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Abstract

The knowledge of structure of the matter, its properties and interactions are im-

portant for better understanding of the origin of the universe. High Energy Physics has

been dealing with the understanding of the fundamental constituents of the matter, i.e.,

the leptons, quarks, the intermediate gauge bosons and the interaction between them.

Scattering experiments starting from Rutherford’s famous experiment have played an

important role in the investigation of the inner structure of matter. Deep Inelastic

lepton-nucleon Scattering (DIS) provides quantitative test of Quantum Chromodynam-

ics (QCD) i.e., the measurement of quarks and gluon densities inside the nucleon. The

interaction among these constituents of nucleon can be described by different QCD evo-

lution equations. The structure functions of the nucleon which provide the information

about the partons (quarks and gluons) can be obtained as a solution of these evolution

equations.

Proton is one of the familiar particles around us and it is being used in the present

colliders where investigations are going on in search of new physics. So, the knowledge of

its structure is essential for the detailed perturbative QCD (pQCD) calculations of any

process involving proton. Among the proton structure functions, longitudinal structure

function FL is important one to study as it is directly sensitive to the gluon distribution

in the proton. Theoretically and phenomenologically the measurement of FL structure
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function helps one to distinguish different models describing the QCD evolutions at

small-x. Moreover, the structure function measurement remains incomplete without

the inclusion of this particular structure function measurement. Experimentally it was

measured at electron proton collider HERA over a wide range of Bjorken variable x

and the four momentum transfer in DIS process Q2.

In pQCD among the QCD evolution equations, Dokshitzer-Gribov-Lipatov-Altarelli-

Parisi (DGLAP) evolution equation is the most fundamental one to study the Q2 and

x- evolution of structure function. Once a quark or gluon distribution function at some

reference point is given, one can compute it for any value of Q2 using this equation.

The structure function of the nucleon reflects the momentum distributions of the quarks

and gluons in it. It is also important to study the gluon distribution inside a hadron at

small-x because gluons are expected to be dominant in this region. In the framework

of the DGLAP equation the parton distributions grows at small-x as a result of their

Q2-evolution. The steep rise of F2(x,Q
2) structure function towards small-x observed

at HERA also indicates a similar increase in the gluon distribution towards small values

of x in pQCD. That is, the perturbative QCD predicts a strong power law rise of the

gluon distribution in the small-x region. At small values of x, the behaviour of FL is

driven mainly by gluons through the transition g → qq̄. Therefore, once the distribu-

tion of gluon inside the proton is known, FL structure function can be calculated from

it. The behaviour of FL structure function also shows power law rise as that of the

gluon distribution function.

Along with the light flavours, the inclusion of heavy flavours (charm and beauty

quarks) in the study of evolution of FL structure function is also important. It is

already well known that the scaling violations are different in case of the massless and

massive pQCD calculation. Thus, in all precision measurement of structure functions,

a detailed treatment of heavy flavour contribution is required. At small-x, all the heavy

quark structure functions are dominated by the gluon content of the proton. Therefore,
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the behaviour of these structure functions can be studied using the gluon distribution

function.

In this thesis, we have studied the behaviour of proton longitudinal structure func-

tion FL in the region of small-x up to next-to-next-to-leading orders. Here the evolution

of structure function in higher orders are studied using the higher order kernels in the

QCD evolution equation. The inclusion of higher order kernel in the study of the hard

processes in QCD becomes significant as compared to leading one due to consistency

and accuracy of the results. This consideration is particularly important for studying

the physical processes at the present colliders LHC and TEVATRON. Also, in these

colliders major emphasis has been given on the small-x region.

In Chapter 1, we present a brief introduction to the structure of matter, stan-

dard model of elementary particle physics, deep inelastic scattering, DIS cross section

and structure function, Quantum Chromodynamics, Quark Parton Model, QCD evolu-

tion equation, Longitudinal structure function FL, heavy quarks in the proton, small-x

physics, experimental measurement of FL structure function and the related experi-

ments.

In Chapter 2, we have solved the QCD evolution equation for FL structure function

up to next-next-to-leading order at small-x. Here we use Taylor expansion method

to obtain the analytical expression for t- and x-evolution of FL structure function.

The computed results are compared with recent H1, ZEUS data, Donnachie-Landshoff

(DL) model results and the theoretical prediction of MSTW08, CT10, ABM11 and

NNPDF2.3 parameterizations.

In Chapter 3, we have presented the t- and x-evolutions of FL structure function

obtained as a solution of QCD evolution equation for FL structure function up to next-

to-leading order at small-x using Regge like behaviour of structure function. The results

obtained are compared with H1, ZEUS data, DL model results and the theoretical

prediction of MSTW08, CT10, ABM11 and NNPDF2.3 parameterizations. We have
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also compared these results with our results from Chapter 2.

In Chapter 4, we have presented the approximate relation between the FL structure

function and gluon distribution function at small-x using Taylor expansion method.

From this relation we have calculated the x-evolution of FL structure function and

the results obtained are compared with H1, ZEUS data, DL model results and the

theoretical prediction of MSTW08, CT10, ABM11 and NNPDF2.3 parameterizations.

In Chapter 5, the t- and x-evolutions of FL structure function up to next-to-next-

to-leading order at small-x using the Regge like behaviour of gluon distribution function

obtained as a solution of DGLAP evolution equation is presented. The results obtained

are compared with H1, ZEUS data, DL model results and the theoretical prediction

of MSTW08, CT10, ABM11 and NNPDF2.3 parameterizations. The behaviour of DIS

cross section ratio R with respect to x is also presented. We have also presented a

comparative study of our results with those from Chapter 4.

In Chapter 6, we have presented the behaviour of heavy flavour structure function

F c
L, F

b
L, F

c
2 and F b

2 with respect to x using Taylor expansion method and Regge like

behaviour of gluon distribution function. Our results are compared with H1, ZEUS

data and results of DL, Colour-Dipole (CD) model. We use these results to analyse

the behaviour of heavy quark DIS cross section ratio Rh and reduced cross section σh
r .

Finally, the behaviour of heavy quark content to the FL structure function with respect

to x is also presented here. We have also presented a comparative analysis of our results

obtained by both the methods.

In Chapter 7, we have summarised the overall conclusions drawn from our work. �
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Chapter 1

Introduction

One of the basic questions in physics is about the origin of the structure of matter.

From the ancient times, a great number of philosophers and scientists have been trying

to answer the questions that deal with the constituents of matter forming the ultimate

structure of the universe. Although most of the early notions and predictions about

the structure of matter were found out to be wrong, nevertheless they formed a basis

for the theories developed centuries later with the improved knowledge of physicists. It

is only at the present time of the 21st century, a more precise and consistent picture

of the building blocks of matter has evolved that reaches from the atomic model up to

the present elementary particles. Particle physics is the field of natural science which

mainly deals with the fundamental constituents of matter and the interactions among

them.

The theory that currently describes all the phenomena of particle physics in terms

of the properties and interactions of the elementary particles, which also includes the

results of experimental and theoretical investigations of many years is known as the

Standard Model (SM) of particle physics. According to this theory, the fundamental

constituents of matter are the two half-integer spin families of fermions called leptons

and quarks. There are three generations of leptons and quarks and they interact via the

exchange of gauge bosons. They are the integer-spin elementary particles mediating the

fundamental interactions. Each type of these fundamental interactions corresponds to

1
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some kind of the gauge boson: the photon γ act as a mediator for the electromagnetic

interaction; the heavy gauge bosons, Z0 and W±, carry the weak interaction; and the

eight gluons g mediate the strong interaction. Thus the main component of the SM [1,2]

are the electroweak theory which unifies the electromagnetic and weak interactions and

the strong interactions described by Quantum Chromodynamics (QCD) [3, 4]. In ad-

dition, a new spin-zero boson, named Higgs boson has been also included recently in

the model. This Higgs boson is responsible for the acquisition of mass by elementary

particles. Despite being the most successful theory in particle physics, SM is not com-

pletely perfect as there are still some fundamental questions which need to be further

clarified. It does not explain one of the natural phenomena gravity, the nature of dark

matter and dark energy, neutrino masses and matter-antimatter asymmetry etc.

The behaviour of quarks and gluons is mainly described by QCD, the theory of

strong interaction. This theory describes interactions of quarks via the exchange of

gluons. Due to the non-abelian nature of QCD [5, 6], the strength of the interaction

between the quarks decreases towards small distance and they behave as free parti-

cles. This behaviour is called asymptotic freedom [4]. With the increase of distance,

the strength of the interaction rises and the quarks cease to behave as free particles.

Rather, they behave as composite particles which explains the confinement of quarks [7].

Both these interesting phenomena of QCD implies that gluons carry colour charge and

indicate the self interaction property of gluons. Thus, it is important to study the

processes involving gluons.

The proton is one of the familiar particles around us. As it consists of the funda-

mental particles, quarks and gluons, a detailed study of its internal structure is one of

the fascinating topics in QCD. The knowledge of its structure is important for pertur-

bative QCD (pQCD) calculations of any process involving proton. Its structure also

helps to explain the origin of matter. In the present particle accelerators and collid-

ers, scattering experiments are conducted to test the theoretical predictions of the SM
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and also to have the opportunity to search for new physics concerning the basic laws

governing the interactions between the elementary particles. The knowledge of proton

structure and QCD is a vital tool which helps to interpret the potential signals of new

physics at the Large Hadron Collider (LHC) at CERN.

The scattering experiments have played an important role in the elementary par-

ticle physics research starting from Rutherford’s experiment [8], which explained the

structure of atom in 1911 or later the Stanford Linear Accelerator Center (SLAC)

experiments, which revealed the partonic structure of nucleon in 1969 [9, 10]. SLAC

allowed to study the Deep Inelastic Scattering (DIS) processes for the first time i.e.,

scattering at high values of momentum transfer from electrons to protons. Among the

scattering experiments, the electron-proton scattering is an important one. Being lep-

tons, electrons are small in size and possess other well known properties of leptons.

These properties help the electrons to penetrate deep inside the proton and thus they

are able to test the proton structure very precisely.

The electron-proton collider, Hadron Elektron Ringanlage (HERA) located at the

Deutsches Elektronen Synchrotron (DESY) in Hamburg, Germany operated from year

1992 to 2007. HERA gave a unique opportunity to investigate the structure of proton

over a wide kinematic range of Bjorken variable x (down to 10−6) and squared four

momentum transferred between lepton and proton Q2 (up to 106 GeV 2) where the

dynamics of DIS become dominated by gluon. It collected e+p collision data with the H1

and ZEUS detectors at a positron beam energy of 27.5 GeV and a proton beam energies

of 920, 575 and 460 GeV , which allowed a measurement of structure functions at x

values 2.9× 10−5 ≤ x ≤ 0.01 and Q2 values 1.5GeV 2 ≤ Q2 ≤ 800GeV 2 [11,12]. HERA

also collected data for inclusive charm and beauty cross sections and the derived heavy

flavour structure function in e−p and e+p neutral current collisions in the kinematical

range of x values 2× 10−4 ≤ x ≤ 0.05 and Q2 values 5GeV 2 ≤ Q2 ≤ 2000GeV 2 [13].

At low values of x, the proton structure is analysed by gluon dominance. In
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pQCD the gluon distribution is determined indirectly by Q2 dependence of DIS cross

section. This determination is directly affected by pQCD calculations. The proton

structure is basically described in terms of structure functions, F2, xF3 and FL. Among

them FL is directly related to gluon density in the proton. As its sensitivity towards

gluon density is somewhat different from the scaling violation, FL is expected to give

a test of pQCD validity. Theoretically, the measurement of FL structure function

helps us to distinguish different models describing the QCD evolution at small-x. In

fact, the structure function measurement remains incomplete until the measurement of

longitudinal structure function is actually included in the study.

Heavy quark production at HERA is of particular interest for testing various calcu-

lations in pQCD. The heavy quark masses, as well as the transverse momentum of a jet,

provide a hard scale, which is essential for the calculations in pQCD predictions [14].

As it is well known, that the scaling violations are different in the massless and massive

pQCD cases, therefore, in all precision measurement, along with the light flavour, a

detailed treatment of heavy flavour contribution is also required. The measurements

of heavy quark uniquely constrain the parton distribution functions (PDFs) of proton,

mainly its charm (c) and beauty (b) contents. The precise knowledge of PDFs is also

essential at LHC. The b quark density plays an important role in Higgs production

at the LHC along with the extensions to the standard model such as supersymmetric

models at high values of the mixing parameter tanβ [15]. The dominant process for

the charm and beauty quark production at HERA is the Boson Gluon Fusion (BGF),

where the photon interacts with a gluon from the proton by the exchange of a heavy

quark pair and is given as γg → qq̄X , with q = c, b [16]. This indicates that the process

is sensitive to the gluon density in the proton.

In this thesis work, we have mainly studied the small-x behaviour of proton longi-

tudinal structure function FL. The thesis is organised as follows: in the next sections of

this chapter the overview of DIS, proton structure functions and their experimental mea-
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surement, quark parton model, quantum chromodynamics, QCD evolution equations,

longitudinal structure function FL, DIS experiments related to FL structure function,

small-x physics, heavy quark contribution to structure functions are given. The 2nd

chapter describes the behaviour of FL structure function from QCD evolution equation

using Taylor series expansion method. In 3rd chapter, the behaviour of FL structure

function from QCD evolution equation is analysed using Regge behaviour of structure

function and comparison between the results obtained in both the methods is stud-

ied. In 4th chapter, we have studied the approximate relation between FL and gluon

distribution function using Taylor expansion method and studied the evolution of FL

structure function with respect to x. In 5th chapter, the behaviour of structure func-

tion FL is studied using the gluon distribution function obtained as a solution of the

DGLAP evolution equation and comparative study of the results with the results of

4th chapter is presented. 6th chapter describes the contribution of heavy quark to

FL structure function using Taylor expansion method and Regge behaviour of gluon

distribution function and the comparative analysis of the results obtained by both the

methods. In chapter 7, we summarise the overall conclusion and future directions of

our study.

1.1 Deep Inelastic Scattering

Deep Inelastic Scattering (DIS) is the basic tool for understanding the inside structure

of nucleon and the interaction dynamics of quarks and gluons. Since the discovery of

structure of proton at SLAC fixed target experiment in 1969 [9], these measurement

have played an important role in the development of the theory of strong interactions,

Quantum Chromodynamics. DIS is the process in which constituents of proton are

probed by means of lepton-proton scattering. The process is ‘inelastic’ as when a quark

knocks out of the proton, the proton is broken up, producing a jets of hadron. It is
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called ‘deep’, here the proton is probed with a high energetic gauge boson i.e., with

small wavelength to resolve its structure up to small distance scale. In this process when

the exchange boson is a neutral particle, photon γ or a neutral vector boson Z0, it is

referred to as neutral current DIS and if the exchange particle is a charged boson, W±,

it is known as charged current DIS. Figure 1.1 defines the kinematics of DIS process in

terms of following four-vectors, k: initial state lepton; k′: final state lepton; P : final

state proton and q = k − k′: the exchange field quantum. A measurement summing

up all the final states in the hadronic system is known as inclusive measurement. The

inclusive DIS process can be described in terms of the following kinematic variables:

+_
+_
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Pp

γ q = k − k´

P
X
P´

k´k
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= xP

e

 

e

o
, Z

q
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Figure 1.1: Feynmann diagram of Deep Inelastic Scattering

• The negative of the four-momentum transferred to the photon which qualitatively

determines the scale of the interaction

Q2 = −q2 = −(k − k′)2 (1.1)

• The fraction of proton momentum carried by the struck quark known as Bjorken
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scaling variable

x =
Q2

2P · q (1.2)

• The inelasticity variable which corresponds to the fraction of the incoming lepton

energy transfer by the exchanged boson to the proton in the proton rest frame

y =
P · q
P · k (1.3)

• Center of mass energy squared

s = (k + P )2 (1.4)

• The invariant mass squared W 2 of the produced hadronic final state

W 2 = (q + P )2 (1.5)

The variables Q2, x, y and s defined above are related by the equation

Q2 = (s−M2
P )xy, (1.6)

where M2
P is the mass of the proton. This relation (1.6) implies that at a given ep

center of mass energy
√
s, any two of the variables Q2, x, y are enough to describe the

kinematics of DIS process, usually Q2 and x are used. Here both the dimensionless

variables x and y are limited to values between 0 and 1. The values of Q2 and W 2 lies

between 0 and s, MP and
√
s respectively [17].

The invariant mass squared W 2 of final hadronic state can also be written in terms

of Q2 and x as [18]

W 2 = M2
P +Q2

(1− x

x

)

. (1.7)

This equation (1.7) explains that at fixed Q2, low-x interaction corresponds to large

values of the invariant mass squared W 2 of final hadronic state. It also signifies the

term ‘deep’ and ‘inelastic’ corresponds to Q2 ≫ M2
P and W 2 ≫ M2

P respectively. Thus,

the value of the proton mass MP may be neglected in the last two equations.
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1.2 DIS Cross Section and Structure Functions

In inclusive DIS experiment, one of the important quantity to measure is the scattering

cross section. The cross section of the lepton-proton scattering can be written in terms

of leptonic and hadronic part as [19]

dσ ∼ LµνW
µν , (1.8)

where Lµν denotes the leptonic tensor describing the interaction between the lepton

and the virtual exchanged gauge boson and W µν represents the hadronic tensor which

corresponds to the boson-proton interaction. Neglecting the electron mass, the leptonic

tensor which is well known in Quantum Electrodynamics (QED) can be written as [20]

Lµν = 2(ḱµkν + ḱνkµ − (k′ · k)gµν), (1.9)

where gµν denotes the metric tensor. The hadronic tensor describing the hadron vertex

has the form [17]

W µν = −W1g
µν +

W2

M2
P

pµpν − iεµναβpαqβ
W3

2M2
P

+ qµqν
W4

M2
P

+(pµqν + qµpν)
W5

M2
P

+ i(pµqν − pνqµ)
W6

2M2
P

, (1.10)

where MP is the mass of proton, Wi are Lorentz scalar function of x and Q2 which

describes the structure of proton. If the scattering process involves only γ exchange,

the parity violating term W3 and also antisymmetric term W6 are absent. The current

conservation at the hadronic vertex gives qµW
µν = qνW

µν = 0 so that

W5 = −p · q
q2

W2, (1.11)

W4 =
(p · q

q2

)2

W2 +
M2

P

q2
W1. (1.12)

Thus, the hadronic tensor depends on W1 and W2 only and can be written as

W µν = W1

(

− gµν +
qµ · qν
q2

)

+
W2

M2
P

(

pµ − p · q
q2

qµ
)(

pν − p · q
q2

qν
)

. (1.13)
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The functions W1 and W2 are redefined in terms of structure functions of proton F1

and F2 as

F1(x,Q
2) = MPW1(x,Q

2), (1.14)

F2(x,Q
2) =

p · q
MP

W2(x,Q
2). (1.15)

Thus, the double differential DIS cross section can be expressed using structure function

F1(x,Q
2) and F2(x,Q

2) in the form

d2σ

dxdQ2
=

4πα2

xQ4

[y2

2
2xF1(x,Q

2) + (1− y)F2(x,Q
2)
]

, (1.16)

here α is the fine structure constant. The structure functions F1(x,Q
2) is proportional

to the transverse component of the cross section and the difference between F2(x,Q
2)

and F1(x,Q
2) gives the longitudinal part of the cross section. Thus, the longitudinal

structure function is defined as

FL(x,Q
2) = F2(x,Q

2)− 2xF1(x,Q
2). (1.17)

Now, the cross section in terms of F2(x,Q
2) and FL(x,Q

2) structure functions can

be written as

d2σ

dxdQ2
=

2πα2Y+

xQ4

[

F2(x,Q
2)− y2

Y+
FL(x,Q

2)
]

, (1.18)

where Y+ = 1 + (1 − y)2 is a function of y. Since the contribution of FL structure

function to DIS cross section is proportional to the factor y2

Y+
, the F2 term dominates

at y < 0.5 and the contribution of FL structure function is significant towards the total

cross section at large values of y ≥ 0.5 [21]. In DIS experiment structure functions are

extracted from the measured cross section. Therefore, it is convenient to define the

reduced cross section as

σr = F2(x,Q
2)− y2

Y+
FL(x,Q

2). (1.19)
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The ep scattering process can also be considered as the interaction of a flux of

virtual photon and the proton. In terms of the two components of the cross section

i.e., transverse and longitudinal cross section, the double differential cross section can

be written as

d2σ

dxdQ2
= Γ(y)[σT (x,Q

2)− ǫ(y)σL(x,Q
2)]. (1.20)

Here σT and σL corresponds to the absorption cross section for transversely and longi-

tudinally polarised virtual photon respectively, Γ(y) = α2Y+

2πxQ2(1−x)
stands for the photon

flux and ǫ(y) = 2(1−y)
Y+

defines the virtual photon polarisation.

Now, comparing the equations (1.18) and (1.20) one can express the above men-

tioned structure function in terms of the virtual photon absorption cross section as

F2(x,Q
2) =

Q2(1− x)

4π2α
[σT (x,Q

2) + σL(x,Q
2)], (1.21)

FL(x,Q
2) =

Q2(1− x)

4π2α
σL(x,Q

2). (1.22)

Equation (1.22) indicates that the longitudinal structure function is directly pro-

portional to the longitudinal component of the cross section. From the equations (1.21)

and (1.22), as the measured quantity σ cannot be negative, the two structure functions

F2(x,Q
2) and FL(x,Q

2) obey the relation

0 ≤ FL(x,Q
2) ≤ F2(x,Q

2). (1.23)

Another quantity which represents the relation between the cross sections of the absorp-

tion of a longitudinal and transverse polarized photon by hadron is the ratio R(x,Q2)

and is given by

R(x,Q2) =
σL

σT
=

FL(x,Q
2)

F2(x,Q2)− FL(x,Q2)
. (1.24)
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At small values of x, this ratio R(x,Q2) gives the relative strength of the two compo-

nents of the cross section [22]. R(x,Q2) provides the information about the spin and

transverse momentum of the constituents of the nucleon [23] which is explained in the

next section.

1.3 Quark Parton Model

The Quark Parton Model (QPM), introduced by Feynman, explains that the proton

is made up of point like constituents known as partons [24]. The basic idea of the

parton model was based on the experimental observation of Bjorken scaling [25], that

is in the ep scattering experiment at SLAC it was observed that the structure function

measured at fixed values of x are approximately independent of the four-momentum

transfer Q2 from the probe to the nucleon and depend only on the variable x [9, 10].

This behaviour was predicted by Bjorken and suggested that the proton is consists of

point-like particle, called as parton. According to this model, the proton consists of

quasi-free point-like particles which were identified as quarks, particle with spin-1
2
and

electric charge ±1
3
e or ±2

3
e, as proposed by Gell-Mann [26] and Zweig [27]. The proton

consists of two u quarks with charge +2
3
e and one d quark with charge −1

3
e.

In the QPM, the deep inelastic ep scattering is interpreted as the elastic scattering

between the lepton and quarks. The ep cross section is then incoherent sum over all

lepton-quark scattering cross section. Here incoherent means that the lepton scatters

on a single quasi-free quark. With these assumptions, the structure functions F1 and

F2 can be expressed as a sum of quark momentum distributions xq(x) weighted with

the square of their electric charge ei:

F1(x,Q
2) =

1

2x

∑

i

e2ixqi(x), (1.25)
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F2(x,Q
2) =

∑

i

e2ixqi(x), (1.26)

here ei is the charge of the parton i and qi(x) is the probability that the quark i carries

a fraction of proton momentum in the interval [x, x + dx]. The sum runs over all the

partons in the proton. Hence, in QPM the structure functions F1 and F2 depend only

on the variable x as predicted by Bjorken.

The cross sections σT and σL depend on the spins of the proton constituents. As

the longitudinal virtual photon cannot interact with the spin-1
2
quarks due to helicity

conservation [28] at the hadronic vertex, the model predicts σL = 0 which leads to

FL(x,Q
2) = F2(x,Q

2)− 2xF1(x,Q
2) = 0 (1.27)

and consequently gives

F2(x,Q
2) = 2xF1(x,Q

2), (1.28)

which is known as the Callan Gross relation [28] and reflects the spin-1
2
nature of the

quarks. The cross section ratio R, mentioned in the section 1.2 is often used instead

of FL to describe the scattering cross section. In the framework of QPM with spin-1
2

quark, R is expected to be small, and to decrease rapidly with increasing momentum

transfer Q2. Measurement of R at SLAC also indicated that the scattering from the

spin-1
2
constituents of the nucleon (quarks) dominates [29–31].

The QPM cannot explain all the properties of DIS. Since the naive QPM predicts

that the proton is made up of two up (u) and one down (d) valance quarks, the total

momentum of the quarks inside the proton should be 1. But the experimental results

[30] show that quarks carry only half of the proton’s momentum, i.e.

∫ 1

0

[xu(x) + xd(x)]dx = 0.54. (1.29)
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This clearly suggests that there is more momentum in proton than that carried by

quarks. This fact provided the first indirect evidence of the gluonic component of

the proton. Another drawback is the observation of scaling violation of F2 measured

in different experiments. The scaling behaviour is observed only for values of about

x < 0.1 and brakes for x > 0.1. Structure function measurement at H1 experiment [32]

and some other fixed target experiment [33] shows the dependency of F2 on Q2. To

explain the mentioned discrepancies the theory of quantum chromodynamics plays an

important role, which is described in the next section.

1.4 Quantum Chromodynamics

Quantum Chromodynamics (QCD) is the theory which describe the strong interaction

between the quarks and gluons inside the proton [5, 6]. The key point in this theory is

that the quarks and gluons have a quantum number called colour, which is described

by SU(3) symmetry group and can be represented by three colours - red, green and

blue. The quarks can interact by the exchange of a massless and electrically neutral

spin-1 boson called gluons. QCD is a non-abelian SU(3) gauge theory [6]. As a result,

there are eight gluons and they also interact among themselves via the exchange of

colour charge. Hadrons are considered to be colourless or colour singlets of the group

SU(3) constructed from the fundamental colour triplet of quarks. Only colourless

particles can exist as free particles. Thus the quarks and gluons cannot be observed

as free one rather they should always be confined within the hadron. This property

of QCD is known as confinement. An important feature of quantum field theories is

the running coupling constant, i.e., the coupling evolves with the energy scale of the

interaction. Because of the non-abelian nature of gauge group SU(3), opposite to U(1)

group of QED, the strong coupling constant αs shows the opposite behaviour with that

of the electromagnetic fine structure constant α. This leads to asymptotic freedom
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which predicts that at large energy scales Q2 the coupling between quarks and gluons

decreases and they behave as free particles, while at lower energies they were confined

to colourless hadron.

The strong coupling constant αs is one of the important characteristics of strong

interaction. The lowest order i.e., Leading Order (LO) of αs does not include any gluon

vertices. In Next-to-Leading Order (NLO), the interaction between quarks and gluons

are included and more gluon vertices are added in higher orders. In LO approximation

the coupling constant αs is given by the equation [34]

αs(Q
2) =

12π

(33− 2Nf) ln
Q2

Λ2
QCD

, (1.30)

where Nf is the number of active quark flavours. ΛQCD characterizes the strength

of the coupling and is the order of 300 − 500MeV . The phenomenon of confinement

is described at Q2 < Λ2
QCD. Contrary to it, for large energy scales Q2 > 1GeV 2,

perturbative calculations are possible in QCD using order-by-order expansion in αs [35].

According to QCD, protons not only consists of quarks but also gluons which binds

the quarks inside the proton. Due to the presence of gluons, some modifications take

place in the quark parton model as the quarks can interact via the exchange of gluons

and can also radiate gluons. The radiated gluons can split into quark-antiquark pairs

or gluons. Thus a quark seen at an energy scale Q2
0 carrying a momentum fraction x0

can be resolved into more quarks and gluons at a higher values of Q2, i.e., Q2
1 > Q2

0

and lower values of x1 < x0. As a result the structure function shows Q2 dependence

violating the Bjorken scaling.

The pQCD calculations in DIS process can be expressed using factorization the-

orem [36]. This theorem provides a systematic way to refine the predictions of the

parton model. In this theorem, the cross section involving hadron can be expressed as

two distinct part: one short distance and the other long distance parts [37]. The short
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distance or hard process part which is process dependent can be calculated perturba-

tively using renormalizable theory of QCD. On the other hand, the long distance part

which is process independent and unpredictable requires experimental results. This

part involves the PDFs into which infrared divergences of QCD are absorbed. Factor-

ization theorem leads to the expression for F2 structure function as the convolution of

co-efficient function C i
2 and the parton distribution function fi [38] :

F2(x,Q
2) =

∑

i=q,g

∫ 1

x

dwC i
2

( x

w
,
Q2

µ2
r

,
µ2
f

µ2
r

, αs(µ
2
r)
)

fi(w, µ
2
r, µ

2
f). (1.31)

Here the co-efficient function C i
2 represents the hard scattering matrix element for the

interaction of the photon with a parton i which can be calculated using perturbative

expansion in αs. The parton distribution function fi is the probability to find a parton

i carrying a fraction w of the proton’s momentum. In this process the summation is

over all the partons. The factorization scale µf defines the boundary between the long

distance and short distance part. The renormalization scale µr defines the separation

between the finite and divergent contributions in the renormalization procedure. Both

the scales µr and µf are arbitrary and helps to absorb the infrared and ultraviolet diver-

gences in pQCD. There are several renormalization schemes used in the calculations of

QCD. Among them the most commonly used one is the modified minimal subtraction

(MS) scheme [38]. Here, renormalized quark distribution absorbs the divergent part of

the co-efficient functions at µr = µf . And another useful scheme is DIS scheme where

one chooses µr = µf = Q. Therefore one can write the expression for F2 as

F2(x,Q
2) =

∑

i

e2ixfi(x,Q
2), (1.32)

which reflects the Q2 dependence of the structure function. Also FL gives non-zero value

and this can be obtained from F2 and the gluon density G(x,Q2) which is explained in

the section 1.5. Since FL is directly related to cross section ratio R, thus R is also non
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zero. In QCD, the value of R is proportional to the QCD coupling constant αs [23].

QCD Evolution Equations:

An important outcome of the factorization theorem is that the measurement of

parton distribution function at one scale Q0 allows one to calculate it for any other

scale Q′. This property of parton distribution is known as evolution. The evolution

equations can describe the behaviour of quark qi(x,Q
2) and gluon g(x,Q2) distribution

function with the scale of interaction Q2.

The parton distribution in the hadron cannot be calculated from the first principles,

involving the building blocks of hadronic matter, the quarks and gluons, and their

mutual interactions as described by QCD. With the help of the factorization theorem,

the parton evolution, the Q2 dependence of partons can be calculated within pQCD.

These evolution equations of parton are known as Dokshitzer-Gribov-Lipatov-Altarelli-

Parisi (DGLAP) evolution equations [35,39–41]. These describe the evolutions of quark

qi(x,Q
2) and gluon g(x,Q2) distribution function with the scale of interaction Q2 :

dqi(x,Q
2)

dlnQ2
=

αs(Q
2)

2π

∫ 1

x

dw

w

[

∑

j

qj(w,Q
2)Pij

( x

w

)

+ g(w,Q2)Pig

( x

w

)

]

, (1.33)

dg(x,Q2)

dlnQ2
=

αs(Q
2)

2π

∫ 1

x

dw

w

[

∑

j

qj(w,Q
2)Pgj

( x

w

)

+ g(w,Q2)Pgg

( x

w

)

]

. (1.34)

Here, the function Pij

( x

w

)

is known as the splitting functions which describes the

probability that a parton i with momentum fraction x is emitted by a parton j with

the larger momentum fraction w(w > x) [42]. They are calculable in pQCD as a power

series of αs:

Pij(w, αs) =
αs

2π
P 0
ij(w) +

(αs

2π

)2

P 1
ij(w) + ... (1.35)
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The DGLAP equation is formally derived in the leading logarithmic approximation

(LLA), where the terms of (αsln(Q
2))n are summed up to all orders. These (αsln(Q

2))n

terms correspond to the ladder diagrams with n gluons emission as shown in figure

1.2. The LLA approximation is that the emissions are strongly ordered by transverse

momentum of gluons kT as

Q2 ≫ k2
Tn

≫ .... ≫ k2
T2

≫ k2
T1
. (1.36)

The approximation is valid at large enoughQ2 where αs is small and all the contributing

Q2

x

e
e '

γ*

q

q
–

x1, kT1

xi, kT i

xi+1, kT i+1

p

Figure 1.2: Ladder diagram for DIS in LLQ2

terms proportional to αsln(
1
x
) can be neglected.

A special case for which the DGLAP equations can be solved analytically occurs

when in addition to the above conditions also strong ordering in x is required,

xn ≪ xn−1 ≪ ..... ≪ x1 ≪ x0. (1.37)
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The large logarithmic terms arising from the integration are then of the form propor-

tional to (αs(Q
2)ln(Q2/Q2

0)ln(1/x))
n, which need to be resumed. This is the double

leading log approximation (DLL).

In general the structure function can be evaluated by solving the evolution equations

like Dokshitzer-Gribov-Lipatov-Altarelli-Parisi (DGLAP) equation, Balitskij-Kuraev-

Fadin-Lipatov (BKFL) equation [43,44] , Ciafaloni-Catani-Fiorani-Marchesini (CCFM)

equation [45, 46], Gribov-Levin-Ryskin (GLR) equation [47], Modified DGLAP (MD-

DGLAP) equation [48–50], Jalilian-Marian-Iancu-McLerran-Weigert-Leonidov-Kovner

(JIMWLK) equation [51, 52], Balitsky-Kovchegov (BK) equation, [53, 54] etc. Among

these the DGLAP evolution equation is the most familiar re-summation approach. Once

a quark structure function at some reference point is given, one can compute it for any

value of Q2 using this equation. In the framework of the DGLAP equation the parton

distributions grows at small-x as a result of their Q2-evolution [41, 55].

1.5 Longitudinal Structure Function

The proton longitudinal structure function FL, measured in DIS experiment, is one of

the important observables to study. The measurement of FL structure function is of

great theoretical importance since it may allow us to distinguish between the behaviour

of the different partonic distributions in the nucleon at small-x. FL structure function

is a very sensitive QCD characteristic as it is directly sensitive to the gluon density in

the proton [56]. In the naive QPM, helicity is not conserved at the hadronic vertex

during the interaction between the longitudinally polarised virtual photon and a quark,

as illustrated in figure 1.3(a). So, the longitudinally polarized virtual photons do not

couple to the spin-
1

2
quarks with negligible transverse momentum and this leads to

FL = 0 [56]. On the other hand, in QCD improved parton model, quarks interact

through gluons, and also can radiate gluons, figure 1.3(b). The gluon radiation results
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in a transverse momentum component of the quark and now helicity is conserved at

the hadronic vertex. As a result, quark can couple to longitudinally polarised virtual

photon and the Callan-Gross relation is no longer satisfied exactly. Thus in QCD, the

FL structure function is non-zero.

Figure 1.3: Helicity conservation at hadronic vertex in QPM (a) and QCD

improved parton model (b). The arrows represent the spin orientations [57].

The one-loop virtual correction to γq → q process does not contribute to the

longitudinal part of the hadronic tensor WL
γq [58] and to the order αs the calculation of

longitudinal part of this tensor gives

WL
γq =

1

3

αs

2π
e2q
Q2

w
+O(ǫ) (1.38)

and

WL
γg =

1

2

αs

2π
e2q
Q2(1− w)

w
+O(ǫ) (1.39)

for the contributing processes γq → qg and γg → qq̄ respectively. The contributions

of ǫ-order are defined by the factorization scheme. Thus the structure functions of the

gluon emission processes are expressed by the relations [59]

F γq
1 (x,Q2) =

1

2x
F γq
2 (x,Q2)−

∑

q,q̄

e2q
αs

2π

∫ 1

x

dw

w

4

3

x

w
q(w,Q2) (1.40)
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and

F γg
1 (x,Q2) =

1

2x
F γq
2 (x,Q2)−

∑

q,q̄

e2q
1

2

αs

2π

∫ 1

x

dw

w
g(w,Q2)4

x

w

(

1− x

w

)

. (1.41)

Combining the above results, the expression for FL structure function at LO can be

written as

FL(x,Q
2) = F2(x,Q

2)− 2xF1(x,Q
2)

=
αs

4π

∫ 1

x

dw

w

[

16

3

( x

w

)2∑

q,q̄

e2qwq(w,Q
2)

+8
∑

q,q̄

e2q

( x

w

)2(

1− x

w

)

wg(w,Q2)

]

. (1.42)

The equation (1.41) in terms of F2 structure function and gluon distribution function

can be expressed as

FL(x,Q
2) =

αs

4π

∫ 1

x

dw

w

[

16

3

( x

w

)2∑

q,q̄

e2qF2(w,Q
2)

+8
∑

q,q̄

e2q

( x

w

)2(

1− x

w

)

wg(w,Q2)

]

. (1.43)

This equation (1.42) is known as Altarelli-Martinelli equation [18, 59]. Here the first

term in the integral corresponds to the gluon radiation off a quark and the second term

represents the gluon splitting into a quark anti-quark pair. Again the above equation

for FL structure function in terms of co-efficient function is given by [59, 60]

x−1FL = CL,ns ⊗ qns+ < e2 > (CL,s ⊗ qs + CL,g ⊗ g). (1.44)

Here qns, qs and g are the flavour non-singlet, flavour singlet and gluon distribution

function, < e2 >= 5
18

is the average squared charge for Nf (number of active light

flavours) and the symbol ⊗ represents the standard Mellin convolution. CL,a(a = q, g)’s
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are the co-efficient functions which can be written by the perturbative expansion as

follows [60]

CL,a(αs, x) =
∑

n=1

(αs

4π

)n

Cn
L,a(x). (1.45)

At small values of x, the gluon contribution to FL dominates over the quark con-

tribution [61] and FL is driven mainly by gluons through the transition g → qq̄. There-

fore, the measurement of FL structure function can give the gluon distribution inside

the proton. It also provides an important cross check of the standard picture of low-x

dynamics [62].

1.6 Heavy Quarks in Proton

The heavy quarks in the proton play an pivotal role in particle physics and their pro-

duction in ep collision provides an exciting testing ground for pQCD. The measurement

of the charm and beauty quark production cross section in DIS is important for under-

standing the parton densities in the nucleon. The top quark is the heaviest one among

the heavy quarks and due to its heavy mass it quickly decays without forming hadron.

The creation of top quark pair is not possible within the range of centre of mass energy

at HERA.

In the neutral current DIS process, the production of heavy quarks is mainly de-

scribed by two mechanisms:

• According to the first mechanism, named as intrinsic heavy quark production, one

assumes that, along with the light quarks u, d and s and the gluon g, the wave

function of the proton also consists of the heavy quarks c, b, t [25, 63]. Within

the context of QCD improved parton model the virtual photon interacts with the

heavy quark which emerges directly from the proton.

• In the case of second mechanism known as extrinsic heavy quark production the
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proton wave function does not contain the heavy quark components. In the lowest

order perturbation theory the heavy quark and heavy anti-quark appear in pairs

and are produced via BGF process as shown in figure 1.4.

p Xp

q
–

q

e+ e+

Figure 1.4: Leading order Boson Gluon Fusion (BGF) diagram for heavy quark

production in ep-collisions.

In this process the quarks can be heavy if the center of mass energy squared of

the γg → qq̄ interaction is :

(γ + g)2 > 2m2
q , (1.46)

where m2
q is the mass of the heavy quark and the photon and gluon four momen-

tum are respectively γ and g.

The charm quark anti-quark (cc̄) pair can be produced above the charm threshold,

Q2 ≈ (2mc)
2 and above the beauty threshold, the bb̄ pair can be created. Charm

contributes to the cross section mainly at small-x and higher Q2, where the sea quark

dominates the cross section. Among the charm and beauty contribution to the cross

section, beauty quark contributes less to the cross section due to the coupling to its

electric charge, eb = −1
3
[57].

The dominant process for the charm and beauty quark production at HERA is the

BGF shown in figure 1.4, where the photon interacts with a gluon from the proton by
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the exchange of a heavy quark pair [16, 64]. Due to the presence of gluon in the initial

state, this process is directly sensitive to the gluon density inside the proton. This type

of process is the dominant one in DIS scattering and is particularly important at small

values of x and large Q2, due to the large gluon density [64].

The differential cross section for the charm and beauty production which directly

follows from equation 1.18 can be written as

d2σh

dxdQ2
=

2πα2Y+

xQ4

[

F h
2 (x,Q

2)− y2

Y+
F h
L(x,Q

2)
]

(1.47)

where h = c, b. Both the quantities F h
2 and F h

L are dominated by the gluon content in

the proton. In the standard factorization approach to pQCD the structure functions

Fk can be written as [65, 67]

F h
k (x,Q

2, m2
h) = e2h

αs(µ
2)

π

∫ 1

ax

dw

w
Ch

k,g(w, ζ)G
(x

w
, µ2

)

, (1.48)

where k = 2, L, a = 1 + 4ζ(ζ =
m2

h

Q2 ) and the renormalization scale µ is assumed to

be either µ2 = 4m2
h or µ2 = 4m2

h + Q2. Ch
k,g is the heavy quark co-efficient function

represented in MS scheme [67]. The heavy quark co-efficient functions differ signifi-

cantly from those of the light quarks. So, the scaling violations of heavy flavour part

in F2,L(x,Q
2) are different from those of the light flavour contribution [64]. Both for

the measurement of the QCD scale ΛQCD and for the extraction of the light parton

densities a correct description of the heavy flavour contribution is required.

The charm and beauty production cross section has been measured in DIS using

different techniques like D or D∗ meson analysis [68–70], the long lifetime of heavy

flavoured hadrons [71–73] or their semi leptonic decays [74].

1.7 Small-x Physics

The study of the small-x region in DIS is important for understanding the structure

of the proton. The region of small-x below 0.001 is mainly dominated by the gluon



24

distribution in the proton [61]. In this region, the gluons in the proton form a strongly

correlated system of interacting particle. The gluon densities grow rapidly as x → 0

for all values of Q2. Such types of small-x behaviour of gluon distribution function was

extracted at HERA, which is shown in figure 1.5.

H
1
 C

o
lla

b
o
ra

tio
n

Figure 1.5: Gluon distribution function extracted at HERA [11].

This strong rise leads to a rise of the proton structure function F2 and FL. Such

types of behaviour is well described in the framework of DGLAP evolution equations

[35, 39, 41]. However, at very small values of x, when the density of gluons becomes

large enough they starts overlapping in the phase space. In this case the recombination

and annihilation of gluons becomes important, otherwise this strong rise leads to the

violation of unitarity [75]. This effect is known as parton saturation. Such types of

phenomena are explained by non-linear evolution equations.

The small-x region of the DIS offers a unique possibility to investigate the Regge
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limit of pQCD [76–79]. DIS corresponds to the region where both ν and Q2 are large.

The small-x limit of DIS corresponds to case when 2Mν >> Q2 which is equivalent

to s >> Q2 i.e., to the limit when the center of mass energy squared, s, is large and

much greater than Q2. The limit of large ν and 2Mν >> Q2 is therefore the Regge

limit of DIS [76]. Regge trajectory represents the exchange of a family of resonances

having distinct spins. It can be asserted with confidence that the Regge theory is

one of the most successful approaches for the description of high-energy scattering of

hadrons. This high-energy behavior can be described by two contributions: an effective

Pomeron with its intercept αP ≃ 1.08 slightly above unity and the leading meson Regge

trajectories with the intercept αR(0) ≈ 0.5 [80]. In Regge theory the structure function

(cross section) is expected to increase approximately like a power of x towards small-x.

However, at small-x the behaviour of the structure function is mainly driven by the

gluons. Therefore, the behaviour of the power law rise of gluon distribution function

at small-x observed at HERA is given by [81] G(x,Q2) ∝ x−λg , where λg is the gluon

distribution function exponent.

HERA collider made it possible to experimentally explore the small-x region. The

high-energy or small-x region of DIS experiment at HERA provides a good opportunity

to study the high-energy limit of QCD. One of the first observations at HERA was

the strong rise of structure function F2 towards small-x which reflects the rise of gluon

density in the proton in this kinematical region [32, 82]. This was the remarkable

starting point for further investigation of the structure of proton at DESY. At very

small-x, saturation of the growth of the parton densities is expected, as otherwise

unitarity bounds would be violated. Models based on saturation are hugely successful

in describing HERA data, particularly in the low x and low Q2 region where DGLAP

approach fails.
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1.8 Measurement of FL Structure Function

Measurement of FL structure function is a technically challenging experimental task.

This structure function has a significant contribution to the cross section at high inelas-

ticity y [21]. The direct method to obtain the FL is to measure the DIS cross section

at fixed values of x and Q2 and different y [11]. The values of the structure function

FL were determined according to equation (1.19) by a straight-line fits to the reduced

cross section as a function of y2�Y+ at given values of x and Q2 and different values of

center of mass energies s [11]. From the relation Q2 = sxy, it is clear that the variation

in y value can be obtained by varying s, the center of mass energy. Since s = 4EeEp,

this could be done by varying the electron, proton or both beam energies. But in the

experiment it was decided to lower the proton beam energy because reducing the elec-

tron beam energy would have required to lower the energy of the scattered electron

below the trigger threshold. This would have affected the scattered electron angle more

than that reduction the proton beam energy. Another advantage of lowering the proton

beam is the maximum cancellation of systematics when making a relative measurement

of the cross section [83]. Figure 1.5 illustrates the measurement of FL from σr by the

H1 collaboration [11]. Here the reduced cross section σr is plotted for six values of x

at Q2 = 6.5GeV 2, measured for proton beam energies 920, 575 and 460 GeV . The

inner error bars represents the statistical error, the outer error bars show statistical

and systematic uncertainties added in quadrature. The slope of the straight-line fits is

determined by the structure function FL(x,Q
2) [11].

The direct measurement of FL in the past fixed target experiments EMC (European

Muon Collaboration) [84], NMC (New Muon Collaboration) [85], BCDMS (Bologna

CERN Dubna Munich Saclay) [33] and SLAC [86] have been done by measuring the

cross section ratio R. These measurements are at relatively high x where the sensitivity

to the gluon densities is small.



27

0.8

1

1.2
x=0.00012

Q2=6.5 GeV2

σr x=0.00014 x=0.00015
H1 Collaboration

0.8

1

1.2

0 0.5 1

x=0.00017

0.5 1

x=0.00020

0.5 1

x=0.00026

y2/(1+(1-y)2)

Ep=920 GeV

Ep=575 GeV

Ep=460 GeV

Linear fit

Figure 1.6: The reduced DIS cross section as a function of y2�(1+(1−y)2) [11]

At HERA collider FL(x,Q
2) was mainly measured by H1 and ZEUS detector. An

important advantage of HERA, compared to fixed target DIS lepton-nucleon exper-

iments, is the wide range of y (inelasticity) values covered [56]. HERA collected ep

collision data at a positron beam energy of 27.5 GeV and a proton beam energies of

920, 575 and 460 GeV , which allowed a measurement of structure functions at x values

2.9× 10−5 ≤ x ≤ 0.01 and Q2 values 1.5GeV 2 ≤ Q2 ≤ 800GeV 2 [11, 12].
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1.9 Some of the DIS Experiments Related to FL

European Muon Collaboration(EMC) : In the muon scattering experiment per-

formed by European Muon Collaboration (EMC) at CERN (Conseil Europeen

pour la Recherche Nucleaire) SPS (Super Proton Synchrotron), the structure

function F2 and R were measured with muon beams energies 120, 200, 240 and

280 GeV . Here the target materials were proton (p), deuterium (D), iron (Fe),

calcium (Ca), copper (Cu), tin (Sn) and carbon (C). The kinematical range of

measurement were: 0.0175 ≤ x ≤ 0.75 and 2.5 ≤ Q2 ≤ 170GeV 2 for F2(p) and

0.114 ≤ x ≤ 0.231 and 15 ≤ Q2 ≤ 65GeV 2 for R(p) [84]; 0.05 ≤ x ≤ 0.65 and

9 ≤ Q2 ≤ 200GeV 2 for F2(Fe) [87]; 0.0025 ≤ x ≤ 0.75 and 0.25 ≤ Q2 ≤ 170GeV 2

for F2(D) [88, 89]; 0.0031 ≤ x ≤ 0.612 and 0.52 ≤ Q2 ≤ 46.4GeV 2 for the ratios

F2(C)�F2(D), F2(Cu)�F2(D), F2(Ca)�F2(D) and F2(Sn)�F2(D) [89–92].

New Muon Collaboration (NMC) : The New Muon Collaboration (NMC) mea-

sured the structure function F2 and R in muon scattering experiment at the

CERN SPS with muon beams of energies 90, 120, 200, and 280 GeV . The

target materials were p, D, helium (He), lithium (Li), C, Ca, Fe, Sn and

lead (Pb). The kinematical range of measurement were: 0.001 ≤ x ≤ 0.6 and

0.5 ≤ Q2 ≤ 75GeV 2 for F2(p) and F2(D) [85, 93, 94]; 0.0045 ≤ x ≤ 0.11 and

1.38 ≤ Q2 ≤ 20.6GeV 2 for R(p) [85]; 0.003 ≤ x ≤ 0.7 and 0.12 ≤ Q2 ≤ 100GeV 2

for the ratio F2(p)�F2(D) [95–97]; 0.007 ≤ x ≤ 0.8 and 0.6 ≤ Q2 ≤ 18.3GeV 2

for the ratios F2(Ca)�F2(Li), F2(C)�F2(Li) and F2(Ca)�F2(C) [98]; 0.0035 ≤
x ≤ 0.65 and 0.5 ≤ Q2 ≤ 90GeV 2 for the ratios F2(He)�F2(D), F2(C)�F2(D)

and F2(Ca)�F2(D) [99].

Bologna CERN Dubna Munich Saclay Collaboration (BCDMS) : The Bolo-

gna CERN Dubna Munich Saclay Collaboration measured the structure function
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F2 and R in muon scattering experiment at CERN. The incident muon beam

energies are 100, 120, 200, 280 GeV and the target material used were p, D,

C, Fe and nitrogen (N). The kinematical range of measurement were: 0.07 ≤
x ≤ 0.75 and 7.5 ≤ Q2 ≤ 230GeV 2 for F2(p) [33]; 0.07 ≤ x ≤ 0.65 and 15 ≤
Q2 ≤ 85GeV 2 for R(p), R(D) and R(C) [33, 100, 101]; 0.07 ≤ x ≤ 0.75 and

8.75 ≤ Q2 ≤ 252.5GeV 2 for F2(C) and F2(D) [100, 101]; 0.02 ≤ x ≤ 0.7 and

14 ≤ Q2 ≤ 200GeV 2 for the ratios F2(Fe)�F2(D) and F2(N)�F2(D) [102, 103].

Stanford Linear Accelerator Center (SLAC) : In the deep inelastic electron scat-

tering experiment performed at SLAC, structure function F2 and R were mea-

sured with electron beam energies up to 50 GeV . Here the main target material

used were p, D, Fe and gold (Au). The kinematical range of measurement were:

0.2 ≤ x ≤ 0.5 and 1 ≤ Q2 ≤ 10GeV 2 for F2(D), F2(Fe), F2(Au) and R(D),

R(Fe), R(Au) [23]; 0.03 ≤ x ≤ 0.1 and 1.3 ≤ Q2 ≤ 2.7GeV 2 for R(C) [104].

H1 : The H1 collaboration determined the structure function F2 and FL from the

cross section measurement in electron proton scattering experiment with the H1

detector at HERA. Here the data were taken with the lepton beam energy of 27.6

GeV and a proton beam energies of 920, 575 and 460 GeV . The measurement

covers the region 10−6 ≤ x ≤ 0.1 and 1.5 ≤ Q2 ≤ 104GeV 2 for F2 and 2.9 ×
10−5 ≤ x ≤ 0.1 and 1.5 ≤ Q2 ≤ 800GeV 2 for FL up to y = 0.85 [11, 12, 32, 105].

Inclusive charm and beauty cross sections are also measured in e−p and e+p

neutral current collisions at HERA with the H1 detector in the kinematic region

5 ≤ Q2 ≤ 2× 103GeV 2 and 2× 10−4 ≤ x ≤ 0.05 [13, 71, 72].

ZEUS : The ZEUS collaboration determined the structure function F2 and FL from

the cross section measurement in electron proton scattering experiment with the

ZEUS detector at HERA. The data were taken with the lepton beam energy of 27.6

GeV and a proton beam energies of 920, 820, 575 and 460 GeV . The measurement
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covers the region 10−4 ≤ x ≤ 0.1 and 10 ≤ Q2 ≤ 104GeV 2 for F2 and 10−4 ≤
x ≤ 0.1 and 5 ≤ Q2 ≤ 130GeV 2 for FL with y value 0.09 ≤ y ≤ 0.78 [106–108].

The charm and beauty structure functions F c
2 and F b

2 were also measured with

the ZEUS detector at HERA. Data covers the region 10 ≤ Q2 ≤ 103GeV 2 and

10−4 ≤ x ≤ 0.1 [73, 74, 109].
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Chapter 2

Evolution of Longitudinal Structure Function FL Us-

ing Taylor Series Expansion Method at Small-x

In this chapter, we study the behaviour of the longitudinal structure function FL of

proton from its QCD evolution equation in NNLO approximation at small-x. Here we

use the Taylor series expansion method to solve the evolution equation. The solution of

this equation provides the expressions for t=
[

ln(Q
2

Λ2 )
]

- and x-evolution equations for the

computation of the longitudinal structure function. Our calculated results are compared

with the recent H1 [1–5], ZEUS [6] experimental data, results of Donnachie-Landshoff

(DL) models [7] and the theoretical predictions of MSTW08 [8], CT10 [9], ABM11 [10],

NNPDF2.3 [11, 12] parameterizations. We have also compared our x-evolution results

with the gluon dominating FL structure function obtained by Boroun et al. [13]. Our

predicted results show good agreement with the recent data and related fit and can be

described within the framework of pQCD.

2.1 Theory

At small values of x, the density of gluons in the proton is considerably larger than

densities of quarks and antiquarks. Thus, at small-x the structure of proton is mainly

described by the distribution of gluons only. At small-x (x ≤ 10−3) the gluon contribu-

tion to the FL structure function dominates over the singlet and non-singlet contribu-
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tion [14]. Now the QCD evolution equation for gluon dominating FL structure function

is given by [15]

∂F g
L(x,Q

2)

∂lnQ2
= KG(x,Q

2)⊗ F g
L(x,Q

2). (2.1)

Here KG(x,Q
2) is the gluon kernel known perturbatively up to the first few orders in

αs(Q
2). The symbol ⊗ represents the standard Mellin convolution and is given by

A(x)⊗B(x) =

∫ 1

0

dy

y
A(y)B

(x

y

)

. (2.2)

The kernel KG(x,Q
2) can be written as

KG(x,Q
2) =

αs(Q
2)

4π
K0

G(x) +
(αs(Q

2)

4π

)2

K1
G(x) +

(αs(Q
2)

4π

)3

K2
G(x) (2.3)

up to NNLO, where K0
G(x), K

1
G(x) and K2

G(x) are the gluon splitting kernel [16, 17]

in LO, NLO and NNLO respectively. The expressions for K0
G(x), K

1
G(x) are defined

in Appendix A. K2
G(x) is available in co-efficient function form in Refs. [18, 19] and

its expression is given in Appendix A. Using all these and simplifying QCD evolution

equations for the longitudinal structure function in LO, NLO and NNLO, we get

∂F g
L(x, t)

∂t
− αs(t)

4π

[

80

9

∫ 1

x

dww2(1− w)F g
L

( x

w
, t
)

]

= 0, (2.4)

∂F g
L(x, t)

∂t
− αs(t)

4π

[

80

9

∫ 1

x

dww2(1− w)F g
L

( x

w
, t
)

]

−
(αs(t)

4π

)2

IG1 (x, t) = 0 (2.5)

and

∂F g
L(x, t)

∂t
− αs(t)

4π

[

80

9

∫ 1

x

dww2(1− w)F g
L

( x

w
, t
)

]

−
(αs(t)

4π

)2

IG1 (x, t)−
(αs(t)

4π

)3

IG2 (x, t) = 0, (2.6)
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where

IG1 (x, t) =
160

9

∫ 1

x

dwf(w)F g
L

( x

w
, t
)

(2.7)

and

IG2 (x, t) =

∫ 1

x

dwK2
G(w)F

g
L

( x

w
, t
)

. (2.8)

Here t = ln
Q2

Λ2
, Λ is the QCD cut-off parameter and the function f(w) is defined in

Appendix A. The strong coupling constant in higher order has the form [20, 21]

αs(t) =
4π

β0t

[

1− β1

β2
0

lnt

t
+

1

β3
0t

2

{β2
1

β0
(ln2t− lnt− 1) + β2

}

+O
( 1

t3

)]

, (2.9)

where

β0 = 11− 2

3
Nf , (2.10)

β1 = 102− 38

3
Nf (2.11)

and

β2 =
2857

2
− 5033

18
Nf +

325

54
N2

f (2.12)

are the one loop, two loop and three loop correction to the QCD β-function, Nf being

the number of flavours. Here we take Nf = 4.

Equations (2.4), (2.5) and (2.6) can be solved by Taylor series expansion method

as described in ref. [22, 23]. Considering the variable u = 1 − w, and since x < w < 1,

we have 0 < u < 1 − w ; so the series
x

w
=

x

1− u
is convergent for |u| < 1 and using

the Taylor expansion method and neglecting the higher order terms, F g
L

( x

w
, t
)

can be

approximated for small-x as
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F g
L

( x

w
, t
)

= F g
L

(

x+
xu

1− u
, t
)

= F g
L(x, t) +

xu

1− u

∂F g
L(x, t)

∂x
. (2.13)

Using (2.13) in equations (2.4), (2.5) and (2.6) and performing u-integrations we get

∂F g
L(x, t)

∂t
− 1

t

[

A1(x)
∂F g

L(x, t)

∂x
+B1(x)F

g
L(x, t)

]

= 0, (2.14)

∂F g
L(x, t)

∂t
− 1

t

(

1− b
lnt

t

)[

A2(x)
∂F g

L(x, t)

∂x
+B2(x)F

g
L(x, t)

]

= 0 (2.15)

and

∂F g
L(x, t)

∂t
− 1

t

(

1− b
lnt

t
+

b2

t2
(ln2t− lnt− 1) +

c

t2

)

[

A3(x)
∂F g

L(x, t)

∂x
+B3(x)F

g
L(x, t)

]

= 0, (2.16)

where

A1(x) =
1

β0
P2(x), B1(x) =

1

β0
P1(x), A2(x) =

1

β0
(P2(x) + T0Q2(x)),

B2(x) =
1

β0
(P1(x) + T0Q1(x)), A3(x) =

1

β0
(P2(x) + T0Q2(x) + T1R2(x)),

B3(x) =
1

β0
(P1(x) + T0Q1(x) + T1R1(x)),

P1(x) =
80

9

( 1

12
− x3

3
+

x4

4

)

, P2(x) =
80

9
x
( 1

12
− x2

2
+

2x3

3
− x4

4

)

,
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Q1(x) =
160

9

∫ 1

x

f(w)dw, Q2(x) =
160

9
x

∫ 1

x

(1− w)

w
f(w)dw,

R1(x) =

∫ 1

x

K2
G(w)dw, R2(x) = x

∫ 1

x

(1− w)

w
K2

G(w)dw,

b =
β1

β2
0

and c =
β2

β3
0

.

Here we consider two numerical parameters T0 and T1, such that T 2(t) = T0.T (t) and

T 3(t) = T1.T (t) with T (t) =
αs(t)

4π
. These numerical parameters are obtained for a

particular range of Q2 under study. As described in ref. [23], these two parameters are

chosen in such a way that the difference between T 2(t), T0.T (t) and T 3(t), T1.T (t) are

negligible in our required range. This is explained in figure 2.1. Here, we have considered

the values of T0 = 0.0278 and T1 = 0.000892 within the range 1.5 ≤ Q2 ≤ 800GeV 2.
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Figure 2.1: T 2(t) = T0.T (t) and T 3(t) = T1.T (t) versus Q
2(GeV 2).
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The general solution of equation (2.14) is F (U, V ) = 0, where F (U, V ) is an arbi-

trary function [22]. Now, U(x, t, F g
L) = C1 and V (x, t, F g

L) = C2 with C1 and C2, two

constants, form a solution of the Lagrange’s equation

dx

A1(x)
= −dt

t
= − dF g

L(x, t)

B1(x)F
g
L(x, t)

(2.17)

from which we obtain

U(x, t, F g
L) = t · exp

[

∫

dx

A1(x)

]

(2.18)

and

V (x, t, F g
L) = F g

L(x, t) · exp
[

∫

B1(x)

A1(x)
dx

]

. (2.19)

It thus has no unique solution. The simplest possibility is that a linear combination

of U and V is to satisfy F (U, V ) = 0 so that α · U + β · V = 0, where α and β are

arbitrary constants [22]. This combination gives

F g
L(x, t) = −

(α

β

)

· t · exp
[

∫

( 1

A1(x)
− B1(x)

A1(x)

)

dx

]

. (2.20)

Now defining

F g
L(x, t0) = −

(α

β

)

· t0 · exp
[

∫

( 1

A1(x)
− B1(x)

A1(x)

)

dx

]

at t = t0 , where t0 = ln
(

Q2
0

Λ2

)

at any lower value Q = Q0, we get from equation (2.20)

F g
L(x, t) = F g

L(x, t0)
( t

t0

)

. (2.21)

Again defining

F g
L(x0, t) = −

(α

β

)

· t · exp
[

∫

( 1

A1(x)
− B1(x)

A1(x)

)

dx

]

x=x0

,
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at any higher values of x = x0, we obtain from equation (2.20)

F g
L(x, t) = F g

L(x0, t) exp

[

∫ x

x0

( 1

A1(x)
− B1(x)

A1(x)

)

dx

]

. (2.22)

Equations (2.21) and (2.22) give the t- and x-evolutions of longitudinal structure func-

tion F g
L in LO respectively. Similarly, from equations (2.15) and (2.16), we obtain the

t- and x-evolutions for FL structure function in NLO and NNLO as

F g
L(x, t) = F g

L(x, t0)
t(1+b/t)

t
(1+b/t0)
0

exp

[

b
(1

t
− 1

t0

)

]

, (2.23)

F g
L(x, t) = F g

L(x0, t) exp

[

∫ x

x0

( 1

A2(x)
− B2(x)

A2(x)

)

dx

]

(2.24)

and

F g
L(x, t) = F g

L(x, t0)
t(1+b/t)

t
(1+b/t0)
0

exp









b
(

1
t
− 1

t0

)

+
(

b2

2
− c

2

)(

1
t2
− 1

t2
0

)

− b2

2

(

ln2t
t2

− ln2t0
t2
0

)









, (2.25)

F g
L(x, t) = F g

L(x0, t) exp

[

∫ x

x0

( 1

A3(x)
− B3(x)

A3(x)

)

dx

]

(2.26)

respectively.

In our calculations, we used up to first order term O(x) in Taylor expansion of

F g
L

(

x
w
, t
)

and neglecting the higher order terms in small-x approximation. Now instead

of neglecting the higher order terms O(x2) from the Taylor expansion series let us retain

the second order term and neglecting the higher order terms O(x3), F g
L

(

x
w
, t
)

can then

be approximated as

F g
L

( x

w
, t
)

∼= F g
L(x, t) +

xu

1− u

∂F g
L(x, t)

∂x
+

1

2

( xu

1− u

)2 ∂2F g
L(x, t)

∂x2
, (2.27)
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which gives from equation (2.4)

∂F g
L(x, t)

∂t
− 1

t

[

B1(x)F
g
L(x, t) + A1(x)

∂F g
L(x, t)

∂x
+ C1(x)

∂2F g
L(x, t)

∂x2

]

= 0, (2.28)

where C1(x) =
1

β0

(x2

8
− x3

2
+

3x4

4
− x5

2
+

x6

8

)

. A1(x) and B1(x) are given earlier.

The equation (2.28) is a second order partial differential equation and this can be

solved by Monges method [24]. According to this method, the solution of second order

partial differential equation

Rr + Ss+ T t = V (2.29)

can be obtained from the subsidiary equations

Rdy2 + Sdxdy + Tdx2 = 0 (2.30)

and

Rdpdy + Sdqdx− V dxdy = 0, (2.31)

where R, S, T and V are functions of x, y, z, p and q. Here z, p, q, r, s and t are

defined as follows

z = z(x, y) = F g
L(x, t), p =

∂z

∂x
, q =

∂z

∂y
, r =

∂2z

∂x2
=

∂p

∂x
,

s =
∂2z

∂x∂y
=

∂p

∂y
=

∂q

∂x
and t =

∂2z

∂y2
=

∂q

∂y
.

Comparing equations (2.28) and (2.29) we get

R = C1(x), S = 0, T = 0 and

V = t
∂F g

L(x, t)

∂t
− A1(x)

∂F g
L(x, t)

∂x
−B1(x)F

g
L(x, t).

Substituting the values of R, S, T and V in subsidiary equations (2.30) and (2.31) we

ultimately obtain V = 0, which gives

∂F g
L(x, t)

∂t
− 1

t

[

A1(x)
∂F g

L(x, t)

∂x
+B1(x)F

g
L(x, t)

]

= 0, (2.32)
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which is exactly same as the equation (2.14). Similarly, the other two equations (2.15)

and (2.16) become same when we include the second order term in the Taylor expansion

series. Thus it is clear that the inclusion of the second order term does not modify the

solutions of the evolution equations. Similarly, if one introduce more higher order terms

in Taylor expansion series, then for these cases also the term can be neglected due to

smaller values of x [25, 26].

Thus we have obtained an analytical expression for the t- and x-evolutions of

longitudinal structure function F g
L. From the final expressions (2.21), (2.23) and (2.25),

it is observed that our results, i.e., the t-evolutions depend upon the expressions of αs(t)

only. From these expressions we can easily calculate the t-evolutions of F g
L by taking an

input distribution at a given value of Q2
0. The x-evolutions of F

g
L is determined from the

expressions (2.22), (2.24) and (2.26) by taking an input distribution at a given value of

x0. Here, we have calculated the x-evolution up to NLO only. Due to the unavailability

of the evolution kernel at NNLO we are unable to calculate the same at this order. But

the co-efficient function and splitting function of quarks and gluon are available up to

NNLO. So, we have calculated the structure function up to NLO in this chapter and

up to NNLO in chapter 4 and 5. In chapter 4 and 5, we have calculated the structure

function using the QCD evolution equation in terms of co-efficient function and splitting

function of quarks and gluon and the details are described in the respective chapter.

2.2 Results and Discussions

Using the simple analytical expressions (2.21), (2.22), (2.23), (2.24) and (2.25), we

have calculated the the gluon dominating longitudinal structure function F g
L at small-x

in leading, next-to-leading and next-to-next-to-leading orders. The obtained results are

compared with the experimental data taken by H1 [1–5] and ZEUS collaboration [6],

results of the Donnachie-Landshoff (DL) model [7] and the theoretical predictions from
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MSTW08 [8], CT10 [9], ABM11 [10], NNPDF2.3 [11, 12] parameterizations. In H1

2001 data [2], the structure functions are measured in the kinematic range 1.5 ≤ Q2 ≤
150GeV 2 and 3× 10−5 ≤ x ≤ 0.2, for H1 2007 data [3,4], range is 2.5 ≤ Q2 ≤ 25GeV 2

and 5 × 10−5 ≤ x ≤ 0.12, for H1 2011 data [1], range is 1.5 ≤ Q2 ≤ 120GeV 2 and

2.9 × 10−5 ≤ x ≤ 0.01, for H1 2014 data [5], range is 35 ≤ Q2 ≤ 800GeV 2 and

6.5 × 10−4 ≤ x ≤ 0.65 and for ZEUS 2009 data [6], range is 20 < Q2 < 130GeV 2 and

5× 10−4 < x < 0.07 respectively.

DL model [7] is based on dipole picture with a soft and a hard pomeron, large

dipole couples to the soft pomeron and small dipole couples to the hard pomeron.

The parameters in the model are fixed by proton-proton scattering data and proton

structure function F p
2 data. The authors derived a good numerical fit to the output of

the DGLAP evolution for the small-x behaviour of the gluon distribution function which

is valid for Q2 between 5 and 500GeV 2. Here, they fitted their parameters with the H1

data sets [2]. The gluon distribution here is mainly dominated by the hard pomeron at

small-x and for all Q2. This not only describes the DGLAP evolution of hard part of

the F2, but also the longitudinal structure function. The MSTW08 PDFs [8] include

updated LO, NLO and NNLO parton distribution functions determined from global

analysis of hard-scattering data within the standard framework of leading-twist fixed-

order collinear factorisation in the MS scheme. These parton distributions are a major

update to the previously available MRST sets [27–29] and incorporate the maximum

amount of information from DIS and other hard-scattering data. The CT10 PDFs of

the proton describes theoretical advancements in the global QCD analysis that was used

to produce the previous CTEQ6.6 [30] and CT09 [31] PDFs. This analysis includes the

most recent collider data from deep-inelastic scattering, vector boson production, and

single-inclusive jet production [9]. In CT10 PDFs the combined H1/ZEUS data [32]

sets for DIS at HERA is also included. The ABM11 PDF fit is based on the world

data for deep-inelastic scattering, fixed-target data for the Drell-Yan process and also
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includes data from the LHC for the Drell-Yan process [10]. The NNPDF2.3 PDF fit,

is the most accurate determination to date from the NNPDF family, and it supersedes

previous existing sets. It differs from the NNPDF2.1 set because of the inclusion of

LHC data [11].

Here, the proton longitudinal structure function, measured in the range 5 ≤ Q2 ≤
800GeV 2 and 10−4 ≤ x ≤ 10−1, have been used for our analysis. The value of y used is

greater than or equal to 0.5, as from this value onwards the contribution of FL structure

function is significant towards the total cross section [33]. The average values of Λ in

our calculation is 0.22GeV . In figure 2.2, FL structure function is plotted against Q2

for different values of x in comparison with the H1, ZEUS data and results of DL

model. In figure 2.3, FL structure function is plotted against x for different values of

Q2 in comparison with the H1, ZEUS data and the results of DL model. In figure

2.4, FL structure function is plotted against x for different values of Q2 in comparison

with the H1, ZEUS data and the theoretical prediction of MSTW08. In figure 2.5, FL

structure function is plotted against x for different values of Q2 in comparison with the

H1, ZEUS data and theoretical prediction of CT10. Figures 2.6 and 2.7 describe our

x-evolution results in comparison with the H1, ZEUS data and theoretical predictions

of ABM11 and NNPDF2.3. The vertical error bars in all the plots are both statistical

and systematic error for both H1 and ZEUS data. In all the graphs, the data points

at lowest Q2 values are taken as input point for t-evolution graphs and data points

at highest x values are taken as input points for x-evolution graphs. To confirm that

in spite of the large uncertainty in the experimental data, our results are in better

agreement with the data, we add DL model results and the theoretical prediction of

different parameterizations in all the figures.

It is observed from the t-evolution graphs that, our result shows good agreement

with that of H1 and ZEUS data, i.e., with respect to the experimental data our result

shows increasing behaviour with increasing values of Q2. It is seen from the figure
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2.2 that, our plots are in good agreement with DL model fit also and as the energy

scale becomes larger, the agreement is better. But, at intermediate energy scale the

agreement is not so good, the reason for this is that the DL model approach comes

from a BFKL like evolution equation [7] and the Q2-evolution in that case is somewhat

different from a DGLAP approach. In all the cases, our calculated FL structure function

in LO, NLO and NNLO increase with the values of Q2 in the given range like the results

of DL model as expected from QCD. At small-x, FL increases with Q2 as we resolve

increasing numbers of soft partons with increasing Q2 [34]. The x-evolution results also

show compatibility with the experimental data, model fit and the theoretical predictions

of different parameterizations which are depicted in figure 2.3 to figure 2.7. Here the

calculated values of F g
L structure function increase with the decreasing x values. In

case of the x-evolution results described in figure 2.3 to figure 2.7, the behaviour of

LO, NLO curves are slightly different as we have considered the input point from

different parameterizations. The behaviour of LO, NLO and NNLO curves in both the

t- and x-evolutions of F g
L structure function are different (i.e., sometimes NLO results

overestimate LO prediction and vice versa) and this behaviour of the curves depend

only on the expressions used for calculation of the structure function. Moreover, with

reference to some recent papers [13, 35–37], we can say that the behaviour of the LO,

NLO, NNLO curves depend only on the applied method. In all the figures, in spite

of large uncertainty of the experimental data, all the plots show good agreement with

the model fit and theoretical predictions of the parameterizations. It is observed from

the x-evolution graphs that, our results show good agreement with the model fit and

parameterizations and as the energy scale becomes larger, the agreement is better. In

all our results for x-evolutions, we observe that the differences between LO and NLO

results are extremely small and our NLO results are in better agreement with the

data and fit. Moreover, in case of t-evolution the NLO and NNLO curves are almost

overlapping with increasing values of Q2 and our NNLO results are in better agreement
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Figure 2.2: t-evolution results of F g
L structure function up to NNLO using Taylor

expansion method in comparison with the H1, ZEUS data and results of DL model.
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Figure 2.3: x-evolution results of F g
L structure function up to NLO using Taylor

expansion method in comparison with the H1, ZEUS data and results of DL
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Figure 2.4: x-evolution results of F g
L structure function up to NLO using Taylor

expansion method in comparison with the H1, ZEUS data and the theoretical
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Figure 2.5: x-evolution results of F g
L structure function up to NLO using Taylor

expansion method in comparison with the H1, ZEUS data and the theoretical

prediction of CT10.
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Figure 2.6: x-evolution results of F g
L structure function up to NLO using Taylor

expansion method in comparison with the H1, ZEUS data and the theoretical

prediction of ABM11.
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Figure 2.7: x-evolution results of F g
L structure function up to NLO using Taylor

expansion method in comparison with the H1, ZEUS data and the theoretical

prediction of NNPDF2.3.
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Figure 2.8: x-evolution results of F g
L structure function up to NLO using Taylor

expansion method in comparison with the H1 data and the theoretical prediction

of Boroun et al. (GRB)

with data and related fits. In all the cases, the difference between different orders

become less as the energy scale increases, which lies within the framework of pQCD

i.e., running coupling constant becomes smaller as the energy value increases.

We have also presented a comparison of our results with the results reported in

a recent paper by Boroun et al. where they have calculated the gluon dominating

FL structure function using Laguerre polynomials method [13]. Figure 2.8 shows the

comparison of the results. Our results shows good agreement with the results of Boroun

et al. In both the cases, the structure function increases towards small values of x as

expected from QCD. Both the results does not show exactly the same behaviour as

the methods for evaluating the structure function in both the cases are different, in our



60

case we have used ‘Taylor expansion method’ and they have used ‘Laguerre polynomials

method’.

2.3 Conclusions

In this chapter, we have obtained an analytical solution of evolution equation for

gluon dominating longitudinal structure function F g
L up to NNLO using the Taylor series

expansion method. The solutions of the evolution equation provide the expressions

for t- and x-evolution of F g
L structure function. With the help of these expression,

we have calculated the evolutions of F g
L structure function by considering the input

distributions from model fit and theoretical predictions of different parameterizations.

Here, for the calculation of t- and x-evolution of F g
L structure function we consider two

numerical parameters T0 and T1. This method is simple one and less time consuming

on the numerical calculations with less number of numerical parameters compared to

the other methods where several parameters are included in the input function [38].

So, this method may be a viable alternative to other methods. To confirm the validity

of our calculations, we have compared our results with recent experimental data. To

show that in spite of the large error bars of the experimental data, our results are

in good agreement with the data, we have compared our results with the results of

model fit and parameterizations. The variation of F g
L structure function with x and

Q2 shows similar nature with the H1, ZEUS experimental data as well as the results

of DL model and theoretical predictions of MSTW08, CT10, ABM11 and NNPDF2.3.

At small-x, our results show that the longitudinal structure function F g
L increases with

the increasing values of Q2 and it also increases with the decreasing values os x as

expected from QCD. As in our given range of x, the gluon contribution to the structure

function is dominant one, so we can conclude in general that the gluon contribution to

the longitudinal structure function increases with the values of Q2 and it also increases
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with the decreasing values of x.
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Chapter 3

Evolution of FL Structure Function at Small-x Using

Regge Like Behaviour of Structure Function

In this chapter, the evolutions of longitudinal structure function FL from its QCD evo-

lution equation in next-to-leading order (NLO) at small-x is presented using the Regge

like behaviour of the structure function. The proposed simple analytical expression for

FL structure function provides the t- and x-evolution equations to study the behaviour

of FL structure function at small-x. The calculated results are compared with the data

of H1 [1–5], ZEUS [6] collaborations, results of Donnachie-Landshoff (DL) [7] model

and theoretical predictions of MSTW08 [8], CT10 [9], ABM11 [10], NNPDF2.3 [11,12]

parameterizations. The comparison of our results with that of the results obtained

by Boroun [13] is also studied here. We have also presented a comparative study of

our predicted results with the results obtained in the previous chapter using Taylor

expansion method. Our calculated results can be described within the framework of

pQCD.

3.1 Theory

At small values of x (x ≤ 10−3), the QCD evolution equation for gluon dominating

F g
L structure function is given by [14]

∂F g
L(x,Q

2)

∂lnQ2
= KG(x,Q

2)⊗ F g
L(x,Q

2). (3.1)
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Here KG(x,Q
2) is the gluon kernel known perturbatively up to the first few orders

in αs(Q
2). The symbol ⊗ represents the standard Mellin convolution. The kernel

KG(x,Q
2) can be written as

KG(x,Q
2) =

αs(Q
2)

4π
K0

G(x) +
(αs(Q

2)

4π

)2

K1
G(x) (3.2)

up to NLO, where K0
G(x) and K1

G(x) are the gluon splitting kernels in LO and NLO

respectively. K0
G(x), K

1
G(x) are given in ref. [15, 16] and their expressions are defined

in Appendix A. Using all these and simplifying the QCD evolution equations for the

F g
L structure function in LO and NLO, we get

∂F g
L(x, t)

∂t
− αs(t)

4π

[

80

9

∫ 1

x

dww2(1− w)F g
L

( x

w
, t
)

]

= 0 (3.3)

and

∂F g
L(x, t)

∂t
− αs(t)

4π

[

80

9

∫ 1

x

dww2(1− w)F g
L

( x

w
, t
)

]

−
(αs(t)

4π

)2

IG1 (x, t) = 0, (3.4)

where

IG1 (x, t) =
160

9

∫ 1

x

dwf(w)F g
L

( x

w
, t
)

. (3.5)

Here t = ln
Q2

Λ2
, Λ is the QCD cut-off parameter and the function f(w) is defined in

Appendix A.

The strong coupling constant in higher order has the form [17]

αs(t) =
4π

β0t

[

1− β1

β2
0

lnt

t
+O

( 1

t2

)]

, (3.6)

where β0 and β1 are the one loop and two loop corrections to the QCD β-function which

are defined in chapter 2 (equations (2.10) and (2.11)).

Regge approach provides a very good description of the HERA data on the small-x

behaviour of the structure function F2(x,Q
2) [18]. It explains the strong rise of the
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structure function F2 towards small values of x. This phenomenon is usually described

with the help of the power like behaviour of the structure function at small-x as

F2(x,Q
2) ∝ x−λ,

where λ > 0. Here, the power λ is related with the intercept of the Reggeon contribution

dominating at x → 0, namely with the pomeron intercept, λ = αp(0)− 1. The small-x

behaviour of the structure function is mainly driven by the gluons in the proton and

this gluon density is determined from the data on the slope dF2�dlnQ2 [19]. Thus,

gluon density G(x,Q2) can be written as

G(x,Q2) ∼ dF2

dlnQ2
∼ f(Q2)x−λg ,

where f(Q2) is a function of Q2 and λg is the pomeron intercept minus one. The steep

behaviour of the gluon distribution function generates a similar power like behaviour

of F2 structure function which can be expressed as G(x,Q2) ∝ x−λg [19]. The power

of λg is found to be either λg ≃ 0 and λg ≃ 0.5 where the first one corresponds to

soft pomeron and the second one to the hard (Lipatov) pomeron intercept [20]. As

the longitudinal structure function is directly sensitive [21] to the gluon distribution

function at small-x, we can use the same type of Regge behaviour to study the previous

case.

Now, the Regge like behaviour of the longitudinal structure function can be ex-

pressed as

F g
L(x, t) = f(t)x−λg , (3.7)

where f(t) is a function of t, and λg is the pomeron intercept minus one. Now, F g
L

( x

w
, t
)

can be written as

F g
L

( x

w
, t
)

= F g
L(x, t)w

λg . (3.8)

Using equations (3.7), (3.8) and leading order term of equation (3.6) in equation (3.3)
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we get
∂F g

L(x, t)

∂t
=

F g
L(x, t)

t
P (x) (3.9)

with

P (x) =
80

9β0

∫ 1

x

dw(1− w)w2+λg .

Integrating equation (3.9) we get

F g
L(x, t) = CtP (x), (3.10)

where C is a constant of integration.

Applying initial conditions at t = t0, FL(x, t) = FL(x, t0) and at x = x0, FL(x, t) =

FL(x0, t), the t and x-evolutions for F g
L structure function in LO can be written as

F g
L(x, t) = F g

L(x, t0)
( t

t0

)P (x)

(3.11)

and

F g
L(x, t) = F g

L(x0, t)t
[P (x)−P (x0)] (3.12)

respectively. Here F g
L(x, t0) and F g

L(x0, t) are defined in chapter 2.

Proceeding in the similar manner from equation (3.4), we obtain the t- and x-

evolutions for F g
L structure function in NLO as

F g
L(x, t) = F g

L(x, t0)
t(1+

b
t
)P1(x)

t
(1+ b

t0
)P1(x)

0

exp
[

b
(1

t
− 1

t0

)

P1(x)
]

(3.13)

and

F g
L(x, t) = F g

L(x0, t)t
(1+ b

t
)[P1(x)−P1(x0)]exp

[b

t
(P1(x)− P1(x0))

]

(3.14)

respectively, where

P1(x) =
1

β0
[P (x) + T0Q(x)] and Q(x) =

160

9

∫ 1

x

dwwλgf(w).
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The numerical parameter T0 is calculated for the particular range of Q2 under study

as described in ref. [22]. Here we have considered the values of T0 = 0.0278 within the

range 1.5 ≤ Q2 ≤ 800GeV 2 as described in chapter 2.

Thus we have obtained the analytical expressions for the t- and x-evolutions of

longitudinal structure function F g
L as the solution of its evolution equation. Equations

(3.11), (3.13) and (3.12), (3.14) finally give us the t-evolutions and x-evolutions of F g
L

structure function in LO and NLO respectively.

3.2 Results and Discussions

In this chapter, we have calculated the t- and x-evolutions of the gluon dominating

longitudinal structure function F g
L at small-x in leading and next-to-leading orders using

the Regge like behaviour of the structure function. The obtained results are compared

with the available H1 [1–5] and ZEUS experimental data [6], results of the Donnachie-

Landshoff (DL) model [7] and the theoretical predictions from MSTW08 [8], CT10 [9],

ABM11 [10], NNPDF2.3 [11, 12] parameterizations at several x and Q2 values. The

kinematical ranges for H1 2001, H1 2007, H1 2011, H1 2014 and ZEUS 2009 data, are

1.5 ≤ Q2 ≤ 150GeV 2 and 3 × 10−5 ≤ x ≤ 0.2, 2.5 ≤ Q2 ≤ 25GeV 2 and 5 × 10−5 ≤
x ≤ 0.12, 1.5 ≤ Q2 ≤ 120GeV 2 and 2.9 × 10−5 ≤ x ≤ 0.01, 35 ≤ Q2 ≤ 800GeV 2 and

6.5× 10−4 ≤ x ≤ 0.65 and 20 < Q2 < 130GeV 2 and 5× 10−4 < x < 0.07 respectively.

The t- and x-evolution results of F g
L structure function are depicted in figure 3.1 to

figure 3.6, where we have compared our results with related experimental data and fit.

Here, the longitudinal structure function, measured in the range 5 ≤ Q2 ≤ 800GeV 2

and 10−4 ≤ x ≤ 10−1, have been used for our analysis. The value of y used is ≥ 0.5, as

from this value onwards the contribution of F g
L structure function is significant towards

the total cross section [23]. Here the value of gluon distribution function exponent

λg is taken as 0.5 as in the region of small-x this value describes the HERA data

well [24, 25]. In figure 3.1, F g
L(x,Q

2) structure function results are plotted against
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Q2 for different values of x in comparison with the H1, ZEUS data and results of DL

model. In figures 3.2 to 3.6, F g
L(x,Q

2) structure function is plotted against x for different

values of Q2 in comparison with the H1, ZEUS data, the results of DL model and the

theoretical predictions of FL using standard gluon distribution function by MSTW08,

CT10, ABM11 and NNPDF2.3 parameterizations. Here the vertical error bars are

both statistical and systematic errors for both H1 and ZEUS data. To show that in

spite of large uncertainty of the experimental data, our results lie within the framework

of pQCD we have compared our results with the model fit and parameterizations.

In case of the x-evolution results described in figure 3.2 to figure 3.6, the behaviour

of LO, NLO curves are not exactly the same as we have considered the input point

from different parameterizations. The behaviour of LO and NLO curves in both the

t- and x-evolutions of F g
L structure function are different (i.e., sometimes NLO results

overestimate LO prediction and vice versa) and this behaviour of the curves depend

only on the the expressions used for calculation of the structure function. Moreover,

with reference to some recent papers [26–29], we can say that the behaviour of the LO,

NLO curves depend only on the applied method.

It is observed from the t-evolution graphs in figure 3.1 that, our result shows almost

similar behaviour with that of H1 and ZEUS data. To indicate that in spite of large

uncertainty in experimental data we have compared our results with the results of DL

model which also shows good agreement with results of model. Here the Q2-dependence

behaviour of structure function shows slight increasing behaviour with respect to Q2.

This is due to the presence of evolution kernel in the final expression for t-evolution of

F g
L structure function. In case of the plot x = 0.0004, we have used the input point

from DL model to study the evolution of FL structure function. As the input point

is near the end of the error bar of FL data and our evolution of structure function

shows slightly increasing behaviour, so in this case our calculated results at some point

are outside the error bars. Among all the plots, the plot at x = 0.002 shows better
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Figure 3.1: t-evolution results of F g
L structure function up to NLO using Regge

theory in comparison with the H1, ZEUS data and results of DL model.
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Figure 3.2: x-evolution results of F g
L structure function up to NLO using Regge

theory in comparison with the H1, ZEUS data and results of DL model.
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Figure 3.3: x-evolution results of F g
L structure function up to NLO using Regge

theory in comparison with the H1, ZEUS data and the theoretical prediction of

MSTW08.
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Figure 3.4: x-evolution results of F g
L structure function up to NLO using Regge

theory in comparison with the H1, ZEUS data and the theoretical prediction of

CT10.



75

1E-4 1E-3 0.01 0.1

0.0

0.2

0.4

0.6

0.8

1E-4 1E-3 0.01 0.1

0.0

0.2

0.4

0.6

0.8

1E-4 1E-3 0.01 0.1

0.0

0.2

0.4

0.6

0.8

1E-4 1E-3 0.01 0.1
-1.2

-0.6

0.0

0.6

1.2

 

 

 

 
F Lg  (x

, Q
2 )

Q2=20 GeV2  H1 2011
 ABM 11
 LO
 NLO

 

 

 

 

Q2 = 80 GeV2  ZEUS 2009

 

 

 

 

Q2 = 200 GeV2

x

F Lg  (x
, Q

2 )

 H1 2014

 

 

 

 

x

Q2 = 800 GeV2

Figure 3.5: x-evolution results of F g
L structure function up to NLO using Regge

theory in comparison with the H1, ZEUS data and the theoretical prediction of

ABM11.
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Figure 3.6: x-evolution results of F g
L structure function up to NLO using Regge

theory in comparison with the H1, ZEUS data and the theoretical prediction of

NNPDF2.3.
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agreement with the model fit i.e., the Q2 dependence of structure function obtained by

our approach shows better agreement with the results of model fit for this x value. In

all the cases, our calculated FL structure function in LO and NLO increase with the

values of Q2 in the given range like the results of DL models. This is an expected result

from QCD also. At small-x, FL increases with Q2 as we resolve increasing numbers of

soft partons with increasing Q2 [30]. From the x-evolution graphs, it is observed that

our result shows good agreement with those of H1, ZEUS data and those predicted by

model and parameterizations. Also it is observed that compatibility with data becomes

better with increasing values of Q2.
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0.4

0.6
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x
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Figure 3.7: x-evolution results of F g
L structure function up to NLO using Regge

theory in comparison with the H1 data and the theoretical prediction of Boroun

(GRB) [13].

We have also compared our x-evolution results with the results obtained by Boroun
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[13] which is shown in figure 3.7. Here they have reported an analytical expression to

determine the FL structure function in NLO at small-x. In their approach Regge

like behaviour of gluon distribution function is used which reflects good agreement of

their results with recent data and fit. As depicted in figure 3.7 our result shows similar

behaviour with the results in ref. [13]. In both the cases, the structure function increases

towards small values of x as expected from QCD. Both the results does not show exactly

the same behaviour as the methods for calculation of the structure function in both the

cases are different.

3.2.1 Comparative study of our results predicted by Regge theory and

Taylor expansion method

Here we have presented a comparative analysis of our results predicted by Regge

theory (RT) approach and results of chapter 2 i.e., obtained by Taylor expansion (TE)

method. Figures 3.8 to 3.13 show the comparison of the evolutions of F g
L structure

functions obtained by the two methods already discussed above.

The comparison of our results of the t-evolution of F g
L structure function at small-x

is presented in figure 3.8 which reflects similar nature with the results of DL model in

spite of the large uncertainties of the data. The results predicted by Taylor expansion

method shows better agreement with the results of the model than those obtained by the

Regge theory approach. This implies that the compatibility of the t-evolution results

with the model fit and data depends on the expression of evolution kernel of FL. Due

to the presence of evolution kernel in the final expression for t-evolution of F g
L struc-

ture function in equations (3.11) and (3.13) in Reege theory approach, the growth of

structure function is not sharp as that obtained by the Taylor expansion method where

the final expressions for determination of t-evolution of structure function, equations

(2.21) and (2.23) are independent of evolution kernel.

Figures 3.9 to 3.13 describe the comparison of the behaviour of F g
L structure function



79

0 15 30 45

0.0

0.2

0.4

0.6

0.8

0 15 30 45

0.0

0.2

0.4

0.6

0.8

0 15 30 45

0.0

0.2

0.4

0.6

0.8

30 60 90 120

0.0

0.2

0.4

0.6

0.8

 

 

 

 

 TE LO
 TE NLO
 RT LO
 RT NLO

F Lg  (x
, Q

2 )
x = 0.0002  H1 2001

 H1 2007
 DL fit

 

 

 

 

x = 0.0003  H1 2011
 H1 2001

 

 

 

 

x=0.0004

F Lg  (x
,Q

2 )

Q2 (GeV2)

 H1 2011

 

 

 

 

Q2(GeV2)

x = 0.002  ZEUS 2009

Figure 3.8: Comparison of t-evolution results of F g
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Figure 3.9: Comparison of x-evolution results of F g
L structure function predicted

by Regge theory approach and Taylor expansion method and DL model.



81

1E-4 1E-3 0.01 0.1

0.0

0.2

0.4

0.6

0.8

1E-4 1E-3 0.01 0.1

0.0

0.2

0.4

0.6

0.8

1E-4 1E-3 0.01 0.1

0.0

0.2

0.4

0.6

0.8

1E-4 1E-3 0.01 0.1
-1.2

-0.8

-0.4

0.0

0.4

0.8

1.2

 

 

 

 
Q2=20 GeV2  H1 2011

 MSTW08
 TE LO
 TE NLO
 RT LO
 RT NLO

 

 

 

 

F Lg  (x
, Q

2 )
Q2 = 80 GeV2  ZEUS 2009

 

 

 

 

Q2 = 200 GeV2  H1 2014

 

 

 

 

x x

F Lg  (x
, Q

2 )

Q2 = 800 GeV2

Figure 3.10: Comparison of x-evolution results of F g
L structure function pre-

dicted by Regge theory approach and Taylor expansion method and MSTW08.



82

1E-4 1E-3 0.01 0.1

0.0

0.2

0.4

0.6

0.8

1E-4 1E-3 0.01 0.1

0.0

0.2

0.4

0.6

0.8

1E-4 1E-3 0.01 0.1

0.0

0.2

0.4

0.6

0.8

1E-4 1E-3 0.01 0.1
-1.2

-0.6

0.0

0.6

1.2

 

 

 

 
F Lg  (x

, Q
2 )

Q2=20 GeV2  H1 2011
 CT10
 TE LO
 TE NLO
 RT LO
 RT NLO

 

 

 

 

Q2 = 80 GeV2  ZEUS 2009

 

 

 

 

x

F Lg  (x
, Q

2 )

Q2 = 200 GeV2  H1 2014

 

 

 

 

x

Q2 = 800 GeV2

Figure 3.11: Comparison of x-evolution results of F g
L structure function pre-

dicted by Regge theory approach and Taylor expansion method and CT10.
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Figure 3.12: Comparison of x-evolution results of F g
L structure function pre-

dicted by Regge theory approach and Taylor expansion method and ABM11.
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with respect to x which shows good agreement with the data, model fit and parameter-

izations. In all the graphs, F g
L structure function predicted by both approach increases

towards small values of x. Though the results of obtained by TE approach are slightly

higher than those of RT approach in almost all the cases, yet both the methods can be

applied to calculate the F g
L structure function at small-x.

3.3 Conclusions

In this chapter, we have obtained an analytical solution of evolution equation for

longitudinal structure function F g
L up to NLO using the Regge like behaviour of the

structure function. Here, we have studied the behaviour of the t and x-evolutions of F g
L

structure function up to NLO only. Due to the unavailability of the evolution kernel

at NNLO we are unable to calculate the same at this order. We have compared our

results with the recent experimental data to confirm the validity of our calculations.

The variation of F g
L structure function with x and Q2 shows similar nature with the

experimental data as well as the model fit and parameterizations which shows the

compatibility of Regge behaviour with the perturbative evolution of structure function

at small-x. At small-x, our results show that the longitudinal structure function F g
L

increases as the values of Q2 increases and x decreases. The increasing behaviour of

F g
L structure function in this approach follows the power law behaviour of structure

function as predicted by Regge theory. As in our given range of x, we have considered

only the gluon dominating part of the structure function, so we can say that the gluon

contribution to the longitudinal structure function increases as the values ofQ2 increases

and x decreases. From the comparative study of evolution of FL structure function

predicted by Regge theory approach and Taylor expansion method shows that results

obtained by both the method are in good agreement with data and parameterizations.
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Chapter 4

FL Structure Function from Gluon Distribution Func-

tion Using Taylor Expansion Method at Small-x

In this chapter, we have presented the relation between the FL structure function and

the gluon distribution function up to next-to-next-to-leading order analysis at small-

x using Taylor expansion method. We use the Altarelli-Martinelli equation in our

analysis to obtain the evolution of FL structure function at small-x. The obtained

theoretical results are compared with H1 [1–5], ZEUS [6] data, results of DL [7] model,

results predicted by MSTW08 [8], CT10 [9, 10], ABM11 [11] and NNPDF2.3 [12, 13]

parameterizations and results obtained by other authors.

4.1 Theory

In pQCD, the Altarelli-Martinelli equation for longitudinal structure function FL(x,Q
2)

of proton in terms of co-efficient function is given by [14, 15]

x−1FL = CL,ns ⊗ qns+ < e2 > (CL,s ⊗ qs + CL,g ⊗ g). (4.1)

Here qns, qs and g are the flavour non singlet, flavour singlet and gluon distribution func-

tion, < e2 >= 5
18

is the average squared charge for Nf (number of active light flavours)

and the symbol ⊗ represents the standard Mellin convolution. CL,a(a = ns, s, g)’s

are the co-efficient functions which can be written by the perturbative expansion as

follows [15]
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CL,a(αs, x) =
∑

n=1

(αs

4π

)n

Cn
L,a(x), (4.2)

where n denotes the order in running coupling constant αs(Q
2) [16] and the expression

of αs is mentioned in section 2.1 of chapter 2.

At small values of x (x ≤ 10−3) the gluon contribution to the FL structure function

dominates over the flavour singlet and non-singlet contribution [17]. Now the Altarelli

Martinelli equation for gluon dominating FL structure function is given by

F g
L(x,Q

2) =< e2 >

∫ 1

x

dw

w
CL,g(w,Q

2)G
( x

w
,Q2

)

. (4.3)

Here CL,g(w,Q
2) is the gluon co-efficient function for FL known perturbatively up to

first few orders in running coupling constant αs(Q
2) and can be written as

CL,g(w,Q
2) =

αs(Q
2)

4π
C1

L,g(w) +
(αs(Q

2)

4π

)2

C2
L,g(w) +

(αs(Q
2)

4π

)3

C3
L,g(w), (4.4)

where C1
L,g(w), C

2
L,g(w) and C3

L,g(w) are the gluon co-efficient functions for FL in LO,

NLO and NNLO respectively [15, 18, 19]. The analytical expression of the gluon co-

efficient function for FL are defined in the Appendix A.

At small values of x we can rewrite the equation (4.3) by substituting w = 1− z as

F g
L(x,Q

2) =< e2 >

∫ 1−x

0

dz

1− z
CL,g(1− z, Q2)G

( x

1− z
, Q2

)

, (4.5)

where F g
L is derived from the integrated gluon distribution function G(x,Q2). An

approximate relationship between F g
L and gluon distribution can be obtained from the

expansion of G
( x

1− z
, Q2

)

around a particular choice of point of expansion. Since

x < w < 1, we have 0 < z < 1 − x ; so the series
x

w
=

x

1− z
is convergent for |z| < 1.

So, we can take the point of expansion z as any value between 0 ≤ z < 1.

Using the Taylor expansion method for the gluon distribution function at an arbi-

trary point z = 1
2
, and neglecting the higher order terms at small-x, G

( x

1− z
, Q2

)

can



93

be written as

G
( x

1− z
, Q2

)
∣

∣

∣

z= 1

2

= G
(

z =
1

2
, Q2

)

+
(

z − 1

2

)∂G
(

z = 1
2
, Q2

)

∂x

= G(2x,Q2) +
(

z − 1

2

)∂G(2x,Q2)

∂x
. (4.6)

Using equation (4.6) and leading order terms of equation (4.4) in equation (4.5) and

performing the integration, we get

F g
L(x,Q

2) =< e2 >
αs(Q

2)

4π
P (x)G

(

2x+
Q(x)

P (x)
, Q2

)

, (4.7)

where

P (x) =

∫ 1−x

0

dz

1− z

(

C1
L,g(1− z)

)

(4.8)

and

Q(x) =

∫ 1−x

0

dz

1− z

(

z − 1

2

)(

C1
L,g(1− z)

)

. (4.9)

This result shows that the longitudinal structure function F g
L(x,Q

2) can be calculated

using the low x gluon density from Donnachie Landshoff (DL) model [7] at LO. Similarly,

when gluon density is expanded at z = 0.8, the corresponding LO expression takes the

form

F g
L(x,Q

2) =< e2 >
αs(Q

2)

4π
P (x)G

(

5x+
R(x)

P (x)
, Q2

)

, (4.10)

where

R(x) =

∫ 1−x

0

dz

1− z
(z − 0.8)

(

C1
L,g(1− z)

)

. (4.11)

Both the equations (4.7) and (4.10) show the behaviour of F g
L(x,Q

2) with respect to

x. We have also checked this for z = 0.6, 0.7, 0.9; but the best result is obtained in the
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case of the expansion point of the gluon density at z = 0.8 in LO analysis, which is

depicted in figure 4.1 in comparison with the experimental data and model fit.
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Figure 4.1: Sensitivity of our results of F g
L structure function in LO with respect

to the expansion point of gluon density at z = 0.5, 0.6, 0.7, 0.8, 0.9 in comparison

with H1 data and DL model.

We have also obtained the relation between the longitudinal structure function and

the gluon distribution function at small-x in NLO and NNLO analysis by considering

the expansion point of the gluon density at z = 0.8. These are given by

F g
L(x,Q

2) =< e2 >
αs(Q

2)

4π
P1(x)G

(

5x+
R1(x)

P1(x)
, Q2

)

(4.12)
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and

F g
L(x,Q

2) =< e2 >
αs(Q

2)

4π
P2(x)G

(

5x+
R2(x)

P2(x)
, Q2

)

(4.13)

in NLO and NNLO respectively. Here

P1(x) =

∫ 1−x

0

dz

1− z

(

C1
L,g(1− z) + T0C

2
L,g(1− z)

)

, (4.14)

P2(x) =

∫ 1−x

0

dz

1− z

(

C1
L,g(1− z) + T0C

2
L,g(1− z) + T1C

3
L,g(1− z)

)

, (4.15)

R1(x) =

∫ 1−x

0

dz

1− z
(z − 0.8)

(

C1
L,g(1− z) + T0C

2
L,g(1− z)

)

(4.16)

and

R2(x) =

∫ 1−x

0

dz

1− z
(z − 0.8)

(

C1
L,g(1− z) + T0C

2
L,g(1− z) + T1C

3
L,g(1− z)

)

. (4.17)

Here we consider two numerical parameters T0 and T1, such that T 2(t) = T0.T (t) and

T 3(t) = T1.T (t) with T (t) =
αs(t)

2π
. These numerical parameters are obtained for a

particular range of Q2 under study. As described in chapter 2 and ref. [20], these two

parameters are chosen in such a way that the difference between T 2(t), T0.T (t) and

T 3(t), T1.T (t) are negligible in our required range. Here, we have considered the values

of T0 = 0.0278 and T1 = 0.000892 within the range 1.5 ≤ Q2 ≤ 200GeV 2. We have also

checked the sensitivity of our results of F g
L structure function in NLO and NNLO with

respect to the expansion point of the gluon density at z = 0.5, 0.6, 0.7, 0.8, 0.9 which is

depicted in figure 4.2. This figure shows that in case of the expansion point of gluon

density at z = 0.8, our results show better agreement with the results of model fit and

experimental data. Therefore, in all the cases of our calculated results of F g
L structure

function, i.e., in LO, NLO and NNLO analysis, the results calculated with respect to
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Figure 4.2: Sensitivity of our results of F g
L structure function in NLO and NNLO

with respect to the expansion point of gluon density at z = 0.5, 0.6, 0.7, 0.8, 0.9

in comparison with H1 data and DL model.

the expansion point of the gluon density at z = 0.8 shows compatibility with the results

of model fit and data. In a similar way we have also checked the sensitivity of z values

for all values of Q2 like the values of Q2 = 20GeV 2 which is found to be 0.8.

Thus using equations (4.10), (4.12) and (4.13) we have calculated the x-evolutions

for F g
L structure function in LO, NLO and NNLO respectively.

4.2 Results and Discussions

We have determined the approximate relation between the longitudinal structure

function of proton and gluon distribution function at small-x in next-next-to-leading

order analysis with respect to the expansion of the gluon density at an arbitrary point

of expansion. With the help of these relations we have calculated the F g
L structure
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function in the range 10−4 ≤ x ≤ 0.1 and 15 ≤ Q2 ≤ 200GeV 2 using the small-x gluon

distribution function of DL model and the co-efficient functions which are given in

Appendix A. The obtained results are compared with the the recent H1 [1–5], ZEUS [6]

experimental data and results of DL model [7]. The related plots are depicted in figure

4.3 which indicate a good agreement with experimental data and model fit. Here, the

vertical error bars are both statistical and systematic errors for both H1 and ZEUS data.

To confirm that in spite of the large uncertainty in the experimental data, our results

are in good agreement with the other results, we also add DL model results. We have

also compared our results with the theoretical predictions of MSTW08 [8], CT10 [9,10],

ABM11 [11] and NNPDF2.3 [12, 13] parameterizations. Figures 4.4 to 4.7 show the

related plots for different values of Q2 = 20, 25, 80 and 200GeV 2. These plots also reflect

better agreement of our results with these parameterizations. Here all the plots show

compatibility with predictions of parameterizations towards higher values of Q2 i.e.,

Q2 = 80 and 200GeV 2. In this procedure of evaluation of F g
L structure function as we

have taken the input distribution of gluon from DL model, so the behaviour of structure

function increases towards small-x depending on values of the input distribution. Our

calculated results of F g
L structure function in all the cases i.e., LO, NLO and NNLO

increases towards small values of x in the given range of x and Q2 as expected from

QCD.

In our analysis, we have determined the approximate relation between F g
L structure

function of proton and gluon distribution function at small-x in next-next-to-leading

order using the Altarelli- Martinelli equation for F g
L structure function in terms of the

co-efficient functions. We have also compared our results at moderate values of Q2 =

20GeV 2 with the similar results obtained by Sarkar et al (CS) [17] and Boroun et al

(GRB) [21]. In ref. [17], the authors suggested a relation between FL structure function

of proton and gluon distribution function at small-x in leading order approximation
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Figure 4.3: x-evolution results of F
g
L structure function up to NNLO using

Taylor expansion method in comparison with the H1, ZEUS data and results of

DL model.
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Figure 4.4: x-evolution results of F g
L structure function up to NNLO using Taylor

expansion method in comparison with the H1, ZEUS data and the theoretical

prediction of MSTW08.
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Figure 4.5: x-evolution results of F g
L structure function up to NNLO using Taylor

expansion method in comparison with the H1, ZEUS data and the theoretical

prediction of CT10.
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Figure 4.6: x-evolution results of F g
L structure function up to NNLO using Taylor

expansion method in comparison with the H1, ZEUS data and the theoretical

prediction of ABM11.
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Figure 4.7: x-evolution results of F g
L structure function up to NNLO using Taylor

expansion method in comparison with the H1, ZEUS data and the theoretical

prediction of NNPDF2.3.
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Figure 4.8: comparison of our x-evolution results of F g
L structure function with

the results of Sarkar et al (CS) and Boroun et al (GRB).

given by

F g
L(x,Q

2) =
2αs

π

∑Nf

i=1 e
2
i

5.9
G(2.5x,Q2) (4.18)

which shows the close relation between these two quantities. In ref. [21], the authors

reported an NLO analysis of the relation between FL structure function and gluon

distribution obtained by Sarkar et al. Figure 4.8 shows the comparison of our results

with the above mentioned two results which reflects similar behaviour with the results

obtained by Sarkar et al (CS) and Boroun et al (GRB). Thus our approximate relation

can be used to study the x-evolution of F g
L structure function at small-x up to NNLO

analysis.
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4.3 Conclusions

In this work, we have determined the proton longitudinal structure function up to

NNLO at small-x using the approximate relation between F g
L structure function and

gluon distribution function with respect to the expansion of the gluon density at an

arbitrary point of expansion i.e., at z = 0.8. The behaviour of F g
L structure function

with x shows good agreement with the experimental data and the model fit and param-

eterizations. Our predicted results also shows resemblance with the results obtained by

other authors. The calculated results of F g
L structure function in all orders lies within

the framework of pQCD i.e, it increases towards low values of x. As at small-x gluon

contents in the proton is dominant one we can say that gluon contribution to the FL

structure function increases as x decreases.
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Chapter 5

Longitudinal Structure Function FL and DIS Cross

Section Ratio R =

σL
σT

at Small-x from Regge Be-

haviour of Gluon Distribution Function

In this chapter, the behaviour of gluon dominated longitudinal structure function

F g
L with respect to Bjorken variable x and Q2 , the squared four-momentum transfer

between lepton and nucleon in next-next-to-leading order (NNLO) at small-x is pre-

sented using the Regge like behaviour of the gluon distribution function. Here we have

calculated t- and x-evolutions of the F g
L structure function using the gluon distribution

function obtained as a result of solution of the DGLAP evolution equation at small-x.

We have also studied the behaviour of the DIS cross section ratio R =
σL

σT

in this kine-

matical region. The calculated results are compared with recent H1 [1–5], ZEUS [6]

data and DL [7] model results. We have also compared our results with the theoretical

results predicted by MSTW08 [8], CT10 [9,10], ABM11 [11] and NNPDF2.3 [12,13] pa-

rameterizations. The results obtained can be explained within the framework of pQCD

i.e., the evolution of structure function F g
L increases towards low values of x. And the

behaviour of F g
L structure function shows resemblance with the gluon distribution func-

tion as it is originated from gluon distribution function. Contrary to it, the behaviour of

the ratio R shows constant behaviour with respect to x and fixed Q2 i.e., its behaviour

is independent of the behaviour of gluon distribution function. A comparative analysis

of our x-evolution results with the results obtained in chapter 4 is also studied here
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which indicate that the behaviour of structure function can be studied using both the

Regge behaviour of gluon distribution function and Taylor expansion method.

5.1 Theory

In pQCD, the Altarelli-Martinelli equation for longitudinal structure function FL(x,Q
2)

of proton in terms of co-efficient function is given by [14, 15]

x−1FL = CL,ns ⊗ qns+ < e2 > (CL,s ⊗ qs + CL,g ⊗ g). (5.1)

Here qns, qs and g are the flavour non singlet, flavour singlet and gluon distribution

function, < e2 >= 5
18

is the average squared charge for even Nf (number of active

light flavours) and the symbol ⊗ represents the standard Mellin convolution. CL,a(a =

ns, s, g)’s represent the co-efficient functions as described in chapter 4.

At small values of x (x ≤ 10−3) the gluon contribution to the FL structure function

dominates over the flavour singlet and non-singlet contribution [16]. Now the Altarelli-

Martinelli equation for gluon dominating FL structure function is given by

F g
L(x,Q

2) =

∫ 1

x

dw

w
CL,g(w,Q

2)G
( x

w
,Q2

)

. (5.2)

Here CL,g(w,Q
2) is the gluon co-efficient function for FL known perturbatively up to

first few orders in running coupling constant αs(Q
2) [17] and can be written as

CL,g(w,Q
2) =

αs(Q
2)

4π
C1

L,g(w) +
(αs(Q

2)

4π

)2

C2
L,g(w) +

(αs(Q
2)

4π

)3

C3
L,g(w), (5.3)

where C1
L,g(w), C

2
L,g(w) and C3

L,g(w) are the gluon co-efficient function for FL in LO,

NLO and NNLO respectively [15]. The required LO, NLO and NNLO approximation

of the gluon co-efficient functions for FL [15, 18, 19] are defined in Appendix A.

Using the gluon co-efficient functions and the equation (5.2), we can calculate the

F g
L structure function up to NNLO approximation. For this purpose, we have to first
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determine the gluon distribution function G(x,Q2). We calculate this by solving the

DGLAP evolution equation for gluon distribution function at small-x using the Regge

like behaviour of the gluon distribution function. At small values of x, neglecting the

quark singlet part, the DGLAP evolution equation for gluon distribution function is

given by [20]

Q2∂G(x,Q2)

∂Q2
=

∫ 1

x

dw

w
Pgg(w,Q

2)G
( x

w
,Q2

)

. (5.4)

Here Pgg(w,Q
2) is the gluon splitting function known perturbatively up to first few

orders in running coupling constant αs(Q
2) and can be written as

Pgg(w,Q
2) =

αs(Q
2)

2π
P 1
gg(w) +

(αs(Q
2)

2π

)2

P 2
gg(w) +

(αs(Q
2)

2π

)3

P 3
gg(w), (5.5)

up to NNLO, where P 1
gg(w), P

2
gg(w) and P 3

gg(w) are the gluon splitting functions [20–22]

in LO, NLO and NNLO respectively. At small-x limit the expressions for these splitting

functions are defined in Appendix A.

Using the expressions for gluon splitting functions in equation (5.4) and simplifying

the DGLAP evolution equations for the gluon distribution function G(x,Q2) in LO,

NLO and NNLO, we get

∂G(x, t)

∂t
=

αs(t)

2π

[

6
{(11

12
− Nf

18

)

+ ln(1 − x)
}

G(x, t) + 6I1g (x, t)
]

, (5.6)

∂G(x, t)

∂t
=

αs(t)

2π

[

6
{(11

12
− Nf

18

)

+ ln(1 − x)
}

G(x, t) + 6I1g (x, t)
]

+
(αs(t)

2π

)2

I2g (x, t), (5.7)

∂G(x, t)

∂t
=

αs(t)

2π

[

6
{(11

12
− Nf

18

)

+ ln(1 − x)
}

G(x, t) + 6I1g (x, t)
]

+
(αs(t)

2π

)2

I2g (x, t) +
(αs(t)

2π

)3

I3g (x, t), (5.8)
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where

I1g (x, t) =

∫ 1

x

dw

[

wG
(

x
w
, t
)

−G(x, t)

(1− w)
+
{

w(1− w) +
1− w

w

}

G
( x

w
, t
)

]

, (5.9)

I2g (x, t) =

∫ 1

x

dwP 2
gg(w)G

( x

w
, t
)

(5.10)

and

I3g (x, t) =

∫ 1

x

dwP 3
gg(w)G

( x

w
, t
)

. (5.11)

Now, the Regge like behaviour of the gluon distribution function can be expressed

as [23]

G(x, t) = f(t)x−λg , (5.12)

where f(t) is a function of t and t is defined in chapter 2, and λg is the Regge exponent.

Now, G
(

x
w
, t
)

can be written as

G
( x

w
, t
)

= G(x, t)wλg . (5.13)

Using equations (5.12) and (5.13) in equation (5.6) we get

∂G(x, t)

∂t
=

G(x, t)

t
P (x), (5.14)

where

P (x) =
12

β0

[

(11

12
− Nf

18

)

+ ln(1 − x)

+

∫ 1

x

dw
{w1+λg − 1

1− w
+ wλg

(

w(1− w) +
1− w

w

)}

]

. (5.15)

Integrating equation (5.14) we get
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G(x, t) = CtP (x), (5.16)

where C is a constant of integration and can be determined from experimental data.

Applying initial conditions at t = t0, G(x, t) = G(x, t0) and at x = x0, G(x, t) =

G(x0, t), the t- and x-evolutions for G(x, t) gluon distribution function in LO can be

written as

G(x, t) = G(x, t0)
( t

t0

)P (x)

(5.17)

and

G(x, t) = G(x0, t)t
[P (x)−P (x0)] (5.18)

respectively.

Proceeding in the similar manner from equation (5.7)and (5.8), we obtain the t-

and x-evolution equations for G(x, t) gluon distribution function in NLO as

G(x, t) = G(x, t0)
t(1+

b
t
)Q(x)

t
(1+ b

t0
)Q(x)

0

exp
[

b
(1

t
− 1

t0

)

Q(x)
]

(5.19)

and

G(x, t) = G(x0, t)t
(1+ b

t
)[Q(x)−Q(x0)]exp

[b

t
(Q(x)−Q(x0))

]

(5.20)

respectively, and in NNLO as

G(x, t) = G(x, t0)
t(1+b/t)S(x)

t
(1+b/t0)S(x)
0

exp









{

b
(

1
t
− 1

t0

)

+
(

b2

2
− c

2

)(

1
t2
− 1

t2
0

)

− b2

2

(

ln2t
t2

− ln2t0
t2
0

)}

S(x)









(5.21)

and
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G(x, t) = G(x0, t)t
(1+b/t){S(x)−S(x0)} · exp







{

b
t
+
(

b2

2
− c

2

)(

1
t2

)

− b2

2

(

ln2t
t2

)}

{S(x)− S(x0)}






(5.22)

respectively. Here

Q(x) = [P (x) + T0R(x)], R(x) = −27.11
1− xλg

λg
+ 98.9

(1− x1+λg

1 + λg

)

,

S(x) = [P (x) + T0R(x) + T1Y (x)], and Y (x) = −149.33
(1− xλg−1)

λg − 1
.

The numerical parameters T0 and T1 are calculated from the data as described in

chapter 2 and ref. [24]. Here T0 = 0.0278 and T1 = 0.00013 in our required Q2 range

1.5 ≤ Q2 ≤ 800GeV 2.

Thus we have obtained an analytical expression for the t- and x-evolutions of gluon

distribution function G(x, t) in LO, NLO and NNLO. Using the above expressions of

gluon distribution function along with the co-efficient functions we have calculated F g
L

structure functions in LO, NLO and NNLO.

In a similar manner, the F g
2 structure function can be determined at small-x with

the help of the calculated results of gluon distribution function using the equation [25]

F g
2 (x,Q

2) =< e2 >

∫ 1

x

dwC2,g(w)G
( x

w
,Q2

)

. (5.23)

Here C2,g(w) is the gluon co-efficient function for F2 and can be written as

C2,g(w,Q
2) =

αs(Q
2)

4π
C1

2,g(w) +
(αs(Q

2)

4π

)2

C2
2,g(w) +

(αs(Q
2)

4π

)3

C3
2,g(w) (5.24)

up to NNLO, where C1
2,g(w), C

2
2,g(w) and C3

2,g(w) are the gluon co-efficient functions

[26] for F2 structure function in LO, NLO and NNLO respectively and are defined in

Appendix A.
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The measurements of longitudinal structure function FL are used to determine the

DIS cross section ratio R which is related to the structure functions F2 and FL as

R =
σL

σT
=

FL

F2 − FL
, (5.25)

where σL and σT are the absorption cross sections of longitudinally and transversely

polarized virtual photons by proton. At small-x, F2 and FL are gluon dominating and

so equation (5.25) can be written as

R =
F g
L

F g
2 − F g

L

. (5.26)

In analogy with the FL structure function the ratio R is a good QCD characteristic

because it equals zero in the naive parton model. Moreover at small values of x,

the ratio R gives the relative strength of the two components of the absorption cross

section [6, 27]. Here, we have also studied the behaviour of ratio R at small-x in LO,

NLO and NNLO using the calculated values of F g
L and F g

2 structure function.

5.2 Results and Discussions

We have calculated the t- and x-evolutions of the gluon dominating longitudinal

proton structure function FL at small-x up to next-next-to-leading order approximation

using the gluon distribution function. This gluon distribution function is obtained as a

result of solution of the DGLAP evolution equation for gluon distribution at small-x.

To extract the gluon density inside proton, we use Regge like behaviour of the gluon

distribution function. For this purpose, we use the input distribution of gluon from DL

model [7], MSTW08 [8], CT10 [9, 10], ABM11 [11] and NNPDF2.3 [12, 13] to obtain

t- and x-evolutions of the gluon density. As the values of Regge exponent is close

to 0.5 in the region of small-x [28], we have taken its value as 0.5. Thus using the

required co-efficient function which are given in Appendix A and gluon distribution
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function we have calculated the F g
L structure function in the range 10−4 ≤ x ≤ 0.1 and

1.5 ≤ Q2 ≤ 800GeV 2.

The obtained results are compared with the available H1 [1–5], ZEUS [6] experi-

mental data and results of DL model fit [7], MSTW08 [8], CT10 [9, 10], ABM11 [11]

and NNPDF2.3 [12, 13] parameterizations. The related plots are shown in figures 5.1

to 5.6 which indicate a good agreement with the experimental data, related fit and

parameterizations. In all the graphs, the lowest-Q2 and highest-x points are taken as

input for G(x, t0) and G(x0, t) respectively. Here, the vertical error bars are both sta-

tistical and systematic errors for both H1 and ZEUS data. To confirm that in spite

of the large uncertainty in the experimental data, our results are in good agreement

with the data, we add DL model results and the theoretical prediction of different pa-

rameterizations in all the figures. Figure 5.1 represents the t-evolution results of F g
L

structure function which show that our results are compatible with the data and the

results of DL model. Here the structure function increases with the increase of Q2. The

x-evolution results are depicted in figure 5.2 to 5.6 which reflect better agreement of

our results with data and results of the model and parameterizations. These graphs

describe that the behaviour of structure function F g
L increases towards small values of

x. In case of the x-evolution results described in figure 5.2 to figure 5.6, the behaviour

of LO, NLO curves are not exactly the same as we have considered the input point

from different parameterizations. In all the graphs it is observed that our results show

good agreement with data, related model fit and parameterizations as the energy scale

becomes larger. It is observed from the t- and x-evolutions results that the behaviour

of the LO, NLO and NNLO curves are different in both the cases. Thee reason for

this is that the expressions for the calculation of t- and x-evolutions are different and

the behaviour of LO, NLO, NNLO curves depends on the expressions only. Moreover,

with reference to some recent papers [29–32], we can say that the pattern of LO, NLO,

NNLO curves (i.e., sometimes NLO results overestimate LO prediction and vice versa)
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Figure 5.1: t-evolution results of F g
L structure function up to NNLO using Regge

theory in comparison with the H1, ZEUS data and results of DL model.
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Figure 5.2: x-evolution results of F g
L structure function up to NNLO using Regge

theory in comparison with the H1, ZEUS data and results of DL model.
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L structure function up to NNLO using Regge
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MSTW08.
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Figure 5.4: x-evolution results of F g
L structure function up to NNLO using Regge

theory in comparison with the H1, ZEUS data and the theoretical prediction of

CT10.
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Figure 5.5: x-evolution results of F g
L structure function up to NNLO using Regge

theory in comparison with the H1, ZEUS data and the theoretical prediction of

ABM11.
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Figure 5.6: x-evolution results of F g
L structure function up to NNLO using Regge

theory in comparison with the H1, ZEUS data and the theoretical prediction of

NNPDF2.3.
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Figure 5.7: x-evolution results of R in comparison with the H1 data and the

theoretical prediction of ACOT fit.

depend only on the applied method.

We have also calculated the cross section ratio R using the results of the F g
2 and

F g
L structure functions from equations (5.2) and (5.23). In figure 5.7, the ratio R is

plotted against x for different values of Q2 in comparison with the H1 data and the

prediction of DGLAP fit in the ACOT scheme [33]. ACOT scheme incorporates the

heavy quark mass into the theoretical calculations of massive partonic cross section.
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Figure 5.8: Comparison of x-evolution results of F g
L structure function up to

NNLO using Regge theory (RT) and Taylor expansion (TE) method in comparison

with the H1, ZEUS data and the of DL model.
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Here they have used the QCDNUM program [34] for the DGLAP evolution which helps

to generate the PDFs from an initial distribution based on the Les Houches benchmark

set [35]. Together with the precise HERA data, these calculations facilitate accurate

determination of PDFs. We have analyzed the behaviour of the ratio R for two values

of Q2 = 20GeV 2, 25GeV 2 which indicate good agreement with the experimental data

and fit. It has been observed in the H1 experimental results that for Q2 ≥ 3.5GeV 2

, the ratio R is consistent with a constant behaviour [1]. Our analysis also shows

constant behavior with respect to x for fixed values of Q2. The constant behaviour

of the cross section ratio implies that its behaviour is independent of the behaviour of

gluon distribution function with respect to x at small-x.

5.2.1 Comparative study of our results obtained by Regge theory and Tay-

lor expansion method

We have also presented a comparison of our x-evolution results and the results obtained

in the chapter 4 which is shown in figure 5.8. These two results are actually the results

of F g
L structure function obtained by Regge theory (RT) and Taylor expansion (TE)

method. The comparison of the results of FL structure function obtained in both the

cases shows similar behaviour with the model fit and data. Thus one can determine

the evolution of structure function using both the methods.

5.3 Conclusions

In this chapter, we have calculated the gluon dominating longitudinal structure function

F g
L of proton up to NNLO approximation from DGLAP evolution equation for gluon

distribution function at small-x using the Regge like behaviour of the gluon distribution

function. The evolutions of FL structure function with x and Q2 reflects similar nature

with the experimental data which shows the compatibility of Regge behaviour with the

perturbative evolution of structure function at small-x. To confirm the validity of our
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calculations we compare our results with the recent experimental data taken by H1 and

ZEUS collaborations along with the DL model results and the theoretical prediction

of different parameterizations. Our results are in good agreement with the data and

related fits. As in our given range of x, the gluon contribution to the structure function

is dominant one, so we can conclude in general that the gluon contribution to the

longitudinal structure function increases with the decreasing values of x. We have also

calculated the cross section ratio R which indicates good agreement with the H1 data

and DGLAP fit in the ACOT scheme. Its variation with small values of Bjorken variable

x and fixed Q2 shows constant behaviour similar to that of the experimental data and

fit. From the constant behaviour of the cross section ratio R with respect to x, we can

conclude that its behaviour does not depend on the behaviour of gluon distribution

function with respect to x and fixed Q2 at small-x. The comparative analysis of our

x-evolution results with that of the results obtained in chapter 4 show good agreement

with data and the related model fit. In chapter 4, Taylor expansion method is used to

evaluate the structure function. Thus, we can conclude that both Regge theory and

Taylor expansion method can be used to study the behaviour of the structure function

in small-x region.
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Chapter 6

Heavy Quark Contribution to Longitudinal Struc-

ture Function FL and the Ratio Rh
=

F h
L

F h
2

at Small-x

The dominant process for the heavy quark (charm and beauty quarks) production

at HERA is the boson gluon fusion (BGF), where the photon interacts with a gluon

from the proton by the exchange of a heavy quark pair and is given as γg → qq̄X , with

q = c, b [1]. This reflects that the process is sensitive to the gluon density in the proton.

Thus, the structure functions F h
k (k = 2, L; h = c, b) are dominated by the gluon content

of the proton. The charm structure function F c
2 and the beauty structure function F b

2

are obtained from the measured charm and beauty cross sections after applying small

corrections for the longitudinal structure functions F c
L and F b

L. At small values of x, FL

becomes non-negligible and its contribution should be properly taken into account while

F2 is extracted from the measured values of cross section. The same is also true for the

contributions F h
L to F h

2 due to the heavy quarks. In this chapter, the behaviour of heavy

quark structure functions F h
k with respect to Bjorken variable x are studied using Taylor

expansion method and Regge behaviour of structure function at small-x. Here, we use

the input distribution of gluon from Donnachie-Landshoff (DL) model [2] to determine

the heavy flavour structure function of proton. The obtained results are compared with

the recent HERA data [3, 4] and results of DL, Colour Dipole [5] models (CDM) and

MSTW08 [6] parameterization which show good agreement with data and fit. We have

used our results of heavy flavour structure function to analyze the behaviour of heavy

129
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quark DIS cross section ratio Rh(x,Q2) and reduced cross section σh
r in heavy quark

lepto-production at small values of x. We have also studied the behaviour of the heavy

quark content of the FL structure functions with respect to x.

6.1 Theory

6.1.1 Heavy quark contribution to FL structure function using Taylor ex-

pansion method

In the small-x region, the heavy quark structure function is given by [7–9]

F h
k (x,Q

2, m2
h) = e2h

αs(µ
2)

π

∫ 1

ax

dw

w
Ch

k,g(w, ζ)G
(x

w
, µ2

)

, (6.1)

where a = 1 + 4ζ(ζ =
m2

h

Q2
), mh; (h = c, b) is the mass of the heavy quark and the

renormalization scale µ is assumed to be either µ2 = 4m2
h or µ2 = 4m2

h+Q2. Ch
k,g; (k =

2, L) is the heavy quark co-efficient function which can be written up to NLO as [9]

Ch
k,g(w, ζ)→C

(0)
k,g(w, ζ) + as(µ

2)
[

C
(1)
k,g(w, ζ) + C

(1)

k,g(w, ζ)ln
µ2

m2
h

]

. (6.2)

Here as(µ
2) =

αs(µ
2)

4π
and in NLO analysis

αs(µ
2) =

4π

β0ln(µ2/Λ2)
− 4πβ1

β3
0

lnln(µ2/Λ2)

ln(µ2/Λ2)
. (6.3)

The co-efficient functions C
(0)
k,g and C

(1)
k,g , C

(1)

k,g are at LO and NLO respectively. These

have been computed up to NLO in ref. [7–10] and the expressions are given in Appendix

B.

At small values of x we can rewrite the equation (6.1) by substituting w = 1− z as

F h
k (x,Q

2) =< e2 >
αs(µ

2)

π

∫ 1−ax

0

dz

1− z
Ch

k,g(1− z, ζ)G
( x

1− z
, µ2

)

, (6.4)
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where F h
k is derived from the integrated gluon distribution function G(x, µ2). An ap-

proximate relationship between F h
k and gluon distribution can be obtained from the

expansion of G
( x

1− z
, µ2

)

around a particular choice of point of expansion. Since

ax < w < 1, we have 0 < z < 1−ax ; so the series
x

w
=

x

1− z
is convergent for |z| < 1.

So, we can take the point of expansion z as any value between 0 ≤ z < 1.

Using the Taylor expansion method for the gluon distribution function at an arbi-

trary point z = 0.8 as described in chapter 4, and neglecting the higher order terms at

small-x, G
( x

1− z
, µ2

)

can be written as

G
( x

1− z
, µ2

)
∣

∣

∣

z=0.8
= G(z = 0.8, µ2) + (z − 0.8)

∂G(z = 0.8, µ2)

∂x

= G(5x, µ2) + (z − 0.8)
∂G(5x, µ2)

∂x
. (6.5)

Using equation (6.5) and leading order terms of equation (6.2) in equation (6.4) and

performing the integration, we get

F h
k (x,Q

2) = e2h
αs(µ

2)

π
A(x)G

(

5x+
B(x)

A(x)
, µ2

)

(6.6)

where

A(x) =

∫ 1−ax

0

dz

1− z
[C0

k,g(1− z)], (6.7)

B(x) =

∫ 1−ax

0

dz

1− z
(z − 0.8)[C0

k,g(1− z)], (6.8)

This result shows that the charm and beauty quark structure functions F h
k (x,Q

2)(k =

2, L; h = c, b) can be calculated using the low x gluon density from DL model [2] at LO.

Similarly, we have also obtained the expression for the structure functions F h
k (x,Q

2) in

NLO using the respective co-efficient function which is given by

F h
k (x,Q

2) = e2h
αs(µ

2)

π
P (x)G

(

5x+
Q(x)

P (x)
, µ2

)

, (6.9)
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P (x) =

∫ 1−ax

0

dz

1− z

[

C0
k,g(1− z) + T0{C1

k,g(1− z) + C1
k,g(1− z)}

]

(6.10)

and

Q(x) =

∫ 1−ax

0

dz

1− z
(z − 0.8)

[

C0
k,g(1− z) + T0(C

1
k,g(1− z) + C1

k,g(1− z))
]

. (6.11)

Here, the numerical parameter T0 is calculated from the data as described in chapter 2

and ref. [11]. Here T0 = 0.0278 in our required Q2 range 15 ≤ Q2 ≤ 600GeV 2.

Thus, we have calculated the charm and beauty quark structure functions F c
L and F c

2 ,

F b
L and F b

2 from the above equations (6.6) and (6.9)using the small-x gluon density

from Donnachie Landshoff model [2].

The measurement of heavy quark structure function F h
k are used to study the

behaviour of DIS cross section ratio Rh which is related to the structure functions at

small-x as

Rh =
F h
L

F h
2

. (6.12)

Thus using the expressions for F h
k , we get the LO and NLO relation for Rh as

Rh =
AL(x)

A2(x)
(6.13)

and

Rh =
PL(x)

P2(x)
. (6.14)

respectively.

The above expressions (6.13) and (6.14) show that the ratio is independent of the gluon

distribution function and it depends only on the co-efficient function. Here, AL(x) ,

A2(x), PL(x) and P2(x) are obtained by putting k = L, 2 in equations (6.7)and (6.10).
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This ratio of structure function is useful to extract the heavy quark structure function

from the reduced heavy quark cross section [3] at HERA. We have used this ratio Rh

to determine the heavy quark reduced cross section at small-x.

Now the reduced cross section in terms of heavy quark structure function is given

by

σh
r =

d2σh

dxdQ2
· xQ4

2πα2Y+

= F h
2 (x,Q

2, m2
h)−

y2

Y+
F h
L(x,Q

2, m2
h)

= F h
2 (x,Q

2, m2
h)
(

1− y2

Y+
Rh

)

. (6.15)

Here y = Q2

sx
is the inelasticity, with s the ep center-of-mass energy squared and Y+ =

1 + (1− y)2. The above equation (6.15) relates the charm quark structure function to

the reduced cross section via the ratio Rc. Thus, the behaviour of the ratio Rc and

reduced cross section σc
r can be studied using the expressions (6.13), (6.14) and (6.15)

with respect to the Bjorken variable x.

Again, the heavy quark content of the proton longitudinal structure function

Kh
L(x,Q

2, m2
h) at small-x is determined using the relation [12]

Kh
L(x,Q

2, m2
h) =

F h
L(x,Q

2, m2
h)

F h
L(x,Q

2, m2
h) + F g

L(x,Q
2)
. (6.16)

Here we have used the results of F g
L from chapter 4 to calculate the quantity Kh

L.

6.1.2 Heavy quark contribution to FL structure function using Regge ap-

proach

In the small-x region, the heavy quark structure function is given by [7–9]

F h
k (x,Q

2, m2
h) = e2h

αs(µ
2)

π

∫ 1

ax

dw

w
Ch

k,g(w, ζ)G
(x

w
, µ2

)

, (6.17)



134

where a, mh; (h = c, b), µ and Ch
k,g; (k = 2, L) are mentioned in the previous subsection

i.e., (6.1.1).

Now, the Regge like behaviour of the gluon distribution function can be expressed

as [13]

G(x, µ2) = f(µ2)x−λg , (6.18)

where f(µ2) is a function of µ2 and λg is the Regge exponent. Now, G
(

x
w
, µ2

)

can be

written as

G
( x

w
, µ2

)

= G(x, µ2)wλg . (6.19)

Using equations (6.18) and (6.19) in equation (6.17) we get

F h
k (x,Q

2, m2
h) = e2h

αs(µ
2)

π

∫ 1

ax

dw

w
Ch

k,g(w, ζ)w
λgG(x, µ2). (6.20)

Using the above equation we have calculated the charm and beauty quark structure

function in LO and NLO using the respective co-efficient functions and the low x gluon

density from DL model [2]. We have also calculated the heavy quark DIS cross section

ratio Rh and reduced cross section σh
r using the expressions (6.12) and (6.15) with

the help of the results of F h
k obtained from the equation (6.20). Lastly, to evaluate the

quantities Kc
L and Kb

L using relation (6.16), we have used the results of F g
L from chapter

5.

6.2 Results and Discussions

In this chapter, we have determined the charm and beauty quark structure func-

tions F h
k (k = 2, L; h = c, b), ratio of heavy quark structure function Rh and reduced

cross section σh
r in NLO approximation using Taylor expansion method and Regge like

behaviour of structure function. Here we have compared our calculated results with
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recent experimental H1, ZEUS data, results of DL, CD model, MSTW08 parameteri-

zation and results obtained by other author. Inclusive charm and beauty cross sections

are measured in e−p and e+p neutral current collisions at HERA in the kinematic range

2 × 10−4 ≤ x ≤ 0.05 and 5 ≤ Q2 ≤ 2000GeV 2. In our analysis, we have studied the

behaviour of our results in the range 10−4 ≤ x ≤ 0.1 and 20 ≤ Q2 ≤ 600GeV 2.

6.2.1 Charm quark contribution to structure functions

(A)Results using Taylor expansion method

The charm structure functions F c
L and F c

2 have been determined from the expressions

(6.6) and (6.9) using the respective charm quark co-efficient functions in LO, NLO and

the gluon distribution function of DL model. Here the gluon distribution function is

expanded at z = 0.8 using the Taylor expansion method.

Figures 6.1 and 6.2 describe the behaviour of F c
L and F c

2 structure functions with

respect to x. Here the results of F c
2 structure functions are compared with recent H1

and ZEUS data. Both the charm quark components of the structure function increase

towards small values of x for fixedQ2 values. To confirm the behaviour of these structure

functions we have also calculated the ratio of charm quark structure function Rc and

the charm quark reduced cross section σc
r using the relations (6.13), (6.14) and (6.15).

Figure 6.3 shows the behaviour of the predicted ratio Rc as a function of x for fixed

values of Q2. It is observed that this ratio is almost independent of x at small values

of x irrespective of Q2 values. The plots in figure 6.4 show the results of reduced cross

section σc
r in comparison with H1 [3] and ZEUS [4] data. We have also compared our

results of charm quark component of structure functions F c
L and F c

2 with the DL, colour

dipole model (CDM) [5] and results obtained by Boroun et al (GRB) [14] which are

depicted in figures 6.5 and 6.6. In color dipole model the excitation of heavy flavors

in DIS at small-x is described in terms of interaction of small size quark-antiquark

color dipoles in the photon [5]. In a recent paper [14], Boroun et al have reported
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Figure 6.1: x-evolution results of F c
L structure function using Taylor expansion

method with the input gluon distribution from DL model.
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Figure 6.2: x-evolution results of F c
2 structure function using Taylor expansion

method in comparison with the H1, ZEUS data.
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Figure 6.3: x-evolution results of the ratio of the charm quark structure functions

Rc using Taylor expansion method.
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Figure 6.4: x-evolution results of charm quark reduced cross section σc
r using

Taylor expansion method in comparison with the H1, ZEUS data.
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Figure 6.5: Comparison of our results of F c
L at Q2 = 20, 200GeV 2 using Taylor

expansion method with the results of colour dipole model (CDM) and Boroun et

al (GRB).
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Figure 6.6: Comparison of our results of F c
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Figure 6.7: Results of the charm content of FL structure function Kc
L with

respect to x at Q2 = 20, 200GeV 2 using Taylor expansion method.

that the charm quark structure function F c
k have a hard pomeron behaviour at low x

which shows good agreement with data. In all the cases in our calculations we take the

value of mc = 1.2GeV and renormalization scale µ as µ2 = 4m2
c + Q2. We observed

that our results for charm quark structure functions show good agreement with the

data at this renormalization scale. Finally we present the charm content of the proton

longitudinal structure function Kc
L(x,Q

2, m2
c) at small-x in figure 6.7. It is observed

from the figure that charm content of the structure function grows towards small-x and

increasing values of Q2.
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(B) Results using Regge behaviour of structure function

The charm quark structure functions F c
L and F c

2 have been determined from the ex-

pression (6.20) using the respective charm quark co-efficient function in LO, NLO and

the results of gluon distribution function obtained using the Regge behaviour of struc-

ture function in chapter 5. Here the input distribution of gluon is taken from the DL

model. Figures 6.8 and 6.9 describe the behaviour of F c
L and F c

2 structure function with

respect to x. Here the results of F c
2 structure function are compared with recent H1

and ZEUS data. In both the cases, charm quark components of the structure function

increases towards small values of x for fixed Q2 values. To confirm the behaviour of

these structure functions we have also calculated the ratio of charm quark structure

function Rc and the charm quark reduced cross section σc
r using the relations (6.12)

and (6.15). The behaviour of the predicted ratio Rc as a function of x for fixed values

of Q2 is depicted in figure 6.10. It is observed that this ratio is independent of x at

small values of x irrespective of Q2 values. The plots in figure 6.11 shows the results of

reduced cross section σc
r in comparison with H1 [3] and ZEUS [4] data.

We have also compared our results of charm quark component of structure func-

tions F c
L and F c

2 with the DL, colour dipole model (CDM) [5] and results obtained

by Boroun et al (GRB) which are depicted in figures 6.12 and 6.13. In color dipole

model (CDM) the excitation of heavy flavors in DIS at small-x is described in terms

of interaction of small size quark-antiquark color dipoles in the photon [5]. In all the

cases in our calculations using Regge behaviour of structure function, we take the value

of mc = 1.2GeV and renormalization scale µ as µ2 = 4m2
c + Q2. We observed that

our results for charm quark structure functions show good agreement with the data at

this renormalization scale. We have also presented the charm content of the proton

longitudinal structure function Kc
L(x,Q

2, m2
c) at small-x in figure 6.14. It is observed

from the figure that charm content of the structure function grows towards small-x and

increasing values of Q2.
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Figure 6.8: x-evolution results of F c
L structure function using Regge theory with

the input gluon distribution from DL model.
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Figure 6.9: x-evolution results of F c
2 structure function using Regge theory in

comparison with the H1, ZEUS data.
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Figure 6.10: x-evolution results of the ratio of the charm quark structure func-

tion Rc using Regge theory.
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Figure 6.11: x-evolution results of the charm quark reduced cross section σc
r

using Regge theory in comparison with the H1, ZEUS data.
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Figure 6.12: Comparison of our results of F c
L at Q2 = 20, 200GeV 2 using Regge

theory with the results of CD model and Boroun et al (GRB).
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Figure 6.13: Comparison of our results of F c
2 at Q2 = 20, 200GeV 2 using Regge

theory with the results of DL, CD model and Boroun et al (GRB).
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Figure 6.14: Results of the charm content of FL structure function Kc
L with

respect to x at Q2 = 20, 200GeV 2 using Regge theory.

6.2.2 Beauty quark contribution to structure functions

(A)Results using Taylor expansion method

The beauty quark structure functions F b
L and F b

2 have been determined from the

expressions (6.6) and (6.9) using the respective beauty quark co-efficient functions in

LO, NLO and the gluon distribution function of DL model. Here the gluon distribution

function is expanded at z = 0.8 using the Taylor expansion method. Figures 6.15 and

6.16 describe the behaviour of F b
L and F b

2 structure functions with respect to x. Here
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the results of F b
2 structure function are compared with recent H1 and ZEUS data. Both

the beauty quark components of the structure function increase towards small values

of x for fixed Q2 values. To confirm the behaviour of these structure functions we have

also calculated the ratio of beauty quark structure function Rb and the beauty quark

reduced cross section σb
r using the relations (6.13), (6.14) and (6.15). Figure 6.17 shows

the behaviour of the predicted ratio Rb as a function of x for fixed values of Q2. It is

observed that this ratio is independent of x at small values of x irrespective of Q2 values.

The plots in Figure 6.18 shows the results of reduced cross section σb
r in comparison

with H1 [3] and ZEUS [4] data. In these plots also our results show good agreement

with the experimental data.

We have also compared our results of beauty quark component of structure functions

F b
2 with the results of MSTW08 parameterization which are depicted in figure 6.19. In

all the cases in our calculations we take the value of mb = 4.2GeV and renormalization

scale µ as µ2 = 4m2
b + Q2. We observed that our results for beauty quark structure

function show good agreement with the data at this renormalization scale. Finally we

present the beauty content of the proton longitudinal structure function Kb
L(x,Q

2, m2
b)

at small-x in figure 6.20. It is observed from the figure that beauty content of the

structure function grows towards small-x and increasing values of Q2.

(B) Results using Regge behaviour of structure function

The beauty quark structure functions F b
L and F b

2 have been determined from the

expression (6.20) using the respective beauty quark co-efficient functions in LO, NLO

and the results of gluon distribution function obtained using the Regge behaviour of

structure function in chapter 5. Here the input distribution of gluon is taken from

the DL model. Figures 6.21 and 6.22 describe the behaviour of F b
L and F b

2 structure

function with respect to x. Here the results of F b
2 structure function are compared

with recent H1 and ZEUS data. In both the cases, beauty quark components of the
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Figure 6.15: x-evolution results of F b
L structure function using Taylor expansion

method with the input gluon distribution from DL model.
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Figure 6.16: x-evolution results of F b
2 structure function using Taylor expansion

method in comparison with the H1, ZEUS data.
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Figure 6.17: x-evolution results of the ratio of the beauty quark structure func-

tions Rb using Taylor expansion method .
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Figure 6.18: x-evolution results of the beauty quark reduced cross section σb
r

using Taylor expansion method in comparison with the H1, ZEUS data.
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Figure 6.19: Comparison of our results of F b
2 at Q2 = 200GeV 2 using Taylor

expansion method with the results of MSTW 08.
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Figure 6.20: Results of the beauty content of FL structure function Kb
L with

respect to x at Q2 = 25, 200GeV 2 using Taylor expansion method.
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structure function increase towards small values of x for fixed Q2 values. To confirm

the behaviour of these structure functions we have also calculated the ratio of beauty

quark structure function Rb and the beauty quark reduced cross section σb
r using the

relations (6.12) and (6.15) respectively. The behaviour of the predicted ratio Rb as a

function of x for fixed values of Q2 is depicted in figure 6.23. It is observed that this

ratio is independent of x at small values of x irrespective of Q2 values. The plots in

figure 6.24 show the results of reduced cross section σb
r in comparison with H1 [3] and

ZEUS [4] data.

We have also compared our results of beauty quark structure functions F b
2 with

the results of MSTW08 parameterization which are depicted in figure 6.25. We have also

presented the beauty content of the proton longitudinal structure functionKb
L(x,Q

2, m2
b)

at small-x in figure 6.26. It is observed from the figure that beauty content of the struc-

ture function grows towards small-x and increasing values of Q2.

(C) Comparative study of the results of the heavy quark reduced cross

section obtained by both the methods

The results of heavy quark structure functions, their ratio and the reduced cross section

obtained by both the methods i.e., Taylor expansion method and Regge theory show

good agreement with the available experimental data, model fit and parameterization.

The heavy quark reduced cross section is calculated using the heavy quark structure

function and their ratio. The behaviours of ratio of heavy quark structure functions in

both the cases are same as these are independent of the distribution of gluons inside

proton. Here we have presented the comparative analysis of the behaviours of charm

and beauty quark reduced cross sections σc
r and σb

r with respect to x for different

values of Q2 obtained by both the methods which are depicted in figures 6.27 and 6.28.

Both the figures show that our results are in good agreement with the experimental

results. Figure 6.29 shows the sensitivity of our results of σc
r and σb

r with the mass
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Figure 6.21: x-evolution results of F b
L structure function using Regge theory

with the input gluon distribution from DL model.
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Figure 6.22: x-evolution results of F b
2 structure function using Regge theory in

comparison with the H1, ZEUS data.
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Figure 6.23: x-evolution results of the ratio of the beauty quark structure func-

tions Rb using Regge theory.
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Figure 6.24: x-evolution results of the beauty quark reduced cross section σb
r

using Regge theory in comparison with the H1, ZEUS data.
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Figure 6.25: Comparison of our results of F b
2 at Q2 = 200GeV 2 using Regge

theory with the results of MSTW08 parameterization.
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respect to x at Q2 = 25, 200GeV 2 using Regge theory.
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Figure 6.27: Comparison of our results of σc
r obtained by Taylor expansion (TE)

method and Regge theory (RT).
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Figure 6.28: Comparison of our results of σb
r obtained by Taylor expansion (TE)

method and Regge theory (RT).
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Figure 6.29: Sensitivity of our results of σb
r and σc

r with mass renormalization

scale µ obtained by Taylor expansion (TE) method and Regge theory (RT).

renormalization scale µ obtained by both the methods i.e., Taylor expansion method

and Regge theory method. This figure indicates that the sensitivity of our results with

mass renormalization scale µ2 = 4m2
h+Q2, shows good agreement with the experimental

data. From the figure it is observed that the sensitivity of the choice of scale µ is

relatively large in case of the small-x region than that of the high x region as in the

small-x region the production of heavy quark is large compared to that in the high x

region. In figure 6.29, in both the plots the behaviour of σc
r and σb

r with respect to x

shows increasing behaviour towards small values of x. But in case of the charm quark

the increase of the cross section is more sharp than that of the cross section in case of

beauty quark. The reason for this is that the density of heavy beauty quark is less than
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that of the charm quark in the small-x region. So, the charm cross section increases

more sharply with respect to x than that of the beauty quark cross section.

6.3 Conclusions

In this chapter, we have calculated the heavy quark structure functions F h
k (k =

2, L; h = c, b) using gluon distribution function in NLO analysis with the help of Taylor

expansion (TE) method and the Reege (RT) like behaviour of the structure function.

The obtained results are compared with the experimental H1, ZEUS data, results of

DL, CD model and MSTW08 parameterization which reflect compatibility of our re-

sults with the data and model fits. All the gluon dominating heavy quark structure

functions show increasing behaviour towards small values of x. To confirm the validity

of our calculations we have also analysed the behaviour of heavy quark structure func-

tion ratio Rh and reduced heavy quark cross section σh
r with respect to x which also

shows good agreement with experimental data. We have also analysed the behaviour

of heavy quark content of the longitudinal structure function with respect to x which

reflects increasing behaviour towards small-x and high Q2 region. In our calculations

we have considered the value of the mass renormalization scale µ as µ2 = 4m2
h + Q2.

The sensitivity of our results of charm and beauty quark structure function with mass

renormalization scale µ shows that at µ2 = 4m2
h + Q2, our predicted results are com-

patible with the experimental data. Our predicted results in both the methods show

good agreement with the experimental data, model fits and parameterization. Thus we

can conclude that both the methods can be used to study the behaviour of the heavy

quark structure functions.
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Chapter 7

Conclusions

In this thesis, we solved the QCD evolution equation for FL structure function in

next-next-to-leading order (NNLO) at small values of Bjorken variable x using Taylor

expansion method. The same evolution equation is used to study the behaviour of

FL structure function up to NLO at small-x using Regge like behaviour of structure

function. We determined t and x-evolutions of proton longitudinal structure function

FL for both the cases. Of course in most of the cases we look into gluon dominated

longitudinal structure function F g
L as at small-x, gluon contribution dominates over

the quark contribution to FL structure function. At small-x FL structure function is

directly related to the gluon distribution inside the proton. We have determined an ap-

proximate relation between the FL structure function and gluon distribution function

in NNLO approximation using Taylor expansion method. Here in our analysis, we have

used the Altarelli-Martinelli equation for FL structure function in terms of co-efficient

functions. The x-evolution of FL structure function is studied using this relation. We

have calculated the t- and x-evolutions of the gluon dominating longitudinal structure

function FL up to NNLO approximation using the gluon distribution function obtained

as a result of solution of the DGLAP evolution equation for gluon distribution using

Regge behaviour of structure function at small-x. Along with the light flavour struc-

ture function we have also analysed the behaviour of heavy flavour (charm and beauty)

167
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structure function F h
k (k = 2, L; h = c, b), their ratio Rh and the heavy quark reduced

cross section σh
r with respect to x for different values of Q2 using both Taylor expansion

and Regge theory approach. The results obtained in all the cases are compared with

the available experimental data, theoretical prediction of different parameterizations,

results of model fit and results with numerical method with satisfactory phenomenolog-

ical success. We have also presented a comparative analysis of the our results obtained

by both the methods Taylor expansion and Regge theory. All the results show good

agreement with the experimental data, model fit and parameterizations and can be

described within the framework of pQCD, i.e., all the structure functions increases

towards small values of x and high-Q2.

We have observed that t- and x-evolution results of FL structure function obtained

as a solution of QCD evolution equation for FL structure function using both Taylor

expansion method and Regge behaviour of structure function are in good agreement

with H1, ZEUS data, results of DL model and theoretical predictions of MSTW08,

CT10, ABM11 and NNPDF2.3 parameterizations. From the comparative study of

evolution of FL structure function predicted by Regge theory approach and Taylor

expansion method it is observed that results obtained by both the methods are in good

agreement with data and parameterizations. The evolutions of FL structure function

obtained using the approximate relation between FL and gluon distribution function

shows similar behaviour with the data and results of model fit, parameterizations.

The calculated results of t- and x-evolutions of FL structure function using the gluon

distribution function obtained as a solution of the DGLAP evolution equation show

compatibility with the experimental data and results of model fit and parameterizations.

We have also analysed the behaviour of DIS cross section ratio R with respect to x

which shows that it is independent of x irrespective of Q2 values at small-x. The

comparative study of the FL structure function results obtained by these two method

also reflects similar behaviour with the data and other results. The behaviour of the
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heavy quark (charm and beauty quark) structure function with respect to x shows

similar behaviour with the experimental H1, ZEUS data and results of DL, CD model,

MSTW08 parameterization. To confirm our method and behaviour of these structure

functions we have also analysed the behaviours of the ratio of the heavy quark structure

function Rh and heavy quark reduced cross section σh
r with respect to x which reflect

good agreement with the data. The ratio of heavy quark structure function with respect

to x is also independent of x for the Q2 values which shows that it is independent of

the distribution of gluons in the proton. The heavy quark content to the FL structure

function with respect to x increases with Q2 towards small values of x. In our analysis,

while solving the evolution equations we have considered two numerical parameters T0

and T1, such that T 2(t) = T0.T (t) and T 3(t) = T1.T (t) with T (t) =
αs(t)

2π
. These two

parameters are chosen in such a way that the difference between T 2(t), T0.T (t) and

T 3(t), T1.T (t) are negligible in our required range of Q2. Thus both the methods used

in our analysis are simple ones and less time consuming on the numerical calculations

with less number of numerical parameters compared to the other methods where several

parameters are included in the input function. So, these methods may be a good

alternative to other methods.

In DIS, at moderate values of x, the linear QCD evolution equation led to a good

description of the behaviour of gluon distribution function. But at small values of

x and low-Q2, the problem is more complicated as recombination of the gluon in a

dense system has to be taken into account. This region is better explained by non-

linear evolution equations. So as future directives with the help of non-linear evolution

equations one can explain the behaviour of structure functions at very small-x and thus

predicts a range of onset of parton recombination. There are different theoretical models

based on parton recombination and saturation which describe low-x and low-Q2 region

well. But till today this saturated gluon density regime has not been clearly observed.

With the help of a new collider, Electron Ion Collider (EIC), physicist from different
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parts of the world try to explain the unanswered questions about the structure of

matter. The main unanswered questions are: What are the nuclear gluon and sea quark

densities? To what extent are they modified by nuclear binding, quantum-mechanical

interference, and other collective effects? These questions are the key to understanding

the QCD origins of the nucleon-nucleon interaction at different energies, the role of

non-nucleonic degrees of freedom, and the approach to a new regime of high gluon

densities and saturation at high energies. This collider would be the first ever high-

energy electron-nucleus collider and open up qualitatively new possibilities to study

QCD in the nuclear environment. It would represent the natural next step after the

high-luminosity fixed-target ep/eA experiments and the high-energy HERA ep collider.

�



171

Appendices

Appendix A

The analytical expressions for the gluon splitting kernel K0
G(x) and K1

G(x) are given

by:

K0
G(x) =

Nf
∑

i=1

e2i 8x
2(1− x) (A.1)

K1
G(x) =

[

Nf
∑

i=1

e2i

]

16CAx
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4Li2(x)− 2(1− x)lnxln(1 − x) + 2(1 + x)Li2(−x)

+3ln2x+ 2(x− 2)ζ(2) + (1− x)ln2(1− x)

+2(1 + x)lnxln(1 + x) +
24 + 192x− 317x2

24x
lnx

+
1− 3x− 27x2 + 29x3

3x2
ln(1− x)

+
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5 + 12x2
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ln2x− (1− x)ln(1− x)

+
−2 + 10x3 − 12x5

15x3
[Li2(−x) + lnxln(1 + x)]

+2
5− 6x2

30
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





(A.2)

Here the colour factors CA = 3 and CF =
4

3
associated with the colour group SU(3).

Li2(x) and ζ(2) are dilogarithmic function and Riemann Zeta function respectively.
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The function f(w) used in chapter 2 and 3 is defined as

f(w) = CAw
2
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The analytical expressions of gluon co-efficient functions for FL structure function

are given by :

C1
L,g(w) = 8Nfw(1− w) (A.4)

C2
L,g(w)

∼= Nf{(94.74− 49.20w)L2
1 + 864.8w1L1 + 1161wL1L0

+60.06wL2
0 + 39.66w1L0 − 5.333(w−1 − 1)} (A.5)
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C3
L,g(w)

∼= Nf

{(

144L4
1 −

47024

27
L3
1 + 6319L2

1 + 53160L1

)

w1 + 72549L0L1

+88238L2
0L1 + (3709− 33514w − 9533w2)w1 + 66773wL2

0

−1117L0 + 45.37L2
0 −

5360

27
L3
0 − (2044.70w1 + 409.506L0)w

1
}

+N2
f

{(32

3
L3
1 −

1216

9
L2
1 − 592.3L1 + 1511wL1

)

w1 + 311.3L0L1

+14.24L2
0L1 + (577.3− 729.0w)w1 + 30.78wL3

0 + 366.0L0

+
1000

9
L2
0 +

160

9
L3
0 + 88.5037w−1w1

}

+flg11N
2
f

{

(−0.0105L3
1 + 1.550L2

1 + 19.72wL1 − 66.745w

+0.615w2)w1 +
20

27
wL4

0 +
(280

81
+ 2.260w

)

wL3
0 − (15.40

−2.201w)wL2
0 − (71.66− 0.121w)wL0

}

. (A.6)

In equation (A.5) and (A.6), w1 = 1 − w, L0 = lnw, L1 = lnw1 and flg11 denote the

charge factor which is defined as flg11 =
< e >2

< e2 >
.

The expression for gluon splitting function at small-x are written as :

P 1
gg(w) = 2CA

{ w

(1− w)+
+

1− w

w
+ w(1− w)

}

+δ(1− w)
(11CA − 4NfTR)

6
, (A.7)

P 2
gg(w) =

12CFNfTR − 46CANfTR

9w
+NfTR

{−61

9
CF +

172

27
CA

}

+C2
A

{1643

54
− 22

3
ξ(2)− 8ξ(3)

}

, (A.8)

P 3
gg(w) =

224CATRNf

27w2
(−CA), (A.9)

where the Casimir operators of color group SU(3) are defined as CA = 3, CF =
4

3
and

TR =
1

2
.
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The expressions for gluon co-efficient function for F2 structure function in LO, NLO

and NNLO are given by :

C1
2,g(w) = Nf{(2− 4ww1)(L1 − L0)− 2 + 16ww1}, (A.10)

C2
2,g(w) = {(6.445 + 209.4(1− w))L3

1 − 24L2
1 + (149w−1 − 1483)L1

+L1L0(−871.8L1 − 724.1L0) + 5.319L3
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+11.90w−1 + 392.4− 0.28δ(1− w) (A.11)

and

C3
2,g(w) = Nf
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}

+N2
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f

{

3.211L2
1
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(A.12)

respectively.
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Appendix B

In the LO analysis, the heavy quark co-efficient functions used in chapter 6 are

written as

C
(0)
2,g (w, ζ) =

1

2

(

[w2 + (1− w)24wζ(1− 3w)− 8ζ2w2]ln
1 + β

1 − β

+β[−1 + 8w(1− w)− 4zζ(1− w)]
)

(B.1)

and

C
(0)
L,g(w, ζ) = −4w2ζln

1 + β

1− β
+ 2βw(1− w), (B.2)

where β2 = 1− 4zζ
1−z

. In NLO, we have used the compact form of the co-efficient functions

in high energy regime (ζ << 1). The NLO co-efficient functions C
(1)
k,g and C

(1)

k,g are given

by

C
(1)
k,g =

8

3
CAe

2
hln

2(Q2�m2
h) (B.3)

and

C
(1)

k,g =
16

3
CAe

2
hln

2(Q2�m2
h), (B.4)

where k = 2, L and h = c, b. Here the colour factor CA = 3, eh is the charge of the

heavy quark and mh is the mass of the heavy quark. �
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