
Measurements of the E Polarization
Observable for γd→ π−p(ps), γd→ K0Λ(ps),
and γd→ π+π−d(0) using CLAS g14 data at

Jefferson Lab

by

Dao H. Ho

Submitted in partial fulfillment of the
requirements for the degree of

Doctor of Philosophy
at

Carnegie Mellon University
Department of Physics

Pittsburgh, Pennsylvania

Advised by Professor Reinhard A. Schumacher

August 21, 2015





Abstract

Photoproduction of mesons from the nucleon has a long and ongoing tradition for ex-
ploring nucleon excitations and the baryon-baryon interaction. Polarization observ-
ables which play a role in the photoproduction mechanism are, therefore, essential in
addition to the differential cross section. The CLAS collaboration at Jefferson Lab,
has been active in measuring these observables, but until now only on a proton tar-
gets. However, a comprehensive picture of the pseudoscalar meson photoproduction
requires neutron data as well. That is, paired measurements of observables in γp and
γn reactions are necessary to disentangle the photoproduction mechanism on the basis
of isospin I = 0, and I = 1 photo-coupling transition amplitudes. The g14 experiment
with “HDIce,” a longitudinally polarized solid target of molecular hydrogen-deuteride
with low background contamination from other nuclear species, provided an unique
opportunity to measure several polarization observables— for the first time—on the
neutron for different channels. In particular, we present our measurements of the E
beam-target polarization observable, which requires circularly polarized beam and a
longitudinally polarized target, for pπ−, K0Λ, and K0Σ0 channels in the energy range
of 1.5≤ W ≤2.3 GeV. In addition, we also utilized the g14 dataset to investigate the
intrinsic spin of a possible dibaryonic N∆ bound state by measuring the E (beam-
target) observable on the dπ±d channel of the reaction γd → π+π−d(0). Finally, this
thesis also discusses a highly efficient multivariate analysis method called Boosted
Decision Trees, which we employed extensively for this work and which has not been
used before in CLAS data analysis.
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Chapter 1

Introduction

Quantum Chromodynamics, or QCD, is the standard theory to describe the strong
interaction. Specifically, the theory dictates the binding of u, d, and s quarks and glu-
ons into light mesons and nucleons. At the energy scale around 1 GeV, QCD becomes
highly non-linear which does not allow for simple analytical solutions. Nevertheless,
models that provide approximations to the full theory are available. Unfortunately,
they predict the existence of many more excited nucleon states than experimentally
observed. This interesting puzzle is referred to as the missing baryon problem and is
the primary motivation for this work: helping the scientific efforts of constructing a
full spectrum of nucleons.

In order to construct the full spectrum an additional degree of freedom in spin an-
gular momentum is necessary. The spin degree of freedom manifests into polarization
observables. Consequently, there are many experiments carried out to measure polar-
ization observables. In particular, the CLAS g14 experiment at Jefferson Laboratory
was designed to measure the polarization observables on a polarized bound neutron
target. In this thesis we present analyses of several reactions using g14 data to obtain
the E observable—referred to as the beam-target helicity asymmetry. Particularly,
in this chapter we will give a brief overview of QCD and the formalism of polarization
observables, and provide motivation for our study on polarized bound neutron data.
Lastly, theoretical models will also be discussed.

1.1 Overview of Quantum Chromodynamics (QCD)

With the discovery of the Higgs boson [1, 2], the Standard Model is considered com-
plete, see Figure 1.1 for a list of fundamental particles. It is the best theory to describe
three fundamental forces in nature: electromagnetic, weak and strong. QCD is part
of the Standard Model and describes the strong interaction. It has many parallels to
quantum electrodynamics, QED, which is the theory of the electromagnetic force. In
both theories, spin-1 particles mediate the forces—photons for QED and gluons for
QCD—between spin-1/2 particles that carry charges. The two theories both satisfy
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internal gauge symmetries [3]. Nevertheless, there are differences between QCD and
QED. Particularly, QCD has three types of charge, colorfully termed as red (r), green
(g), and blue (b). All physical particles occurring in nature must be color singlets,
i.e., only color neutral combinations like gg or rgb can exist in nature. The solution
to this mystery is yet to be discovered. In addition, while QED obeys U(1) group
gauge symmetry which does not allow its force carriers, the photons, to interact with
other photons (i.e., they are neutral), QCD force carriers, the gluons, carry charge
themselves, and, therefore, can interact with other gluons. In particular, exotic states
made only from gluons may be possible—making the theory much more complex.

Figure 1.1: The Standard Model of elementary particles, with the three generations of
matter, gauge bosons in the fourth column, and the Higgs boson in the fifth column.
Image was taken from [4].

QCD obeys SU(3) group gauge symmetry. The quarks carrying color charges
can transform among themselves according to symmetric transformation laws. i.e., a
“rotation” in the symmetry space. The rotation is carried out by the gauge field (the
gluons). Mathematically, the most general gauge invariant Lagrangian density is

L = −Ψ (γµDµ +m)Ψ − 1

4
Fα
µνF

µν
α , (1.1)

where γµ are the Dirac matrices, Ψ are the matter fields (the quarks) with mass m
and D is the gauge-covariant derivative (defined for both QED and QCD):

DµΨ =
(
∂µ − igAαµtα

)
Ψ. (1.2)
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The gauge fields Aαµ are massless spin-1 particles carrying the charge indexed by α.
For QCD, there are eight gauge fields (eight types of gluons). The tα are generators
of the gauge transformation for a given representation of the matter fields, and g is a
generalized charge representing the strength of the interaction. The last term in the
Lagrangian density is defined as follows:

Fα
µν = [Dµ, Dν ]

α = ∂µA
α
ν − ∂νAαµ − gfαβγAβµAαν , (1.3)

where fαβγ are structure constants of the Lie algebra in the commutators
[
tβ, tα

]
=

ifαβγtα. The last term in the Eq. 1.3 is zero for QED but non-zero for QCD.
As a result, unlike QED, QCD allows both 3− and 4−gluon vertices implying gluon-
gluon interactions. Another new property is asymptotic freedom, discovered by David
Gross, Frank Wilczek, and David Politzer in 1973 [5, 6]. Asymptotic freedom suggests
an energy dependence of the strong coupling constant αQCD (in contrast αQED ' 1

137

is a constant—the famous fine structure constant). Figure 1.2 shows the energy
dependence of the strong coupling constant αQCD as a function of the momentum
transfer Q. At high Q, αQCD is small and pertubative calculations are possible, while
at low Q, αQCD approaches unity, and calculations become non-pertubative. These
two new properties result in a highly complex and non-linear theory at low energy
scale. Nevertheless, there is a plethora of phenomena observed at the low energy scale.
Studying these phenomena is the mission of Jefferson Laboratory and its scientists.

Figure 1.2: The strong coupling constant, αQCD, as function of momentum transfer
Q. Near 1 GeV the value of αQCD is high—entering the non-pertubative regime where
QCD becomes highly non-linear. Image was taken from [7].
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1.2 QCD and Baryon Spectroscopy

Spectroscopy is the study of the excited states of a system. It is an extensively
used method to study the properties of composite objects. In particular, atomic
spectroscopy played a prominent role in understanding the internal structure of
atoms which, in turn, helped develop the theory of quantum mechanics. Histor-
ically, in the late 19th century, classical physicists were puzzled for decades when
they observed only a discrete subset of wavelengths (energy states) rather than a
continuous spectrum— in the gaseous atomic emission spectra. In 1913, Niels Bohr
introduced the Bohr model of the Hydrogen atom—a breakthrough from classical
physics—postulating that electrons could only have a discrete set of orbital angular
momenta; when an electron jumps (falls) from one orbit to another, only a single
quantum of light, a photon, is absorbed (emitted). The Bohr model explained the
Hydrogen spectrum well and led the development of quantum mechanics. In 1925,
Wolfgang Pauli formulated the Pauli exclusion principle—also by studying atomic
spectra—which states that no two electrons can occupy the same quantum state at
the same time. Consequently, it led to the concept of spin angular momentum, which
is another important component in quantum mechanics in general and quantum field
theory in particular.

Similarly, we study the spectrum of the nucleon—a composite system made of
u and d quarks—to develop an understanding of the internal structure of the nu-
cleon; but for a slightly different reason: quantum chromodynamics (or QCD) is the
fundamental theory which governs the strong interaction— interactions between the
quarks and gluons inside nucleons, but it can not be solved analytically (it can be
solved numerically in Lattice QCD approach, however). As a result, we can only
construct QCD-“inspired” effective theory models and check their predictions with
experiments. A complete spectrum of the nucleon is an important component to
verify these theories experimentally.

1.2.1 Baryon Spectroscopy

A baryon is a composite object made of three quarks, while a meson comprises of
a quark-antiquark pair. Collectively, they are referred to as hadrons—particles that
“feel” the strong force. Baryon spectroscopy involves injecting energy into the ground
state nucleons thus exciting them into excited states (also called “resonances”). Even-
tually, these excited states decay back to the ground state via many different paths (or
“channels”), emitting a wide variety of particles; the angular and energy distributions
of these particles reveal characteristics of the nucleon spectrum.

Baryon spectroscopy is much more difficult to study than atomic spectroscopy
due to the size of the nucleon (i.e., 10−5 time smaller than the size of a Hydrogen
atom)—a large particle accelerator and a complex detector system are needed. More-
over, the collected data is also difficult to interpret; the uncertainty in their energies
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(or, equivalently, their masses) are large (i.e., 4E ∼ 100 MeV); broadening their
energy/mass distributions causes the states to overlap. Note that according to the
Heisenberg Uncertainty Principle the energy of any unstable quantum state is spread
out over the range:

4E ≈ ~/τ,

where τ is the mean lifetime of the state, and since 4E ∼ 100 MeV, τ is typi-
cally about 10−23 seconds— i.e., these resonances are short-lived compared to weak
or electromagnetic decays.

1.2.2 Constituent Quark Model, Diquark Model and the Miss-
ing Baryons Problem

In 1964, Murray Gell-Mann proposed a simple model of the baryon—the Constituent
Quark Model (CQM)—where the relevant degrees of freedom are only in the valence
quarks, and gluonic degree of freedom are not excited (see a summary by Dalitz in [8]).
In particular, the model considers only the three lightest u, d, and s quarks (SU(6)
spin-flavor symmetry group) interacting via a harmonic oscillator potential force with
radial O(3) rotational symmetry [9]. Consequently, the baryon spectrum emerges as
the supermultiplets of the full SU(6)×O(3) symmetry group. Unfortunately, the
number of states predicted by the model is much higher than the number of excited
states observed in πN scattering experiments. This over-abundance of predicted
states is referred to as the missing baryon resonance problem.

Isgur and Koniuk [10] in 1980 added aspects of QCD into the basic CQM model,
and, in 1992, Capstick and Roberts [11, 12] included relativistic effects into the model.
Incidentally, even though the improved model still predicted more states than exper-
imentally observed, its new features suggested that all the experimentally known
states had strong coupling to the πN channels implying that the CQM might still be
right and the missing resonances might only couple to non πN channels [13, 14].

Alternatively, Lichtenberg et al. [15] proposed reducing the baryon effective de-
grees of freedom in the CQM by clustering two of the three valence quarks together
to decrease the number of predicted states. Many of the states absent in the model
are not observed experimentally [16]; however, there is only some direct experimental
evidence to support the existence of any diquark clustering inside the baryon [17].

1.2.3 Lattice QCD Predictions

Lattice QCD is a computing-based framework that tries to solve the full non-pertubative
QCD numerically on a discretized space-time “lattice.” The usual Minkowskian met-
ric is converted to a 4-dimensional Euclidian metric by translating the real time
dimension t into the imaginary time it dimension. Moreover, quarks are sitting on
the lattice sites and local gauge symmetry is maintained to preserve QCD proper-
ties. Also, discretization naturally provides an ultraviolet cutoff of the order of the
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inverse of the lattice spacing, which regularizes the theory. Lattice QCD computa-
tion is daunting but in recent years it has made tremendous progress; the full baryon
spectrum upto JP = 7

2

±
has been calculated on the lattice [18]. Interestingly, these

results lend support to the CQM model over the diquark model. This provides a
futher impetus to search for the missing states.

1.3 Polarization Observables in Pseudoscalar Me-

son Photoproduction

We mentioned previously that it is essential to obtain a complete spectrum of excited
nucleon states to understand the internal structure of the nucleon. To directly isolate
these excited states—by studying the total cross sections of pseudoscalar meson pho-
toproduction— is extremely difficult because these resonances are mostly broad and
overlapping. Moreover, the presence of an s-channel resonance guarantees presence
of a corresponding u-channel non-resonance background that significantly interferes
with other resonances; thus, directly extracting the properties of these resonances is
improbable. As a result, the most suitable approach is to analyze these processes at
an amplitude level—the so-called Partial Wave Analysis (PWA) approach. Cross sec-
tions alone are not enough to constrain PWA models of meson production amplitudes;
the spin degree of freedom in meson photoproduction as manifested in polarization
observables is required. Necessarily, in the next section, we will formally discuss the
polarization observables.

1.3.1 Theory and Formalism

For single pseudoscalar meson photoproduction where the initial photon, spin-1
2

target
and spin-1

2
recoiling baryon can all be polarized, the most general description of the

production comprises of 2× 2× 2 = 8 complex amplitudes; but parity and rotational
invariance reduce the number of independent amplitudes to four—they are commonly
constructed as the Chew-Goldberger-Low-Nambu (CGLN) [19] amplitudes. Even
though in their original paper Chew, Goldberger, Low, and Nambu expressed the
CGLN amplitudes in a Cartesian (Fi) representation, helicity (Hi) and transversity
(bi) representations are widely used as well. However, we adopt the Cartesian (Fi)
representation which has the simplest decomposition into angle-integrated electric
and magnetic multipoles.

In single-pseudoscalar meson photoproduction there are sixteen possible observ-
ables, which are classified into an unpolarized differential cross section, three single-
polarization asymmetries (i.e., either beam, target, or recoil is polarized), and three
sets of four double-polarization asymmetries (i.e., two polarizations of either beam-
target (BT), beam-recoil (BR), or target-recoil (TR)) as in [20]). These observables
completely describe the single-pseudoscalar meson photoproduction and can be ex-
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pressed in terms of the CGLN (Fi) amplitudes, which we will illustrate. In addition,
ideally, only at most eight carefully chosen observables for both proton and neutron
targets are required [21] to completely determine the amplitudes (the so-called Fierz
identities). In reality, to mitigate the effects of systematic uncertainties and the lim-
ited statistical power of actual measurements in PWA a larger number of different
observables is desirable.

We now briefly discuss the relation between the CGLN amplitudes and the general
cross section as well as the expression of the general cross section in terms of the
polarization observables. The discussion follows closely A. M. Sandorfi et al. [22]. We
will use the case of γn → KΛ as an example. In Figure 1.3 we defined polarization
angles used in the following derivation. In detail, the 〈x̂− ẑ〉plane is the reaction

plane in the center-of-mass (c.m.) frame,
→
P γ
L is the polarization vector for the case of

linearly polarized initial photons,
→
P T represents the target polarization vector, and

→
PR is the recoil polarization vector. Moreover, for the case of circularly polarized

photons we used the helicity designations, i.e., |
→
P γ
C | = +1(−1) when 100% of the

photon spins are parallel (anti-parallel) to the photon momentum vector.

Let us assume for now that the target and recoil polarizations are unity ( i.e.,
→
|P T | = |

→
PR | = 1) and pointing along ẑ—the direction of the photon beam; we also

assume the photon polarization is unity |
→
P γ | = 1. We then obtain the differential

cross section as in [19]:

dσ

dΩCM

(P̂ γ,msN ,msΛ) =
|
−→
k |
|−→q |
|〈msΛ |FCGLN |msN 〉|

2 , (1.4)

where P̂ γ is the unit vector of
→
P γ, −→q and

−→
k are the momenta of the initial state and

final state particles in the overall center of mass frame, respectively. Furthermore,
msΛ and msN are the spin substate quantum numbers of the Λ and the nucleon N
along the z-direction, respectively. The FCGLN are the Chew-Goldberger-Low-Nambu
(CGLN) amplitudes [19] defined as follows:

FCGLN(θK) =− i−→σ · P̂ γF1 −
[−→σ · k̂] [−→σ · (q̂ × P̂ γ

)]
F2

− i [−→σ · q̂]
[
k̂ · P̂ γ

]
F3 − i

[−→σ · k̂] [k̂ · P̂ γ
]
F4, (1.5)
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Figure 1.3: The center-of-mass (c.m.) coordinate system and angles used to specified

polarizations in the reaction γ(−→q ,
→
P γ) + N(−−→q ,

→
P T ) → K(

−→
k ) + Λ(−

−→
k ,

→
PR). The

left (right) side is for the initial γN (final KΛ) state; ẑ is along the photon beam

direction; ŷ is perpendicular to the 〈x̂− ẑ〉 reaction plane in the −→q ×
−→
k direction;

ẑ′ is along the meson momentum in the c.m. frame, and x̂′ is in the 〈x̂− ẑ〉 reaction
plane, rotated down from ẑ′ by θK + π/2. Image was taken from [22].

F1 =
lmax∑
l=0

(
P ′l+1(x)El+ + P ′l−1(x)El− + lP ′l+1(x)Ml+ + (l + 1)P ′l−1(x)Ml−

)
, (1.6)

F2 =
lmax∑
l=0

((l + 1)P ′l (x)Ml+ + lP ′l (x)Ml−) , (1.7)

F3 =
lmax∑
l=0

(
P ′′l+1(x)El+ + P ′′l−1(x)El− − P ′′l+1(x)Ml+ + P ′′l−1(x)Ml−

)
, (1.8)

F4 =
lmax∑
l=0

(−P ′′l (x)El+ − P ′′l (x)El− + P ′′l (x)Ml+ − P ′′l (x)Ml−) , (1.9)

where k̂ and q̂ are the unit vectors of
−→
k and −→q , respectively, and P ′l (x), P ′′l (x) are

the first and second derivative of the Legendre function Pl(x) with respect to x =
k̂ · q̂ = cos θK . El±, Ml± are the electric and magnetic multipoles that are responsible
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for transiting the initial state into the final states of orbital angular momentum l
and total angular momentum l± 1

2
(note that the sums have a limiting value of lmax

depending on the input energy). And −→σ are the Pauli matrices:

σx =

(
0 1
1 0

)
, σy =

(
0 −i
i 0

)
, σz =

(
1 0
0 −1

)
.

We now generalize to allow arbitrary target and recoil polarization directions.
However, as before, the linear photon polarization must still be in the 〈x̂− ẑ〉plane,
and the circular photon polarization must be aligned with ẑ. The corresponding cross
section is:

dσ

dΩCM

(P̂ γ, P̂ T , P̂R) =
|
−→
k |
|−→q |

∣∣∣〈P̂R |FCGLN | P̂ T
〉∣∣∣2 , (1.10)

where
∣∣∣P̂ T

〉
and

∣∣∣P̂R
〉

are the initial and final states spin-1/2 baryon with the spin

pointing in the P̂ T , and P̂R directions respectively (i.e., they remain the usual helicity
states along their respective polarization directions). Now consider a spin state |ŝ〉
that is quantized in an arbitrary direction ŝ = (1, θ̂, φ̂), the relation between |ŝ〉and
the usual eigenstate of z-axis quantization is:

|ŝ〉 =
∑
m=± 1

2

D
( 1

2
)

m,+ 1
2

(θ, Φ) |m〉 , (1.11)

where |m〉 is defined by Sz
∣∣±1

2

〉
=
(
±1

2

) ∣∣±1
2

〉
, the eigenstates of the Sz spin operator,

and D
( 1

2
)

m,λ(θ, φ) = exp [−i(m− λ)φ] d
( 1

2
)

m,λ(θ), the Wigner D matrix. Following the

phase convention of Brink and Satchler [23], the definitions of d
( 1

2
)

m,λ(θ) are:

d
( 1

2
)

+ 1
2
,+ 1

2

(θ) = d
( 1

2
)

− 1
2
,− 1

2

(θ) = cos
θ

2
,

d
( 1

2
)

− 1
2
,+ 1

2

(θ) = −d( 1
2

)

+ 1
2
,− 1

2

(θ) = sin
θ

2
.

Moreover, from Figure 1.3, we can express the momenta and the polarization vectors
as:

−→q = |−→q |(0, 0, 1) ,
−→
k = |

−→
k |(sin θK , 0, cos θK), (1.12)

P̂ γ
L = (cosΦγ, sinΦγ, 0) ,

(
P̂ γ
C

)
±1

= ∓ 1√
2

(x̂± îy), (1.13)
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P̂ T = (1, θp, Φp) , P̂R = (1, θ′p, Φ
′
p). (1.14)

Note that, for simplicity, we used the spherical variables for the target and recoil
polarizations. By using equations 1.12-1.14 we derive the photoproduction matrix
elements as:

〈
P̂R |FCGLN | P̂ T

〉
=

3∑
n=0

[
4∑
i=1

Fi(θK)Ci,n(θK , Φγ)

]〈
P̂R |σn| P̂ T

〉
, (1.15)

where σ0 = 1, and σ1 = σx, σ2 = σy, σ3 = σz. The explicit form of Ci,n(θK , Φγ) is
given in Table 1.1, and

〈
P̂R |σn| P̂ T

〉
=

∑
msΛ ,msN=± 1

2

D
( 1

2
)∗

msΛ ,+
1
2

(θp′ , Φp′)D
( 1

2
)

msN ,+
1
2

(θp, Φp) 〈msΛ |σn|msN 〉 ,

(1.16)

where
∣∣∣msΛ(N)

〉
is defined by S

Λ(N)
z

∣∣±1
2

〉
=
(
±1

2

) ∣∣±1
2

〉
, the eigenstates of the S

Λ(N)
z

spin operator in the z’-axis quantization direction.

n = 0 n = 1 n = 2 n = 3

i = 1 0 −i cosΦγ −i sinΦγ 0
i = 2 sin θK sinΦγ i cos θK cosΦγ i cos θK sinΦγ −i sin θK cosΦγ
i = 3 0 0 0 −i sin θK cosΦγ
i = 4 0 −i sin2 θK cosΦγ 0 −i sin θK cos θK cosΦγ

Table 1.1: Explicit form of Ci,n(θK , Φγ) in Eq. 1.15.

Furthermore, with non-unit polarization vectors, the general cross section can be
expressed as:

dσ

dΩCM

(
→
P γ,

→
P T ,

→
PR) =

∑
P̂ γ= ˆ{P γ

1 ,P̂
γ
2}

∑
P̂ T=±P̂ T

∑
P̂R= ˆ±PR

ρP̂ γρ
P̂ T ρP̂R

dσ

dΩCM

(P̂ γ, P̂ T , P̂R),

(1.17)

where
→
PX specifies the magnitude and direction of the polarization of particle X =

γ, T,R. For the target (T ) and recoil (R), this is just
→
PX=

(
ρ

+P̂X − ρ−P̂X

)
P̂X with

ρ±P̂X is the probability of observing X with its spin vector pointing in the ±P̂X

direction. For the photons (γ), ρ
P̂ γ

1
(ρ

P̂ γ
2
) is the probability of observing photons with
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their polarization vector pointing in the P̂ γ
1(P̂ γ

2) direction— for linearly polarized

photons P̂ γ
1 and P̂ γ

2 are orthogonal polarization, while for circularly polarized photons

P̂ γ
1 and P̂ γ

2 are the opposite helicity states.

In order to “link” the general cross section expression to polarization observables,
we follow the formalism of the spin density matrix described by Fasano, Tabakin, and
Saghai (FTS) [24] and rewrite Eq. 1.17 as (Einstein summation notation implied):

dσ

dΩCM

(
→
P γ,

→
P T ,

→
PR) = %0(%R)kn(Fµ)nm(%T )ml(F

†
λ)lk(%

γ)µλ, (1.18)

where %0 = |
−→
k |
|−→q | , and (Fµ)mSΛ

mSN
= 〈msΛ |F

µ
CGLN |msN 〉, in which the spin states of

the initial and final baryons are quantized in the z- and z’-directions, respectively.
Note that for (Fµ)mSΛ

mSN
µ ∈ {1, 2} and mS ∈ {−1

2
,+1

2
}. The 2×2 spin density

matrices [24] are defined below:

%γ =
1

2

[
1+

→
P γ ·−→σ

]
=

1

2

[
1+

3∑
b

(
→
P γ)b · σb

]
, (1.19)

%T =
1

2

[
1+

→
P T ·−→σ

]
=

1

2

[
1+

3∑
a

(
→
P T )a · σa

]
, (1.20)

%R =
1

2

[
1+

→
PR ·−→σ

]
=

1

2

[
1+

3∑
a′

(
→
PR)a

′ · σa′
]
, (1.21)

where a, and b reference the unprimed x, y, z coordinates of Figure 1.3, but a′ ref-
erences the primed x′, y′, z′ coordinates in Figure 1.3 with the meson momentum
along the +ẑ′. In addition, note that the unpolarized differential cross section is
dσ0

dΩCM
= (%0/4)N where N =(Fλ)lk(Fλ)

†
lk. As a result, we can now expand Eq. 1.18

as:
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dσ

dΩCM

(
→
P γ,

→
P T ,

→
PR) =

1

2

dσ0

dΩCM

{
1 +

(
→
P γ

)
b

(Fµ)kn(F †λ)nkσ
b
µλ

N
+

( →
P T

)
a

(Fλ)knσ
a
nm(F †λ)mk
N

+

( →
PR

)
a′

σa
′

kn(Fλ)nm(F †λ)mk
N

+

( →
P T

)
a

(
→
P γ

)
b

(Fµ)kmσ
a
ml(F

†
λ)lkσ

b
µλ

N

+

( →
PR

)
a′

(
→
P γ

)b σa′kn(Fµ)nl(F
†
λ)lkσ

b
µλ

N

+

( →
PR

)
a′

( →
P T

)
a

σa
′

kn(Fλ)nmσ
a
ml(F

†
λ)lk

N

+

( →
PR

)
a′

( →
P T

)
a

(
→
P γ

)
b

σa
′

kn(Fµ)nmσ
a
ml(F

†
λ)lkσ

b
µλ

N

}

=
1

2

dσ0

dΩCM

{
1 +

(
→
P γ

)
b

Σb +

( →
P T

)
a

T a +

( →
PR

)
a′
P a′

+

( →
P T

)
a

(
→
P γ

)
b

CBT
ab +

( →
PR

)
a′

(
→
P γ

)
b

CBR
a′b +

( →
PR

)
a′

( →
P T

)
a

CTR
a′a

+

( →
PR

)
a′

( →
P T

)
a

(
→
P γ

)
b

CTRB
a′ab

}
, (1.22)

where we have introduced:

Σb =
(Fµ)kn(F †λ)nkσ

b
µλ

N
, (1.23)

T a =
(Fλ)knσ

a
nm(F †λ)mk
N

, (1.24)

P a′ =
σa
′

kn(Fλ)nm(F †λ)mk
N

, (1.25)

CBT
ab =

(Fµ)kmσ
a
ml(F

†
λ)lkσ

b
µλ

N
, (1.26)

CBR
a′b =

σa
′

kn(Fµ)nm(F †λ)mkσ
b
µλ

N
, (1.27)

CTR
a′a =

σa
′

kn(Fλ)nmσ
a
ml(F

†
λ)lk

N
, (1.28)

CTRB
a′ab =

σa
′

kn(Fµ)nmσ
a
ml(F

†
λ)lkσ

b
µλ

N
. (1.29)

Note that equations 1.23, 1.24, and 1.25 (1.26, 1.27, and 1.28) present the single-
polarization (double-polarization) observables, while equation 1.29 presents the triple-
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polarization observable. In addtion, σimn represents the mth row and nth column com-
ponent of the ith Pauli matrix. Since the a, b, and a′ represent three coordinates, Eq.
1.22 consists of 64 terms. However, Artru et al. [25] showed that due to requirements
of parity and rotational invariance, there remain only 32 non-vanishing terms. More-
over, there are, in fact, only 16 distinct observables since each observable occurs twice
in the expansion given by Eq. 1.22. We show below how equations 1.23-1.29 relate
to the 16 observables defined in FTS [24] (i.e., the most common naming convention
for polarization observables in psedoscalar meson photoproduction):

ΣxB = Σ, T yT = T, P y′R = P, (1.30)

CBT
zT zB

= −E, CBT
zT yB

= −G, CBT
xT zB

= F,

CBT
xT yB

= −H, CBT
yT xB

= P, (1.31)

CBR
z′RzB

= Cz′ , CBR
z′RyB

= −Oz′ CBR
x′RzB

= Cx′ ,

CBR
x′RyB

= −Ox′ , CBR
y′RxB

= T, (1.32)

CTR
z′RzT

= Lz′ , CTR
z′RxT

= Tz′ , CTR
x′RzT

= Lx′ ,

CTR
x′RxT

= Tx′ , CTR
y′RyT

= Σ, (1.33)

CTRB
y′RxT yB

= −E, CTRB
y′RxT zB

= G, CTRB
y′RzT yB

= −F,

CTRB
y′RzT zB

= −H, CTRB
x′RyT yB

= −Cz′ , CTRB
x′RyT zB

= −Oz′

CTRB
z′RyT yB

= Cx′ , CTRB
z′RyT zB

= Ox′ , CTRB
x′RxT xB

= Lz′ ,

CTRB
x′RzT xB

= −Tz′ , CTRB
z′RxT xB

= −Lx′ , CTRB
z′RzT xB

= Tx′ ,

CTRB
y′RyT xB

= 1. (1.34)

We also introduce the pairs of measurements needed to construct each of the 15
observables that we defined earlier (excluding CBTR

y′RyT xB
= 1) [22]. For simplicity, we

assume 100% polarizations for the beam (B), target (T ), and recoil (R). Note that

we follow the notation σ(
→
P γ,

→
P T ,

→
PR) = dσ

dΩCM
(
→
P γ,

→
P T ,

→
PR), where the photon beam

is characterized either by its helicity (±1) for circular polarization, or by φLγ for linear
polarization.

13



Σ =
σ(+π/2, 0, 0)− σ(+2π, 0, 0)

σ(+π/2, 0, 0) + σ(+2π, 0, 0)
, (1.35)

T =
σ(0,+y, 0)− σ(0,−y, 0)

σ(0,+y, 0) + σ(0,−y, 0)
, (1.36)

P =
σ(0, 0,+y′)− σ(0, 0,−y′)
σ(0, 0,+y′) + σ(0, 0,−y′)

, (1.37)

E =
σ(+1,−z, 0)− σ(+1,+z, 0)

σ(+1,−z, 0) + σ(+1,+z, 0)
, E =

σ(+1,−z, 0)− σ(−1,−z, 0)

σ(+1,−z, 0) + σ(−1,−z, 0)
, (1.38)

G =
σ(+π/4,+z, 0)− σ(+π/4,−z, 0)

σ(+π/4,+z, 0) + σ(+π/4,−z, 0)
, G =

σ(+π/4,+z, 0)− σ(−π/4,+z, 0)

σ(+π/4,+z, 0) + σ(−π/4,+z, 0)
, (1.39)

F =
σ(+1,+x, 0)− σ(−1,+x, 0)

σ(+1,+x, 0) + σ(−1,+x, 0)
, F =

σ(+1,+x, 0)− σ(+1,−x, 0)

σ(+1,+x, 0) + σ(+1,−x, 0)
, (1.40)

H =
σ(+π/4,+x, 0)− σ(−π/4,+x, 0)

σ(+π/4,+x, 0) + σ(−π/4,+x, 0)
, H =

σ(+π/4,+x, 0)− σ(+π/4,−x, 0)

σ(+π/4,+x, 0) + σ(+π/4,−x, 0)
, (1.41)

Cx′ =
σ(+1, 0,+x′)− σ(−1, 0,+x′)
σ(+1, 0,+x′) + σ(−1, 0,+x′)

, Cx′ =
σ(+1, 0,+x′)− σ(+1, 0,−x′)
σ(+1, 0,+x′) + σ(+1, 0,−x′)

, (1.42)

Cz′ =
σ(+1, 0,+z′)− σ(−1, 0,+z′)
σ(+1, 0,+z′) + σ(−1, 0,+z′)

, Cx′ =
σ(+1, 0,+z′)− σ(+1, 0,−z′)
σ(+1, 0,+z′) + σ(+1, 0,−z′)

, (1.43)

Ox′ =
σ(+π/4, 0,+x′)− σ(−π/4, 0,+x′)
σ(+π/4, 0,+x′) + σ(−π/4, 0,+x′)

, Ox′ =
σ(+π/4, 0,+x′)− σ(+π/4, 0,−x′)
σ(+π/4, 0,+x′) + σ(+π/4, 0,−x′)

,(1.44)

Oz′ =
σ(+π/4, 0,+z′)− σ(−π/4, 0,+z′)
σ(+π/4, 0,+z′) + σ(−π/4, 0,+z′)

, Oz′ =
σ(+π/4, 0,+z′)− σ(+π/4, 0,−z′)
σ(+π/4, 0, z′) + σ(+π/4, 0,−z′)

,(1.45)

Lx′ =
σ(0,+z,+x′)− σ(0,−z,+x′)
σ(0,+z,+x′) + σ(0,−z,+x′)

, Lx′ =
σ(0,+z,+x′)− σ(0,+z,−x′)
σ(0,+z,+x′) + σ(0,+z,−x′)

, (1.46)

Lz′ =
σ(0,+z,+z′)− σ(0,−z,+z′)
σ(0,+z,+z′) + σ(0,−z,+z′)

, Lz′ =
σ(0,+z,+z′)− σ(0,+z,−z′)
σ(0,+z,+z′) + σ(0,+z,−z′)

, (1.47)

Tx′ =
σ(0,+x,+x′)− σ(0,−x,+x′)
σ(0,+x,+x′) + σ(0,−x,+x′)

, Tx′ =
σ(0,+x,+x′)− σ(0,+x,−x′)
σ(0,+x,+x′) + σ(0,+x,−x′)

, (1.48)
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Tz′ =
σ(0,+x,+z′)− σ(0,−x,+z′)
σ(0,+x,+z′) + σ(0,−x,+z′)

, Tx′ =
σ(0,+x,+z′)− σ(0,+x,−z′)
σ(0,+x,+z′) + σ(0,+x,−z′)

, (1.49)

Finally, notice that in xyz coordinates
→
P γ=

(
−P γ

L cos 2ΦL
γ ,−P

γ
L sin 2ΦL

γ , P
γ
C

)
, we

can express the general cross section (Eq. 1.22) in term of the polarization observables
defined previously as:

dσ

dΩCM

(
→
P γ,

→
P T ,

→
PR) =

1

2

dσ0

dΩCM

×[(
1− P γ

LP
T
y P

R
y′ cos 2ΦL

γ

)
+ Σ

(
−P γ

L cos 2ΦL
γ + P T

y P
R
y′

)
+ T

(
P T
y − P

γ
LP

R
y′ cos 2ΦL

γ

)
+ P

(
PR
y′ − P

γ
LP

T
y cos 2ΦL

γ

)
+ E

(
−P γ

CP
T
z + P γ

LP
T
x P

R
y′ sin 2ΦL

γ

)
+G

(
P γ
LP

T
x sin 2ΦL

γ + P γ
CP

T
x P

R
y′

)
+ F

(
P γ
CP

T
x + P γ

LP
T
z P

R
y′ sin 2ΦL

γ

)
+H

(
P γ
LP

T
x sin 2ΦL

γ − P
γ
CP

T
z P

R
y′

)
+ Cx′

(
P γ
CP

R
x′ − P

γ
LP

T
y P

R
z′ sin 2ΦL

γ

)
+ Cz′

(
P γ
CP

R
z′ + P γ

LP
T
y P

R
x′ sin 2ΦL

γ

)
+Ox′

(
P γ
LP

R
x′ sin 2ΦL

γ + P γ
CP

T
y P

R
z′

)
+Oz′

(
P γ
LP

R
z′ sin 2ΦL

γ − P
γ
CP

T
y P

R
x′

)
+ Lx′

(
P T
z P

R
x′ + P γ

LP
T
x P

R
z′ cos 2ΦL

γ

)
+ Lz′

(
P T
z P

R
z′ − P

γ
LP

T
x P

R
x′ cos 2ΦL

γ

)
+Tx′

(
P T
x P

R
x′ − P

γ
LP

T
z P

R
z′ cos 2ΦL

γ

)
+ Tz′

(
P T
x P

R
z′ + P γ

LP
T
z P

R
x′ cos 2ΦL

γ

)]
.

(1.50)

In particular, if only the beam and the target are circularly and longitudinally
polarized, respectively, then the general cross section is reduced to:

dσ

dΩCM

(
→
P γ,

→
P T , 0) =

1

2

dσ0

dΩCM

[
1−

(
P γ
CP

T
z

)
E
]
. (1.51)

1.3.2 Why is a polarized neutron target necessary?

In the last section, we established the formalism necessary in order to obtain the
polarization observables to define a partial-wave analysis of pseudoscalar meson pho-
toproduction. However, there is one important complication to be dealt with: since
the photon field exhibits both isoscalar and isovector coupling (i.e., photon isospin
|I, I3〉 = |0, 0〉 , |1, 0〉), there are three independent isospin amplitudes. Any ampli-
tude A can be decomposed into amplitudes for isoscalar and isovector transitions to
an I = 1

2
final state, A

(0)
I=1/2, A

(1)
I=1/2, and for an isovector transition to an I = 3

2
final

state, A
(1)
I=3/2 [26, 27]. For example, the amplitudes for single pseudoscalar meson

photoproduction reactions can be decomposed as in [27]:
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Aγp→π0p,K+Σ0 =− 1√
3
A

(0)
I=1/2 +

1

3
A

(1)
I=1/2 +

2

3
A

(1)
I=3/2,

Aγn→π0n,K0Σ0 = +
1√
3
A

(0)
I=1/2 +

1

3
A

(1)
I=1/2 +

2

3
A

(1)
I=3/2, (1.52)

Aγp→π+n,K0Σ+ = +

√
2√
3
A

(0)
I=1/2 −

√
2

3
A

(1)
I=1/2 +

√
2

3
A

(1)
I=3/2,

Aγn→π−p,K+Σ− =−
√

2√
3
A

(0)
I=1/2 −

√
2

3
A

(1)
I=1/2 +

√
2

3
A

(1)
I=3/2, (1.53)

Aγp→ηp,K+Λ = + A
(0)
I=1/2 −

1√
3
A

(1)
I=1/2,

Aγn→ηn,K0Λ = + A
(0)
I=1/2 +

1√
3
A

(1)
I=1/2. (1.54)

The coefficients are simply the Clebsch-Gordon coefficients; for example, for the re-
action γp→ π+n:

� The isospin expression for the initial state (γp): [α |0, 0〉+ β |1, 0〉]γ
∣∣1

2
, 1

2

〉
p

=

α
∣∣1

2
, 1

2

〉
initial

+ β
(
− 1√

3

∣∣1
2
, 1

2

〉
initial

+
√

2
3

∣∣3
2
, 1

2

〉
initial

)
,

� The isospin expression for the final state (π+n): |1, 1〉π
∣∣1

2
,−1

2

〉
n

=
√

2
3

∣∣1
2
, 1

2

〉
final

+
1√
3

∣∣3
2
, 1

2

〉
final

,

� The total amplitude is:

[
〈1, 1|π

〈
1

2
,−1

2

∣∣∣∣
n

](
ÂI=1/2 + ÂI=3/2

)[
[α |0, 0〉+ β |1, 0〉]γ

∣∣∣∣12 , 1

2

〉
p

]

=α

√
2

3final

〈
1

2
,
1

2

∣∣∣∣ ÂI=1/2

∣∣∣∣12 , 1

2

〉
initial

+ β

(
− 1√

3

)√
2

3final

〈
1

2
,
1

2

∣∣∣∣ ÂI=1/2

∣∣∣∣12 , 1

2

〉
initial

+ β

(√
2

3

)
1√
3final

〈
3

2
,
1

2

∣∣∣∣ ÂI=3/2

∣∣∣∣32 , 1

2

〉
initial

=

√
2√
3
A

(0)
I=1/2 −

√
2

3
A

(1)
I=1/2 +

√
2

3
A

(1)
I=3/2.

Notice that, for example, the reactions in Eq. 1.54 have the same corresponding
coefficients for the two I = 1/2 amplitudes but with different signs for the A

(1)
I=1/2;
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the other equations also exhibit similar property. Consequently, the differences in
the signs can help disentangle the two I = 1/2 amplitudes. This is a necessary
requirement due to fact that the coupling strength to N∗ states depends on these
two amplitudes [27]. Therefore, to constrain theoretical models of the N∗ resonances
(I = 1/2) it is essential to have both proton and neutron data. Fortunately, with g14
experiment we have a low-background bound longitudinally polarized neutron target
to extract polarization observables from the neutron which will promise significant
breakthroughs in answering the missing baryon problem in the near future.

1.3.3 Theoretical Models

As mentioned previously, QCD can not be solved analytically to provide the complete
internal structure of the nucleon. The current approach for deciphering the question of
what is happening inside the nucleon is to theorize QCD-“inspired” effective models.
These models use effective hardonic degrees of freedom instead of the fundamental
quark and gluon degrees of freedom. In this section, we will briefly introduce such
theoretical models. We do this since the results presented in this thesis will be
compared to predictions made by these models.

1.3.3.1 Isobar-Based MAID and KaonMAID Models 1

The isobar-based models generally employ an effective interaction Lagrangian with
built-in symmetry properties, conservation laws, and restriction on complicated tran-
sition dynamics (i.e., no higher-order loops). In particular, the models restrict the
dynamics to tree-level amplitudes, consisting of only two interaction vertices and
one propagator—and to account for the finite size of the nucleons, form factors are
included. For example, Figure 1.4 shows the Feynman diagrams for kaon photopro-
duction (i.e., KaonMAID model) on the nucleon in the s-channel (exchanging non-
strange baryons), u-channel (exchanging hyperons), and the t-channel (exchanging
the strange meson), respectively. s, u, and t are the invariant Mandelstam variables.

The kinematics of photoproduction allows intermediate states N , N∗, ∆, and
∆∗ in the s-channel to be on the mass shell (i.e., resonance channel) while the u-
channel, and t-channel propagators are off mass shell (i.e., background channels).
Importantly, most of the coupling constants are not fixed by fundamental relations
but must be determined from fitting to existing data (KaonMAID was not fitted
to experimental data, however). Another limitation of the KaonMAID and MAID
models are that, because of its dynamical restriction, requirements from unitary and
gauge invariance arise as complications to consider [32]— for example, the inclusion
of right most “contact” diagram in Figure 1.4.

1MAID is a theoretical calculative model that is maintained by the Institut für Kernphysik at
the University of Mainz, Germany [28].
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Figure 1.4: Feynman diagrams for kaon photoproduction on the nucleon. Electro-
magnetic vertices are denoted by (a), (b), and (c), hadronic vertices (with hadronic
form factors) by (1), (2), and (3). The first diagram is the resonance s-channel, the
middle two diagrams are the background u-channel, and t-channel, respectively. The
last diagram (4) is required in order to restore gauge invariance after introducing
hadronic form factors. Image was taken from [31]

Despite their shortcomings, the KaonMAID and MAID models successfully de-
scribe the forward peaking and simultaneous decrease of the meson photoproduction
cross section above 2 GeV. They also provide predictions for all polarization observ-
ables. Moreover, the MAID model has been extended to reactions on light nuclei
[31, 33] which helps to establish the sensitivity of polarization observables to rela-
tivistic and/or final-state interaction effects.

1.3.3.2 PWA-Based SAID2 and Bonn-Gatchina3 (BoGa) Models

An alternative to the isobar models is to employ the partial-wave analysis method
to extract resonance couplings and decay widths. For resonances with strong cou-
plings to several decay channels, the K-matrix formalism is used. The use of partial
waves is, in general, more accurate but it is also more difficult because many par-
tial waves—particularly, the presence of non-resonant backgrounds result in a large
number of strongly contributing partial waves—can contribute in certain kinematic
regions and interfere strongly. Nevertheless, as more world data on polarization ob-
servables is forthcoming, the situation will improve.

2SAID is a theoretical calculative model that is maintained by the Institute for Nuclear Studies
at the George Washington University, USA [29].

3BoGa is a theoretical calculative model that is maintained by Helmholtz-Institut fur Strahlen
und Kernphysik at the University of Bonn, Germany, and the Petersburg Nuclear Physics Institute
in Gatchina, Russia [30].
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In addition, there are several differences in the PWA approaches between the SAID
and BoGa models. BoGa is a coupled-channel model where many decay channels
are considered in a single framework. Resonances are introduced as Breit-Wigner
functions and added in as needed to fit (or explain) new experimental data. On
the other hand, the SAID model considers and fits only one decay channel at a
time. In particular, for each decay channel data are first fitted to a model, which
includes resonant and non-resonant production, to get single-energy solution; then
the solutions from the decay channels are combined using K-matrix formalism to
extract background and resonance paramters. Moreover, the number of resonances in
the SAID model remains fixed (i.e., it assumes that there are no new resonances beside
all the observed resonances in pion production data). This choice of phenomenology
forces the SAID model to include an additive energy-dependent term to help fit new
experimental data.

1.3.3.3 Model Comparision

Both types of theoretical models mentioned above require experimental data as model
inputs. For example, the isobar models (e.g. MAID) acquire the coupling constants
from fitting existing experimental data using constraints from fundemental symme-
tries. Since the neutron data are very spare, the predictions of neutron amplitudes
have large uncertainties. In other words, there are significant differences from the
theoretical models’ predictions. Illustratively, Figure 1.5 shows clear disagreements
in predictions from the SAID and MAID groups for Σ (the linearly-polarized beam
asymmetry), E, and G (the beam-target double-polarization asymmetries for circu-
larly and linearly polarized beam, respectively) for reaction γn → π−p. Similarly,
Figure 1.6 shows the differences between predictions from KaonMAID and SAID for
the E asymmetry of reactions γn→ K0Λ and γn→ K0Σ0.

In addition, it is also necessary to compare predictions for neutron and proton
targets from same reaction for completeness; unfortunately, because of the lack of
neutron data, SAID and KaonMAID predictions also disagree significantly. In partic-
ular, while SAID predicts insignificant difference between neutron and proton data
for the E asymmetry of reactions γn → K0Λ, KaonMAID predicts the difference to
be very large (see Figure 1.7 for the KaonMAID predictions on proton and neutron
target types).
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Figure 1.5: Polarization observables Σ(left), E (center), and G (right) for the γn →
π−p reaction as predicted by the SAID and MAID groups. Image was taken from
[27].
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Figure 1.7: KaonMAID predictions for polarization observable E for reactions

γ

(
n
p

)
→
(
K0

K+

)
Λ (left) and γ

(
n
p

)
→
(
K0

K+

)
Σ0 (right). Each model has

two curves indicating the two limits of the energy range W . On the other hand, the
SAID predictions (not shown here) for proton and neutron data are almost identical.

20



0K
θcos

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1

Λ0
K

E

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

) for 1.66 GeV<W<2.00 GeV0K
θ(cosΛ0KE

Λ0K→nγKaonMAID (2000) 

Λ0K→nγSAID (2008) 

0K
θcos

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1

0 Σ0
K

E

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

) for 1.66 GeV<W<2.00 GeV0K
θ(cos0Σ0KE

0Σ0K→nγKaonMAID (2000) 

0Σ0K→nγSAID (2008) 

Figure 1.6: Predictions from KaonMAID and SAID models for polarization observable
E for reactions γn→ K0Λ (left) and γn→ K0Σ0 (right). Each model has two curves
indicating the two limits of the energy range W . Significant differences between the
models are due to the lack of neutron data to constrain the models.

1.4 Summary and Structure of this Thesis

In this introductory chapter, we briefly introduced baryon spectroscopy as a viable
approach to study the internal structure of the nucleon, and mentioned the difficulty
of obtaining a complete excited spectrum of the nucleon directly. Alternatively, the
task can only be accomplished through partial-wave analysis. Polarization observables
provide constraints for partial wave analysis, hence, they are important and of great
interest to the nuclear physics community. The g14 experimental arrangement using a
longitudinally polarized bound neutron target allows for extracting many polarization
observables for the neutron—many observables will be measured for the first time. In
particular, this thesis focuses on obtaining, for the first time, the E asymmetry— i.e.,
the beam-target double-polarization asymmetries— for three reactions γd→ π−p(pS)
(Chapter 4), γd → K0Λ(pS), and γd → K0Σ0(pS) (Chapter 5). Note that pS in the
three reaction stands for spectator proton. Finally, we investigate the spin structure
of a possible N∆ dibaryonic structure in reaction γd→ dπ+π− (Chapter 6).
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Chapter 2

Jefferson Lab, CEBAF, CLAS
detector and HDIce Target

The data used in our analyses was taken as part of the g14 run period—of experiment
E06-101, N∗ Resonances in Pseudoscalar-meson Photoproduction from Polarized Neu-

tron in
−→
H ·
−→
D and a Complete Determination of the γn→ K0Λ Amplitude—between

November 2011 to May 2012 at the Thomas Jefferson National Accelerator Facility
(TJNAF), or JLab, in Newport News, Virginia. JLab consists of four experimental
halls, denoted as A, B, C, and D (newly built), along with the CEBAF electron accel-
erator, a free-electron laser, and other research and manufacturing facilities. Figure
2.1 shows an aerial view of the lab. The experiment was conducted in Hall B with a
goal of measuring polarization observables in reactions on bound polarized neutrons.
The run conditions comprised of circularly and linearly polarized photon beam inci-
dent on a polarized solid HD target. Producing a photon beam required use of both
CEBAF accelerator and the Hall-B photon tagging system toghether with a thin
gold foil (a diamond) radiator for producing circularly (linearly) polarized photon
beam located. The HD targets were kept polarized in a specifically designed in-beam
cryostat.

The CEBAF Large Acceptance Spectrometer, or CLAS, which is housed in Hall
B was the detector used in g14 experiment. CLAS, with its almost-4π coverage,
is optimal for the detection of multi-particle final states. During its lifetime (from
1998 to May 2012) together with the continuous CEBAF electron beam and the high
quality of the Hall B data acquisition system (capable of recording over 1 TB of
data each day), CLAS produced many large high statistics multi-particle datasets.
In this chapter, we will briefly introduce the CEBAF accelerator, the CLAS detector,
and several other hardware devices, in addition to the HDIce targets which played
key roles during g14 data taking. Detailed discussions of these devices will also be
provided as references.
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Figure 2.1: An aerial view of the Thomas Jefferson National Accelerator Facility
(TJNAF), also referred to as JLab. Image was taken from [34].

2.1 CEBAF

All the experimental halls (A, B, C, and D) receive electron beams from the Con-
tinuous Electron Beam Accelerator Facility (CEBAF). CEBAF was one of the first
accelerator facilities to employ superconducting radio frequency (RF) cavities to pro-
vide the acceleration gradient. Superconducting cavities are non-resistive, in contrast
to traditional copper RF cavities which are resistive—resistivity of copper causes the
tradition RF cavities to heat up during use and, therefore, the cavities require time to
cool down. Without the need of time to cool down, the RF superconducting cavities
can obtain a 100% duty factor. The continuous delivery of electrons permits quick
acquisition of high statistics datasets even at low current. In Figure 2.2 we show a
schematic diagram of all the major components of CEBAF.

The electron beam starts at the injector site. Electrons are produced by illuminat-
ing a strained GaAs/GaP photocathode with pulsed polarized laser light resulting in
polarized electrons being produced in bunches approximately every 0.667 ns (but Hall
B receives electrons in bunches every 2 ns). The electrons are then sent to CEBAF’s
recirculating linear accelerators (Linacs), see Figure 2.2. Each of the Linac consists
of 84 superconducting Niobium RF cavities. For illustration, we show in Figure 2.3
a picture of two RF cavities assembled together. To achieve superconductivity, the
cavities are immersed in liquid Helium to cool down to -271oC (or 2.15 K). The accel-
eration gradient to accelerate the electrons is provided by setting up radio frequency
standing waves in the cavities in a fashion such that the waves are in phase with the
electron bunches producing a continuous push on the electrons (see Figure 2.4)— i.e.,
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Figure 2.2: Schematic diagram of the Continuous Electron Beam Accelerator Facility
(CEBAF). Image was taken from [34].

positive electric force—along the straight sections of the 7/8 mile racetrack course.
During the g14 run, or before CLAS 12 upgrade, each Linac was capable of providing
600 MeV of acceleration; the upgraded Linacs will have twice the old capacity. The
north and south Linacs are connected together via nine recirculation arcs, allowing
the beam to make up to five passes through each Linac and, hence, obtaining up to
a maximum energy of ∼6 GeV (after the upgrade the maximum energy will be ∼12
GeV). However, each hall can choose to extract the beam after any number of passes
(but not exceeding the maximum number of five for Halls A, B, C, and a maximum of
six passes for Hall D), giving the halls the control over their desired energies. Finally,
beam extraction into the halls is performed using RF separating cavities (or usually
called “RF seperators”).

Figure 2.3: A pair of CEBAF’s superconducting Niobium RF cavities, shown here
with supported hardware and beam pipe. Image was taken from [34].
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Figure 2.4: The tuned standing waves provide acceleration gradient to continuously
push (via positive electric force) the propaging electrons. Image was taken from [35].

2.2 The Photon Tagger

For experiments that require photon beams, such as g14, converting the CEBAF elec-
tron beam into a photon beam is done by the photon tagging system of Hall B via
a process called bremsstrahlung (or “braking” radiation in the German language). In
particular, an electron is decelerated when it interacts with an atomic nucleus in a
radiator and emits a photon. The timing and energy of the recoiling electrons are
measured by a magnetic spectrometer from which the timing and energy of the pho-
tons are inferred. The other component of the tagger system is a series of collimators
to remove wide-angle low-energy photons. A schematic diagram of the Hall B tagging
system is shown in Figure 2.5.

2.2.1 Radiators

The g14 experiment ran with gold and diamond radiators. A gold radiator (of thick-
ness 10=4 radiation lengths) was used to produce circularly polarized photons. Gold
was used because it has a high atomic number, which reduces the background from
electron-electron scattering in production of photons via bremsstrahlung radiation.
The photons get their circular polarization by helicity transfer from the longitudinally
polarized electrons. A diamond radiator (of thickness 50 microns) was used during
the linearly polarized run period. In order to produce linearly polarized photons,
the orientation of the diamond was chosen such that the diamond lattice was aligned
relative to the electron beam direction so that the bremsstrahlung energy spectrum
exhibits a desired coherent peak structure— ie., a sharp, highly linearly polarized
peak at an energy that corresponds to the crystal lattice orientation. This was ac-
complished by mounting the diamond radiator in a goniometer, a device which can
move the diamond in the horizontal and vertical direction and rotate it around all
three axes with high precision.
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Figure 2.5: Schematic of Hall B photon tagging system. The system comprises of the
radiator, magnetic spectrometer and collimators. Image was taken from [36].

2.2.2 Collimators

In order to reduce the photon beam halo, a 9.8 mm collimator was placed downstream
of the tagger magnet. For the circularly polarized run period, an additional collimator
(with size of 2.6 mm) was employed; in between the collimators there were sweeping
magnets to remove charged particles created by photons interacting with the first
collimator’s material. The 2.6 mm collimator was constructed out of stacked nickel
discs with a small hole in the centers. It was stacked inside a cylindrical sheath of
stainless steel with four scintillators in between to measure the rate of off-centered
photons hitting the front face of the collimator.

2.2.3 Magnetic Spectrometer

A mixture of non-interacting electrons, recoiling electrons and photons, resulted from
the incident electron beam passing through the radiator, proceeded through the tagger
magnet. The dipole magnetic field then separated the electron out of the beam while
allowing the photons to continue toward the CLAS target. Since the bremsstrahlung
energy spectrum is continuous, a single photon’s energy is not known a prior. Since
the energy transferred to the heavy nucleus (during bremsstrahlung) is negligible, the
photon energy could be determined by measuring E0 the electron beam energy, and
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Er the energy of recoiling electron, as Eγ = E0 − Er. Determining the energy of
the recoiling electrons was accomplished by the magnetic spectrometer of the tagging
system.

The tagger magnetic field bent the recoiling electrons toward two hodoscope
planes, each made of overlapping arrays of scintillators and referred to as the E-
plane and the T-plane. The magnetic field was tuned so that the non-interacting
electrons were directed into a shielded beam-dump. The E-plane consists of 384 scin-
tillator paddles, or E-counters, that are 20 cm long and 4 mm thick and 6-8 mm in
width, arranged in an overlapping fashion to give an effective 767 logical paddles. Its
main function is to measure the position of the recoiling electrons, and due to the
precisely mapped field, their momenta (and, hence, their energies) are known with a
designed resolution of about 10−3E0. The second scintillator plane, or the T-plane, is
used to make accurate timing measurements of the recoiling electrons. The T-plane
comprises of 61 scintillator paddles (T-counters) with a thickness of 2 cm and varying
widths from 9 to 20 cm, so that each paddle has a comparable counting-rate because
of the 1/Eγ dependence of the bremsstrahlung cross section. The design is to achieve
a timing resolution of better than 300 ps—to correctly associate a tagged electron
with the corresponding 2 ns beam bucket provided by the accelerator. Figure 2.6
shows a schematic diagram of the tagger spectrometer.

In Figure 2.7 we show a schematic diagram of original setup of the front-end elec-
tronics of the tagging system. Specifically, the signals from the scintillator paddles
are read out using photomultiplier tubes (PMTs). The T-counter PMT signals are
passed through fast (200 MHz, Philips 715) discriminators before being “fed” to the
“Master OR” (MOR) and an array of FASTBUS TDCs. The TDC array is employed
to extract the timing information from all 61 T-counters and also to count the to-
tal number of hits registered in the tagger for use during normalization calculations.
Since multiple photons per event may be written to tape during readout, this tim-
ing information is useful in correctly associating photons with events in the CLAS
detector. Moreover, the signals from the E-counter PMTs are also sent through a
discriminator and then to a multi-hit TDC. The timing signals from both the E- and
T-counters are then written into the data stream for offline analysis. Recalling that
the tagger’s resolution is high enough to correctly identify which RF beam bucket each
photon is associated with; as a result, the event vertex time, the time at which all the
final-state particles produced in the interaction were at the same point in space, can
be most accurately calculated by determining the RF time from the radiator to the
event interaction vertex. Reference [36] provides more information about the tagger
system.

2.3 The CLAS Detector

The CEBAF Large Acceptance Spectrometer (CLAS) is located in Hall B, and is used
to detect particles produced by interactions of the photon (or electron) beam with the
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Figure 2.6: Schematic diagram of the tagger spectrometer. The dashed lines show
the trajectories of the recoiling electrons corresponding to various fractional energies
transferred to the outgoing photon. The E- and T-planes are shown in relation to
the trajectories of electrons of various fractional mometa in units of beam energy E0.
Image was taken from [36].

target located near the center of the CLAS detector. A photograph and schematic
drawing of CLAS are shown in Figure 2.8 and 2.9, respectively. CLAS comprises
several subsystems like the start counter, drift chambers, time-of-flight scintillators,
Cerenkov counters, and electromagnetic calorimeters (more detailed discussion about
the CLAS detector system can be found in [37]). Our analyses did not use the last
two detector elements, thus they will not be discussed here. The start counter was
used in the g14 trigger. The drift chambers were used to track charged particles,
which were bent by a superconducting toroidal magnet, as they traveled through
the detector. By reconstructing a particle’s flight path, the particle’s momentum is
determined. The time-of-flight scintillator walls, which measure the flight time of
particles from the target, are used for particle identification purposes—by combining
with the momentum measurements from the drift chambers. In this section we will
discuss the detector subsystems, which played vital roles in our analyses.
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Figure 2.7: Schematic diagram of the readout electronics of the tagger system in Hall
B. Image was taken from [36].

Figure 2.8: Photograph of the CLAS detector taken during a maintenance period
for which the time-of-flight scintillator walls, forward region Cerenkov counters and
electromagnetic calorimeters were pulled away from the interior detector elements.
Image was taken from [34].
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Figure 2.9: Schematic of the CLAS detector showing all of the major subsystems.
The detector, which is approximately 8 m in diameter, was housed in experimental
Hall B at Jefferson Lab. Image was taken from [38].

2.3.1 Start Counter

The start counter is a system of thin counters surrounding the target region to provide
information to determine the correct RF beam bucket associated with a particle track.
Its timing resolution is ∼400 ps. Like the CLAS detector itself, the start counter is
divided into six sectors each with four scintillator paddles (see Figure 2.10). To
accommodate the g14 experiment, the length of the light guides of the start counter
was increased to keep the PMTs further away from the strong magnetic field from
the in-beam crystat that holds the g14 targets. Though we did not incorporate the
timing information obtained from the start counter in our analyses, it was included in
the Level 1 trigger during g14. More information on this detector element, including
details on its construction, can be found in [39].

2.3.2 Time-of-Flight Scintillators

The time-of-flight (TOF) counters enclose the CLAS detector covering the polar an-
gular range between 8o and 142o and the entire active range in azimuthal angle Φ. It
consists of six segmented scintillator walls, one for each sector, located approximately
four meters from the target. The scintillator wall in each sector has four panels and a
total of 57 TOF-counters of varying lengths and widths (see Figure 2.11). Each TOF-
counter has a thickness of 2 inches to provide 100% detection efficiency of minimum
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Figure 2.10: Schematic diagram of the CLAS start counter. Image was taken from
[39].

ionizing particles. At each end of a TOF counter a photo-multiplier tube (PMT) was
mounted to collect signals from the scintillator. The timing resolution which depends
on the length of the counter— longer counters have worse resolution— is between 110
and 200 ps. The time-of-flight scintillator walls were used, with the start counters, in
the Level 1 trigger and also in our analyses for performing particle identification (more
detail in later analysis chapters). More details about of the TOF system, construction
and performance, is given in [40].

2.3.3 Superconducting Toroidal Magnet

The magnetic field, that is necessary for bending charged particles—together with the
tracking system—to determine with accuracy the particles’ momenta, is generated
by a six superconducting coils arranged in a toroidal geometry around the beam-line.
Figure 2.12 shows the bare cryostats of the torus during construction of the CLAS
detector and Figure 2.13 illustrates the magnetic field strength and direction of the
magnet. The kidney-shaped superconducting coils were designed and tested by Ox-
ford Instrument Ltd. The coils are separated by 60o in the azimuthal direction about
the beam-line. For the first ten days, g14 ran under the normal field configuration
in which negatively charged particles are bent toward the beam-line and positively
charged particles away from the beam-line. For the remainder of the experiment,
the field was reversed. The change was to increase the acceptance for forward-going
negative tracks (i.e., bending into the fiducial region of the detector, not towards
the beam dump). The magnet can support a peak current of 3861 A—resulting a
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Figure 2.11: TOF counters in one sector of CLAS. There are 57 paddles grouped into
four panels. Image was taken from [39].

peak integral magnetic field of 2.5 T·m, but the current for g14 was limited to +1920
(for the first 10 days) and then to −1500 A. Note that running at higher positive
(negative) currents provides better momentum resolution but further decreases the
acceptance for negatively (positively) charged particles. During operation, the mag-
net was cooled down to 4.4 K using liquid helium obtained from the central helium
liquifier [41].

2.3.4 Drift Chambers

Previously, we mentioned that the momenta of charged particles are measured by
tracking the particles as they travel through the magnetic field generated by the
toroidal magnet. Illustratively, Figure 2.14 shows a cut-away diagram of the CLAS
detector in which the three drift chamber regions are visible on the diagram. The
charged particles were tracked using three separated drift chambers. Region 1 is
located “inside” the torus coils, thus it experiences a very weak magnetic field. Region
2 is mounted directly to the magnet’s cryostat occupying the space where the field is
the strongest. Region 3 is positioned outside the torus coils, hence this region also
possesses a weak magnetic field.

To optimize the track-reconstruction process, each of the drift chamber regions
is further divided into two superlayers, one with axially oriented wires (relative to
the magnetic field direction) and one with wires oriented at a 6o stereo angle (for az-
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Figure 2.12: Photograph of the CLAS toroidal magnet. Image was taken from [34].

imuthal information). Furthermore, each superlayer comprises of six layers of hexag-
onal drift cells arranged such that neighboring layers were offset by half a cell width.
Each cell has a 20 µm gold-plated tungsten sense wire located at its center sur-
rounded by six 140 µm gold-plated aluminum alloy field wires. The sense (field)
wire(s) are kept at a positive (negative) potential. Signals from the sense wires are
passed to preamplifier, then to amplifier discriminator boards (ADBs) and finally to
TDCs to obtain the timing information. The drift gas mixture was chosen to be a
non-flammable mix of 90% Argon and 10% CO2. More information pertaining to the
CLAS drift chambers is given in [42, 43, 44, 45].

2.4 Beamline Devices

Several beamline devices were employed during g14. Devices including beam position
monitors (BPMs), harp scanners, and a Møller Polarimeter were placed upstream
from the CLAS detector to monitor the quality of the beam. In particular, the BPMs
monitored and controlled the beam position during data taking; harp scanners mea-
sured the profile of the beam; the Møller Polarimeter measured the electron beam
polarization (later chapters include a formula to compute the photon beam polariza-
tion from the electron beam polarization). In addition, downstream devices, such as
the total absorption shower counter (TASC), and pair counters (PC), were used to
measure the photon flux— important for total cross section analysis but not for this
analysis so they will not be discussed here.
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Figure 2.13: The magnetic field strength and direction of the CLAS toroidal magnet.
Top: Contours of constant magnetic field strength. The magnetic field is strongest in
the forward region. Bottom: Magnetic field vectors in a plane transverse to the beam
direction, centered at the g14 target. The length of each line segment is proportional
to the field strength at that point. Image was taken from [41].

2.5 Trigger and Data Acquisition

To prevent unwanted signals from irrelevant sources— for example, cosmic radiation
passing through a detector element—to be recorded as physics events, it is necessary
to have a trigger to determine which sets of signals constitutes a physics event. Once
the decision is made, the data acquisition system (DAQ) collects the signals and
writes them to magnetic tape for future offline analysis. In more detail, the trigger
settings implemented in g14 were both Level 1 and 2 trigger. For Level 1 trigger, it
first requires, for an individual sector, signals from any of the 4 start counter paddles
and any of the 57 TOF within a coincidence window of 150 ns, and also that, at least
two CLAS sectors satisfy the first condition. With a 20 nA electron beam, the total
Level 1 trigger rate for the g14 run was about 2.4 kHz. Level 2 trigger requires signals
from at least four segments in drift chamber superlayers within a sector and signals
from any of the 4 start counter paddles and any of the 57 TOF within a coincidence
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Figure 2.14: Schematic diagram of CLAS showing the relative position of the detector
subsystems. The kidney shaped dashed lines outline the location of the toroidal
magnetic coils. Image was taken from [42].

window of 150 ns in any two sectors.

2.6 g14 HD-Ice target

The Hydrogen and Deuterium ICE (or HDIce) target used in this experiment is a
solid hydrogen-deuterium target. By design, it is able to achieve high polarization
(about 25-30%) for both free protons and deuterons (i.e., bound neutrons) with a long
relaxation time, i.e., spins are frozen, hence the word ICE. The lowest magnetic field
to sustain the target polarization is about 1 Tesla. It is worth to mentioning that
there are other types of polarized bound neutron targets. However, these types of
polarized targets have several disadvantages that the HDIce target does not have. In
particular, pure deuterium targets can not be polarized at magnetic fields and temper-
atures that are practical for doing nuclear physics experiments, ammonia and butanol
targets contain other unpolarized nucleons in other atoms (e.g., carbon and oxygen
for butanol, or nitrogen for ammonia) while HDIce target has no contamination. In

35



this section, we provide a brief overview of the physics of the HDIce target that was
used in the G14 experiment as well as the process used to prepare the targets.

2.6.1 HDIce Target Physics

H2 and D2 molecules can be polarized at high magnetic field and low temperature
but with short relaxation times. More accurately, polarization and depolarization
depends mainly on the spin-lattice coupling through molecular rotations. In other
words, molecules in an angular momentum state L = 0 are very difficult to polarize
(because the s-wavefunction has no referred direction) and hence have long relaxation
time, while molecules in an angular momentum state L = 1 are easy to polarize
(because the p-wavefunction has a referred direction) and have short relaxation time.
Ground-state Ortho-H2 with parallel spins—and therefore L = 1— is readily polarized
at high magnetic field and low temperature, while ground-state para-H2 with anti-
parallel spins, or L = 0, can not be polarized. Similarly, ground-state para-D2 with
L = 1 can be polarized while ground-state ortho-D2 can not. At low temperature
ortho-H2 decays to para-H2 with a 1/e decay time of about 6.5 days, and para-D2

decays to ortho-D2 with a 1/e decay time of about 18 days. Hence, they can not
reach a polarized frozen-spin state.

An HD molecule, in its lowest energy state (at energy-equivalence temperature
around 0.5 mK), is in a L = 0 state which makes HD a potentially ideal frozen-spin
target—but also implies that direct polarization requires a very long time. Neverthe-
less, indirect polarization is achievable by introducing a small concentration of L = 1
ortho-H2 and para-D2 (on the order of 10−4); the small contamination of polarizable
H2 and D2 is readily polarized and their polarization can be transferred to the HD
molecule via a spin-spin coupling (e.g., between an H in H2 and an H in HD), see
Figure 2.15. After a number of half-lives, most of the L = 1 H2 and D2 would decay to
respective non-polarizable L = 0 H2 and D2 leaving the HD molecules in a frozen-spin
state. Quantitatively, the degree of polarization for H or D is given by the Brillouin
function:

P (x, J) =
2J + 1

2J
coth

(
2J + 1

2J
x

)
− 1

2J
coth

( x
2J

)
, (2.1)

where J is the nuclear spin, x = µB
kBT

, and µ, B, kB, T are the nuclear magnetic
moment, the external magnetic field, the Boltzmann’s constant, and the temperature,
respectively. According to Eq. 2.1, since the magnetic moment of the deuteron is
smaller than that of the hydrogen (µD/µH ∼ 1/3), the degree of D polarization is
significantly less than the maximum H polarization.

If it is desired to have the highest possible D polarization, such as in the g14
experiment, the D polarization can be further increased by transferring polarization
from H to D through the adiabatic fast-passage method. In particular, when the
HD molecules are frozen in and H2 and D2 impurities have decayed sufficiently, the

36



population of the mD = +1 substates and mH = +1/2 substates are greater than the
mD = −1 substates and mH = −1/2. Then, the forbidden RF transition indicated by
the red dashed lines in Figure 2.16, driven at the difference of the H and D Larmor fre-
quencies (ν(H−D) = 36.0416 MHz/Tesla [27]) transfers occupancy from the initially
more populous states with |mH = +1/2,mD = −1, 0〉 to the |mH = −1/2,mD = 0,+1〉
states. Recalling that the H polarization is much larger than the D polarization
thus |mH = +1/2,mD = −1〉 state is more populous than |mH = −1/2,mD = +1〉. In
summary, the application of a RF power source “moves” polarization from an H in
one molecule to a D in a neighboring molecule. The g14 target group employed this
method and was able to achieve up to 30% in D vector polarization, which is the
population difference between the states |mD = +1〉 and |mD = −1〉, while Eq 2.1
sets a limit at around 15% at about 25 mK and 15 Tesla.

Figure 2.15: Schematic diagram showing the polarization of HD with the “help” of
ortho-H2 and para-D2. Image was taken from [27]

2.6.2 Target Production

In this section, we introduce the components of a typical target cell, then the various
Dewars used to produce, to polarize, and to store HD target. We also outline the
protocol that the g14 target group implements to polarize and transfer HD targets.

2.6.2.1 Target Cell

The target cell consists of a copper ring that holds the target cell and screws into
various Dewars, and inner and outer caps that contain the HD and hold the aluminum
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Figure 2.16: Zeeman levels in solid HD molecules. The red dasked lines indicate the
forbidden RF transitions. Image was taken from [27]

cooling wires, see Figure 2.17 for an exploded view. In more detail, the copper ring
has right-hand threads along its outer surface fitting the target into “cold fingers” of
several cryostats—and maintaining thermal contact with the dewars. Its left-hand
threads along its inner bore is to engage with the transfer cyrostat, which is essentially
a giant screw driver used in the process of moving the target between Dewars. The
downstream face of the copper ring has 60 holes; each hole is soldered with a bundle
of aluminum cooling wires—they are necessary because the decays of ortho-H2 and
para-D2 impurities generate heat and solid HD has poor thermal conductivity. The
cell walls are made from CTFE (Chlorotrifluoroethylene), C2ClF3, a hydrogen-free
polymer that eliminates NMR background [27] (will be referred to as “KelF” cell
walls hereafter). The short inner and longer outer cell walls hold the HD away from
the copper cooling ring so that particles emerging at back angles exit the cell without
hitting the copper ring. Table 2.1 presents the mass fractions of material in a standard
target cell, and Table 2.1 presents the measured values of the amount of aluminum
in the three targets used during the experiment.

Material Mass Fraction

HD 77%
Al 16%

KelF 7%

Table 2.1: Composition of a standard target cell. Numerical values were taken from
[27].
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Figure 2.17: A typical target cell (left) and individual components separated (right).
Image was taken from [27]

Cell ρ(gm/cm2) ρ relative to 21a

21a 0.028 1.00
19b 0.020 0.70
22b 0.027 0.96

Table 2.2: Measured values of the amount of aluminum in the three targets used
during the experiment. Numerical values were taken from [48].

2.6.2.2 Preparation of HD Targets and Target Transfers

The HD gas for target production is required to be of high purity— for reasons de-
scribed earlier, a small contamination of H2 and D2 is also necessary. HD becomes
solid at around 16.6 K but to achieve high polarization, temperatures of 15 mK or less
are needed. A production Dewar with minimum temperature of 1.5 K is employed
for crystallizing the HD molecules. It also provides a place for NMR calibration
since it has a 2 Tesla magnet with high field uniformity. Next, a 2 K-and-0.12 Tesla
transfer cryostat is used to extract the solid HD target from the production Dewar
and load it into a dilution refrigerator where under low temperature of about 15 to
25 mK and high magnetic field (15 Tesla) the target will become polarized. After
about two months the HD target has reached the frozen spin state; the target is then
transferred by the transfer cryostat into the production dewar again for NMR mea-
surement. Then a transfer is made from the production Dewar into a storage Dewar,
which optimally operates at 1.6 K and 8 Tesla. When a HD target is needed in the
experimental hall (Hall B), the target group moves the storage Dewar into the hall
and proceeds to transfer the polarized HD target into the in-beam cryostat (IBC).
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We provide a schematic of an HD target inside the IBC’s “nose” and the consequent
vertex distribution in Figure 2.18. The IBC is a small dilution refrigerator that fits
neatly inside the CLAS detector; it operates at 250 mK and at a nominal holding
magnetic field of 1 Tesla. In addition, its internal NMR system provides a continuous
measure of polarization during the g14 experiment.

Figure 2.18: Bottom: Schematic diagram of the IBC’s nose. Top: Distribution of
the z component of the reconstructed interaction vertex of g14 target cell, KelF and
aluminum foils for flux normalization (see Chapter 4 for details).
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2.7 Summary

In this chapter, we outlined various components needed to run the g14 experiment.
The introduction includes the CEBAF accelerator, the photon tagger, the CLAS
detector, and the trigger and data acquisition system. At this stage, we had just
digital signals which are stored on magnetic tape. In the next few chapters, we will
provide details the process of converting this raw information into physics variables
such as momentum, energy, time-of-flight, etc..
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Chapter 3

Data Calibration and Optimization

The g14 dataset consists of about 14.8 billion event triggers (11.0 billion events with
circularly-polarized photons and 3.8 billion events using linearly-polarized photons)
and around 50 TB of data collected at CLAS between 12/01/2011 and 05/17/2012.
The data are divided into smaller sets called “periods” due to differences in experimen-
tal settings such as different electron beam energies, and different target polarization
directions, etc. In addition, these planned (proposed) periods were further divided
into unplanned periods due to unfortunate losses of target polarization.

The data underwent a process known as “cooking” to convert raw electronic sig-
nals from various detector subsystems into relevant physics information (particles’
time-of-flight, momenta, charges) suitable for physics analysis. Each detector subsys-
tem was calibrated by the g14 working group to reduce systematic shifts of the mea-
sured quantities from various detector subsystems. Necessarily, for each iterations,
the data was checked for improvement. The “chef” for g14 data, who was responsi-
ble for oversighting the calibration was Professor Franz Klein at Catholic University
of America (CUA). The graduate students/postdocs who were responsible for the
calibration were Natalie Waford (Tagger), Haiyun Lu (TOF), Jamie Fleming (Start
Counter), Dao Ho (Drift Chamber), and Irene Zonta (Electromagnetic Calorimeter).
After twelve iterations, Professor Franz Klein performed the drift chamber alignment
check and the data was ready for analysis.

3.1 Overview of g14 experimental data

As mentioned above, the g14 data set is divided into several smaller subsets. Table
3.1 and 3.2 show different subsets for circularly polarized photon beam, and linearly
polarized photon beam, respectively. For more detail, one can visit the g14 wiki
page [46]. The primary reason for having different planned run configurations is to
reduce systematic uncertainty in measuring asymmetry observables. For example,
g14 had two different longitudinal directions of target polarization. Unfortunately,
there were several incidents that resulted in reductions in target polarization in Target
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21a—hence the unplanned subdivision of Silver 3, 4, and 5 periods which all had the
same planned setting. After Silver 5b, there was another accident which resulted in a
complete loss of target polarization; it was then decided to record a period in which
the HD material was extracted out called the empty run period; this period was to be
utilized to study the target-material background (aluminum cooling wires and KelF
target cell walls). The target group, then, used Target 20b, but it was unfortunately
premature and it could not retain its polarization. After about a month, Target 19b,
with good polarization, was used for the experiment. This target was a successful
one, and provided plenty of highly-polarized-HD-target data (hence the name Gold).
The last target, or Target 22b, was utilized to run under linearly polarized photon
beam with several planned configurations. Only one incident occurred which resulted
in a 31% reduction in target polarization.

3.2 Overview of Calibration

One main goal of calibration for all detector components is to align their respec-
tive timing measurements with the beam radio frequency (RF or accelerator time).
In more detail, the T-counters of the CLAS tagging system measured the scattered
electron’s travel time from the T-counters to the radiator. Next, the photon corre-
sponding to the time of the scattered electron is identified and an event in the target at
the center of the CLAS spectrometer is triggered. The identified photon’s RF vertex
time— i.e., the travel time of a photon from the radiator to the event vertex— is calcu-
lated. Furthermore, the Start Counter, the TOF scintillators and the Electromagnetic
Calorimeter of the CLAS spectrometer have their distinct vertex times which are syn-
chronized against the photon’s RF vertex time. These distinct timings measured in all
the components of the CLAS spectrometer are aligned together—timing alignment is
thus the main subject of timing calibration. Additionally, the calibration for the drift
chamber system is to improve the charged track reconstruction. In summary, the
outlined tasks of calibration for each detector system are provided below (for more
information, see g14 Wiki page [46])

� Tagger: Aligning T-counter and E-counter timing against the RF beam signal

� Time-of-flight (TOF): Optimizing the time and hit position reconstruction and
aligning timing of the fifty seven paddles with each other and within the CLAS
detection timing scheme for individual sector

� Drift Chambers (DC): Optimizing charged track reconstruction

� Electromagnetic Calorimeter (EC): Optimizing the time and energy reconstruc-
tion of neutral particles

� Start-Counter (ST): Aligning the timing of ST paddles reconstructed within the
CLAS detection timing.
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The procedure of calibration utilizes CLAS software packages to read in raw or re-
constructed data (in BOS format) and to output calibration constants to be stored in
the CLAS database. In particular, the constants obtained from the timing calibration
are to reduce the systematic offset within each timing detector system. Calibration
is an iterative process, i.e., when the calibration of one component is improved, it
allows further improvement in another component; hence in the next iteration mea-
surements from the detectors can be further improved. Due to this iterative nature,
the calibration of certain detector components must start only after other calibrations
are finished for that iteration. The order of the calibration is usually Tagger, TOF,
ST, DC1 and EC.

3.2.1 Drift Chamber (DC) Calibration2

The DC was designed to track the trajectories of charged particles. The CLAS toroidal
magnet bends the charged particles’ tracks. The track curvature is dependent on the
momentum of the particle. The DC consists of small hexagonal cells filled with a
mixture of 90% argon and 10% CO2, as shown in the left plot of Figure 3.1. At the
center of the cell is a sense wire (anode) surrounded by six field wires (cathodes), as
shown in the right plot of Figure 3.1.

A traversing charged particle ionizes the gas inside these cells; because of the
electrical potential difference between the field and sense wires, the electrons are ac-
celerated toward the sense wire and cause further ionization until an electron “cloud”
reaches the sense wire and causes a pulse, the time of which is recorded by the readout
electronics. Identifying the cells that are “firing” determines the track of the charged
particles in a least-squares fit (i.e., hit-based track reconstruction). To further im-
prove the track reconstruction resolution, a “time-based” track reconstruction which
is based on the measured drift time is used. The drift time refers to the time required
for electrons to drift to the nearest sense wire from the place where a charged particle
has crossed, as shown in the right plot of Figure 3.1.

A standard CLAS software package named “dc3” [49] is used to calibrate the CLAS
drift chamber (DC). The software package uses two terms to describe the distance
of a charged particle track from a sense wire: DOCA and DIST; DOCA (distance
of closest approach) is the distance from the fitted track to the sense wire (i.e. fits
that include all layers), and DIST is the distance from the sense wire to the track
calculated from the drift time. The “dc3” software package obtains the parameters
for the analytical drift velocity function— i.e., time-to-distance relation— for every
superlayer in every sector by fitting DOCA against drift time. The calculated DIST
is then obtained from the relation of the drift velocity function and the drift time.
Next, it computes the time residual defined as the difference between the values of

1Actually, DC calibration does not have to follow this order, since the drift chamber system is
semi-independent with the other systems that measure time.

2I was responsible for the DC calibration for g14 experiment.
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Figure 3.1: Left: Portion of a Region 3 sector showing the layout of its two superlayers
filled with gas. Highlighted (“firing”) drift cells indiacate the path of a charged
particle. Right: Schematic diagrams showing a charged reconstructed track using
“time-based” tracking. The dashed lines identifies the perimeters of the hexagonal
drift cells. Image was taken from [47]

fitted DOCA and calculated DIST. The time residual is caused by systematic time
shift in drift time measurements. Ultimately, the goal in DC calibration is to reduce
the systematic time shift such that the value of the residual in each superlayer become
approximately zero, as shown in Figure 3.2. In addition, in Figure 3.3 we show the
effect of the DC calibration in reducing and “stabilizing” the time residual.

3.3 Energy Loss Correction

Detected charged particles lose energy through ionization when they travel through
material in CLAS. As a result, the reconstructed momenta of charged particles are
smaller and needed to be corrected. Primary sources of energy loss are the target
material and cell walls, the beam pipe, the start counter and the air gap located
between the start counter and the Region 1 drift chambers. Eugene Pasyuk wrote an
eloss software package which takes into account the material presented inside CLAS
to recover the average energy loss [50].

3.4 Momentum Correction

In this section, we present a brief overview of a reliable method to improve the data
resolution: kinematic fitting. The method, in general, is a least squares fitting of kine-
matic variables (such as particles’ momenta, tracking angles) with a set of constraint
equations (for example, conservation of energy and/or momentum). To perform least
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Figure 3.2: DC residue (DOCA−DIST ) as a function of DOCA (top 6 histograms)
and as a function of drift time (bottom 6 histograms) for superlayer 4. The temporal
unit is ns, the spatial unit is mm.
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Figure 3.3: Top: Mean of the DC residue (DOCA − DIST ) vs. Run Number.
Bottom: Standard deviation of DC residue vs. Run Number. Runs after the run
69550 were not calibrated at the time these plots were produced. The vertical unit
are µm.

squares fit with constraint equations, an usual approach is to use Lagrange multipli-
ers; this is the approach that Mike Williams, a former CMU graduate student, chose
to implement the fitting algorithm [51, 52] for the CLAS g11 dataset. We employed
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his kinematic fitting algorithm to derive tagger energy and CLAS track momentum
corrections to globally improve the measured momentum of detected particles. To
derive the corrections, we applied kinematic fitting on the reaction γp → pπ+π−.
First we did tagger energy correction using “uncorrected” CLAS momenta, then we
corrected the momentum with the improved tagger values. This process completed
one iteration, and we repeated the whole process again several times. After each
iteration we checked the improvement of momentum resolution. We stopped when
the improvement is negligibly small.

3.4.1 Kinematic Fitting3

Usually, we have a set of n measured quantities, denoted by the n-vector −→η . These are
the tracking parameters for a given event, such as momentum, azimuthal and polar
angles in a sector-based coordinate. Each measurement has an unknown deviation
from its true value, denoted by the n-vector −→ε . Therefore, if we denote the true
values of the measured quantities as −→y , we arrive at the following relation:

−→η = −→y +−→ε . (3.1)

The idea of kinematic fitting is to estimate −→y from −→η using a set of kinematic
constraints— i.e., conservation of energy and/or momentum. In particular, if we have
an exclusive reaction where all particles were detected, then every component of the
total missing 4-momenta must be zero (i.e., one conservation of energy constraint, and
three conservation of momentum constraints). On the other hand, for reaction that
has one undetected particle, the number of constraint equations reduces to one— i.e.,

the total missing mass constraint. Next, consider the following n-vector
−→
δ :

−→
δi = −→yf −−→yi , (3.2)

where−→yf is the final fit result, −→yi is the improved measurements at the ith iteration step
and the n-vector −→η is assigned as the starting −→y0 . Now if we denote the covariance
matrix for the measured quantities Cη, then the least-squares quantity that needs

to be minimized is
→
δTC−1

η

−→
δ . In addition, because of the aforementioned constraint

equations, the minimization can be done by employing the procedure of Langrange
multtipliers.

3.4.2 Confidence Levels and Pull Distributions

The goodness of fit from the kinematic fitting is measured by the confidence level.

If we assume that the errors −→ε = −→η − −→yf are normally distributed then
→
εTC−1

η
−→ε

3For a detailed introduction to the algorithm, and specifc implementation for CLAS, see Mike
Williams’s thesis [51].
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follows a χ2 distribution with d = n−m degrees of freedom, where n is the number of
fit parameters (and measured quantities) and m is the number of constraints4. Then
the confidence level is computed as:

CL = Pr(x > χ2) =

� ∞
χ2

f(x, d)dx, (3.3)

where f(x, d) is the χ2 probability density function with d degrees of freedom. Given
the actual values−→y and the measurment errors−→ε for a particular event the confidence
level is an indication how likely the measured quantities −→η occur just by random
chance under the fit hyphothesis. For a group of events that satisfy the fit hyphothesis
with normally distributed errors, the confidence level is flat on (0, 1] interval. On the
other hand, background events that do not satisfy the fit hyphothesis have small
confidence levels.

The assumption of normally distributed errors needs to be verified. This can be
accomplished by examining the pull distributions for each measured quantity. For
the jth fit quantity, its pull distribution is defined as:

zj =
εj

σ(εj)
=

ηj − (−→yf )j√
σ2 (ηj)− σ2 ((−→yf )j)

, (3.4)

where the error σ ((−→yf )j) is computed by the standard error propagation techniques
from Cη. The zj’s should be normally distributed about zero with σ = 1. A sys-
tematic error in the measured quantity ηj can be seen as an overall shift away from
zero in the distribution. Additionally, if the error of ηj has been consistently overesti-
mated (underestimated), then the corresponding pull distribution will be two narrow
(broad). Importantly, Mike Williams mentioned in his thesis that the covariance ma-
trix Cη obtained from CLAS track reconstruction software is underestimated, thus
he had to “correct” the covariance matrix Cη (for detail see Ref. [51]). We followed
his procedure to obtain better accuracy for the tracking covariance matrix Cη for g14
data.

Finally, we show the pull distributions and confidence level from the kinematic fit
for the reaction γp → pπ+π− (details about event selection are provided in Section
3.4.3.1). The confidence level is shown in Figure 3.4. Note that the distribution
is not flat, but as will be shown later, the momentum corrections obtained from
kinematic fitting the reaction γp → pπ+π− result obvious improvements in particle
momentum measurements. The reason for the confidence level slightly sloped is that
there are remaining bound proton events from the reaction γd → pπ+π−(ns). The
pull distributions are shown in Figure 3.5 with the values of their means and widths
presented in Table 3.3. The extracted values are in decent agreement with the ideal
values of zero mean and unity width.

4For a more general case consisting of n measured quantities and k unknown (fitting) parameters
related by m constraint functions, the degree of freedom is d = k −m.
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Figure 3.4: The confidence level pull distribution for the reaction γp → pπ+π− for
events from the Gold 2 data set. The plot is in a logarithmic scale.

Figure 3.5: The pull distributions for the reaction γp → pπ+π− for events from
the Gold 2 data set. The variables shown here are defined for the CLAS tracking
covariance matrix Cη

3.4.3 Procedures to Obtain Tagger and Momentum Correc-
tions

The tagger and momentum corrections ultilize the reaction γp → pπ+π−(0) to im-
prove the data. This reaction has complete kinematics, and includes both positively
and negatively charged particles. We selected events which had particle ID identi-
fied by the standard CLAS particle identification scheme. We did not include any
addtional PID cut. To do tagger correction, we ignored the tagged photon, and used
kinematic fitting to derive the photon energy. The difference between the derived
photon energy and the measured photon energy determines the correction. Similarly,
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Variable Mean Width

Eγ −0.013 1.078
|p|p 0.012 1.095
λp 0.112 1.111
φp −0.017 1.146
|p|π+ −0.059 1.067
λπ+ −0.120 1.088
φπ+ −0.017 1.035
|p|π− −0.081 1.064
λπ− −0.038 1.137
φπ− −0.037 1.038

Table 3.3: Numerical values for Gaussian means and widths for the pull distributions
for the reaction γp → pπ+π−. The variables shown here are defined for the CLAS
tracking covariance matrix Cη.

to obtain the correction for the vector momentum of negatively charged particle, we
ignored the measured π− vector momentum, and used kinematic fitting to derive the
momentum, then we determined the correction from the measured and derived values
of the π−momentum.

3.4.3.1 Event Selection for the reaction γp→ pπ+π−(0)

In g14 data, the reaction of γp→ pπ+π− can happen by three different processes. The
proton from the initial state can be from the hydrogen atom, or from the deuteron,
or from the nucleus of the aluminum wires or target cell walls (KelF). Only the first
type has complete kinematics for the kinematic fitting procedure. Thus we needed
to select only events coming from the specific reaction γp→ pπ+π−(0) (i.e., we tried
to select only events originated from the free proton target). We realized that events
coming from this reaction ideally must have zero missing momentum and zero missing
energy if we assigned the target mass as the proton mass. Other events with different
kinematics would not have these two properties. We could use these properties to
effectively select events from the reaction γp→ pπ+π−(0). Due to finite momentum
resolution, we could not have very tight cuts. We decided to make the following
selection cuts: |MM2(pπ+π−)| < 0.03 GeV2 and the Missing Momentum< 0.12 GeV.
Figure 3.6 shows selected events after the selection cuts.

The two cuts we used cleanly seperate γp → pπ+π−(0) from γd → pπ+π−(ns),
where the second reaction happens on the deuteron. Next we apply a cut on the
z component of event’s vertex, see Figure 3.7. This cut selects events inside the
target region and rejects some non-HD background events. Most of the remaining
non-HD background events (from alumnimum cooling wires) and background events
with misidentified PID would be rejected by a cut at 0.1 on the confidence level (i.e.,
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Figure 3.6: Each event consists of detected p, π+, and π−. We assign proton mass as
target mass for these events, and then we apply the squared missing mass and missing
momentum cuts. The plot on the left shows squred missing mass (in GeV2 unit) vs.
missing momentum (in GeV/c unit). The plot on the right shows the squared missing
mass distribution (in GeV2 unit) of selected events after the cuts.

rejecting events with confidence level less than 0.1). The final selected events were
ultilized to obtain tagger and momentum corrections.

Figure 3.7: z-component of the interaction vertex for the reaction γp → pπ+π−(0).
The two vertical lines indicate the z-vertex cuts.

3.4.3.2 Tagger Correction

Alignment issues in the photon tagger’s focal plane were observed in several exper-
iments before g14 (for detail, see Ref. [51])—caused by tagger sagging due to the
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weight of the scintilator paddles. Corrections had been obtained for those experi-
ments. During the cooking of g14 data similar tagger correction had been applied,
thus the issue was not seen in g14 data. However, the tagger might still have a
global offset with different electron beam energies. For g14 experiment, there were
five different electron beam settings; the energies of the electron beam were 2.281,
2.258, 2.541, 3.356, and 5.552 GeV. We, therefore, have five different small tagger
corrections for each beam setting.

We now describe the procedure for tagger energy correction. After selecting events
from the reaction γp → pπ+π−(0), we applied energy-loss corrections and previous
iteration of tagger and momentum corrections. Then we kinematically fit to the
hypothesis (γ)p→ pπ+π−(0), igrnoring the measured photon beam energy. We only
selected events with confidence level greater than 10% (cut on the confidence level
value as mentioned previously) to determine the correction. Particularly, for each
electron beam setting, we computed the following correcton factor Ctag:

Ctag = (Ekfitγ −Emeasγ )/Ebeam, (3.5)

where Ekfit
γ , Emeas

γ are the photon energy values from the kinematic fitting and photon
tagger system, respectively, and Ebeam is the energy of the electron beam. Next,
we plotted the Ctag against tagger E-counters and from each tagger E-counter, we
extracted the Gaussian mean (see Figure 3.8). These Gaussian means are then stored
in a look-up table—since we had five different beam settings, there are five look-up
tables. When we need to apply tagger correction for a particular event, we look up
its electron beam setting, its E-counter tagger ID, then find the appropriate look-up
table to get the correction factor.

Figure 3.8: Tagger correction for one of the electron beam setting (2.258 GeV). The
left plot shows relative tagger correction Ctag vs. E-counter tagger ID. The right plot
shows the extracted Gaussian means for each E-counter tagger ID.
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3.4.3.3 Momentum Correction

In this section we describe a procedure to obtain the momentum correction for in-
accuracies in the reconstructed momenta. One of the reasons for the inaccuracies
is due to the discrepancies in the toroidal magnetic “ideal” field map from survey
information and the “actual” field during the experiment. Misalignment and sag-
ging in various parts of the drift chamber can lead to inaccuracies as well. In order
to obtain the momentum correction, we applied the energy correction and the most
recent tagger correction. Then we performed three kinematic fitting procedures by
treating one of the detected particles as “missing”: γp → (p)π+π−, γp → p(π+)π−,
and γp→ pπ+(π−). For each hyphothesis, the measured momentum of the “missing”
particle was compared with the missing momentum obtained from the kinematic fit.
The kinematic fit estimates for the corrections for the momenta are then:

4|p|x = |p|kfitx − |p|measx , (3.6)

4λx = λkfitx − λmeasx , (3.7)

4φx = φkfitx − φmeasx , (3.8)

where x = {p, π+, π−} is the “missing” particle. For example, 4|p|p was obtained
from the hypothesis γp→ (p)π+π−. To obtain the correction factors for each charged
particle type, we first divided the data into 6×180 angular subsets (i.e., 180 subsets
for each sector). For each charged particle type, the polar angle θ is divided into
nine 5o sets for θ ∈ [5o, 50o), four 10o sets for θ ∈ [50o, 90o), and two 25o sets for
θ ∈ [90o, 140o). The azimuthal angle φ is divided into twelve 5o sets for each θ subset.
Second, for each angular subset we plotted the histograms of 4Xq vs. |p|q where
X = {|p|, λ, φ} and q = {+,−} and for each momentum bin we fitted a Gaussian on
the 4Xq quantity to obtained the mean and width. Next, we applied a polynomial
fit (second or third order) on the obtained Gaussian means and widths to obtain a
continous momentum correction as a function of the particle momentum. Figure 3.9
shows 4|p|+ vs. |p|+ on the left and the polynomial fit to the Gaussian means on the
right.

3.4.3.4 Effectiveness

To check the effectiveness of these corrections, we studied γd→ pπ−(pS) reaction; this
reaction consists of both positive and negative charged particles and a well-defined
missing particle (the spectator proton). Details of event selections are provided in
Chapter 4. We first illustrate the energy loss correction in Figure 3.10. As shown in
the right histogram, the correction is on the order of 5 MeV. It also appears that the
energy loss correction overcompensates as the centroid of the mass spectrum after
the correction is about 5 MeV lighter than the mass of the proton of about 938 MeV
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Figure 3.9: Correction for |p| of positively charged particles. The left plot shows4|p|+
vs. |p|+. The right plot shows the extracted Gaussian means for each mometum bin
and a polynomial fit ( the red curve).

(see the left histogram). We will show that by applying the momentum and tagger
correction, the mass centroid will be closer to 938 MeV, the rest mass of the proton.

Figure 3.10: Left: Missing Mass off (pπ−) before (black) and after (red) applying
eloss correction. Right: distribution of energy correction magnitude. The data used
to obtain the plots were the Gold 2 data.

In Figure 3.11 we show effect after the tagger and momentum corrections. Note
that the centroid of the missing mass after the correction is closer to the mass of
the proton. In addition, the three bottom histograms in Figure 3.11 illustrate clearly
improvement in the momentum measurments which lead to better resolution for the
spectator proton mass distribution (i.e., the mass centroid as a function of the mea-
sured |p|π− , θπ− , φπ− is much straighter).
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Figure 3.11: Top: Total Missing Mass off (pπ−) before (black) and after (red) mo-
mentum correction. The mass centroid is closer to 938 MeV—the mass of the proton.
Bottom: missing mass centroid as a function of the measured |p|π− , θπ− , φπ− . The
color code is the same as in the top plot. Obviously, the corrections lead to better
resolution in the missing mass distribution. The data used to obtain the plots were
the Gold 2 data.

3.5 Overview of Simulation of g14 data

The CLAS collaboration had developed software packages that allow one to process
Monte Carlo (MC) data to see the response of the CLAS detector for a given set
of events. We now give a brief overview of the software packages. The first com-
ponent is a Monte Carlo event generator for photoproduction experiments called
“mc-generator”. It was written and maintained by Professor Reinhard Schumacher
at Carnegie Mellon University (CMU). It can generate any number of MC events with
a given initial state and subsequent selectable decay chain. The initial state that is
of interest for the analyses in this thesis is a photon beam on a free deuteron tar-
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get (the final states will be introduced more specifically in future analysis chapters).
Next, the generated data was processed by the GSIM software package [53]. It is the
standard CLAS detector simulation system that is based on the GEANT simulation
code developed at CERN. It would propagate particles through a simulation of the
CLAS detectors—to simulate the detector response: energy loss, pulse height, pulse
timing, etc.. In Table 3.4a (left) we present a set of input parameters that is necessary
to specify the g14 run conditions (for example, torus magnetic field setting, electron
beam energy, etc.). After the GSIM stage, the generated events were then processed
by the GSIM Post Processor program, or GPP for short. It smears the momentum
and timing of the signal so that the resolution of the generated events matches the
real data closely. Table 3.4b (right) shows a set of input parameters we specified
for the g14 run period. To illustrate that we have a good matching of resolutions,
we show in Figure 3.12 the Gaussian widths of the spectator protons of the reaction
γd → pπ−(pS) as a function of the z-vertex for both simulation and real data. The
plot includes twelve histograms representing twelve different W energy windows (cov-
ering the whole energy range of which we measure the E asymmetry for the reaction
γd→ pπ−(pS)); the matching between the simulation and real data are good except
for the last energy window— it is possible that energy and momentum corrections are
not as good for that energy window, hence the resolution is larger than compared
to others’ resolutions (on the other hand, the resolution for the simulation data is
relatively stable across the twelve energy windows). In addition, the mismatch near
z ∼ −4 cm was due to the fact that there was just a few bound neutron events and
hence the extracted fitted-Gaussian widths were larger reflecting a larger statistical
fluctuation. After GPP, in the next stage, individual tracks are constructed. This
was done by USERANA—the CLAS standard program for reconstructing particle
tracks. USERANA also saves the simulation data in the same format as the real data
to faciliate comparisions between simulation and real data.

3.6 Summary

In this chapter, we provided an overview of g14 run conditions which includes the nam-
ing convention that we will used extensively in later chapters (for example, Gold 2 pe-
riod refers to runs 69227-69364 with target 19b). An outline of procedures—detector
calibration, energy and momentum corrections—to improve g14 data quality was also
introduced. Lastly, we discussed required steps to simulate MC data with g14 run
conditions as well as illustrated good agreement in resolution between real and sim-
ulation data. In later chapters, we will be more specific about the final state that we
would like to generate.
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Input parameters for ffread card
AUTO 1
KINE 1

MAGTYPE 2
MAGSCALE -1495
TMGIFIELD 5

MGPOS 0.0 0.0 -7.5
FIELD 2
GEOM “ALL” “ST”

NOGEOM “SQL” “IC” “FOIL” “MINI” “PTG”
NOMCDATA “ALL”

NOSEC “OTHE”
TARGET 13
TGMATE “HD”
TGPOS 0.0 0.0 -7.5
STZOFF 1.0
STTYPE 1
TGCUTS 0.01 0.01 0.01 0.01 0.01

CUTS 5.e-3 5.e-3 5.e-3 5.e-3 5.e-3
DCCUTS 1.e-4 1.e-4 1.e-4 1.e-4 1.e-4
ECCUTS 1.e-4 1.e-4 1.e-4 1.e-4 1.e-4
SCCUTS 1.e-4 1.e-4 1.e-4 1.e-4 1.e-4
STCUTS 5.e-5 5.e-5 5.e-5 5.e-5 5.e-5

SAVE “ALL” “LEVL” 10 “HARD” 0.001
NSTEPMAX 50,000

TIME 2,000,000 2,000,000 2,000,000
RUNG 1
BEAM 2.541

POSBEAM 0.0 0.0

Input parameters for GPP
P 0x1f
R 69300
Y
f 1.0
a 2.0
b 2.0
c 2.0

Table 3.4: Input parameters given to the GSIM (left) and GPP (right) simulation
software.
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Figure 3.12: Comparing the Gaussian widths of spectator protons for simulation
(magenta) and the Gold2 real data (blue) as a function of the z-vertex, see text for
explainations of the observed mismatches. The vertical unit is GeV, the horizontal
unit is cm.
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Chapter 4

Results for the E Observable for
Reaction γd→ π−p(ps)

We present the first set of measurements of the helicity asymmetry E for the re-
action γd → π−p(ps) using the CLAS g14 data. Our analysis consisted of several
sequential stages. First, we identified pπ− events using a set of well-calibrated cuts.
The second step was to select events that were from bound neutrons and rejected
events from target material (aluminum wires and KelF cell walls), and background
from other reactions with the same detected particles. Two methods for doing event
selection will be introduced. The first method is referred to as 1D-cut background
suppression and subtraction; it consists of a set of cuts to remove the background
and utilizes the empty target data to “subtract” away remaining target background.
The second method is based on machine learning and utilizing the Boosted Decision
Trees (BDT) algorithm; it is a multivariate data analysis tool (algorithm) developed
in 1996 [54] and well-known in the HEP community [55, 56]. The algorithm “learns”
how to separate the background and signal through supplied training data. We will
show that the E measurements from the BDT method are consistent with the 1D-
cut background suppression and subtraction method, but the BDT event selection
procedure has higher efficiency (we provide useful insights about the BDT algorithm
in Appendix A). Thirdly, after selecting the bound neutron events, the E measure-
ments were obtained for all circularly-polarized-photon run periods (Silver 1, 2, 3, 4,
5, and Gold 2, for more detail about the run periods see Chapter 3). In addition,
before combining the results from all periods, we obtained estimations for the target
polarizations of the Silver 4 and 5 periods using the E measurements from Silver 1&2
(the term Silver 1&2 implies a combined data from Silver 1 and 2 data sets) periods.
The final stage was systematic uncertainty studies which are reported in section 4.4.
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4.1 π−p Event Selection for the Reaction

We began the analysis with the task of selecting “p : π−” events. In particular, using
the measured momentum, the path length and the time-of-flight of each detected
particle, a measured mass was obtained. Next, if a positively charged particle has a
measured mass within 0.8 GeV to 1.2 GeV, it is assigned a proton “ID”. Similarly, if
a negatively charged particle has a measured mass within 0.0 GeV to 0.3 GeV, it is
assigned a π− “ID”. We plot the measured masses of the selected “p : π−” events in
Figure 4.1, and in Figure 4.2 we plot the total missing mass, MM(pπ−).
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Figure 4.1: Left: Measured mass of particle identifieded as proton. Right: Measured
masses of particle identified as π−. A set of cuts will be applied next to clean up
the mass distributions. The data used to plot was Gold 2 period. The masses are in
GeV.

4.1.1 Particle Identification: ∆TOF Cuts

To reduce further the background due to particle misidentification, we applied ∆TOF
cuts. An explanation of the cut follows. For every detected particle, the CLAS detec-
tor reconstruction algorithm records its momentum, its path length from the target
vertex to the TOF counter, and its time-of-flight (TOFmeasured). For a given particle
with an assumed mass, one can also compute a TOFcalculated from the momentum
and the path length of the particle. The difference between the TOFcalculated and the
TOFmeasured is ∆TOF :

∆TOF = TOFmeasured − TOFcalculated, (4.1)

where TOFmeasured is the measured time-of-flight. This is the time difference be-
tween event vertex time and time at which the particle hit the TOF scintillator
walls—encircling the CLAS drift chamber. The TOFcalculated is computed as:
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Figure 4.2: Total missing mass, MM(π−p). A set of cuts will be applied next to
clean up the missing mass distribution. The data used to plot was Gold 2 period.

TOFcalculated =
L

c

√
1 +

(
m

p

)2

, (4.2)

where L is the measured pathlength from the target to the TOF scintillator, c is the
speed of light, m is the hypothesized mass and p is the magnitude of the measured
3-momentum. In detail, if the particles were correctly identified, then in a plot
of particles’ ∆TOF against their momenta, a straight horizontal band around zero
should be observed. Figure 4.3 plots the protons’ ∆TOF (on the left) and the π−s’
∆TOF (on the right). Cuts at −1 ≤ ∆TOFπ− ≤ 1 ns were applied, but there
were no ∆TOF cuts on the proton since if the negative charged particle is the π−,
then the positive charged particle must be the proton. The right plot of Figure 4.4
shows a cleaner set of events than the left plot—misidentified e− and µ− events were
mostly rejected, and lastly, Figure 4.5 illustrates the effect of the ∆TOF cuts on the
distribution of the total missing mass.

4.1.2 Detector Performance: Fiducial Cuts

It is crucial to have good simulations that represent closely the real data to “train”
the BDT (more detail later); and for this reason, understanding the CLAS detectors,
and simulating correctly their performances is important. However, there are some
regions or elements of the detectors that are hard to simulate. To allow a reliable
comparison between real data and simulation data, these regions have to be removed
from both real and MC data; this section addresses this type of cuts. Primarily, we
only applied cuts on the drift chamber detector (since we did not perform a cross
section analysis but rather a target-beam asymmetry, simulating the exact CLAS
acceptance is not necessary).
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Figure 4.3: Left: Proton ∆TOF vs. |p|. Right: π− ∆TOF vs. |p|. The horizontal
band at zero corresponds to correct PID. The horizontal lines at ±1 ns indicate the
∆TOF cuts. The horizontal bands at different times (±2, ±4, etc.) correspond to
events with “wrong” initial photons (so they are also background events). The data
used to plot was Gold 2 period. The plots are on a logarithmic scale. Time is in ns.
Momentum is in GeV/c.
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Figure 4.4: β vs. |p| for selected proton and π− before (left) and after (right) the π−

∆TOF cuts. The data used to plot was Gold 2 period. The plots are on a logarithmic
scale. Momentum is in GeV/c.

Previous studies such as the G11 works [51] advised removing events with tracks
going near the superconducting torus coils where the magnetic field varies too rapidly
to be properly modeled (by GSIM). We thus removed events which have at least one
track going into these regions. Particularly, in the forward direction where the coils
occupy a great amount of space, we placed a hard cut for tracks with cos(Θlab) >
0.985. In addition, we placed cuts at 0.4 rad on the angle Φsector (measured in the
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Figure 4.5: Total missing mass, MM(π−p) after the ∆TOF cuts is the red histogram.
Events in the black histogram were rejected by the cuts. The data used to plot was
Gold 2 period.

sector coordinate), consistent with g11 Φsector cuts. In other words, accepted particles
had their measured |Φsector| < 0.4 rad. The Φ cuts were to remove the edges of the
CLAS drift chambers (there are total six sectors cover 3600), which are hard to
simulate.

In addition, we also made cuts in the backward direction (Θ cuts). These cuts were
employed to remove the target-material background events—not the same goal as the
previously discussed cuts. The cut on the proton was at Θp < 900, and the cut on the
π− was at Θπ− < 1200. These cuts are loose—when we studied the simulation data,
we learned that these cuts reject only a small number of bound neutron events (see
Figure 4.6). For real data, Figure 4.7 shows the angular distribution of the protons
before (left) and after (right) the fiducial cuts, while Figure 4.8 shows the angular
distribution of of the π−s before (left) and after (right) the fiducial cuts. Finally, we
show the total missing mass after the fiducial cuts in Figure 4.9.

4.1.3 Proton and π− Momentum and Angular Cuts

As shown in the red histogram of Figure 4.9, the depth of the “valley” on the right
side of the spectator proton mass (near 1.0 to 1.1 GeV) is modestly high. This is a
strong indication that the background “leaking” in under the proton peak is still sig-
nificant. The two methods for selecting the bound neutrons, which will be discussed
in the next two sections, could not completely remove these events. Nevertheless,
these background events should be removed because they might effect the E mea-
surements. Hence, we applied cuts on the scattered (detected) protons and π− to
reject a portion of this background. The applied cuts were motivated by studying
the joint distributions of the total missing mass and the measured momentum of the
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Figure 4.6: Left: proton angular distribution: φ vs. Θ before the fiducial cuts. Right:
π− angular distribution: φ vs. Θ before the fiducial cuts. The vertical lines indicate
the extra cuts on the proton and π− to reject target-material background events. φ is
in rad, while Θ is in degree. The data used to plot was simulation data of the signal
channel. The plots are on a logarithmic scale.
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Figure 4.7: On the left (right) proton angular distribution: φ vs. Θ before (after)
the fiducial cuts. φ is in rad, while Θ is in degree. The data used to plot was Gold 2
period. The plots are on a logarithmic scale.

scattered (detected) protons and π−, see Figure 4.10, 4.11. Furthermore, we had
different cut values—the cuts for Gold 2 on the π− would be too tight for the Silver
periods; the values of these cuts are presented in Table 4.1 (the differences in the
joint distributions for the Gold 2 and Silver periods possibly come from the electron
energy: about 2.5 GeV for the Gold 2 period and about 2.2 GeV for the Silver pe-
riods). As shown in Figure 4.12 the background was modestly reduced. These cuts
concluded our procedure of selecting events from the reaction γd→ π−p(ps).
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Figure 4.8: On the left (right) π− angular distribution: φ vs. Θ before (after) the
fiducial cuts. φ is in rad, while Θ is in degree. The data used to plot was Gold 2
period. The plots are on a logarithmic scale.
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Figure 4.9: Total missing mass, MM(π−p) after the ∆TOF cuts is the blue histogram,
and the red histogram is after the fiducial cuts. Events in the black histogram were
rejected by the fiducial cuts. The data used to plot was Gold 2 period.

Cut Gold 2 period Silver periods

|p|p ≥0.40 GeV ≥0.40 GeV
|p|π− ≥0.40 GeV ≥0.27 GeV

Table 4.1: Cut values on the scattered protons and π−s for Gold 2 period and Silver
periods, respectively.

4.2 Selection of γd→ π−p(ps) Events

The next task was to select events originating from the bound neutrons. Consequently,
there are two types of background to be removed: from target material (aluminum
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Figure 4.10: Left: Proton momentum |p| vs. MM(π−p). Right: π− momentum |p|
vs. MM(π−p). The data used to plot was the Gold 2 period. The plots are on a
logarithmic scale. The horizontal lines indicate the cuts. The MM(π−p) is in GeV,
while |p| is in GeV/c.
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Figure 4.11: Left: Proton momentum |p| vs. MM(π−p). Right: π− momentum |p|
vs. MM(π−p). The data used to plot was the Silver 1 period. The plots are on a
logarithmic scale. The horizontal lines indicate the cuts. The MM(π−p) is in GeV,
while |p| is in GeV/c.

wires and KelF cell caps) and from the ∆ and/or multi-pion reactions. The ∆ reaction
background consists of events with an extra missing pion (i.e., γd → π−∆(ps) →
π−p(πps)).

Since the target background has zero E asymmetry—will be shown in Section 4.3,
it will dilute the final E measurements if not fully removed. The ∆ and/or multi-
pion backgrounds are not the reactions of interest, and should be rejected as well.
In the next two sub sections, we will introduce two methods for the bound neutron
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Figure 4.12: Left: MM(π−p) from the Gold 2 run period. Right: MM(π−p) from
the Silver 1 run period. For both plots, the blue histograms are before the momentum
cuts, the red histograms are after the cuts, and the black histograms represent events
that were rejected by the cuts .

event selection. The first method is referred to as 1D-cut background suppression
and subtraction which includes a set of cuts to remove the mentioned background
especially the ∆ and multi-pion backgrounds; any remaining target background is
accounted for by utilizing the empty target run data for “subtraction” hence the
name background subtraction. The second method employs a Boosted Decision Trees
algorithm (BDT) to efficiently separate the signal and background (we will verify
later that the BDT has better performance than the 1D-cut background suppression
and subtraction method). In brief, the BDT is a “forest” of decision trees build by
“learning” from training data—which has distributional representations of the signal
and background real data (more detail later). The algorithm performs efficiently
because it can “view” the multivariate data in a high dimensional space (while we
humans can only view the data at most in three dimensions simultaneously) in which
the signal and background data have better “separation.”

4.2.1 1D-Cut Background Suppression and Subtraction Method

As mentioned above, the 1D-cut background suppression and subtraction method
comprised of several cuts to remove the background. To determine the values for
the cuts, we studied the simulated data for γn(ps) → π−p(ps). Each simulated
event consisted of an incident photon from a bremsstrahlung distribution, while the
detected p and π−were generated from a two-body phase space distribution, and
lastly, an independent spectator proton ps with its momentum distribution followed
the Hulthen potential [57] (there are two other models for the deuteron potential
[58, 59] which are considered more accurate, but for our purpose the Hulthen potential
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is sufficient). The formula used for the Hulthen wavefunction is:

Φ(p) =

[
1

p2 + (α~)2 −
1

p2 + (β~)2

]2

, (4.3)

where α = 0.2316 (fm)−1, and β = 1.385 (fm)−1 from [60]. Figure 4.13 shows the
simulated distributions of three variables that we placed the cuts on, and in Table
4.2 we provide numerical values of the cuts. The missing mass cut was to reject
mostly events with an extra missing pion (see Figure 4.12). Coplanarity angle helped
to reject events where the missing momentum is high. Of course, the two cuts also
rejected a significant number of events from the target background as shown in Figure
4.14—plotting the empty-target run data. We show the cuts on similar histograms
for Gold 2 data in Figure 4.15. On the missing momentum plot of Figure 4.15 we also
include a (scaled) histogram from the simulation data for comparison. Obviously, the
missing momentum cut at 0.11 GeV/c (see Table 4.2) seems tighter than suggested by
the simulation data, but this is the maximum value such that there would be a few ∆
and/or multi-pion background events. We will discuss why and how we determined
this value in the next sub section after introducing the “subtraction” part of the
method.

Variable Name Description Cut Value

Missing Mass Total Missing Mass, MM(π−p) ≤1.05 GeV
Missing Momentum Total Missing Momentum ≤0.11 GeV/c
Coplanarity Angle arccos (p̂p × p̂γ) . (p̂π− × p̂γ) ≤200

Table 4.2: List of variables used in 1D-cut background suppression and subtraction
for the task of selecting the bound neutron events.

Previously, we claimed (and will verify) that after the three cuts, there would
be an insignificant number of events which are not γd → π−p(ps), however, there
was still some remaining target background events. Below we provide a procedure
to estimate the remaining target background (which will be used extensively in later
sections):

1. Plot the z component of the interaction vertex for both empty target runs and
full target runs, and,

2. Scale the histogram from the empty target so that the outside of the target
region (z > −1.0 cm) of both histograms matched, see Figure 4.16. This is to
account for different incident beams from different run periods.

3. Record the value of the scaling, denote as ε. Note that since Gold 2 target has
less aluminum material, ε is scaled down by a factor of 0.7 (see Table 2.2).
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Figure 4.13: Top left: Total missing mass, MM(π−p). Top right: Total missing
momentum. Bottom: coplanarity angle (see explaination in Table 4.2). The vertical
lines are the adopted cuts for the real data. These histograms were obtained from
the signal simulation data.
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Figure 4.14: Top left: Total missing mass, MM(π−p). Top right: Total missing
momentum. Bottom: coplanarity angle (see explaination in Table 4.2). These were
obtained from the empty-target data.

4.2.1.1 Determination of a Cut Value on the Total Missing Momentum

Here we address the decision to place a cut on the total missing momentum at 0.11
GeV/c. In general, one way to check for an effect of the missing momentum cut is to
vary it and observe how the E asymmetry evolves as the mentioned cut varies (detail
of how to obtain the E asymmetry and target-material background subtraction will be
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Figure 4.15: Top left: Total missing mass MM(π−p). Top right: Total missing mo-
mentum (the magenta histogram is from the simulation data). Bottom: coplanarity
angle (see explaination in Table 4.2). These plots were obtained from the Gold 2
data.
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Figure 4.16: z-vertex plots from Gold 2 (blue), and scaled empty run (black). The
region −10 cm< z < −5.5 cm of Gold 2 has less aluminum material (down by a factor
of 0.7).

presented later). Figure 4.17 shows comparisons of the E values between cuts at 300,
200, 150, 75 MeV/c and the cut at 110 MeV/c (all plots were after target-material
background subtraction). Clear evidence of a “shifting” effect on the E values for cuts
larger than 110 MeV/c is seen. Comparison of the E values between 110 MeV/c and
75 MeV/c shows statistical consistency. Because the empty target background had
been “subtracted” away in these plots, a possible explanation for the obseved effect
is that there was still remaining ∆ and/or multi-pion backgrounds, which might have
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positive E asymmetry that led to upward shifting for the E asymmetry of the reaction
γd→ π−p(ps). To verify that, we “combined” the simulation data—scaled appropri-
ately, and the scaled—using the procedure discussed previously—empty data; then
compare the combined distribution with the distribution from the full target data
(Gold 2 data in particular). As shown in Figure 4.18 the histogram from “combined”
data only matches the histogram from the full data if the missing momentum is less
than 110 MeV/c—supporting our estimation. As a result, we decided to place a cut
on the total missing momentum at 110 MeV/c.

Figure 4.17: Top left: Comparing E asymmetry values for missing momentum cut
at 300 MeV/c (black) and at 110 MeV/c (red). Top right: comparing between 200
MeV/c (black) and at 110 MeV/c (red). Bottom left: comparing between 150 MeV/c
(black) and at 110 MeV/c (red). Bottom right: Top right: comparing between 75
MeV/c (black) and at 110 MeV/c (red). The evolutions of the E values suggest the
unaccounted ∆ and/or multi-pion backgrounds for missing momentum larger than
110 MeV/c.

4.2.2 Boosted Decision Trees Method

The set of cuts for the 1D-cut background suppression and subtraction method (see
Table 4.2) is well-calibrated to reject most of the background. However, cuts, in
general, are not the most efficient method to remove background. Firstly, cuts may
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Figure 4.18: Missing Momentum distribution; “combined” data (red) from scaled
empty and simulation underestimates the full-target real data (black) for momentum
greater than 110 MeV/c.

ignore a significant portion of the interesting phase space. For example, a signal
event that failed the missing momentum cut would not be reconsidered even though
it might pass the others (the cut on the missing momentum is very tight). Sec-
ond, since the cuts were applied sequentially, the data were “viewed” only in one
dimension at a time—yet it is highly multidimensional (characterized by many in-
dependent kinematic variables). In many situations, “viewing” multivariate data in
highly multidimensional space— i.e., plotting the data simultaneously in many coor-
dinates—reveals more structure of the data. Or equivalently, projecting the data into
lower dimensional space reduces available (possibly useful) information. In conclusion,
those two reasons are inherent limitations for the 1D-cut-background-suppression-
and-subtraction method. Consequently, in this section, we introduce a multivariate
analysis tool called Boosted Decision Trees (BDT) as a more optimal method to do
the event selection. In particular, it is more efficient because it consists of features to
overcome the mentioned limitations that prevent the 1D-cut background suppression
and subtraction method achieving optimal performance (or efficiency).

The Boosted Decision Trees (BDT) tool is an algorithm for building a “forest”
of distinct decision trees that are linked together by a boosting mechanism. Each
decision tree constitutes a disjunction of logical conjunctions (i.e., a graphical repre-
sentation of a set of if-else rules). Thus, the whole phasespace is considered by every
decision tree. Moreover, the decision trees are designed to “view” any multivariate
data in highly multidimensional space; hence they utilize available structural infor-
mation from the data more optimally. Necessarily, it is important to know that the
“forest” of distinct and boosted decision trees has better performance than any indi-
vidual decision tree in the “forest.” Informatively, the BDT algorithm has been used
in particle physics data analyses, for example, the BABAR collaboration employs
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the BDT for Muon and Kaon particle identifications [61], and the GlueX collabora-
tion at Jefferson Laboratory is planning to use the BDT algorithm for Kaon particle
identification. We also provide pedagogic details about the BDT algorithm in Ap-
pendix A (in particular, we explain how the trees are distinct, and what the boosting
mechanism is).

The cuts in Table 4.2 for the 1D-cut background suppression and subtraction
method are particular to the desired task of separating the bound neutron events
from the background (we will use “separation” and “classification” interchangeably).
They were based on the distributional characteristics of the signal and background
events. The BDT algorithm is similar in that we needed to provide “training” data
so that the algorithm could infer the distributional difference between the signal
and background data. Importantly, training data must have the same distributional
characteristics as the real data but with only one additional feature: the category
(signal or background) of each training event is known. Usually the training data
is generated from simulation. For our case, we only simulated training signal data.
The simulation consisted of incident photon from a bremsstralung distribution, a
two-body phase space distribution for the scattered p and π−, and an independent
spectator ps with its momentum distribution generated from the Hulthen potential
[57] (see equation 4.3). The MC data was processed by GSIM, GPP, and USERANA
to simulate the CLAS detector efficiency (see section 3.5 for more detail). We used the
empty target run data as the training background data. Implicitly, we had assumed
the empty target background could also represent the physics background (the ∆ and
other multi-pion backgrounds); it is a valid assumption because that same physics
reaction occurs for the empty target run data as well.

We employed a ROOT based analysis package called TMVA to execute the BDT
algorithm [56] (see Appendix A for more detail about the package). The package
implementation facilitates the classification task. Particularly, each event after being
processed by the BDT acquires a single real number (referred to as BDT output)
between −1 and +1—the more positive the BDT output is, the more likely it is
signal, and vice versa. Thus we needed only to make a cut on this BDT output
variable to separate (or classify) the signal and background events. Furthermore,
each event (both signal and background) consisted of ten continuous variables (for
example, one of the variables is the total missing momentum), and—in the case of
training data—one two-value discrete variable to indicate whether the event is signal
or background. Table 4.3 provides definitions of the input continuous variables. The
last three variables are the Dirac light-cone coordinate variables [62]. Note that only
variables from the missing particles (in the case of signal events, the missing particle
is the spectator proton) were used. This was to reduce the requirement for generating
simulation data that must exactly match the real data. Ideally, if the reaction are
really quasi-free, then the spectator protons needed to be the “isolated” partners
and their kinematic variables should then have low dependencies on other variables
such as the incident photon energy, the measured momentum of the detected π−,
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etc. In other words, modeling the bound neutron events (γd → π−p(ps)) should
not be concerned about other distributions beside the kinematic distributions of the
spectator proton— i.e., must only model correctly the Hulthen’s wave function for the
spectator proton [57]. Once the simulation signal data was ready to use, we supplied
the training data and executed the TMVA ROOT program to build (or “train”)
the decision trees. Histograms of input variables are illustrated in Figures 4.19, and
4.20; blue histograms show signal training data, and red histograms show background
training data.

Variable Name Description
CoplanarityAngle (p̂p × p̂γ) . (p̂π− × p̂γ)
MissingMomentum Total missing momentum
MissingEnergy Total missing energy
MissingTheta Θ of missing momentum
MissingPhi Φ of missing momentum
MissingBeta β

MissingGamma γ
MissingP lus Emissing − c|pmissingz |
MissingMinus Emissing + c|pmissingz |
MissingPerp |pmissingtransverse|

Table 4.3: List of variables used to construct the BDT for the task of selecting the
bound neutron events. The last three variables are the so-called Dirac light-cone
coordinate variables [62]. In addition, note that we only used kinematic variables
from the missing particle for the reason mentioned previously (see text).

Since the desired task for the BDT was to separate signal and background events in
the real data where we do not know the true identity of each event, it is required that
the BDT has consistent performance (or classification efficiency) on both the training
data and the real data. Formally, this is referred to as no overtraining (or overfit-
ting); i.e., the BDT must generalize well for some other independent but similar—to
the training data—data sets. To check for overtraining the ROOT TMVA program
divided the signal and background training data randomly into four subsets: signal
and background training data, and signal and background testing data. The program
ran the BDT and evaluated the BDT’s performances on the four data sets by employ-
ing the Kolmogorov–Smirnov test—to verify whether the BDT output distributions
from the training and testing data are statistically the same (note that the test is
applied separately on signal data and background data). High probabilities from the
Kolmogorov-Smirnov test as shown in Figure 4.21 suggest consistent performances on
training and independent test data sets—or equivalently, no evidence of overtraining
observed because according to the Kolmogorov-Smirnov test the distributions of the
BDT output from the training data sets and the test data sets are statistically similar
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Figure 4.19: Histograms of input variables used to construct both BDT during train-
ing phase. The red histograms are from background (empty target run period), and
the blue histograms are from the signal simulation data.
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Figure 4.20: More histograms of some of the input variables used to construct both
BDT during training phase. The red histograms are from background (empty target
run period), and the blue histograms are from the signal simulation data.
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(see Appendix A for how to “fix” an overtrained BDT). Figure 4.22 shows cut efficien-
cies and an optimal cut value. i.e., the efficiencies of selecting and rejecting signal and
background data, respectively, as a function of the BDT output (recall that for every
event after being processed through the BDT, each event is a value between −1 and
+1). An optimal cut at 0.03 that maximizes the S/

√
S +B ratio, which statistically

means minimizing the misclassification cost, will be used—to obtain this number we
must provide the initial signal (S) to background (B) ratio which we estimated to be
roughly one to two. In particular, from Figure 4.23 we could estimate the numbers
of signal and background events (the one-to-two ratio is roughly accurate for all the
events with the missing momentum less than 400 MeV/c—only these events were pro-
cessed by the BDT). Nevertheless, when studying systematic uncertainties, we will
vary this cut to study its effect. Furthermore, in Figure 4.24, we plot background
rejection efficiency vs. signal efficiency; in other words, it is a plot of the background
rejection efficiency as a function of the signal efficiency. Lastly, we include Table 4.4
for a qualitative assessment on how often each variable was used in building the BDT,
and for illustration, Figure 4.25 shows the first constructed decision tree.
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Figure 4.21: Overtraining check, high Kolmogorov-Smirnov probabilities for both sig-
nal and background suggest no overtraining because the performance (distributions)
of the BDT is consistent with independent training and testing data sets.

In Figure 4.26, on the left for simulation signal data we show the total missing
mass before (“blue” histogram) and after the BDT cut (i.e., selected events in “red”
and rejected events in “black”), and the total missing momentum before and after
the cut on the right. Similarly, in Figure 4.27 for the empty target run period the
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Figure 4.22: Plot of cut efficiencies show the efficiencies as a function of cut value,
and an optimal cut value at 0.03 assuming the initial signal-to-background ratio is
one-to-two (roughly accurate for all the events with the missing momentum less than
400 MeV/c).

Variable Name Relative Ranking
MissingMomentum 1.00
coplanarityAngle 0.37
MissingMinus 0.25
MissingEnergy 0.23
MissingPerp 0.07
MissingTheta 0.06
MissingP lus 0.05

MissingGamma 0.05
MissingBeta 0.04
MissingPhi 0.02

Table 4.4: Table of relative variable ranking. The higher the ranking the more the
variable was used to construct the trees. All the rankings were normalized to the
absolute ranking of the missing momentum variable.

missing mass and the missing momentum before (“blue” histogram) and after the cut
(i.e., wrongly selected events in “red” and correctly rejected events in “black”) are
shown on the left and right plots, respectively. Additionally, for empty data, we also
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Figure 4.23: Total missing momentum; the black histogram is from Gold 2 data,
and the magenta histogram is from the simulation data. From these histograms we
estimated the signal-to-background ratio to be one-to-two.

plot the z-component of the interaction vertex in Figure 4.28. From the three figures,
we concluded that the signal selection and the background rejection efficiencies of the
BDT are outstanding.

In conclusion, we introduced the BDT algorithm as a—yet to be proven—better
alternative to the 1D-cut background suppression and subtraction method and we
presented the procedure to “train” the BDT as well as verified that the BDT had
consistent performances on both training and testing data (no overtraining). Fur-
thermore, we decided to place a 0.03 cut on the BDT output variable to optimally
separate (classify) the signal and background events—the cut minimizes misclassifi-
cation cost. We will employ the constructed BDT on the real data (the Gold 2 and
Silver data sets) to select the bound neutron events in the next section.

4.3 Obtaining the E Observable Measurements

In this section we describe procedures to obtain measurements of the E observable
for the reaction γd → π−p(ps) where each event consists of detected proton and π−

with a missing spectator proton. We discussed previously the two methods that we
employed to reject the main backgrounds for this particular reaction. We will show
that the BDT method provides consistent results with the typical method of 1D-cut
background suppression and subtraction and, additionally, illustrate that the BDT
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Figure 4.24: Background rejection vs. Signal efficiency of the constructed BDT for
training (signal and background) data.

Figure 4.25: The first constructed decision tree, for illustration (see Appendix A for
more detail). Note that all variables can be used multiple times.

method is more efficient than the other method, i.e., the event sample from the BDT
method is larger than the event sample from the 1D-cut background suppression and
subtraction method. Moreover, we will introduce a procedure to estimate the target
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Figure 4.26: Left: Total missing mass, MM(π−p) before (“blue”) and after the BDT
cut (selected events in “red” and rejected events in “black”). Right: Missing momen-
tum before (“blue”), and after the BDT cut (selected events in “red” and rejected
events in “black”). The plots were constructed from the MC data. The selection
efficiency is outstanding.
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Figure 4.27: Left: Total missing mass, MM(π−p) before (“blue”) and after the BDT
cut (wrongly selected events in “red” and correctly rejected events in “black”). Right:
Missing momentum before (“blue”), and after the BDT cut (wrongly selected events
in “red” and correctly rejected events in “black”). The plots were constructed from
the data of the empty target runs. The rejection efficiency is high.

polarization for Silver 4 and Silver 5 run periods using the Silver 1&2 run periods.
And finally, we will plot the combined E asymmetry results from all the run periods.
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Figure 4.28: z-component of interaction vertex before (“blue”), and after the BDT cut
(wrongly selected events in “red” and correctly rejected events in “black”). The plots
were constructed from the data of the empty target runs. The rejection efficiency is
high.

4.3.1 The E Asymmetry Observable

The measurements of the E observable requires the incoming photon and the target
to be circularly and longitudinally polarized, respectively. The g14 experiment had
these conditions. Formally, the formula to calculate the E observable for each Wi

energy window is:

Eij(xj) =
1

iPγ

1

Ptarget

iY (xj)
↓↑ −i Y (xj)

↑↑

iY (xj)↓↑ +i Y (xj)↑↑
, (4.4)

where xj is the jth measuring bin of either the missing momentum, or the missing
mass, or the z-vertex, or cos(θπ−) variable (measuring the E asymmetry against the
variable cos(θπ−) is the main motivation for this analysis thus the variable requires a
detailed definition: θπ− is the angle between the vector momentum of the scattered
π− and the beam line in the center of mass frame of the incoming photon and target
neutron where the neutron is assumed at-rest). iY (xj)

↓↑ is the number of events when
the helicity of the photon and the direction of the target polarization vectors are anti-
parallel for events in the energy window Wi and the measuring bin xj, and, similarly,

iY (xj)
↑↑ is the number of events with the two polarization vectors parallel. Ptarget

is the target polarization magnitude, and iPγ is the weighted average of the photon
polarizations Pγ for energy window Wi (formula is provided below). The uncertainty
on the E(x) (a shorthand notation for Eij(xj)) can be calculated as follows:

σE(x)

E(x)
=

1

iPγ

1

Ptarget

2
√

[Y ↓↑] [Y ↑↑]√
[Y ↓↑ + Y ↑↑] [Y ↓↑ − Y ↑↑]

, (4.5)
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note that the target and beam polarization uncertainties were not included in the
above equation because they are more appropriately categorized as systematic uncer-
tainty. The derivation of σ2

E (ignoring the constants iPγ and Ptarget) is as follow:

σ2
E =

(
∂E

∂ [Y ↓↑]

)2

σ2

[Y ↓↑] +

(
∂E

∂ [Y ↑↑]

)2

σ2

[Y ↑↑] +

(
∂E

∂ [Y ↓↑]

)(
∂E

∂ [Y ↑↑]

)
cov
(
Y ↓↑, Y ↓↑

)
,

where(
∂E

∂ [Y ↓↑]

)
=

1

iPγ

1

Ptarget

2Y ↑↑

[Y ↓↑ + Y ↑↑]2
,

(
∂E

∂ [Y ↑↑]

)
=

1

iPγ

1

Ptarget

−2Y ↓↑

[Y ↓↑ + Y ↑↑]2
,

and

σ2

[Y ↑↑] = Y ↑↑, σ2

[Y ↓↑]
= Y ↓↑, cov

(
Y ↓↑, Y ↓↑

)
= 0,

since the Y ↓↑, and Y ↑↑ are governed by counting statistics, and independent measure-
ments. The result of Eq. 4.5 is now readily obtained. Next, we introduce the formula
to compute the photon polarizations Pγ which is referred to as the Maximon and
Olson formula [63]. It shows that the photon polarization for “each” event depends
on the electron beam polarization, the electron beam energy and the energy of the
incoming photon of that particular event:

Pγ =
(4ε− ε2)Pe
4− 4ε+ 3ε2

, (4.6)

where Pe is the incident electron beam’s polarization, ε is the ratio of the resultant
photon energy to the incident electron beam’s energy, ε = Eγ/Eelectron. Note that the
Pγ in Eq. 4.6 was computed for each event while the iPγ in Eq. 4.4 is the weighted
average of all events in the energy window Wi.

Eq. 4.4 can not be applied directly in the presence of background, thus it must be
modified. And as previously mentioned, some background events came from the target
material. In particular, g14 targets contain aluminum wires for cooling purposes, and
KelF target cell caps (see Chapter 2 for more detail). The target background events
are not polarized (E observable was measured to be zero, see Figure 4.29) which would
dilute the measurements of the E observable; the background must be removed from
the data set (using BDT or 1D cuts). The second type of background came from the ∆
and/or multi-pion reactions, and are not the interactions of interest. In the next two
subsections, we discuss how the background-subtraction and the BDT methods were
employed to reject the mentioned backgrounds. In addition, effects from remaining
background will be investigated in detail.
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Figure 4.29: The raw E asymmetry vs. cos(θπ−) for the empty-target data. The
result is consistent with zero asymmetry because target material was not polarized.

4.3.1.1 Determination of Cut Values on the z Component of the Recon-
structed Interaction Vertex

As shown in Figure 4.16 the majority of the remaining target background events
within the target region (i.e., z ≤6.0 cm) came from the two KelF caps (at around
-11.0 and -6.0 cm), thus before plotting the E asymmetry as a function of cos(θπ−)
or W , we needed to study where to place cuts on the z component of the interaction
vertex (z vertex for short). In particular, we studied the E asymmetry as a function
of the z vertex using the BDT selected sample (see Section 4.3.1.3 below for detail
about the BDT selection), and learned that making selection from -10.2 cm to -5.5 cm
was optimal to have a small and “controllable” target background. Figure 4.30 shows
that the E values are statistically flat across −10.2 cm≤ z ≤ −5.5 cm.

4.3.1.2 Measuring E Using the 1D-Cut Background Suppression and Sub-
traction Method

We provide detail of the 1D-cut background suppression and subtraction method in
this section. The set of cuts discussed in Table 4.2 were employed to remove both
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Figure 4.30: The E asymmetry vs. the z vertex (the x-axis is in cm and from -14 to
-4 cm) for three different energy bins (W ). The region of −10.2 cm≤ z ≤ −5.5 cm
has “constant” (flat) E values. The horizontal lines below the zero lines are the 0th

polynomial fits.

the physics and target background, see Figure 4.31. Previously, in section 4.2.1.1,
we argued that the remaining physics background would be insignificant after the
missing momentum cut (see Figure 4.18). Therefore, the dominating background is
the target background; and this section mainly discusses a procedure to account for
the remaining target background. In particular, we used the empty target data to do
background “subtraction.”

We utilized the empty-target run data to both estimate and subtract the remaining
target background. In Figure 4.32 the z-vertex distribution of the empty run data
was scaled up to match the Gold 2 run data distribution for region of −1.0 cm≤
z ≤ +30 cm. The obtained scaling, denoted as ε (or more accurately εj for energy
window Wj), were used to estimate the target background (note that for Gold 2 period
data, the scaling is smaller by a factor of 0.7 because there is less aluminum material
in the Gold 2 target than in the empty (or Silver) target). To do subtraction, we
implemented the following procedure:

� For the energy window Wj, subtract the target background to obtain the yields
for the signal data (events from the HD material):

jY
↑↑
HD =j Y

↑↑
full −

εj
2
Y j
empty , jY

↓↑
HD =j Y

↓↑
full −

εj
2
Y j
empty,

where jY
↓↑
full is the yield when the helicity of the photon and the direction of the

target polarization vector are antiparallel, jY
↑↑
full is the yield when the two vectors are

parallel for events in the energy window Wj. Y
j
empty is the yield from the empty target

87



GeV/c
0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4

0

10000

20000

30000

40000

50000

60000

70000

Total Missing Momentum

GeV
0.4 0.6 0.8 1 1.2 1.4
0

20

40

60

80

100

310×
)-πMM(p

deg
0 20 40 60 80 100

0

20

40

60

80

100

120

140

160

310×
 coplanary angle

cm
-20 -15 -10 -5 0 5 10 15 20 25 30
0

10000

20000

30000

40000

50000

60000

70000

z component of Interaction Vertex 

Figure 4.31: Top left: Missing momentum before (“blue”), and after the cuts given
in Table 4.2 (selected events in “red”, rejected events in “black”). Top right: Total
missing mass, MM(π−p) before (“blue”) and after the cuts (selected events in “red”,
rejected events in “black”). Bottom left: coplanarity angle before (“blue”) and after
the cuts (selected events in “red”, rejected events in “black”). Bottom right: the
z-component of the interaction vertex before (“blue”), and after the cuts (selected
events in “red”, rejected events in “black”). The plots were constructed using the
Gold 2 period data.

data, and εj is the scaling factor in the energy window Wj, see Table 4.5 for Gold 2
and Silver 1&2 values of the εj. The factor of a half is because we implicitly assume
the E asymmetry of the target material is zero (see Figure 4.29) and therefore did
not divide the empty data into two smaller disjoint subsets. Importantly, for each
energy window Wj this step is carried out bin by bin because values of Y j

empty might
be different for different measuring bins, but the scaling εj is assumed to be constant

within the energy window Wj. Note that the statistical uncertainties on jY
↑↑
HD, and

jY
↑↑
HD include the contribution from the statistical uncertainty of the appropriate εj
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(i.e., errors on the εj values were propagated into the jY
↑↑
HD, and jY

↑↑
HD).

� Compute Equation 4.4 bin by bin (xl) for each energy window Wj:

jEHD(xl) =
1

jPγ

1

Ptarget

jY
↓↑
HD(xl)−j Y ↑↑HD(xl)

jY
↓↑
HD(xl) + jY

↑↑
HD(xl)

,

� Apply a correction of (1+0.036) to account for a dillution effect due to the fact
that the neutron is bound inside the deuteron, see discussion in Section 4.3.4.1
for detail:

jEHD(xl) = (1 + 0.036)
1

jPγ

1

Ptarget

jY
↓↑
HD(xl)−j Y ↑↑HD(xl)

jY
↓↑
HD(xl) + jY

↑↑
HD(xl)

.
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Figure 4.32: Left: Distributions of the z-component of the interaction vertex from
Gold 2 (blue) and scaled empty (black) data. Right: Distributions of the z-component
of the interaction vertex from Silver 1&2 (blue) and scaled empty (black) data. The
vertical lines indicate the z vetex cuts.

4.3.1.3 Measuring E using the Boosted Decision Tree Method

In section 4.2.2 we discussed the steps to train and evaluate the BDT algorithm. In
this section, the constructed BDT is employed on the real data to select bound neutron
events. In preparation, we placed two loose cuts (MM(pπ−)<1.1 GeV and Missing
Momentum< 400 MeV/c) to reject unambiguous background events. After the two
cuts, all remaining events were evaluated by the BDT; i.e., each event acquired a
BDT output value, which was a real number between −1.0 and +1.0. We then
selected only events with the BDT output greater than 0.03—the cut on the BDT
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W (MeV) εgold2 εsilver1&2 W (MeV) εgold2 εsilver1&2

1500 1.18±0.01 24.32±3.21 1940 1.65±0.09 9.78±3.48
1540 1.13±0.01 15.97±1.82 1980 1.25±0.07 8.37±3.10
1580 1.00±0.02 18.61±2.90 2020 1.59±0.11 11.51±5.32
1620 1.38±0.04 12.77±2.16 2060 1.42±0.10 8.03±4.12
1660 1.18±0.03 10.81±2.04 2100 1.56±0.14 9.94±5.25
1700 1.37±0.04 9.83±1.86 2140 0.92±0.09 10.60±6.71
1740 1.38±0.04 10.41±2.23 2180 1.38±0.14 5.14±2.76
1780 1.31±0.04 10.05±2.30 2220 1.59±0.19 6.25±4.44
1820 1.31±005 8.60±2.14 2260 1.66±0.26 NA
1860 1.35±0.06 10.22±3.00 2300 1.40±0.27 NA
1900 1.29±0.06 10.21±3.43

Table 4.5: Table of scaling constants εj for the Gold 2 and Silver 1&2 run periods.
Note that the empty-target data used for Silver 1&2 subtraction (positive torrus field,
see Section 3.1) is about 1/6 smaller in statistics compared to the empty-target data
used for Gold 2 subtraction (negative torrus field). The scaling constants are modestly
self-consistent except for a few energy bins with low statistics (i.e., W=2260 and 2300
MeV for Gold 2 data, and W=2180, and 2220 MeV for Silver 1&2 data).

output chosen to maximize the S/
√
S +B ratio, which statistically means minimizing

the misclassification cost (see discussion in section 4.2.2). Figure 4.33 shows the
distributions of the total missing momentum, the total missing mass and the z vertex
before and after the BDT selection cut.

To estimate the remaining target background after the BDt cut we also used the
empty run data. In Figure 4.34 the z-vertex distribution of the empty run data was
scaled up to match the the Gold 2 period data distribution for region of −1.0 cm≤
z ≤30 cm. The obtained scaling was then used to estimate the number of target
background and true HD events within the region of −10.2 cm≤ z ≤ −5.5 cm. (note
that for Gold 2 data, the scaling is smaller by a factor of 0.7 because there is less
aluminum material in the Gold 2 target than in the empty target). Next, we obtained
the target-background-to-true-HD ratio for all run periods, see Table 4.6. Since the
numbers of HD events are on the order of a few hundred thousand and the ratios are
typically a few percent, the statistical uncertainties on these ratios are insignificant
(see Table 4.6); thus we did not “propagate” the uncertainties of the ratios into the
measured values of the E. The ratios which are reported in Table 4.6 were used as
overall scaling factors to account for the dilution effects from non-polarized target
background on the E asymmetry measurements; see below:

Efull =
1

Pγ

1

Pt

[
Y ↓↑HD − Y

↑↑
HD

]
+
[
Y ↓↑target − Y

↑↑
target

]
[
Y ↓↑HD + Y ↑↑HD

]
+
[
Y ↓↑target + Y ↑↑target

] =
1

Pγ

1

Pt

[
Y ↓↑HD − Y

↑↑
HD

]
+ 0

[YHD + Ytarget]
, (4.7)
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Figure 4.33: Top left: Missing momentum before (“blue”), and after the BDT cut
(selected events in “red”, rejected events in “black”). Top right: Total missing mass,
MM(π−p) before (“blue”) and after the BDT cut (selected events in “red”, rejected
events in “black”). Bottom: z-component of interaction vertex before (“blue”), and
after the BDT cut (selected events in “red”, rejected events in “black”). The plots
were constructed using the Gold 2 period data.

⇔ Efull =
1

Pγ

1

Pt

1[
1 + Ytarget

YHD

]
[
Y ↓↑HD − Y

↑↑
HD

]
[YHD]

=
1[

1 + Ytarget
YHD

]EHD, (4.8)

=⇒ EHD =

[
1 +

Ytarget
YHD

]
Efull, (4.9)

where Efull, and EHD are the E asymmetries computed from full target (target back-
ground included) and from only HD events, respectively. Y ↓↑ is the yield when the
helicity of the photon and the direction of the target polarization vectors are anti-
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parallel, and Y ↑↑ is the yield when the two polarization vectors are parallel. Ytarget
and YHD are the total yield for target background events and HD events, respectively.
Pt is the target polarization magnitude, and Pγ is the weighted average of the photon

polarizations Pγ (see Equation 4.6). Note that the scaling
[
1 + Ytarget

YHD

]
is assumed to

be constant across all measuring bins and all energy windows W . This is distinctly
different from the 1D-cut background suppression and subtraction method where the
subtraction was applied bin by bin. In addition, we also applied a correction of
(1+0.086) to account for the dillution effect “caused” by the spectator proton, see
discussion in Section 4.3.4.1 for detail:

EHD = (1 + 0.086)

[
1 +

Ytarget
YHD

]
Efull, (4.10)
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Figure 4.34: Left: Distributions of the z-component of the interaction vertex from
Gold 2 (red) after the BDT cut and scaled empty (black) data. Right: Distributions
of the z-component of the interaction vertex from silver1 &2 (red) after the BDT cut
and scaled empty (black) data. The vertical lines indicate the z vetex cuts

Run period Background-to-HD ratio, Ytarget/YHD
Gold 2 0.0310±0.0007

Silver1&2 0.0443±0.0005
Silver3 0.0536±0.0001
Silver4 0.0539±0.0005
Silver5 0.0552±0.0008

Table 4.6: Table of target background to HD signal ratios.

The previous procedure described the only correction we made on the E measure-
ments. It is justified only if the target background is small so that its dilution effect
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does not vary noticeably across energy and angular bins; this condition seems to be
valid because the background is only a few percent of the signal events. In addi-
tion, in Table 4.7 we provide the Background-to-HD ratios’ values for different energy
(W ) bins showing that the ratios are relatively constant across the energy range we
considered, thus it is reasonable to apply only one correction factor for all energy
(W ) bins. Secondly, the ∆ and/or multi-pion backgrounds must be “completely” re-
moved. The BDT selection procedure should reject most of the ∆ background—but
not all. Studying Figure 4.35 we decided to apply tighter cuts on the missing mass
and missing momentum from initial cut conditions MM(pπ−) < 1.1 GeV and miss-
ing momentum< 400 MeV/c applied before the BDT cut. In particular, all selected
events must have missing momentum less than 200 MeV/c, and missing mass less
than 1.03 GeV.

W (MeV) Ytarget/YHD W (MeV) Ytarget/YHD
1500 0.025±0.003 1940 0.032±0.002
1540 0.031±0.003 1980 0.033±0.002
1580 0.036±0.002 2020 0.033±0.003
1620 0.037±0.002 2060 0.033±0.003
1660 0.032±0.001 2100 0.031±0.003
1700 0.032±0.001 2140 0.032±0.004
1740 0.034±0.002 2180 0.028±0.004
1780 0.030±0.003 2220 0.029±0.005
1820 0.033±0.003 2260 0.030±0.007
1860 0.032±0.003 2300 0.027±0.008
1900 0.030±0.003

Table 4.7: Table of Background-to-HD ratios for the Gold 2 run period. The ratios
are consistent with the ratio’s value for the Gold 2 period in Table 4.6.

Recall from section 4.2.1.1 (see Figure 4.18) that we set the missing momentum
cut for the 1D-cut background suppression and subtraction method at 110 MeV/c
to reject “all” the ∆ and/or multi-pion background. If this assertion is true then
plotting the E asymmetry against the total missing mass variable would indicate
no mass-dependent dilution effect; i.e., the E asymmetry distribution should be sta-
tistically flat across the missing mass spectrum. Similarly, we expected to observe
the same phenomena for the data sample selected by the BDT method—because
we expect that the physics background was only insignificantly present. Figure 4.36
plots the E asymmetry, integrated over all angles, against the total missing mass
from both methods. The plot suggests no mass-dependent dilution effect—zeroth
order polynomial fits (for the BDT method) have χ2/dof close to one, and a good
agreement between the methods (note that the remaining target background correc-
tions was applied for both methods). In conclusion, we showed that we had a clean
data sample from the BDT selection procedure with a small portion of background
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Figure 4.35: Missing Momentum vs. Total Missing Mass, MM(π−p) from the Gold
2 period data after the BDT selection.

remaining—but mostly accounted for.
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Figure 4.36: Easymmetry vs. Total missing mass, MM(π−p) after the BDT selection
from Gold 2 run data (left) and Silver 1&2 run data (right).

4.3.2 Comparing Boosted Decision Trees (BDT) and 1D-Cut
Background Suppression and Subtraction Methods

We discussed above in detail about the two event selection methods. In this section we
compare the E asymmetry measurements obtained by the two methods. Particularly,
a procedure to quantify the systematic difference between the two methods will be dis-
cussed. Recall that when we introduced the BDT method with built-in features that
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overcome some inherent inefficiencies from the standard 1D-cut background suppres-
sion and subtraction method, an implicit assumption that the BDT would perform
better was made. Now, we can provide evidence to support our previous assumption.

Equation 4.4 shows how to calculate the E asymmetry as a function of a variable
x. To quantify the systematic difference of the two methods, we can pick x such that
E is statistically constant across the domain of x. Consequently, we chose to study
the E asymmetry as a function of the z component of interaction vertex (z vertex for
short); because the spatial distribution of the E asymmetry should be a constant (
ideally, the target polarization should be uniform along the beam line, or the z axis).
The value of the constant can be estimated; any fluctuation around this constant
is mainly statistical, and is assumed to follow a normal distribution (assumption
of Gaussian distribution makes what we discuss below possible). Considering the
following procedure:

1. Compute the E asymmetry as a function of the z vertex, Ê(z), using the 1D-cut
background suppression and subtraction method,

2. Compute the E asymmetry as a function of the z vertex, Ẽ(z), using the BDT
method,

3. For each z vertex bin j, and energy bin i, compute ∆ij = Ẽi(zj)− Êi(zj),

4. Fit the ∆ij with a Gaussian distribution and obtain the mean (µ∆) and width
(σ∆) from the fitted Gaussian.

It remains to interpret the mean and the width of the fitted Gaussian. Let us consider
two scenarios. The first scenario consists of a hypothetical infinitely large data set;
now execute both step 1 and step 2 from the above procedure on this very large data
set. For either method, statistical uncertainties would be very small; in other words, if
fitted using a Gaussian distribution, the fitted Gaussian would be a delta function with
the centroid at the weighted average of all data points. As a result, after executing
step 1 and 2 we would have two delta functions with possibly different centers. The
difference between the two centroids is obviously the systematic difference between
the two methods. Note that in this scenario all the values of the ∆ij are constant (and
equal to the difference between the two centroids). Now if we reduce the statistics
of the data set gradually, the values of the ∆ij would fluctuate around the difference
between the two previous centroids (the two delta functions become wider as the
statistics decreases). Consequently, the centroid of the fitted Gaussian using the ∆ij

values is the best estimate of the systematic difference between the two methods.
Next, we discuss about the second scenario; it consists of a hypothetical finite data
set (referred to as data set A), and a subset of A (referred to as data set S). We
applied only step 1 (or 2) on both data sets A and S, then fitted a Gaussian on both
results. Apparently, since the data set A is larger, the width of the fitted Gaussian
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on A is smaller than the fitted Gaussian on S. It is known that the difference of two
Gaussian distributed random variables is also a Gaussian random variable, thus when
fitting ∆′ij = ES

i (zj)− EA
i (zj) to a Gaussian then:

µ∆′ ≈ 0, (4.11)

σ2
∆′ ≈ σ2

ES
− 2ρσESσEA + σ2

EA
, (4.12)

where µ∆′ and σ∆′ are the mean and the width of the fitted Gaussian, respectively.
the mean µ∆′ and the width σ∆′ are the best estimations of the right sides of equations
4.11 and 4.12, respectively. Concluding from the second scenario study, the width of
the fitted Gaussian using the values of ∆ij in step 4 is the measure of the statistical
similarity between the data sets selected by the two methods; the degree of similarity
between data sets A and S is measured by the correlation coefficient ρ. In other
words, ρ is 1 if A and S are identical, and 0 if the data set S is not a subset (but
independent) of the data set A. Note that ρ is generally unknown and very difficult
to estimate directly. Thus, while the σES and σEA can be estimated directly (from
the statistical uncertainties of EA

i (zj) and ES
i (zj)), σ∆′ can not be obained directly

without the knowledge of ρ. But, by using the Gaussian fit approach we can indirectly
obtain the σ∆′ . Note that the width can be employed to estimate the uncertainty of
the systematic difference, i.e., σµ∆

= σ∆/
√
N where N is the total number of bins,

thus using the Gaussian fit approach not only we can obtain the best estimate of the
systematic difference between two methods (regardless of the correlation between the
two data sets A and S), but we can also obtain the uncertainty on our estimation.
More importanly, estimating the systematic difference by fitting a Gaussian is more
robust compared to a simple average (∆ = 1

N

∑
∆ij) because the simple average is

very sensitive to outliers (bins with extremely unreasonable values)1. For example,
the centroid of the fitted Gaussian for Silver 1&2 is 0.07 (see Figure 4.42 below) while
the weighted mean using all bins is 0.10.

In summary, note that the first senario comprised of two methods applying only
on one data set, while the second senario comprised of only one method applying
on two related data sets. Analyzing both senarios revealed the nature of the mean
(µ∆) and width (σ∆) of the fitted distribution in step 4 (distribution of ∆ij). In later
sections, particularly in Section 4.4 where we study systematic uncertainties, we will
implement this procedure as described here to quantify the systematic uncertainty
assignment.

1The Gaussian fit was obtained by applying the least-square fitting algorithm (thus the fitted
Gaussian centroid would be close to the mode of the histogram of values of ∆ij). Note that if the
maximum likelihood method were used, the centroid of the fitted Gaussian would be the same as
the simple average (∆ = 1

N

∑
∆ij).
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4.3.2.1 The Gold 2 Target Run Period Comparison

Previously, we discussed the procedure to estimate the systematic difference between
the 1D-cut background suppression and subtraction method and the BDT method.
In this section we will show the result for the Gold 2 run period. Figure 4.37 shows the

distribution of the ∆ij = Ẽi(zj)− Êi(zj) (see the previously discussed procedure) and
the fitted Gaussian. The mean of the Gaussian is positive indicating that, on average,
the values of the E measurements obtained by the BDT method is more negative
than the E values obtained by the 1D-cut background suppression and subtraction
(there are possibly still remaining ∆ and/or multi-pion background events, see Section
4.2.1.1 for detailed discussion). Since we only use the 1D-cut background suppression
and subtraction method to validate the BDT method, we will not investigate this
further. Moreover, a closer inspection of Figures 4.38, and 4.39, which show the E
asymmetry as a function of the z vertex for 21 energy windows (each spans 40 MeV)
covering 1480 MeV<W<2320 MeV from the BDT (red) and the 1D-cut background
suppression and subtraction (black) methods, revealed that the systematic difference
is on the order of the statistical uncertainties of E measurements obtained by the
BDT method. Thus we concluded that the results from two methods are statistically
consistent.

BDT-E1D cutE
-0.6 -0.4 -0.2 0 0.2 0.4 0.60

5

10

15

20

25

30

) for all energy and z vertex binsBDT-E
1D cut

(E

=+0.047µ
=0.065σ

 273 entries•
=0.004273/σ=µσ

Figure 4.37: Distribution of ∆ij = Ẽi(zj) − Êi(zj) (blue histogram) and a fitted
Gaussian (red). Small mean (µ=+0.047±0.004) indicates good consistency between
the BDT and the 1D-cut background suppression and subtraction methods for Gold
2 run period.

In addition, to illustrate that the BDT selected data sample is generally larger than
the 1D-cut background suppression and subtraction method, we plot [σBGsub − σBDT ] /σBDT
for each energy bin, and z vertex bin (σBGsub, and σBDT are the statistical uncer-
tainty of E measured by the 1D-cut background suppression and subtraction , the
BDT methods, respectively) in Figures 4.40, 4.41. Note that positive values for
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Figure 4.38: E vs. the z-component of the interaction vertex for the first 12 energy
windows 1480 MeV<W<1960 MeV for the Gold 2 period. The black points are from
the 1D-cut background suppression and subtraction and the red points are from the
BDT method. There is a small systematic difference between the two methods (see
discussion in Section 4.3.2.1). The horizontal lines are at 1.0, 0.0, and -1.0. The
horizontal axis is in cm and from −10.2 cm≤ z ≤ −5.5 cm.
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Figure 4.39: E vs. the z-component of the interaction vertex for last 9 energy windows
from 1960 MeV<W<2320 MeV for the Gold 2 period. The black points are from the
1D-cut background suppression and subtraction and the red points are from the
BDT method. There is a small systematic difference between the two methods (see
discussion in Section 4.3.2.1). The horizontal lines are at 1.0, 0.0, and -1.0. The
horizontal axis is in cm and from −10.2 cm≤ z ≤ −5.5 cm.
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[σBGsub − σBDT ] /σBDT imply larger data set (smaller error) for the BDT— i.e., higher
efficiency.
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Figure 4.40: [σBGsub − σBDT ] /σBDT vs. the z-component of the interaction vertex
for the first 12 energy windows from 1480 MeV<W<1960 MeV for the Gold 2 period.
All the points are positive indicating σBDT is everywhere smaller than σBGsub. The
horizontal axis is in cm and from −10.2 cm≤ z ≤ −5.5 cm.
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Figure 4.41: [σBGsub − σBDT ] /σBDT vs. the z-component of the interaction vertex
for the last 9 energy windows from 1960 MeV<W<2320 MeV for the Gold 2 period.
All the points are positive indicating σBDT is everywhere smaller than σBGsub. The
horizontal axis is in cm and from −10.2 cm≤ z ≤ −5.5 cm.
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4.3.2.2 Silver 1&2 Target Run Period Comparison

In this section we show the result for Silver 1&2 run periods (combined). Particularly,
Figure 4.42 shows the distribution of the ∆ij (see previously discussed procedure)
and the fitted Gaussian; a larger mean compared to the Gold 2 data indicates worsen
agreement. However, a closer inspection of Figures 4.43, and 4.44 reveals that the
difference in E values for the two methods are most significant in the region of z <
−8.5 cm, where there is not many events to select (see the right plot of Figure 4.34).
The two methods are in decent agreement in the region of z > −8.5 cm.
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Figure 4.42: Distribution of ∆ij (blue histogram) and a fitted Gaussian (red). The
fitted Gaussian centroid (µ=+0.073±0.007) indicates decent agreement between the
BDT and the 1D-cut background suppression and subtraction methods for Silver 1
& 2 run periods.

As before, to illustrate that the BDT selected data sample is generally larger than
the 1D-cut background suppression and subtraction method, we plot [σBGsub − σBDT ] /σBDT
for each energy bin, and z vertex bin. Positive values for [σBGsub − σBDT ] /σBDT were
again observed suggesting higher efficiency for the BDT method in Figures 4.45, 4.46.
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Figure 4.43: E vs. the z-component of the interaction vertex for the first 12 energy
windows from 1480 MeV<W<1960 MeV for the Silver 1&2 periods. The black points
are from the 1D-cut background suppression and subtraction and the red points
are from the BDT method. The agreement between the two methods is decent. As
shown in the third histograms (the right plot on the first row), the 1D-cut background
suppression and subtraction method has some issues for z < −8.5 cm (but we did
not investigate further). The horizontal lines are at 1.0, 0.0, and -1.0. The horizontal
axis is in cm and from −10.2 cm≤ z ≤ −5.5 cm.
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Figure 4.44: E vs. the z-component of the interaction vertex for the last 7 energy
windows from 1960 MeV<W<2240 MeV for the Silver 1&2 periods. The black points
are from the 1D-cut background suppression and subtraction and the red points are
from the BDT method. The agreement between the two methods is decent. The
horizontal lines are at 1.0, 0.0, and -1.0. The horizontal axis is in cm and from
−10.2 cm≤ z ≤ −5.5 cm.
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Figure 4.45: [σBGsub − σBDT ] /σBDT vs. the z-component of the interaction vertex for
first 12 energy windows from 1480 MeV<W<1960 MeV for the Silver 1&2 periods.
All the points are positive indicating σBDT is everywhere smaller than σBGsub. The
unit of the horizontal axis is cm and from −10.2 cm≤ z ≤ −5.5 cm.
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Figure 4.46: [σBGsub − σBDT ] /σBDT vs. z-component of the interaction vertex for the
last 7 energy windows from 1960 MeV<W<2240 MeV for the Silver 1&2 periods. All
the points are positive indicating σBDT is everywhere smaller than σBGsub. The unit
of the horizontal axis is cm and from −10.2 cm≤ z ≤ −5.5 cm.
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4.3.2.3 Conclusion

Previous sections show an statistical consistency (small systematic difference) between
the BDT method and the 1D-cut background suppression and subtraction method,
even though the two methods have different approaches in the event selections and
the treatments of the remaining background. Furthermore, we showed that the BDT
selection data sample is larger than the data sample from the 1D-cut background
suppression and subtraction method. Hence, in later sections we will use only the
BDT method for event selection. We also plot the E asymmetry as a function of
cos(θπ−) for both methods in Figures 4.47, and 4.48 (for Gold 2 data), and 4.49, and
4.50 (for Silver 1&2 data) to illustrate the decent agreement between the two methods
(small positive systematic difference indicates that there remained background events
that the 1D-cut background suppression and subtraction method could not completely
remove and/or subtract).
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Figure 4.47: E vs. cos(θπ−) for the first 12 energy windows from
1480 MeV<W<1960 MeV for the Gold 2 period. The black points are from
the 1D-cut background suppression and subtraction method and the red points are
from the BDT method. The agreement between the two methods is good.
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Figure 4.48: E vs. cos(θπ−) for the last 9 energy windows from
1960 MeV<W<2320 MeV for the Gold 2 period. The black points are from
the 1D-cut background suppression and subtraction method and the red points are
from the BDT method. The agreement between the two methods is good.
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Figure 4.49: E vs.cos(θπ−) for the first 12 energy windows from
1480 MeV<W<1960 MeV for the Silver 1&2 periods. The black points are
from the 1D-cut background suppression and subtraction method and the red points
are from the BDT method. The agreement between the two methods is good.
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Figure 4.50: E vs. cos(θπ−) for the last 7 energy windows from
1960 MeV<W<2240 MeV for the Silver 1&2 periods. The black points are
from the 1D-cut background suppression and subtraction method and the red points
are from the BDT method. The agreement between the two methods is good.
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4.3.3 Estimating the Target Polarizations of Silver 4 and 5
Periods

In section 3.1, we mentioned that the target porlarizations of Silver 4 and 5 were not
measured correctly. In particular, the magnitude of the E asymmetry obtained using
the measured polarizations was smaller when comparing to the Silver 1, 2, and Gold
2 periods. This indicates the true values of Silver 4 and 5 target polarizations must
be smaller than initially measured. Necessarily, in this section, we will implement
a procedure to obtain the correct polarizations indirectly by using Silver 1&2 data.
The procedure is based on the well-known χ2 test:

� Compute the E asymmetry as a function of the z vertex from Silver 1&2 data,
denote as Es12(zi) where i indicates the ith bin,

� Iterate over a set of possible values for Silver 4 (or 5) target polarization,

1. For each polarization value P , compute the E asymmetry as a function of the
z vertex, denote as Es4(zi, P ) (i indicates the ith bin),

2. Compute χ2 statistic for this particular value P :

χ2(P ) =
∑
i

(Es4(zi, P )− Es12(zi))
2

σ2
s4(zi, P ) + σ2

s12(zi)
,

note that χ2(P ) is defined as a weighted least square estimator, and the weights are
proportional to (σ2

s4(zi, P ) + σ2
s12(zi))

−1
(i.e., a smaller weight for a larger statistical

uncertainty); the best estimate of the polarization P ∗ is such that χ2(P ∗) = min
P
χ2(P ).

Moreover, if we also assume P is normally distributed with a centroid µP , and a width
σP , then

χ2(P ) =
(P − µP )2

σ2
P

+ constant,

note that χ2(P ∗) = min
P
χ2(P ) when P ∗ = µP , and χ2(P ∗ ± σP ) = χ2(P ∗) + 1. The

next two steps are apparent:

� Fit a 2nd order polynomial (f(P )) using all previously obtained values of χ2(P ),

� The best estimate of the polarization is P ∗ such that f(P ∗) = min
P
f(P ), and its

statistical uncertainty σP is such that f(P ∗ ± σP ) = χ2(P ∗) + 1.

In Figure 4.51 we plot the fitted 2nd polynomial functions on the set of χ2(P ) values
for the Silver 4 and Silver 5 data sets. It is straightforward to obtain P ∗ and σP for
both run periods from the fits. Importantly, because we utilized Silver 1&2 data to
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estimate the polarizations of Silver 4 and 5, we consequently introduced correletions
between the Silver 1&2 and Silver 4, and 5 data sets. Necessarily, we computed the
empirical covariances (from the data) using the following definition of the covariance:

σs12,s4 =
1

N

∑
i

(
Es12(zi)− Es12

) (
Es4(zi, P

∗)− Es4
)
,

where N is the total number of bins, Es12,and Es4 are the averages of the E asymmetry
(as a function of z vertex) for Silver 1&2, and Silver 4, respectively. Correlation
between Silver 1&2 and Silver 5 was computed similarly. We present all the results
in Table 4.8.

Figure 4.51: χ2 as a function of possible values of P . The left plot was obtained for
Silver 5 data, and the right plot was obtained for Silver 4 data. The unit for P is
percentage (%).

Run period Estimated Polarization Induced Covariance in E
Silver4 6.52 ± 0.40 % 0.0072
Silver5 5.91 ± 0.20 % 0.0117

Table 4.8: Estimated values of the target polarizations for Silver 4 and 5 periods.
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4.3.4 Combining Results from All Run Periods with Circular
Beam Polarization

In this section, we combine the E measurments from the Gold 2 and all the Silver
run periods into one set of measurements. If all measurements were independent, the
following formulas would give the weighted mean, and its uncertainty; the weights
are inversely proportional to the squared statisitical uncertainties of the individual
measurements— i.e., the most precise measurements has the highest weight:

E =

∑
t

(1/σ2
t )Et∑

t

1/σ2
t

,
1

σ2
E

=
∑
t

1

σ2
t

, (4.13)

where t is the indicator for each individual run period (it represents all Silver periods
and Gold 2 period); Et, and σt are the E measurement and its statistical uncertainty,
respectively, for the tth run period, and E is the combined value (weighted average)
of all measurements. When the measurments are not independent, the above formula
is rewriten more generally as follows:

E =
∑
t

wtEt, σ2
E

=
∑
t

w2
tσ

2
t + 2

∑
t6=t′

wtwt′σt,t′ ,

wt ≈
1/σ2

t∑
t

1/σ2
t

+ f(σt, σt′ , σt,t′)
(4.14)

where σt,t′ is the covariance of Et and Et′ , and f(σt, σt′ , σt,t′) is an extra term which de-
pends on both σt, σt′ , and σt,t′ . We had estimated, in section 4.3.3, that the covariance
between Silver 4 (Silver 5) with Silver 1&2 is 0.0072 (0.0117); the other covariances
are zero because of their statistical independence. Importantly, when calculating the
weights for Silver 4 and 5 data, we could safely ignore the term f(σt, σt′ , σt,t′) because
the Silver 4 and 5 data have small weights (see next paragraph for explaination).

In section 4.3.2.3, we showed the E asymmetry for both Gold 2 and Silver 1&2 run
periods. We now present the E asymmetry obtained from the Silver 3, 4, and 5 run
periods in Figures 4.52, 4.53, and 4.54 for completeness. Notice that the statistical
uncertainties for the three periods are much larger than for the Silver 1&2 and Gold 2
periods. This is because the Silver 3 period has effectively a tenth of Gold 2 statistics
while the target polarizations of the Silver 4 and 5 are about a fifth of the target
polarization of the Gold 2 period. We will show the combined results in the next
three sections.

4.3.4.1 The E asymmetry as a Function of |p|missing

In Figure 4.55 we illustrate the relation between the E asymmetry and the missing
(recoil) momentum. It is very interesting to observe that the absolute value of the
magnitude of the E asymmetry decreases as the magnitude of the recoil momentum
increases. Since the remaining background is insignificant (and had been accounted
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Figure 4.52: E vs. cos(θπ−) for the first 6 energy windows from
1480 MeV<W<1720 MeV. The violet, magenta, and green points are from the
Silver 3, 4, and 5 data, respectively.

for appropriately), the pronounced phenomona must be real physics; i.e., we suspect
this is due to interaction between the neutron and the proton inside the deuteron
(initial state interaction) and/or the interaction between the spectator proton and
the scattered particles (final state interaction).

Since the BDT method can keep events with missing momentum up to 200 MeV/c,
it is necessary to “correct” for the dilution effect as shown in Figure 4.55 (i.e., the
magnitude of the E asymmetry gets smaller for larger recoil momentum). We imple-
mented the following procedure:

� Compute the weighted average of missing momentum bins within 20 MeV/c
to 70 MeV/c (this is a small momentum—and relatively flat— inteval, thus,
the dilution effect is small, but this interval is with high statistics, thus, the
estimation is very precise); this is our estimate of the E asymmetry for when
the missing momentum is “zero,” referring to as EAV E

pure .

� Apply a third order polynomial fit, see Figure 4.55 to extrapolate the value of
the E asymmetry for when the missing momentum is “zero,” referring to as
EFIT
pure .

� Compute the weighted average of the E in all the bins (i.e., up to 200 MeV/c);
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Figure 4.53: E vs. cos(θπ−) for the middle 6 energy windows from 1720
MeV <W<1960 MeV . The violet, magenta, and green points are from the Silver 3,
4, and 5 data, respectively.

this is our estimate of the average diluted E asymmetry for the BDT method,
referring to as EBDT

diluted.

� Compute the weighted average of the measuring bins with Missing Momentum≤110
MeV/c; this is our estimate of the average diluted E asymmetry for the background-
subtraction method, referring to as EBGsub

diluted.

� Obtain the correction factors for the BDT method (Missing Momentum<200
MeV/c), and the background-subtraction method (Missing Momentum<110
MeV/c):

1 + cmethod =
EAV E
pure

Emethod
diluted

,

σ2
cmethod

=

(
EAV E
pure

Emethod
diluted

)2 [
σ2
EAVEpure(

EAV E
pure

)2 +
σ2
Emethoddiluted(

Emethod
diluted

)2 − 2
cov(EAV E

pure , E
method
diluted )

EAV E
pure � E

method
diluted

]
,

where, for example,

cov(EAV E
pure , E

BDT
diluted) = cov

(
7∑
i=3

wiEi,
20∑
j=1

WjEj

)
=

7∑
i=3

wiWiσ
2
Ei
,
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Figure 4.54: E vs. cos(θπ−) for the last 6 energy windows from
1960 MeV<W<2200 MeV. The violet, magenta, and green points are from the
Silver 3, 4, and 5 data, respectively.

where wi, and Wj are the weights to compute the EAV E
pure , and the EBDT

diluted, respectively.
Note that we computed the EAV E

pure using only the third to the seventh missing mo-
mentum bins, while to compute the EBGsub

diluted we used the first 11 bins, and to compute
the EBDT

diluted we used all the bins. It is clear that the decision to select only bins with
missing momentum within 20 MeV/c to 70 MeV/c to obtain the EAV E

pure was rather
arbitrary. Therefore, the EFIT

pure is considered a more optimal estimation since it is
obtained using all the measured bins (the third order polynomial fit on twenty miss-
ing momentum bins). However, we also learned that the difference between EAV E

pure

and EFIT
pure is small, see Table 4.9. Hence, we will compute the correction factor by

using the EFIT
pure , but estimate the covariance using the EAV E

pure ; it is straightforward to
compute the covariance using the above formula.

The correction is assumed to be a global scaling constant, i.e., independence of
energy W bins , and angular cos(θπ−) bins. To verify whether this assumption is
valid, we divided the data by placing cuts on the W and the cos(θπ−). In particular,
we obtained the correction factors for the two disjoint subsets with W<1900 MeV,
and W≥1900 MeV. Next, we selected a smaller subset for which cos(θπ−)≥0.0, and
computed the correction factors (we did not consider the case of cos(θπ−)<0.0 be-
cause, firstly, the E asymmetry values change from negative to positive quite often,
and, secondly, the statistics are low). We present the obtained values of the correc-
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Figure 4.55: Combined E vs. |p|missing for 1480 MeV<W<2320 MeV, with
MM(pπ−) < 1.03 GeV, and without any angular cuts. The third order polynomial
fit is the blue curve (it is not a theoretical suggestion).

tion factor in Table 4.9; the values of the correction factors are statistically consistent
with each other. Hence, the assumption that the correction for the final state (and/or
the initial state) interaction(s) can be treated as a global correction is valid, and use
the values in the last row of Table 4.9 because they were obtained with all available
statistics. In addition, we also plot the E asymmetry vs. the missing momentum for
the three mentioned data sets in Figure 4.56; the plots look consistent with Figure
4.55. Note that this global correction can easily be replaced (by rescaling the E val-
ues by a single reported constant) by more elaborate energy-and-angular-dependent
corrections.

We have assumed that the neutron polarization is equal to the deuteron polariza-
tion, but this is not true. The neutron polarization is always smaller than the deuteron
polarization. It is because the deuteron wavefunction has, in addition to an S-wave
component, a D-wave component in which the spin of the neutron is anti aligned to
the deuteron’s spin. In particular, according to the paper by Ramachandran et. al.
[64], the neutron polarization can be approximately computed as Pn = Pd(1− 3

2
PD),

where Pn and Pd are neutron and deuteron polarizations, respectively, and PD denotes
the deuteron D-state probability. Note that the D-state contribution increases as the
Fermi motion of the neutron (or proton) gets larger, thus the neutron’s polarization
decreases; this effect partially explains why in Figure 4.55 the magnitude of the E
asymmetry decreases as the missing (recoil) momentum increases. At low recoil mo-
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Figure 4.56: Combined E vs. |p|missing for W<1900 MeV (top left), with
W≥1900 MeV (top right), and with cos(θπ−)≥0.0 (bottom). The third order polyno-
mial fits (red curves) are to help guide the eyes, not a theoretical suggestion.

Selection EAV Epure EFITpure EBDTdiluted EBGsubdiluted

W<1900MeV/c -0.530±0.008 -0.535±0.006 -0.485±0.006 -0.512±0.006

W≥1900MeV/c -0.650±0.013 -0.655±0.011 -0.601±0.009 -0.631±0.010

cos(θπ−)≥0.0 -0.627±0.008 -0.630±0.007 -0.583±0.006 -0.611±0.006

NO CUT -0.552±0.007 -0.554±0.006 -0.510±0.005 -0.535±0.005

Selection BDT correction Background-subtraction correction
W<1900MeV/c 0.103±0.013 0.045±0.010

W≥1900MeV/c 0.090±0.013 0.038±0.011

cos(θπ−)≥0.0 0.080±0.009 0.031±0.006

NO CUT 0.086±0.008 0.036±0.005

Table 4.9: Correction factors for dilution effect caused by the spectator proton. Note
that the correction factors were obtained using the values of EFIT

pure (not EAV E
pure ), and

the corrections would be applied multiplicatively as (1+0.086) for the BDT method
and (1+0.036) for the 1D cut background supression and subtraction method.

mentum the D-state contribution is on the order of 5%2 which implies the neutron
polarization is only 92.5% of the deuteron polarization. Notice that this is consistent

2Private conversation with g14 colleague Andy Sandorfi.
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with the correction factor (8.6%) in Table 4.9. In other words, another approach to
correct for the dilution effect is to scale down our reported target polarizations in Ta-
bles 3.1 and 3.2 to 92.5% of their reported values. In a recent theoretical calculation,
accounting for energy-and-angular dependence, Harry Lee found that for signal events
with missing momentum less than 100 MeV/c the dilution effect from the D-state
component on the E asymmetry for this pπ− channel is negligible3. Consequently,
we are confident that the 8.6% correction is optimal to correct for the dilution effect
shown in Figure 4.55. Notice that we did not use the other approach— i.e., reducing
the target polarization to 92.5%—because we think the 8.6% correction accounts for
also the final-state interaction and is more appropriate because it was obtained based
on the data where the E asymmetry was measured. Nevertheless, for low statistics
data for which a similar study like in this section may not be possible, reducing the
target polarization to 92.5% to be used as neutron polarization in computing the E
asymmetry is the best approach.

4.3.4.2 The E asymmetry as a Function of cos
(
ΘCM
π−

)
, and W

The angle ΘCM
π− is defined as the angle between the incident photon and the scattered

π− in the overall center-of-mass frame—the target neutrons were assumed to be at-
rest, ignoring any effects of Fermi motion. We selected this center-of-mass frame
because the direction of the incident photon is unchanged; thus the angles between
the photon helicity and the target polarization vector remain either 00 or 1800 as
in the lab frame. The alternative would be to select the proton-and-pion rest frame
(this frame “includes” the effects of the Fermi motion, but requires more corrections
for the E measurements because of the effect of Wigner rotation on the polarization
vectors). Nevertheless, we examined the results in this alternative frame and found
only modest differences. Hence, we decided to use the overall center-of-mass frame.
Next, we plot the E asymmetry as a function of the cos

(
ΘCM
π−

)
in Figures 4.57, and

4.58. Additionally, in Figures 4.59 and 4.60, we present the plots of the E asymmetry
vs. W . These plots are the complements of the plots in Figure 4.57 and 4.58. They
show the energy dependence of the E asymmetry, and are of theoretical interest as
well. The plots are after the correction discussed in Section 4.3.4.1.

3Private conversation with Harry Lee.
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Figure 4.57: Combined E asymmetry vs. cos(θπ−) for the energy windows from
1480 MeV<W<1960 MeV.
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Figure 4.58: Combined E asymmetry vs. cos(θπ−) for the energy windows from
1960 MeV<W<2320 MeV.
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Figure 4.59: Combined E vs. W for the cos
(
ΘCM
π−

)
windows from -0.846 to 0.077.
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Figure 4.60: Combined E vs. W for the cos
(
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windows from 0.077 to 0.692.
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4.4 Systematics Studies

In this section, we employ various systematics studies to quantify the robustness of
the BDT method in selecting the bound neutron events. Note that each systemat-
ics test results in a slightly different selection event sample with a different number
of remaining background events. Consequently, for each test, we obtain a differ-
ent dilution factor

YTarget
YHD

. In section 4.3.4 we asserted that the more precise the
measurement (smaller statistical uncertainty), the larger weight it contributes to the
combined (weighted average) measurement. Consequently, on average, the difference
of the E measurements between the combined and Gold 2 (or Silver 1&2) values is
much smaller than the other run periods (because the statistics of the Silver 3 is
small while the target polarizations of the Silver 4 and 5 are low, thus, they have
larger statistical uncertainties). In Figures 4.61, we plot the difference between the
combined E and the individual E (obtained solely from the Silver 1&2, Gold 2, Silver
3, and Silver 4, respectively); as expected, on average, the values of the combined E
are closer to the values from the Gold 2 (or the Silver 1&2) periods than from the
Silver 3, and 5 periods (this statement is also true for the Silver 4 as well). Therefore,
systematic uncertainties for the combined E measurements are affected mostly by the
systematic uncertainties of Gold 2 and Silver 1&2 periods. Hence, we only focused
on the systematic uncertainties from Gold 2 and Silver 1&2 data. We employed the
following procedure to estimate the systematics uncertainty for each systematics test:

� Execute the following steps for both the Silver 1&2 and Gold 2 periods:

1. Compute the E asymmetry as a function of the z vertex, Ê(z), using the BDT
method,

2. Vary appropriate parameter(s) for each systematics test and compute the E

asymmetry as a function of the z vertex, Ẽ(z),

3. For each z vertex bin j, and energy bin i, compute δij = Ẽi(zj)− Êi(zj),

4. Fit the δij with a Gaussian distribution and obtain the mean (µδ) and width
(σδ) from the fitted Gaussian (see 4.3.2 for how to interpret for the two fitted
parameters),

5. Obtain σµ, the uncertainty on the mean µδ by computing σµ = σδ/
√
N , where

N is the total number of z bins.

6. Compute the overall systematic uncertainty by combining the Gold 2 and Silver
1&2 systematic uncertainties (taking a weighted quadratic mean):

σsystematic =

√
1

σ2
µGold2

µ2
Gold2 + 1

σ2
µSilver1&2

µ2
Silver1&2√

1
σ2
µGold2

+ 1
σ2
µSilver1&2

, (4.15)
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Note that since the values of Ê(z), and Ẽ(z) are negative (see Figures 4.39, and 4.44)

if µδ is positive then the magnitude of Ê(z) is larger). We implemented nine system-
atic tests and will present more detail in the following sections. For each test, we
computed the σsystematic. To estimate the total systematic uncertainty, we computed
the square root of the quadratic sum of all individual systematic test’s σsystematic (i.e.,

σtotalsystematic =
√∑

i

[
σisystematic

]2
). Note that this procedure estimates only an overall

(average) systematic uncertainty— i.e., it is the same for all measuring bins. This
is a reasonable approach if the statistical uncertainties, on average, are larger than
the systematic uncertainties (small systematic difference between the BDT and the
1D-cut background suppression and subtraction methods suggests this assumption is
valid).
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Figure 4.61: Difference between the combined E and individual E (obtained indi-
vidually from the Silver 1&2, Gold 2, Silver 3, and Silver 5 periods, respectively) as
EPeriod − ECombined.

4.4.1 Systematic Effects from Tightening the Z Vertex Cuts

In section 4.3 we placed cuts on the z vertex to reject a majority of remaining target
background (selecting only events within −10.2 cm≤ z ≤−5.5 cm), we then estimated
the remaining target background and applied an overall scaling factor (see Eq. 4.9).
We now applied tighter cuts (selecting only events within −9.6 cm≤ z ≤−6.0 cm)—
inevitably sacrificing some signal events, and obtained the E measurements. Note that
for this test the E measurements were computed as a function of cos

(
ΘCM
π−

)
. Next we
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compared the E(cos
(
ΘCM
π−

)
) measurements from the old (−10.2 cm≤ z ≤−5.5 cm)

and the tighter (−9.6 cm≤ z ≤−6.0 cm) cuts. In detail, Figure 4.62 shows the Gaus-
sian fits to the bin-by-bin difference histogram for the Gold 2 and Silver 1&2 data,
and Table 4.10 lists the numerical results. The fitted means are small implying
a small systematic uncertainty. Unfortunately, since the E measurement’s statisti-
cal uncertainties are not constant across the domain of cos

(
ΘCM
π−

)
, our procedure

might overestimate the correct standard deviation (or fluctuation) of the differences
(EBDT − ETEST ) resulting a possibly larger Gaussian widths in Figure 4.62. On the
other hand, since the E distribution is expected to be statistically flat across the
domain of z, the estimations would be more accurate (thus the remaining tests were
carried out with using the variable z vertex).
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Figure 4.62: Distributions of δij fitted with Gaussians for Gold 2 (left plot) and Silver
1&2 (right plot) for the first test (tightening the z vertex cuts).

Run period
YTarget
YHD

Systematic difference (EBDT − ETEST ) σsystematic
Gold 2 2.81% -0.009 ± 0.004

0.009
Silver 1&2 4.09% -0.009 ± 0.004

Table 4.10: Estimated σsystematic for the first test: tightening the z-vertex cuts.

4.4.2 Systematic Effects from Removing the Missing Mass
and Missing Momentum Cuts

In section 4.3.1.2, we introduced the cuts on the missing mass and missing momen-
tum (see Figure 4.35) to reject a small remaining physics background. Note that
we did not make any correction after the cuts (correction was only for the target
background). For the second test, we relaxed the cuts and studied the new E values.
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We compared the two sets of measurements (with and without the missing mass and
missing momentum cuts) and estimated the systematic difference. Table 4.11 lists the
numerical results, and Figure 4.63 shows the Gaussian fits for the Gold 2 and Silver
1&2 data. As expected, relaxing the cuts results in a slightly diluted E asymmetry
(the Gaussian centroids are positive).

Run period
YTarget
YHD

Systematic difference (EBDT − ETEST ) σsystematic
Gold 2 3.65% +0.030 ± 0.002

0.026
Silver 1&2 5.16% +0.021 ± 0.002

Table 4.11: Estimated σsystematic for the second test: relaxing the missing mass and
missing momentum cuts.
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Figure 4.63: Distributions of δij fitted with Gaussians for Gold 2 (left plot) and Silver
1&2 (right plot) for the second test (relaxing the missing mass and missing momentum
cuts).

4.4.3 Systematic Effects from Varying the BDT Output Cut

This systematic study consits of three smaller tests. Recall that we place a cut at
0.03 on the BDT output to minimize the misclassification cost. Here we set the
cut at 0.00, 0.06, and 0.09, respectively. Apparently, the cut at 0.0 allows more
background, while the other two values reject more background (reject more signal
as well). Figures 4.64, 4.65, and 4.66 show the Gaussian fits for the Gold 2 and Silver
1&2 data for different tests on the BDT cut values. Table 4.12 presents results: the
BDT cut at 0.00 results in a very slightly diluted E asysmetry, while the magnitude
of the asymmetry is higher when tightening the BDT cut.
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Figure 4.64: Distributions of δij fitted with Gaussians for Gold 2 (left plot) and Silver
1&2 (right plot) for the third test (loosening the BDT cut to 0.00).
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Figure 4.65: Distributions of δij fitted with Gaussians for Gold 2 (left plot) and Silver
1&2 (right plot) for the forth test (tightening the BDT cut to 0.06).

BDT cut Run period
YTarget
YHD

Systematic difference (EBDT − ETEST ) σsystematic

0.00
Gold 2 3.23% +0.003 ± 0.001

0.002
Silver 1&2 4.60% 0.000 ± 0.001

0.06
Gold 2 2.90% -0.001 ± 0.001

0.002
Silver 1&2 4.28% -0.002 ± 0.001

0.09
Gold 2 2.80% -0.003 ± 0.002

0.003
Silver 1&2 4.10% -0.002 ± 0.002

Table 4.12: Estimated σsystematic for the test of varying the BDT output cut.

129



-0.6 -0.4 -0.2 0 0.2 0.4 0.6
0

5

10

15

20

25

30

35

40

45

) for all energy and z vertex binsBDT-E
 testth5

(E

=-0.003µ

=0.024σ

 273 entries•

=0.002273/σ=µσ

-0.6 -0.4 -0.2 0 0.2 0.4 0.6
0

5

10

15

20

25

30

35

40

) for all energy and z vertex binsBDT-E
 testth5

(E

=-0.002µ

=0.027σ

 247 entries•

=0.002247/σ=µσ

Figure 4.66: Distributions of δij fitted with Gaussians for Gold 2 (left plot) and Silver
1&2 (right plot) for the fifth test (tightening the BDT cut to 0.09).

4.4.4 Systematic Effects from Employing a Differently Con-
structed BDT

In this study we trained (constructed) a new BDT using a different training signal
simulation data. In particular, since the BDT algorithm relies on the training data
to learn the distributional characteristics of the real data, distributionally different
training data will result in a differently constructed BDT. To obtain a distributionally
different training data, we purposely improved the momentum resolutions (about
twice the correct resolution) of the scattered proton and π−, which propagated into
different missing momentum and missing mass distributions, see Figure 4.67. In
particularly, it was the drift chamber resolution that was improved. The reason
for this test is to quantify the sensitivity of the BDT classification performance.
Fortunately, the BDT method is insensitive to the improved training signal data as
verified by a small systematic difference shown in Table 4.13 and Figure 4.68.

Run period
YTarget
YHD

Systematic difference (EBDT − ETEST ) σsystematic
Gold 2 2.98% -0.001 ± 0.002

0.002
Silver 1&2 4.27% -0.002 ± 0.002

Table 4.13: Estimated σsystematic for the sixth test: employing a differently constructed
BDT.
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Figure 4.67: Missing Momentum distributions from signal simulation data; red his-
togram has correct momentum resolution (for detected p, and π−), and blue histogram
has higher momentum resolution than CLAS drift chamber momentum resolution.
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Figure 4.68: Distributions of δij fitted with Gaussians for Gold 2 (left plot) and Silver
1&2 (right plot) for the sixth test (employing a differently constructed BDT).

4.4.5 Systematic Effects from Tighening the Missing Mo-
mentum Cut

In section 4.3.4.3, we observed that the magnitude of E asymmetry decreases as the
magnitude of the missing momentum increases. Although, we considered this phe-
nomena as a real physics effect—possibly the evidences of both final state and initial
state interactions, we implemented a simple procedure to correct it. In particular, if
we only selected events with the missing momentum less than 110 MeV/c, then the
multiplicative correction factor is only about 3%, while the multiplicative correction
factor is about 8% if we make a wider missing momentum selection (i.e., less than 200
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MeV/c). It is still possible that after the global corrections, there might still remain
some residue systematic difference. In particular, for this test, we placed a tighter
cut at 110 MeV/c on the missing momentum and obtained a new set of E measure-
ments. Then carrying the same procedure as in other tests to derive the systematic
difference, see Table 4.14 and Figure 4.69 (note that the correction factor of 1.036
was applied for this testing set of E values). As expected, the tighter cut increased
the magnitude of the E asymmetry (negative systematic difference). Note that the
systematic difference is small.

Run period
YTarget
YHD

Systematic difference (EBDT − ETEST ) σsystematic
Gold 2 1.40% -0.001 ± 0.004

0.009
Silver 1&2 2.10% -0.013 ± 0.004

Table 4.14: Estimated σsystematic for the seventh test: tightening the missing momen-
tum cut (to 110 MeV/c).
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Figure 4.69: Distributions of δij fitted with Gaussians for Gold 2 (left plot) and Silver
1&2 (right plot) for the seventh test (tightening the missing momentum cut to 110
MeV/c).

4.4.6 Systematic Effects from Polarization Uncertanties

In this section, we provide results from our systematic test on the uncertainties of the
beam and target polarizations—the numerical values for the statistical uncertainties
were reported in Table 3.1. To quantify the systematic effect we computed the E
asymmetry but with reduced beam and target polarizations; i.e., both quantities were
reduced by one standard deviation of their respective total uncertainties (statistical
and systematic). The effect on the E asymmetry is shown in Figure 4.70. As a
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sanity check, we also reduced both polarizations (beam and target) for the Gold 2
run by two standard deviation of their respective total uncertainties. As expected, the
systematic shift is proportionally larger. In particular, while applying one standard
deviation reduction, we obtained µGold2 = −0.049 (see left plot of Figure 4.70), we
obtained µGold2 = −0.104 for two standard deviation reduction. Table 4.15 presents
the numerical values of the systematic uncertainty study. Also, note that the dilution
factor

YTarget
YHD

is the same as in Table 4.6.
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Figure 4.70: Distributions of δij fitted with Gaussians for Gold 2 (left plot) and Silver
1&2 (right plot) for the eighth test (reducing the beam and target polarizations).

Run period Systematic difference (EBDT − ETEST ) σsystematic
Gold 2 -0.049 ± 0.001

0.062
Silver 1&2 -0.114 ± 0.002

Table 4.15: Estimated σsystematic for the eighth test: reducing the beam and target
polarizations.

4.4.7 Sytematic Uncertainty Assignment for the BDT Method

Previously, we described several studies to test the robustness of the BDT method.
For each test, the systematic differences were estimated separately for the Gold 2
and Silver 1&2 data, and the combined systematic was obtained next by comput-
ing the weighted quadratic mean. In addition to these tests, the study in section
4.3.2 where the BDT was compared with the 1D-cut background suppression and
subtraction method is also qualified as a proper systematic test. Therefore, we
included the systematic estimate from section 4.3.2 into the final list of the sys-
tematic tests in Table 4.16. The overall systematic uncertainty was derived as a
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square root of the quadratic sum of the individual σsystematic. The numerical value
for the overall systematic uncertainty is presented in Table 4.16 as well. This result
(σoverall =0.088) is the total systematic uncertainty for the average value of the E
asymmetry, which is estimated to be −0.570± 0.005 (see Figure 4.71). Equivalently,
the systematic uncertainty can be expressed as the fraction of the average value of
the E asymmetry (i.e., 0.088/0.570 = 15.4%); this alternative is more appropriate when
reporting the systematic uncertainties of E

(
cos
(
ΘCM
π−

))
, and/or E(W ) values— i.e.,

σsystematic = 0.154× E
(
cos
(
ΘCM
π−

))
.

σsystematic σ2
systematic

1st test (Table 4.10) 0.009 8.10·10−5

2nd test (Table 4.11) 0.026 6.76·10−4

3rd test (Table 4.12) 0.002 4.00·10−6

4th test (Table 4.12) 0.002 4.00·10−6

5th test (Table 4.12) 0.003 9.00·10−6

6th test (Table 4.13) 0.002 4.00·10−6

7th test (Table 4.14) 0.009 8.10·10−5

8th test (Table 4.15) 0.062 3.84·10−3

9th test 0.055 3.03·10−3

σ2
overall 7.73·10−3

σoverall 0.088

Table 4.16: List of estimated σsystematic for all the systematic tests (including the test
of consistency between BDT and 1D-cut background suppression and subtraction
method (referred to as the 9th test)), see text for test enumeration. The last row
reports the overall systematic uncertainty.

4.5 Summary

This chapter presented the first set of the E asymmetry measurements for the reac-
tion γd→ π−p(ps) (for 1480 MeV≤W≤2320 MeV). We described in detail the cuts to
select a clean sample of π−p. We then introduced the 1D-cut background suppression
and subtraction and the boosted decision trees (BDT) methods to select bound neu-
trons events. The E asymmetry was obtained by both methods; but comparing the
results suggests the BDT is consistent with the 1D-cut background suppression and
subtraction method. It is more efficient (smaller statistical uncertainties), however.
Therefore, the final measurements were obtained using only the BDT method. We
then combined results from the Silver (1, 2, 3, 4, and 5) and Gold 2 periods. Fur-
thermore, we plotted the combined E asymmetry as a function of cos

(
ΘCM
π−

)
, W ,

and the recoil momentum |p|missing. While the relation between the E asymmetry
and cos

(
ΘCM
π−

)
(or W ) is an important input (or constraint) for the partial wave
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Figure 4.71: Combined E vs. the z component of the interaction vertex, for all energy
windows and angular bins.

analysis to study the N∗ spectrum (see Chapter 7 for a comparision of the E asym-
metry measurements with partial wave analysis models), the relation between E and
|p|missing might reveal interesting interactions between the neutron and the proton in-
side the deuteron (and/or the final state interactions). Next, we implemented several
systematics tests to estimate the overall systematic uncertainty which is 15.4% (i.e.,
σsystematic = 0.154× E). Lastly, the numerical values of the measured E asymmetry
are reported in Appendix B.

135



Chapter 5

Results for the E Observable for
Reaction γd→ K0Y (ps)

We present the first set of measurements for the helicity asymmetry E for the reaction
γd → K0Y (ps), where Y is either Λ or Σ0, using the CLAS g14 data. Our analysis
includes several sequential steps. The first step was to identify pπ+π−π− final-state
events using a set of well-calibrated cuts. The second step was to select events that
were from bound neutrons and to reject target-material-background (i.e., events from
aluminum wires and KelF cell walls). The next step was to remove the phasespace
background pπ+π−π−. This was followed by separating the K0Λ, and K0Σ0 events.
It is worth noting that the number of good signal events—K0Λ, and K0Σ0 events
that were originated from the bound neutrons— is significantly smaller than com-
pared to the dominating pπ+π−π− non-resonant background and/or target-material
backgrounds. Therefore, we employed only the Boosted Decision Trees (BDT) anal-
ysis tool for the tasks of rejecting the target-material and phasespace (pπ+π−π−)
backgrounds as well as seperating the K0Λ, and K0Σ0 events. This is because the
BDT algorithm—as shown in Chapter 4— is highly efficient compared to a simple
“cut” method in both rejecting background and keeping signal events. In particu-
lar, we provide details about our well-calibrated cuts to select the π+π−pπ−events in
Section 5.2. After that a BDT algorithm was employed to select the bound neutron
in a deuteron. A second BDT algorithm was utilized to remove the pπ+π−π− non-
resonant background events, and finally, we “trained” the third BDT algorithm to
separate the K0Λ, and K0Σ0 events. We report the E measurements in Section 5.4,
and systematic uncertainty studies are presented in Section 5.5.

5.1 Initial Skim

We began by selecting “+ : + : − : −” events; i.e., each event included two positively
and two negatively charged particles. Event with multiple initial photons was treated
as a set of independent events. Using the measured momentum, measured time-of-
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flight, and path length, a measured mass was determined for each particle. The left
and the right plots in Figure 5.1 show the measured mass distributions of positive par-
ticles (“plus” vs. “plus”) and negative particles (“minus” vs. “minus”), respectively.
The squared missing mass was calculated given the hypothesis “p : π+ : π− : π−”
(i.e.,computing the MM2(pπ+π−π−) of reaction γd → pπ+π−π−(X) ) and is shown
in Figure 5.2; i.e., for every event the first positive particle— for particles with the
same charge, the particle with higher momentum is usually recorded first—was given
a proton ID. At this stage, we did not place any cut on the squared missing mass.
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Figure 5.1: Left: Measured mass of 1st “plus” vs. 2nd “plus”. Two red rectangles
indicate where we placed our mass cuts to select good “pπ+π−π−” events (see Section
5.2.1). Events inside the bottom rectangle represents “pπ+π−π−” hypothesis while
events in the top left rectangle represents “π+pπ−π−” hypothesis. Right: Measured
mass of 1st “minus” vs. 2nd “minus”. Note that for particles with the same charge,
the particle with higher momentum is usually recorded first, so the plots do not look
symmetric. The plots were obtained from the Gold 2 period data, and they are on a
logarithmic scale.

5.2 π+π−pπ− Event Selection

5.2.1 Particle Identification: Measured Mass Cuts

We selected “+ : + : − : −” events which statisfy the “p : π+ : π− : π−” or
“π+ : p : π− : π−” hypothesis. Therefore, we selected region I (bottom rectangle in
the left plot of Figure 5.1) and region II (top left rectangle in the left plot of Figure
5.1) because they have the required tracks. For every event in region I the first
positive particle was assigned the proton ID and the second positive was assigned the
π+ ID. For every event in region II a reverse order was assigned. Moreover, the red
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Figure 5.2: Total squared missing mass, MM2(pπ+π−π−), calculated with hypothesis
“p : π+ : π− : π−”, i.e., the first positive particle was assigned a proton ID. The peak
near 1 GeV2 is of interest for this analysis. We did not investigate the peak near 0
GeV2. The plot was obtained from the Gold 2 period data.

rectangles in Figure 5.1 represent our mass cuts (see below)—these selection cuts are
looser than the CLAS PID cuts to save events, but tight enough to not select many
events with K+ or d final-state particles:

� Region I: 0.6 < massp < 1.6 and 0.05 < massπ+ < 0.3 GeV

� Region II: 0.8 < massp < 1.6 and massπ+ < 0.3 GeV

� For minuses: massπ− > 0.05 GeV

Note that we only placed a lower limit mass cut (at 0.05 GeV) on the minuses to simply
remove electron background events. Figure 5.3 shows the measured mass distributions
after our mass cuts—after assigning the particle identification for each charged track ;
the right plot suggests an upper limit mass cut on the minuses is unnecessary given no
clear presence of other negative charged particles (or the presence of these particles
is insignificant). In Figure 5.4 squared missing mass distribution after the mass cuts
(the red histogram) was much cleaner than before the cuts (the blue histogram). In
addition, we placed a loose cut on the squared missing mass at zero. Note that events
in the left tail (the lower mass side) of the squared missing mass distribution are
most likely from the target-material background—these events were removed later
by a BDT algorithm.

5.2.2 Particle Identification: ∆TOF Cuts

To further reduce the background due to particle misidentification, we applied ∆TOF
cuts. An explanation of this technique follows: For every detected charged particle
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Figure 5.3: Left: Measured masses of assigned protons vs. assigned π+s, i.e., the plot
is after assigning the particle identification for each charged track. Right: Measured
masses of 1st π− vs. 2nd π−. The plots were obtained from the Gold 2 period data,
and they are on a logarithmic scale.
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Figure 5.4: Total squared missing mass, MM2(pπ+π−π−), of reaction γd →
pπ+π−π−(X). The blue histogram is before the measured-mass particle selection
cuts. Events in the red histogram were selected and events in the black histogram
were rejected by the mass cuts. The plot was obtained from the Gold 2 period data.

track, the CLAS track reconstruction algorithm records its momentum, its path length
from target vertex to TOF counter, and its time-of-flight (TOFmeasured). For a given
particle with an assumed mass, one can compute TOFcalculated from the momentum
and the path length of the particle. The difference between the TOFcalculated and the
TOFmeasured is ∆TOF :

∆TOF = TOFmeasured − TOFcalculated, (5.1)
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where TOFmeasured is the measured time-of-flight. This is the time difference be-
tween event vertex time and time at which the particle hit the TOF scintillator
walls—encircling the CLAS drift chamber system. The TOFcalculated is computed as

TOFcalculated =
L

c

√
1 +

(
m

p

)2

, (5.2)

where L is the measured pathlength from the target to the TOF scintillator, c is the
speed of light, m is the hypothesized mass and p is the magnitude of the measured
3-momentum. Moreover, if the particle was correctly identified, then in a plot of
particles’ ∆TOF against their momenta a straight horizontal band around zero should
be observed. If the particles’ type was assigned incorrectly, then the same plot results
in a curved band that flattens out at high momentum. Illustratively, Figure 5.5 plots
the protons’ ∆TOF (on the left) and the second π−s’ ∆TOF (on the right) where
the two visible curved bands are from e− and µ− tracks which were misidentified as
the π−.
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Figure 5.5: Left: Proton ∆TOF vs. |p|. Right: 2nd π− ∆TOF vs. |p|. The horizontal
band at zero corresponds to correct PID, two curved bands corresponses to e− and µ−.
The plots were obtained from the Gold 2 period data. The plots are on a logarithmic
scale.

As illustrated in Figure 5.6 showing the plots of the ∆TOFp vs. ∆TOFπ+ (on
the left), and ∆TOFπ− vs. ∆TOFπ− (on the right), there are visible clusters, that
are 2.00 ns apart. Events in these clusters have corrected particle identification but
belongs to a different RF beam “bucket” (the photons are delivered in pulses that are
2.00 ns apart). The ∆TOF cuts we applied were to remove these events which have
wrong track-and-photon-timing combinations. The cuts resemble an “iron cross,” our
moniker for these cuts, see Figure 5.7. In effect, Figure 5.8 suggests a small amount
of signal being rejected, while the cuts were able to remove a significant number of
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background events. Note that the “iron cross” cut was meant to be very loose. Any
remaining background would be rejected by later cuts.
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Figure 5.6: Left: the ∆TOFp vs. ∆TOFπ+ . Right: ∆TOFπ− vs. ∆TOFπ− . Visible
clusters are at 2 ns interval, (±2,±2), (±4,±4), etc. The data used to plot was the
Gold 2 period data. The plots are on a logarithmic scale.
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Figure 5.7: Left: the ∆TOFp vs. ∆TOFπ+ . Right: ∆TOFπ− vs. ∆TOFπ− . The
∆TOF cuts were employed primarily to remove events with wrong track-and-photon-
timing combination. The data used to obtain the plots was the Gold 2 period data.
The plots are on a logarithmic scale.

5.2.3 Detector Performance: Fiducial Cuts

As mentioned before, we relied on the BDT algorithm to reject most of the difficult-
to-seperate backgrounds. To optimize the BDT’s performance, it is necessary to have
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Figure 5.8: Total missing mass MM(pπ+π−π−) of reaction γd→ pπ+π−π−(X) after
∆TOF cuts is the red histogram. Events in the black histogram were rejected by the
cuts. The plot was obtained from the Gold 2 period data.

good simulations that represent closely the real data to “train” the BDT (more detail
later); for this reason, understanding the CLAS detectors, and simulating correctly
their performances is important. In particular, because there are some regions or
elements of the detectors that were not well understood or hard to simulate, to allow
a reliable comparison between the real data and simulation data, these regions have
to be removed from both real and MC data; this section discusses these types of
cuts. Primarily, we only applied cuts on the drift chamber detectors (since we did
not perform a cross section analysis, but rather a target-beam asymmety, simulating
the exact CLAS acceptance is not necessary).

Previous studies for the g11 data set [51] advised removing events with tracks going
near the superconducting torus coils where the magnetic field varies too rapidly to
be properly modeled (by GSIM). We thus removed events which have at least one
track going into these regions. Particularly, in the forward direction where the coils
occupy up to ∼ 80% of space, we placed a hard cut in the forward direction for tracks
with cosΘlab > 0.985. In addition, we placed cuts at 0.5 rad (note that g11 fiducial
cuts are at 0.4 rad [51]; we loosened the cut to preserve statistics) on the angle Φsector
measured in the sector coordinate system. In other words, accepted particles had
their measured |Φsector| < 0.5 rad. These Φ cuts were to remove the edges of each of
the CLAS drift chambers which are difficult to simulate. Finally, Figure 5.9 shows
the angular distribution of protons before (left) and after (right) our fiducial cuts,
while Figure 5.10 shows the angular distribution of π− before (left) and after (right)
our fiducial cuts (the angular plots for π+ are similar). Finally, we show the total
missing mass, MM(pπ+π−π−), after the fiducial cuts in Figure 5.11.
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Figure 5.9: Left: Proton angular distribution: Φ vs. Θ before the fiducial cuts. Right:
Proton angular distribution: Φ vs. Θ after the fiducial cuts. The unit of Φ is radian,
while the unit of Θ is degree. The plots were obtained from the Gold 2 period data.
The plots are on a logarithmic scale.

θ 
0 20 40 60 80 100 120 140 160 180

φ 

-3

-2

-1

0

1

2

3

1

10

210

2

-π before fiducial cut θ vs φ

θ 
0 20 40 60 80 100 120 140 160 180

φ 

-3

-2

-1

0

1

2

3

1

10

210

2

-π after fiducial cut θ vs φ

Figure 5.10: Left: π− angular distribution: Φ vs. Θ before the fiducial cuts. Right:
π− angular distribution: Φ vs. Θ after the fiducial cuts. The unit of Φ is radian,
while the unit of Θ is degree. The plots were obtained from the Gold 2 period data.
The plots are on a logarithmic scale.

5.2.4 Squared Missing Mass Cut

In this section we discuss a cut to reject some target-material background events. The
remaining target-material background—that survived this cut—would be rejected
by employing the BDT algorithm (more detail later). However, by rejecting some
background events at this stage, we “force” the BDT to “focus” on the more difficult-
to-remove background events (i.e., events that are nearly indistinguishable from the
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Figure 5.11: Total missing mass MM(pπ+π−π−) before and after the the fiducial cuts
are the blue and red histograms, respectively. Events in the black histogram were
rejected by the fiducial cuts. The plot was obtained from the Gold 2 period data.

bound signal events). To implement the cut, for every event we assigned the neutron
mass as the target mass and computed the total squared missing mass; then we placed
a cut at −0.2 GeV2. Effectively, the squared missing mass distribution “amplifies” the
difference between the quasi-free signal and the target-material background events.
In particular, as shown in Figure 5.12 the cut is very effective in rejecting a majority
of target-material background (the right plot which was obtained from the empty-
target-period data), while it is very loose for the quasi-free signal simulation data (the
left plot which was obtained from the signal simulation data). Moreover, we show
the effect of the cut on the Gold 2 data in Figure 5.13. Note that both the missing
mass and missing momentum distributions were computed using the deuteron mass
as the target mass. Moreover, the cut rejected correctly events with large missing
momenta (the right plot), even though they might have missing mass values close to
938 MeV—the mass of the proton. Lastly, two loose selection cuts were implemented
to remove unambiguous target-material background events:

� Total Missing Mass (reaction γd→ pπ+π−π−(X)) larger than 1.4 GeV, and

� Total Missing Momentum (reaction γd→ pπ+π−π−(X)) larger than 0.6 GeV/c.

Note that eachK0Σ0 event has an extra undetected photon (i.e.,γn(ps)→ K0Σ0(ps)→
K0Λ(γps)), hence the missing mass and missing momentum are larger because of the
inclusion of this undetected photon— it is the main reason for us to place the loose
selection cuts as described above to preserve these K0Σ0 events.
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Figure 5.12: Left: Total squared missing mass, MM2(pπ+π−π−), of reaction
γn → pπ+π−π−(X) from simulation data. Right: Total squared missing mass,
MM2(pπ+π−π−), from the empty-target-run-period data. The magenta lines in-
dicate the cut to reject background events originating from the target material (i.e.,
rejecting events with MM2(pπ+π−π−) < −0.2 GeV2).
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Figure 5.13: Left: Total missing mass, MM(pπ+π−π−), of reaction γd →
pπ+π−π−(X) before (blue) and after the squared missing mass cuts (selection in
“red” and rejection in “black”). Right: Total missing momentum before (blue) and
after the squared missing mass cut (selection in “red” and rejection in “black”). The
magenta lines indicate additional cuts on the missing mass and missing momentum
to reject unambiguous background events. The plots were obtained from the Gold 2
period data.

5.2.5 K0Y Loose Selection Cuts

The last section concluded our π+π−pπ− event selection. We proceed into the next
step: K0Y event selection. Note that we referred K0Λ and K0Σ0 events collectively
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as K0Y events. Figure 5.14 plots invariance mass of (pπ−2 ) versus invariance mass
of (pπ−1 ), IM(pπ−2 ) vs. IM(pπ−1 ), obtained from the Gold 2 data showing that both
the π− are equally likely to form a pair with the proton (or the π+). Consequently, a
naive assignment such as always combining the proton (or π+) with the first π− and
the second π− with the other positive would not be efficient. We will present a better
procedure.
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Figure 5.14: IM(pπ−2 ) vs. IM(pπ−1 ). Two bands that represent the Λ particle bound
have equal strength suggesting both the π−s are equally likely form a pair with the
proton. The units are in GeV. The data used to plot was the Gold 2 period data.

It is worth studying again the K0Y signal simulation data to decide the best
model (or fit) for the K0 and Λ invariance mass distributions. Particularly, the left
plot in Figure 5.15 shows IM(pπ−1 ) vs. IM(pπ−2 ). It is obvious, that for the events
with IM(pπ−2 ) >1.2 GeV, the first π− is the decay product of the Λ. Furthermore,
the right plot in Figure 5.15 shows the IM(pπ−1 ) for events with IM(pπ−2 ) >1.2 GeV
with a fitted Gaussian. Understandably, the fit is not good, because the momen-
tum resolution for the scattered p and π− are energy-dependent (i.e., the higher the
momentum, the worse the resolution)—a single Gaussian distribution represents an
energy-independent resolution. To improve the fit, we could fit two Gaussians with
different widths to the histogram as shown in the left plot of Figure 5.16—clearly
the alternative fit is much better. Moreover, we could fit the histogram with a Breit-
Wigner distribution as shown in the right plot of Figure 5.16. The qualities of the
two fits in Figure 5.16 are about the same, but the Breit-Wigner fit has fewer param-
eters. Therefore, we modeled the K0 and Λ invariance mass distributions with the
Breit-Wigner distribution. We introduce a procedure to “pair” the particles next.

First, it is apparent that for true K0Λ events, there are only two possible com-
binations: either (pπ−1 ) and (π+π−2 ), or (pπ−2 ) and (π+π−1 ). Furthermore, let us
assume that the (pπ−1 ) and (π+π−2 ) combination is the correct one, then IM(pπ−1 )
and IM(π+π−2 ) should be closer to the Λ and the K0 mass centroids than the other
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The unit is in GeV. Right: IM(pπ−1 ) for events with IM(pπ−2 ) >1.2 GeV (thus the
first π− is surely the decay product of the Λ). The data used to plot was the signal
simulation data.
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Figure 5.16: IM(pπ−1 ) for events with IM(pπ−2 ) >1.2 GeV (thus the first π− is surely
the decay product of the Λ). The left plot was fitted with double Gaussians, and the
right plot was fitted with a Breit-Wigner distribution. The data used to plot was the
signal simulation data.

combination. In other words, we should observe the followings for true K0Λ events:

|IM(pπ−1 )−mΛ| ≤ |IM(pπ−2 )−mΛ|, and (5.3)

|IM(π+π−2 )−mK0| ≤ |IM(π+π−1 )−mK0|, (5.4)
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where mΛ, and mK0 are the mass centroids of the Λ and the K0, respectively. As
discussed previously, the Λ and K0 invariance mass distributions can be modeled
by the Breit-Wigner distribution. With these two loose assumptions, we could now
obtain a very effective procedure to ID the π−:

1. Compute IM(pπ−1 ), IM(pπ−2 ), IM(π+π−1 ), and IM(π+π−2 ),

2. Compute the product of fBW (IM(pπ−1 ),mΛ, ΓΛ)× fBW (IM(π+π−2 ),mK0 , ΓK0),
where fBW (m,m0, Γ ) = Γ

2π[(m−m0)2+(Γ/2)2]
is the probability distribution func-

tion of the Breit-Wigner distribution with parameter m0 being the centroid of
the distribution, and Γ being the full width at half maximum (FWHM); these
variables were obtained from fits, see Table 5.1, and

3. Compute the product of fBW (IM(pπ−2 ),mΛ, ΓΛ)× fBW (IM(π+π−1 ),mK0 , ΓK0),

4. Compare results of Step 2 and Step 3. If the product in Step 2 is greater, then
pairing π−1 with p, and π−2 with π+; otherwise, reversing the assignment.

Simulation Gold 2 Silver 1&2

Λ
m0 = 1, 117.16± 0.09 m0 = 1, 119.58± 0.14 m0 = 1, 119.76± 0.24
Γ = 9.06± 0.20 Γ = 9.54± 0.52 Γ = 9.42± 0.54

K0 m0 = 501.75± 0.17 m0 = 506.88± 0.42 m0 = 505.81± 0.95
Γ = 21.96± 0.34 Γ = 27.16± 0.86 Γ = 24.26± 1.88

Table 5.1: Parameters for the Breit-Wigner distributions obtained from fittings.

Statistically speaking, for a true K0Y signal Step 2 and Step 3 calculate the
event likelihoods of kinematically being K0Y (we only used the invariant mass in-
formation). It should be clear now that the correct combination should have higher
likelihood. To test the effectiveness of the above procedure, we applied it on our
γn(ps)→ K0Λ(ps) simulation data, Figure 5.17 shows on the left the IM(π+π−K0) vs.
IM(pπ−Λ )—assignments preferred by the procedure, and on the right the IM(π+π−Λ )
vs. IM(pπ−K0)—assignment against the “suggestion”. It is obvious that the procedure
works very well for K0Λ signal simulation events. Unfortunately, the procedure intro-
duces bias when applied on pπ+π−π− phase space background. Figure 5.18 points out
the lack of events surrounding the mass region of the K0Λ for the right plot, which
means there were more events in the mass region of the K0Y for the left plot— like
before the left plot shows suggested “right” combination by the procedure. It turns
out that the observed bias is due to the way we assigned combinations using just in-
variance mass information. i.e., the combination that is “closer” to the K0Y region
is the right combination. For K0Y signal events the “closer” combination is always
the correct combination, but for pπ+π−π−phase space background events the “closer”
combination can be either “correct” or not (both combinations should be wrong for
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background, but we need to identify one combination for later usage). In particular,
ideally, for this symmetric phase space background, the “closer” combination should
be assigned as K0Y combination only 50% of the time. The procedure does not in-
clude a feature to make random assignment for phase space background events, hence
the observed bias. The only consequence of this imperfection is that there are more
background events under the K0Y region than there should have been, which only
means any background rejection method needs to be better than it needs it to be
otherwise. Finally, Figure 5.19 shows on the left the IM(π+π−K0) vs. IM(pπ−Λ ), and
on the right the IM(π+π−Λ ) vs. IM(pπ−K0) for the Gold 2 data.
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Figure 5.17: Left: IM(π+π−K0) vs. IM(pπ−Λ ) of the preferred combination for (pπ−)
and (π+π−) by the discussed procedure. Right: the IM(π+π−Λ ) vs. IM(pπ−K0) for the
other “wrong” combination. The procedure works very well in this case. The data
used to plot was the simulation data of the signal reaction γn(ps) → K0Λ(ps). The
units are in GeV. The plots are on a logarithmic scale.

We then applied loose selection cuts to remove unambiguous phase space back-
ground events as followed:

� Cut on Λ invariance mass: IM(pπ−Λ ) <1.2 GeV,

� Cut on K0 invariance mass: 0.4 GeV< IM(π+π−K0) <0.6 GeV.

Finally, we show in Figure 5.20 the distributions of IM(pπ−Λ ) (on the left) and
IM(π+π−K0) (on the right) from the Gold 2 period data, the the Λ and K0 invariance
mass distributions were fitted with the Breit-Wigner lineshape and the phase space
background was fitted by 3rd order polynomial.
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Figure 5.18: Left: IM(π+π−K0) vs. IM(pπ−Λ ) of the preferred combination for (pπ−)
and (π+π−) by the discussed procedure. Right: the IM(π+π−Λ ) vs. IM(pπ−K0) for
the “wrong” combination. The procedure introduces bias in this case. The data
used to plot was the simulation data of the 4-body phase space background reaction
γn(ps)→ π+π−pπ−(ps). The units are in GeV. The plots are on a logarithmic scale.
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Figure 5.19: Left: IM(π+π−K0) vs. IM(pπ−Λ ) of the preferred combination for (pπ−)
and (π+π−) by the discussed procedure. Right: the IM(π+π−Λ ) vs. IM(pπ−K0) for the
“wrong” combination. The units are in GeV. The data used to plot was the Gold 2
period data. The plots are on a linear scale.

5.3 Bound Neutron K0Y Event Selection using Boosted

Decision Trees

This section provides details about the three tasks required to select the signal events
that would be utilized to obtain the E asymmetry measurements. First, note that
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Figure 5.20: Left: IM(pπ−Λ ) after all the cuts introduced previously, a fit of a sum of
a Breit-Wigner lineshape and a 3rd order polynomial is shown. Right: IM(π+π−K0)
after all the cuts introduced previously, a fit of a sum of a Breit-Wigner lineshape
and a 3rd order polynomial is shown. The plots were obtained from the Gold 2 period
data.

every event must originate from either the bound neutrons or the target-material
(KelF cell walls and/or aluminum “cooling” wires) background. Second, the same
event must be either a K0Y or a non-resonant background (pπ+π−π−(γ)) event. In
other words, the data is naturally partitioned into four disjoint subsets—of which
every event must belong to only one of them (see Table 5.2(a)). The first two tasks
are, therefore, to select bound neutron K0Y events. Furthermore, in Table 5.2(b) we
introduce the last task: separating K0Y events into K0Λ and K0Σ0. In summary, to
obtain the E asymmetry measurements we selected K0Y signal events that originate
from the bound neutrons, then separated Y into Λ or Σ0.

One way to achieve the three required tasks is to partition the whole data set
at once, but this approach may not robust due to its complexity. The other ap-
proach, which is more robust and less complex, is to partition the data sequentially.
Particularly, firstly, we selected the bound neutron events (equivalently, rejected the
target-material background). Secondly, we selected the K0Y events from the se-
lected bound neutron events by removing the non-resonant background background
events. And thirdly, we separated the bound neutron K0Y signal events into K0Λ
and K0Σ0 events. At every stage, we could check the background rejection/signal
selection performances, and estimated the remaining background, which would not
be straightforward to implement if we had followed the other approach. We “trained”
(constructed) three distinct Boosted Decision Trees (BDT) algorithms to execute the
outlined tasks.

In Chapter 4 (and in Appendix A), we discussed in detail the BDT algorithm. We
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repeat briefly here that the BDT is a “forest” of decision trees; the trees “view” the
data in a high dimensional space (each input variable represents a dimension in that
space) and “sculpt” the signal subset out of the signal-and-background “mixture”.
Note that it is important to pick a good set of input variables that has a large sepa-
ration between the signal and background subsets in the multidimensional space. In
addition, before it can be used, the BDT algorithm needs to “learn” the distributional
structure of the signal and background events from training data. We generated sim-
ulation data to be used as training data with the exception of the target-material
background data, for which we have the empty-target-period real data.

K0Y Non-Strange Non-Resonant Background

Bound Neutrons SELECT REJECT
Target-Material Background REJECT REJECT

(a) The description of all disjoint subsets that every event should belong to at most one of them. The
subset of interest for this analysis is the intersection of the first row and the first column.

K0Y

Bound Neutrons (SELECT) K0Λ K0Σ0

Target-Material Background (REJECT) K0Λ K0Σ0

(b) Another possible classification the K0Y set (first column in the
previous table). After selecting the bound neutron K0Y events, we
then seperate Y into Λ(Σ0).

Table 5.2: Classification tasks required for this analysis.

The first BDT algorithm was “trained” for the task of efficiently removing the
target-material background. This task is the same as the one in Chapter 4. Recall
from Chapter 4 that the constructed BDT was able to optimally select the signal
bound neutron events. An indirect implication is that the simulation data models
the bound neutrons inside the deuteron well (i.e., momentum of the spectator pro-
ton follows the Hulthen momentum distribution [57]). We, hence, used the same
model for simulation for this current task (as before the simulation data were passed
through GSIM, GPP, and USERANA to simulate the CLAS detector efficiency).
Nevertheless, there is one important difference. For the bound neutron events in the
reaction γd→ π−p(ps), the missing momentum (momentum of the spectator protons)
is small (mostly less than 200 MeV/c), which helped the BDT algorithm achieved
high efficiency in classifying bound neutron signal and target-material background
events (recall that the target-material background typically has high missing momen-
tum— larger than 200 MeV/c—on average). The missing momentum distribution
of the bound neutron events for the reaction γd → K0Y (ps) is on average wider
and peaks at a higher value of momentum— implying less distributional “separation”
between the bound neutron signal and target-material background. This is because
of the presence of an extra photon from the decay product of Σ0 → Λγ, or from
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a 5-body non-resonant background reaction γd → π+π−pπ−(γps). Therefore, since
only the four charged particles were detected, the missing mometum might consist of
the momentum of the spectator proton and an additional photon. This is illustrated
in Figure 5.21, which shows the missing momentum distributions from simulated
γn(ps) → K0Λ(ps) events (on the left plot) and from simulated γn(ps) → K0Σ0(ps)
events (on the right plot). Fortunately, we will introduce a slightly different BDT al-
gorithm that can still achieve a high efficiency for separating these event catergories.
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Figure 5.21: Left: Missing momentum for the simulated reaction γn(ps)→ K0Λ(ps),
the centroid of the distribution is at around 70 MeV/c, and the full width at half
max is about 120 MeV/c. Right: Missing momentum for the simulated reaction
γn(ps) → K0Σ0(ps) (this reaction has an extra undetected photon), the centroid of
the distribution is at around 140 MeV/c, the and full width at half max is about
170 MeV/c. Clearly the combined distribution from the two reactions (combining
distributions for both plots) would be wider and peak at high value than the distri-
bution on the left plot. The plots were constructed from the processed simulation
data. The units are in GeV/c.

We learned that the γd → K0Y (ps) reaction of interest has very low statistics,
and there are several factors to explain that. Firstly, K0Λ has a small total cross
section of about 2µb [65] (so does K0Σ0). Secondly, only charged decay of both
K0 and Λ were selected which effectively reduced the amount of collectable data by
about a half. These two factors help explain a low signal to background ratio (of
about 1 : 4, see Figure 5.20). Thirdly, the CLAS drift chamber system has poor
acceptance for this reaction since we required, for each event, four detected charged
tracks; given a rough estimate of an acceptance of 0.7 for one charged track, then for
four uncorrelated tracks we have an acceptance of about 0.74 ≈ 0.24. Furthermore,
due to technical reasons, the g14 targets were shorter than typical targets used in
previous CLAS experiments. Consequently, the number of K0Λ (or K0Σ0) signal
events is modest. As a result, we needed a highly efficient procedure to remove most
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of the pπ+π−π− non-resonant background—the effect from the background is greater
when the signal data is small—while only removing a small portion of signal events.
Hence, we relied on the BDT algorithm to complete the difficult task.

The last task of separating K0Λ and K0Σ0 is equally difficult. If the target bound
neutrons were at rest, computing the missing mass off K0 would easily separate the
two reactions. However, when we computed the missing mass off K0 by assuming
the target neutrons being at-rest while they are, in fact, moving (i.e., Fermi motion),
then the missing mass off K0 distributions of the two reactions (K0Λ and K0Σ0) are
blurred. Hence, the two distributions become strongly overlapping, see Figure 5.22.
Consequently, we employed another BDT algorithm to separate K0Λ and K0Σ0.
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Figure 5.22: Missing mass off K0 distributions computed by assuming at-rest target
neutrons. Red histogram is obtained from the K0Λ simulation data, and blue his-
togram is obtained from the K0Σ0 simulation data. Strong overlapping is obvious,
thus a simple mass cut on the missing mass off K0 variable would not cleanly seperate
the two types of signal. Note that both simulation data sets included Fermi motion
of the target neutrons. The unit is in GeV.

In summary, we will present the procedures for selecting the signal events of
interest (K0Λ and/or K0Σ0 originated from the bound target neutrons) using only
the BDT algorithm. Necessarily, we estimated the remaining target-material and non-
resonant background to implement corrections for dilution effect on the E asymmetry.
The final sets of selected events (from the Gold 2 and the Silver run periods) were
employed to measure the E helicity asymmetry in Section 5.4.

5.3.1 Bound Neutron Event Selection

The task of removing target-material background is the similar to the task in Chapter
4 where we first introduced the BDT algorithm. The same set of variables, therefore,
are used for training the BDT for bound neutron event selection. In detail, Table
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5.3 lists the variables, and the histograms of the variables are illustrated in Figure
5.23 (blue histograms were obtained from bound neutron simulation of signal data,
and red histograms show the background which were obtained from the empty-target
data.

Variable Name Description

MissingEnergy Total missing energy
MissingMomentum Total missing momentum

MissingTheta Θ of missing momentum
MissingBeta β

MissingGamma γ

CoplanarityAngle
(
p̂(pπ−Λ ) × p̂γ

)
.
(
p̂(π+π−K0) × p̂γ

)
MissingP lus Emissing + c|pmissingz |
MissingMinus Emissing − c|pmissingz |
MissingPerp |pmissingtransverse|

Table 5.3: List of variables used in the first BDT— for selecting the bound neutron
events. The last three variables are the so-called Dirac light-cone coordinate variables
[62].

As discussed previously in Chapter 4, only variables related to the missing particles
(of the reaction γd→ pπ+π−π−(X)) are utilized. This was to reduce the requirement
for generating simulation data that must be exactly matched to the real data. Ideally,
if the neutrons are really bound, then the spectator protons needed to be the “iso-
lated” partners and their kinematic variables should then have litle dependency on
other variables such as the incident photon energy, the measured momentum of the
detected π−, etc. In other words, modeling the bound neutron events should not be
concerned about other distributions beside the kinematic distributions of the specta-
tor proton— i.e., must only model correctly the Hulthen mmentum distribution [57]
for the spectator proton. Moreover, to model the reaction γd → K0Σ0(ps)—these
events have extra undetected photons from the decay Σ0 → Λγ, we simply generated
the reaction γn(ps) → K0Σ0(ps) with the Hulthen wave function for the spectator
protons and allowed the Σ0 to decay. Note that we did not generate the 5-body
non-resonant background reaction γn(ps) → π+π−pπ−(γps) because it is not nec-
essary for training the BDT. In addition, the bound neutron simulation data were
processed through GSIM, GPP, and USERANA to simulate the detector performance
(for more detail see Section 3.5). For training data of target-material background the
empty-target-period data was employed.

As mentioned earlier, with the presence of the extra photons from the electromag-
netic decay of the Σ0, the missing momentum distribution peaks at a higher value
and is broader; consequently, it is more difficult to seperate the signal and back-
ground events, thus potentially reducing the performance of the BDT algorithm. As
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Figure 5.23: Histograms of variables used in the first BDT. The red histograms are
from training background (empty-target-period), and the blue histograms are from
the training signal simulation data.

a result, we implemented a more optimal BDT algorithm—which is referred to as
a categorical BDT. We now briefly introduce this algorithm. Firstly, a categorical
variable which separates the training data into two disjoint subsets was chosen. In
particular, we selected the variable z-component of the interaction vertex to divide
the training data into aluminum-dominated-region and KelF-dominated-region sub-
sets—every signal/background event can only belong to one subset. Secondly, for
each disjoint subset, the signal and background training data—belonging to that dis-
joint subset—were used to construct a BDT. After the training phase, there were two
independently-built and distinct BDT algorithms, one for each subset. In summary,
instead of using only one BDT (or one “forest” of decision trees) for the whole data
set, we partitioned the data into two disjoint subsets and employed two different
BDT (two “forests”).

In some cases, paritioning the data into disjoint subsets can reduce the correla-
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tions between the training variables within each subset, sometimes significantly; thus
the performance of each BDT algorithm might be improved. Another significant con-
sequence of partitioning the data is that, on average, the constructed decision trees
could grow more without being overtrained (i.e., the average depth is higher than the
simple BDT algorithm)— in Appendix A we disscuss why the BDT classification abil-
ity is increasing if the decision trees grow bigger as long as the BDT is not overtrained.
One possible explanation is that when we partitioned the data, signal (background)
events in each disjoint subset become more similar; in other words the data is less
“noisy” (in Appendix A we mentioned that the overtraining problem occurs because
of statistical “noise” in the data). To summarize, partitioning and training a different
BDT on each data subset might improve the combined performance because it allows
each BDT to be more specialized.

Figure 5.24 which plots background rejection efficiency vs. signal efficiency— ie.,
given a percentage of rejected background the curve quantifies the percentage of
remaining signal—shows an optimal performance for the categorical BDT (black)
compared to the simple BDT (red) algorithms. It is obvious to choose the categorical
BDT over the simple BDT algorithms, thus only the categorical BDT is referred
to hereafter. No evidence of overtraining is observed for the categorical BDT as
shown in the left plot of Figure 5.25; high probabilities from the Kolmogorov-Smirnov
tests suggest consistent performances on training data and independent test data.
The right plot Figure 5.25 shows cut efficiencies and an optimal cut value. i.e., the
efficiencies of selecting and rejecting signal and background data, respectively, as a
function of the BDT output—the output value from the BDT between −1 and +1
to indicate how likely the event is a signal or background event. A recommended
cut at 0.036 that minimizes the misclassifcation cost will be used—to obtain this
number we must provide the initial signal to background ratio which we estimated
to be roughly 3.35/1. In particular, from Figure 5.26 we could estimate the numbers
of signal and background events (the three-to-one ratio is roughly accurate for all the
events of interest within the target region). Nevertheless, when studying systematic
uncertainties, we will vary this cut to study its effect. Lastly, we include Table 5.4 for
a qualitative assessment on how often each variable was used in building the BDT,
and for illustration, Figure 5.27 shows the first constructed decision tree.

We present the estimated efficiency of rejecting the target-material background
by placing the recommend cut on the categorical BDT output at 0.036. In Figure
5.28 we plot the empty-target-period-data distribution of the z-component of the
interaction vertex (blue histogram is before the cut, events in red (black) histogram
were selected (rejected) by the cut). We also placed an additional cut on the z-vertex
at -2.0 cm. Finally, Figure 5.29 show the missing mass and the missing momentum
distributions (blue histograms are before the BDT and the z-vertex cuts, events in
red (black) histograms were selected (rejected) by the cuts) on the left and right plots,
respectively. We also estimated the survival fraction— i.e., percentage of remaining
target-material background survived the BDT and z-vertex cuts—by calculating p =
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data sets. Right: Plots of cut efficiencies show the efficiencies as a function of cut
value-and optimal cut value.

S/(S+R) and σp =
√
p(1−p)/

√
S+R, where p is the estimated survival fraction, S (R) is

the number of events selected (rejected) by the BDT cut; the numerical value of
the estimated survival fraction is shown in Table 5.5. For illustration, we plot the
simulated missing mass and missing momentum distributions before and after the
BDT cut in Figure 5.30.
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Figure 5.26: z-component of the interaction vertex; the blue histogram is from the
Gold 2 data, and the black histogram are from the empty-target-period data. From
these histograms we estimated the signal-to-background ratio to be 3.35 : 1 for events
within the target region (inside the magenta lines).

Variable Name Relative Ranking
MissingMomentum 1.00
CoplanarityAngle 0.84
MissingPerp 0.54
MissingEnergy 0.46
MissingMinus 0.43
MissingP lus 0.41
MissingTheta 0.36
MissingGamma 0.33
MissingBeta 0.21

Table 5.4: Table of relative variable ranking. The higher the ranking the more the
variable was used to construct the decision trees. All the rankings were normalized
to the absolute ranking of the missing momentum variable.

5.3.2 K0Y Event Selection

In this section, we present our procedure to remove the π+π−pπ−(γ) non-resonant
backgrounds (i.e., both the 4- and 5-body non-resonant background types). For
several reasons, it is not optimal to do event selection for this reaction by applying a
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Figure 5.27: The first constructed decision tree, for illustration. Note that all variables
can be used multiple times.
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Figure 5.28: z-component of interaction vertex before (blue), and after the BDT cut
(selected events are shown in red, and rejected events are in black). The plots were
constructed from the empty-target-run-period data.

Total Events Surviving Events Survival Fraction

Target-material BG 12,622 3,172 3,172
12,622

= 0.250± 0.004

Table 5.5: Estimated survival fraction for the empty-target-period background data
after the BDT cut.
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cut (selected events are shown in red, and rejected events are in black). Right: Missing
momentum before (blue), and after the BDT cut (selected events are shown in red,
and rejected events are in black). The plots were constructed from the empty-target-
run-period data.
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Figure 5.30: Left: Missing mass, MM(pπ+π−π−), before (blue) and after (red) BDT
and z-vertex cuts. Right: Missing momentum before (blue), and after (red) the cuts.
The plots were constructed from signal simulation data.

simple cut method. In particular, Figure 5.31 shows the IM(π+π−K0) vs. the IM(pπ−Λ )
for the simulated K0Y signal data (where Y is either Λ or Σ0), and Figure 5.32 shows
the same invariance mass distributions but for the Gold 2 real data. It is obvious that
a simple circular mass cut as shown on both figures would probably be too tight for
signal events and would not be effective in removing background events under the the
K0 and Λ masses. Hence, we employed the BDT algorithm to obtain a more optimal
signal-selection-and-background-rejection performance than the simple circular mass
cut could do. To train the BDT, we generated two simulation data sets: K0Λ signal
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and non-strange phase space π+π−pπ− background—background simulation data was
generated from a uniform 4-body symmetric phase space kinematics. Necessarily, all
the simulation data sets were proccessed through GSIM, GPP, and USERANA to
simulate the CLAS detector efficiencies (for more detail see Section 3.5).

Addtionally, we show in Figure 5.33 the distributions of IM(pπ−Λ ) (on the left) and
IM(π+π−K0) (on the right) from the Gold 2 data, the Λ and K0 invariance mass distri-
butions were fitted with the Breit-Wigner lineshape and the non-resonant background
was fitted with 3rd order polynomial; integrating the fit functions, we can estimated
the background-to-signal ratio. The uncertainty for the background-to-signal ratio
can be obtained by propagating the uncertainties of the integrations (the ratio is to
be used to estimate the remaining non-resonant background):

σ2
Sig+BG = σ2

Sig + σ2
BG + 2σSig,BG, (5.5)

⇒ σSig,BG =
1

2

[
σ2
Sig+BG − σ2

Sig − σ2
BG

]
, (5.6)

σ2
BG/Sig =

(
BG

Sig

)2 [ σ2
Sig

Sig2
+
σ2
BG

BG2
− 2

σSig,BG
Sig ×BG

]
, (5.7)

where Sig, and σSig are the value and its uncertainty of the signal integral, respec-
tively, and BG, and σBG are the value and its uncertainty of the background integral,
respectively. σSig+BG is the uncertainty on the integral of total signal and background
fit, and σSig,BG is the covariance between the integrals of signal and background fits.
Furthermore, the σBG/Sig is the uncertainty of the background-to-signal ratio. Since
there are two background-to-signal ratios, obtained from fitting the IM(pπ−Λ ) and
IM(π+π−K0) distributions seperately, we can compute the weighted average of the
background-to-signal ratios (see Eq. 5.8 and Eq. 5.9). Note that since we did not
have an accurate parametric fitting function to “describe” correctly the background
(3rd order polynomial is very general), the estimated values of signal and background
in the two fits would likely not be the same (but the sums of signal and background
from the two fit should be within an allowed statistical fluctuation). Therefore, it
is better to take the average of the two ratios from the fits. Table 5.6 presents the
numerical values for the obtained ratios.

ravg =

[
1

σ2
rK0

rK0 +
1

σ2
rΛ

rΛ

][
1

σ2
rK0

+
1

σ2
rΛ

]−1

, (5.8)

1

σ2
avg

=
1

σ2
rK0

+
1

σ2
rΛ

, (5.9)

As shown in Table 5.1, the invariance mass distributions of the Λ and the K0 from
the signal simulation data does not perfectly match the same distributions from the
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Figure 5.31: IM(π+π−K0) vs. IM(pπ−Λ ) for K0Λ signal simulation data, thus all events
shown are good. A tight cut like the illustrative circle might not be efficient.
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Figure 5.32: IM(π+π−K0) vs. IM(pπ−Λ ) for the Gold 2 real data. The non-resonant
background is included in the plot; obviously, the illustrative circular cut can not
remove background under the K0 and Λ mass peaks.

real data (ie., the Breit-Wigner centroids and widths for the simulation and the real
data are different). Therefore, to reduce possible performance issues, we did not use
the IM(π+π−K0), and the IM(pπ−Λ ) as input variables for the BDT. Nevertheless, a
transformation of these two variables was implemented so that we could still “exploit”
their useful information. The new variable is defined as followed:

163



GeV
1.1 1.15 1.2 1.25 1.3

0

100

200

300

400

500

600
 / ndf 2χ  40.83 / 33

Prob   0.1643

)Λ
-πIM(p

Data
Background fit

Signal fit

Global Fit

0.17±1
2.93=Sig

BG

GeV
0.35 0.4 0.45 0.5 0.55 0.6 0.65 0.7 0.75 0.8

0

20

40

60

80

100

120

140

160

180

200

220

 / ndf 2χ  108.8 / 93

Prob   0.1256

Data
Background fit
Signal fit

Global Fit

)0K
-π+πIM(

0.13±1
1.96=Sig

BG

Figure 5.33: Left: IM(pπ−Λ ) after the first BDT cut (to remove the target material
background). Right: IM(π+π−K0) after the first BDT cut. For each plot, a fit of a
sum of a Breit-Wigner lineshape and a 3rd order polynomial is shown. The plots were
obtained from the Gold 2 data. By integrating both fits for both plots, we estimated
the average ratio of background to signal is about 2.3/1.0, see Table 5.6 (the signal
and background training data sets for the second BDT would have the exact cuts).

Signal Background Total BG/Sig Avg BG/Sig

IM(pπ−Λ ) 5.33± 0.24 15.60± 0.26 20.93± 0.20 2.93/1± 0.17
2.32/1± 0.10± 0.61

IM(π+π−K0) 7.04± 0.30 13.77± 0.33 20.81± 0.20 1.96/1± 0.13

Table 5.6: Numerical values of the integrations on the fits shown in Figure 5.33,
and the obtained background-to-signal ratios with statistical and systematic uncer-
tainty; the statistical uncertainty is 0.10, the systematic uncertainty is 0.61 (i.e.,
2.93-2.32=0.61).

L ≡ ln
[
fBW (IM(pπ−Λ ),mΛ, ΓΛ)× fBW (IM(π+π−K0),mK0 , ΓK0)

]
, (5.10)

where fBW (m,m0, Γ ) is the Breit-Wigner probability distribution function with pa-
rameters m0 (the centroid of the distribution), and Γ (the full width at half maxi-
mum (FWHM)), which was defined previously. The values for these parameters were
taken from Table 5.1. For true signal events this is the statistical likelihood of being
K0Λ(Σ0), hence we named the variable likelihood. Note that, the variable is normal-
ized, thus if the simulation and real data have a slight difference in the Λ and the K0

mass distributions, the performance of the BDT on simulation and real data would
remain consistent.

In Tables 5.7 and 5.8 we list a set of variables used in the second BDT. The
variables listed in Table 5.7 are modestly correlated to the L variable (because they
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are kinematically related), thus background events that are underneath the K0Λ(Σ0)
mass region can still be difficult to remove. In order to improve the BDT classification
power for these events, we added several spacial variables, see Table 5.8 and Figure
5.34. In detail, we exploited the weak-decay natures of the Λ and the K0 to obtain the
additional set of spacial variables which exhibit small correlations to the kinematic
variables. Even though the resolution of reconstructed vertices in CLAS is modest,
the introduction of these variables provides a noticeable improvement. Next, we
plot the distributions of all input variables for the signal and background training
data—that BDT algorithm would be trained on— in Figures 5.35, and 5.36.

Variable Name Description

L (ln(likelihood)) see Eq. (6.10)
Energy of Λ Energy of the (pπ−Λ ) system

Energy of K0 Energy of the (π+π−K0) system
|P |Λ Magnitude of the 3-momentum of the

(pπ−Λ ) system
|P |K0 Magnitude of the 3-momentum of the

(π+π−K0) system
cos θΛ cosΘ of the 3-momentum of the (pπ−Λ )

system in lab coordinate
cos θK0 cosΘ of the 3-momentum of the (π+π−K0)

system in lab coordinate
cos θp&π−Λ

cosΘ between p and π−Λ
cos θπ+&π−K0

cosΘ between (π+) and π−K0

cos θK0&Λ cosΘ between (pπ−Λ ) and (π+π−K0) systems
βπ−

K0
Beta of π−K0 in the lab frame

βπ−Λ
Beta of π−Λ in the lab frame

βp Beta of π−p in the lab frame

βπ+ Beta of π+ in the lab frame
β(π+π−

K0 ) Beta of the (π+π−K0) system in the lab
frame

β(pπ−Λ ) Beta of the (pπ−Λ ) system in the lab frame

Table 5.7: List of variables used in the second BDT—to remove the non-strange
non-resonant background. For spatial variables’ definitions see Figure 5.34.

Simple BDT and categorical BDT algorithms were “trained” by the K0Λ(Σ0)
signal and non-strange 4-body non-resonant background simulation training data us-
ing the set of variables listed in Table 5.8. The categorical variable chosen for the
categorical BDT is the first variable on the list— in detail, for the categorical BDT
algorithm we divided the training data into two disjoint subsets, one is with L < −7,
and the other is with L ≥ −7 (see Figure 5.35). Note that for the categorical BDT
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Variable Name Description

(π+π−K0) decay distance distance between interaction vertex and
(π+π−K0) vertex (or OA) in the (π+π−K0)

rest frame
(pπ−Λ ) decay distance distance between interaction vertex and

(pπ−Λ ) vertex (or OB) in the (pπ−Λ ) rest
frame

(π+π−Λ ) decay distance distance between interaction vertex and
(π+π−Λ ) vertex (or OA’) in the (π+π−Λ )

rest frame
(pπ−K0) decay distance distance between interaction vertex and

(pπ−K0) vertex (or OB’) in the (pπ−K0) rest
frame

π+ and π−Λ DOCA distance of closest approach between π+

and π−Λ momenta (or CE)
p and π−K0 DOCA distance of closest approach between p

and π−K0 momenta (or DF)
K0 and Λ DOCA distance of closest approach between

(pπ−Λ ) and (π+π−K0) momenta (or AB)

Table 5.8: List of spatial variables used in the second BDT—to remove the non-
strange non-resonant background. For the variables’ definitions see Figure 5.34.
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Figure 5.34: 3-D sketch of the reaction γn → K0Λ → π+π−K0pπ
−
Λ in the lab frame

with at-rest target neutrons. The spacial variables described in Table 5.7 include OA,
OB, OA’, OB’, CE, DF, and AB distances.
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Figure 5.35: Histograms of variables used in the second BDT. The red histograms
are from non-strange non-resonant background MC data, and the blue histograms
are from the signal MC data.

algorithm, after the training phase, there would be two distinct and independently-
built “forests” of decision trees. Next, as shown in Figure 5.37 the performance of
the categorical BDT (black) is more optimal than the performance of simple BDT
(red), see previous section for discussion about this. Later, we employed only the
newly-built categorical BDT algorithm for the task of selecting the K0Λ(Σ0) signal
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Figure 5.36: More histograms of variables used in the second BDT. The red his-
tograms are from non-strange non-resonant background MC data, and the blue his-
tograms are from the signal MC data.

events. In addition, Figure 5.38 shows no evidence of overtraining for the categorical
BDT algorithm—Kolmogorov-Smirnov tests result in high probabilities indicating
consistency between independent training and testing data sets for both signal and
background reactions. Furthermore, we include Table 5.9 for a quantitative assess-
ment on how often each variable was used in building the BDT, and for illustration,
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Figure 5.39 shows the first constructed decision tree.
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Figure 5.37: Background rejection vs. Signal efficiency from training data for the
simple BDT (red) and the categorical BDT (black).
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Figure 5.38: Left: Overtraining check, high Kolmogorov-Smirnov probabilities for
both signal and background suggest no overtraining because the performance (distri-
butions) of the categorical BDT is consistent with independent training and testing
data sets. Right: Plots of cut efficiencies show the efficiencies as a function of cut
value-and optimal cut value.

Previously, we estimated the background-to-signal ratio to be 2.32/1.00 for the
Gold 2 data, see Table 5.6. Consequently, a recommended cut at 0.24 on the BDT
output was obtained. In the systematic study section, we will vary this cut to test
its robustness. And lastly, we applied the newly-constructed categorical BDT algo-
rithm to the simulation data, see Figures 5.40, 5.41. We also estimated the survival
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Variable Name Ranking Variable Name Ranking

L (or ln(likelihood)) 1.0 cos θK0 0.14
cos θπ+&π−K0

0.27 |P |K0 0.13

(pπ−K0) decay distance 0.25 p and π−K0 DOCA 0.13
cos θK0&Λ 0.20 (π+π−Λ ) decay distance 0.13
βπ−Λ

0.20 (π+π−K0) decay distance 0.12

cos θΛ 0.19 β(π+π−
K0 ) 0.12

π+ and π−Λ DOCA 0.17 Energy of K0 0.12
(pπ−Λ ) decay distance 0.17 β(pπ−Λ ) 0.11

cos θp&π−Λ
0.16 βπ+ 0.11

βp 0.16 |P |Λ 0.11
K0 and Λ DOCA 0.15 Energy of Λ 0.10

βπ−
K0

0.14

Table 5.9: Table of relative variable ranking. The higher the ranking the more the
variable was used to construct the decision trees. All the rankings were normalized
to the absolute ranking of the L (ln(likelihood)) variable.

Figure 5.39: The first constructed decision tree from the second BDT, for illustration.
Note that all variables can be used multiple times.

fraction— i.e., percentage of remaining non-resonant background survived the BDT
cut—by calculating p = S/(S+R) and σp =

√
p(1−p)/

√
S+R, where p is the estimated

survival fraction, S (R) is number of events selected (rejected) by the BDT cut; the
numerical value of the estimated survival fraction is shown in 5.10.
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Figure 5.40: Left: IM(pπ−Λ ) before (blue), rejected (black), and wrongly selected (red)
by the BDT cut. Right: IM(π+π−K0) before (blue), rejected (black), and wrongly
selected (red) by the BDT cut. The plots were constructed from the non-strange
phase space MC data. The units are in GeV.

Total Events Survived Events Survival Fraction
Phase space BG 22, 312 1, 282 0.057± 0.002

Table 5.10: Estimated survival fraction for the non-strange phase space background
MC data after the BDT cut.
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Figure 5.41: Left: IM(pπ−Λ ) before (blue), rejected (black), and selected (red) by the
BDT cut. Right: IM(π+π−K0) before (blue), rejected (black), and selected (red) by
the BDT cut. The plots were constructed from signal MC data. The units are in
GeV.
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5.3.3 Separating K0Λ, K0Σ0 Events

We continue with the last task for this analysis: seperating K0Λ, K0Σ0 events.
As previously mentioned, this task would have been straightforward if the target
neutrons were at-rest—by computing the missing mass off K0—since, then, the Λ,
and Σ0 mass spectra would be well seperated. In reality, the target neutrons are in
Fermi motion; therefore computing the missing-mass-off-K0 spectrum by assuming
the target neutrons being at-rest results in broadened and strongly overlapped Λ,
and Σ0 mass spectra, see Figure 5.22. Hence it was clear that we needed to build
another BDT algorithm to optimally separate the two reactions. In detail, Table 5.11
introduces a list of input variables for “training” the BDT. Note that these variables
exploit the fact that the K0Σ0 events have an extra photon, which is the decay
product of Σ0 → Λγ, undetected, while the missing particles for the K0Λ channel
are just the spectator protons. Next, for illustration, we plot the distributions of the
input variables for the K0Λ and the K0Σ0 events in Figure 5.42. In those histograms,
K0Λ events are in blue (and called “signal” events), while K0Σ0 events are in red
(and called “background” events). The histograms were obtained from the simulation
data which was used to train the BDT.

Variable Name Description

Missing Mass Total missing mass (deuteron target)
Missing Energy Total missing energy (deuteron target)

Missing Momentum Total missing momentum (deuteron target)
Missing Theta Θ of the missing momentum in lab coordinate

(deuteron target)
Missing Beta βmissing (deuteron target)

Missing Gamma γmissing (deuteron target)
Missing Plus Emissing − c|pmissingz | (deuteron target)

Missing Minus Emissing + c|pmissingz | (deuteron target)

Missing Perp |pmissingtransverse| (deuteron target)

Coplanarity Angle
(
p̂(pπ−Λ ) × p̂γ

)
.
(
p̂(π+π−K0) × p̂γ

)
(deuteron

target)
Missing Mass off K0 MM(π+π−K0) (at-rest neutron target)

θK0&Λ angle between (π+π−K0) and (pπ−Λ ) in (γnat-rest)
rest frame

Table 5.11: List of input variables used in the third BDT for the task of seperating
K0Λ, K0Σ0 events.

We trained two different BDT algorithms; the first one is just the simple BDT,
and the second one is the categorical BDT. The categorical variable is the Total
Missing Mass variable. Note that it is computed with the deuteron mass as the
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Figure 5.42: Histograms of variables used in the third BDT. The red histograms are
from K0Σ0 simulation data (referred to as background), and the blue histograms are
from the K0Λ simulation data (referred to as signal).

target mass. The training data was divided into two disjoint subsets, one is with
MM(pπ+π−π−) < 0.99 GeV, and the other is with MM(pπ+π−π−) ≥ 0.99 GeV
(note that this is only applied for the categorical BDT). In addition, even though we
referred to theK0Λ events as signal events, and to theK0Σ0 as background, theK0Σ0

events would not be discarded. In fact, we intended to measure the E asymmetries
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for both reactions. Next, for illustration, we plot in Figure 5.43 the performances of
the categorical BDT (black) and the simple BDT (red). It is apparent that we should
use the categorical BDT algorithm. Also, we show in the left plot of Figure 5.44 that
there is no evidence of overtraining for the categorical BDT algorithm—Kolmogorov-
Smirnov tests result in high probabilities for both signal and background data, and, in
the right plot of Figure 5.44 we show the signal-acceptance and background-rejection
efficiencies as a function of the BDT output; a recommended cut on the BDT output
at 0.03 was obtained by assuming the initial signal to background (Λ to Σ0) ratio to
be 1 : 1. Since we would not discard any events, this ratio does not need to be very
precise—but we expect the 1 : 1 ratio is close to the true value. Nevertheless, for
systematic studies we varied this cut value. Furthermore, variable ranking is presented
in Table 5.12, and in Figure 5.45 the first decision tree of the BDT is shown.
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Figure 5.43: Background rejection vs. Signal efficiency from training data for the
simple BDT (red) and the categorical BDT (black).

Variable Name Ranking Variable Name Ranking

Missing Energy 1.00 Missing Theta 0.22
Missing Mass 0.72 Missing Gamma 0.19

Missing Mass off K0 0.70 θK0&Λ 0.19
Missing Momentum 0.56 Missing Beta 0.15

Missing Minus 0.28 Missing Plus 0.08
Missing Perp 0.26 Coplanarity Angle 0.05

Table 5.12: Table of relative variable ranking. The higher the ranking the more the
variable was used to construct the decision trees. All the rankings were normalized
to the absolute ranking of the missing energy variable.
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Figure 5.44: Left: Overtraining check, high Kolmogorov-Smirnov probabilities for
both signal and background suggest no overtraining because the performances (distri-
butions) of the categorical BDT are consistent with independent training and testing
data sets. Right: Plot of cut efficiencies show the signal-acceptance and background-
rejection efficiencies as a function of the BDT output and an optimal cut value (of
0.02).

Figure 5.45: The first constructed decision tree from the third BDT, for illustration.
Note that all variables can be used multiple times.

In Figures 5.46, and 5.47 we illustrate the high performances of the categorical
BDT (we obtained the plots from simulation data). For example, the number of K0Λ
events that were correctly identified is much higher than the number of events that
were incorrectly identified as K0Σ0 (similar observation can be seen for the K0Σ0
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data). Importantly, note that an event is “identified” as K0Σ0 if it has its BDT
output value less than 0.02, otherwise, it is “identified” as K0Λ. Finally, Table 5.13
presents the numerical values of the BDT performances for both K0Λ and K0Σ0. We
now introduce several notations to faciliate future discussions in later sections:

� N true
Λ (N true

Σ0 ) is the total number of K0Λ (K0Σ0) events in the real data (such
as Gold 2 data),

� NBDT
Λ (NBDT

Σ0 ) is the number of events that have the BDT output larger (smaller)
than 0.02,

� ωΛ (ωΣ0) is the BDT efficiency for the K0Λ (K0Σ0) events (i.e., percentage of
number of simulated events that are correctly “identified” by the 3rd BDT),

NBDT
Λ = ωΛN

true
Λ + (1− ωΣ0)N true

Σ0 , (5.11)

NBDT
Σ0 = (1− ωΛ)N true

Λ + ωΣ0N true
Σ0 , (5.12)

combining these, we get:

NBDT
Λ − (1− ωΣ0)

ωΣ0

NBDT
Σ0 =

[
ωΛ −

(1− ωΣ0)

ωΣ0

(1− ωΛ)

]
N true

Λ . (5.13)

Therefore, by utilizing the obtained BDT efficiency for the K0Λ (K0Σ0) events, we
could “subtract” the remaining misidentified events for each reaction.
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Figure 5.46: Left: MM(π+π−K0). Right: the total missing mass distribution. The
histograms were obtained from the K0Λ simulation data. Blue histograms are before
the BDT cut, black histograms are wrongly “identified” as K0Σ0 events (because
they were rejected by the cut), and red histograms are correctly “identified” as K0Λ
events (because they were selected by the cut).
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Figure 5.47: On the left MM(π+π−K0), and on the right the total missing mass dis-
tribution. The histograms were obtained from the K0Σ0 simulation data. Blue his-
tograms are before the BDT cut, red histograms are wrongly “identified” as K0Λ
events (because they were selected by the cut), and black histograms are correctly
“identified” as K0Σ0 events (because they were rejected by the cut).

Total Correct Identification Estimated Efficiency
K0Λ signal 123, 172 107, 248 ωΛ = 0.871± 0.001
K0Σ0 signal 90, 058 82, 054 ωΣ0 = 0.911± 0.001

Table 5.13: Estimated performance efficiencies for K0Y signal simulation data.

5.3.4 Estimate Remaining Backgrounds after the BDT Cuts
for the Real Data

It is crucial to estimate the remaining backgrounds—target-material and non-resonant
background— for the Gold 2 and all the Silver data. Since the target material (Alu-
minum wires and KelF cell walls) was unpolarized, the measured E asymmetry values
would be diluted. In addition, the non-resonant background was not the reaction of
interest, and have zero E asymmetry (see Section 5.4). As a result, the E asymmetry
measurements must be “corrected” for the dilution effect from the remaining back-
ground. To obtain the estimated number of remaining target-material background
events, we multiplied the estimated initial number of target-material background
events by the survival fraction after the first BDT cut (the value for the survival
fraction is 0.25, see Table 5.5). The initial number of target-material background
events is obtained by the following procedure:

1. Plot the histograms of the z-component of the interaction vertex of both full-
target (Silver 1&2, for example) data and empty-target data

2. Scale the empty histogram such that the yields Yempty = Yfull for 0 < z < 30
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cm (this region is outside the target, thus remains the same during the whole
experiment),

3. Scale the yield of empty data Yempty for −15 < z < −2 cm using the scaling
number obtained in step 2 (note that events with z > −2 cm were never utilized
to get the estimated survival fraction),

4. Get the number of scaled yield from the empty-target data (this is the best
estimate of the initial number of target-material background events).

Similarly, to obtain the estimated number of remaining non-strange non-resonant
background events, we multiplied the estimated initial number of non-resonant back-
ground events by the survival fraction after the second BDT cut (the value for the
survival fraction is 0.057, see Table 5.10). The initial number of non-resonant back-
ground events is obtained by the following procedure:

1. Plot the IM(pπ−Λ ), and IM(π+π−K0) distributions for the full-target (Silver 1&2,
for example) data, and record the the total initial number of events,

2. Fit each invariance mass distribution with a sum of a Breit-Wigner distribution
(signal fit) and a 3rd order polynomial function (background fit),

3. Integrate the signal and background fits (for both IM(pπ−Λ ), and IM(π+π−K0)
distributions),

4. For each invariance mass distribution, compute the signal-to-background ratio
from the obtained integrations (in Section 5.3.2 we showed the steps to correctly
compute the uncertainty on the ratio),

5. Compute the weighted average of the two signal-to-background ratios (in Sec-
tion 5.3.2 we showed the steps to compute the weights for the IM(pπ−Λ ), and
IM(π+π−K0) ratios),

6. Compute the initial number of non-resonant background events by ultilizing
the obtained weighted-average ratio and the total initial number of events.

In the next sub section, we will present in detail the two above procedures applying
on the Gold 2 data, and for the Silver data (Silver 1&2, 4, and 5) we just report the
final numerical values.

5.3.4.1 Event Selection for the Gold 2 Data

We first present the result of estimating the remaining target-material background.
As discussed previously, we scaled the empty-target data to “match” the Gold 2
data, see Figure 5.48. The initial number of target-material background events was
then estimated from the scaling factor and the yield from the empty-target data.
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However, for the Gold 2 data a slight modification is needed. In particular, the
amount of aluminum material inside the Gold 2 target (19b) is only about 70%
compared to the empty target (21a), see Table 2.2. Hence for region−10.0 < z < −6.0
cm—target-material background is mostly originated from the aluminum wires for
this region—the scaling factor is reduced by 0.7.

N background
Gold2 = Scaling×

(
0.7×NAl−region

empty +NKelF−regions
empty

)
= 1, 548 + 5, 651 = 7, 199,

(5.14)

N remaining
Gold2 = psurvive ×N background

Gold2 = 0.25× 7, 199 = 1, 800, (5.15)

where Scaling was obtained by matching empty-target and Gold 2 data for the re-
gion outside the target (its numerical value is 1.23 ± 0.09), NAl−region

empty is the yield

from empty target run data for the region −10.0 < z < −6.0 cm, and NKelF−regions
empty

is the yield from regions outside the aluminum region, psurvive is the survival fraction
of target-material after the first BDT cut (see Table 5.5). N background

Gold2 , and N remaining
Gold2

are the estimated number of target-material background events before and after (re-
maining) the first BDT cut, respectively. The statistical uncertainty for N remaining

Gold2

after proper error propagation is 136 events.
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Figure 5.48: z-vertex plots from Gold 2 (blue), and scaled empty run (black). Region
−10.0 < z < −6.0 cm (denoted as Al region in the plot) has lower aluminum material.
The two magenta lines indicate the z-vertex cuts.

In Figure 5.49 we illustrate the effect of the first BDT cut on the Gold 2 data,
and in Figure 5.50 we show the data before and after the BDT and z-vertex (z < −2
cm) cuts. We then computed the number of bound neutron events that passed the
BDT and z-vertex cuts:

NHD
Gold2 = NPassed

Gold2 −N
remaining
Gold2 = 22, 490− 1, 800 = 20, 690, (5.16)
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σNHD
Gold2

=
√
σ2
NPassed
Gold2

+ σ2
Nremaining
Gold2

, (5.17)

σNHD
Gold2

=

√(√
22, 490

)2

+ 1362 = 202, (5.18)

RtargetBG
Gold2 ≡ N remaining

Gold2

NHD
Gold2

=
1, 800

20, 690
= 0.087, (5.19)

σRtargetBGGold2
=
N remaining
Gold2

NHD
Gold2

√√√√(σNHD
Gold2

NHD
Gold2

)2

+

(
σNremaining

Gold2

N remaining
Gold2

)2

− 2
(−1)σNHD

Gold2
σNremaining

Gold2

NHD
Gold2N

remaining
Gold2

,

(5.20)

σRtargetBGGold2
= 0.087

√(
202

20, 690

)2

+

(
136

1, 800

)2

+ 2
202 · 136

20, 690 · 1, 800
= 0.007, (5.21)

where NPassed
Gold2 is the number of events that passed the BDT and z-vertex cuts, and

NHD
Gold2 is the number of bound neutron events passed the cuts. Note that we assigned
−1 for the correlation between NHD

Gold2 and N remaining
Gold2 in computing σRtargetBGGold2

in Eq.

5.20 and 5.2 1. The RtargetBG
Gold2 was used to make correction for the dilution effect from

the remaining target-material background (more detail in the next section). Before
applying the second BDT cut, we tightened the IM(pπ−Λ ) from 1.20 GeV to 1.16 GeV
to remove unambiguous non-resonant background. Note that by not placing this cut
earlier we had saved good bound neutron events to obtain better estimation for the
RtargetBG ratio.

In Figure 5.33 we plotted the invariance mass distributions (IM(pπ−Λ ) and IM(π+π−K0)).
We fitted each histogram with a sum of Breit-Wigner distribution (signal fit) and a
3rd order polynomial function (background fit). We, next, integrated the fits of both
histograms. Using the numerical values of the integrations, for each histogram we
obtained an estimation of the non-resonant background-to-signal ratio; we obtained
the average of the two ratios next (see Section 5.32, and Table 5.6). Quantitatively,
Table 5.6 presents the numerical values of the ratios, and their average. Since we knew
the number of total events (after the first BDT and z-vertex cuts), we could estimate
the initial and the remaining (after the second BDT cut) number of non-resonant
background events:

Y background
Gold2 = Y total

Gold2 ×
ravg

1 + ravg
= 10, 512× 2.31

1 + 2.31
= 7, 336, (5.22)

σf ≡ σ ravg
1+ravg

=
σavg

1 + ravg
=

0.62

1 + 2.31
= 0.27, (5.23)
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Figure 5.49: z-vertex plots from the Gold 2 data, before (blue), rejected (black), and
selected (red) by the first BDT cut.
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Figure 5.50: Left: Missing mass before (blue), rejected (black), and selected (red) by
the first BDT and the z-vertex (cut at z < −2 cm) cuts. Right: Missing momentum
before (blue), rejected (black), and after (red) the cuts. The plots were constructed
from Gold 2 data.

σY backgroundGold2
= Y background

Gold2

√√√√(σY totalGold2

Y total
Gold2

)2

+

(
σf
ravg

1+ravg

)2

, (5.24)

σY backgroundGold2
= 7, 336

√√√√(√10, 512

10, 512

)2

+

(
0.27
2.31

1+2.31

)2

= 2, 839, (5.25)

Y remaining
Gold2 = qsurvive × Y background

Gold2 = 0.057× 7, 336 = 418, (5.26)
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σY remainingGold2
= Y remaining

Gold2

√√√√(σY backgroundGold2

Y background
Gold2

)2

+

(
σqsurvive
qsurvive

)2

, (5.27)

σY remainingGold2
= 418

√(
2839

7, 336

)2

+

(
0.002

0.057

)2

= 162, (5.28)

where Y background
Gold2 , and Y remaining

Gold2 are the estimated number of non-resonant back-
ground before and after (remaining) the second BDT cut, respectively, and psurvive is
the survival fraction of non-resonant background after the second BDT cut (see Table
5.10). In Figure 5.51 we illustrate the effect of the second BDT cut on the Gold 2
data. We then estimated the number of K0Y signal events passed the BDT cut:

Y K0Y
Gold2 = Y Passed

Gold2 − Y
remaining
Gold2 = 2, 882− 418 = 2, 464, (5.29)

σ
Y K

0Y
Gold2

=
√
σ2
Y PassedGold2

+ σ2
Y remainingGold2

, (5.30)

σ
Y K

0Y
Gold2

=

√(√
2, 882

)2

+ 1622 = 170, (5.31)

Rnon−resonantBG
Gold2 ≡ Y remaining

Gold2

Y K0Y
Gold2

=
418

2, 464
= 0.170, (5.32)

σRnon−resonantBGGold2
=
Y remaining
Gold2

Y K0Y
Gold2

√√√√(σY K0Y
Gold2

Y K0Y
Gold2

)2

+

(
σY remainingGold2

Y remaining
Gold2

)2

− 2
(−1)σ

Y K
0Y

Gold2
σY remainingGold2

Y K0Y
Gold2Y

remaining
Gold2

,

(5.33)

σRnon−resonantBGGold2
= 0.17

√(
170

2, 464

)2

+

(
162

418

)2

+ 2
170 · 162

2, 464 · 418
= 0.078. (5.34)

where Y Passed
Gold2 is the number of events that passed the second BDT cut, and Y K0Y

Gold2

is the number of K0Y signal events that passed the cut. Note that we assigned −1
for the correlation between Y K0Y

Gold2 and Y remaining
Gold2 in computing σRnon−resonantBGGold2

in Eq.

5.33 and 5.34. The Rnon−resonantBG
Gold2 was used to make correction for the dilution effect

from the remaining target-material background (more detail in the next section).
For illustration, we also show the result after the 3rd BDT cut for the Gold 2 data

in Figure 5.52. In particular, the figure plots MM(π+π−K0) assuming at-rest target
neutrons; the blue histogram represents events that passed the first and second BDT
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Figure 5.51: Left: IM(pπ−Λ ), blue histogram is before the 2nd BDT cut, red (black)
histogram is selected (rejected) by the cut. Right: IM(π+π−K0), blue is before the
2nd BDT cut, red (black) histogram is selected (rejected) by the cut. Note that there
are remaining non-strange non-resonant background after the 2nd BDT selection cut,
hence there are “dips” in the rejected (black) distributions. The data used to plot
was the Gold 2 period.

cuts (and the z-vertex cut), the red histogram is from events that were assigned
K0Λ identity, while the purple histogram is from events that were assigned K0Σ0

identity. It is worth repeating that the red histogram contains a few K0Σ0 events,
and the purple histogram contains a few K0Λ events. We would need to subtract
these misidentified events to obtain the correct E asymmetry measurements for both
reactions. Implementation detail will be provided in Section 5.4.

In summary, we presented, in detail, the procedures to obtain the best sample
of bound neutron K0Y events using the first and second BDT cuts for the Gold
2 data; remaining backgrounds were estimated and quantified in term of RtargetBG

Gold2 ,
and Rnon−resonantBG

Gold2 . In Section 5.4, we will discuss how to ultilize these two ratios.
Furthermore, the third BDT algorithm was employed to seperate the signal K0Y
events into two, albeit not perfectly pure, subsets—K0Λ and K0Σ0 sets. Section 5.4
provides a procedure to correct for this. Next, we applied the same procedures for
the Silver data sets (see next section). Finally, for illustration purpose only we also
plot MM(π+π−K0) for events that only passed the second BDT (i.e., target-material
background has not been rejected) in Figure 5.53— in other words, this histogram
includes K0Y events from nuclei other than the deuteron. Note that the histogram
from simulation data in Figure 5.22 resembles the histogram in Figure 5.53, which
suggests that our simulation data are decently matched the real data.
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Figure 5.52: MM(π+π−K0), asumming the target neutrons being at-rest. Blue his-
togram is before the 3rd BDT cut, red histogram represents events identified as K0Λ,
purple histogram represents events identified as K0Σ0. The two colored vertical lines
indicate the mass centroids of Λ and Σ0, respectively. These events were from the
Silver 5 period (it is the highest statistics data set so that we can illustrate clearly
the effect of the 3rd BDT classification.
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Figure 5.53: MM(π+π−K0), asumming the target neutrons being at-rest. Blue his-
togram is before the 3rd BDT cut, red histogram represents events identified as K0Λ,
purple histogram represents events identified as K0Σ0. These events were from the
Gold 2 period and after the 2nd BDT cut but no the 1st BDT.

5.3.4.2 Summary of Event Selection for the Gold 2 and the Silver Data

Previously, we presented in detail procedures to obtain the ratios RtargetBG and
Rnon−resonantBG for the Gold 2 data. Next, we applied the same procedures to Silver
1&2, 4 and 5 data. Table 5.14 presents the numerical values for the ratio RtargetBG,
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and Table 5.15 presents the numerical values for the ratio Rnon−resonantBG. Compar-
ing the first and third columns of Table 5.15 with the second and third columns of
Table 5.16, respectively, suggests that our estimations of non-resonant background us-
ing non-resonant-background-to-K0Y -signal ratios (for all run periods) are reliable.
Also note that after the 2nd BDT cut, there are signal events that were rejected,
and background events that were selected. Lastly, Table 5.17 shows the values of
non-resonant-background-to-K0Y -signal ratios for all run periods.

Initial Remaining bound
RtargetBG

target-material BG target-material BG neutrons signal
Gold 2 7,199±535 1,800±136 20,690±202 0.087± 0.007

Silver 1&2 2,218±255 555±59 5,071±95 0.110± 0.012
Silver 4 4,711±385 1,778±98 9,019±143 0.197± 0.011
Silver 5 16,018±1035 4,005±267 31,000±326 0.129± 0.009

Table 5.14: Numerical values for target-material background correction factors for all
the data sets.

Initial Remaining K0Y
Rnon−resonantBG

non-resonant BG non-resonant BG signal
Gold 2 7,336±2,839 418±162 2,464±170 0.170± 0.078

Silver 1&2 1,961±386 112±22 670±36 0.167± 0.042
Silver 4 5,012±466 286±28 2,127±56 0.135± 0.017
Silver 5 16,784±507 957±44 6,604±97 0.145± 0.008

Table 5.15: Numerical values for non-strange non-resonant background correction
factors for all data sets.

Before Rejected Selected
2nd BDT cut

Gold 2 10,512±102 7,630±87 2,882±54
Silver 1&2 2,956±54 2,174±46 782±28

Silver 4 7,706±88 5,293±73 2,413±49
Silver 5 24,777±157 17,216±131 7,561±87

Table 5.16: Effect from the 2nd BDT cut on all data sets. Note that there are signal
events that were rejected, and background events that were selected.
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BG/Sig Avg BG/Sig

Gold 2
IM(pπ−Λ ) 2.93/1± 0.17

2.31/1± 0.10± 0.61
IM(π+π−K0) 1.96/1± 0.13

Silver 1&2
IM(pπ−Λ ) 1.75/1± 0.25

1.98/1± 0.19± 0.33
IM(π+π−K0) 2.30/1± 0.30

Silver 4
IM(pπ−Λ ) 2.00/1± 0.11

1.86/1± 0.08± 0.15
IM(π+π−K0) 1.71/1± 0.11

Silver 5
IM(pπ−Λ ) 2.09/1± 0.07

2.10/1± 0.05± 0.01
IM(π+π−K0) 2.10/1± 0.07

Table 5.17: Numerical values of non-resonant-background-to-K0Y -signal ratios for all
data sets (including statistical and systematic uncertainties).

5.4 Obtaining the E Observable Measurements

The E observable requires the incoming photon and the target to be circularly and
longitudinally polarized, respectively. The g14 experiment had these conditions. For-
mally, the formula to calculate the E observable for each Wi energy window is:

Eij(xj) =
1

iPγ

1

Ptarget

iY (xj)
↓↑ −i Y (xj)

↑↑

iY (xj)↓↑ +i Y (xj)↑↑
, (5.35)

where xj is the jth measuring bin of cos(θK0) variable, in particular, θK0 is the angle
between the vector momentum of the reconstructed K0 and the photon direction
in the center of mass frame of the incoming photon and target neutron where the
neutron is assumed at-rest. iY (xj)

↓↑ is the yield when the helicity of the photon
and the direction of the target polarization vectors are anti-parallel for events in the
energy window Wi and the measuring bin xj, and, similarly, iY (xj)

↑↑ is the yield when
the two polarization vectors are parallel. Ptarget is the neutron target polarization
magnitude (see Section 4.3.4.1 for detail), and iPγ is the weighted average of the
photon polarizations Pγ for energy window Wi (formula is provided below). The
uncertainty on the E(x) (a shorthand notation for Eij(xj)) can be calculated as
follows:

σE(x)

E(x)
=

1

iPγ

1

Ptarget

2
√

[Y ↓↑] [Y ↑↑]√
[Y ↓↑ + Y ↑↑] [Y ↓↑ − Y ↑↑]

, (5.36)

note that the target and beam polarization uncertainties were not included in the
above equation because they are more appropriately categorized as systematic un-
certainty (see Section 5.3.1 for derivation of σ2

E). Next, we introduce the formula to
compute the photon polarizations Pγ which is referred to as the Maximon and Olson
formula [63]. It shows that the photon polarization for each event depends on the
electron beam polarization, the electron beam energy and the energy of the incoming
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photon of that particular event:

Pγ =
(4ε− ε2)Pe
4− 4ε+ 3ε2

, (5.37)

where Pe is the incident electron beam’s polarization, ε is the ratio of the resultant
photon energy to the incident electron beam’s energy, ε = Eγ/Eelectron. Importantly,
the Pγ in Eq. 5.43 was computed for each event while the iPγ in Eq. 5.41 is the
average of all events in the energy window Wi.

The Eq. 5.35 can not be applied directly in the presence of remaining backgrounds,
thus it must be modified. As previously mentioned, the two dominating backgrounds
are the target material and non-resonant backgrounds. To study the E asymmetry
for the backgrounds, we selected empty-target period data to represent the target
material background, while to select the non-strange non-resonant background we re-
jected events that satisfy IM(pπ−Λ ) <1.2 GeV, and 0.4 GeV< IM(π+π−K0) <0.6 GeV.
Figure 5.54 shows consistent-with-zero E asymmetries for both types of background,
hence their presences would dilute the final measurements of the E asymmetry for
the signal channels. We will discuss a procedure to correct for these dilution effects
in the next section.
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Figure 5.54: Left: The raw E asymmetry vs. z-vertex for the empty-target data.
Right: The E asymmetry vs. z-vertex for the non-resonant background events (the
events were from the Gold 2 data). The results are consistent with zero asymmetry.
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5.4.1 Corrections for the Remaining Backgrounds

Recalling from Section 5.3.4, we estimated two ratios RtargetBG = Nremaining

NHD , and

Rnon−resonantBG = Y remaining

Y K0Y
, where N remaining, NHD are the estimated number of

remaining target-material background and true bound events after the first BDT
and z-vertex cuts, respectively, and Y remaining, Y K0Y are the estimated number of
remaining non-strange non-resonant and true K0Y events after the second BDT cut,
respectively. Denote YBDT to be the number of events that passed the z-vertex and
the first two BDT cuts, then YBDT can be partitioned into:

YBDT = Y K0Y + Y remaining =
(
1 +Rnon−resonantBG)Y K0Y . (5.38)

In addition, since Y K0Y also comprises of events from the remaining target-material
background and the bound signal events, YBDT can be partitioned further:

YBDT =
(
1 +Rnon−resonantBG) [Y K0Y

HD + Y K0Y
targetBG

]
, (5.39)

and if we assumed
Y K

0Y
targetBG

Y K
0Y

HD

= Nremaining

NHD = RtargetBG, then YBDT can finally be ex-

pressed as:

YBDT =
(
1 +Rnon−resonantBG) (1 +RtargetBG

)
Y K0Y
HD , (5.40)

⇒ Y K0Y
HD =

(
1 +Rnon−resonantBG)−1 (

1 +RtargetBG
)−1

YBDT . (5.41)

If we further assumed that Eq. 5.41 remains valid for both Y K0Λ
BDT and Y K0Σ0

BDT , where
Y K0Λ
BDT and Y K0Σ0

BDT are the K0Λ and K0Σ0 bound neutrons signal events, respectively,
then we could correct for the dilution effects on the E asymmetry as follows:

EK0Y
corrected =

(
1 +Rnon−resonantBG) (1 +RtargetBG

)
EK0Y
BDT , (5.42)

where EK0Y
BDT is obtained from Y K0Y

BDT (or, more correctly, Y ↑↑BDT and Y ↓↑BDT of the K0Y
subset).

5.4.2 “Purifying” the After-3rd-BDT-Cut K0Λ and K0Σ0 Events

In this section, we introduce another correction for the final E asymmetry measure-
ments. Recall that the third BDT cut seperates the bound neutron K0Y events into
two subsets: one is mostly K0Λ events, and the other is mostly K0Σ0. In other words,
if we denote NBDT

Λ , and NBDT
Σ0 as the number of events the third BDT identified as

K0Λ and K0Σ0 events, respectively, then we have the following expressions:

NBDT
Λ = ωΛN

true
Λ + (1− ωΣ0)N true

Σ0 , (5.43)
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NBDT
Σ0 = (1− ωΛ)N true

Λ + ωΣ0N true
Σ0 , (5.44)

where ωΛ and ωΣ0 are the fractions of events correctly idenfied (see Section 5.3.3 for
more detail, and Table 5.13 for the numerical values). After rearrangement, we derive
the following expressions (for derivation see Section 5.3.3):

N true
Λ =

[
ωΛ −

(1− ωΣ0)

ωΣ0

(1− ωΛ)

]−1 [
NBDT

Λ − (1− ωΣ0)

ωΣ0

NBDT
Σ0

]
, (5.45)

N true
Σ0 =

[
ωΣ0 − (1− ωΛ)

ωΛ

(1− ωΣ0)

]−1 [
NBDT

Σ0 − (1− ωΛ)

ωΛ

NBDT
Λ

]
. (5.46)

The final E asymmetry was obtained using the derived N true
Λ , and N true

Σ0 . In summary,
we had to apply three different corrections.

5.4.3 Results for the E Asymmetry Measurements

We divided the data into two energy windows 1.7 GeV≤ W <2.02 GeV, and 2.02
GeV≤ W <2.34 GeV. For each W window, we plot the EK0Λ (and EK0Σ0) as a
function of cos θK0 in the overall center of mass frame where the target neutrons were
assumed to be at-rest. Firgure 5.55 presents the final E asymmetry for the K0Λ
channel, while Figure 5.56 presents the final E asymmetry for the K0Σ0 channel.
Note that the final E asymmetry measurements are a combined result from the Gold
2 and Silver 1&2, 4, and 5 data sets and are after the previously discussed corrections.

5.5 Systematic Studies

In this section, we employ various systematic studies to quantify the robustness of
the BDT methods and the sensitivity of our result on the three correction procedures
implemented in the previous section. In particular, we implemented four studies.
The first test focuses on the sensitivity of the E results on the third correction—the
correction procedure that was implemented to “purify” the final selected K0Σ0(K0Λ)
sample. The next two tests study the effect of loosening the second and the first BDT
cuts, respectively. Note that it is more important to study the sensitivity when there
are more remaining background events because the procedures which were employed
to correct for the dilution effect from the remaining non-resonant and target-material
backgrounds (see Section 5.4.1) is just an approximation—which is more accurate
if there are fewer background events. In addition, tightening the BDT cuts would
result in a smaller data sample—of an already small data sample, thus we think the
statistical fluctations would overwhelm any systematic effect if the BDT cuts were to
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Figure 5.55: The EK0Λ asymmetries vs. cos θK0 for the energy windows 1.7 GeV≤
W <2.02 GeV (left) and 2.02 GeV≤ W < 2.34 GeV (right).
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be tightened any further. Lastly in the fourth test, we reduced the beam and target
polarizations by one standard deviation of their respective statistical uncertainties to
study the effect on the E results.

5.5.1 Systematic Effect from not Accounting for the Remain-
ing K0Σ0 (K0Λ) Events in the BDT-Selected K0Λ (K0Σ0)
Events

As shown in Section 5.3.3, the final K0Λ(K0Σ0) sample selected by the third BDT
has remaining K0Σ0(K0Λ) events. In Section 5.4.2 we introduced a simple procedure
to “purify” the final samples. However, we suspected that the procedure has a modest
effect on the final measured values of the E asymmetry. In this systematic test, we will
quantify the effect. In particular, for this test we purposely did not apply the “purify”
procedure and proceeded to obtain the E asymmetry values. In Table 5.18 we show
the differences between Etest1 − Efinal, where Etest1 values are obtained without the
“purify” procedure and Efinal values are obtained with the procedure. Notice that
without the “purify” procedure, for W1 energy window, the E asymmetries for K0Λ
channel would be reduced because of the inclusion of the K0Σ0 channel (the values
for the two channels have opposite sign); this fact is shown in the first row of Table
5.18.

cos θK0

−0.6 0.0 +0.6

K0Λ
W1 −0.05 0.03 −0.09
W2 −0.02 −0.07 −0.12

K0Σ0 W1 0.20 −0.09 0.19
W2 0.01 0.02 0.04

Table 5.18: Differences between Etest1 − Efinal.

5.5.2 Systematic Effect from Loosening the 2nd BDT Cut

For this test, we loosened the 2nd BDT cut from 0.24 (see Section 5.3.2) to 0.15. Conse-
quently, the percentage of surviving non-strange non-resonant background events after
the 2nd BDT cut increases from 5.7% (see Table 5.10) to 10.6%. Implementing the
same procedure as described in Section 5.3.4 we estimated a new set of Rnon−resonantBG

ratios which we present in Table 5.19. After obtaining the final event samples from
the loosen 2nd BDT cut, we computed a new set of values for the E asymmetry. Table
5.20 shows the difference Etest2 − Efinal, where Etest2 values are obtained from the
loose 2nd BDT cut and Efinal values are obtained with the optimized cut. Notice that
the angular bins cos θK0 = ±0.6 have larger differences than the bin cos θK0 = ±0.0;
this might be due statistical fluctuation.
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Rnon−resonantBG

Gold 2 0.254± 0.016
Silver 1&2 0.295± 0.034

Silver 4 0.227± 0.014
Silver 5 0.242± 0.012

Table 5.19: Numerical values for non-resonant background correction factors for all
data.

cos θK0

−0.6 0.0 +0.6

K0Λ
W1 −0.03 -0.01 −0.10
W2 0.25 −0.02 0.01

K0Σ0 W1 −0.17 −0.03 −0.39
W2 0.36 0.10 0.05

Table 5.20: Differences between Etest2 − Efinal.

5.5.3 Systematic Effect from the Loosening the 1st BDT Cut

We loosened the 1st BDT cut from 0.036 (see Section 5.3.1) to 0.0 for this test. As a
result, the percentage of survived target-material background events increases from
25% (see Table 5.5) to 29%. We then estimated a new set of RtargetBG ratios, see
Table 5.21 for numerical values (the procedure to obtain the ratios was discussed in
Section 5.3.4). The new set of E values (Etest3) was obtained next. Quantitatively,
Table 5.22 shows the differences between Etest3 − Efinal. Notice that the angular
bin cos θK0 = −0.6 have larger differences than the other bins; this might be due
statistical fluctuation.

RtargetBG

Gold 2 0.092± 0.08
Silver 1&2 0.115± 0.05

Silver 4 0.200± 0.02
Silver 5 0.135± 0.01

Table 5.21: Numerical values for non-resonant background correction factors for all
data.
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cos θK0

−0.6 0.0 +0.6

K0Λ
W1 0.27 0.09 −0.16
W2 0.23 −0.07 −0.04

K0Σ0 W1 −0.31 −0.10 0.15
W2 0.15 0.11 -0.01

Table 5.22: Differences between Etest3 − Efinal.

5.5.4 Systematic Effect from the Target and Beam Polariza-
tions

In this section, we provide results from our systematic test on the uncertainties of the
beam and target polarizations—the numerical values for the statistical uncertainties
were reported in Table 3.1. To quantify the systematic effect we computed the E
asymmetry but with reduced beam and target polarizations; i.e., both quantities were
reduced by one standard deviation of their respective statistical uncertainties. The
effect on the E asymmetry measurements are shown as Etest4 − Efinal, where Etest4
values are obtained by reducing the beam and target polarizations, in Table 5.23.
Notice that the values of the difference Etest4 − Efinal in Table 5.23 are consistent
with the sign and the amplitude of the E asymmetries for both channels.

cos θK0

−0.6 0.0 +0.6

K0Λ
W1 0.076 −0.020 0.098
W2 −0.036 −0.004 −0.050

K0Σ0 W1 −0.012 0.040 −0.033
W2 −0.032 0.001 0.005

Table 5.23: Differences between Etest4 − Efinal.

5.5.5 Systematic Uncertainty Assignment

In this section we combine all the systematic tests into one assignment of the system-
atic uncertainty. For each data point (there are total 12 data points), we compute
the square root of the quadratic sum of the individual test’s σsystematic. For example,
the systematic uncertainty for the data point belongs to K0Λ channel, energy window
W1 and cos θK0 = 0.0 is

√
0.032 + 0.012 + 0.092 + 0.022 = 0.10. Table 5.24 presents

the systematic uncertainties for all data points.
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cos θK0

−0.6 0.0 +0.6

K0Λ
W1 0.287 0.098 0.231
W2 0.345 0.101 0.136

K0Σ0 W1 0.406 0.144 0.460
W2 0.391 0.150 0.065

Table 5.24: Systematic uncertainty of E asymmetry measurements for K0Λ/K0Σ0

channels.

5.6 Summary

In this chapter, we presented the first set of the E asymmetry measurements for the
reaction γd→ K0Y (ps) (for 1,700 MeV≤W≤2,340 MeV). In particular, we described
in detail the cuts to select a clean sample of pπ+π−π−. Three categorical BDT were
constructed to firstly select the bound neutron K0Y events and to secondly seperate
K0Λ and K0Σ0 channels. We plotted the combined E asymmetry as a function of
cos
(
θCM
K0

)
as well. Next, we implemented several systematic tests to estimate the

overall systematic uncertainties for all measuring bins—they are smaller than the
statistical uncertainties. The numerical values of the measured E asymmetries and
their statistical and systematic uncertainties are reported in Table 5.25.

E cos θK0

−0.6 0.0 +0.6

K0Λ
W1 0.834±0.499±0.287 −0.144±0.436±0.098 1.066±0.419±0.231
W2 −0.533±0.752±0.345 −0.263±0.618±0.101 −0.648±0.464±0.136

K0Σ0 W1 −0.110±0.723±0.406 0.581±0.539±0.144 −0.319±0.541±0.460
W2 −0.471±0.446±0.391 0.0002±0.317±0.150 0.054±0.281±0.065

Table 5.25: Systematic uncertainty of E asymmetry measurements for K0Λ/K0Σ0

channels.

As mentioned before, this analysis is plagued by small statistics so that the mea-
surements of the E asymmetry might not offer significant help to constrain PWA
models (see Chapter 7 for a comparision of the E asymmetry measurements with
partial wave analysis models). Nevertheless, this analysis has shown that one can
efficiently select bound neutron K0Λ and K0Σ0 events using the Boosted Decision
Trees algorithm; therefore, future analysis of polarization observables on the K0Λ
and K0Σ0 channels for the neutron data can be of benefit by following the outlined
procedures described, in detail, in this chapter.
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Chapter 6

Spin Determination for Possible
N∆ Resonance Structure in
Reaction γd→ π+π−d(0)

When examining the reaction γd → dπ+π−(0), we observed a pronounced physics
phenomena: the final state exhibits a strong correlation between the deuteron and
one of the pions, see Figure 6.1. The state is above the sum of masses of the deuteron
and the pion, which is md+mπ = 1875+140 = 2015 MeV, but it lies below the sum of
masses of the N and the ∆, which is mN +m∆ = 939 + 1232 = 2171 MeV. Therefore,
it is possible that we might be looking at an evidence of a N∆ dibaryonic object. In
a paper by Mulders et al. [66] the N∆ dibaryon was described as a six-quark state
in a bag model with a 2S+1LJ = 5S2 configuration. Within the framework of the
πNN Fadeev equations, Gal and Garcilazo [67, 68] theorized the existence of N∆
and ∆∆ dibaryons (recently the WASA-at-COSY collaboration reported evidence for
a state consistent with the ∆∆ dibaryon [69]). Experimentally, a mass peak in the
dπ system—similar to what we observed—was reported by Werner et al., Denegri
et al., Brunt et al., and Aladashvili et al. [70, 71, 72, 73]. Importantly, Aladashvili
et al. studied the reaction dp → ppn and found “enhancement” only in the pp
invariant mass but not in the pn mass spectrum; the two-proton decay mode of the
N∆ resonance led them to concluded that the state has JP = 2+ [73]. Unfortunately,
none of the previously mentioned works provided a direct measurment for the spin of
the suspected N∆ resonance.

Necessarily, to determine whether the structure (see Figure 6.1) is a resonance
or just a “threshold enhancement” requires extensive studies to measure the cross
section, the mass centroid, the decay width, and the parity, as well as the spin.
Unfortunately, g14 data is only suitable to measure the spin but not the others (the
g10 and g13 data sets are more suitable for the other studies). This chapter, thus,
mainly focuses on spin analysis of the possible N∆ resonance. In other words, we
implicitly assumed the observed structure in the (dπ) system is a dibaryonic resonance
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and utilized the g14 data set to determine its spin. To provide details about this
analysis, we, firstly, present the “d : π+ : π−” event selection. Secondly, a discussion
of the Boosted Decision Trees algorithm used to reject target-material background
follows. Thirdly, we discuss two spin hypotheses for the N∆ resonance—total spin
one J = 1 and total spin two J = 2—and a procedure to determine the best
hypothesis that matches the g14 data (the procedure consists mainly of measuring
the E helicity-target asymmetry). Finally, we report our systematics study in Section
6.5.
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Figure 6.1: IM(dπ−) vs. IM(dπ+), purple lines represent md +mπ mass value, and
black lines represent mN + m∆ mass value. The units are in GeV. The data used to
obtain the plot is the Silver 5 period data.

6.1 dπ+π− Event Selection

We began the analysis by selecting “d : π+ : π−” events. Particularly, by using
the measured momentum, the path length and the time-of-flight of each detected
track, we obtained a measured mass of each track. If a positively charged track has a
measured mass within the range 1.8 GeV to 2.2 GeV, it is assigned a deuteron “ID”.
Similarly, if a negatively (positively) charged track has the measured mass within the
range 0.0 GeV to 0.3 GeV, it is assigned a π− (π+) “ID”. We plot the measured mass
distributions of negative versus positive tracks in Figure 6.2. A cut at 48 MeV on the
π− mass distribution was applied to reject unambiguous e backgrounds. In addition,
Figure 6.3 shows the squared total missing mass before (blue histogram) and after
the cut on the π− measured mass distribution (rejection is in black, selection is in
red).
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Figure 6.2: The measured mass of negative (π−) vs. positive (d, π+) particles. The
magenta line indicates the cut placed on the π− measured mass distribution. The
plot is obtained from the Gold 2 data.
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Figure 6.3: Squared total missing mass, MM2(dπ+π−), blue histogram is before,
red histogram represents events selected by the π− measured mass cut, and black
histogram represents rejected events by the cut. The data used to plot is the Gold 2
data.

6.1.1 Particle Identification: ∆TOF Cuts

To further reduce the background due to particle misidentification, we applied ∆TOF
cuts. In particular, for each detected charged track, the CLAS track reconstruction
algorithm records its momentum, its path length from target vertex to TOF counters,
and its time of flight (TOFmeasured). For a given particle with an assumed mass, one
can compute TOFcalculated from the momentum and the path length of the particle.
The difference between the TOFcalculated and the TOFmeasured is the ∆TOF :
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∆TOF = TOFmeasured − TOFcalculated, (6.1)

where TOFmeasured is the measured time-of-flight. This is the time difference be-
tween event vertex time and time at which the particle hit the TOF scintillator
walls—encircling the CLAS drift chamber. The TOFcalculated is computed as:

TOFcalculated =
L

c

√
1 +

(
m

p

)2

, (6.2)

where L is the pathlength from the target to the scintillator, c is the speed of light, m
is the hypothesized mass and p is the magnitude of the measured 3-momentum. When
plotting a particle’s ∆TOF against its momentum, if the particle’s identification was
correctly assigned, then a straight horizontal band around zero should be observed.
If the particle type was wrongly assigned, then the same plot results in a curved band
that flatten out at high momentum. Figure 6.4 plots the π+’s ∆TOF (on the top left)
and the π− ’s ∆TOF (on the top right), and the d’s ∆TOF (on the bottom left).
Also, we learned that some misidentified protons with wrong TOFmeasured can get
measured masses that are consistent with the deuteron mass; thus, to reject events
with these misidentified protons, we purposely assigned the hypothesized mass m the
mass of the proton (see Eq. 6.2), and plot the ∆TOF of the “fake” protons on the
bottom right plot of Figure 6.4—a straight horizontal band around 20 ns contains
events with the misidentified protons. We then placed cuts at 19 and 21 ns to reject
these events.

In addition, in the pion ∆TOF plots of Figure 6.4, there are several horizontal
bands that are 2.00 ns apart. A particle belonging to such horizontal bands has a
mass equal to its assigned mass which indicates correct particle identification but it
belongs to a different RF beam “bucket” (the beam is delivered in pulses that are
2.00 ns apart). For illustration, we plot ∆TOFπ− vs. ∆TOFπ+ on the left of Figure
6.5. The plot shows visible clusters of events around (±2,±2), (±4,±4), etc. The
next ∆TOF cuts we applied were to remove these events which have wrong track-
and-photon-timing combinations. The cuts resemble an “iron cross,” see the right
plot of Figure 6.5. Finally, Figure 6.6 illustrates the effect in the total missing mass
distribution of the ∆TOF cuts on the pions and the deuterons.

6.1.2 Detector Performance: Fiducial Cuts

Like the two previous analyses we relied on a BDT algorithm to reject the target-
material background. Importantly, to optimize the BDT performance, it is crucial
to have good simulations that represent closely the real data to “train” the BDT
(more detail later); and for this reason, understanding the CLAS detectors, and
simulating correctly their performances is important. However, there are some regions
or elements of the detectors that are hard to simulate. To allow a reliable comparison
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Figure 6.4: Top left: π+∆TOF vs. |p|. Top right: π− ∆TOF vs. |p|. Bottom left:
d ∆TOF vs. |p|. Bottom right: “fake” proton ∆TOF vs. |p|—a straight horizontal
band at 20 ns corresponding to misidentified protons; we placed cuts at 19 and 21 ns
to reject these events. The data used to plot was Gold 2 period. The plots are on a
linear scale.

between real data and simulation data, these regions have to be removed from both
real and MC data; this section addresses this type of cuts. Primarily, we only applied
cuts on the drift chamber detector (since we did not perform a cross section analysis
but rather a target-beam asymmetry, simulating the exact CLAS acceptance is not
necessary).

Previous studies such as those with g11 data [51] advised removing events with
tracks going near the superconducting torus coils where the magnetic field varies
too rapidly to be properly modeled (by GSIM). We thus removed events which have
at least one track going into these regions. Particularly, in the forward direction
where the coils occupy a great amount of space, we placed a hard cut for tracks
with cos(Θlab) > 0.985. In addition, we placed cuts at 0.4 rad on the angle Φsector
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Figure 6.5: The ∆TOFπ− vs. ∆TOFπ+ before (left), and after (right) the ∆TOF
cuts. The data used to plot was the Gold 2 period data. The plots are on a logarithmic
scale.
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Figure 6.6: Squared total missing mass, MM2(dπ+π−), before (blue histogram) and
after the ∆TOF cuts (red histogram). Events in the black histogram were rejected
by the ∆TOF cuts. The data used to plot was the Gold 2 period data.

(measured in the sector coordinate), consistent with g11 Φsector cuts (i.e., accepted
particles had their measured |Φsector| < 0.4 rad). The Φ cuts were to remove the edges
of the CLAS drift chambers which are hard to simulate.

In addition, we also placed a cut in the backward direction (Θ cuts) for the
deuterons. The cut was to remove the target-material background—not the same goal
as the previously discussed cuts. The cut was at Θd < 700. This cut is loose—when
we studied the signal simulation data (i.e., simulating free deuterons events), we
learned that it only rejects a small number of good signal events (see Figure 6.7).
For the real data, Figure 6.8 shows the angular distribution of the deuterons before
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(left) and after (right) the fiducial cuts (we learned that the strangely clustered group
of events will be rejected by later event selections; the remaining events from these
groups have insignificant effect on our final measurement), while Figures 6.9 (6.10)
shows the angular distribution of the π+s (the π−s) before (left) and after (right) the
fiducial cuts. Finally, we show the squared total missing mass after the fiducial cuts
in Figure 6.11.
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Figure 6.7: Deuteron angular distribution: Φ vs. Θ before the fiducial cuts. The
vertical line indicates the extra cut on the deuteron to reject target-material back-
ground. The unit of Φ is rad, while the unit of Θ is degree. The events plotted are
the signal simulation data. The plot is on a logarithmic scale.

6.2 Deuteron Event Selection Using Boosted De-

cision Trees

After selecting a clean sample of “d : π+ : π−” events, the next task was to se-
lect events originating from the initial-state polarized deuterons, and rejected the
target-material background, which is non-polarized. In order to optimize efficiency,
we employed the BDT algorithm once more. In particular, we generated signal sim-
ulation data which consists of incident photons from a bremsstralung distribution,
a three-body phase space distribution for the scattered d, π+, and π−. The MC
data was processed by GSIM, GPP, and USERANA to simulate the CLAS detector
efficiency (see Section 3.5 for more detail). The simulation data was used as signal
training data, while the empty-target-run data was used as background training data.
Each event (both signal and background) consists of six continuous variables (for
example, one of the variables is the total missing momentum), and—only applied to
training data—one two-value discrete variable to indicate whether the event is signal
or background. Table 6.1 provides definitions of the input continuous variables. Note
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Figure 6.8: On the left (right) deuteron angular distribution: Φ vs. Θ before (after)
the fiducial cuts. The unit of Φ is rad, while the unit of Θ is degree. We learned that
the strangely clustered group of events will be rejected by later event selections; the
remaining events from these groups have insignificant effect on our final measurement.
The data used to plot was the Gold 2 period data. The plots are on a logarithmic
scale.
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Figure 6.9: On the left (right) π+ angular distribution: Φ vs. Θ before (after) the
fiducial cuts. The unit of Φ is rad, while the unit of Θ is degree. The data used to
plot was the Gold 2 period data. The plots are on a logarithmic scale.

that the set of variables in Table 6.1 is distinctly different from the ones presented in
Section 4.2.2 or Section 5.3.1. This is because in those sections the spectator proton
was “missing”, while for this reaction no particle is “missing.” As a result, there
were no variables β and Γ in the list. Also, we replaced the coplanarity angle with
an angle we will refer to as correlation angle which is the angle between two planes
formed by (dπ+) and (dπ−) systems in the overall center of mass frame. Ideally, sig-
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Figure 6.10: On the left (right) π− angular distribution: Φ vs. Θ before (after) the
fiducial cuts. The unit of Φ is rad, while the unit of Θ is degree. The data used to
plot was the Gold 2 period data. The plots are on a logarithmic scale.
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Figure 6.11: Squared total missing mass, MM2(dπ+π−). The blue histogram is after
the ∆TOF cuts, and the red histogram is after the fiducial cuts. Events in the black
histogram were rejected by the fiducial cuts. The data used to plot was Gold 2 period.

nal events should have zero missing momentum, and zero missing energy—but due
to a finite momentum resolution of the drift chamber detectors, the variables may
contain non-zero values. Fortunately, however, the “deuterons” inside the aluminum
nucleus are tightly bound than the free deuterons in the H-D molucules, thus there
is still a visible kinematic distinction between the signal and target-material back-
ground events; to illustrate we plot histograms of input variables for both signal and
background training data in Figures 6.12. Blue histograms show signal training data,
and red histograms show background training data. The BDT algorithm was trained
on these variables.
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Variable Name Description
CosCorrelationAngle cos ((p̂π+ × p̂d) . (p̂π− × p̂d))
MissingMomentum Total missing momentum
MissingEnergy Total missing energy
MissingTheta Θ of missing momentum

MissingMomentum z |pmissingz |
MissingMomentum perp |pmissingtransverse|

Table 6.1: List of variables used to construct the BDT for the task of selecting the
deuteron and rejecting the target-material background events.
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Figure 6.12: Histograms of input variables used to construct the BDT during the
training phase. The red histograms are from background (empty target run period),
and the blue histograms are from the signal simulation data.

As before, we checked for signs of overtraining (or overfitting) to ensure that the
BDT would generalize well for some other independent but similar—to the train-
ing—data sets. To check for overtraining the ROOT TMVA program divided the
signal and background training data randomly into four subsets: signal and back-
ground training data, and signal and background testing data. The program ran the
BDT and evaluated the similarity between the BDT’s performances on the four data
sets by employing the Kolmogorov–Smirnov test—to verify whether the BDT output
distributions from the training and testing data are statistically the same (note that
the test is applied separately on signal data and background data). High probabili-
ties from the Kolmogorov-Smirnov test, as shown in Figure 6.13, suggest consistent
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performances on training and independent test data sets—or equivalently, no evi-
dence of overtraining observed because according to the Kolmogorov-Smirnov test
the distributions of the BDT output from the training data and the test data are
statistically similar (see Appendix A for how to “fix” an overtrained BDT). Next,
Figure 6.14 shows cut efficiencies and an optimal cut value, i.e., the efficiencies of
selecting and rejecting signal and background data, respectively, as a function of the
BDT output (it is the output from the BDT algorithm for every event after being
processed). A recommended cut at 0.195 that maximizes the S/

√
S +B ratio, which

statistically means minimizing the misclassification cost, will be used—to obtain this
number we must provide the initial signal-to-background ratio which we estimated
to be roughly one to two. In particular, from Figure 6.15 we could estimate the
numbers of signal and background events to be one-to-two ratio (for all events within
-20 cm≤ z ≤30 cm—we did not place cut on the z-vertex at this stage). Note that the
estimation for the Gold 2 data accounted for the fact that the aluminum material is
less than in the empty target. When studying systematic uncertainties, we will vary
this BDT-output cut to study its effect. For illustration, in Figure 6.16 we plot back-
ground rejection efficiency vs. signal efficiency and in Figure 6.17 we show the first
constructed decision tree. Lastly, we include Table 6.2 for a qualitative assessment
on how often each variable was used in building the BDT.
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Figure 6.13: Overtraining check, high Kolmogorov-Smirnov probabilities for both
signal and background data suggest no overtraining because the performances (dis-
tributions) of the BDT are consistent between independent training and testing data
sets.
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Figure 6.14: Plot of cut efficiencies show the efficiencies as a function of the BDT-
output cut value, and an optimal BDT-output cut at 0.195 assuming the initial
signal-to-background ratio is one-to-two.
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Figure 6.15: The z component of the interaction vertex; the black histograms are
(scaled) from the empty-target data, the red histograms are from the Gold 2 data
(left) and the Silver 1&2 data (right). From these histograms we estimated the signal-
to-background ratio to be one-to-two (for the z-vertex range from −20 cm to +30
cm).

6.2.1 Applying the BDT Algorithm to Signal Simulation and
Empty-Target Background Data

In Figure 6.18, on the left for simulation signal data we show the squared total missing
mass before (“blue” histogram) and after the BDT cut (i.e., selected events in “red”

206



Signal efficiency
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

B
ac

kg
ro

un
d 

re
je

ct
io

n

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1
Background rejection versus Signal efficiency

Figure 6.16: Background rejection vs. Signal efficiency of the constructed BDT for
training (signal and background) data.

Variable Name Relative Ranking
MissingMomentum 1.00
MissingEnergy 0.24

MissingMomentum perp 0.17
MissingMomentum z 0.14
CosCorrelationAngle 0.12

MissingTheta 0.10

Table 6.2: Table of relative variable ranking. The higher the ranking the more the
variable was used to construct the trees. All the rankings were normalized to the
absolute ranking of the missing momentum variable.

and rejected events in “black”), and the total missing momentum before and after
the cut on the right. Similarly, in Figure 6.19 for the empty-target-run-period data
the squared total missing mass and the missing momentum before (“blue” histogram)
and after the cut (i.e., wrongly selected events in “red” and correctly rejected events
in “black”) are shown on the left and right plots, respectively. Additionally, for
empty data, we also plot the z-component of the interaction vertex in Figure 6.20.
From the three figures, we concluded that the signal selection and the background
rejection efficiencies of the newly constructed BDT are outstanding. We applied the
constructed BDT on the real data (the Gold 2 and Silver data sets) to select the
deuteron events in the next section.
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Figure 6.17: The first constructed decision tree, for illustration. Note that all variables
can be used multiple times.
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Figure 6.18: Left: Squared total missing mass, MM2(dπ+π−), before (“blue”) and
after the BDT cut (selected events in “red” and rejected events in “black”) . Right:
Missing momentum before (“blue”), and after the BDT cut (selected events in “red”
and rejected events in “black”). The plots were constructed from the MC data. The
selection efficiency is outstanding.

6.2.2 Applying the BDT Algorithm to the Real Data

We showed previously that the BDT algorithm has a high performance on both
selecting signal and rejecting background events. The next task was to employ the
BDT to select the deuteron signal events for the Gold 2 and all Silver periods. In this
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Figure 6.19: Left: Squared total missing mass, MM2(dπ+π−), before (“blue”) and
after the BDT cut (wrongly selected events in “red” and correctly rejected events
in “black”) . Right: Missing momentum before (“blue”), and after the BDT cut
(wrongly selected events in “red” and correctly rejected events in “black”). The
plots were constructed from the data of the empty-target-run period. The rejection
efficiency is outstanding.
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Figure 6.20: z-component of interaction vertex before (“blue”), and after (wrongly
selected events in “red” and correctly rejected events in “black”) the BDT cut. The
plots were constructed from the data of the empty-target-run period. The rejection
efficiency is outstanding.

section, we, however, illustrate only the results for the Gold 2 and Silver 5 data sets
since they have high statistics. In particular, we plot histograms of the squared total
missing mass, total missing momentum, z component of the interaction vertex before
and after the BDT cut in Figures 6.21, 6.22, and 6.23. We also include the histograms
of the invariance masses of the (dπ−) system versus the (dπ+) system before and after
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the BDT cut in Figures 6.24, and 6.25. The right plots of Figures 6.24, and 6.25 show
a pronounced structure of the (dπ±) systems. In addition, we also applied some loose
cuts to reject remaining unambiguous (but very small) target-material background,
see below:

� Select events with missing momentum less than 200 MeV/c,

� Select events with squared total missing mass from −0.05 GeV2 to +0.05 GeV2,

� Select events with z vertex from −10.5 cm to −5.0 cm.
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Figure 6.21: Squared total missing mass, MM2(dπ+π−), before (“blue”) and after
the BDT cut (selected events in “red” and rejected events in “black”). The left plot
was constructed from the Gold 2 period data, the right plot was constructed from the
Silver 5 period data.

6.3 N∆ Regional Selection and ρ Background Sub-

traction

The last two sections introduced our procedures to select a clean sample of dπ+π−

events that originated from the polarized deuterons (the deuterons in the H-D molecules).
Then, as illustrated in Figures 6.24, and 6.25, a band-like structure in the (dπ±) sys-
tems was visible. The goal for this analysis is to determine the spin of this structure
assuming that it is a dibaryonic N∆ resonance. Consequently, the dπ+π− non-
resonant and the dπ+

ρ π
−
ρ (i.e., ρ → π+

ρ π
−
ρ ) backgrounds must be removed or sub-

tracted. This section discusses a procedure to subtract incoherently the two remain-
ing backgrounds— it is the best approach in the absence of a coherent amplitude-level
quantum mechanical description.
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Figure 6.22: Missing momentum before (“blue”) and after the BDT cut (selected
events in “red” and rejected events in “black”). The left plot was constructed from
the Gold 2 period data, the right plot was constructed from the Silver 5 period data.
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Figure 6.23: The z-component of the interaction vertex before (“blue”) and after the
BDT cut (selected events in “red” and rejected events in “black”). The left plot was
constructed from the Gold 2 period data, the right plot was constructed from the
Silver 5 period data.

6.3.1 Dibaryon N∆ Event Selection

In order to select the signal events we implemented a two-stage procedure:

1. Select Eγ < 1.2 GeV, and IM(π+π−) < 0.6 GeV, see Figure 6.26,

2. Select (dπ+) system: IM(dπ+) < 2.25 GeV and IM(dπ−) > 2.25 GeV; and
select (dπ−) system: IM(dπ−) < 2.25 GeV and IM(dπ+) > 2.25 GeV, see the

211



)+πIM(d
2 2.2 2.4 2.6 2.8 3 3.2 3.4

)- π
IM

(d

2

2.2

2.4

2.6

2.8

3

3.2

3.4

0

50

100

150

200

250

300

350

400

)+π) vs. IM(d-π before BDT cut, IM(d

)+πIM(d
2 2.2 2.4 2.6 2.8 3 3.2 3.4

)- π
IM

(d

2

2.2

2.4

2.6

2.8

3

3.2

3.4

0

5

10

15

20

25

30
)+π) vs. IM(d-πafter BDT cut, IM(d

Figure 6.24: IM(dπ−) vs. IM(dπ+) before (left plot) and after the BDT cut (right
plot). The units are in GeV. The data used to obtain the plots is the Gold 2 period
data.
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Figure 6.25: IM(dπ−) vs. IM(dπ+) before (left plot) and after the BDT cut (right
plot). The units are in GeV. The data used to obtain the plots is the Silver 5 period
data.

right plot of Figure 6.27,

where Eγ is the incident photon energy, IM(π+π−), IM(dπ−), and IM(dπ+) are
the invariance masses of the (π+π−), the (dπ−), and the (dπ+) systems, respectively.
Note that the first stage mainly removes the ρ and non-resonant backgrounds, while
the second stage removes ambiguous kinematic regions where it is not clear which
pion should be combined with the deuteron. Even after the cuts, it is resonable to
suspect that there is still background remaining; and to study the background more
carefully we looked into a smaller kinematic background region—particularly, the
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region of which Eγ < 1.2 GeV, and IM(π+π−) > 0.6 GeV, see Figure 6.26, and the
left plot of Figure 6.28.

By studying both Figures 6.27 and 6.28, we learned that in the dπ± regions
there are remaining background events associated with the ρ resonance. Assum-
ing that the join distribution of IM(dπ−) and IM(dπ+), as shown in Figure 6.28,
represents well the remaining background in Figure 6.27, then the remaining back-
ground could be “subtracted” by utilizing events in this background region (i.e.,
Eγ < 1.2 GeV, and IM(π+π−) > 0.6 GeV)—but the region must be scaled appro-
priately. Fortunately, we could obtain the scaling factor because of the following
observation: since the triangular region in Figure 6.27 is mostly background (de-
noted as BGSignalRegion), we could “fit” the triangular region in Figure 6.28 (denoted
as BGBackgroundRegion) into the BGSignalRegion to obtain the scaling factor. i.e., find
ε such that BGSignalRegion = εBGBackgroundRegion. We chose to fit in two dimensions
(i.e., the IM(dπ−) and IM(dπ+) dimensions) because it provides more degrees of free-
dom. In addition, since the statistics for both BGSignalRegion and BGBackgroundRegion

are scarce, we implemented a fitting algorithm based on Poisson distribution which
is more accurate for the current situation. Details about the algorithm is provided in
the next section.
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Figure 6.26: Eγ vs. IM(π+π−), the magenta lines indicate the cuts to reject the ρ
and non-resonant backgrounds. The units are in GeV. The data used to obtain the
plots is the Silver 5 period data.

6.3.2 Ξ2 Fitting Algorithm

As discussed in the last section, to implement succesfully a background subtrac-
tion procedure, it is necessary to find a kinematic region that resembles the remain-
ing background in the signal region, and find an appropriate scaling factor ε that
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Figure 6.27: Left: Eγ vs. IM(π+π−) in the signal region. Right: IM(dπ−) vs.
IM(dπ+) distribution for events selected by the cuts Eγ < 1.2 GeV, and IM(π+π−) <
0.6 GeV (i.e., events in the left plot). The triangular region inthe right plot marked
by the dashed lines was used to estimate the number of remaining background (for
detail see text). The units are in GeV. The data used to obtain the plot is the Silver
5 period data.
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Figure 6.28: Left: Eγ vs. IM(π+π−) in the background region. Right: IM(dπ−) vs.
IM(dπ+) distribution for events selected by the cuts Eγ < 1.2 GeV, and IM(π+π−) >
0.6 GeV (i.e., events in the left plot). The triangular region in the right plot was used
to estimate the number of remaining background (for detail see text). The units are
in GeV. The data used to obtain the plot is the Silver 5 period data.

“matches” the backgrounds. In other words, the task is to find ε such that:

BGSignalRegion = εBGBackgroundRegion. (6.3)
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Note that this is a two-dimensional fit to the Dalitz-like plots, and the data has bins
with low (less than 10 counts) statistics. We introduce two fitting algorithms to
estimate ε: χ2 fitting and Ξ2 fitting. Both fitting procedures are derived from the
maximum likelihood method. We will argue that the Ξ2 fitting is more applicable
to the present low-statistics situation—thus implementing only this algorithm, but
present the χ2 fitting algorithm as an anchor point that most people know.

For the χ2 fitting method consider experimental data with a large number of
counts per bin, it is appropriate to approximate the data statistics in each bin with
a Gaussian distribution. The likelihood is then

L(~ε) =
n∏
i=1

1√
2πNi

exp[−(Ni − fi)2

2Ni

], (6.4)

where Ni is the number of counts in bin i and fi = f(i;~ε) =
∑q

k=1 εkgk(i) is the sum of
q linear terms (for our case q = 1). fi is a best fit if it maximizes L(~ε) or equivalently
it minimizes −lnL(~ε). To achieve this, fi has to be such that

χ2(~ε) ≡
n∑
i=1

(Ni − fi)2

Ni

, (6.5)

or the term that is recognized as χ2(~ε) is minimized. The χ2 fitting method has a
limitation. It is not designed to handle low statistics data. Hence, by construction, it
ignores zero-count channels (bins). Consequently, results of the fit will be biased in a
systematic way. To overcome these limitations, we introduce the Ξ2 fitting method.

It usually occurs in experimental physics, especially in nuclear and particle physics,
that experimental data exhibits the Poisson distribution. Low-statistics data is well
represented by the distribution. Zero-count channels are as important as non-zero
count channels in the Poisson distribution. For large-statistics data, the Poisson
and the Gaussian distributions give identical results. Realizing these features of the
Poisson distribution in contrast to the Gaussian distribution, we were compelled to
develop the Ξ2 fitting method based on Poisson statistics. We obtained the likelihood
for the Poisson distribution:

L(~ε) =
n∏
i=1

fNii e−fi

Ni!
, (6.6)

where Ni and fi are defined as before. fi is a best fit if it maximizes L(~ε) or, equiva-
lently, it minimizes −lnL(~ε). To achieve this, fi has to be such that

Ξ2(~ε) ≡
n∑
i=1

fi −Ni −Niln
fi
Ni

, (6.7)

the term referred to as Ξ2(~ε), is minimized. To get this result, one needs to use
Sterling’s factorial approximation lnNi! ≈ 1

2
(ln2π+ lnNi) +NilnNi−Ni. Also, it can
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be shown that in the limit of large Ni

Ξ2(~ε) ≈
n∑
i=1

(Ni − fi)2

Ni

= χ2(~ε). (6.8)

Thus, for large statistics data, the two methods are equivalent. Since lim
X→0

X(lnX)→
0, the summand above (Eq. 6.7) reduces to fi for the channels (bins) that contain no
counts. i.e. this method does not ignore zero-count channels (bins). Necessarily, the
initial values for parameters of fi for this fitting method have to be carefully assigned
because of the introduction of the logarithm in the formula. In particular, f(i;~ε) may
not go all the way to zero or become negative, reflecting the physical requirement
that the number of counts remains positive everywhere. In conclusion, the two fitting
algorithms, χ2-fitting and Ξ2-fitting, are designed to find the optimal estimate of the
~ε by minimize χ2(~ε) and Ξ2(~ε), respectively. But the Ξ2(~ε) fitting algorithm is more
suitable for low-statistics data such as our current situation—hence we only employed
the Ξ2(~ε) fitting algorithm to estimate the scaling factor ε. Table 6.3 presents fitting
results for all the run periods. Moreover, in the last column of Table 6.3, we also show
the ratio of NBGSignalRegion/NBGBackgroundRegion for all data periods for comparision. As
shown, the two set of values of scaling factors are different. We chose the set obtained
from the Ξ2 fitting method but will vary these values in one of the systematics studies
to assess how sensitive the final measurements to the values of the scaling factor ε.

Run Period ε Ξ2/dof NBGSignalRegion/NBGBackgroundRegion

Gold 2 0.73±0.05 1.31 0.61±0.04
Silver 1&2 0.62±0.06 1.31 0.55±0.05

Silver 3 0.60±0.10 1.70 0.55±0.12
Silver 4 0.58±0.07 1.30 0.82±0.09
Silver 5 0.80±0.05 1.34 0.70±0.04

Table 6.3: Results of the Ξ2 fitting method for the scaling factor ε for all run periods
compared with NBGSignalRegion/NBGBackgroundRegion .

6.4 Spin Determination for a Possible N∆ Reso-

nance Structure

We considered the reaction γd → πfN∆ → πf (πdd), where πf is the formation pion
and πd is the pion from the decay of the N∆ dibaryon (denoted as N∆ hereafter).
We assumed that the orbital angular momentum between the formation pion, πf ,
and the N∆ state is dominantly in S-wave, and that the N∆ resonance has positive
parity (both the N and ∆ baryons have positive parity). Furthermore, because the
intrinsic spins of the N and ∆ baryons are 1/2, and 3/2, respectively, the intrinsic spin
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of the N∆ dibaryon is assumed to be only 1 or 2 (i.e., JP
N∆ = 1+ or 2+)—more

elaborated theoretical models by Mulders et al. [66], and Gal and Garcilazo [67, 68]
favor the JP

N∆ = 2+configuration. In addition, as a result of Jd = 1, and Jπ = 0,
to conserve angular momentum between the initial N∆ state and the final πdd state,
there must be contribution from orbital angular momentum between the d and the

πd (Lπdd); i.e., if JN∆ = 2, then Lπdd =
{
~1,~3
}

(we use different notations for the

values of JN∆, and Lπdd to distinguish them even though they are both angular
momenta); note that Lπdd = ~2 is not allowed because final πdd state would have
negative parity. On the other hand, the orbital angular momentum (Lπdd) can only
be one if JN∆ = 1—again, to conserve parity. Consequently, we could obtain the
value for the spin of the N∆ indirectly by studying the angular distribution of the
Lπdd in the rest frame of the πdd system.

6.4.1 The Beam-Target E Asymmetry

This analysis takes full advantage of the fact that the g14 experiment has both longi-
tudinally polarized photons and deuterons; thus, in the overall center-of-mass frame,
there are only two possible values for Jz; i.e., Jz = 0 (Jz = 2) if the polarization
vectors are anti-aligned (aligned). Note that in the rest frame of the N∆ state, the
initial Jz values would still be two and zero along the same z-axis. We now discuss
the formalism of the E asymmetry below.

� Consider the configuration JN∆ = 2, and Lπdd = ~1:

|J = 2, Jz = 2〉N∆ = Y1,+1(θ, φ)χd+1, (6.9)

|J = 2, Jz = 0〉N∆ = a+Y1,−1(θ, φ)χd+1 + a0Y1,0(θ, φ)χd0 + a−Y1,+1(θ, φ)χd−1, (6.10)

where χd{−1,0,+1} are the final-state deuteron spin states (e.g., χd+1 = |J = 1, Jz = +1〉d),
and Y1,{−1,0,+1}(θ, φ) are the spherical harmonic functions representing the orbital an-

gular momentum Lπdd = ~1. The coefficents a−, a0, and a+ satisfy a2
− + a2

0 + a2
+ = 1.

The decay intensity angular distributions, I0 and I2, are given by:

I2(θ) ∼dπ 〈J = 2, Jz = 2|J = 2, Jz = 2〉N∆ =
3

8π
sin2 θ, (6.11)

I0(θ) ∼dπ 〈J = 2, Jz = 0|J = 2, Jz = 0〉N∆ =
3

8π

((
a2

+ + a2
−
)

sin2 θ + 2a2
0 cos2 θ

)
,

(6.12)
since a2

+ + a2
− + a2

0 = 1,
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I0(θ) ∼dπ 〈J = 2, Jz = 0|J = 2, Jz = 0〉N∆ =
3

8π

((
1− a2

0

)
sin2 θ + 2a2

0 cos2 θ
)
,

(6.13)
which leads to

E(cos θ) =
I0(θ)− I2(θ)

I0(θ) + I2(θ)
=

a2
0 (3 cos2 θ − 1)

2− a2
0 + (3a2

0 − 2) cos2 θ
. (6.14)

where θ is the angle of the deuteron in the rest-frame of the dπd system. By fitting
the measured E values we can estimate a2

0.

� Consider the configuration JN∆ = 2, and Lπdd = ~3:

|J = 2, Jz = 2〉N∆ = b+Y3,+1(θ, φ)χd+1 + b0Y3,2(θ, φ)χd0 + b−Y3,+3(θ, φ)χd−1, (6.15)

|J = 2, Jz = 0〉N∆ = c+Y3,−1(θ, φ)χd+1 + c0Y3,0(θ, φ)χd0 + c−Y3,+1(θ, φ)χd−1, (6.16)

where χd{−1,0,+1} are the final-state deuteron spin states (e.g., χd+1 = |J = 1, Jz = +1〉d),
and Y3,{−1,0,+1,+2,+3}(θ, φ) are the spherical harmonic functions representing the or-

bital angular momentum Lπdd = ~3. The coefficents b−, b0, and b+ (c−, c0, and c+ )
satisfy b2

−+ b2
0 + b2

+ = 1 (c2
−+ c2

0 + c2
+ = 1). The decay intensity angular distributions,

I0 and I2, are given by:

I2(θ) ∼dπ 〈J = 2, Jz = 2|J = 2, Jz = 2〉N∆

=
7

64π

[
3b2

+ sin2 θ
(
5 cos2 θ − 1

)2
+ 30b2

0 sin4 θ cos2 θ + 5b2
− sin6 θ

]
, (6.17)

=
7

64π

[
3b2

+ sin2 θ
(
5 cos2 θ − 1

)2
+ 30b2

0 sin4 θ cos2 θ + 5
(
1− b2

0 − b2
+

)
sin6 θ

]
, (6.18)

I0(θ) ∼dπ 〈J = 2, Jz = 0|J = 2, Jz = 0〉N∆

=
7

64π

(
3
(
c2

+ + c2
−
)

sin2 θ
(
5 cos2 θ − 1

)2
+ 4c2

0 cos2 θ
(
5 cos2 θ − 3

)2
)
, (6.19)

=
7

64π

(
3
(
1− c2

0

)
sin2 θ

(
5 cos2 θ − 1

)2
+ 4c2

0 cos2 θ
(
5 cos2 θ − 3

)2
)
, (6.20)
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⇒ E(cos θ) =
I0(θ)− I2(θ)

I0(θ) + I2(θ)
(6.21)

= −
3
(
b2+ + c20 − 1

) (
5 cos2 θ − 1

)2
+
(

30b20 sin4 θ − 4c20
(
5 cos2 θ − 3

)2)
cot2 θ + 5

(
1− b20 − b2+

)
sin4 θ

3
(
b2+ − c20 + 1

)
(5 cos2 θ − 1)

2
+
(

30b20 sin4 θ + 4c20 (5 cos2 θ − 3)
2
)

cot2 θ + 5
(
1− b20 − b2+

)
sin4 θ

.

(6.22)

Similarly, by fitting the measured E asymmetry we could estimate b2
+, b2

0, and c2
0.

� Consider the configuration JN∆ = 1, and Lπdd = ~1:

|J = 1, Jz = 2〉N∆ = 0, (6.23)

therefore,

I2(θ) = 0. (6.24)

Hence,

E(cos θ) =
I0(θ)− I2(θ)

I0(θ) + I2(θ)
= +1. (6.25)

Therefore, if the measured E asymmetry is statistically flat at +1, then the spin of
the N∆ state is one. On the other hand, if the measures E is angle-dependent then it
may be possible that JN∆ = 2; estimating the values of a2

0, b2
+, b2

0, and c2
0 may provide

indication of the existence of the possible dibaryonic N∆ state with JN∆ = 2 . This
is because the fitting coefficient(s) a2

0, or b2
+, b2

0, and c2
0 must be statistically consistent

with the Clebsch-Gordan coefficients for a true resonance with a defined intrinsic spin.
We will show in the next section that the fitted value for a2

0 is statistically consistent
with the Clebsch-Gordan coefficient for the configuration JN∆ = 2, and Lπdd = ~1.
We now introduce another fitting configuration where the coefficients a2

0, b2
+, b2

0, and
c2

0 are fixed as the Clebsch-Gordan coefficients but the N∆ state is allowed to be in
a superposition of Lπdd = ~1 and Lπdd = ~3.

|J = 2, Jz = 2〉N∆ = α
∣∣∣J = 2, Jz = 2,Lπdd = ~1

〉
N∆

+ β
∣∣∣J = 2, Jz = 2,Lπdd = ~3

〉
N∆

, (6.26)

|J = 2, Jz = 2〉N∆ = αY1,+1(θ, φ)χd+1+β

[√
1

21
Y3,+1(θ, φ)χd+1 −

√
5

21
Y3,2(θ, φ)χd0 +

√
5

7
Y3,+3(θ, φ)χd−1

]
,

(6.27)
and,

|J = 2, Jz = 0〉N∆ = α
∣∣∣J = 2, Jz = 0,Lπdd = ~1

〉
N∆

+ β
∣∣∣J = 2, Jz = 0,Lπdd = ~3

〉
N∆

, (6.28)
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|J = 2, Jz = 0〉N∆ = α

[√
1

6
Y1,−1(θ, φ)χd+1 +

√
2

3
Y1,0(θ, φ)χd0 +

√
1

6
Y1,+1(θ, φ)χd−1

]

+ β

[√
2

7
Y3,−1(θ, φ)χd+1 −

√
3

7
Y3,0(θ, φ)χd0 +

√
2

7
Y3,+1(θ, φ)χd−1

]
,(6.29)

where |α2|, and |β2| are the probabilities that the state is in Lπdd = ~1 and Lπdd = ~3,
respectively (note that |α2|+ |β2|=1). We also assume that α and β are real (so that
this fitting configuration is a one-parameter fitting). We now introduce the formalism
of the E asymmetry below.

I2(θ) ∼dπ 〈J = 2, Jz = 2|J = 2, Jz = 2〉N∆ = α2 3

8π
sin2 θ

+ β2 1

64π

[
sin2 θ

(
5 cos2 θ − 1

)2
+ 50 sin4 θ cos2 θ + 25 sin6 θ

]
+ αβ

1

8π

√
3

2
sin2 θ

(
5 cos2 θ − 1

)
, (6.30)

and,

I0(θ) ∼dπ 〈J = 2, Jz = 0|J = 2, Jz = 0〉N∆ = α2

[
1

8π
sin2 θ +

1

2π
cos2 θ

]
+ β2 3

16π

[
sin2 θ

(
5 cos2 θ − 1

)2
+ cos2 θ

(
5 cos2 θ − 3

)2]
+ αβ

1

4π

[√
3

2
sin2 θ

(
5 cos2 θ − 1

)]

+ αβ
1

4π

[
−
√

6 cos2 θ
(
5 cos2 θ − 3

)]
, (6.31)

and,

E(cos θ) =
I0(θ)− I2(θ)

I0(θ) + I2(θ)
. (6.32)

6.4.2 Measuring the Beam-Target E Asymmetry

Previously we mentioned that the remaining background is the ρ and non-resonant
background. Since it is difficult to separate the signal and remaining background
events, the background, can only be subtracted. In section 6.3.1 we identified a
background kinematic region (see Figure 6.28) that likely resembles the remaining
background in the dπ± regions (see Figure 6.27). Moreover, section 6.3.2 discussed
the Ξ2 fitting algorithm to obtain the scaling factors ε to match the background
statistics of both regions. In this section, we introduce a procedure to subtract the
remaining background (we applied this procedure individually for each run period
since the scaling factors ε are different, see Table 6.3):
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� Select events in the signal region (i.e., Eγ < 1.2 GeV, and IM(π+π−) < 0.6 GeV);
then boost into the (dπ+) rest frame for events with IM(dπ+) < 2.25 GeV and
IM(dπ−) > 2.25 GeV, and boost into the (dπ−) rest frame for events with
IM(dπ−) < 2.25 GeV and IM(dπ+) > 2.25 GeV (see Figure 6.27). Denote the
total yields (signal plus remaining background) as Y ↑↑, and Y ↓↑, where Y ↑↑, and
Y ↓↑ are the yields (combining events from both dπ± systems) when the helicity
of the photon and the direction of the target polarization vector are antiparallel
and parallel, respectively.

� Select events in the background region (i.e., Eγ < 1.2 GeV, and IM(π+π−) ≥
0.6 GeV); then boost into the (dπ+) rest frame for events with IM(dπ+) <
2.25 GeV and IM(dπ−) > 2.25 GeV, and boost into the (dπ−) rest frame for
events with IM(dπ−) < 2.25 GeV and IM(dπ+) > 2.25 GeV (see Figure 6.27).
Denote the background yields as Y ↑↑BG, and Y ↓↑BG, similarly, Y ↑↑BG, and Y ↓↑BG are
the yields (combining events from both dπ± systems) when the helicity of the
photon and the direction of the target polarization vector are antiparallel and
parallel, respectively.

� Scale the background yields by ε to match the remaining background in the
signal region,

� Subtract the remaining background in the signal region to obtain the signal
yields (events from the N∆ decay):

Y ↑↑N∆ = Y ↑↑ − εY ↑↑BG , Y ↓↑N∆ = Y ↓↑ − εY ↓↑BG.

Note that this step is carried out bin by bin because values of Y ↓↑BG and Y ↑↑BG might
be different for different measuring (cos θd) bins, but the scaling ε is assumed to be
constant. And, statistical uncertainty on ε was propagated into the Y ↑↑N∆, and Y ↓↑N∆).

� Compute the following equation bin by bin (cos θd):

E(cos θd) =
1

Pγ

1

Ptarget

Y ↑↑N∆(cos θd)− Y ↓↑N∆(cos θd)

Y ↑↑N∆(cos θd) + Y ↓↑N∆(cos θd)
, (6.33)

where Ptarget is the target polarization magnitude, and Pγ is the weighted average
of the photon polarizations Pγ [63]. The angle θd is the polar angle of the final-
state deuterons in the (dπ+) rest frame for events with IM(dπ+) < 2.25 GeV and
IM(dπ−) > 2.25 GeV, while it is the polar angle of the final-state deuterons in the
(dπ−) rest frame for events with IM(dπ−) < 2.25 GeV and IM(dπ+) > 2.25 GeV (see
Figure 6.27).

Finally, we applied the above procedure individually for all Silver and Gold 2
period data, and then computed the weighted average (see below) of the results from
all the run periods:
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E(cos θd) =

∑
t

(1/σ2
t )Et(cos θd)∑
t

1/σ2
t

,
1

σ2
E

=
∑
t

1

σ2
t

, (6.34)

where the summation is taken over all the run periods (the Silver 1, 2, 3, 4, 5, and
Gold 2 data sets). The combined E asymmetry values were fitted using formulas
discussed previously (see Section 6.4.1). Figure 6.29 shows the combined measured
E asymmetry as a function of cos θd. In particular, the left plot of Figure 6.29 was
fitted with the configuration JN∆ = 2 and Ldπd =

−→
1 , while the right plot was fitted

with the configuration JN∆ = 2 and Ldπd =
−→
3 . It is apparent that the E asymmetry

values are not “flat” around +1, thus the hypothesis JN∆ = 1 and Ldπd =
−→
1 should

be discarded. In detail, Table 6.4 provides the fitted values of a2
0 (for the configuration

JN∆ = 2 and Ldπd =
−→
1 ), and b2

+, b2
0, and c2

0 (for the configuration JN∆ = 2 and

Ldπd =
−→
3 ). Notice that the value of a2

0 is consistent with the Clebsch–Gordan
coefficient for a system with two units of angular momentum decaying into two sub-

systems each with one unit of angular momentum (the numerical value is
(√

2/3

)2

≈
0.67), i.e.,

|J = 2, Jz = 0〉N∆ =

√
1

6
|1,−1,1,+1〉+

√
2

3
|1, 0,1, 0〉+

√
1

6
|1,+1,1,−1〉 . (6.35)

We considered this as a “hint” that the N∆ is a real state with a defined intrinsic
spin. In addition, the fitting values for the three coefficients b2

+, b2
0, and c2

0 of the

configuration JN∆ = 2 and Ldπd =
−→
3 are much different from the Clebsch–Gordan

coefficients. Thus, we are inclined to conclude that according to the data the config-
uration JN∆ = 2 and Ldπd =

−→
1 is more likely. Furthermore, in Figure 6.30 we show

the fitting result for the third configuration, where we consider a superposition of
Ldπd =

−→
1 , and Ldπd =

−→
3 ; as expected, the fit suggests that JN∆ = 2 and Ldπd =

−→
1

is much more probable.

Ldπd =
−→
1 Ldπd =

−→
3

a2
0 b2

+ b2
0 c2

0

Value 0.53±0.15 0.46±0.25 0.00±0.12 0.35±0.17
χ2/dof 0.76 0.89

Table 6.4: Fitted values of a2
0 (for the configuration JN∆ = 2 and Ldπd =

−→
1 ), and

b2
+, b2

0, and c2
0 (for the configuration JN∆ = 2 and Ldπd =

−→
3 ).

Lastly, we performed two necessary studies: first, selecting events with Eγ >
1.4 GeV and IM(π+π−) < 0.6 GeV ((i.e., the region where the 3-body dππ non-
resonant background dominates) and second, selecting events with Eγ < 1.2 GeV
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Figure 6.29: E asymmetry vs. cos θd . Left: The histogram is fitted with the formula
for the JN∆ = 2 and Ldπd =

−→
1 configuration. Right: The histogram is fitted

with the formula for the JN∆ = 2 and Ldπd =
−→
3 configuration. It is obvious that

E(cos θd) 6= +1, so the JN∆ = 1 and Ldπd =
−→
1 hypothesis should be discarded.
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Figure 6.30: E asymmetry vs. cos θd . The histogram is fitted with the formula for
the superposition of Ldπd =

−→
1 and Ldπd =

−→
3 configuration. The fit suggests the

Ldπd =
−→
1 component dominates.

and IM(π+π−) > 0.6 (i.e., the region where the ρ background dominates) and obtain
the E asymmetry for both regions. Figures 6.31 and 6.32 show the result; it is
apparent that these background events do not share the same physics as our signal
events (both plots show a linearly decreasing E asymmetry).
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background region employed to study the E asymmetry of general background events.
Right: E asymmetry vs. cos θd for selected background events showing in the left
histogram.

)-π+πIM(
0.2 0.4 0.6 0.8 1 1.2 1.4 1.6

γ
E

0

0.5

1

1.5

2

)-π+π vs. IM(γE

SELECT

) RFπdd
θcos(

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1

) dθ
E

(c
o

s

-1.5

-1

-0.5

0

0.5

1

1.5

)>0.6)-π+π<1.2 and IM(
γ

 Background Region (EρE asymmetry in 
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ployed to study the E asymmetry of general background events. Right: E asymmetry
vs. cos θd for selected background events showing in the left histogram.

6.5 Systematics Studies

In this section, we present various systematics studies to test the robustness of our
fitting result a2

0 for the configuration JN∆ = 2 and Ldπd =
−→
1 —since I showed that

if the N∆ exists, it is dominantly in JN∆ = 2 and Ldπd =
−→
1 state. In detail, we will

vary the ρ scaling factors, loosen the Eγ cut, tighten the IM(π+π−) cut, and lastly,
loosen the BDT cut. The first test focuses on the effect on the E asymmetry from
our estimation of the ρ scaling factors, while the next two test concentrate on our
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N∆ event selection (or equivalently, how well we rejected the remaining ρ and non-
resonant backgrounds). The next test is to study how the target-material background
would dilute the final E asymmetry measurements. And the last test is to study the
effect on the E asymmetry of reducing the target and beam polarizations.

6.5.1 Systematic Effects from Varying the ρ Scaling Factors

As mentioned in Section 6.3, the ρ scaling factors ε were estimated (for each run
period) by employing an incoherent fitting algorithm. However, the final-state inter-
ference between the ρ and the N∆ might result in larger or smaller scaling factors.
Unfortunately, we could not model the interference. Therefore, we could only quantify
the effect on the final E asymmetry measurements by purposely varying the previ-
ously obtained scaling factors ε. We decided to add (subtract) 5σε and studied the
efffect on the E asymmetry measurements. We presumed that ε± 5σε is a sufficient
interval (to cover the values of the ratios NBGSignalRegion/NBGBackgroundRegion as shown
in Table 6.3). Table 6.5 presents the numerical values for the new ρ scaling factors,
while Table 6.6 provides the fitted values of a2

0 (for the configuration JN∆ = 2 and

Ldπd =
−→
1 ). In addition, Figure 6.33 (6.34) shows the fitting result using the scaling

factors ε − 5σε (ε + 5σε). Next, we present the numerical values of ETEST − EFINAL
for the nine angular bins in Table 6.10.

Run Period ε ε+ 5σε ε− 5σε

Gold 2 0.73±0.05 0.98 0.48
Silver 1&2 0.62±0.06 0.92 0.32

Silver 3 0.60±0.10 1.10 0.10
Silver 4 0.58±0.07 0.93 0.23
Silver 5 0.80±0.05 1.05 0.55

Table 6.5: The scaling factor ε for all run periods. The last two columns present the
new scaling factors we used in the first systematic study.

ε− 5σε a2
0 ε+ 5σε a2

0

Value 0.49±0.14 Value 0.56±0.16

Table 6.6: Fitted values of a2
0 for configuration JN∆ = 2 and Ldπd =

−→
1 for the first

systematic study.

6.5.2 Systematic Effects from Loosening the Eγ Cut

As shown in Figure 6.26, a cut on the Eγ at 1.2 GeV is optimal in selecting the N∆
signal events. For this systematic study, we loosened this cut to 1.6 GeV. A new set
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Figure 6.33: E asymmetry vs. cos θd . The histogram is fitted with the formula for
JN∆ = 2 and Ldπd =

−→
1 configuration. This is obtained using ε− 5σε scaling factors

(this is part 1 of the first systematic study).
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Figure 6.34: E asymmetry vs. cos θd . The histogram is fitted with the formula for
JN∆ = 2 and Ldπd =

−→
1 configuration. This is obtained using ε+ 5σε scaling factors

(this is part 2 of the first systematic study).

of scaling factors ε was estimated. Note that the new values of ε would be smaller
since there are fewer additonal events—events which otherwise would be rejected by
the 1.2 GeV cut— in the signal region than in the background region when the cut is
loosened to 1.6 GeV (again see Figure 6.26). Table 6.8 presents the new numerical
values for the ρ scaling factors, while Table 6.9 provides the fitted values of a2

0 (for

the configuration JN∆ = 2 and Ldπd =
−→
1 ). In addition, in Figure 6.35 presents the

fitting result. Finally, we present the numerical values of ETEST − EFINAL for the
nine angular bins in Table 6.10.
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cosθddπ RF

|ETEST − EFINAL|
ε− 5σε ε+ 5σε

−0.818 0.310 1.957
−0.545 0.160 0.003
−0.364 0.100 0.136
−0.182 0.039 0.039
0.000 0.013 0.015

+0.182 0.006 0.010
+0.364 0.051 0.089
+0.545 0.137 0.138
+0.818 0.033 1.783

Table 6.7: Differences |ETEST − EFINAL| (for the first systematic study).

Run Period ε

Gold 2 0.45±0.02
Silver 1&2 0.43±0.03

Silver 3 0.49±0.05
Silver 4 0.40±0.03
Silver 5 0.51±0.02

Table 6.8: The scaling factor ε for all run periods for Eγ <1.6 GeV (for the second
systematic study).

a2
0

Value 0.49±0.14

Table 6.9: Fitted values of a2
0 (for the configuration JN∆ = 2 and Ldπd =

−→
1 ) for

Eγ <1.6 GeV (the second systematic study).

6.5.3 Systematic Effects from Tightening the IM(π+π−) Cut

In this study we tighten the IM(π+π−) cut from 0.60 GeV to 0.45 GeV (only for
signal events); i.e., to select the signal events the cuts are now Eγ < 1.20 GeV, and
IM(π+π−) < 0.45 GeV). Note that the cuts for the background region are still the
same as before (i.e., for the background region the cuts are still Eγ < 1.20 GeV, and
IM(π+π−) ≥ 0.60 GeV). By tightening the IM(π+π−) cut, the signal sample should
be cleaner (fewer remaining background events) as well as smaller in statistics. As
before, a new set of scaling factors ε was estimated, see Table 6.11. Table 6.12 provides
the fitted values of a2

0 (for configuration JN∆ = 2 and Ldπd =
−→
1 ), and Figure 6.36
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Figure 6.35: E asymmetry vs. cos θd . The histogram is fitted with the formula for the
JN∆ = 2 and Ldπd =

−→
1 configuration. This is the result for the second systematic

study (loosening the Eγ cut to 1.6 GeV).

cosθddπ RF |ETEST − EFINAL|
−0.818 0.102
−0.545 0.290
−0.364 0.104
−0.182 0.081
0.000 0.096

+0.182 0.096
+0.364 0.007
+0.545 0.212
+0.818 0.077

Table 6.10: Differences |ETEST − EFINAL| (for the second systematic study).

illustrates the fitting result. In addition, Table 6.13 presents the numerical values of
ETEST − EFINAL for the nine angular bins.

Run Period ε

Gold 2 0.34±0.04
Silver 1&2 0.28±0.04

Silver 3 0.40±0.12
Silver 4 0.33±0.06
Silver 5 0.43±0.03

Table 6.11: The scaling factor ε for all run periods for IM(π+π−) <0.45 GeV (the
third systematic study).
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a2
0

Value 0.51±0.16

Table 6.12: Fitted values of a2
0 (for the configuration JN∆ = 2 and Ldπd =

−→
1 ) for

IM(π+π−) <0.45 GeV (the third systematic study).
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Figure 6.36: E asymmetry vs. cos θd . The histogram is fitted with the formula for
theJN∆ = 2 and Ldπd =

−→
1 configuration. This is the result for the third systematic

study (tightening the IM(π+π−) cut to 0.45 GeV).

cosθddπ RF |ETEST − EFINAL|
−0.818 4.912
−0.545 0.021
−0.364 0.156
−0.182 0.032
0.000 0.069

+0.182 0.283
+0.364 0.037
+0.545 0.063
+0.818 2.482

Table 6.13: Differences |ETEST − EFINAL| (for the third systematic study).

6.5.4 Systematic Effects from Loosening the BDT-Output
Cut

This systematic test studies the dilution effect from the target-material background.
Recall from Section 6.2.1 that a cut on the BDT-output variable was at 0.195. We
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illustrated that the after-cut sample has an insignificant number of target-material
background events (see Section 6.2), hence we did not make any correction to the
final E asymmetry measurements. Nevertheless, it is informative to loosen the BDT-
output cut and to study the changes in the E asymmetry measurements. Particularly,
we placed the BDT-output cut at 0.0 and then obtained the E asymmetry values (note
that there was no new set of scaling factors ε). Table 6.14 provides the fitted values

of a2
0 (for configuration JN∆ = 2 and Ldπd =

−→
1 ) and Figure 6.37 shows the fitting

result. Lastly, In Table 6.15 we present the numerical values of ETEST − EFINAL for
the nine angular bins.

a2
0

Value 0.47±0.15

Table 6.14: Fitted values of a2
0 (for the configuration JN∆ = 2 and Ldπd =

−→
1 ) for

BDT-output>0.0 (the fourth systematic study).
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Figure 6.37: E asymmetry vs. cos θd . The histogram is fitted with the formula for
the JN∆ = 2 and Ldπd =

−→
1 configuration. This is the result for the fourth systematic

study (loosening the BDT-output cut to 0.0).

6.5.5 Systematic Effects from Polarization Uncertanties

In this section, we provide result from our systematic test on the uncertainties of the
beam and target polarizations—the numerical values for the total uncertainties (sys-
tematic and statistical) can be obtained from Table 3.1. To quantify the systematic
effect we computed the E asymmetry but with reduced beam and target polarizations;
i.e., both quantities were reduced by one standard deviation of their respective total
uncertainties. The effect on the E asymmetry, and changes on the fitting parameters
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cosθddπ RF |ETEST − EFINAL|
−0.818 0.396
−0.545 0.030
−0.364 0.211
−0.182 0.053
0.000 0.021

+0.182 0.097
+0.364 0.068
+0.545 0.006
+0.818 0.656

Table 6.15: Differences |ETEST − EFINAL| (for the fourth systematic study).

are shown in Figure 6.38 and Table 6.16. Lastly, Table 6.17 presents the numerical
values of ETEST − EFINAL for the nine angular bins.
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Figure 6.38: E asymmetry vs. cos θd . The histogram is fitted with the formula for
the JN∆ = 2 and Ldπd =

−→
1 configuration. This is the result for the fifth systematic

study (reducing beam and target polarizations by one standard deviation of their
respective total uncertainties).

a2
0

Value 0.56±0.16

Table 6.16: Fitted values of a2
0 (for the configuration JN∆ = 2 and Ldπd =

−→
1 ) for re-

ducing beam and target polarizations by one standard deviation (the fifth systematic
study).
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cosθddπ RF |ETEST − EFINAL|
−0.818 0.111
−0.545 0.013
−0.364 0.033
−0.182 0.030
0.000 0.012

+0.182 0.039
+0.364 0.014
+0.545 0.048
+0.818 0.080

Table 6.17: Differences ETEST − EFINAL (for the fifth systematic study).

6.5.6 Sytematic Uncertainty Assignment

Previously, we described several studies to test the robustness of our fitting result
a2

0 for configuration JN∆ = 2 and Ldπd =
−→
1 . In this section, for each test, the

systematic differences will be estimated as the differences between the final fitted
values (see Table 6.4) and the fitted results obtained individually in each study. The
overall systematic uncertainty is derived as a square root of the quadratic sum of the
individual test’s σsys. The numerical value for the overall systematic uncertainty is

presented in Table 6.18 for configuration JN∆ = 2 and Ldπd =
−→
1 .

final-fitting result a2
0=0.53±0.15

a2
0 |σsys| σ2

sys

1st test (part 1) 0.49 0.04 0.0016
1st test (part 2) 0.56 0.03 0.0009

2nd test 0.49 0.04 0.0016
3rd test 0.51 0.02 0.0004
4th test 0.47 0.06 0.0036
5th test 0.56 0.03 0.0009

σ2
overall 0.0085
σoverall 0.10

Table 6.18: List of estimated σsys for all the systematic tests for a2
0 (for the configu-

ration JN∆ = 2 and Ldπd =
−→
1 ), see text for test enumeration. The last row reports

the overall systematic uncertainty.
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6.6 Summary

This chapter presented the spin analysis for the possible N∆ resonance structure in
the reaction γd → dπ+π−(0) by measuring the E asymmetry (definition in Section
6.4.1). We described in detail the cuts to select a clean sample of dπ+π−. We then
introduced the Boosted Decision Trees (BDT) method to select cleanly polarized
deuteron events (by rejecting target-material background). A procedure to subtract
the remaining ρ and non-resonant background was implemented. The measurement
of the E asymmetry is consistent with the intrinsic spin JN∆ = 2, which agrees with
theoretical models by Mulders et al. [66], and Gal and Garcilazo [67, 68]. Moreover,

we fitted the data seperately using two spin hypotheses (Ldπd =
−→
1 and Ldπd =

−→
3 ).

We showed that the configuration JN∆ = 2 and Ldπd =
−→
1 (see Figure 6.30) is more

probable given the current E asymmetry measurements. We also studied several
systematics tests to quantify the robustness of the final fitting result for a2

0 of the

configuration JN∆ = 2 and Ldπd =
−→
1 . The systematic assignment for the fitted

parameters is presented in Table 6.18. Lastly, the numerical values of the measured
E asymmetry are reported in Table 6.19.

cosθddπ RF E σstat σsys
−0.818 +0.900 0.846 5.313
−0.545 +0.019 0.428 0.333
−0.364 −0.445 0.272 0.330
−0.182 −0.443 0.253 0.119
0.000 −0.147 0.240 0.122

+0.182 −0.472 0.252 0.317
+0.364 −0.430 0.308 0.130
+0.545 +0.537 0.369 0.298
+0.818 −0.703 1.180 3.128

Table 6.19: Numerical values of the measured E asymmetry with the statistical and
systematic uncertainties.
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Chapter 7

Final Results, Discussion, and
Conclusions

In this work we presented in detail the procedures to obtain the E asymmetry mea-
surements for pπ− , K0Λ, and K0Σ0 channels. These measurements are the first-ever
results for neutron data which will significantly improve PWA models to disentangle
the nucleon spectrum. Moreover, the analysis on the reaction γd → dπ+π−(0) to
determine the spin of a possible dibaryonic N∆ state is also the first of its kind. We
now review what we have learned from the three analyses.

7.1 Summary of the E Asymmetry Measurements

for pπ− Final State

Figure 7.1 plots our measurements against the SAID models of 2012 (or CM-12)
and 2014 (or ST-14) for reaction γn→ pπ− (each model is represented by two curves
computed at the bin end point energies). Note that the gray bands at zero indicate the
systematic uncertainties, see Section 4.4 for more detail. The main difference between
the two models is the inclusion of new data for reaction γn→ nπ+ from S. Strauch et
al. which was published in 2014 [74]. Qualitatively, for the first twelve energy window
W s the two models are in good agreement, and appear to explain the data well; on the
other hand, for the last nine energy windows, the two models differ significantly (see
Figure 7.1)—this is because at higher photon energies there is a limited experimental
data to constrain the models. As shown in Figure 7.1, the older SAID 2012 model
follows our data better than the newer SAID 2014 model in the backward direction,
while in the forward direction the SAID 2014 is better at explaining the data than
the SAID 2012 model. Note that the current situation is not a disappointment given
the fact that both models were constrained by only proton data. Our measurements,
therefore, can significantly improve the SAID model. Furthermore, we also compared
our data with another theoretical model, the Bonn-Gatchina PWA or BoGa model.
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This model explains the data well for the first nine energies windows, but predicts
less accurately the last twelve windows (see Figure 7.2). Note that the disagreement
between the BoGa and SAID 2014 models for high energies bin were mainly due
to their different schemes in amplitude calculation and their different approaches to
extract resonance couplings unless there are more constraints from the experimental
data. Moreover, given the lack of predictive power of these models for the neutron,
we are not too surprised by the lack of agreement with our new data; we expect both
model approaches to be in much better aggrement with the data once these results
are fitted within those calculation schemes.

7.2 Summary of the E Asymmetry Measurements

for K0Y Final State

This thesis presents the first E asymmetry measurements for the reaction γd →
K0Y (ps) where Y can be either Λ or Σ0. Unfortunately, the analysis was hampered
by very limited statistics. Nevertheless, we have illustrated an efficient procedure
for K0Y event selection using the Boosted Decision Tree (BDT) algorithm. Chap-
ter 5 outlines the procedure in detail. Future analyses to obtain other asymmetry
observables from the K0Y channels can follow the outlined procedure with ease. In
this section we compare our measurements with the theoretical models: SAID, Kaon-
MAID, and BoGa.

7.2.1 Summary of the E Asymmetry Measurements for K0Λ
Final State

We first compar the data with the SAID, and KaonMAID models on a neutron
target (i.e., the models for reaction γn → K0Λ). Figure 7.3 shows our results with
the curves from the two models. Note that for each energy W , each model has two
curves—each was computed at the bin end point energies. For example, in the left
plot the curves were computed for W = 1.70 and W = 2.02 GeV. Notice that the
two models are significantly different because of the lack of model constraints, which
require measurements on the neutron. For the lower energy window (1.70 < W < 2.02
GeV) both models are equally adequate given the data. For the second energy window
(2.02 < W < 2.34 GeV) the SAID model appears to match the data better.

We next compare the data with the SAID, KaonMAID, and BoGa models, but
for the proton target (ie., the models for reaction γp → K+Λ). Interestingly, it
appears that the KaonMAID, and BoGa models for proton data explain better the
neutron data than the models for neutron data, see Figure 7.4. From this comparison,
it is clear that the theoretical models for neutron data can be improved using our
measurements.
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Figure 7.3: The EK0Λ asymmetries (with systematic uncertainties included, see leg-
ends for detail) vs. cos θK0 for the energy windows 1.7 GeV≤ W <2.02 GeV (left)
and 2.02 GeV≤ W < 2.34 GeV (right). Each model has two curves computed at the
bin end point energies.
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Figure 7.4: The EK0Λ asymmetries (with systematic uncertainties included, see leg-
ends for detail) vs. cos θK0 for the energy windows 1.7 GeV≤ W <2.02 GeV (left)
and 2.02 GeV≤ W < 2.34 GeV (right). Each model has two curves computed at the
bin end point energies.

7.2.2 Summary of the E Asymmetry Measurements for K0Σ0

Final State

Similar comparisons were done for the K0Σ0 final state. In particular, we compare the
data with the SAID and KaonMAID models for neutron data. The E measurements
and the theoretical curves are illustrated in Figure 7.5. It appears that the SAID
model follows the data better than the MAID model. Nevertheless, this is a very

240



qualitative statement given our low statistics situation. The comparison between
our data and the models for the proton target (i.e., γp → K+Σ0) also indicates the
KaonMAID model is less successful in explaining the data than the other models.
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Figure 7.5: The EK0Σ0 asymmetries (with systematic uncertainties included, see leg-
ends for detail) vs. cos θK0 for the energy windows 1.7 GeV≤ W <2.02 GeV (left)
and 2.02 GeV≤ W < 2.34 GeV (right). Each model has two curves computed at the
bin end point energies.
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Figure 7.6: The EK0Σ0 asymmetries (with systematic uncertainties included, see leg-
ends for detail) vs. cos θK0 for the energy windows 1.7 GeV≤ W <2.02 GeV (left)
and 2.02 GeV≤ W < 2.34 GeV (right). Each model has two curves computed at the
bin end point energies.

241



7.3 Summary of the E Asymmetry Measurements

for π±d d Final State

In Chapter 6 we presented the procedure and the result of the E asymmetry measure-
ment for the π±d d final state. Note that we must assume the π±d d state is the decay
product of a N∆ bound state for this analysis result to be interpretable. We stated
that the data does not support the JN∆ = 1 hypothesis. We then proceeded to fit the

measurements of E with two other hypotheses JN∆ = 2 and Ldπd = {−→1 ,−→3 }. Given

the limited statistics, the simpler hypothesis JN∆ = 2 and Ldπd =
−→
1 fits the data

well with the fitting coefficient a2
0 statistically consistent with the Clebsch–Gordan

coefficient for a state with a defined intrinsic spin 2. In another fit where we include
both Ldπd = {−→1 ,−→3 } components, the fit suggests that the N∆ state is dominantly

in Ldπd =
−→
1 . Moreover, we tested the Ldπd =

−→
1 fit stability by adding and subtract-

ing one statistical and total1 standard deviation into the fit parameter and study the
results as shown in Figure 7.7. In conclusion, the obtained value of the fit parameter
a2

0 of model JN∆ = 2 and Ldπd =
−→
1 is reasonable and provides strong evidence to

support the possible existence of the dibaryonic N∆ state with JN∆ = 2.
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Figure 7.7: E asymmetry vs. cos θd . The histogram is fitted with the formula for
the JN∆ = 2 and Ldπd =

−→
1 configuration. The effects of including systematic and

statistical uncertainties on the fitting parameters are shown.

7.4 Summary

In this chapter, we presented our final assessments when comparing our E mea-
surement on pπ− , K0Λ, and K0Σ0. Our measurement will significantly improve

1σtotal =
√
σ2
stat + σ2

syst
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theoretical models for pion photoproduction. The measurements on K0Y with large
statistical uncertainties will likely make a lesser impact. Nevertheless, the measure-
ment is a successful one in terms of defining a clear procedure for future analyses
to measure other observables for kaon photoproduction. Lastly, the analysis of the
reaction γd→ dπ+π− proved to be a constructive one as our result, that we believe,
has provided strong evidence about the existence of a spin 2 dibaryonic N∆ state.
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Appendix A

Boosted Decision Trees

In Chapter 5, 6 and 7, we relied mainly on the Boosted Decision Trees (BDT) algo-
rithm to efficiently select signal events from mixtures of signal and background. We
showed that the method works well and in some cases more optimally than the typical
method of cuts (as shown in Chapter 5). Nevertheless, the algorithm is closely similar
to making cuts. In this appendix we would like to review the algorithm in a more
rigorous framework so that the algorithm can be understood and more importantly
be employed appropriately. For interested readers, reference [54] was the first paper
that introduces the BDT algorithm, while reference [55] illustrated the application of
the algorithm in particle physics.

A.1 Motivation

For motivation, let us consider an oversimplified example consisting of two hundred
events belonged to two distinct classes; each event is characterized by two variables.
The left plot on Figure A.1 shows all the events with two colors (red and blue) repre-
senting their classes plotting only the first variable. Clearly, a cut at 0.2 would select
a clean sample of “blue” events while a cut at 0.8 would be reasonable to get a clean
sample of “red” events. The situation is undesirable since most of the data is within
0.2 and 0.8. Nevertheless, when viewing the data using both variables, see the right
plot on Figure A.1, it is clear that a diagonal cut can separate cleanly and efficiently
the two classes. Note that the diagonal cut is a combination of the two variables.
Therefore, for this very simple example, in particular, it is better to seperate the
classes using both variables by placing a cut on a linear combination of them. In fact,
sometimes it is better to plot the data in as many dimensions as possible because the
higher the dimension the more separation between each pair of event—or equivalently
projecting data into lower dimensional space reduces available information. However,
it is also important to realize that the more correlated the considered variables are,
the less separation the data has in high dimensional space, i.e., less information is
gained. Imperfectly, humans can only view data at most in three dimensions simulta-
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neously, thus limiting our ability to do classification. Fortunately, the BDT is one of
the algorithms designed to ameliorate this problem. In short, it is correct to say that
the algorithm “views” the data in multidimensional space and separates any distinct
classes in that high dimensional space. At the moment, it is sufficient to know that
before employing the BDT, it needs to be “trained” and checked for “overtraining”.
We will explain these points in more detail in later sections.
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Figure A.1: Left: Data points from the simple example described above plotted using
only the first variable. Right: Data points plotted using both variables. As often like
this example, viewing the data in more dimensions reveals a richer structure in the
data.

A.2 Introduction

We mentioned above that the BDT needs to be trained for a particular classification
task. In other words, training data, which has the same distributional characteristics
as the real data, is used to build the algorithm—this type of algorithm is called
supervised learning. The only difference between training data and real data is that
training data has labels. In detail, each event in the training data is a pair consisting
of an input object (typically a vector of values) and a desired output value— i.e.,
the class label. For example, in our data, the labels are indicators of whether each
training event is background or signal. The BDT algorithm then analyzes the training
data and produces an inferred function, which can be used on other similar data sets.
Consequently, for a supervised learning algorithm to be useful, its performance on
the training data must be consistent with its performance on other similar data sets.
When the performance on a test data is lower than on the training data, the algorithm
is said to be “overtrained,” i.e., it built a specialized procedure to perform optimally
only on the training data and failed to generalize the training performance to other
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data sets. Making sure the BDT is not overtrained is as important as optimizing
its performance. Usually, there is a tradeoff between these two (it is called bias-
variance tradeoff). Next we will introduce how to construct the decision tree, then
the mechanism of boosting, and finally how boosting helps to combine a “forest” of
decision trees to create a powerful classifier.

A.2.1 Decision Tree

A decision tree is a graphical representation of a set of if-then rules. Formally, a branch
of the tree constitutes a disjunction of logical conjunctions and each leaf represents
the final decision to be executed [75]. Figure A.2 shows an example of a general
decision tree with one continuous variable (X1) and one categorical variable (X2). It
is obvious from Figure A.2 that the decision tree partitions the space into smaller
rectangular regions and assigns a category (referred to as a class or a label) to each
region. This observation can be generalized into three or higher dimensional space.
i.e., the decision tree partitions the multidimensional space into hyper rectangles.
In addition, each label corresponds to a certain decision. For example, the white
rectangles (assigned zero) in Figure A.2 can correspond to classifying all events within
the region to be signal while the black ones are background regions. Figure A.2
shows a general tree, but only binary trees with continuous variables are considered
hereafter.

Figure A.2: A general decision tree with both continuous and categorical variable.
The decision tree partitions the space into smaller rectangles and assigns a label (class
0 or class 1) for each rectangle. Image was taken from [76].

Decision trees can be utilized for classification tasks—to separate signal and back-
ground events; a decision tree is then just a graphical representation of a set of straight
cuts. We have established a connection between decision tree classifier and cuts. It
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is tempting to conclude that since the tree is not flexible, it can not be more effec-
tive and efficient compared to more flexible cuts (a diagonal cut like in Figure A.1).
The opposite, however, is true. First, the deeper the decision tree can grow (more
branches, more leaves), the better classification power it gains. For example, in Figure
A.3 we show a fictitious example of two classes with the black region corresponding
to background events and signal events in the white regions. The boundaries between
the black and white regions are obviously irregular. The top plots in Figure A.4 show
how a simple decision tree with only straight cuts can separate the two classes; the
bottom plots illustrate that if the same tree continues to grow deeper and deeper, the
tree can capture better the non-linear structure of the boundaries between the black
and white regions. Second, so far we have illustrated using only a two dimensional
space, but the decision tree’s classification power becomes more significant when ap-
plied to high dimensional data; the algorithm to build a tree in higher dimensions is
the same as in two dimension. We will address the question of how to build a decision
tree in the next subsection.

Figure A.3: Plot of background (black) region and signal (white) regions. The task
is to build a decision tree that can capture the boundaries between regions. Image
was taken from [76].

A.2.1.1 Information Entropy and Information Gain

Each step in building a decision tree involves choosing one variable to be at a certain
node and a value to place a cut on the chosen variable. For example, consider a set
of labeled background and signal events (i.e., whether an event is signal or backgroud
is known), each event has ten features (or ten variables), and we would like to build
a decision tree to classify these events. One of the ten features is picked for the root
of the tree. A cut is then placed on the chosen feature to split the data (create the
first two branches). After that, the process repeats. Let us introduce how to pick a
feature and its value for each node using information entropy [75], which measures
the inhomogeneity of training data, i.e., the information entropy is largest if the
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Figure A.4: Top: Classification result from a simple decision tree. Bottom: Classifi-
cation result if the tree has more nodes. Image was taken from [76].

data consists of equal portions of background and signal events, while it is smallest
if the data consists of only either background or signal events (information literally
means computer bits), see Figure A.5. The mathematical formula for the information
entropy is:

H(P (Y )) =
∑
y=S,B

P (Y = y) log2 P (Y = y),

where Y is an categorical variable with two values: S means signal, B means back-
ground, H(P (Y )) is the information entropy (or measure of inhomogeneity) of the
selected data sample (note that H(P (Y = S)) = H(P (Y = B))), and P (Y = y)
is the probability that a random label assignment for that particular event results
in a correct labeling (in particular, if the weight of each event is 1

NS+NB
where NS,

and NB are the known number of background and signal events in the training data,
respectively, then P (Y = S) = NS

NS+NB
).
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Figure A.5: The information entropy H(P (Y = S)) as a function of P (Y = S).

Another entropy concept is the conditional information entropy H(Y |Xi = x),
which is the entropy of Y after selecting a cut at x on feature (variable) Xi:

H(P (Y |Xi = x)) =
∑
XiRx,

P (Xi R x)
∑
Y=S,B

P (Y = y|Xi R x) log2 P (Y = y|Xi R x),

where P (Xi R x) is the probability of Xi < x, and probability of Xi ≥ x, respectively.
Particularly, P (Xi < x) is the ratio of the number of events from both signal and
background subsets satisfied Xi < x to the total number of events NS + NB. P (Y =
y|Xi R x) represents four disjoint conditional probabilities, which are P (Y = S|Xi ≥
x), P (Y = S|Xi < x), P (Y = B|Xi ≥ x), and P (Y = B|Xi < x). The idea is to
pick a feature and a cut value such that the split data sets are purer than the original
data sample and other split sub sets. Formally, in information theory this is referred
to as maximizing information gain (I), which measures the reduction in entropy [75].
This procedure includes two steps: first, for each feature i, one finds the cut value
x such that the information gain is maximized; second, one picks the feature such
that its maximized information gain is the largest among the features’ maximized
information gain. This procedure is summarized mathematically below:

argmax
i

[max I(Y,Xi)] = argmax
i

[
max
x

[H(P (Y ))−H(P (Y |Xi = x))]
]
,

thus, a decision tree can be built recursively by the following procedure:

1. Computing the information entropy H(P (Y )) before splitting,

2. Iterating through all combination of features and their values to compute the
conditional entropy H(P (Y |Xi = x)),
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3. Selecting the the feature j and its cut value x, (Xj, x), that maximizes the
information gain (I),

4. The construction for the current node is completed, split (to create two branches)
the training data based on (Xj, x),

5. Traversing the tree and repeat step 1-4.

A.2.1.2 Overfitting by a Decision Tree

The decision tree method is popular for doing classification because it has a simple
design thus is easy to implement. In addition, its interpretation is straightforward
even with multidimensional data. However, it has one subtle issue. As mention
earlier, if allowed to grow, a decision tree can perfectly classify the training data.
In Figure A.6 we present the plots of the decision boundary constructed by a very
large tree; comparing to Figure A.3 there is little difference. This is a desirable
property when the data is noise-free and deterministic. In reality, such a situation is
rare. Therefore, large decision trees tend to overfit and do not generalize well. As a
result, usually the tree is only allowed to have up to certain depth which, of course,
would reduce the overall classification performance. A solution for this problem is
to construct a “forest” of shallow—to assure generalization—but distinct decision
trees, and combine the trees to create a stronger classifier with better performance
than any individual tree. The procedure is referred to as boosting [77], and we discuss
this algorithm next.

Figure A.6: Classification result from a large decision tree. The plot on the right is
very smiliar to Figure A.3 indicating that a growing tree can construct a “perfect”
decison boundary. Image was taken from [76].
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A.2.2 Boosting

Boosting is a popular method to combine weak classifiers into a more powerful clas-
sifier (a typical weak classifier is a shallow decision tree). The boosting algorithm
repeatedly calls this weak classifier, each time it feeds the classifier with the same
training events but with a different weight distribution. Particularly, initially each
event has a weight of 1/(NS+NB), and the first weak classifier is built based on this set
of weights; the boosting algorithm then changes the weight distribution (the events
now have a new set of weights), and the second weak classifier is constructed with
this new set of weights. The process continues until the last weak classifier is finished.
The rule for updating the weights is quite sensible: increase the weight on the events
that were misclassified by the preceding weak classifier while reduce the weights for
correctly classified events, so that the next classifier is “forced” to focus its attention
on the “hardest” events. As for combining the weak classifiers, a natural and effec-
tive way is to simply take a (weighted) majority vote of their predictions. Below we
present the Ada-Boost algorithm which has undergone intense theoretical study and
empirical testing [77]:

Given training data represented by (v1, y1), (v2, y2), ......., (vN , yN), where i ∈
{1, 2, 3, ..., N} (N is the total number of signal and background events),

vi ∈ V→ Rd, i.e., a d-dimension vector of real values for the input variables, and
yi ∈ {−1,+1}, i.e., a two-valued variable indicating the label of each event.

Initialize the weight distribution for the first weak classifier D1(i) = 1/N , where
i indicates the ith event in the training data.

For t = 1, ......., T, where T is the number of weak classifiers (number of decision
trees, for example):

� Train base learner using the weight distribution Dt. For example, P (Y =

S) =
NS+NB∑

i

Dt(i)δ(Yi = S), where δ(Yi = S) equals one if the ith event is signal

event, and zero otherwise.

� Get classification decision for the ith event from the tth classifier ht(vi) ∈
{−1,+1}, i.e, should ith event be classified as background or signal event.

� Choose optimally αt ∈ R (we will discuss later).

� Update:

Dt+1(i) =
Dt(i) exp(−αtyiht(vi))

Zt
,

where Zt is a normalization factor (chosen so that sum of Dt+1(i) of all N events
is equal to one). In addition, note that if the event ith is correctly classified by
the ht weak classifier, then yiht(vi) = +1, while yiht(vi) = −1 if the event
is wrongly classified. As a result, the updated weights for wrongly classified
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events are increased (i.e., Dt+1(i) > Dt(i)) while correctly predicted events
have decreased weights (i.e., Dt+1(i) < Dt(i)).

Output the final classifier by combining the weighted prediction of the weak
classifiers (if the weak classifier is the decision tree, then H(vi) is the BDT
output):

H(vi) =
T∑
t

αtht(vi).

For more detail, each training event is represented by a pair of (vi, yi) where yi is
the true label (identity) for the ith event (+1 indicating signal and −1 indicating
background) and vi is a d-dimensional vector with the values of the d input features
(variables). Dt is the set of event weights used by the ht weak classifier, and ht(vi) is
the prediction for ith event from the ht weak classifier.

A simple way to judge the performance of the final classifier H(vi) is to count the
number of events misclassifed (usually referred to as 0-1 training error). The training
error of the final classifier is bounded from above as follows:

1

N

N∑
i

δ(f(vi) 6= yi) ≤
1

N

∑
i

exp(−yiH(vi)) =
∏
t

[
N∑
i=1

Dt(i) exp(−αtyiht(vi))

]
=
∏
t

Zt,

where f(vi) = +1 if H(vi) is positive and f(vi) = −1 otherwise, and δ(f(vi) 6= yi)
equals one if f(vi) 6= yi and zero otherwise. The resulting inequality is because
exp(−yiH(vi)) > 1 if f(vi) 6= yi and exp(−yiH(vi)) > 0 if f(vi) = yi, while the
equality can be derived by invoking the definition of Dt(i) recursively. The above
equation shows that the training error is bounded above by

∏
t

Zt and thus, can be

reduced most rapidly by choosing αt on each iteration to minimize Zt:

Zt =
N∑
i=1

Dt(i) exp(−αtyiht(vi)) =
∑

i: yi 6=ht(vi)

Dt(i)e
αt +

∑
i: yi=ht(vi)

Dt(i)e
−αt

Zt = εte
αt + (1− εt)e−αt ,

where εt =
N∑
i

Dt(i)δ(yi 6= ht(vi)) is the training error from the ht weak classifier.

Taking partial derivative ∂Zt
∂αt

and setting it equal to zero yields:

αt =
1

2
ln

(
1− εt
εt

)
.

Subsituting αt back into Zt, we obtain an upper bound on the 0-1 training error,
which is:
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1

N

N∑
i

δ(f(vi) 6= yi) ≤
1

N

∑
i

exp(−yiH(vi)) =
∏
t

Zt,=
∏
t

√
1− (1− 2εt)2,

while

∏
t

√
1− (1− 2εt)2 ≤ exp

(
−2

T∑
t

(
1

2
− εt

)2
)
,

the proof for the exponential bound is in [77]. Notice that if the εt 6= 1
2
, i.e., the weak

classifier is not doing random guessing, the training error will achive zero exponenially
fast. In conclusion, Ada-Boost provides an effective procedure to combine a set of
weak classifiers into a very refined one at the end. Second, because the training error
can theoretically go to zero, there might still be overfitting in such a situation (still
the overtraining issue in BDT is less severe than the overtraining issue of a single
decion tree); checking testing error is nessesary as always.

A.2.3 Why Use Boosted Desion Trees

First of all, the BDT is a powerful classifier because it can construct a non-linear,
non-parametric boundary to separate signal and background subsets (only neural net-
work and k-nearest neighbor methods can also construct non-linear, non-parametric
boundaries). Secondly, the algorithm requires little tuning in order to obtain a reason-
able result (on the other hand, neural networks require much more effort in tuning).
Third, it is insensitive to the inclusion of poorly discriminating input variables (again,
a neural network has difficulty when additional variables are introduced). And lastly,
since the trees are binary, the processing speed is quite fast (while k-nearest neighbor
processing time grows exponentially). In conclusion, the BDT selection method is
an attractive alternative to the traditional cuts and requires just a small extra effort
overall.

A.3 The TMVA Root Data Analysis Package

The Toolkit for Multivariate Data Analysis with ROOT (TMVA) provides a large va-
riety of multivariate classification algorithms (including BDT). It has been integrated
into the ROOT environment so that using the package should be straightforward
for the nuclear and particle physics communities, who employ ROOT extensively for
data analysis. Moreover, the TMVA Users Guide [56] is a very good reference for
interested learners.

Here, we present, in detail, the steps to employ the BDT algorithm using the
TMVA analysis package. First, a list of features (variables) is determined by the
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user; different classification tasks require different sets of variables. A general recom-
mendation is that the variables should not have strong correlation. We next instruct
the TMVA training program how we want it to built the trees. In particular, the
maximum depth of each tree is specified; this is crucial because there is a tradeoff be-
tween overfitting and performance (see previous discussion in section A.2.1.2). Also,
the number of trees being built is important as well. Recall from section A.2.2 that
training error approaches zero as the number of trees increases, but it only happens
if the condition εt 6= 1

2
is true (εt is the 0-1 training error for tth tree). Note that

once the tth tree has εt ≈ 1
2
, the next tree can not improve the performance further

(boosting mechanism breaks down). After specifying all building options, the training
data, which includes a signal or background label for each event, was input into the
TMVA training program. The training program provides several useful diagnostics
after it finishes running. For example, it reports variable ranking, i.e., how often the
variables were used in building the trees, thus higher ranking means a better sepera-
tion power. In addition, a graphical user interface (GUI) like Figure A.7 provides an
interface to view all the information that is necessary to determine the result of the
training stage. Based on our experience, the following are important to check:

� Classifier Output Distributions of both training data and testing data (note
that the TMVA program splits the training data (separately for signal and
background) into test data and train data). Figure A.8 shows an example plot,
the Kolmogorov–Smirnov test is employed to test for overtraining (overfitting).
The test computes the probability that the BDT output distributions from the
training and testing data could be drawn from one common parent distribution
(the test is applied separately on signal data and background data). When the
probability is low, reducing the maximum depth for the trees is necessary. Note
that the maximum depth of the trees is unfortunately determined by brute force
trial and error method— increasing the maximum allowed depth of the decision
trees gradually if the final BDT is not overtrained.

� Classifier Cut Efficiencies suggest the value to place a cut on the BDT output
(this is the only variable that we cut on). Given the initial estimation of signal
to background ratio, this option suggests a cut value so that the misclassification
cost is minimal (for example, see Figure A.9). If no initial signal to background
ratio was provided by user, a default 1 : 1 is assumed.

� Receiver Operating Characteristic (ROC) curve plots the background rejection
efficiency as a function of signal efficiency, see Figure A.10. In short, it quantifies
the performance of the BDT on a particular classification task. In Figure A.10,
the closer a ROC curve comes to the top right corner, the more powerful the
classifier is, while the diagonal line from top left to bottom right corners is the
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Figure A.7: Graphical user interface (GUI) provided after the training phase to help
evaluating the training results. For more detail, see [56].

performance of a random-guessing classifier. Usually, ROC curves are used for
comparing algorithms. In Chapter 6, it was shown that for the K0Λ analysis
the ROC curves from the regular BDT and the categorical BDT suggest the
categorical BDT has better performance.

After the training results have been evaluated, the BDT algorithm is applied to
the real data to seperate signal and background events by applying a single cut on
the BDT output. For systematics studies, we vary the cut to study the effect on our
measurements (for example, the E asymmetry measurements).
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Appendix B

E Measurements for Reaction
γd→ π−p(ps)

B.1 E Measurements as a Function of the Recoil

Momentum

|p|missing (GeV/c) E σstat σsys
0.005 -0.487134 0.0769727 0.0750187
0.015 -0.583526 0.030531 0.089863
0.025 -0.565306 0.0204594 0.0870571
0.035 -0.575039 0.0167727 0.088556
0.045 -0.574569 0.0153458 0.0884837
0.055 -0.587598 0.0150495 0.0904901
0.065 -0.570011 0.0153505 0.0877817
0.075 -0.548572 0.0161112 0.08448
0.085 -0.550319 0.0173109 0.0847491
0.095 -0.532784 0.0189121 0.0820487
0.105 -0.508126 0.0210035 0.0782514
0.115 -0.500882 0.0230725 0.0771359
0.125 -0.455396 0.02544 0.070131
0.135 -0.423265 0.028869 0.0651828
0.145 -0.457666 0.0333062 0.0704806
0.155 -0.34787 0.0370045 0.053572
0.165 -0.314668 0.0407769 0.0484589
0.175 -0.28822 0.0456238 0.0443859
0.185 -0.355769 0.0495343 0.0547884
0.195 -0.196886 0.054068 0.0303205
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B.2 E Measurements as a Function of Cosθπ
−
CM

1

Wmin (MeV) Wmax (MeV) cosθπ
−
CM E σstat σsys

1480 1520 -0.75 0.406261 0.167858 0.0625641
1480 1520 -0.60 -0.0216592 0.0786597 0.00333551
1480 1520 -0.45 -0.343317 0.0745249 0.0528709
1480 1520 -0.30 -0.481451 0.0763039 0.0741434
1480 1520 -0.15 -0.658341 0.0727699 0.101385
1480 1520 0.00 -0.743052 0.0732445 0.11443
1480 1520 0.15 -0.732094 0.0687911 0.112742
1480 1520 0.30 -0.699644 0.0648639 0.107745
1480 1520 0.45 -0.484564 0.0663375 0.0746229
1480 1520 0.60 -0.323244 0.0819899 0.0497796
1480 1520 0.75 -0.082531 0.225398 0.0127098
1480 1520 0.90 -1.52972 2.36975 0.235576

1520 1560 -0.75 0.485651 0.179673 0.0747902
1520 1560 -0.60 -0.279189 0.0837906 0.0429952
1520 1560 -0.45 -0.410102 0.0793206 0.0631558
1520 1560 -0.30 -0.656394 0.0793337 0.101085
1520 1560 -0.15 -0.713395 0.0785531 0.109863
1520 1560 0.00 -0.821675 0.077045 0.126538
1520 1560 0.15 -0.813952 0.0734327 0.125349
1520 1560 0.30 -0.727743 0.0679686 0.112072
1520 1560 0.45 -0.574838 0.070444 0.088525
1520 1560 0.60 -0.327162 0.0784009 0.0503829
1520 1560 0.75 -0.236508 0.175342 0.0364223
1520 1560 0.90 2.66646 1.48938 0.410634

1560 1600 -0.75 0.0728968 0.195172 0.0112261
1560 1600 -0.60 -0.33152 0.0897521 0.0510541
1560 1600 -0.45 -0.693084 0.0796606 0.106735
1560 1600 -0.30 -0.651061 0.0717136 0.100263
1560 1600 -0.15 -0.655683 0.0748442 0.100975
1560 1600 0.00 -0.718012 0.0703443 0.110574
1560 1600 0.15 -0.552873 0.0671135 0.0851425
1560 1600 0.30 -0.462402 0.0575858 0.0712099
1560 1600 0.45 -0.437325 0.0611064 0.067348

1Global correction factor of 1.086 had been applied, see Section 4.3.4.1 for detail
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Wmin (MeV) Wmax (MeV) cosθπ
−
CM E σstat σsys

1560 1600 0.60 -0.291281 0.0595739 0.0448572
1560 1600 0.75 -0.467245 0.114823 0.0719557
1560 1600 0.90 0.188378 0.755113 0.0290103

1600 1640 -0.75 -0.189463 0.182227 0.0291773
1600 1640 -0.60 -0.684609 0.0854119 0.10543
1600 1640 -0.45 -0.702872 0.0776243 0.108242
1600 1640 -0.30 -0.729026 0.0682844 0.11227
1600 1640 -0.15 -0.765152 0.07855 0.117833
1600 1640 0.00 -0.586752 0.0727952 0.0903598
1600 1640 0.15 -0.649449 0.067037 0.100015
1600 1640 0.30 -0.498151 0.0572943 0.0767152
1600 1640 0.45 -0.407131 0.0547405 0.0626982
1600 1640 0.60 -0.388219 0.0513476 0.0597858
1600 1640 0.75 -0.325098 0.0847155 0.0500651
1600 1640 0.90 -0.871585 0.567195 0.134224

1640 1680 -0.75 -0.45783 0.16789 0.0705059
1640 1680 -0.60 -0.663371 0.0839291 0.102159
1640 1680 -0.45 -0.705599 0.0788096 0.108662
1640 1680 -0.30 -0.64802 0.0673264 0.0997951
1640 1680 -0.15 -0.348022 0.0817373 0.0535954
1640 1680 0.00 -0.240315 0.0801798 0.0370085
1640 1680 0.15 -0.161014 0.07131 0.0247962
1640 1680 0.30 -0.385571 0.0622274 0.059378
1640 1680 0.45 -0.534553 0.0510491 0.0823212
1640 1680 0.60 -0.653125 0.0487816 0.100581
1640 1680 0.75 -0.674358 0.0658909 0.103851
1640 1680 0.90 -0.095026 0.45628 0.014634

1680 1720 -0.75 -0.0857446 0.155742 0.0132047
1680 1720 -0.60 -0.828244 0.087624 0.12755
1680 1720 -0.45 -0.519863 0.0803413 0.0800589
1680 1720 -0.30 -0.155556 0.0646964 0.0239556
1680 1720 -0.15 0.139672 0.0767192 0.0215094
1680 1720 0.00 0.236083 0.077013 0.0363569
1680 1720 0.15 0.0404959 0.0635336 0.00623636
1680 1720 0.30 -0.453288 0.0596253 0.0698063
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Wmin (MeV) Wmax (MeV) cosθπ
−
CM E σstat σsys

1680 1720 0.45 -0.718247 0.044171 0.11061
1680 1720 0.60 -0.78328 0.0435952 0.120625
1680 1720 0.75 -0.746669 0.0504177 0.114987
1680 1720 0.90 -0.720969 0.347256 0.111029

1720 1760 -0.75 -0.207858 0.169973 0.0320101
1720 1760 -0.60 -0.602519 0.108174 0.0927879
1720 1760 -0.45 -0.271336 0.0994515 0.0417858
1720 1760 -0.30 0.228261 0.0799445 0.0351522
1720 1760 -0.15 0.683134 0.0857854 0.105203
1720 1760 0.00 0.626345 0.0815784 0.0964571
1720 1760 0.15 0.14752 0.0655838 0.0227181
1720 1760 0.30 -0.434327 0.0623895 0.0668864
1720 1760 0.45 -0.793644 0.0453259 0.122221
1720 1760 0.60 -0.819183 0.0447905 0.126154
1720 1760 0.75 -0.877694 0.0487175 0.135165
1720 1760 0.90 -1.22308 0.278836 0.188355

1760 1800 -0.75 -0.393418 0.178436 0.0605864
1760 1800 -0.60 -0.246945 0.130196 0.0380295
1760 1800 -0.45 0.0579503 0.120805 0.00892435
1760 1800 -0.30 0.465599 0.0998997 0.0717022
1760 1800 -0.15 0.469669 0.0929427 0.072329
1760 1800 0.00 0.466387 0.0833614 0.0718237
1760 1800 0.15 0.0423901 0.065643 0.00652808
1760 1800 0.30 -0.43939 0.0620077 0.0676661
1760 1800 0.45 -0.820637 0.0475485 0.126378
1760 1800 0.60 -0.983162 0.0451587 0.151407
1760 1800 0.75 -0.914435 0.0468158 0.140823
1760 1800 0.90 -0.450666 0.236274 0.0694025

1800 1840 -0.75 -0.501513 0.184713 0.0772331
1800 1840 -0.60 -0.100396 0.148344 0.015461
1800 1840 -0.45 0.180929 0.139059 0.0278631
1800 1840 -0.30 0.372702 0.118084 0.0573961
1800 1840 -0.15 0.408912 0.097748 0.0629725
1800 1840 0.00 0.34935 0.0842987 0.0538
1800 1840 0.15 -0.0312973 0.0676809 0.00481979
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Wmin (MeV) Wmax (MeV) cosθπ
−
CM E σstat σsys

1800 1840 0.30 -0.483565 0.0625857 0.074469
1800 1840 0.45 -0.856031 0.0503471 0.131829
1800 1840 0.60 -0.927721 0.0458692 0.142869
1800 1840 0.75 -0.983349 0.0455784 0.151436
1800 1840 0.90 -0.810889 0.193607 0.124877

1840 1880 -0.75 -0.200017 0.172003 0.0308027
1840 1880 -0.60 -0.172904 0.14092 0.0266271
1840 1880 -0.45 0.081979 0.133739 0.0126248
1840 1880 -0.30 0.362788 0.118314 0.0558693
1840 1880 -0.15 0.0884012 0.0938631 0.0136138
1840 1880 0.00 -0.0518496 0.0846138 0.00798484
1840 1880 0.15 -0.239373 0.0686257 0.0368634
1840 1880 0.30 -0.696962 0.0623114 0.107332
1840 1880 0.45 -0.788202 0.0548299 0.121383
1840 1880 0.60 -1.03257 0.0476086 0.159015
1840 1880 0.75 -0.942213 0.0460726 0.145101
1840 1880 0.90 -0.869477 0.165754 0.133899

1880 1920 -0.75 -0.440201 0.177174 0.067791
1880 1920 -0.60 -0.089223 0.137388 0.0137403
1880 1920 -0.45 0.301322 0.122435 0.0464036
1880 1920 -0.30 0.394759 0.113695 0.0607929
1880 1920 -0.15 -0.291132 0.0924934 0.0448344
1880 1920 0.00 -0.531911 0.0812237 0.0819144
1880 1920 0.15 -0.513463 0.0705208 0.0790734
1880 1920 0.30 -0.768237 0.0624465 0.118308
1880 1920 0.45 -0.787213 0.0590329 0.121231
1880 1920 0.60 -0.897857 0.0513815 0.13827
1880 1920 0.75 -0.871049 0.047885 0.134142
1880 1920 0.90 -0.84122 0.152123 0.129548

1920 1960 -0.75 -0.471216 0.186777 0.0725672
1920 1960 -0.60 -0.079724 0.131837 0.0122775
1920 1960 -0.45 0.241671 0.109858 0.0372174
1920 1960 -0.30 -0.0204814 0.104445 0.00315414
1920 1960 -0.15 -0.319255 0.0893468 0.0491653
1920 1960 0.00 -0.495028 0.0754632 0.0762343
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Wmin (MeV) Wmax (MeV) cosθπ
−
CM E σstat σsys

1920 1960 0.15 -0.700855 0.0704088 0.107932
1920 1960 0.30 -0.781482 0.0594399 0.120348
1920 1960 0.45 -0.804071 0.0614733 0.123827
1920 1960 0.60 -0.886406 0.052496 0.136506
1920 1960 0.75 -0.908015 0.0483925 0.139834
1920 1960 0.90 -0.73182 0.138675 0.1127

1960 2000 -0.75 -0.701515 0.218836 0.108033
1960 2000 -0.60 0.0531709 0.142295 0.00818831
1960 2000 -0.45 0.257676 0.11814 0.0396821
1960 2000 -0.30 -0.263695 0.112232 0.040609
1960 2000 -0.15 -0.442148 0.0941075 0.0680908
1960 2000 0.00 -0.558264 0.0805035 0.0859726
1960 2000 0.15 -0.753496 0.0783232 0.116038
1960 2000 0.30 -0.845836 0.0622951 0.130259
1960 2000 0.45 -0.927781 0.069881 0.142878
1960 2000 0.60 -0.933159 0.059276 0.143707
1960 2000 0.75 -0.824433 0.0561917 0.126963
1960 2000 0.90 -0.391164 0.141215 0.0602393

2000 2040 -0.75 -0.137448 0.247793 0.021167
2000 2040 -0.60 0.0562929 0.165355 0.00866911
2000 2040 -0.45 0.240555 0.123004 0.0370455
2000 2040 -0.30 -0.201632 0.113668 0.0310514
2000 2040 -0.15 -0.656445 0.0983558 0.101093
2000 2040 0.00 -0.868825 0.0825597 0.133799
2000 2040 0.15 -0.814742 0.0808296 0.12547
2000 2040 0.30 -0.746494 0.0647132 0.11496
2000 2040 0.45 -0.84577 0.0743234 0.130249
2000 2040 0.60 -0.815998 0.0655768 0.125664
2000 2040 0.75 -0.825113 0.0623679 0.127067
2000 2040 0.90 -0.47694 0.140924 0.0734487

2040 2080 -0.75 -0.387799 0.321465 0.0597211
2040 2080 -0.60 0.409752 0.205274 0.0631018
2040 2080 -0.45 0.286833 0.137183 0.0441723
2040 2080 -0.30 -0.470351 0.123902 0.072434
2040 2080 -0.15 -0.847347 0.110013 0.130492
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Wmin (MeV) Wmax (MeV) cosθπ
−
CM E σstat σsys

2040 2080 0.00 -0.928148 0.0914391 0.142935
2040 2080 0.15 -0.773135 0.0888885 0.119063
2040 2080 0.30 -0.700785 0.0723175 0.107921
2040 2080 0.45 -0.826912 0.0868783 0.127345
2040 2080 0.60 -0.845435 0.0760632 0.130197
2040 2080 0.75 -0.91874 0.0702561 0.141486
2040 2080 0.90 -0.724978 0.150689 0.111647

2080 2120 -0.75 -0.818327 0.342715 0.126022
2080 2120 -0.60 0.348306 0.201983 0.0536391
2080 2120 -0.45 0.117933 0.142323 0.0181617
2080 2120 -0.30 -0.239914 0.122666 0.0369468
2080 2120 -0.15 -0.608971 0.111917 0.0937816
2080 2120 0.00 -0.996661 0.0945876 0.153486
2080 2120 0.15 -0.826831 0.0881574 0.127332
2080 2120 0.30 -0.638955 0.0803598 0.0983991
2080 2120 0.45 -0.670407 0.0921394 0.103243
2080 2120 0.60 -0.611134 0.0840042 0.0941147
2080 2120 0.75 -0.985745 0.0793942 0.151805
2080 2120 0.90 -0.640819 0.154374 0.0986861

2120 2160 -0.75 0.080259 0.367524 0.0123599
2120 2160 -0.60 0.626206 0.221473 0.0964357
2120 2160 -0.45 0.131864 0.158744 0.020307
2120 2160 -0.30 -0.701802 0.130991 0.108078
2120 2160 -0.15 -0.770667 0.124451 0.118683
2120 2160 0.00 -0.897329 0.107709 0.138189
2120 2160 0.15 -0.788329 0.102411 0.121403
2120 2160 0.30 -0.697803 0.0949481 0.107462
2120 2160 0.45 -0.525678 0.107135 0.0809544
2120 2160 0.60 -0.571588 0.10063 0.0880245
2120 2160 0.75 -0.801966 0.0938356 0.123503
2120 2160 0.90 -0.507158 0.179092 0.0781024

2160 2200 -0.75 0.733287 0.388133 0.112926
2160 2200 -0.60 0.237695 0.216656 0.0366051
2160 2200 -0.45 -0.147694 0.157626 0.0227449
2160 2200 -0.30 -0.581913 0.122368 0.0896146

270



Wmin (MeV) Wmax (MeV) cosθπ
−
CM E σstat σsys

2160 2200 -0.15 -0.892675 0.113872 0.137472
2160 2200 0.00 -0.931614 0.106285 0.143469
2160 2200 0.15 -0.858024 0.0991418 0.132136
2160 2200 0.30 -0.458656 0.0961305 0.070633
2160 2200 0.45 -0.170036 0.110739 0.0261856
2160 2200 0.60 -0.483471 0.10026 0.0744545
2160 2200 0.75 -0.955742 0.0878488 0.147184
2160 2200 0.90 -0.860275 0.154924 0.132482

2200 2240 -0.75 1.18851 0.426426 0.183031
2200 2240 -0.60 0.190145 0.225601 0.0292823
2200 2240 -0.45 -0.271587 0.175507 0.0418244
2200 2240 -0.30 -0.681088 0.138679 0.104888
2200 2240 -0.15 -0.75404 0.123954 0.116122
2200 2240 0.00 -0.892481 0.126403 0.137442
2200 2240 0.15 -0.836317 0.114987 0.128793
2200 2240 0.30 -0.396217 0.119902 0.0610175
2200 2240 0.45 -0.222632 0.127358 0.0342854
2200 2240 0.60 -0.353411 0.122923 0.0544253
2200 2240 0.75 -0.918678 0.0993565 0.141476
2200 2240 0.90 -0.913087 0.164901 0.140615

2240 2280 -0.75 0.439469 0.649139 0.0676782
2240 2280 -0.60 0.547263 0.329877 0.0842786
2240 2280 -0.45 -0.202071 0.27388 0.0311189
2240 2280 -0.30 -0.565996 0.210332 0.0871633
2240 2280 -0.15 -1.10338 0.167135 0.169921
2240 2280 0.00 -1.03311 0.212045 0.159098
2240 2280 0.15 -0.380215 0.170277 0.0585531
2240 2280 0.30 -0.0884788 0.197156 0.0136257
2240 2280 0.45 -0.0399517 0.19653 0.00615257
2240 2280 0.60 -0.277825 0.182935 0.0427851
2240 2280 0.75 -0.900345 0.127119 0.138653
2240 2280 0.90 -0.884624 0.204327 0.136232

2280 2320 -0.75 0.612957 0.759265 0.0943953
2280 2320 -0.60 0.663067 0.404526 0.102112
2280 2320 -0.45 -0.229859 0.331124 0.0353982

271



Wmin (MeV) Wmax (MeV) cosθπ
−
CM E σstat σsys

2280 2320 -0.30 -0.439801 0.259337 0.0677293
2280 2320 -0.15 -0.747322 0.20493 0.115088
2280 2320 0.00 -0.754905 0.270773 0.116255
2280 2320 0.15 -0.151619 0.219723 0.0233494
2280 2320 0.30 0.275831 0.270223 0.0424779
2280 2320 0.45 -0.204537 0.246996 0.0314988
2280 2320 0.60 -0.114379 0.233782 0.0176144
2280 2320 0.75 -0.694952 0.156378 0.107023
2280 2320 0.90 -0.611531 0.25566 0.0941758

272


