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Abstract

The knowledge of structure of the matter, its properties and interactions are im-
portant for better understanding of the origin of the universe. High Energy Physics has
been dealing with the understanding of the fundamental constituents of the matter, i.e.,
the leptons, quarks, the intermediate gauge bosons and the interaction between them.
Scattering experiments starting from Rutherford’s famous experiment have played an
important role in the investigation of the inner structure of matter. Deep Inelastic
lepton-nucleon Scattering (DIS) provides quantitative test of Quantum Chromodynam-
ics (QCD) i.e., the measurement of quarks and gluon densities inside the nucleon. The
interaction among these constituents of nucleon can be described by different QCD evo-
lution equations. The structure functions of the nucleon which provide the information
about the partons (quarks and gluons) can be obtained as a solution of these evolution
equations.

Proton is one of the familiar particles around us and it is being used in the present
colliders where investigations are going on in search of new physics. So, the knowledge of
its structure is essential for the detailed perturbative QCD (pQCD) calculations of any
process involving proton. Among the proton structure functions, longitudinal structure
function F7, is important one to study as it is directly sensitive to the gluon distribution

in the proton. Theoretically and phenomenologically the measurement of F, structure



function helps one to distinguish different models describing the QCD evolutions at
small-x. Moreover, the structure function measurement remains incomplete without
the inclusion of this particular structure function measurement. Experimentally it was
measured at electron proton collider HERA over a wide range of Bjorken variable x

and the four momentum transfer in DIS process (2.

In pQCD among the QCD evolution equations, Dokshitzer-Gribov-Lipatov-Altarelli-
Parisi (DGLAP) evolution equation is the most fundamental one to study the @ and
x- evolution of structure function. Once a quark or gluon distribution function at some
reference point is given, one can compute it for any value of ? using this equation.
The structure function of the nucleon reflects the momentum distributions of the quarks
and gluons in it. It is also important to study the gluon distribution inside a hadron at
small-x because gluons are expected to be dominant in this region. In the framework
of the DGLAP equation the parton distributions grows at small-z as a result of their
Q*-evolution. The steep rise of Fy(x, Q?) structure function towards small-z observed
at HERA also indicates a similar increase in the gluon distribution towards small values
of z in pQCD. That is, the perturbative QCD predicts a strong power law rise of the
gluon distribution in the small-x region. At small values of x, the behaviour of FJ, is
driven mainly by gluons through the transition ¢ — ¢g. Therefore, once the distribu-
tion of gluon inside the proton is known, F}, structure function can be calculated from
it. The behaviour of Fj structure function also shows power law rise as that of the

gluon distribution function.

Along with the light flavours, the inclusion of heavy flavours (charm and beauty
quarks) in the study of evolution of Fj, structure function is also important. It is
already well known that the scaling violations are different in case of the massless and
massive pQCD calculation. Thus, in all precision measurement of structure functions,
a detailed treatment of heavy flavour contribution is required. At small-z, all the heavy

quark structure functions are dominated by the gluon content of the proton. Therefore,

i



the behaviour of these structure functions can be studied using the gluon distribution

function.

In this thesis, we have studied the behaviour of proton longitudinal structure func-
tion Fp, in the region of small-z up to next-to-next-to-leading orders. Here the evolution
of structure function in higher orders are studied using the higher order kernels in the
QCD evolution equation. The inclusion of higher order kernel in the study of the hard
processes in QCD becomes significant as compared to leading one due to consistency
and accuracy of the results. This consideration is particularly important for studying
the physical processes at the present colliders LHC and TEVATRON. Also, in these

colliders major emphasis has been given on the small-z region.

In Chapter 1, we present a brief introduction to the structure of matter, stan-
dard model of elementary particle physics, deep inelastic scattering, DIS cross section
and structure function, Quantum Chromodynamics, Quark Parton Model, QCD evolu-
tion equation, Longitudinal structure function Fp, heavy quarks in the proton, small-x
physics, experimental measurement of Fj, structure function and the related experi-
ments.

In Chapter 2, we have solved the QCD evolution equation for F, structure function
up to next-next-to-leading order at small-z. Here we use Taylor expansion method
to obtain the analytical expression for t- and z-evolution of Fp structure function.
The computed results are compared with recent H1, ZEUS data, Donnachie-Landshoff
(DL) model results and the theoretical prediction of MSTWO08, CT10, ABM11 and
NNPDEF2.3 parameterizations.

In Chapter 3, we have presented the ¢- and x-evolutions of F}, structure function
obtained as a solution of QCD evolution equation for F}, structure function up to next-
to-leading order at small-z using Regge like behaviour of structure function. The results
obtained are compared with H1, ZEUS data, DL model results and the theoretical
prediction of MSTWO08, CT10, ABM11 and NNPDF2.3 parameterizations. We have
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also compared these results with our results from Chapter 2.

In Chapter 4, we have presented the approximate relation between the F, structure
function and gluon distribution function at small-z using Taylor expansion method.
From this relation we have calculated the z-evolution of F} structure function and
the results obtained are compared with H1, ZEUS data, DL model results and the
theoretical prediction of MSTWO08, CT10, ABM11 and NNPDF2.3 parameterizations.

In Chapter 5, the t- and x-evolutions of F}, structure function up to next-to-next-
to-leading order at small-z using the Regge like behaviour of gluon distribution function
obtained as a solution of DGLAP evolution equation is presented. The results obtained
are compared with H1, ZEUS data, DL model results and the theoretical prediction
of MSTWO08, CT10, ABM11 and NNPDF2.3 parameterizations. The behaviour of DIS
cross section ratio R with respect to x is also presented. We have also presented a
comparative study of our results with those from Chapter 4.

In Chapter 6, we have presented the behaviour of heavy flavour structure function
Fg, Fb, FS and F? with respect to z using Taylor expansion method and Regge like
behaviour of gluon distribution function. Our results are compared with H1, ZEUS

data and results of DL, Colour-Dipole (CD) model. We use these results to analyse
h

the behaviour of heavy quark DIS cross section ratio R" and reduced cross section o’
Finally, the behaviour of heavy quark content to the F, structure function with respect
to x is also presented here. We have also presented a comparative analysis of our results
obtained by both the methods.

In Chapter 7, we have summarised the overall conclusions drawn from our work. [J
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Chapter 1

Introduction

One of the basic questions in physics is about the origin of the structure of matter.
From the ancient times, a great number of philosophers and scientists have been trying
to answer the questions that deal with the constituents of matter forming the ultimate
structure of the universe. Although most of the early notions and predictions about
the structure of matter were found out to be wrong, nevertheless they formed a basis
for the theories developed centuries later with the improved knowledge of physicists. It
is only at the present time of the 21st century, a more precise and consistent picture
of the building blocks of matter has evolved that reaches from the atomic model up to
the present elementary particles. Particle physics is the field of natural science which
mainly deals with the fundamental constituents of matter and the interactions among

them.

The theory that currently describes all the phenomena of particle physics in terms
of the properties and interactions of the elementary particles, which also includes the
results of experimental and theoretical investigations of many years is known as the
Standard Model (SM) of particle physics. According to this theory, the fundamental
constituents of matter are the two half-integer spin families of fermions called leptons
and quarks. There are three generations of leptons and quarks and they interact via the
exchange of gauge bosons. They are the integer-spin elementary particles mediating the

fundamental interactions. Each type of these fundamental interactions corresponds to



some kind of the gauge boson: the photon ~ act as a mediator for the electromagnetic
interaction; the heavy gauge bosons, Z° and W¥, carry the weak interaction; and the
eight gluons g mediate the strong interaction. Thus the main component of the SM [1,2]
are the electroweak theory which unifies the electromagnetic and weak interactions and
the strong interactions described by Quantum Chromodynamics (QCD) [3,4]. In ad-
dition, a new spin-zero boson, named Higgs boson has been also included recently in
the model. This Higgs boson is responsible for the acquisition of mass by elementary
particles. Despite being the most successful theory in particle physics, SM is not com-
pletely perfect as there are still some fundamental questions which need to be further
clarified. It does not explain one of the natural phenomena gravity, the nature of dark

matter and dark energy, neutrino masses and matter-antimatter asymmetry etc.

The behaviour of quarks and gluons is mainly described by QCD, the theory of
strong interaction. This theory describes interactions of quarks via the exchange of
gluons. Due to the non-abelian nature of QCD [5,6], the strength of the interaction
between the quarks decreases towards small distance and they behave as free parti-
cles. This behaviour is called asymptotic freedom [4]. With the increase of distance,
the strength of the interaction rises and the quarks cease to behave as free particles.
Rather, they behave as composite particles which explains the confinement of quarks [7].
Both these interesting phenomena of QCD implies that gluons carry colour charge and
indicate the self interaction property of gluons. Thus, it is important to study the

processes involving gluons.

The proton is one of the familiar particles around us. As it consists of the funda-
mental particles, quarks and gluons, a detailed study of its internal structure is one of
the fascinating topics in QCD. The knowledge of its structure is important for pertur-
bative QCD (pQCD) calculations of any process involving proton. Its structure also
helps to explain the origin of matter. In the present particle accelerators and collid-

ers, scattering experiments are conducted to test the theoretical predictions of the SM



and also to have the opportunity to search for new physics concerning the basic laws
governing the interactions between the elementary particles. The knowledge of proton

structure and QCD is a vital tool which helps to interpret the potential signals of new

physics at the Large Hadron Collider (LHC) at CERN.

The scattering experiments have played an important role in the elementary par-
ticle physics research starting from Rutherford’s experiment [8], which explained the
structure of atom in 1911 or later the Stanford Linear Accelerator Center (SLAC)
experiments, which revealed the partonic structure of nucleon in 1969 [9,10]. SLAC
allowed to study the Deep Inelastic Scattering (DIS) processes for the first time i.e.,
scattering at high values of momentum transfer from electrons to protons. Among the
scattering experiments, the electron-proton scattering is an important one. Being lep-
tons, electrons are small in size and possess other well known properties of leptons.
These properties help the electrons to penetrate deep inside the proton and thus they

are able to test the proton structure very precisely.

The electron-proton collider, Hadron Elektron Ringanlage (HERA) located at the
Deutsches Elektronen Synchrotron (DESY) in Hamburg, Germany operated from year
1992 to 2007. HERA gave a unique opportunity to investigate the structure of proton
over a wide kinematic range of Bjorken variable x (down to 107%) and squared four
momentum transferred between lepton and proton Q% (up to 10° GeV?) where the
dynamics of DIS become dominated by gluon. It collected e™p collision data with the H1
and ZEUS detectors at a positron beam energy of 27.5 GeV and a proton beam energies
of 920, 575 and 460 GeV, which allowed a measurement of structure functions at x
values 2.9 X 107° < z < 0.01 and Q? values 1.5GeV? < Q% < 800GeV? [11,12]. HERA
also collected data for inclusive charm and beauty cross sections and the derived heavy
flavour structure function in e~ p and e™p neutral current collisions in the kinematical

range of x values 2 x 107 < z < 0.05 and @Q? values 5GeV? < Q? < 2000GeV? [13].

At low values of x, the proton structure is analysed by gluon dominance. In



pQCD the gluon distribution is determined indirectly by Q? dependence of DIS cross
section. This determination is directly affected by pQCD calculations. The proton
structure is basically described in terms of structure functions, Fy, zF3 and F;,. Among
them F7, is directly related to gluon density in the proton. As its sensitivity towards
gluon density is somewhat different from the scaling violation, F7, is expected to give
a test of pQCD walidity. Theoretically, the measurement of Fj structure function
helps us to distinguish different models describing the QCD evolution at small-z. In
fact, the structure function measurement remains incomplete until the measurement of

longitudinal structure function is actually included in the study.

Heavy quark production at HERA is of particular interest for testing various calcu-
lations in pQCD. The heavy quark masses, as well as the transverse momentum of a jet,
provide a hard scale, which is essential for the calculations in pQCD predictions [14].
As it is well known, that the scaling violations are different in the massless and massive
pQCD cases, therefore, in all precision measurement, along with the light flavour, a
detailed treatment of heavy flavour contribution is also required. The measurements
of heavy quark uniquely constrain the parton distribution functions (PDFs) of proton,
mainly its charm (c) and beauty (b) contents. The precise knowledge of PDF's is also
essential at LHC. The b quark density plays an important role in Higgs production
at the LHC along with the extensions to the standard model such as supersymmetric
models at high values of the mixing parameter tanfs [15]. The dominant process for
the charm and beauty quark production at HERA is the Boson Gluon Fusion (BGF),
where the photon interacts with a gluon from the proton by the exchange of a heavy
quark pair and is given as yg — ¢ X, with ¢ = ¢, b [16]. This indicates that the process

is sensitive to the gluon density in the proton.

In this thesis work, we have mainly studied the small-z behaviour of proton longi-
tudinal structure function F. The thesis is organised as follows: in the next sections of

this chapter the overview of DIS, proton structure functions and their experimental mea-



surement, quark parton model, quantum chromodynamics, QCD evolution equations,
longitudinal structure function Fp, DIS experiments related to Fj, structure function,
small-x physics, heavy quark contribution to structure functions are given. The 2nd
chapter describes the behaviour of Fp, structure function from QCD evolution equation
using Taylor series expansion method. In 3rd chapter, the behaviour of Fp structure
function from QCD evolution equation is analysed using Regge behaviour of structure
function and comparison between the results obtained in both the methods is stud-
ied. In 4th chapter, we have studied the approximate relation between F} and gluon
distribution function using Taylor expansion method and studied the evolution of FJ,
structure function with respect to x. In 5th chapter, the behaviour of structure func-
tion F is studied using the gluon distribution function obtained as a solution of the
DGLAP evolution equation and comparative study of the results with the results of
4th chapter is presented. 6th chapter describes the contribution of heavy quark to
Fp, structure function using Taylor expansion method and Regge behaviour of gluon
distribution function and the comparative analysis of the results obtained by both the
methods. In chapter 7, we summarise the overall conclusion and future directions of

our study.

1.1 Deep Inelastic Scattering

Deep Inelastic Scattering (DIS) is the basic tool for understanding the inside structure
of nucleon and the interaction dynamics of quarks and gluons. Since the discovery of
structure of proton at SLAC fixed target experiment in 1969 [9], these measurement
have played an important role in the development of the theory of strong interactions,
Quantum Chromodynamics. DIS is the process in which constituents of proton are
probed by means of lepton-proton scattering. The process is ‘inelastic’ as when a quark

knocks out of the proton, the proton is broken up, producing a jets of hadron. It is



called ‘deep’; here the proton is probed with a high energetic gauge boson i.e., with
small wavelength to resolve its structure up to small distance scale. In this process when
the exchange boson is a neutral particle, photon v or a neutral vector boson Z9, it is
referred to as neutral current DIS and if the exchange particle is a charged boson, W,
it is known as charged current DIS. Figure 1.1 defines the kinematics of DIS process in
terms of following four-vectors, k: initial state lepton; k’: final state lepton; P: final
state proton and ¢ = k — k’: the exchange field quantum. A measurement summing
up all the final states in the hadronic system is known as inclusive measurement. The

inclusive DIS process can be described in terms of the following kinematic variables:

p

Figure 1.1: Feynmann diagram of Deep Inelastic Scattering

e The negative of the four-momentum transferred to the photon which qualitatively

determines the scale of the interaction
Q' =—¢=—(k—FK) (1.1)

e The fraction of proton momentum carried by the struck quark known as Bjorken



scaling variable
2
T = ¢
2P - q

(1.2)

e The inelasticity variable which corresponds to the fraction of the incoming lepton

energy transfer by the exchanged boson to the proton in the proton rest frame

s
<

y= Pk (1.3)
e Center of mass energy squared
s=(k+P)? (1.4)
e The invariant mass squared W? of the produced hadronic final state
W?=(q+ P)* (1.5)
The variables Q?, z,y and s defined above are related by the equation
Q* = (s — Mp)zy, (1.6)

where M?% is the mass of the proton. This relation (1.6) implies that at a given ep
center of mass energy /s, any two of the variables Q?, z,y are enough to describe the
kinematics of DIS process, usually Q? and z are used. Here both the dimensionless
variables z and y are limited to values between 0 and 1. The values of Q% and W? lies
between 0 and s, Mp and /s respectively [17].

The invariant mass squared W? of final hadronic state can also be written in terms

of @* and z as [18]

1—2
w2 = Mj+Q*(—2). (1.7)
x
This equation (1.7) explains that at fixed Q?, low-z interaction corresponds to large
values of the invariant mass squared W? of final hadronic state. It also signifies the
term ‘deep’ and ‘inelastic’ corresponds to Q* > M3 and W? > M?% respectively. Thus,

the value of the proton mass Mp may be neglected in the last two equations.



1.2 DIS Cross Section and Structure Functions

In inclusive DIS experiment, one of the important quantity to measure is the scattering
cross section. The cross section of the lepton-proton scattering can be written in terms

of leptonic and hadronic part as [19]
do ~ L, W™, (1.8)

where L,, denotes the leptonic tensor describing the interaction between the lepton
and the virtual exchanged gauge boson and W# represents the hadronic tensor which
corresponds to the boson-proton interaction. Neglecting the electron mass, the leptonic

tensor which is well known in Quantum Electrodynamics (QED) can be written as [20]
Ly, = 2(/{:/“/{5,, + k;vku — (K" k)gyw), (1.9)

where g,,, denotes the metric tensor. The hadronic tensor describing the hadron vertex

has the form [17]

W, . Wi Wy
W v HoV s opvaf BV
W Wig"" + M2p p- —e paqﬁQM}% +q"q M2
W W
+('¢" + ¢"p") 5 + i — p'q") : (1.10)
M2 2M?2

where Mp is the mass of proton, W; are Lorentz scalar function of z and (? which
describes the structure of proton. If the scattering process involves only = exchange,
the parity violating term W3 and also antisymmetric term Wy are absent. The current

conservation at the hadronic vertex gives q,W* = ¢,W"” = 0 so that
ws = -2y, (1.11)
q
M2
Wy = (p q) Wa + =L, (1.12)
¢ q*

Thus, the hadronic tensor depends on W; and W5 only and can be written as

y L gt g Wy Pq , D-q
T :W1<—g”+ pe >+M1%<p” q2q><p 2q) (1.13)




The functions W; and W, are redefined in terms of structure functions of proton Fj

and I3 as
Fl(zaQ2) :MPW1($,Q2), (114)

Fg(l’,@2) - VPW2($>Q2)' (115)

Thus, the double differential DIS cross section can be expressed using structure function

Fi(z,Q?) and Fy(x, Q?) in the form

d’o 47ra
dzd@? Q4

here « is the fine structure constant. The structure functions Fy(z, Q?) is proportional

[V 20Ri(2.Q%) + (1 - )P, V)], (1.16)

to the transverse component of the cross section and the difference between Fy(x, Q%)
and Fy(x,Q?) gives the longitudinal part of the cross section. Thus, the longitudinal

structure function is defined as

Fi(z,Q%) = Fy(z, Q%) — 2z F(z,Q%). (1.17)
Now, the cross section in terms of Fy(x, Q?) and Fy(x,Q?) structure functions can

be written as

o 2ma’Yy
dzdQ? x4

where Y, = 1 + (1 — y)? is a function of y. Since the contribution of F, structure

R, Q) - L F(w Q1) (118)

function to DIS cross section is proportional to the factor g—j, the F5 term dominates
at y < 0.5 and the contribution of F}, structure function is significant towards the total
cross section at large values of y > 0.5 [21]. In DIS experiment structure functions are
extracted from the measured cross section. Therefore, it is convenient to define the

reduced cross section as

o, = Fy(z,Q%) — —FL(x Q%). (1.19)
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The ep scattering process can also be considered as the interaction of a flux of
virtual photon and the proton. In terms of the two components of the cross section
i.e., transverse and longitudinal cross section, the double differential cross section can

be written as

d*c
drd(Q)?

Here o7 and oy, corresponds to the absorption cross section for transversely and longi-

=T(y)lor(z, Q%) — e(y)or(z, Q). (1.20)

tudinally polarised virtual photon respectively, I'(y) PV ) stands for the photon

- 2rzQ2(1—2
flux and €(y) = 2(;—:3/) defines the virtual photon polarisation.
Now, comparing the equations (1.18) and (1.20) one can express the above men-

tioned structure function in terms of the virtual photon absorption cross section as

B2, Q%) = %[aﬂx, Q%) + or(x, Q%)) (1.21)
Fi(z, Q%) = %mx,@?). (1.22)

Equation (1.22) indicates that the longitudinal structure function is directly pro-
portional to the longitudinal component of the cross section. From the equations (1.21)
and (1.22), as the measured quantity o cannot be negative, the two structure functions

Fy(z,Q?) and Fi(z,Q?) obey the relation

0< FL(ZE’,Q2) < FQ("E>Q2)‘ (123)

Another quantity which represents the relation between the cross sections of the absorp-
tion of a longitudinal and transverse polarized photon by hadron is the ratio R(z, Q?)
and is given by

oL FL (LU, Q2>

R(x7 Q2) — E — Fz(x’ Q2) — FL(x7 Q2> (124)
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At small values of x, this ratio R(x,Q?) gives the relative strength of the two compo-
nents of the cross section [22]. R(z,Q?) provides the information about the spin and
transverse momentum of the constituents of the nucleon [23] which is explained in the

next section.

1.3 Quark Parton Model

The Quark Parton Model (QPM), introduced by Feynman, explains that the proton
is made up of point like constituents known as partons [24]. The basic idea of the
parton model was based on the experimental observation of Bjorken scaling [25], that
is in the ep scattering experiment at SLAC it was observed that the structure function
measured at fixed values of x are approximately independent of the four-momentum
transfer Q% from the probe to the nucleon and depend only on the variable z [9,10].
This behaviour was predicted by Bjorken and suggested that the proton is consists of
point-like particle, called as parton. According to this model, the proton consists of
quasi-free point-like particles which were identified as quarks, particle with spin—% and
electric charge ﬂ:%e or i—%e, as proposed by Gell-Mann [26] and Zweig [27]. The proton

consists of two u quarks with charge +§e and one d quark with charge —%e.

In the QPM, the deep inelastic ep scattering is interpreted as the elastic scattering
between the lepton and quarks. The ep cross section is then incoherent sum over all
lepton-quark scattering cross section. Here incoherent means that the lepton scatters
on a single quasi-free quark. With these assumptions, the structure functions F; and
F; can be expressed as a sum of quark momentum distributions zq(x) weighted with

the square of their electric charge e;:

1 @) = 5 Y chan (1.25)
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Fy(,Q%) =) efzgi(w), (1.26)

here ¢; is the charge of the parton ¢ and ¢;(x) is the probability that the quark 7 carries
a fraction of proton momentum in the interval [z, x 4+ dz]. The sum runs over all the
partons in the proton. Hence, in QPM the structure functions F; and F5 depend only
on the variable x as predicted by Bjorken.

The cross sections o and oy, depend on the spins of the proton constituents. As
the longitudinal virtual photon cannot interact with the spin—% quarks due to helicity

conservation [28] at the hadronic vertex, the model predicts o, = 0 which leads to

Fr(z, Q%) = Fy(z, Q%) — 20F (z,Q%) =0 (1.27)

and consequently gives

Fy(r, Q%) = 2z F (7, Q%), (1.28)

which is known as the Callan Gross relation [28] and reflects the spin-3 nature of the
quarks. The cross section ratio R, mentioned in the section 1.2 is often used instead
of Fj, to describe the scattering cross section. In the framework of QPM with spin—%
quark, R is expected to be small, and to decrease rapidly with increasing momentum
transfer (2. Measurement of R at SLAC also indicated that the scattering from the
spin-1 constituents of the nucleon (quarks) dominates [29-31].

The QPM cannot explain all the properties of DIS. Since the naive QPM predicts
that the proton is made up of two up (u) and one down (d) valance quarks, the total
momentum of the quarks inside the proton should be 1. But the experimental results

[30] show that quarks carry only half of the proton’s momentum, i.e.

/1[:Eu(:)3) + zd(x)]dz = 0.54. (1.29)
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This clearly suggests that there is more momentum in proton than that carried by
quarks. This fact provided the first indirect evidence of the gluonic component of
the proton. Another drawback is the observation of scaling violation of F» measured
in different experiments. The scaling behaviour is observed only for values of about
x < 0.1 and brakes for > 0.1. Structure function measurement at H1 experiment [32]
and some other fixed target experiment [33] shows the dependency of F, on Q* To
explain the mentioned discrepancies the theory of quantum chromodynamics plays an

important role, which is described in the next section.

1.4 Quantum Chromodynamics

Quantum Chromodynamics (QCD) is the theory which describe the strong interaction
between the quarks and gluons inside the proton [5,6]. The key point in this theory is
that the quarks and gluons have a quantum number called colour, which is described
by SU(3) symmetry group and can be represented by three colours - red, green and
blue. The quarks can interact by the exchange of a massless and electrically neutral
spin-1 boson called gluons. QCD is a non-abelian SU(3) gauge theory [6]. As a result,
there are eight gluons and they also interact among themselves via the exchange of
colour charge. Hadrons are considered to be colourless or colour singlets of the group
SU(3) constructed from the fundamental colour triplet of quarks. Only colourless
particles can exist as free particles. Thus the quarks and gluons cannot be observed
as free one rather they should always be confined within the hadron. This property
of QCD is known as confinement. An important feature of quantum field theories is
the running coupling constant, i.e., the coupling evolves with the energy scale of the
interaction. Because of the non-abelian nature of gauge group SU(3), opposite to U(1)
group of QED, the strong coupling constant o, shows the opposite behaviour with that

of the electromagnetic fine structure constant «. This leads to asymptotic freedom
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which predicts that at large energy scales Q? the coupling between quarks and gluons
decreases and they behave as free particles, while at lower energies they were confined
to colourless hadron.

The strong coupling constant «; is one of the important characteristics of strong
interaction. The lowest order i.e., Leading Order (LO) of a;; does not include any gluon
vertices. In Next-to-Leading Order (NLO), the interaction between quarks and gluons
are included and more gluon vertices are added in higher orders. In LO approximation

the coupling constant « is given by the equation [34]

127

. Qz )
(33 — 2N7) In 5~

a,(Q%) = (1.30)

where N is the number of active quark flavours. Agcp characterizes the strength
of the coupling and is the order of 300 — 500MeV. The phenomenon of confinement
is described at Q* < A3op. Contrary to it, for large energy scales @Q* > 1GeV?,
perturbative calculations are possible in QCD using order-by-order expansion in «y [35].

According to QCD, protons not only consists of quarks but also gluons which binds
the quarks inside the proton. Due to the presence of gluons, some modifications take
place in the quark parton model as the quarks can interact via the exchange of gluons
and can also radiate gluons. The radiated gluons can split into quark-antiquark pairs
or gluons. Thus a quark seen at an energy scale Q3 carrying a momentum fraction z
can be resolved into more quarks and gluons at a higher values of Q?, i.e., Q7 > Q2
and lower values of 21 < xy. As a result the structure function shows Q? dependence
violating the Bjorken scaling.

The pQCD calculations in DIS process can be expressed using factorization the-
orem [36]. This theorem provides a systematic way to refine the predictions of the
parton model. In this theorem, the cross section involving hadron can be expressed as

two distinct part: one short distance and the other long distance parts [37]. The short
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distance or hard process part which is process dependent can be calculated perturba-
tively using renormalizable theory of QCD. On the other hand, the long distance part
which is process independent and unpredictable requires experimental results. This
part involves the PDF's into which infrared divergences of QCD are absorbed. Factor-
ization theorem leads to the expression for F3 structure function as the convolution of

co-efficient function C% and the parton distribution function f; [38] :

2
Z/ dw Cl . Q Zf Au?))ﬁ(w,u?,u?)- (1.31)

1=q,9
Here the co-efficient function C% represents the hard scattering matrix element for the
interaction of the photon with a parton ¢ which can be calculated using perturbative
expansion in «a,. The parton distribution function f; is the probability to find a parton
¢ carrying a fraction w of the proton’s momentum. In this process the summation is
over all the partons. The factorization scale iy defines the boundary between the long
distance and short distance part. The renormalization scale u, defines the separation
between the finite and divergent contributions in the renormalization procedure. Both
the scales yi, and juy are arbitrary and helps to absorb the infrared and ultraviolet diver-
gences in pQCD. There are several renormalization schemes used in the calculations of
QCD. Among them the most commonly used one is the modified minimal subtraction
(MS) scheme [38]. Here, renormalized quark distribution absorbs the divergent part of
the co-efficient functions at i, = puy. And another useful scheme is DIS scheme where

one chooses 1, = py = Q. Therefore one can write the expression for F; as

Fy(z,Q%) =) _elxfi(x,Q%), (1.32)

which reflects the Q? dependence of the structure function. Also F}, gives non-zero value
and this can be obtained from F, and the gluon density G(z, Q?) which is explained in

the section 1.5. Since F7j, is directly related to cross section ratio R, thus R is also non
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zero. In QCD, the value of R is proportional to the QCD coupling constant a [23].

QCD Evolution Equations:

An important outcome of the factorization theorem is that the measurement of
parton distribution function at one scale )y allows one to calculate it for any other
scale ()'. This property of parton distribution is known as evolution. The evolution
equations can describe the behaviour of quark ¢;(z, @*) and gluon g(x, Q?) distribution
function with the scale of interaction Q2.

The parton distribution in the hadron cannot be calculated from the first principles,
involving the building blocks of hadronic matter, the quarks and gluons, and their
mutual interactions as described by QCD. With the help of the factorization theorem,
the parton evolution, the Q? dependence of partons can be calculated within pQCD.
These evolution equations of parton are known as Dokshitzer-Gribov-Lipatov-Altarelli-
Parisi (DGLAP) evolution equations [35,39-41]. These describe the evolutions of quark

¢i(z, Q%) and gluon g(x, Q?) distribution function with the scale of interaction Q? :

dq;EZi’éf) - 29 / 1%[;%@@2)31(%)+9(w,Q2)PZ-g<%> o (133)

wed) o) | 1‘%“[2_%@,@2)13”(3)+g<w,@2>ng(f) ()

dIn@)? 27 w

Here, the function Pij<§) is known as the splitting functions which describes the
probability that a parton ¢ with momentum fraction x is emitted by a parton j with
the larger momentum fraction w(w > z) [42]. They are calculable in pQCD as a power
series of a:

Py, ) = 22 PY(w) + (22) ) + .. (1.35)

ij
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The DGLAP equation is formally derived in the leading logarithmic approximation
(LLA), where the terms of (a,In(Q?))" are summed up to all orders. These (a,ln(Q?))"
terms correspond to the ladder diagrams with n gluons emission as shown in figure
1.2. The LLA approximation is that the emissions are strongly ordered by transverse

momentum of gluons kr as
Q* > kE > ...> k> k. (1.36)

The approximation is valid at large enough Q? where « is small and all the contributing

X..., K

+1' T i+l

X;, Kt

Figure 1.2: Ladder diagram for DIS in LLQ?

terms proportional to aln(<) can be neglected.
A special case for which the DGLAP equations can be solved analytically occurs

when in addition to the above conditions also strong ordering in x is required,

Ty L Tpo1 K oo <L 1 <K Tp. (1.37)
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The large logarithmic terms arising from the integration are then of the form propor-
tional to (as(Q%)in(Q*/Q3)In(1/z))", which need to be resumed. This is the double
leading log approximation (DLL).

In general the structure function can be evaluated by solving the evolution equations
like Dokshitzer-Gribov-Lipatov-Altarelli-Parisi (DGLAP) equation, Balitskij-Kuraev-
Fadin-Lipatov (BKFL) equation [43,44] , Ciafaloni-Catani-Fiorani-Marchesini (CCFM)
equation [45,46], Gribov-Levin-Ryskin (GLR) equation [47], Modified DGLAP (MD-
DGLAP) equation [48-50], Jalilian-Marian-lancu-McLerran-Weigert-Leonidov-Kovner
(JIMWLK) equation [51,52], Balitsky-Kovchegov (BK) equation, [53,54] etc. Among
these the DGLAP evolution equation is the most familiar re-summation approach. Once
a quark structure function at some reference point is given, one can compute it for any
value of Q% using this equation. In the framework of the DGLAP equation the parton

distributions grows at small-z as a result of their Q% evolution [41,55].

1.5 Longitudinal Structure Function

The proton longitudinal structure function Fj, measured in DIS experiment, is one of
the important observables to study. The measurement of Fj, structure function is of
great theoretical importance since it may allow us to distinguish between the behaviour
of the different partonic distributions in the nucleon at small-x. F structure function
is a very sensitive QCD characteristic as it is directly sensitive to the gluon density in
the proton [56]. In the naive QPM, helicity is not conserved at the hadronic vertex
during the interaction between the longitudinally polarised virtual photon and a quark,
as illustrated in figure 1.3(a). So, the longitudinally polarized virtual photons do not
couple to the spin—% quarks with negligible transverse momentum and this leads to
Fr, = 0 [56]. On the other hand, in QCD improved parton model, quarks interact

through gluons, and also can radiate gluons, figure 1.3(b). The gluon radiation results
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in a transverse momentum component of the quark and now helicity is conserved at
the hadronic vertex. As a result, quark can couple to longitudinally polarised virtual
photon and the Callan-Gross relation is no longer satisfied exactly. Thus in QCD, the

F structure function is non-zero.

Qout — Jout
_} g
i
QG Y T - T T*
Qin
(a) (b)

Figure 1.3: Helicity conservation at hadronic vertex in QPM (a) and QCD

improved parton model (b). The arrows represent the spin orientations [57].

The one-loop virtual correction to ¢ — ¢ process does not contribute to the
longitudinal part of the hadronic tensor WVLq [58] and to the order ay the calculation of

longitudinal part of this tensor gives

Wh=-"e=—+0(e) (1.38)

and

WL :1% 2Q2(]‘_w)
22 1 w

for the contributing processes v¢ — qg and vg — qq respectively. The contributions

+ O(e) (1.39)

of e-order are defined by the factorization scheme. Thus the structure functions of the

gluon emission processes are expressed by the relations [59]

F' (e, Q%) = o (0, Q%) — Y e

2 ~
49,9

1
2 Ols dw4 z

———q(w, Q%) (1.40)

2r ), w 3w
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and

_ %F;q(x, Q%) — q; = / (1 - E) (1.41)

Combining the above results, the expression for Fj, structure function at LO can be

F2(z,Q%)

written as

Fr(z,Q%) = Fy(z, Q%) —22F (r,Q?

1

S A E DI
Y (2) (1= L )ugte Q2>] . 12

The equation (1.41) in terms of F, structure function and gluon distribution function

can be expressed as

Fi(z,Q%) = 47r CZJU[ ( )Z€2F2UJQ2)
8y 62<%>2<1 . £>wg(w, Q2)] . (1.43)

This equation (1.42) is known as Altarelli-Martinelli equation [18,59]. Here the first
term in the integral corresponds to the gluon radiation off a quark and the second term
represents the gluon splitting into a quark anti-quark pair. Again the above equation

for Fy, structure function in terms of co-efficient function is given by [59,60]
2 L = Cpps @ us+ < € > (Crs®qs +Cry®9). (1.44)

Here ¢,s, qs and g are the flavour non-singlet, flavour singlet and gluon distribution

5

: 2 o _
function, < e* >= 3

is the average squared charge for Ny (number of active light

flavours) and the symbol ® represents the standard Mellin convolution. C, ,(a = ¢, g)’s
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are the co-efficient functions which can be written by the perturbative expansion as

follows [60]
Crafane) = Y (32) Cha@) (1.45)

n=1

At small values of x, the gluon contribution to F, dominates over the quark con-
tribution [61] and F7, is driven mainly by gluons through the transition g — ¢g. There-
fore, the measurement of F}, structure function can give the gluon distribution inside
the proton. It also provides an important cross check of the standard picture of low-x

dynamics [62].

1.6 Heavy Quarks in Proton

The heavy quarks in the proton play an pivotal role in particle physics and their pro-
duction in ep collision provides an exciting testing ground for pQCD. The measurement
of the charm and beauty quark production cross section in DIS is important for under-
standing the parton densities in the nucleon. The top quark is the heaviest one among
the heavy quarks and due to its heavy mass it quickly decays without forming hadron.
The creation of top quark pair is not possible within the range of centre of mass energy
at HERA.

In the neutral current DIS process, the production of heavy quarks is mainly de-

scribed by two mechanisms:

e According to the first mechanism, named as intrinsic heavy quark production, one
assumes that, along with the light quarks u, d and s and the gluon g, the wave
function of the proton also consists of the heavy quarks ¢, b, t [25,63]. Within
the context of QCD improved parton model the virtual photon interacts with the

heavy quark which emerges directly from the proton.

e In the case of second mechanism known as extrinsic heavy quark production the
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proton wave function does not contain the heavy quark components. In the lowest
order perturbation theory the heavy quark and heavy anti-quark appear in pairs

and are produced via BGF process as shown in figure 1.4.

+ +
e e
> q
A
- g
p X,

Figure 1.4: Leading order Boson Gluon Fusion (BGF) diagram for heavy quark

production in ep-collisions.

In this process the quarks can be heavy if the center of mass energy squared of
the vg — ¢q interaction is :

(y+9)* > 2mg, (1.46)
where mg is the mass of the heavy quark and the photon and gluon four momen-

tum are respectively v and g.

The charm quark anti-quark (c¢) pair can be produced above the charm threshold,
Q* ~ (2m.)? and above the beauty threshold, the bb pair can be created. Charm
contributes to the cross section mainly at small-z and higher Q?, where the sea quark
dominates the cross section. Among the charm and beauty contribution to the cross
section, beauty quark contributes less to the cross section due to the coupling to its
electric charge, e, = —3 [57].

The dominant process for the charm and beauty quark production at HERA is the
BGF shown in figure 1.4, where the photon interacts with a gluon from the proton by
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the exchange of a heavy quark pair [16,64]. Due to the presence of gluon in the initial
state, this process is directly sensitive to the gluon density inside the proton. This type
of process is the dominant one in DIS scattering and is particularly important at small
values of z and large %, due to the large gluon density [64].

The differential cross section for the charm and beauty production which directly

follows from equation 1.18 can be written as

d*c"  2ma?Y.
drdQ® x@4+[ (@ QQ)——FL(x Q)| (1.47)

where h = ¢,b. Both the quantities FI' and F7 are dominated by the gluon content in

the proton. In the standard factorization approach to pQCD the structure functions

F}, can be written as [65,67]

Fk(if Q2 mh

(w, QG (5 ). (1.48)

where k = 2, L, a = 14+ 4((¢ = %) and the renormalization scale p is assumed to
be either p* = 4mj, or p* = 4mj, + Q*. Cp, is the heavy quark co-efficient function
represented in MS scheme [67]. The heavy quark co-efficient functions differ signifi-
cantly from those of the light quarks. So, the scaling violations of heavy flavour part
in Fy 1 (z,Q?) are different from those of the light flavour contribution [64]. Both for
the measurement of the QCD scale Agcp and for the extraction of the light parton
densities a correct description of the heavy flavour contribution is required.

The charm and beauty production cross section has been measured in DIS using

different techniques like D or D* meson analysis [68-70], the long lifetime of heavy
flavoured hadrons [71-73] or their semi leptonic decays [74].

1.7 Small-x Physics

The study of the small-z region in DIS is important for understanding the structure

of the proton. The region of small-z below 0.001 is mainly dominated by the gluon
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distribution in the proton [61]. In this region, the gluons in the proton form a strongly
correlated system of interacting particle. The gluon densities grow rapidly as x — 0
for all values of Q2. Such types of small-z behaviour of gluon distribution function was

extracted at HERA, which is shown in figure 1.5.
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Figure 1.5: Gluon distribution function extracted at HERA [11].

This strong rise leads to a rise of the proton structure function F; and Fp. Such
types of behaviour is well described in the framework of DGLAP evolution equations
[35,39,41]. However, at very small values of x, when the density of gluons becomes
large enough they starts overlapping in the phase space. In this case the recombination
and annihilation of gluons becomes important, otherwise this strong rise leads to the
violation of unitarity [75]. This effect is known as parton saturation. Such types of
phenomena are explained by non-linear evolution equations.

The small-x region of the DIS offers a unique possibility to investigate the Regge
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limit of pQCD [76-79]. DIS corresponds to the region where both v and Q? are large.
The small-z limit of DIS corresponds to case when 2Mv >> Q2 which is equivalent
to s >> Q% i.e., to the limit when the center of mass energy squared, s, is large and
much greater than Q%. The limit of large v and 2Mv >> Q? is therefore the Regge
limit of DIS [76]. Regge trajectory represents the exchange of a family of resonances
having distinct spins. It can be asserted with confidence that the Regge theory is
one of the most successful approaches for the description of high-energy scattering of
hadrons. This high-energy behavior can be described by two contributions: an effective
Pomeron with its intercept ap ~ 1.08 slightly above unity and the leading meson Regge
trajectories with the intercept ar(0) ~ 0.5 [80]. In Regge theory the structure function
(cross section) is expected to increase approximately like a power of = towards small-z.
However, at small-z the behaviour of the structure function is mainly driven by the
gluons. Therefore, the behaviour of the power law rise of gluon distribution function
at small-z observed at HERA is given by [81] G(z,Q?) o< z7%, where )\, is the gluon

distribution function exponent.

HERA collider made it possible to experimentally explore the small-z region. The
high-energy or small-z region of DIS experiment at HERA provides a good opportunity
to study the high-energy limit of QCD. One of the first observations at HERA was
the strong rise of structure function F, towards small-x which reflects the rise of gluon
density in the proton in this kinematical region [32,82]. This was the remarkable
starting point for further investigation of the structure of proton at DESY. At very
small-z, saturation of the growth of the parton densities is expected, as otherwise
unitarity bounds would be violated. Models based on saturation are hugely successful
in describing HERA data, particularly in the low z and low Q? region where DGLAP

approach fails.
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1.8 Measurement of F; Structure Function

Measurement of Fj structure function is a technically challenging experimental task.
This structure function has a significant contribution to the cross section at high inelas-
ticity y [21]. The direct method to obtain the F is to measure the DIS cross section
at fixed values of z and Q? and different y [11]. The values of the structure function
F}, were determined according to equation (1.19) by a straight-line fits to the reduced
cross section as a function of y? /Y, at given values of x and ) and different values of
center of mass energies s [11]. From the relation Q? = szy, it is clear that the variation
in y value can be obtained by varying s, the center of mass energy. Since s = 4F.E,,
this could be done by varying the electron, proton or both beam energies. But in the
experiment it was decided to lower the proton beam energy because reducing the elec-
tron beam energy would have required to lower the energy of the scattered electron
below the trigger threshold. This would have affected the scattered electron angle more
than that reduction the proton beam energy. Another advantage of lowering the proton
beam is the maximum cancellation of systematics when making a relative measurement
of the cross section [83]. Figure 1.5 illustrates the measurement of Fy, from o, by the
H1 collaboration [11]. Here the reduced cross section o, is plotted for six values of z
at Q% = 6.5GeV?, measured for proton beam energies 920, 575 and 460 GeV. The
inner error bars represents the statistical error, the outer error bars show statistical
and systematic uncertainties added in quadrature. The slope of the straight-line fits is

determined by the structure function Fy(z, Q%) [11].

The direct measurement of F7, in the past fixed target experiments EMC (European
Muon Collaboration) [84], NMC (New Muon Collaboration) [85], BCDMS (Bologna
CERN Dubna Munich Saclay) [33] and SLAC [86] have been done by measuring the
cross section ratio R. These measurements are at relatively high x where the sensitivity

to the gluon densities is small.
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Figure 1.6: The reduced DIS cross section as a function of y? /(1 + (1 —y)?) [11]

At HERA collider Fy(z,Q?) was mainly measured by H1 and ZEUS detector. An
important advantage of HERA, compared to fixed target DIS lepton-nucleon exper-
iments, is the wide range of y (inelasticity) values covered [56]. HERA collected ep
collision data at a positron beam energy of 27.5 GeV and a proton beam energies of

920, 575 and 460 GeV', which allowed a measurement of structure functions at x values

2.9 x 107 <z < 0.01 and @Q? values 1.5GeV? < Q* < 800GeV? [11,12].
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1.9 Some of the DIS Experiments Related to F},

European Muon Collaboration(EMC) : In the muon scattering experiment per-
formed by European Muon Collaboration (EMC) at CERN (Conseil Europeen
pour la Recherche Nucleaire) SPS (Super Proton Synchrotron), the structure
function F; and R were measured with muon beams energies 120, 200, 240 and
280 GeV'. Here the target materials were proton (p), deuterium (D), iron (Fe),
calcium (Ca), copper (Cu), tin (Sn) and carbon (C'). The kinematical range of
measurement were: 0.0175 < z < 0.75 and 2.5 < Q? < 170GeV? for Fy(p) and
0.114 < z < 0.231 and 15 < Q? < 65GeV? for R(p) [84]; 0.05 < z < 0.65 and
9 < Q% < 200GeV? for Fy(Fe) [87); 0.0025 < z < 0.75 and 0.25 < Q* < 170GeV?
for Fy(D) [88,89]; 0.0031 < z < 0.612 and 0.52 < Q? < 46.4GeV? for the ratios
Fy(C)/Fy(D), F5(Cu),/Fy(D), F»(Ca),/Fy(D) and Fy(Sn),/ Fy(D) [89-92].

New Muon Collaboration (NMC) : The New Muon Collaboration (NMC) mea-
sured the structure function F, and R in muon scattering experiment at the
CERN SPS with muon beams of energies 90, 120, 200, and 280 GeV. The
target materials were p, D, helium (He), lithium (Li), C, Ca, Fe, Sn and
lead (Pb). The kinematical range of measurement were: 0.001 < x < 0.6 and
0.5 < Q* < 75GeV? for Fy(p) and Fy(D) [85,93,94]; 0.0045 < z < 0.11 and
1.38 < Q? < 20.6GeV? for R(p) [85]; 0.003 <z < 0.7 and 0.12 < Q? < 100GeV?
for the ratio Fy(p),/ Fy(D) [95-97]; 0.007 < z < 0.8 and 0.6 < Q* < 18.3GeV?
for the ratios Fy(Ca)/ Fy(Li), F5(C),/ Fy(Li) and Fy(Ca),/F5(C) [98]; 0.0035 <
r < 0.65 and 0.5 < Q* < 90GeV? for the ratios Fy(He),/ Fo(D), F»(C),/ Fy(D)
and F5(Ca),/F»(D) [99].

Bologna CERN Dubna Munich Saclay Collaboration (BCDMS) : The Bolo-

gna CERN Dubna Munich Saclay Collaboration measured the structure function
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F, and R in muon scattering experiment at CERN. The incident muon beam
energies are 100, 120, 200, 280 GeV and the target material used were p, D,
C, Fe and nitrogen (N). The kinematical range of measurement were: 0.07 <
r < 0.75 and 7.5 < Q* < 230GeV? for Fy(p) [33]; 0.07 < x < 0.65 and 15 <
Q* < 85GeV? for R(p), R(D) and R(C) [33,100,101]; 0.07 < = < 0.75 and
8.75 < Q? < 252.5GeV? for Fy(C) and Fy(D) [100,101]; 0.02 < = < 0.7 and
14 < Q* < 200GeV? for the ratios Fy(Fe),/ Fo(D) and Fy(N),/Fy(D) [102,103].

Stanford Linear Accelerator Center (SLAC) : In the deep inelastic electron scat-

H1 :

tering experiment performed at SLAC, structure function Fy and R were mea-
sured with electron beam energies up to 50 GeV'. Here the main target material
used were p, D, Fe and gold (Au). The kinematical range of measurement were:
02 <z <05and 1 < Q? < 10GeV? for Fy(D), Fy(Fe), Fy(Au) and R(D),
R(Fe), R(Au) [23]; 0.03 <z < 0.1 and 1.3 < Q? < 2.7GeV? for R(C) [104].

The H1 collaboration determined the structure function F, and Fp from the
cross section measurement in electron proton scattering experiment with the H1
detector at HERA. Here the data were taken with the lepton beam energy of 27.6
GeV and a proton beam energies of 920, 575 and 460 GeV. The measurement
covers the region 1076 < 2 < 0.1 and 1.5 < Q? < 10*GeV? for I, and 2.9 x
1075 < 2 < 0.1 and 1.5 < Q* < 800GeV? for Fy, up to y = 0.85 [11,12,32,105].
Inclusive charm and beauty cross sections are also measured in e p and etp
neutral current collisions at HERA with the H1 detector in the kinematic region

5<Q*<2x103GeV? and 2 x 1074 < 2 < 0.05 [13,71,72).

ZEUS : The ZEUS collaboration determined the structure function F5 and F} from

the cross section measurement in electron proton scattering experiment with the
ZEUS detector at HERA. The data were taken with the lepton beam energy of 27.6
GeV and a proton beam energies of 920, 820, 575 and 460 GeV'. The measurement
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covers the region 107* < 2 < 0.1 and 10 < Q? < 10*GeV? for F; and 107* <
r <0.1and 5 < Q? < 130GeV? for Fp, with y value 0.09 < y < 0.78 [106-108].
The charm and beauty structure functions F§ and FY were also measured with
the ZEUS detector at HERA. Data covers the region 10 < Q? < 103GeV? and
1074 < 2 < 0.1 [73,74,109)].
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Chapter 2

Evolution of Longitudinal Structure Function F; Us-
ing Taylor Series Expansion Method at Small-z

In this chapter, we study the behaviour of the longitudinal structure function Fj, of
proton from its QCD evolution equation in NNLO approximation at small-x. Here we
use the Taylor series expansion method to solve the evolution equation. The solution of
this equation provides the expressions for t= [ln(%j)} - and z-evolution equations for the
computation of the longitudinal structure function. Our calculated results are compared
with the recent H1 [1-5], ZEUS [6] experimental data, results of Donnachie-Landshoff
(DL) models [7] and the theoretical predictions of MSTWO08 [8], CT10 [9], ABM11 [10],
NNPDF2.3 [11,12] parameterizations. We have also compared our z-evolution results
with the gluon dominating Fj, structure function obtained by Boroun et al. [13]. Our
predicted results show good agreement with the recent data and related fit and can be

described within the framework of pQCD.

2.1 Theory

At small values of z, the density of gluons in the proton is considerably larger than
densities of quarks and antiquarks. Thus, at small-z the structure of proton is mainly
described by the distribution of gluons only. At small-z (x < 1073) the gluon contribu-

tion to the F, structure function dominates over the singlet and non-singlet contribu-
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tion [14]. Now the QCD evolution equation for gluon dominating Fy, structure function

is given by [15]

OF} (x, Q%)
olnQ)?

Here Kg(x,Q?) is the gluon kernel known perturbatively up to the first few orders in

= Ke(z,Q%) ® Fi(z,Q?%). (2.1)

as(Q?%). The symbol ® represents the standard Mellin convolution and is given by

A(z)®B(z) = /1 @A(y)B@). (2.2)

o Y Y
The kernel K¢ (z,Q?) can be written as

Ko(r, @) = P g0 + (D 0+ (DY k) )

up to NNLO, where K2(z), K}(z) and KZ(z) are the gluon splitting kernel [16, 17]
in LO, NLO and NNLO respectively. The expressions for K2(z), K}(z) are defined
in Appendix A. K%(z) is available in co-efficient function form in Refs. [18,19] and
its expression is given in Appendix A. Using all these and simplifying QCD evolution
equations for the longitudinal structure function in LO, NLO and NNLO, we get

8Ffa(;c,t) _ OZS) [8_90 /ml dww2(1 . w)}:*il(%’t)] =0, (2.4)

8Fi’a(;c,t) B ajp(rt) [8_90 /mldwa(l B w)Ff(%,t)] B (aiff))zlf(a:,t) Lo e

and

ot 4

—(as(t)>2flc(x,t) — (as(t)>gfg(:c,t) =

OF!(x,t)  a,(t) |80 (! 9 g T
— g/x dww?(1 —w)FL<E,t)
AT AT 0

, (2.6)
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where

162, 1) = 1go/m dwf(w)Ff(2,1) (2.7)

and

IQG(:):,t):/mldwKG( )F9<w ) (2.8)

2

Here t = lnf\gz, A is the QCD cut-off parameter and the function f(w) is defined in

Appendix A. The strong coupling constant in higher order has the form [20,21]

CAmp Bt 1 B 1
where
2
fo=11— 3 Vs (2.10)
B =102 — ?Nf (2.11)
and
2857 5033 325 o
b= TR (2.12)

are the one loop, two loop and three loop correction to the QCD pS-function, Ny being
the number of flavours. Here we take Ny = 4.
Equations (2.4), (2.5) and (2.6) can be solved by Taylor series expansion method

as described in ref. [22,23]. Considering the variable v = 1 — w, and since z < w < 1,
x

.
we have 0 < u < 1 — w ; so the series — =

is convergent for |u| < 1 and using
w —u

x
the Taylor expansion method and neglecting the higher order terms, F7 (—, t) can be
w

approximated for small-z as
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T TU
L\ Tl + ,

1—u
zu OF](z,t)

= FY(x,t

(2.13)

Using (2.13) in equations (2.4), (2.5) and (2.6) and performing u-integrations we get

or La(? H_ H (2)2E %(;’t) + Bl(x)Fg(x,t)] — 0, (2.14)
or Lg(f’ b _ %(1 _ bl”Tt) [Aa) OF (.t Bn)F(e.t)| =0 (215)
and
aFLa(f’t) - %(1 - bZ”Tt + [Z—z(ant Cnt—1)+ t%
[Ag(x)aF La(j D L By(a)Fo(a, t)} —0, (2.16)
where
1 1 1
Ay(r) = E%(x)’ By (z) = %H(SC), Ag(r) = %(Pﬂx) + ToQ2(7)),
Ba(x) = —(Pu(x) + To@i(2),  As(x) = —(Pala) + To@s(x) + T3 Balx)),
Bo Bo
Bala) = 5 (o) + TuQu(o) + Ti (o),
80,1 a3 2t 80 1 22 223 2t
Ao =3 (-3 +7) @) =5e(5 -5+ 5 1)
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) =5 [ rwyde. @ula) = g [ = sy,
1 L1 —w
Ri(z) :/ K2(w)dw, Rol) = x/ 1 — ) K2 (),
b= g_o; and c= B—g.

Here we consider two numerical parameters Ty and T}, such that T2(t) = T,.T(t) and
T3(t) = T,.T(t) with T(t) = QZ—E:). These numerical parameters are obtained for a
particular range of Q* under study. As described in ref. [23], these two parameters are
chosen in such a way that the difference between T2(t), Ty.T'(t) and T3(¢), T1.T(t) are
negligible in our required range. This is explained in figure 2.1. Here, we have considered

the values of Ty = 0.0278 and 7} = 0.000892 within the range 1.5 < Q? < 800GeV?2.

0.0030
—T°(t)+0.002

- — T,.T(t)+0.002
0.0025 |

{

0.0020

0.0015

0.0010 |-

T(t), T,.T(t) and T*(t), T,.T(t)

0.0005 |- , , ,
0 200 400 600 800

Q’ (GeV?)

Figure 2.1: T?(t) = Ty.T(t) and T3(t) = T1.T(t) versus Q*(GeV?).
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The general solution of equation (2.14) is F'(U,V) = 0, where F'(U, V) is an arbi-
trary function [22]. Now, U(z,t, F7Y) = Cy and V(z,t, FY) = Cy with C; and Cs, two

constants, form a solution of the Lagrange’s equation

dx dt dF{(x,t)
- - __ L\ 2.17
L@ B@Fw) (2.17)
from which we obtain
dx
Uz, t,F?) =1t ex / 2.18

and

V(x,t, F{) = F}(x,t) - exp

B ()
/ i (x)dx]. (2.19)

It thus has no unique solution. The simplest possibility is that a linear combination
of U and V is to satisfy F(U,V) = 0 so that a- U + -V = 0, where a and § are

arbitrary constants [22]. This combination gives

/ ( All(x) - iigg)dx]. (2.20)

Fi(x,t) = —(%) -t -exp

Now defining

=) e | | (ot 2]

at t =ty , where tg = ln(f—g)) at any lower value Q = Qq, we get from equation (2.20)

Fé(z,t) = Fg(x,to)(%). (2.21)

Again defining

Fi(xo,t) = —(%) -t - exp
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at any higher values of # = z, we obtain from equation (2.20)

Fi(z,t) = F{(x0,t) exp [/ <A11(x) _ iﬁ;)dxl, (2.22)

Equations (2.21) and (2.22) give the ¢- and z-evolutions of longitudinal structure func-
tion F7 in LO respectively. Similarly, from equations (2.15) and (2.16), we obtain the

t- and z-evolutions for F}, structure function in NLO and NNLO as

g g (1+b/¢) 1 1
FL(ZE,t) = FL(I’,tQ)W exXp b(; — %) s (223)

FO(a,1) = F¥(z0, 1) exp [ / ( A;(x) _ izgg)dx] (2.24)

and
b2 c
, , £(14/1) b(% - %) + (? - 5) (t% - %)
Fi(z,t) = Fi(z, to)W exp _% (zr% _ ln:gto ) (2.25)
Fl(x,t) = F?(x0,t) exp / ( - )dx 2.26
L( ) L( 0 ) [ o Ag(ﬂ?) Ag(ﬂ?) ( )
respectively.

In our calculations, we used up to first order term O(x) in Taylor expansion of
F? (%, t) and neglecting the higher order terms in small-z approximation. Now instead
of neglecting the higher order terms O(2?) from the Taylor expansion series let us retain
the second order term and neglecting the higher order terms O(z?), FY (%, t) can then

be approximated as

(2.27)

0T N\~ o au OFP(x,t) 1/ au \? PFi(x,t)
F(28) = Fi(a 1) + +5() —E

1—u Oz 2\1 —u
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which gives from equation (2.4)

OFY(z,t) 1 g OF?(z,t) PFi(x,t)]
Sl [Bl(:c)FL(:c,t) Ay () =L CI(I)T] —0, (2.28)
1 /a? 2 3zt 2° b . .
where C)(z) = N (§ 5t 5t §> Ay (x) and B;(z) are given earlier.

The equation (2.28) is a second order partial differential equation and this can be
solved by Monges method [24]. According to this method, the solution of second order
partial differential equation

Rr+Ss+Tt=V (2.29)
can be obtained from the subsidiary equations
Rdy? + Sdxdy + Tdx* =0 (2.30)

and

Rdpdy + Sdqdx — Vdxdy = 0, (2.31)

where R, S, T and V are functions of x, y, z, p and ¢q. Here z, p, ¢, r, s and t are

defined as follows

0z 0z Pz Op

s=aley) = FYnt), p=go a=go r=go =g
s = 0 :@:@ and t:%:@
orxdy Oy Ox oy: Oy

Comparing equations (2.28) and (2.29) we get

R=Ci(x), S=0, T=0 and

taFLg(:c,t) OF7 (z,t)
ot Ox

Substituting the values of R, S, T" and V' in subsidiary equations (2.30) and (2.31) we

V: —Al(l’) —Bl(l’)Fg([L’,t)

ultimately obtain V = 0, which gives

OF7 (x,1)
ot

OF} (1)

1
ot Ai() ox

+ Bl(:c)Ff(:c,t)] —0, (2.32)
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which is exactly same as the equation (2.14). Similarly, the other two equations (2.15)
and (2.16) become same when we include the second order term in the Taylor expansion
series. Thus it is clear that the inclusion of the second order term does not modify the
solutions of the evolution equations. Similarly, if one introduce more higher order terms
in Taylor expansion series, then for these cases also the term can be neglected due to
smaller values of x [25,26].

Thus we have obtained an analytical expression for the ¢- and z-evolutions of
longitudinal structure function F7. From the final expressions (2.21), (2.23) and (2.25),
it is observed that our results, i.e., the t-evolutions depend upon the expressions of a(t)
only. From these expressions we can easily calculate the ¢-evolutions of F} by taking an
input distribution at a given value of Q3. The z-evolutions of F?¥ is determined from the
expressions (2.22), (2.24) and (2.26) by taking an input distribution at a given value of
xo. Here, we have calculated the z-evolution up to NLO only. Due to the unavailability
of the evolution kernel at NNLO we are unable to calculate the same at this order. But
the co-efficient function and splitting function of quarks and gluon are available up to
NNLO. So, we have calculated the structure function up to NLO in this chapter and
up to NNLO in chapter 4 and 5. In chapter 4 and 5, we have calculated the structure
function using the QCD evolution equation in terms of co-efficient function and splitting

function of quarks and gluon and the details are described in the respective chapter.

2.2 Results and Discussions

Using the simple analytical expressions (2.21), (2.22), (2.23), (2.24) and (2.25), we
have calculated the the gluon dominating longitudinal structure function F7 at small-z
in leading, next-to-leading and next-to-next-to-leading orders. The obtained results are
compared with the experimental data taken by H1 [1-5] and ZEUS collaboration [6],
results of the Donnachie-Landshoff (DL) model [7] and the theoretical predictions from
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MSTWO08 [8], CT10 [9], ABM11 [10], NNPDF2.3 [11, 12] parameterizations. In H1
2001 data [2], the structure functions are measured in the kinematic range 1.5 < Q? <
150GeV? and 3 x 107> < z < 0.2, for H1 2007 data [3,4], range is 2.5 < Q* < 25GeV?
and 5 x 107° < z < 0.12, for H1 2011 data [1], range is 1.5 < Q? < 120GeV? and
29 x 107 < z < 0.01, for H1 2014 data [5], range is 35 < @Q* < 800GeV? and
6.5 x 107* < x < 0.65 and for ZEUS 2009 data [6], range is 20 < Q* < 130GeV? and

5 x 107* < o < 0.07 respectively.

DL model [7] is based on dipole picture with a soft and a hard pomeron, large
dipole couples to the soft pomeron and small dipole couples to the hard pomeron.
The parameters in the model are fixed by proton-proton scattering data and proton
structure function F3 data. The authors derived a good numerical fit to the output of
the DGLAP evolution for the small-x behaviour of the gluon distribution function which
is valid for Q% between 5 and 500GeV2. Here, they fitted their parameters with the H1
data sets [2]. The gluon distribution here is mainly dominated by the hard pomeron at
small-z and for all Q2. This not only describes the DGLAP evolution of hard part of
the Fy, but also the longitudinal structure function. The MSTWO08 PDFs [8] include
updated LO, NLO and NNLO parton distribution functions determined from global
analysis of hard-scattering data within the standard framework of leading-twist fixed-
order collinear factorisation in the M S scheme. These parton distributions are a major
update to the previously available MRST sets [27-29] and incorporate the maximum
amount of information from DIS and other hard-scattering data. The CT10 PDF's of
the proton describes theoretical advancements in the global QCD analysis that was used
to produce the previous CTEQG6.6 [30] and CT09 [31] PDFs. This analysis includes the
most recent collider data from deep-inelastic scattering, vector boson production, and
single-inclusive jet production [9]. In CT10 PDFs the combined H1/ZEUS data [32]
sets for DIS at HERA is also included. The ABM11 PDF fit is based on the world

data for deep-inelastic scattering, fixed-target data for the Drell-Yan process and also
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includes data from the LHC for the Drell-Yan process [10]. The NNPDF2.3 PDF fit,
is the most accurate determination to date from the NNPDF family, and it supersedes

previous existing sets. It differs from the NNPDF2.1 set because of the inclusion of

LHC data [11].

Here, the proton longitudinal structure function, measured in the range 5 < Q? <
800GeV? and 107* < 2 < 107}, have been used for our analysis. The value of y used is
greater than or equal to 0.5, as from this value onwards the contribution of F}, structure
function is significant towards the total cross section [33]. The average values of A in
our calculation is 0.22GeV. In figure 2.2, I}, structure function is plotted against ()?
for different values of x in comparison with the H1, ZEUS data and results of DL
model. In figure 2.3, F, structure function is plotted against x for different values of
(Q? in comparison with the H1, ZEUS data and the results of DL model. In figure
2.4, Fy structure function is plotted against x for different values of Q? in comparison
with the H1, ZEUS data and the theoretical prediction of MSTWO0S8. In figure 2.5, F},
structure function is plotted against x for different values of Q% in comparison with the
H1, ZEUS data and theoretical prediction of CT10. Figures 2.6 and 2.7 describe our
x-evolution results in comparison with the H1, ZEUS data and theoretical predictions
of ABM11 and NNPDF2.3. The vertical error bars in all the plots are both statistical
and systematic error for both H1 and ZEUS data. In all the graphs, the data points
at lowest Q? values are taken as input point for t-evolution graphs and data points
at highest = values are taken as input points for z-evolution graphs. To confirm that
in spite of the large uncertainty in the experimental data, our results are in better
agreement with the data, we add DL model results and the theoretical prediction of

different parameterizations in all the figures.

It is observed from the t-evolution graphs that, our result shows good agreement
with that of H1 and ZEUS data, i.e., with respect to the experimental data our result

shows increasing behaviour with increasing values of Q2. It is seen from the figure
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2.2 that, our plots are in good agreement with DL model fit also and as the energy
scale becomes larger, the agreement is better. But, at intermediate energy scale the
agreement is not so good, the reason for this is that the DL model approach comes
from a BFKL like evolution equation [7] and the @Q?-evolution in that case is somewhat

different from a DGLAP approach. In all the cases, our calculated Fp, structure function

in LO, NLO and NNLO increase with the values of Q% in the given range like the results
of DL model as expected from QCD. At small-z, F;, increases with QQ? as we resolve
increasing numbers of soft partons with increasing Q* [34]. The z-evolution results also
show compatibility with the experimental data, model fit and the theoretical predictions
of different parameterizations which are depicted in figure 2.3 to figure 2.7. Here the
calculated values of F7 structure function increase with the decreasing = values. In
case of the x-evolution results described in figure 2.3 to figure 2.7, the behaviour of
LO, NLO curves are slightly different as we have considered the input point from
different parameterizations. The behaviour of LO, NLO and NNLO curves in both the
t- and z-evolutions of F} structure function are different (i.e., sometimes NLO results
overestimate LO prediction and vice versa) and this behaviour of the curves depend
only on the expressions used for calculation of the structure function. Moreover, with
reference to some recent papers [13,35-37], we can say that the behaviour of the LO,
NLO, NNLO curves depend only on the applied method. In all the figures, in spite
of large uncertainty of the experimental data, all the plots show good agreement with
the model fit and theoretical predictions of the parameterizations. It is observed from
the z-evolution graphs that, our results show good agreement with the model fit and
parameterizations and as the energy scale becomes larger, the agreement is better. In
all our results for z-evolutions, we observe that the differences between LO and NLO
results are extremely small and our NLO results are in better agreement with the
data and fit. Moreover, in case of t-evolution the NLO and NNLO curves are almost

overlapping with increasing values of ? and our NNLO results are in better agreement
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Figure 2.2: t-evolution results of F Lg structure function up to NNLO using Taylor

expansion method in comparison with the H1, ZEUS data and results of DL model.
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Figure 2.3: z-evolution results of F' Lg structure function up to NLO using Taylor
expansion method in comparison with the H1, ZEUS data and results of DL

model.



25

0.8 0.8
| Q=20 GeV? v H120M | Q°=80GeV* & ZEUS 09
——MSTW 08
—1L0
0.6} Lo 0.6}
5 0.4} _ 0.4}
L3
°|:|."
0.2} N v 0.2}
0.0 \ 0.0}
1E4  1E-3  0.01 0.1 1E-4  1E-3  0.01 0.1
0.8 1.2
| Q° =200 GeV’ ® H12014 - Q=800 GeV?
0.8}
0.6
04}
C 04}
X 0.0 Y
"I:I__.
0.2} 04}
-0.8}
0.0
P NEPENPTPN | NPT | PPN | - 2 aaaal NPT | s aaaaal PPN |
1E-4 1E-3 0.01 0.1 1E-4 1E-3 0.01 0.1

X

X

Figure 2.4: z-evolution results of F’ g structure function up to NLO using Taylor

expansion method in comparison with the H1, ZEUS data and the theoretical

prediction of MSTWOS.
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expansion method in comparison with the H1, ZEUS data and the theoretical

prediction of CT10.
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with data and related fits. In all the cases, the difference between different orders
become less as the energy scale increases, which lies within the framework of pQCD

i.e., running coupling constant becomes smaller as the energy value increases.

We have also presented a comparison of our results with the results reported in
a recent paper by Boroun et al. where they have calculated the gluon dominating
Fp, structure function using Laguerre polynomials method [13]. Figure 2.8 shows the
comparison of the results. Our results shows good agreement with the results of Boroun
et al. In both the cases, the structure function increases towards small values of x as
expected from QCD. Both the results does not show exactly the same behaviour as

the methods for evaluating the structure function in both the cases are different, in our
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case we have used ‘Taylor expansion method’ and they have used ‘Laguerre polynomials

method’.

2.3 Conclusions

In this chapter, we have obtained an analytical solution of evolution equation for
gluon dominating longitudinal structure function Y up to NNLO using the Taylor series
expansion method. The solutions of the evolution equation provide the expressions
for ¢t- and x-evolution of F} structure function. With the help of these expression,
we have calculated the evolutions of F7 structure function by considering the input
distributions from model fit and theoretical predictions of different parameterizations.
Here, for the calculation of t- and x-evolution of F} structure function we consider two
numerical parameters 7y and 77. This method is simple one and less time consuming
on the numerical calculations with less number of numerical parameters compared to
the other methods where several parameters are included in the input function [38].
So, this method may be a viable alternative to other methods. To confirm the validity
of our calculations, we have compared our results with recent experimental data. To
show that in spite of the large error bars of the experimental data, our results are
in good agreement with the data, we have compared our results with the results of
model fit and parameterizations. The variation of F} structure function with = and
Q? shows similar nature with the H1, ZEUS experimental data as well as the results
of DL model and theoretical predictions of MSTWO08, CT10, ABM11 and NNPDF2.3.
At small-z, our results show that the longitudinal structure function F} increases with
the increasing values of Q2 and it also increases with the decreasing values os z as
expected from QCD. As in our given range of x, the gluon contribution to the structure
function is dominant one, so we can conclude in general that the gluon contribution to

the longitudinal structure function increases with the values of Q% and it also increases
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with the decreasing values of x.
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Chapter 3

Evolution of F; Structure Function at Small-z Using
Regge Like Behaviour of Structure Function

In this chapter, the evolutions of longitudinal structure function F, from its QCD evo-
lution equation in next-to-leading order (NLO) at small-z is presented using the Regge
like behaviour of the structure function. The proposed simple analytical expression for
Fy, structure function provides the ¢- and z-evolution equations to study the behaviour
of Fy, structure function at small-z. The calculated results are compared with the data
of H1 [1-5], ZEUS [6] collaborations, results of Donnachie-Landshoff (DL) [7] model
and theoretical predictions of MSTWO08 [8], CT10 [9], ABM11 [10], NNPDF2.3 [11,12]
parameterizations. The comparison of our results with that of the results obtained
by Boroun [13] is also studied here. We have also presented a comparative study of
our predicted results with the results obtained in the previous chapter using Taylor

expansion method. Our calculated results can be described within the framework of

pQCD.

3.1 Theory

At small values of z (z < 1072%), the QCD evolution equation for gluon dominating

F? structure function is given by [14]

OF? (z,Q?)

aan2 :KG(x7Q2)®F£(x7Q2) (31)

65
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Here Kg(z,Q?) is the gluon kernel known perturbatively up to the first few orders
in a,(Q*. The symbol ® represents the standard Mellin convolution. The kernel

Kg(z,Q?) can be written as

Ko(r,@?) = A8 ko) 1+ (19 ) (32

up to NLO, where K2(z) and K} (z) are the gluon splitting kernels in LO and NLO
respectively. Kg(z), K& (z) are given in ref. [15,16] and their expressions are defined
in Appendix A. Using all these and simplifying the QCD evolution equations for the
F? structure function in LO and NLO, we get

OFf(z,t)  as(?)
ot 4T

%/xl dww?(1 — w)Ff(%,t)] =0 (3.3)

and

aﬁ@(;c,t)_ai;t) [8_90 /xldwwzu—wwz(g,t)] - (ﬁfj))zlf(%t):(], o

where

192, 1) = %O/mldwf(w)zrg(%,t). (3.5)

2
Here t = ln%, A is the QCD cut-off parameter and the function f(w) is defined in

Appendix A.

The strong coupling constant in higher order has the form [17]

a(t) = %[ —%mTtJro(t%)], (3.6)

where 3y and ; are the one loop and two loop corrections to the QCD [-function which
are defined in chapter 2 (equations (2.10) and (2.11)).
Regge approach provides a very good description of the HERA data on the small-z

behaviour of the structure function Fy(z,Q?) [18]. It explains the strong rise of the
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structure function F, towards small values of x. This phenomenon is usually described

with the help of the power like behaviour of the structure function at small-z as

F2(:Ea Q2) (8 z_Aa

where A > 0. Here, the power \ is related with the intercept of the Reggeon contribution
dominating at x — 0, namely with the pomeron intercept, A = a,(0) — 1. The small-z
behaviour of the structure function is mainly driven by the gluons in the proton and
this gluon density is determined from the data on the slope dF,,/dinQ? [19]. Thus,

gluon density G(z, @?) can be written as

dF,

ding ~ F(@),

G(z,Q%) ~

where f(Q?) is a function of Q? and ), is the pomeron intercept minus one. The steep
behaviour of the gluon distribution function generates a similar power like behaviour
of Fy structure function which can be expressed as G(z, Q%) o< 27 [19]. The power
of Ay is found to be either A\, ~ 0 and A\, ~ 0.5 where the first one corresponds to
soft pomeron and the second one to the hard (Lipatov) pomeron intercept [20]. As
the longitudinal structure function is directly sensitive [21] to the gluon distribution
function at small-z, we can use the same type of Regge behaviour to study the previous
case.

Now, the Regge like behaviour of the longitudinal structure function can be ex-
pressed as

Fi(x,t) = f(t)z™, (3.7)

x
where f(t) is a function of ¢, and A, is the pomeron intercept minus one. Now, F} (—, t)
w

can be written as

Ff(% t) = F(a, . (3.8)

Using equations (3.7), (3.8) and leading order term of equation (3.6) in equation (3.3)
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we get
OF (x,t)  F7(xz,t)
= P 3.9

. 20 pla) (39

with
80 (1
P(x :—/ dw(1l — w)w? .
@) =55 [ dw-w

Integrating equation (3.9) we get

Fi(x,t) = CtF@), (3.10)

where C' is a constant of integration.
Applying initial conditions at t = to, Fy(z,t) = Fr(z,t9) and at x = zg, Fp(x,t) =

Fi(z0,t), the ¢t and a-evolutions for F} structure function in LO can be written as

£\ P@)
F¥(z,t) = Ff(:):,to)<t—> (3.11)
0
and
Fi(z,t) = F{(x, t)tF@=Po) (3.12)

respectively. Here F7(z,ty) and F}(xo,t) are defined in chapter 2.
Proceeding in the similar manner from equation (3.4), we obtain the ¢- and z-

evolutions for F i’ structure function in NLO as

g g +A+3)Pi() 1 1
0
and
G0 _ 0 (148) [Py (@)= Py (o) . [0
Fi(a,t) = Ff (o, t)t0+ exp| 2 (Pi(2) = Pa(ao))| (3.14)

respectively, where
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The numerical parameter T is calculated for the particular range of Q? under study
as described in ref. [22]. Here we have considered the values of Ty = 0.0278 within the
range 1.5 < Q% < 800GeV? as described in chapter 2.

Thus we have obtained the analytical expressions for the ¢- and z-evolutions of
longitudinal structure function F7 as the solution of its evolution equation. Equations
(3.11), (3.13) and (3.12), (3.14) finally give us the ¢-evolutions and z-evolutions of F}

structure function in LO and NLO respectively.

3.2 Results and Discussions

In this chapter, we have calculated the ¢- and x-evolutions of the gluon dominating
longitudinal structure function F7 at small-z in leading and next-to-leading orders using
the Regge like behaviour of the structure function. The obtained results are compared
with the available H1 [1-5] and ZEUS experimental data [6], results of the Donnachie-
Landshoff (DL) model [7] and the theoretical predictions from MSTWO08 [8], CT10 [9],
ABMI11 [10], NNPDF2.3 [11, 12] parameterizations at several z and @?* values. The
kinematical ranges for H1 2001, H1 2007, H1 2011, H1 2014 and ZEUS 2009 data, are
1.5 < Q% <150GeV? and 3 x 107° < 2 < 0.2, 2.5 < Q? < 25GeV? and 5 x 1077 <
r <012, 1.5 < Q? < 120GeV? and 2.9 x 107° < 2 < 0.01, 35 < Q? < 800GeV? and
6.5 x 107* < 2 < 0.65 and 20 < Q? < 130GeV? and 5 x 107* < x < 0.07 respectively.

The t- and z-evolution results of I structure function are depicted in figure 3.1 to
figure 3.6, where we have compared our results with related experimental data and fit.
Here, the longitudinal structure function, measured in the range 5 < Q? < 800GeV?
and 107 < 2 < 107!, have been used for our analysis. The value of y used is > 0.5, as
from this value onwards the contribution of F7 structure function is significant towards
the total cross section [23]. Here the value of gluon distribution function exponent
Ag is taken as 0.5 as in the region of small-x this value describes the HERA data
well [24,25]. In figure 3.1, F7(z,Q?) structure function results are plotted against
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Q? for different values of x in comparison with the H1, ZEUS data and results of DL
model. In figures 3.2 to 3.6, FY(z, Q?) structure function is plotted against x for different
values of Q% in comparison with the H1, ZEUS data, the results of DL model and the
theoretical predictions of Fj using standard gluon distribution function by MSTWOS,
CT10, ABM11 and NNPDF2.3 parameterizations. Here the vertical error bars are
both statistical and systematic errors for both H1 and ZEUS data. To show that in
spite of large uncertainty of the experimental data, our results lie within the framework
of pQCD we have compared our results with the model fit and parameterizations.
In case of the z-evolution results described in figure 3.2 to figure 3.6, the behaviour
of LO, NLO curves are not exactly the same as we have considered the input point
from different parameterizations. The behaviour of LO and NLO curves in both the
t- and z-evolutions of F} structure function are different (i.e., sometimes NLO results
overestimate LO prediction and vice versa) and this behaviour of the curves depend
only on the the expressions used for calculation of the structure function. Moreover,
with reference to some recent papers [26-29], we can say that the behaviour of the LO,

NLO curves depend only on the applied method.

It is observed from the t-evolution graphs in figure 3.1 that, our result shows almost
similar behaviour with that of H1 and ZEUS data. To indicate that in spite of large
uncertainty in experimental data we have compared our results with the results of DL
model which also shows good agreement with results of model. Here the Q?-dependence
behaviour of structure function shows slight increasing behaviour with respect to Q2.
This is due to the presence of evolution kernel in the final expression for ¢-evolution of
F? structure function. In case of the plot © = 0.0004, we have used the input point
from DL model to study the evolution of F}, structure function. As the input point
is near the end of the error bar of F; data and our evolution of structure function
shows slightly increasing behaviour, so in this case our calculated results at some point

are outside the error bars. Among all the plots, the plot at z = 0.002 shows better



71

1.0

0.8

0.6

0.4

2,
F°(x, @)

0.2

0.0

1.0

0.8

0.6

0.4

2,
F°(x, @)

0.2

0.0

1.0
| x =0.0002 m H12001 | x=0.0003 v H12011
A H12007
i 0.8}
i 0.6
X 0.4}
X 0.2}
——DL fit
- —LO0
- - --NLO 0.0t
0 15 30 45 0 15 30 45
1.0
| x= 0.0004 | x= 0.002 € ZEUS 2009
i 0.8}
X 0.6}
i 74 / 0-4 i
r
il s
X 0.2} l B 'f T
1 N 1 0.0 1 1 N 1
0 15 30 45 30 60 920 120
Q’ (GeV?) Q’(GeV?)

Figure 3.1: t-evolution results of F' g structure function up to NLO using Regge

theory in comparison with the H1, ZEUS data and results of DL model.
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agreement with the model fit i.e., the Q? dependence of structure function obtained by
our approach shows better agreement with the results of model fit for this x value. In
all the cases, our calculated F7 structure function in LO and NLO increase with the
values of % in the given range like the results of DL models. This is an expected result
from QCD also. At small-z, F, increases with % as we resolve increasing numbers of
soft partons with increasing Q? [30]. From the z-evolution graphs, it is observed that
our result shows good agreement with those of H1, ZEUS data and those predicted by
model and parameterizations. Also it is observed that compatibility with data becomes

better with increasing values of Q2.
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—1L0
0.6 - - -NLO
l ¢ GRB result
O o4}
X
@
0.2}
0.0}
1E-4 1E-3 0.01
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Figure 3.7: z-evolution results of F’ g structure function up to NLO using Regge
theory in comparison with the H1 data and the theoretical prediction of Boroun

(GRB) [13].

We have also compared our x-evolution results with the results obtained by Boroun
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[13] which is shown in figure 3.7. Here they have reported an analytical expression to
determine the Fp structure function in NLO at small-x. In their approach Regge
like behaviour of gluon distribution function is used which reflects good agreement of
their results with recent data and fit. As depicted in figure 3.7 our result shows similar
behaviour with the results in ref. [13]. In both the cases, the structure function increases
towards small values of x as expected from QCD. Both the results does not show exactly
the same behaviour as the methods for calculation of the structure function in both the

cases are different.

3.2.1 Comparative study of our results predicted by Regge theory and

Taylor expansion method

Here we have presented a comparative analysis of our results predicted by Regge
theory (RT) approach and results of chapter 2 i.e., obtained by Taylor expansion (TE)
method. Figures 3.8 to 3.13 show the comparison of the evolutions of F} structure
functions obtained by the two methods already discussed above.

The comparison of our results of the t-evolution of F} structure function at small-x
is presented in figure 3.8 which reflects similar nature with the results of DL model in
spite of the large uncertainties of the data. The results predicted by Taylor expansion
method shows better agreement with the results of the model than those obtained by the
Regge theory approach. This implies that the compatibility of the t-evolution results
with the model fit and data depends on the expression of evolution kernel of F. Due
to the presence of evolution kernel in the final expression for t-evolution of Fy} struc-
ture function in equations (3.11) and (3.13) in Reege theory approach, the growth of
structure function is not sharp as that obtained by the Taylor expansion method where
the final expressions for determination of t-evolution of structure function, equations
(2.21) and (2.23) are independent of evolution kernel.

Figures 3.9 to 3.13 describe the comparison of the behaviour of F} structure function
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Figure 3.8: Comparison of ¢-evolution results of F{ structure function predicted

by Regge theory approach and Taylor expansion method and DL model.
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with respect to x which shows good agreement with the data, model fit and parameter-
izations. In all the graphs, F} structure function predicted by both approach increases
towards small values of x. Though the results of obtained by TE approach are slightly
higher than those of RT approach in almost all the cases, yet both the methods can be

applied to calculate the FY structure function at small-z.

3.3 Conclusions

In this chapter, we have obtained an analytical solution of evolution equation for
longitudinal structure function F7 up to NLO using the Regge like behaviour of the
structure function. Here, we have studied the behaviour of the ¢ and xz-evolutions of F}
structure function up to NLO only. Due to the unavailability of the evolution kernel
at NNLO we are unable to calculate the same at this order. We have compared our
results with the recent experimental data to confirm the validity of our calculations.
The variation of FY structure function with z and Q* shows similar nature with the
experimental data as well as the model fit and parameterizations which shows the
compatibility of Regge behaviour with the perturbative evolution of structure function
at small-z. At small-z, our results show that the longitudinal structure function F7
increases as the values of Q? increases and x decreases. The increasing behaviour of
F? structure function in this approach follows the power law behaviour of structure
function as predicted by Regge theory. As in our given range of z, we have considered
only the gluon dominating part of the structure function, so we can say that the gluon
contribution to the longitudinal structure function increases as the values of Q% increases
and x decreases. From the comparative study of evolution of F} structure function
predicted by Regge theory approach and Taylor expansion method shows that results

obtained by both the method are in good agreement with data and parameterizations.
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Chapter 4

F; Structure Function from Gluon Distribution Func-
tion Using Taylor Expansion Method at Small-x

In this chapter, we have presented the relation between the Fp, structure function and
the gluon distribution function up to next-to-next-to-leading order analysis at small-
x using Taylor expansion method. We use the Altarelli-Martinelli equation in our
analysis to obtain the evolution of Fj structure function at small-x. The obtained
theoretical results are compared with H1 [1-5], ZEUS [6] data, results of DL [7] model,
results predicted by MSTWO08 [8], CT10 [9,10], ABM11 [11] and NNPDF2.3 [12, 13]

parameterizations and results obtained by other authors.

4.1 Theory

In pQCD, the Altarelli-Martinelli equation for longitudinal structure function Fy(z, Q%)

of proton in terms of co-efficient function is given by [14, 15]

T = O @ Gt < €2 > (Ol @ s+ Cly @ g). (4.1)

Here ¢,,5, gs and g are the flavour non singlet, flavour singlet and gluon distribution func-

tion, < €% >= 1—58 is the average squared charge for Ny (number of active light flavours)
and the symbol ® represents the standard Mellin convolution. Cp.(a = ns,s,g)’s
are the co-efficient functions which can be written by the perturbative expansion as

follows [15]
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Cralosa) =3 (52) Chalo), (42

n=

where n denotes the order in running coupling constant as(Q?) [16] and the expression
of o, is mentioned in section 2.1 of chapter 2.

At small values of z (x < 1073) the gluon contribution to the F}, structure function
dominates over the flavour singlet and non-singlet contribution [17]. Now the Altarelli

Martinelli equation for gluon dominating Fj, structure function is given by

U dw x
Fi(z, Q%) =< ¢ >/ S, QG (=, Q?). (4.3)
. W w
Here Cf, 4(w,Q?) is the gluon co-efficient function for F, known perturbatively up to

first few orders in running coupling constant a,(Q?) and can be written as

Cryw, Q%) = O‘Sflfz)ci,g(w) + (O‘Sf))ZCi,g(w) + (O‘Sf))gcﬁ,g(w), (4.4)

where C} (w), C7 ,(w) and C}  (w) are the gluon co-efficient functions for Fy in LO,
NLO and NNLO respectively [15,18,19]. The analytical expression of the gluon co-
efficient function for Fj, are defined in the Appendix A.

At small values of = we can rewrite the equation (4.3) by substituting w = 1 — z as

dz

—z

1-z
Fi(a,Q?) =< ¢ > /0 (1 - 5 Q)6 (7, %), (4.5)

where F} is derived from the integrated gluon distribution function G(x,Q?). An

approximate relationship between F7 and gluon distribution can be obtained from the
x
1—2z . .
r <w <1, wehave 0 < 2 <1—x; so the series — = is convergent for |z| < 1.
w -z
So, we can take the point of expansion z as any value between 0 < z < 1.

expansion of G( ,Q2> around a particular choice of point of expansion. Since

Using the Taylor expansion method for the gluon distribution function at an arbi-

< ,Q2> can
1—=z

trary point z = %, and neglecting the higher order terms at small-z, G (
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be written as

_1)266n.@) (4

— G(22,Q°) + <z S

Using equation (4.6) and leading order terms of equation (4.4) in equation (4.5) and

performing the integration, we get

Fi(z,Q% =< é&* > asi§2)P(x)G<2x + %, Q2>, (4.7)
where
Pw= [ (en0-2) (45)
and

Q) = /OH 1d_zz (- %) (ct,0-2). (4.9)

This result shows that the longitudinal structure function F}(z, Q%) can be calculated
using the low = gluon density from Donnachie Landshoff (DL) model [7] at LO. Similarly,
when gluon density is expanded at z = 0.8, the corresponding LO expression takes the

form

a,s(Q%)
47

R(x)
P(z)

Fo(x,Q%) =< ¢* > P(2)G (52 + 5, @) (4.10)

where

—Z

R(z) = /OH 1d'z (- 0.8) (Cig(l . z)). (4.11)

Both the equations (4.7) and (4.10) show the behaviour of F7(z,Q?) with respect to
x. We have also checked this for z = 0.6,0.7,0.9; but the best result is obtained in the
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case of the expansion point of the gluon density at z = 0.8 in LO analysis, which is

depicted in figure 4.1 in comparison with the experimental data and model fit.
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Figure 4.1: Sensitivity of our results of F} structure function in LO with respect
to the expansion point of gluon density at z = 0.5, 0.6, 0.7, 0.8, 0.9 in comparison

with H1 data and DL model.

We have also obtained the relation between the longitudinal structure function and
the gluon distribution function at small-x in NLO and NNLO analysis by considering

the expansion point of the gluon density at z = 0.8. These are given by

O‘S(Q2)
47

R1 (JJ)
P1 (I‘)

Fi(2,Q%) =< ¢ > Pl(x)G<5x + ,Q2> (4.12)
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and

g o o (@) Ry(z) o
Fil, Q%) =< ¢ > 22 Pg(:z)G<59: ) @ ) (4.13)
in NLO and NNLO respectively. Here
T dz 1 2
Pi(z) = / S (CLy(1 = 9+ ThCE (1 - 7)), (4.14)
0 —Z
_ T dz 1 _ 2 _ 3 _
Py(z) = T Cr,(1=2)+TC} (1 —2)+TCp (1 —-2)), (4.15)
0 _
11—z dz . )
Ry (z) = / 1 (z—0.8) (C’L,g(l —2) + 1O ,(1 — z)) (4.16)
0 —z

and

e~ /Ol_x 1d_zz(z —0.8) (C;g(l —2) + TyC2 (1 — 2) + TyC3 (1 — z)). (4.17)

Here we consider two numerical parameters Ty and 77, such that T2(t) = T,.T(t) and

T3(t) = Ty.T(t) with T(t) = a;(:). These numerical parameters are obtained for a
particular range of Q2 under study. As described in chapter 2 and ref. [20], these two
parameters are chosen in such a way that the difference between T2(t), Ty.T(t) and
T3(t), Ty.T(t) are negligible in our required range. Here, we have considered the values
of Ty = 0.0278 and T = 0.000892 within the range 1.5 < Q? < 200GeV?2. We have also
checked the sensitivity of our results of F} structure function in NLO and NNLO with
respect to the expansion point of the gluon density at z = 0.5,0.6,0.7,0.8,0.9 which is
depicted in figure 4.2. This figure shows that in case of the expansion point of gluon
density at z = 0.8, our results show better agreement with the results of model fit and
experimental data. Therefore, in all the cases of our calculated results of FY structure

function, i.e., in LO, NLO and NNLO analysis, the results calculated with respect to
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Figure 4.2: Sensitivity of our results of F{ structure function in NLO and NNLO
with respect to the expansion point of gluon density at z = 0.5, 0.6, 0.7, 0.8, 0.9

in comparison with H1 data and DL model.

the expansion point of the gluon density at z = 0.8 shows compatibility with the results
of model fit and data. In a similar way we have also checked the sensitivity of z values
for all values of Q? like the values of Q% = 20GeV? which is found to be 0.8.

Thus using equations (4.10), (4.12) and (4.13) we have calculated the z-evolutions
for F{ structure function in LO, NLO and NNLO respectively.

4.2 Results and Discussions

We have determined the approximate relation between the longitudinal structure
function of proton and gluon distribution function at small-z in next-next-to-leading
order analysis with respect to the expansion of the gluon density at an arbitrary point

of expansion. With the help of these relations we have calculated the F} structure
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function in the range 107* < 2 < 0.1 and 15 < Q? < 200GeV? using the small-z gluon
distribution function of DL model and the co-efficient functions which are given in
Appendix A. The obtained results are compared with the the recent H1 [1-5], ZEUS [6]
experimental data and results of DL model [7]. The related plots are depicted in figure
4.3 which indicate a good agreement with experimental data and model fit. Here, the
vertical error bars are both statistical and systematic errors for both H1 and ZEUS data.
To confirm that in spite of the large uncertainty in the experimental data, our results
are in good agreement with the other results, we also add DL model results. We have
also compared our results with the theoretical predictions of MSTWO08 [8], CT10 [9,10],
ABMI11 [11] and NNPDF2.3 [12,13] parameterizations. Figures 4.4 to 4.7 show the
related plots for different values of Q% = 20, 25, 80 and 200GeV 2. These plots also reflect
better agreement of our results with these parameterizations. Here all the plots show
compatibility with predictions of parameterizations towards higher values of Q? i.e.,
@Q* = 80 and 200GeV?. In this procedure of evaluation of Y structure function as we
have taken the input distribution of gluon from DL model, so the behaviour of structure
function increases towards small-z depending on values of the input distribution. Our
calculated results of F7 structure function in all the cases i.e., LO, NLO and NNLO

increases towards small values of  in the given range of x and Q? as expected from

QCD.

In our analysis, we have determined the approximate relation between F} structure
function of proton and gluon distribution function at small-z in next-next-to-leading
order using the Altarelli- Martinelli equation for F} structure function in terms of the
co-efficient functions. We have also compared our results at moderate values of Q? =
20GeV? with the similar results obtained by Sarkar et al (CS) [17] and Boroun et al
(GRB) [21]. In ref. [17], the authors suggested a relation between Fy, structure function

of proton and gluon distribution function at small-x in leading order approximation
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Figure 4.3: z-evolution results of F Lg structure function up to NNLO using

Taylor expansion method in comparison with the H1, ZEUS data and results of

DL model.
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Figure 4.5: z-evolution results of F’ g structure function up to NNLO using Taylor
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prediction of CT10.



101

0.8

0.6

0.4

2
F° (x, @)

0.2

0.0

0.8

0.6

0.4

2
F°(x, @)

0.2

0.0

0.8
Q’ =20 GeV’ v H12011 | Q°=25GeV* m  H12001
—— ABM11
i -=-L0 0.6}
——NLO
- - -NNLO
- 04}
5 0.2
5 0.0t
0.8
| Q°=80GeV’ @ ZEUS 2009 | Q% =200 GeV* ® H12014
N 0.6}
- 04}
- 0.2f
- 0.0t

1E.4 1E.3 001

X

0.1

X

Figure 4.6: z-evolution results of F’ g structure function up to NNLO using Taylor

expansion method in comparison with the H1, ZEUS data and the theoretical
prediction of ABM11.



102

0.8
0.6
S 04
X
TL-I
0.2
0.0
0.8
0.6
o
< 04
‘:I__.
0.2
0.0

2

| Q*=20GeV v H12011
- Lo
——NLO

- - -NNLO

——NNPDF2.3

1E-4 1E-3 001

0.

Q’> =80 GeV’ & ZEUS 2009

1E-4 1E-3 001

X

0.1

0.8

0.6

0.4

0.2

0.0

0.8

0.6

0.4

0.2

0.0

| Q*=25GeV’

®  H12001

1E-4 1E-3 001

| Q* =200 GeV* ® H12014

1E4  1E3 001
X

Figure 4.7: z-evolution results of F’ g structure function up to NNLO using Taylor

expansion method in comparison with the H1, ZEUS data and the theoretical
prediction of NNPDF2.3.



103

0.8
Q’=20 GeV* ®  H12001
[ v H12011
0.6 F our result
——CS result
— — GRB result
‘T 04}
X
°|:|."
0.2}
0.0}
1E-4 1E-3 0.01
X

Figure 4.8: comparison of our z-evolution results of F{ structure function with

the results of Sarkar et al (CS) and Boroun et al (GRB).

given by

N
20, 3.0, €2
Fi(r. Q%) = 20 2050 ) (118)

which shows the close relation between these two quantities. In ref. [21], the authors
reported an NLO analysis of the relation between Fp structure function and gluon
distribution obtained by Sarkar et al. Figure 4.8 shows the comparison of our results
with the above mentioned two results which reflects similar behaviour with the results
obtained by Sarkar et al (CS) and Boroun et al (GRB). Thus our approximate relation
can be used to study the z-evolution of F} structure function at small-z up to NNLO

analysis.
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4.3 Conclusions

In this work, we have determined the proton longitudinal structure function up to
NNLO at small-z using the approximate relation between F7 structure function and
gluon distribution function with respect to the expansion of the gluon density at an
arbitrary point of expansion i.e., at z = 0.8. The behaviour of Fy structure function
with x shows good agreement with the experimental data and the model fit and param-
eterizations. Our predicted results also shows resemblance with the results obtained by
other authors. The calculated results of F} structure function in all orders lies within
the framework of pQCD i.e, it increases towards low values of x. As at small-x gluon
contents in the proton is dominant one we can say that gluon contribution to the FT,

structure function increases as z decreases.
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Chapter 5

Longitudinal Structure Function F; and DIS Cross

Section Ratio R = £ at Small-z from Regge Be-
or

haviour of Gluon Distribution Function

In this chapter, the behaviour of gluon dominated longitudinal structure function
F? with respect to Bjorken variable x and Q? , the squared four-momentum transfer
between lepton and nucleon in next-next-to-leading order (NNLO) at small-z is pre-
sented using the Regge like behaviour of the gluon distribution function. Here we have
calculated t- and a-evolutions of the F7 structure function using the gluon distribution
function obtained as a result of solution of the DGLAP evolution equation at small-z.
We have also studied the behaviour of the DIS cross section ratio R = Z—L in this kine-
matical region. The calculated results are compared with recent H1 [1{5], ZEUS 6]
data and DL [7] model results. We have also compared our results with the theoretical
results predicted by MSTWOS [8], CT10 [9,10], ABM11 [11] and NNPDF2.3 [12,13] pa-
rameterizations. The results obtained can be explained within the framework of pQCD
i.e., the evolution of structure function Fy increases towards low values of x. And the
behaviour of F7 structure function shows resemblance with the gluon distribution func-
tion as it is originated from gluon distribution function. Contrary to it, the behaviour of
the ratio R shows constant behaviour with respect to x and fixed Q? i.e., its behaviour
is independent of the behaviour of gluon distribution function. A comparative analysis

of our z-evolution results with the results obtained in chapter 4 is also studied here
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which indicate that the behaviour of structure function can be studied using both the

Regge behaviour of gluon distribution function and Taylor expansion method.

5.1 Theory

In pQCD, the Altarelli-Martinelli equation for longitudinal structure function Fy(z, Q%)

of proton in terms of co-efficient function is given by [14, 15]

2 VL = COpps @ st < €2 > (Crs®qs + Oy ®g). (5.1)

Here q,s, qs and g are the flavour non singlet, flavour singlet and gluon distribution
function, < e >= % is the average squared charge for even Ny (number of active
light flavours) and the symbol ® represents the standard Mellin convolution. Cf, ,(a =
ns, s, g)’s represent the co-efficient functions as described in chapter 4.

At small values of z (x < 1073) the gluon contribution to the F}, structure function

dominates over the flavour singlet and non-singlet contribution [16]. Now the Altarelli-

Martinelli equation for gluon dominating Fj, structure function is given by

/ g 6 (2. Q). (5.2)

Here Cp ,(w, Q?) is the gluon co-efficient function for F;, known perturbatively up to

first few orders in running coupling constant a,(Q?) [17] and can be written as

Crolw @) = 28t )+ (D2 )+ (2D e ), 53

where C} ,(w), C} ,(w) and C} ,(w) are the gluon co-efficient function for Fy, in LO,
NLO and NNLO respectively [15]. The required LO, NLO and NNLO approximation
of the gluon co-efficient functions for Fy, [15,18,19] are defined in Appendix A.

Using the gluon co-efficient functions and the equation (5.2), we can calculate the

F? structure function up to NNLO approximation. For this purpose, we have to first
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determine the gluon distribution function G(z,@?). We calculate this by solving the
DGLAP evolution equation for gluon distribution function at small-z using the Regge
like behaviour of the gluon distribution function. At small values of z, neglecting the
quark singlet part, the DGLAP evolution equation for gluon distribution function is

given by [20]

Q?aGagfy / Py (0, QNG (=, Q7). (5.4)

Here P,,(w,@?) is the gluon splitting function known perturbatively up to first few

orders in running coupling constant a,(Q?) and can be written as

Pry(.Q%) = L pr gy 1 (LY b2y 4 (ALY P2y, (5

up to NNLO, where P, (w), P; (w) and P}, (w) are the gluon splitting functions [20-22]
in LO, NLO and NNLO respectively. At small-z limit the expressions for these splitting
functions are defined in Appendix A.

Using the expressions for gluon splitting functions in equation (5.4) and simplifying
the DGLAP evolution equations for the gluon distribution function G(x,@Q?) in LO,
NLO and NNLO, we get

ac;gi;, t a§§f> [6{ (E _ ﬂ) 4 in(l— a:)}G(x,t) v 61;(x,t)], (5.6)

ot 27

0G(z,t) _ au(t) [6{ (E _ &) +in(l— x)}G(x,t) + 6I;(x,t)]
+<as(t)>2[2(x,t), (5.7)

ot 2w 12 18

0G(x,t) _ ault) of (E _ &) +in(1 = ) }Gla, ) + 611z, 1)]
+(O‘S(t))213(x, f+ (agff))glg’(x,t), (5.8)
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where

(1 —w) w w
I;(x,t):/lde;g(w)G<§,t> (5.10)
and
Ig’(x,t):/1deg3g(w)G<£,t>. (5.11)

Now, the Regge like behaviour of the gluon distribution function can be expressed

as [23]

Gz, t) = f(t)z™, (5.12)

where f(t) is a function of ¢ and ¢ is defined in chapter 2, and ), is the Regge exponent.

Now, G(%, t) can be written as

G(% t) — G(z, . (5.13)

Using equations (5.12) and (5.13) in equation (5.6) we get

0G(x,t)  G(x,1)
i = T P(), (5.14)

where

P(z) = 12 [(E — &> +In(1l — )

Bo |\12 18
+/1 dw{wll%gq;l + (w(l —w) + 1_Tw> }] ) (5.15)

Integrating equation (5.14) we get
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G(x,t) = CtP’®), (5.16)

where C is a constant of integration and can be determined from experimental data.
Applying initial conditions at t = to, G(z,t) = G(x,ty) and at = = xy, G(z,t) =

G(zo,t), the t- and x-evolutions for G(xz,t) gluon distribution function in LO can be

written as
t\ Pl
G(z,t) = G(, to) (t—) (5.17)
0
and
G(z,t) = G(xg, t)tP@ =Pl (5.18)
respectively.

Proceeding in the similar manner from equation (5.7)and (5.8), we obtain the ¢-

and z-evolution equations for G(z,t) gluon distribution function in NLO as

D

Gla.1) = Glr,to) g |b(5 - —)Q(x)} (5.19)

to to t t()
and
b

G(r,) = Glao, 1+ DAl ep | 2(Q(x) = Q(ao)) | (5.20)

respectively, and in NNLO as

b2 c
£(14b/8)5 () {b(% - %) - (? - 5) e %)

Gz, 1) = Gz, b)) e o 5.21
(1) = Gz, 1) (F)5@) exp —%(% - lf;O)} (x) (5:21)

and
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G(x,t) = Gz, t $A+0/1S(@)=S(z0)} | o 5.22
( ) (xo ) xp {S((L’) — S(l’o)} ( )
respectively. Here
1— x)\g 1— xl"l‘)\g
Q(z) = [P(z) + TyR(z)],  R(z) = —27.11 " + 98.9(?&]),
(1—att)

S(z) = [P(x) + ToR(x) + T Y (x)], and Y (z) = —149.33 S

The numerical parameters Ty and 17 are calculated from the data as described in
chapter 2 and ref. [24]. Here Ty = 0.0278 and 77 = 0.00013 in our required Q? range
1.5 < Q% < 800GeV2.

Thus we have obtained an analytical expression for the t- and x-evolutions of gluon
distribution function G(z,t) in LO, NLO and NNLO. Using the above expressions of
gluon distribution function along with the co-efficient functions we have calculated FY
structure functions in LO, NLO and NNLO.

In a similar manner, the Fj structure function can be determined at small-z with

the help of the calculated results of gluon distribution function using the equation [25]

Fi(z,Q%) =< ¢ > / 1 dwcgvg(w)c:(g,@). (5.23)

xT

Here O 4(w) is the gluon co-efficient function for F, and can be written as

D et + (LY 0, 0+ (19N g, G20

C2,g(w7 Q2) = 47T

up to NNLO, where C5  (w), C3 ,(w) and C3 (w) are the gluon co-efficient functions
[26] for F; structure function in LO, NLO and NNLO respectively and are defined in
Appendix A.
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The measurements of longitudinal structure function F7, are used to determine the
DIS cross section ratio R which is related to the structure functions F5 and Fp, as
oL Fr,

R=_"~2=_"- 5.25

where o7, and o are the absorption cross sections of longitudinally and transversely
polarized virtual photons by proton. At small-z, F5 and Fj, are gluon dominating and
so equation (5.25) can be written as
g

R= FngfLFg' (5.26)
In analogy with the Fj structure function the ratio R is a good QCD characteristic
because it equals zero in the naive parton model. Moreover at small values of =z,
the ratio R gives the relative strength of the two components of the absorption cross
section [6,27]. Here, we have also studied the behaviour of ratio R at small-z in LO,

NLO and NNLO using the calculated values of F} and FJ structure function.

5.2 Results and Discussions

We have calculated the ¢- and z-evolutions of the gluon dominating longitudinal
proton structure function F, at small-x up to next-next-to-leading order approximation
using the gluon distribution function. This gluon distribution function is obtained as a
result of solution of the DGLAP evolution equation for gluon distribution at small-z.
To extract the gluon density inside proton, we use Regge like behaviour of the gluon
distribution function. For this purpose, we use the input distribution of gluon from DL
model [7], MSTWO08 [8], CT10 [9,10], ABM11 [11] and NNPDF2.3 [12,13] to obtain
t- and z-evolutions of the gluon density. As the values of Regge exponent is close
to 0.5 in the region of small-z [28], we have taken its value as 0.5. Thus using the

required co-efficient function which are given in Appendix A and gluon distribution
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function we have calculated the F f structure function in the range 107* < < 0.1 and

1.5 < Q% < 800GeV2.

The obtained results are compared with the available H1 [1-5], ZEUS [6] experi-
mental data and results of DL model fit [7], MSTWO08 [8], CT10 [9,10], ABM11 [11]
and NNPDF2.3 [12,13] parameterizations. The related plots are shown in figures 5.1
to 5.6 which indicate a good agreement with the experimental data, related fit and
parameterizations. In all the graphs, the lowest-Q? and highest-z points are taken as
input for G(z,ty) and G(xo,t) respectively. Here, the vertical error bars are both sta-
tistical and systematic errors for both H1 and ZEUS data. To confirm that in spite
of the large uncertainty in the experimental data, our results are in good agreement
with the data, we add DL model results and the theoretical prediction of different pa-
rameterizations in all the figures. Figure 5.1 represents the t-evolution results of FY
structure function which show that our results are compatible with the data and the
results of DL model. Here the structure function increases with the increase of Q2. The
x-evolution results are depicted in figure 5.2 to 5.6 which reflect better agreement of
our results with data and results of the model and parameterizations. These graphs
describe that the behaviour of structure function F} increases towards small values of
x. In case of the z-evolution results described in figure 5.2 to figure 5.6, the behaviour
of LO, NLO curves are not exactly the same as we have considered the input point
from different parameterizations. In all the graphs it is observed that our results show
good agreement with data, related model fit and parameterizations as the energy scale
becomes larger. It is observed from the t- and x-evolutions results that the behaviour
of the LO, NLO and NNLO curves are different in both the cases. Thee reason for
this is that the expressions for the calculation of ¢- and x-evolutions are different and
the behaviour of LO, NLO, NNLO curves depends on the expressions only. Moreover,
with reference to some recent papers [29-32], we can say that the pattern of LO, NLO,

NNLO curves (i.e., sometimes NLO results overestimate LO prediction and vice versa)
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Figure 5.2: z-evolution results of I Lg structure function up to NNLO using Regge

theory in comparison with the H1, ZEUS data and results of DL model.
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theory in comparison with the H1, ZEUS data and the theoretical prediction of
NNPDF2.3.
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Figure 5.7: z-evolution results of R in comparison with the H1 data and the

theoretical prediction of ACOT fit.

depend only on the applied method.

We have also calculated the cross section ratio R using the results of the Fjy and
F? structure functions from equations (5.2) and (5.23). In figure 5.7, the ratio R is
plotted against x for different values of Q2 in comparison with the H1 data and the

prediction of DGLAP fit in the ACOT scheme [33]. ACOT scheme incorporates the

heavy quark mass into the theoretical calculations of massive partonic cross section.
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Figure 5.8: Comparison of z-evolution results of F} structure function up to

NNLO using Regge theory (RT) and Taylor expansion (TE) method in comparison
with the H1, ZEUS data and the of DL model.
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Here they have used the QCDNUM program [34] for the DGLAP evolution which helps
to generate the PDF's from an initial distribution based on the Les Houches benchmark
set [35]. Together with the precise HERA data, these calculations facilitate accurate
determination of PDFs. We have analyzed the behaviour of the ratio R for two values
of Q? = 20GeV?,25GeV? which indicate good agreement with the experimental data
and fit. It has been observed in the H1 experimental results that for Q? > 3.5GeV 2
, the ratio R is consistent with a constant behaviour [1]. Our analysis also shows
constant behavior with respect to = for fixed values of Q2. The constant behaviour
of the cross section ratio implies that its behaviour is independent of the behaviour of

gluon distribution function with respect to x at small-z.

5.2.1 Comparative study of our results obtained by Regge theory and Tay-

lor expansion method

We have also presented a comparison of our xz-evolution results and the results obtained
in the chapter 4 which is shown in figure 5.8. These two results are actually the results
of FY structure function obtained by Regge theory (RT) and Taylor expansion (TE)
method. The comparison of the results of F structure function obtained in both the
cases shows similar behaviour with the model fit and data. Thus one can determine

the evolution of structure function using both the methods.

5.3 Conclusions

In this chapter, we have calculated the gluon dominating longitudinal structure function
F? of proton up to NNLO approximation from DGLAP evolution equation for gluon
distribution function at small-z using the Regge like behaviour of the gluon distribution
function. The evolutions of F}, structure function with z and Q? reflects similar nature
with the experimental data which shows the compatibility of Regge behaviour with the

perturbative evolution of structure function at small-x. To confirm the validity of our
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calculations we compare our results with the recent experimental data taken by H1 and
ZEUS collaborations along with the DL model results and the theoretical prediction
of different parameterizations. Our results are in good agreement with the data and
related fits. As in our given range of x, the gluon contribution to the structure function
is dominant one, so we can conclude in general that the gluon contribution to the
longitudinal structure function increases with the decreasing values of x. We have also
calculated the cross section ratio R which indicates good agreement with the H1 data
and DGLAP fit in the ACOT scheme. Its variation with small values of Bjorken variable
x and fixed Q% shows constant behaviour similar to that of the experimental data and
fit. From the constant behaviour of the cross section ratio R with respect to z, we can
conclude that its behaviour does not depend on the behaviour of gluon distribution
function with respect to x and fixed @? at small-xz. The comparative analysis of our
x-evolution results with that of the results obtained in chapter 4 show good agreement
with data and the related model fit. In chapter 4, Taylor expansion method is used to
evaluate the structure function. Thus, we can conclude that both Regge theory and
Taylor expansion method can be used to study the behaviour of the structure function

in small-x region.
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Chapter 6

Heavy Quark Contribution to Longitudinal Struc-
h

F
ture Function F; and the Ratio R" = F—% at Small-x
2

The dominant process for the heavy quark (charm and beauty quarks) production
at HERA is the boson gluon fusion (BGF), where the photon interacts with a gluon
from the proton by the exchange of a heavy quark pair and is given as vg — ¢¢.X, with
q = ¢, b [1]. This reflects that the process is sensitive to the gluon density in the proton.
Thus, the structure functions F}*(k = 2, L; h = ¢, b) are dominated by the gluon content
of the proton. The charm structure function F§ and the beauty structure function F?
are obtained from the measured charm and beauty cross sections after applying small
corrections for the longitudinal structure functions Ff and F?. At small values of x, Fy,
becomes non-negligible and its contribution should be properly taken into account while
F, is extracted from the measured values of cross section. The same is also true for the
contributions F to FI' due to the heavy quarks. In this chapter, the behaviour of heavy
quark structure functions F}* with respect to Bjorken variable x are studied using Taylor
expansion method and Regge behaviour of structure function at small-z. Here, we use
the input distribution of gluon from Donnachie-Landshoff (DL) model [2] to determine
the heavy flavour structure function of proton. The obtained results are compared with
the recent HERA data [3,4] and results of DL, Colour Dipole [5] models (CDM) and
MSTWOS [6] parameterization which show good agreement with data and fit. We have

used our results of heavy flavour structure function to analyze the behaviour of heavy

129
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quark DIS cross section ratio R"(x, Q%) and reduced cross section o” in heavy quark
lepto-production at small values of x. We have also studied the behaviour of the heavy

quark content of the F structure functions with respect to x.

6.1 Theory

6.1.1 Heavy quark contribution to F} structure function using Taylor ex-

pansion method

In the small-z region, the heavy quark structure function is given by [7-9]

Fk(if Q2 mh

G(%,;ﬁ), (6.1)

2
where a = 1+ 4¢(¢ = %

renormalization scale i is assumed to be either y? = 4m? or p? = 4m3 + Q> C,i‘, g (k=

), mp; (h = ¢, b) is the mass of the heavy quark and the

2, L) is the heavy quark co-efficient function which can be written up to NLO as [9]

2

—(
Ot g, Q)= O (w,0) + (1) | Chlg(w,O) + Ty(w, Qi | (6:2)
h
O‘S(,u2) . .
Here a4(p?) = 1 and in NLO analysis
m
5 47 47 By Indn(u?®/A?)

U) = B D B In(iAT) (©.3)

The co-efficient functions C’,g?; and C,S;, U,(:,; are at LO and NLO respectively. These
have been computed up to NLO in ref. [7-10] and the expressions are given in Appendix
B.

At small values of = we can rewrite the equation (6.1) by substituting w =1 — z as

T 1-— 1—=z2

F]?(ZL',Q2) =<< 62 > QS(Mz) /(fﬂw dz Ck g( aC)G( & >:u2)a (64)
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where F}' is derived from the integrated gluon distribution function G(x,u?). An ap-
proximate relationship between F}' and gluon distribution can be obtained from the

x

expansion of G(l—’ u2> around a particular choice of point of expansion. Since
-z

x

is convergent for |z| < 1.

ar < w <1, wehave 0 < z < 1—ax;sotheseries%:
So, we can take the point of expansion z as any value between 0 < z < 1.

Using the Taylor expansion method for the gluon distribution function at an arbi-
trary point z = 0.8 as described in chapter 4, and neglecting the higher order terms at

small-z, G(li, ,u2) can be written as
—z

— 2
G(]_ f Z"u2> —0.8 = G(Z = 08,[[12) —+ (Z _ OS)aG(z 5587“ )
2
= G5, i) + (2 — o,g)%. 65)

Using equation (6.5) and leading order terms of equation (6.2) in equation (6.4) and

performing the integration, we get

F'(z,Q%) = ¢ O‘sgr“ )A(a:)G<5:): + igg , ;ﬁ) (6.6)

where
A= [ {02 (6.7
B(x) = /0 - 1d_zz(z —0.8)[C2, (1 - 2)], (6.8)

This result shows that the charm and beauty quark structure functions F}*(z, Q?)(k =
2, L; h = ¢,b) can be calculated using the low z gluon density from DL model [2] at LO.
Similarly, we have also obtained the expression for the structure functions F}*(z, Q?) in

NLO using the respective co-efficient function which is given by

Fl(z, Q%) = eio‘sgr“ )P(x)G<5x + ggg,pﬁ), (6.9)
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P(z) = /0 - 1d_—zz (CR,(1—2) + To{C (1 - 2) + CL,(1 - 2)}] (6.10)

and

Qx) = /Ol_am dzz(z - 0.8) [ng(l —2) + To(Cpy(1 = 2) + Cp (1= 2))|.  (6.11)

Here, the numerical parameter Ty is calculated from the data as described in chapter 2
and ref. [11]. Here Ty = 0.0278 in our required Q? range 15 < Q% < 600GeV?2.
Thus, we have calculated the charm and beauty quark structure functions F} and Fy,
F? and F? from the above equations (6.6) and (6.9)using the small-z gluon density
from Donnachie Landshoff model [2].

The measurement of heavy quark structure function FJ' are used to study the
behaviour of DIS cross section ratio R" which is related to the structure functions at

small-z as

Fh
RM="L. 6.12
Thus using the expressions for ', we get the LO and NLO relation for R" as
AL([L’)
RM = 6.13
() (6.13)
and
Pr(z)
R' = 6.14
o) (6.14)
respectively.

The above expressions (6.13) and (6.14) show that the ratio is independent of the gluon
distribution function and it depends only on the co-efficient function. Here, A (z) ,

As(z), Pr(x) and Ps(x) are obtained by putting & = L, 2 in equations (6.7)and (6.10).
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This ratio of structure function is useful to extract the heavy quark structure function
from the reduced heavy quark cross section [3] at HERA. We have used this ratio R"
to determine the heavy quark reduced cross section at small-z.

Now the reduced cross section in terms of heavy quark structure function is given

by

ho_ o™ 2@
" drd(@)? 2ma?Y,

2
Y
= @ md) - L Qi)
J’_

- F{l(z,@z,mi)(l ly/—th). (6.15)

Here y = ?—j is the inelasticity, with s the ep center-of-mass energy squared and Y, =
1+ (1 —y)? The above equation (6.15) relates the charm quark structure function to
the reduced cross section via the ratio R°. Thus, the behaviour of the ratio R° and
reduced cross section o¢ can be studied using the expressions (6.13), (6.14) and (6.15)
with respect to the Bjorken variable x.

Again, the heavy quark content of the proton longitudinal structure function

KMx, Q% m?) at small-z is determined using the relation [12]

Fp(z, Q2 mj)
Fi (2, Q% mj) + Fi(2,Q%)

Here we have used the results of F} from chapter 4 to calculate the quantity K%.

Kh(f Q2 mh)

(6.16)

6.1.2 Heavy quark contribution to F} structure function using Regge ap-

proach

In the small-z region, the heavy quark structure function is given by [7-9]

Fi (2, Q% m

(w, QG (5. (6.17)
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where a, my; (h = ¢,b), p and Cﬁg; (k = 2, L) are mentioned in the previous subsection
ie., (6.1.1).
Now, the Regge like behaviour of the gluon distribution function can be expressed

as [13]

Gz, %) = f(u*)a™, (6.18)

where f(u?) is a function of y? and A, is the Regge exponent. Now, G(%, ,u2> can be

written as

G(g u?) = Gz, u2)w™. (6.19)

Using equations (6.18) and (6.19) in equation (6.17) we get

as(u?) [t dw
R @) = 20 [ 0, Qu Gl ), (6.20)

T

Using the above equation we have calculated the charm and beauty quark structure
function in LO and NLO using the respective co-efficient functions and the low x gluon

density from DL model [2]. We have also calculated the heavy quark DIS cross section
h

ratio R" and reduced cross section o

using the expressions (6.12) and (6.15) with
the help of the results of F}* obtained from the equation (6.20). Lastly, to evaluate the
quantities K¢ and K using relation (6.16), we have used the results of FY from chapter

d.

6.2 Results and Discussions

In this chapter, we have determined the charm and beauty quark structure func-
tions F'(k = 2,L;h = ¢,b), ratio of heavy quark structure function R" and reduced
cross section o in NLO approximation using Taylor expansion method and Regge like

behaviour of structure function. Here we have compared our calculated results with
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recent experimental H1, ZEUS data, results of DL, CD model, MSTWO08 parameteri-
zation and results obtained by other author. Inclusive charm and beauty cross sections
are measured in e~ p and e™p neutral current collisions at HERA in the kinematic range
2 x 107 < 2 < 0.05 and 5 < Q% < 2000GeV2. In our analysis, we have studied the

behaviour of our results in the range 107* < z < 0.1 and 20 < Q? < 600GeV?2.

6.2.1 Charm quark contribution to structure functions
(A)Results using Taylor expansion method

The charm structure functions F7 and Fj have been determined from the expressions
(6.6) and (6.9) using the respective charm quark co-efficient functions in LO, NLO and
the gluon distribution function of DL model. Here the gluon distribution function is
expanded at z = 0.8 using the Taylor expansion method.

Figures 6.1 and 6.2 describe the behaviour of F} and Fy structure functions with
respect to x. Here the results of Fy structure functions are compared with recent H1
and ZEUS data. Both the charm quark components of the structure function increase
towards small values of z for fixed ()2 values. To confirm the behaviour of these structure
functions we have also calculated the ratio of charm quark structure function R and
the charm quark reduced cross section of using the relations (6.13), (6.14) and (6.15).
Figure 6.3 shows the behaviour of the predicted ratio R® as a function of x for fixed
values of Q2. It is observed that this ratio is almost independent of z at small values
of x irrespective of Q% values. The plots in figure 6.4 show the results of reduced cross
section ¢f in comparison with H1 [3] and ZEUS [4] data. We have also compared our
results of charm quark component of structure functions F; and Fy with the DL, colour
dipole model (CDM) [5] and results obtained by Boroun et al (GRB) [14] which are
depicted in figures 6.5 and 6.6. In color dipole model the excitation of heavy flavors
in DIS at small-x is described in terms of interaction of small size quark-antiquark

color dipoles in the photon [5]. In a recent paper [14], Boroun et al have reported
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Figure 6.1: x-evolution results of F} structure function using Taylor expansion

method with the input gluon distribution from DL model.
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Figure 6.7: Results of the charm content of F} structure function K7 with

respect to z at Q2 = 20,200GeV 2 using Taylor expansion method.

that the charm quark structure function F} have a hard pomeron behaviour at low z
which shows good agreement with data. In all the cases in our calculations we take the
value of m, = 1.2GeV and renormalization scale y as p? = 4m? + Q% We observed
that our results for charm quark structure functions show good agreement with the

data at this renormalization scale. Finally we present the charm content of the proton

2

2) at small-z in figure 6.7. It is observed

longitudinal structure function K¢(x,Q?* m
from the figure that charm content of the structure function grows towards small-z and

increasing values of Q2.
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(B) Results using Regge behaviour of structure function

The charm quark structure functions F} and Fy have been determined from the ex-
pression (6.20) using the respective charm quark co-efficient function in LO, NLO and
the results of gluon distribution function obtained using the Regge behaviour of struc-
ture function in chapter 5. Here the input distribution of gluon is taken from the DL
model. Figures 6.8 and 6.9 describe the behaviour of F} and Fj structure function with
respect to . Here the results of Fy structure function are compared with recent H1
and ZEUS data. In both the cases, charm quark components of the structure function
increases towards small values of = for fixed Q2 values. To confirm the behaviour of
these structure functions we have also calculated the ratio of charm quark structure
function R° and the charm quark reduced cross section of using the relations (6.12)
and (6.15). The behaviour of the predicted ratio R® as a function of « for fixed values
of Q? is depicted in figure 6.10. It is observed that this ratio is independent of x at
small values of x irrespective of Q% values. The plots in figure 6.11 shows the results of

reduced cross section ¢f in comparison with H1 [3] and ZEUS [4] data.

We have also compared our results of charm quark component of structure func-
tions Ff and Fy with the DL, colour dipole model (CDM) [5] and results obtained
by Boroun et al (GRB) which are depicted in figures 6.12 and 6.13. In color dipole
model (CDM) the excitation of heavy flavors in DIS at small-z is described in terms
of interaction of small size quark-antiquark color dipoles in the photon [5]. In all the
cases in our calculations using Regge behaviour of structure function, we take the value
of m. = 1.2GeV and renormalization scale u as p? = 4m? + Q?. We observed that
our results for charm quark structure functions show good agreement with the data at

this renormalization scale. We have also presented the charm content of the proton

2

) at small-z in figure 6.14. It is observed

longitudinal structure function K¢ (x, Q% m
from the figure that charm content of the structure function grows towards small-z and

increasing values of Q2.
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Figure 6.8: x-evolution results of F} structure function using Regge theory with

the input gluon distribution from DL model.
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Figure 6.10: x-evolution results of the ratio of the charm quark structure func-

tion R° using Regge theory.
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theory with the results of DL, CD model and Boroun et al (GRB).
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6.2.2 Beauty quark contribution to structure functions
(A)Results using Taylor expansion method

The beauty quark structure functions F? and FY have been determined from the
expressions (6.6) and (6.9) using the respective beauty quark co-efficient functions in
LO, NLO and the gluon distribution function of DL model. Here the gluon distribution
function is expanded at z = 0.8 using the Taylor expansion method. Figures 6.15 and

6.16 describe the behaviour of F? and F? structure functions with respect to z. Here
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the results of F? structure function are compared with recent H1 and ZEUS data. Both
the beauty quark components of the structure function increase towards small values
of x for fixed Q? values. To confirm the behaviour of these structure functions we have
also calculated the ratio of beauty quark structure function R” and the beauty quark
reduced cross section o® using the relations (6.13), (6.14) and (6.15). Figure 6.17 shows

the behaviour of the predicted ratio R’ as a function of x for fixed values of Q?. It is

observed that this ratio is independent of x at small values of x irrespective of Q? values.
b

The plots in Figure 6.18 shows the results of reduced cross section o,

in comparison
with H1 [3] and ZEUS [4] data. In these plots also our results show good agreement
with the experimental data.

We have also compared our results of beauty quark component of structure functions
F? with the results of MSTWO08 parameterization which are depicted in figure 6.19. In
all the cases in our calculations we take the value of m; = 4.2GeV and renormalization
scale p as pu? = 4m? + Q*. We observed that our results for beauty quark structure
function show good agreement with the data at this renormalization scale. Finally we
present the beauty content of the proton longitudinal structure function K% (x, Q? m?)

at small-z in figure 6.20. It is observed from the figure that beauty content of the

structure function grows towards small-z and increasing values of Q2.

(B) Results using Regge behaviour of structure function

The beauty quark structure functions F? and F} have been determined from the
expression (6.20) using the respective beauty quark co-efficient functions in LO, NLO
and the results of gluon distribution function obtained using the Regge behaviour of
structure function in chapter 5. Here the input distribution of gluon is taken from
the DL model. Figures 6.21 and 6.22 describe the behaviour of F? and FY structure
function with respect to z. Here the results of F? structure function are compared

with recent H1 and ZEUS data. In both the cases, beauty quark components of the
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Figure 6.15: z-evolution results of F 2 structure function using Taylor expansion

method with the input gluon distribution from DL model.
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Figure 6.19: Comparison of our results of sz at Q% = 200GeV? using Taylor
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Figure 6.20: Results of the beauty content of Fp structure function KZ with
respect to z at Q% = 25,200GeV 2 using Taylor expansion method.
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structure function increase towards small values of x for fixed Q2 values. To confirm

the behaviour of these structure functions we have also calculated the ratio of beauty

b

- using the

quark structure function R’ and the beauty quark reduced cross section o
relations (6.12) and (6.15) respectively. The behaviour of the predicted ratio R’ as a
function of x for fixed values of Q? is depicted in figure 6.23. It is observed that this

ratio is independent of z at small values of z irrespective of Q% values. The plots in

b

. in comparison with H1 [3] and

figure 6.24 show the results of reduced cross section o
ZEUS [4] data.

We have also compared our results of beauty quark structure functions F? with
the results of MSTWO08 parameterization which are depicted in figure 6.25. We have also
presented the beauty content of the proton longitudinal structure function K (z, Q2 m?)
at small-x in figure 6.26. It is observed from the figure that beauty content of the struc-

ture function grows towards small-z and increasing values of Q2.

(C) Comparative study of the results of the heavy quark reduced cross
section obtained by both the methods

The results of heavy quark structure functions, their ratio and the reduced cross section
obtained by both the methods i.e., Taylor expansion method and Regge theory show
good agreement with the available experimental data, model fit and parameterization.
The heavy quark reduced cross section is calculated using the heavy quark structure
function and their ratio. The behaviours of ratio of heavy quark structure functions in
both the cases are same as these are independent of the distribution of gluons inside
proton. Here we have presented the comparative analysis of the behaviours of charm
and beauty quark reduced cross sections o¢ and ¢? with respect to x for different
values of Q? obtained by both the methods which are depicted in figures 6.27 and 6.28.
Both the figures show that our results are in good agreement with the experimental

results. Figure 6.29 shows the sensitivity of our results of o¢ and ¢® with the mass
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Figure 6.21: z-evolution results of F 2 structure function using Regge theory

with the input gluon distribution from DL model.



157

0.04

0.03

0.02

b 2
F,” (x,Q%)

0.01
0.00
0.20
0.15
e}
x
o 010
L
0.05
0.00

Q% =25 GeV?

B H12010

v ZEUS 2014
i —10
\ - - -NLO

0.1

1E-4 1E-3 001
X

0.12

0.09

0.06

0.03

0.00

0.20

0.15

0.10

0.05

0.00

Q% =80 GeV?

1E.4 1E.3 001

X

0.1

Figure 6.22: z-evolution results of F2b structure function using Regge theory in

comparison with the H1, ZEUS data.



158

0.14 0.14
Q’*= 25 GeV’ —1L0 Q’= 80 GeV’
----NLO

__0.12¢ 0.12}
<]
x
e | ]

0.10} 0.10}

0_08 aaaal MNP | as aaasnl M
1E-4 1E-3 0.01 0.1

0-08 aaaal PR | NPT | MEPETTTN
1E-4 1E-3 0.01 0.1

0.16 0.16
Q’= 200 GeV* Q’= 600 GeV*
04} TTTTTTTTTmmmmmes 0.14|
k<]
X | — ‘| | e
N
012} 0.12}
0-10 sl RPN | NPT | FEPEPEPTTPN | 0.10 Ll sl L aaal NPT
1E-4 1E-3 0.01 0.1 1E-4 1E-3 0.01 0.1
e

X
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Figure 6.29: Sensitivity of our results of 62 and ¢¢ with mass renormalization

scale p obtained by Taylor expansion (TE) method and Regge theory (RT).

renormalization scale p obtained by both the methods i.e., Taylor expansion method
and Regge theory method. This figure indicates that the sensitivity of our results with
mass renormalization scale p? = 4m? +Q?, shows good agreement with the experimental
data. From the figure it is observed that the sensitivity of the choice of scale u is
relatively large in case of the small-z region than that of the high = region as in the
small-x region the production of heavy quark is large compared to that in the high =
region. In figure 6.29, in both the plots the behaviour of o¢ and o% with respect to =
shows increasing behaviour towards small values of x. But in case of the charm quark
the increase of the cross section is more sharp than that of the cross section in case of

beauty quark. The reason for this is that the density of heavy beauty quark is less than
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that of the charm quark in the small-z region. So, the charm cross section increases

more sharply with respect to x than that of the beauty quark cross section.

6.3 Conclusions

In this chapter, we have calculated the heavy quark structure functions F'(k =
2, L; h = ¢, b) using gluon distribution function in NLO analysis with the help of Taylor
expansion (TE) method and the Reege (RT) like behaviour of the structure function.
The obtained results are compared with the experimental H1, ZEUS data, results of
DL, CD model and MSTWO08 parameterization which reflect compatibility of our re-
sults with the data and model fits. All the gluon dominating heavy quark structure
functions show increasing behaviour towards small values of x. To confirm the validity
of our calculations we have also analysed the behaviour of heavy quark structure func-
tion ratio R" and reduced heavy quark cross section o with respect to x which also
shows good agreement with experimental data. We have also analysed the behaviour
of heavy quark content of the longitudinal structure function with respect to x which
reflects increasing behaviour towards small-z and high Q? region. In our calculations
we have considered the value of the mass renormalization scale u as u? = 4mj; + Q2.
The sensitivity of our results of charm and beauty quark structure function with mass
renormalization scale p shows that at p? = 4m? + Q?, our predicted results are com-
patible with the experimental data. Our predicted results in both the methods show
good agreement with the experimental data, model fits and parameterization. Thus we
can conclude that both the methods can be used to study the behaviour of the heavy

quark structure functions.
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Chapter 7

Conclusions

In this thesis, we solved the QCD evolution equation for F}, structure function in
next-next-to-leading order (NNLO) at small values of Bjorken variable x using Taylor
expansion method. The same evolution equation is used to study the behaviour of
Fy, structure function up to NLO at small-z using Regge like behaviour of structure
function. We determined ¢ and z-evolutions of proton longitudinal structure function
F, for both the cases. Of course in most of the cases we look into gluon dominated
longitudinal structure function F7 as at small-z, gluon contribution dominates over
the quark contribution to Fj, structure function. At small-xz F}, structure function is
directly related to the gluon distribution inside the proton. We have determined an ap-
proximate relation between the Fj, structure function and gluon distribution function
in NNLO approximation using Taylor expansion method. Here in our analysis, we have
used the Altarelli-Martinelli equation for F}, structure function in terms of co-efficient
functions. The z-evolution of Fj, structure function is studied using this relation. We
have calculated the ¢- and z-evolutions of the gluon dominating longitudinal structure
function F, up to NNLO approximation using the gluon distribution function obtained
as a result of solution of the DGLAP evolution equation for gluon distribution using
Regge behaviour of structure function at small-z. Along with the light flavour struc-

ture function we have also analysed the behaviour of heavy flavour (charm and beauty)
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structure function F)'(k = 2, L; h = ¢,b), their ratio R" and the heavy quark reduced
cross section o with respect to x for different values of ? using both Taylor expansion
and Regge theory approach. The results obtained in all the cases are compared with
the available experimental data, theoretical prediction of different parameterizations,
results of model fit and results with numerical method with satisfactory phenomenolog-
ical success. We have also presented a comparative analysis of the our results obtained
by both the methods Taylor expansion and Regge theory. All the results show good
agreement with the experimental data, model fit and parameterizations and can be
described within the framework of pQCD, i.e., all the structure functions increases

towards small values of x and high-Q2.

We have observed that ¢- and z-evolution results of Fy, structure function obtained
as a solution of QCD evolution equation for Fj structure function using both Taylor
expansion method and Regge behaviour of structure function are in good agreement
with H1, ZEUS data, results of DL model and theoretical predictions of MSTWOS,
CT10, ABM11 and NNPDF2.3 parameterizations. From the comparative study of
evolution of Fp structure function predicted by Regge theory approach and Taylor
expansion method it is observed that results obtained by both the methods are in good
agreement with data and parameterizations. The evolutions of F, structure function
obtained using the approximate relation between Fj and gluon distribution function
shows similar behaviour with the data and results of model fit, parameterizations.
The calculated results of ¢- and z-evolutions of F}, structure function using the gluon
distribution function obtained as a solution of the DGLAP evolution equation show
compatibility with the experimental data and results of model fit and parameterizations.
We have also analysed the behaviour of DIS cross section ratio R with respect to x
which shows that it is independent of x irrespective of Q2 values at small-z. The
comparative study of the F}, structure function results obtained by these two method

also reflects similar behaviour with the data and other results. The behaviour of the
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heavy quark (charm and beauty quark) structure function with respect to x shows
similar behaviour with the experimental H1, ZEUS data and results of DL, CD model,
MSTWOS8 parameterization. To confirm our method and behaviour of these structure
functions we have also analysed the behaviours of the ratio of the heavy quark structure
function R" and heavy quark reduced cross section o with respect to x which reflect
good agreement with the data. The ratio of heavy quark structure function with respect
to z is also independent of x for the Q? values which shows that it is independent of
the distribution of gluons in the proton. The heavy quark content to the F, structure
function with respect to x increases with Q? towards small values of z. In our analysis,
while solving the evolution equations we have considered two numerical parameters 7j

s(T
and T1, such that T?(t) = Ty. T(t) and T3(t) = T1.T(t) with T(t) = a2( ) These two
m

parameters are chosen in such a way that the difference between T2(t), Ty.T(t) and
T3(t), T1.T(t) are negligible in our required range of @*. Thus both the methods used
in our analysis are simple ones and less time consuming on the numerical calculations
with less number of numerical parameters compared to the other methods where several
parameters are included in the input function. So, these methods may be a good

alternative to other methods.

In DIS, at moderate values of z, the linear QCD evolution equation led to a good
description of the behaviour of gluon distribution function. But at small values of
2 and low-Q?, the problem is more complicated as recombination of the gluon in a
dense system has to be taken into account. This region is better explained by non-
linear evolution equations. So as future directives with the help of non-linear evolution
equations one can explain the behaviour of structure functions at very small-x and thus
predicts a range of onset of parton recombination. There are different theoretical models
based on parton recombination and saturation which describe low-z and low-Q? region
well. But till today this saturated gluon density regime has not been clearly observed.

With the help of a new collider, Electron Ion Collider (EIC), physicist from different
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parts of the world try to explain the unanswered questions about the structure of
matter. The main unanswered questions are: What are the nuclear gluon and sea quark
densities? To what extent are they modified by nuclear binding, quantum-mechanical
interference, and other collective effects? These questions are the key to understanding
the QCD origins of the nucleon-nucleon interaction at different energies, the role of
non-nucleonic degrees of freedom, and the approach to a new regime of high gluon
densities and saturation at high energies. This collider would be the first ever high-
energy electron-nucleus collider and open up qualitatively new possibilities to study
QCD in the nuclear environment. It would represent the natural next step after the
high-luminosity fixed-target ep/eA experiments and the high-energy HERA ep collider.
O
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Appendices

Appendix A

The analytical expressions for the gluon splitting kernel K2 (z) and K}, (z) are given

by:

—160172}2

[ 4Lis(x) — 21 — 2)lnain(l — 2) + 2(1 + ) Lis(—2)

+3In2x + 2(z — 2)¢(2) + (1 — 2)In?(1 — z)
24 4+ 192z — 317932[

In(1
+2(1 4 x)Inzin(l + z) + Sia n
1 —3x — 2722 + 2923
+ 5.7 In(1—x)
+—8 + 242 + 50122 — 51723
7222 J
[ 5+ 1222 7]

In?z — (1 —2)in(l — )
-2+ 1023 — 122°

[Lis(—z) + Inzin(1 + x)]

1523
5 — 622 4 —2x — 272% — 623
2 2
+ 30 C( >+ 30x2
+(1 —x)(—4 — 18x + 1052?)

3022

(A1)

4
Here the colour factors C4 = 3 and Cp = 3 associated with the colour group SU(3).

Liy(x) and ((2) are dilogarithmic function and Riemann Zeta function respectively.



172

The function f(w) used in chapter 2 and 3 is defined as

4Lig(w) — 2(1 — w)lnwin(l — w) + 2(1 4+ w) Lis(—w)
+3In2w + 2(w — 2)¢(2) + (1 — w)In?(1 — w)
fw) = Cyw? 24 + 192w — 317w?

+2(1 + w)lnwin(1l + w) + Y Inw
+1—3w—27w2+29w3l (1- )+—8+24w+501w2—517w3
i 302 e T2u? |
i 5+ 12w? )

In*w — (1 —w)ln(l —w)
-2+ 10w? — 12w°

[Lis(—w) + Inwin(1l + w)]

) 15w3
—Crw Ly 6w2<(2) LA 2w = 27w — 6w’ (A.3)
30 30w?
+(1 —w)(—4 — 18w + 105w?)

30w?

The analytical expressions of gluon co-efficient functions for F, structure function

are given by :

Clg(w) =8Nsw(l —w) (A.4)

Cl,(w) = Np{(94.74 — 49.20w) L} + 864.8w1 L1 + 1161wL; Lo

+60.06w L3 + 39.66w; Ly — 5.333(w™' — 1)} (A.5)
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47024
C3 (w) = Nf{ (144L;l — LY+ 631017 + 53160L1)w1 + 72549L, Ly

488238 L2 L, + (3709 — 33514w — 9533w?)w; + 66773wL;

5360

—1117Lo + 45.37L% — = L — (2044.70w; + 409.506L0)w1}

+N§{ (3:))—2Li’ - %L% ~502.3L, + 1511wL1>w1 +311.3LoL,
414.24L2L, + (577.3 — 729.0w)w, + 30.78wL3 + 366.0Lo
1%99L§4—189L34—885037w—Lw1}
—+fHLA?{(—01H05L§+—L55OL%4—1972wlq——66745u
+0m5w%wl+§ngg+(%%3+22&meLg—(w40
—2201u0ud%——(7L66—-0121w)w[@}. (A.6)

In equation (A.5) and (A.6), w; = 1 —w, Ly = lnw, Ly = lnw; and fl; denote the
<e>?

<e?>’

The expression for gluon splitting function at small-x are written as :

charge factor which is defined as fI{; =

1 B w 1—w _
PL(w) = %@&1_w++ — +u(l-w)f
11C4 — 4N;T

+&1—wﬂ CA6 ff”, (A7)

120N Tg — 46C4N;T —61 172

2 fLR ANflR —06l Lz

Foglw) = 9w ‘+AGTE{ 9 CF+‘27C%}
L1643 22
+Ci{ =7 - €@ - s5e)}, (A8)
9240, TN

where the Casimir operators of color group SU(3) are defined as Cy = 3, Cr = = and
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The expressions for gluon co-efficient function for F; structure function in LO, NLO

and NNLO are given by :

Oy 4(w) = Np{(2 — dwwy)(Ly — L) — 2 + 16ww }, (A.10)

02

2,9

(w) = {(6.445+209.4(1 — w))L} — 24L7 + (149w ™" — 1483) L,

Ly Lo(—871.8Ly — 724.1Lg) + 5.319L3 — 59.48 L7 — 284.8L,

+11.90w™" 4 392.4 — 0.285(1 — w) (A.11)
and
966 1871
C3,(w) = Nf{8—1L§> — 1—8L‘1l +89.31L3 4+ 979.2L7 — 2405L, + 1372z, L}

—15729 — 3105102 + 3315702 — 2441502 L — 253.3x L}

+LoL1 (138230 — 237010Lg) — 11860Lo — 700.8L5 — 1440L3

+419%Lg - 1—34L8 — 271(6362.54 — 932.089Lo) + 0.6256(:):1)}
JFJ\f]%{lgilngl — 14.72L3 + 3.607L2 — 226.1L, + 4.762 — 190z
—818.42% — 4019xL2 — LoL1(791.5 4 4646 L) + 739Lo + 418L7
+104.3L2 + 88%9L§ + 19—2Lg + 84.423:):_1} + fl{lN]%{s.mL%

+19.04x Ly + 0.6237, L — 64.47x + 121.62° — 45.822°
—xLoLy(31.68 + 37.24L¢) + 11.272° L3 — 82.402Ly — 16.08z L]
520 20
Mty 5 0 —ng} (A.12)

respectively.



175

Appendix B
In the LO analysis, the heavy quark co-efficient functions used in chapter 6 are
written as
1+8
1-p
+B[~1 + 8w(l — w) — 42¢(1 — w)]) (B.1)

0w, = ([ + (1~ w)uwC(1 — 3w) ~ 8Cuin

and

1+
1-p

where 82 = 1— %CZ. In NLO, we have used the compact form of the co-efficient functions

C'gg(w, () = —4w*Cln +2w(l — w), (B.2)

in high energy regime (¢ << 1). The NLO co-efficient functions C’,S; and U,(:,; are given
by
8

Ciy = 3Cachin®(Q*/m}) (B.3)

and

—(1 16
Oy = 5 Cachln®(@*/m}), (B.4)

where k = 2, L and h = ¢,b. Here the colour factor C'y = 3, e;, is the charge of the

heavy quark and my, is the mass of the heavy quark. [J
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