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ABSTRACT 

We discuss the singlet sector of the d = 1 matrix model in terms of a Dirac fermion formalism. 
The leading order two- and three- point functions of the density fluctuations are obtained by 
this method. This allows us to construct the effective action to that order and hence provide 
the equation of motion. This equation is compared with the one obtained from the continuum 
approach. 

In recent works we have studied the 
problem of two-dimensional quantum field the­
ories coupled to gravity. Our original motivation 
to do this was to arrive at a natural setting for 
the theory space formulation [4 ) (51 of string theory, 
where, (1) there is no restriction on the central 
charge of the matter sector, and, (2) the the­
ory has, within it, the ingredients to describe 
trajectories which join special points in the the­
ory space, namely the classical vacua which cor­
respond to conformally invariant theories. One 
of our main results has been that the matter + 
gravity system can be regarded as a field the­
ory of the Liouville mode and matter fields in 
the background of the fiducial metric. Generic 
couplings or backgrounds now depend both on 
the Liouville mode and on the matter degrees of 
freedom and satisfy equations of motion in d + 1 
variables (d = matter, 1 = Liouville). This is 
because reparametrization invariance of the the­
ory implies that all objects, in which the confor­
mai mode has been integrated, should be Weyl-
invariant in its dependence upon the fiducial met­
ric. This condition, stated as the vanishing of the 
{B function', gives rise to the equations of mo-
tion • Other related works are due to J. Polchin-
ski181, and, T. Banks and J. Lykkenm . 

These ideas were illustrated in various situa­
tions: 

(a) For d-scalar fields interacting with 2-dim. 
gravity, we proved that this system quan­
tized in the light cone gauge is exactly 
mapped into the conformally invariant field 
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The coupling of other backgrounds like the 
metric, antisymmetric tensor and dilaton 
can be discussed similarly. To see the spec­
trum from equation (2), one eliminates the 

where 

(c) In the case of d-scalar fields coupled to grav­
ity, perturbed by a 'tachyon' background, 
the tachyon coupling T,which depends on 
d coordinates <fo and the Liouville mode 77 
satisfies the d + 1 dimensional field equa-
j • [!][»] 
tion 

(b) In the case of d < 1, we considered the 
(ra, ra+1) minimal models coupled to grav­
ity, and could effectively describe the inter­
polation between two minimal models, for 
m very large, by means of a 'string field' 
that depends only on the Liouville mode, a 
function /c(rj) which satisfies the field equa­
te [3] 

tion 

theory of d + 1-scaîar fields, with 
background charge. At d = 25 we obtained 
the exact tree level 5-matrix and spectrum 
of the "d = 26 critical string". 



linear derivative piece by defining (6) It is easier to see various approximate and 
exact symmetries of the system from this 
point of view. 

As in well known, V2

M acting on the singlet 
sector wave function $ ( A ) has the form 

This equation tells us that the spectrum at 
d = 1 (i.e., Q2 = 8) is that of a massless parti­
cle. For d > 1, there is a tachyon in the spec­
trum and hence for much the same reasons as in 
26-dimensional critical string theories, where it 
ruins the perturbation expansion, these theories 
may not exist. It is likely that the tachyon per­
turbation drives d > 1 theories to a stable point 
which is d = 1. It would also be interesting to 
understand how one can reach models with d < 1 
by appropriate perturbations of the d = 1 model. 

Our main purpose here is to discuss the cut­
off string field theory at d = 1 1 8 1 1 9 1 1 1 0 1 , formulated 
as the quantum mechanics of the matrix hamil­
tonian which was originally discussed by Brézin, 
Itzykson, Parisi and Z u b e r I U ] 

where V2

H is the laplacian in the space of herme-
tian matrices and V ( M ) is a polynomial. We can 
expect the results of the continuum theory and 
that from the matrix model approach to agree in 
the low momentum region only. 

Since this hamiltonian is invariant under 
U(N) transformations, M -» UMlfl, there 
would be wavefunctions transforming according 
to various different representations oîU(N). (To 
be more precise, these consist of the trivial rep­
resentation and the representations that can be 
generated by taking products of the adjoint.) It 
is not yet clear whether states which transform 
nontrivially under U(N) are related to the string 
degrees of freedom. Presently we will analyse the 
singlet sector of model. We use the fermionic 
representation of this sector as explained below. 
This representation has two major advantages. 

(a) The model is well defined even for finite N 
and for noncritical values of the coupling. 
Hence the nature of the various regular-
izations are most clearly recognized in this 
picture. 
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where 

as the wave function, the effective hamiltonian 
becomes 

This is the hamiltonian for non-interacting par­
ticles. However, since ^ ( A ) is symmetric, x ( A ) 
is antisymmetric. Hence the problem reduces to 
that of noninteracting fermions moving in an ex­
ternal potential. 

The ground state is obtained by filling the N 
states which are lowermost in energy. The cor­
responding total energy becomes singular when 
the Fermi energy of the system approaches the 
value of the potential at a stationary point. This 
is related to the fact that the time period of the 
classical orbits corresponding to the states near 
the fermi surface starts diverging when they can 
approach the stationary point. In the semiclassi-
cal analysis one can obtain the nature of the sin­
gularities. Also one can take the double-scaling 
limit by keeping fixed the energy difference be­
tween the value of the potential at the stationary 
point and that of Fermi energy as N goes to in­
finity. Inverse of this energy difference can be 
identified as the string coupling constant, gGtt

{9]. 

We have developed a Dirac fermion formal­
ism for the states near the Fermi surface which 
works well for the leading contributions and lends 
valuable insight into many results. 

To obtain the equations of motion we write 
this theory as a second quantized theory with the 



action variables from À -> r = / A p0(À')dA', and scaling 
the hamiltonian by the fermi level wave function, 

where 

To get the scales right, let us make some es­
timates. The leading order large N solution of 
the equation 

is 

where 

If we choose the constant to be 1, we have 

and 

Let the potential have a maximum at A 0 with 
^ " ( A Q ) ^ 0. If we take a solution for e0 very 
near ^(Ao) then most of the probability is con­
centrated near that tip. Classically this is man­
ifested by the particle spending a lot of time 
near the turning point, which is very close to 
the rather flat region around the potential max­
imum. 

In this region 

By convention we make and define 
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Dirac fermion representation 

In the following we briefly indicate how this 
result was obtained using a Dirac fermion rep­
resentation. This is essentially by a change of 

We will find, perturbatively, the leading order 
terms in the equation of motion in terms of this 
variable. 

which is the quantum equation of motion. 

Since we are looking at an effective bosonic 
theory we define the field variable that is used 
for bosonizing relativistic fermion theories, 

When a 0 = 0 we have 

By taking the Legendre transformation of F[aQ] 
we obtain the effective action T[p] where 

and 

where x(^M) * s a second-quantized fermion field 
in two dimensions and %(A, t) is the source func­
tion conjugate to density. It corresponds a cou­
pling of the form ^^tr Mn(t)au(t) in the origi-

nal matrix model, where an(t) = JdX Xn t). 
The corresponding vacuum to vacuum amplitude 
Z[ao] contains the information of all correlation 
function of density. Let 
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p(\,t) is the eigenvalue/fermion density. If we 
look only at the connected part, we would see 
the correlation of density fluctuation, p(A, t)— < 
p(X7t) > , only. This density fluctuation can be 
represented also by X * X normal ordered with re­
spect to the Fermi sea. 

The two-point function of density fluctua­
tions 

In many of the leading order calculations, 
this problem does not show up. This effective 
ultraviolet cutoff parameter, in a certain region 
of r, is finite in the scaled picture (as opposed 
to the semiclassical case). Hence one has to be 
careful about it. 

We now briefly indicate the results of the cal­
culation of the 2 and 3 point functions of the den­
sity which corroborate our guess of the effective 
action to leading order. 

To be honest one should discard half the so­
lutions of each of the hamiltonians, not to over 
count the states. This would be some ultraviolet 
cut off in the theory. This cutoff would refer to 
the value of the momenta where the second term 
starts dominating over the first. For calculations 
involving processes near the Fermi surface, this 
cutoff is not important. 

Both the hamiltonians have the information 
about all the states. However, for the left moving 
states the second term in HR cannot be consid­
ered as a small perturbation. Similar problem 
arise for right moving states and Hi. 

Thus, for the calculations where only states 
near the Fermi surface matter, one can describe 
the left moving states by HL and the right mov­
ing by HR. This gives a Dirac hamiltonian. In 
the second-quantized notation the hamiltonian is 

moving states is Upon integration we get 

or 

where a is the value of r at the turning point. 

Now 

This estimate can be trusted, when r is not too 
near a. 

To recover an approximate relativistic 
fermion picture from a nonrelativistic one, the 
most natural thing to do is to take the refer­
ence energy level E0 to be the Fermi level Ef* 
If we now want the expression of H in terms of 
T to be a scaled expression, that is, if we want 
to keep T — a as a scaled variable, we have to 
have Nfx = fixed. (This is true irrespective of 
the semiclassical approximation that we made to 
reach this expression of H.) 

Strictly speaking, for this problem, the wave 
functions are not exactly like fp-f2e+iNe and 
pi/2e-tN®^ ^ut a S p e c i f i c linear combination which 
depends upon the energy and the the boundary 
conditions. In terms of r variables, p ^ 2 e ± , J V 0 , af­
ter the relevant transformation lodks like a plane 
wave in the leading order. The extent of clas­
sically allowed À — À 0 is roughly from 0 to say 
1. Corresponding range of r — a is from 0 to 
In The level spacing goes as inverse of this 
range. Hence the boundary condition can give 
rise to mixing of left moving and right moving 
plane waves which can change the energy atmost 
by j j p r , This vanishes in the scaling limit. 

Thus we are allowed, in the scaling limit to 
deal with chiral states which are almost exact 
eigenstates. The hamiltonian which makes the 
right moving states near the Fermi surface look 
like plane waves is 

The hamiltonian which does the same for the left 



If we change over to r variables we have 

We call 

Take and consider 

In the leading order the particle and hole 
propagators are identical and charge conjugation 
symmetry is explicit, 

Using these formulae the 2-point function is cal­
culated to be 

The expression inside the square bracket is the 
correlator of a free bose field. This is not sur­
prising since what we have done is to bosonize 
the noninteracting fermions in a finite volume. 
We identify the free Bose field through the well 
known relation 

One can then see equation (37) coming out im­
mediately from the Bose field correlator. 

The three-point function of density fluctu­
ations 

For fermions satisfying the Dirac equation, 
the three point function of density is zero. This 

The structure of the effective action 

We want to keep only terms upto the order 

being the Heaviside function. 

lengthy expression after a long calculation. 
turns out to be the following 

The lowest order contribution to the three-
point function 

is a consequence of the charge conjugation sym­
metry of the Dirac hamiltonian. In other words, 
it is a consequence of the symmetry of the prob­
lem under reflection about the Fermi level. How­
ever, we know that this symmetry is broken in 
the nonrelativistic model and this is caused by 
the second term in the hamiltonian. This term, 
treated as a perturbation, should provide sys­
tematic order by order contributions to the three 
point function. 
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of j in the equation of motion. It can be easily 
seen from N counting that if we normalize the 
two-point connected Green's function to be or­
der 1, then the order of the n-point connected 
function is N2~n. Hence we need to consider 
only the two-point and the three-point function. 
The leading contribution to the three-point func­
tion is of the order 1/N. The 1/N contribution 
to the two-point function cancells off. This is 
because the two-point function of the density is 
54(1,2)5,(1,2) which is 5 ( 1 , 2 f in the lowest or­
der. The next order is «5(5^(1,2)5,(1,2)). Since, 
in the lowest order ASk = — A 5 p , the first cor­
rection to the two-point funcion is zero. The cor­
rection is therefore ~ O(-p-). 

Hence, from what we have done till now, we 
can reconstruct in the lowest order quadratic and 
cubic pieces of the effective action. The quadratic 
piece is going to be that of a free boson field 
which is 2n J dtdrd+<j>d-<f>. We need to choose a 
three-vertex which gives the correct three point 
function. This three point function has two pieces. 
One is proportional to w " 1 — 1 . the other is not. 
This first term is the dominant one for fixed A,, 
if we calculate < YliPi^hti) >• However if we 
change over to scaled variable like r—a then since 

iiNAe is held fixed when N 00. On the other 
hand quantities like 

remain finite. Hence we pay less attention to 
the piece proportional to ~ . The other piece 
is a sum of two chiral contributions. This in­
dicates that the vertex is made of d+<f> and <9_<£. 
d± = In fact one can show that the required 
interaction piece of the effective action is of the 
form 

It is remarkable that some very similar ac­
tion can be obtained if one tries to bosonize the 

This is very similar to the tachyon equation. Note, 
however, that the interaction terms consist solely 

Then 

for large r - a, i.e. for points far away from the 
turning point, 

since 

translation-invariant ). It is possible that there is 
a generalization of the Mandelstam formulea in 
our case, where terms more singular than n * r a 

appear, but they are always multiplied by higher 
powers of 1/N (or ^ s t r ) . 

The equation of motion in the lowest order 
looks like 

crucially on the short distance properties of the 
Green's function, which can be modified if the 
perturbation is singular. This is precisely the 
case here. Yet this procedure gives the same lead­
ing order effective action,except for a 
^ / dtdrp2

fdP<j> term (which, if genuinely present, 
should shifts the background <f> from zero to a 
value ~ 0( j ) and in that process give O(-ĵ r) cor­
rection to the two point function which no longer 
remain 

(Note that our normalization of <f> is different 
from Mandelstam's.) Now, one can separately 
differentiate in ri and r 2 and then take the limit 
r i —• T 2 a n ( l u s e th e result in equation ( ) to 
obtain the bosonic expression for the perturba­
tion. 

We know that Mandelstam formulae depend 

fermion theory naively by using Mandelstam for­
mulae 1 1 2 1, 
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of derivatives of <j> and not <j> itself. Also it can 
be written entirely in terms of the currents j ± = 
d±</> + higher order terms. 

Note added 

While this work was in progress we became 
aware of similar works by S.R. Das and A. Je-
vicki1"1 and1"1 J. Polchinski. 

13. S.R. Das and A. Jevicki, Brown Preprint, 
1990. 

14. J. Polchinski, Texas Preprint, 1990. 

15. A.M. Sengupta and S.R. Wadia, TIFR 
Preprint TIFR-TH-90/33. 
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