

where the D is the dynamical matrix, C the controller, and S stands for the inteferometer,
i.e. the matrix translating the position of the TM, ~q, into interferometer read out ~o. Subindex
n stands for noise quantities, either sensing noise (on) or force noise (gn). These matrices read
as

D =
(

s2 + ω2
1 0

ω2
2 − ω2

1 s2 + ω2
2

)
C =

(
Hdf 0
0 Hsus

)
S =

(
1 0
δS 1

)
(4)

where the diagonal terms describes each channel dynamics (e.g. s2 + ω2
1 is Newton’s law in

Laplace domain for the first test mass, being ω1 the test mass stiffness) and control law (e.g. Hdf

stands for the drag free transfer function controller on the first test mass). The non-diagonal
terms are cross-coupling between the two channels appearing as triangles in figure 1. From the
previous expressions we can work out the response of the interferometer once all the dynamical
and noise parameters are given,

~o = (D · S−1 + C)−1(~gn + D · S−1~on) (5)

This equation defines a nominal output for the interferometer and this will be the variable
that we will use to the effect of thermal forces in the experiment in next section.

3.1. Closed loop thermal transfer functions
In order to evaluate the interferometric response of the experiment to an input signal we need to
translate its effect into a measured variable in our previous nomenclature. This effect will differ
depending on the heating location under consideration. When heating the electrode housing
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Figure 2. Closed loop thermal transfer functions for the electrode housing (Heh) and the optical
window (How).

a net force will be applied to the test mass coming from radiation pressure, the radiometer or
outgassing effects. Hence we need to introduce a term

~geh = Geh · ~Teh (6)

in equation (3b), where Geh is a matrix with the thermal coupling factors and Teh refers
to the temperatures measured in the electrode housing. Following the same scheme, a thermal
gradient in the optical window will produce a fake test mass displacement, i.e the interferometer
will measure a displacement of the test mass though it will not be caused by any displacement but
from mechanical stress and thermal distortions on the optical window glass [10]. The coupling
in this case is described as a term

~qow = Gow · ~Tow (7)

in equation (3c). Introducing thermal contributions into the dynamics equation and working
out the expressions we end with one equation gathering all the relevant information,

~o = (D · S−1 + C)−1(~gn + ~geh + D · ~qow + D · S−1 · ~on) (8)

from where we derive two closed loop transfer functions for heat inputs coming from the
electrode housing or the optical window to the output interferometer read-out,

Heh = (D · S−1 + C)−1 ·Geh (9)
How = (D · S−1 + C)−1 ·D ·Gow (10)
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Figure 3. Typical thermal signal spectrum. Dot-dashed line represents a 50 s pulse at 250 mW
applied to the optical window whereas dashed line is obtained by applying a series of 500 s pulses
at 6 mW alternatively to both electrode housing walls to produce a 2 mHz signal.

These expression, evaluated with typical dynamical parameters in figure 2, will help to
correctly design thermal experiments in flight. We next show how, according to the derived
expressions, the heaters that form part of the thermal diagnostic subsystem can produce a
signal clear enough to evaluate the thermal model parameters.

3.2. Thermal experiments
The evaluation of the interferometer output during thermal experiments requires the definition
of an input thermal signal according to the available hardware in each location. In the electrode
housing case, since heaters must be inside the GRS vacuum enclosure and strong vacuum
restrictions applies, NTC sensors will be used as heaters and consequently the available power
will be only of 90 mW. The heating strategy in this location is to alternatively switch on and off
heaters on each side of the test mass in order to apply a periodic force in the test mass so that
it peaks in the measuring bandwidth. As seen figure 3 and assuming that the expected in-loop
noise floor in the second interferometer channel is S1/2

o12 (ω) ' 10−10 m/
√

Hz at 1 mHz, the high
sensitivity of the test mass to electrode housing thermal gradients makes it possible to measure
this effect with a signal-to-noise ratio high enough to measure the model parameters with high
accuracy.

In the optical window case, the available power for the heaters is of 1 W. As before, when
compared with the expected instrument noise level, a typical input in this case produces an
output strong enough to allow a good parameter estimation.
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4. Conclusions
The thermal diagnostic subsytem on board the LTP will play a key role in understanding the
noise model and to optimise the performace of the experiment. Here we have described the
thermal diagnostic subsystem in closed loop, taking into account different noise contributions
and the dynamics of the test masses. We have applied this formalism to the electrode housing
and the optical window case, and obtained the transfer functions relating a thermal signal input
to the measured interferometer signal. These transfer functions will allow a precise definition of
the input signal that must optimise the measured output.

According to the current design, we have shown that typical thermal signals applied by the
heaters on board the LTP will allow the determination of the parameters describing thermal
effects with a good accuracy. The detailed analysis of these signals and the related parameters
estimation is ongoing work and will be reported elsewhere.
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