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ABSTRACT

We discuss the singlet sector of the d = 1 matrix model in terms of a Dirac fermion formalism.
The leading order two- and three- point functions of the density fluctuations are obtained by
this method. This allows us to construct the effective action to that order and hence provide
the equation of motion. This equation is compared with the one obtained from the continaum

approach.

1] [2] [3 .
In recent works' " we have studied the

problem of two-dimensional quantum field the-
ories coupled to gravity. Our original motivation
to do this was to arrive at a natural setting for
the theory space formulation'™ "™ of string theory,
where, (1) there is no restriction on the central
charge of the matter sector, and, (2) the the-
ory has, within it, the ingredients to describe
trajectories which join special points in the the-
ory space, namely the classical vacua which cor-
respond to conformally invariant theories. One
of our main results has been that the matter +
gravity system can be regarded as a field the-
ory of the Liouville mode and matter fields in
the background of the fiducial metric. Generic
couplings or backgrounds now depend both on
the Liouville mode and on the matter degrees of
freedom and satisfy equations of motion in d + 1
variables (d = matter, 1 = Liouville). This is
because reparametrization invariance of the the-
ory implies that all objects, in which the confor-
mal mode has been integrated, should be Weyl-
invariant in its dependence upon the fiducial met-
ric. This condition, stated as the vanishing of the
‘B function’, gives rise to the equations of mo-

tion™. Other related works are due to J. Polchin-

skim, and, T. Banks and J. Lykkenm.

These ideas were illustrated in various sitna-
tions:

(a) For d-scalar fields interacting with 2-dim.
gravity, we proved that this system quan-
tized in the light cone gauge is exactly
mapped into the conformally invariant field
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theory of d + 1l-scalar fields, with
background charge. At d = 25 we obtained
the exact tree level S-matrix and spectrum
of the “d = 26 critical string”.

In the case of d < 1, we considered the
(m, m+1) minimal models coupled to grav-
ity, and could effectively describe the inter-
polation between two minimal models, for
m very large, by means of a ‘string field’
that depends only on the Liouville mode, a
function x(n) which satisfies the field equa-
3

tion
(0,2 +Q8, +h)x(n) = b*(n) + ofx) (1)

In the case of d-scalar fields coupled to grav-
ity, perturbed by a ‘tachyon’ background,
the tachyon coupling T ,which depends on
d coordinates ¢; and the Liouville mode 7
satisfies the d + 1 dimensional field equa-
tion™!

(a,f + Q8 + ;0 + 2)T(¢, n)
+T2(¢)T’)+ ce=0

(2)

where
25—-d
= A —— 3

9=y )
The coupling of other backgrounds like the
metric, antisymmetric tensor and dilaton
can be discussed similarly. To see the spec-
trum from equation {2), one eliminates the



linear derivative piece by defining

T = e Yor7

(8,2 + 6,8 + '3'(8 - Qz)))f,(¢a 77)
+e 1P (gn) 4+ =

(4)

This equation tells us that the spectrum at
d = 1 (i.e., Q% = 8) is that of a massless parti-
cle. For d > 1, there is a tachyon in the spec-
trum and hence for much the same reasons as in
26-dimensional critical string theories, where it
ruins the perturbation expansion, these theories
may not exist. It is likely that the tachyon per-
tur@ﬁtion drives d > 1 theories to a stable point
which is d = 1. It would also be interesting to
understand how one can reach models withd < 1
by appropriate perturbations of the d = 1 model.

Qur main purpose here is to discuss the cut-
off string field theory at d = 11 m}, formulated
as the quantum mechanics of the matrix hamil-
tonian which was originally discussed by Brézin,
Itzykson, Parisi and Zuber'”

1 2
H-—WVM +Ntr V(M) (5)
where V% is the laplacian in the space of herme-

tian matrices and V(M) is a polynomial. We can
expect the results of the continuem theory and
that from the matrix model approach to agree in
the low momentum region only.

Since this hamiltonian is invariant under
U(N) transformations, M — UMU?", there
would be wavefunctions transforming according
to various different representations of U{N). (To
be more precise, these consist of the trivial rep-
resentation and the representations that can be
generated by taking products of the adjoint.) It
is not yet clear whether states which transform
nontrivially under U(N) are related to the string
degrees of freedom. Presently we will analyse the
singlet sector of model. We use the fermionic
representation of this sector as explained below.
This representation has two major advantages.

(a) The model is well defined even for finite N
and for noncritical values of the coupling.
Hence the nature of the various regular-
izations are most clearly recognized in this
picture.
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() It is easier to see various approximate and
exact symmetries of the system from this
point of view.

As in well known, V% acting on the singlet
sector wave function ¥/(A) has the form

Vi(A) A)(z W)A(A)w( ) 6

where A = (A,--+,Ay), A; being the eigenvalues
of M. A(A) is the Vandermonde determinant

a(A) = I - 2) (")

i<y

H we use x(A) = A(A)Y(A) instead of ¥(A)
as the wave function, the effective hamiltonian
becomes

1
Hp= -5 8A2+NZV (8)

This is the hamiltonian for non-interacting par-
ticles, However, since ¥(A) is symmetric, x(A)
is antisymmetric. Hence the problem reduces to
that of noninteracting fermions moving in an ex-
ternal potential.

The ground state is obtained by filling the N
states which are lowermost in energy. The cor-
responding total energy becomes singular when
the Fermi energy of the system approaches the
value of the potential at a stationary point. This
is related to the fact that the time period of the
classical orbits corresponding to the states near
the fermi surface starts diverging when they can
approach the stationary point. In the semiclassi-
cal analysis one can obtain the nature of the sin-
gularities. Also one can take the double-scaling
limit by keeping fixed the energy difference be-
tween the value of the potential at the stationary
point and that of Fermi energy as N goes to in-
finity, Inverse of this energy difference can be
identified as the string coupling constant, gmm

We have developed a Dirac fermion formal-
ism for the states near the Fermi surface which
works well for the leading contributions and lends
valuable insight into many results.

To obtain the equations of motion we write
this theory as a second quantized theory with the



action

S = /dt dx x1(2, (8, + %af-
NV())x(At) ()
+ /dt dx Nao(A, t)x (X, t)x (A t)

where x(},t) is a second-quantized fermion field
in two dimensions and a,(A, t) is the source func-
tion conjugate to density. It corresponds a cou-
pling of the form Etr M*"(t)a,(t) in the origi-

nal matrix model, where a,(t) = [dX A* a3(),1).
The corresponding vacuum to vacuum amplitude
Z[ao] contains the information of all correlation
function of density. Let

Flao] = In Z[ay] (10)

By taking the Legendre transformation of Flaq]
we obtain the effective action I'[p] where

p(A;t) = 52?(&?1) (11)

and
Tl = [ dh di o Dl 0) - Flaol (12

When a, = 0 we have

6T(e]

00 " (%)

which is the quantum equation of motion.
Since we are looking at an effective bosonic

theory we define the field vamable that is used
for bosonizing relativistic fermion theories,

A

00 = [0 0-<p00>) ()
We will find, perturbatively, the leading order
terms in the equation of motion in terms of this
variable.

Dirac fermion representation

In the following we briefly indicate how this
result was obtained using a Dirac fermion rep-
resentation. This is essentially by a change of
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variables from A — 7 = fA po(A")dN, and scaling

the hamiltonian by the fermi level wave function,

0= (eq:iNO,p;l/"‘)H(p}/Ze:&iNe,)
g4 _1 4,4
=¥ TN

where H(p;/zeimel) - E,«(p}/zeimef).

To get the scales right, let us make some es-

timates. The leading order large N solution of
the equation

(15)

Hé=E (16)

is

1
¢ = constant X ———mm——=——X
V2er - V(A)
oY [} e fates-van)

(17)

where
E
¢ =7 (18)
If we choose the constant to be 1, we have
1
PG P —
2(er = V()
A (19)
0,() = /d,\'\/z(eo ~vY)
and
p10; =1 (20)

Let the potential have a maximam at A, with
V"(Xo) # 0. If we take a solution for ¢, very
near V(o) then most of the probability is con-
centrated near that tip. Classically this is man-
ifested by the particle spending a lot of time
near the turning point, which is very close to
the rather flat region around the potential max-
imum.

In this region V(X) & V(Xe) — 2[V"(Aa)|(A -
Xo)?

T—a

A ' 1
" / TV =2 = 27 () — &)

A

1 / A 1
RETTZISWINE 1/2
(I ( 0)|) - ((/\l — /\0)2 — 2“)

(21)
By convention we make V'"(};) = —1 and define

¢ to be V(X)) — €.



Upon integration we get

T —a=cosh™! (/\—

Ao
e 22
=) @
or
A= Ao+ y/2pcosh(r — a) (23)
where a is the value of 7 at the turning point.
Now
2 1

~— 24
Pi 4y sinh’(7 — a) (24)

gowd_ 18 1 8
T ar ~ 8Nuorsml’(r — a) 07

(25)

This estimate can be trusted, when 7 is not too
near a.

To recover an approximate relativistic
fermion picture from a nonrelativistic one, the
most natural thing to do is to take the refer-
ence energy level E, to be the Fermi level E;.
H we now want the expression of H in terms of
T to be a scaled expression, that is, if we want
to keep 7 — a as a scaled variable, we have to
have Ny = fixed. (This is true irrespective of
the semiclassical approximation that we made to
reach this expression of H.)

Strictly speaking, for this problem, the wave
functions are not exactly like p!/2¢™¥® and
p'/?e=*¥® but a specific linear combination which
depends upon the energy and the the boundary
conditions. In terms of 7 variables, p'/2e*'¥ @ af.
ter the relevant transformation looKs like a plane
wave in the leading order. The extent of clas-
sically allowed A — ), is roughly from @ to say
1. Corresponding range of 7 — a is from 0 to
in # The level spacing goes as inverse of this
range. Hence the boundary condition can give
rise to mixing of left moving and right moving
plane waves which can change the energy atmost
by # This vanishes in the scaling limit.

”

Thus we are allowed, in the scaling limit to
deal with chiral states which are almost exact
eigenstates. The hamiltonian which makes the
right moving states near the Fermi surface look
like plane waves is

3 ! 1 O &
Hp = —18, — Ej—v—d,p? . (26)

The hamiltonian which does the same for the left
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moving states is

. . 1
Hp = 28, - mafpiar (27)

Both the hamiltonians have the information
about all the states. However, for the left moving
states the second term in H 7 cannot be consid-
ered as a small perturbation. Similar problem
arise for right moving states and H;.

Thus, for the calculations where only states
near the Fermi surface matter, one can describe
the left moving states by H; and the right mov-
ing by Hy. This gives a Dirac hamiltonian. In
the second-quantized notation the hamiltonian is

= [ar(W i, vl i) @)

To be honest one should discard half the so-
lutions of each of the hamiltonians, not to over
count the states. This would be some ultraviolet
cut off in the theory. This cutoff would refer to
the value of the momenta where the second term
starts dominating over the first. For calculations
involving processes near the Fermi surface, this
cutoff is not important.

In many of the leading order calculations,
this problem does not show up. This effective
ultraviolet cutoff parameter, in a certain region
of 7, is finite in the scaled picture (as opposed
to the semiclassical case). Hence one has to be
careful about it.

We now briefly indicate the results of the cal-
culation of the 2 and 3 point functions of the den-
sity which corroborate our guess of the effective
action to leading order.

The two-point function of density fluctua-
tions

GP(1,2) =< 0|Tp( A,y t1)p( X2, 82)]0 >, (29)

(A, t) is the eigenvalue/fermion density. If we
look only at the connected part, we would see
the correlation of density fluctuation, p(}, t)— <
p(A,t) >, only. This density fluctuation can be
represented also by x'y normal ordered with re-
spect to the Fermi sea.



H we change over to 7 variables we have
G?(1,2)
=< O|T (11, 1) p(73, 220 >, (30)

), dA
dTl i, 2 < OIT p( Ay t1)p( ey 12)]0 >

We call ¥ =%, and Xz = ¢

txty oo 7/1_*,_1/4 sty (31)

G®(1,2)
=< 0|7 : gL ()9, (1) = 9L (2)9,(2) : jo >
+(+—=-)

Take ¢, > t; and consider

<0|: ¢t (y_(1) =9t (2)y_(2) =0 >

- 5011,2)50(1,2) %)

In the leading order the particle and hole
propagators are identical and charge conjugation
symmetry is explicit,

- - w - —i(n wt
515):5{):5;25 (s +het;, (34)
=0

Using these formulae the 2-point function is cal-
culated to be

é<2>(1,2) =

bt l(Ehg jwrig)
8 (9 /dE ]
371 61‘2 47r3 E? - 2 4 z¢

(35)
The expression inside the square bracket is the
correlator of a free bose field. This is not sur-
prising since what we have done is to bosonize
the noninteracting fermions in a finite volume.
We identify the free Bose field through the well

known relation

Yl = 8.4 (36)

One can then see equation (37) coming out im-
mediately from the Bose field correlator.

The three-point function of density fluctu-
ations

For fermions satisfying the Dirac equation,
the three point function of density is zero. This
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is a consequence of the charge conjugation sym-
metry of the Dirac hamiltonian. In other words,
it is a consequence of the symmetry of the prob-
lem under reflection about the Fermi level. How-
ever, we know that this symmetry is broken in
the nonrelativistic model and this is caused by
the second term in the hamiltonian. This term,
treated as a perturbation, should provide sys-
temadtic order by order contributions to the three
point function.

The lowest order contribution to the three-
point function

G®(1,2,3) =< 0] : pL (1), (1) = 91 (2)%4(2) :
UL ()4(3) 10 > +(+ - -)

(37)

{t: > t; > t3) turns out to be the following
lengthy expression after a long calculation.

b 4

6(3)(1,2,3) — E _‘f’__.e-"iwff-"(iz ~j1)tg +ifatg

3
Juia=l

[w_l“gs{h(.h — 72)0(jr — j2)(1 — tj1wi])
+ J251(1 = i(52 — J1)wty)
+ 51— )0z - 2)(1 + z'jzwt;)}

— 52(j1 = J2)O(5h - jZ)(Z(e V(l))

Tl

i [ =)

. . 1
—szl('z‘(?i'va)‘)

o 7 dr
+z(12—11)‘”/2—(e':-_i73)
~ 12 = 71)0(j —jl)(z(e_—lv_(iﬁ_

T3

i [ 77)
+(t-—>t+a.nd ]2—(%%
[

O(z) being the Heaviside function.

(38)

The structure of the effective action

We want to keep only terms upto the order



of Nl in the equation of motion. It can be easily
seen from N counting that if we normalize the
two-point connected Green’s function to be or-
der 1, then the order of the n-point connected
function is N?~®., Hence we need to consider
only the two-point and the three-point function.
The leading contribution to the three-point func-
tion is of the order 1/N. The 1/N contribution
to the two-point function cancells off. This is
because the two-point function of the density is
Si(1,2)5,(1,2) which is 5(1,2) in the lowest or-
der. The next order is §(5,(1, 2)5,(1,2)). Since,
in the lowest order AS, = —AS,, the first cor-
rection to the two-point funcion is zero. The cor-
rection is therefore ~ O(37).

Hence, from what we have done till now, we
can reconstruct in the lowest order quadratic and
cubic pieces of the effective action. The quadratic
piece is going to be that of a free boson field
which is 2 [ didr8,40_¢. We need to choose a
three-vertex which gives the correct three point

function. This three point function has two pieces.

One is proportional to w‘lg—:’, the other is not.

This first term is the dominant one for fixed A;,
il we calculate < IJ; p(Xi,2;) >. However if we
change over to scaled variable like 7—a then since

w~|lnAel™, Ae=V(l)—c¢
_].'_?_w_ ~ 1 1 -0 (39)
Nw 8¢ |InA¢|NAe

if NAceis held fixed when N — oc. On the other
hand quantities like

1 1 1 1
N2(e-V) NAesinh*(r —a)

(40)

remain finite. Hence we pay less attention to
the piece proportional to 82, The other piece
is a sum of two chiral contributions. This in-
dicates that the vertex is made of 3, ¢ and 8_¢.
Oy = %. In fact one can show that the required
interaction piece of the effective action is of the
form

—27?
Lue = - [ dri()(04)° - 0-9)).
(41)
It is remarkable that some very similar ac-
tion can be obtained if one tries to bosonize the
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fermion theory naively by using Mandelstam for-
mulae[m,
i _ 1
Yi(n)ys(m) = :’:2”(7.1 — 1)

T (42)
exp ( - wi/dr(qﬁ +¢')+0(n — Tz)z)

1

(Note that our normalization of ¢ is different
from Mandelstam’s.) Now, one can separately
differentiate in 7, and 7, and then take the limit
11 — T and use the result in equation { ) to
obtain the bosonic expression for the perturba-
tion.

We know that Mandelstam formulae depend
crucially on the short distance properties of the
Green’s function, which can be modified if the
perturbation is singular. This is precisely the
case here. Yet this procedure gives the same lead-
ing order effective action,except for a
% J dtdrp} 8¢ term (which, if genuinely present,
should shifts the background ¢ from zero to a
value ~ 0(+) and in that process give 0(+r) cor-
rection to the two point function which no longer
remain
translation-invariant ). It is possible that there is
a generalization of the Mandelstam formaulea in
our case, where terms more singular than —1-
appear, but they are always multiplied by higher
powers of 1/N (or gy.).

The equation of motion in the lowest order
looks like

8,0_4 = 7 [04(63(049)) - & (4}(0-9)")]
(43)
since

1 (44)
4psinh’(r — a)

for large 7 — @, i.e. for points far away from the
turning point,

py(r) ~

) e-2(r—-a)
Pf(r) ~ P (45)
Then
8484 = e 00| = (9,9)° +(8.9)’ o

+0,6826— 646" |

This is very similar to the tachyon equation. Note,
however, that the interaction terms consist solely



of derivatives of ¢ and not ¢ itsell. Also it can
be written entirely in terms of the currents j, =
84 ¢ + higher order terms.

Note added

While this work was in progress we became
aware of similar works by S.R. Das and A. Je-
vicki"" and""'7. Polchinski.
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