

NIMA POST-PROCESS BANNER TO BE REMOVED AFTER FINAL ACCEPTANCE

Implementation of the HEP Instrumentation R&D Roadmap in the USA

Peta Merkel^{a,1,*}^a*Fermilab, PO Box 500, 60510-0500, Batavia, IL, USA***Abstract**

In recent years, the High Energy Physics (HEP) community in the USA has evaluated the technological needs in detector instrumentation for future HEP experiments. Specific needs have been identified and an R&D program to reach them has been defined. This article will briefly summarize the planning process and will highlight the main findings and the road map to carry out the plan as defined by the community.

Keywords: Detectors, Instrumentation, HEP, USA, Planning

1. Overview of the Planning Process

In 2019 the DOE organized a Basic Research Needs workshop for HEP Detector R&D. At that workshop we examined connections between physics drivers and detector requirements, considering all the physics drivers. The work was organized both around the 2014 P5 physics drivers as well as eight different detector technology areas. We then identified connections between cutting-edge technologies and big ideas to support the physics reach. For each technology area we formulated a list of priority research directions, each with several thrusts and research plans attached. Special care was taken to identify synergies between different experimental options, such as detectors for different future colliders, or between noble element detectors for neutrino and dark matter physics. The full report can be found in [1].

In 2021 and 2022 the HEP community-driven planning exercise of Snowmass took place. One of the ten working groups, the so-called frontiers, was geared to discuss detector technologies and R&D needs for future experiments in collider physics, neutrino physics, intensity physics and at the cosmic frontier. This Instrumentation Frontier was organized in different topical groups along detector technologies, as well as cross cutting themes. The process concluded with a report [2]. The main recommendations of the Instrumentation Frontier group can be summarized as follows:

- ²⁶ IF-1 Advance performance limits of existing technologies and develop new techniques and materials, nurture enabling technologies for new physics, and scale new sensors and readout electronics to large, integrated systems using co-design methods.
- ³¹ IF-2 Develop and maintain the critical and diverse technical workforce and enable careers for technicians, engineers and scientists across disciplines working in HEP instrumentation, at laboratories and universities.
- ³⁵ IF-3 Double the US Detector R&D budget over the next five years and modify existing funding models to enable R&D consortia along critical key technologies for the planned long term science projects sustaining the support for such collaboration for the needed duration and scale.
- ⁴⁰ IF-4 Expand and sustain support for blue-sky R&D, small-scale R&D, and seed funding. Establish a separate agency review process for such pathfinder R&D, independently from other research reviews.
- ⁴⁴ IF-5 Develop and maintain critical facilities, centers and capabilities for the sharing of common knowledge and tools, as well as develop and maintain close connections with international technology roadmaps, other disciplines and industry.

*Corresponding author
Email address: petra@fnal.gov (Petra Merkel)

The rest of this article will explain the implementation of the R&D consortia as recommended in IF-3 above.

51 2. Coordinating Panel for Advanced Detectors - CPAD

52 CPAD, the Coordinating Panel for Advanced Detectors is a
53 panel of the APS/DPF (American Physical Society, Division
54 of Particles and Fields). CPAD seeks to promote, coordinate
55 and assist in the research and development of instrumentation
56 and detectors for HEP experiments. Their main activities lie
57 in the organization of annual instrumentation workshops, host-
58 ing vibrant exchange for people working detector R&D, brain-
59 storming on new technologies and applications and allow for
60 essential networking opportunities especially for early career
61 colleagues. CPAD is also interfacing with industry partners and
62 scientists and engineers in other disciplines, such as nuclear
63 physics, quantum information science, chemistry and others.
64 They promote the recognition and nurturing of careers in de-
65 tector instrumentation through the annual DPF Instrumentation
66 Awards and the GIRA (Graduates in Instrumentation Awards).
67 As a new topic, following the 2022 Snowmass report, CPAD
68 is now organizing the newly formed RDCs (R&D Collabora-
69 tions).

70 3. Detector R&D Collaborations - RDCs

71 The R&D Collaborations, RDCs, are newly formed groups
72 under the stewardship of CPAD, born out of the Snowmass rec-
73 ommendations. The principle idea is to create a network of US
74 Detector R&D Collaborations while coordinating between dif-
75 ferent RDs and exchanging with the ECFA DRDs. The collab-
76 orations were created covering major technology areas in line
77 with the 2019 Basic Research Needs workshop as described
78 in 1. The goal of the RDCs is to bring together the commu-
79 nity in a more persistent way than the annual CPAD workshops
80 alone, to coordinate R&D efforts and to forge collaborations.
81 The RDCs aim to create a robust R&D program towards the
82 technologies needed to enable discoveries in future HEP detec-
83 tors and to foster innovation in instrumentation. They allow for
84 more streamlines and synergistic collaboration between univer-
85 sity teams and laboratories to share expertise, tools and facil-
86 ties, and avoid duplication of effort in light of limited funds.
87 The RDCs have the potential to uncover new materials and
88 methods for HEP detectors through interdisciplinary and syn-
89 ergistic research. They facilitate easy communication and con-
90 nections between participants in US-based R&D efforts, CERN
91 DRDs and other relevant partners.

92 CPAD has founded 11 RDCs, which are listed in Table 1.

93 Each RDC has formulated a preliminary list of priority re-
94 search thrusts as follows.

95 3.1. RDC 1: Noble Element Detectors

- 96 • Enhance and combine existing readout modalities: explore
97 new ideas in charge detection, e.g. pixels, extreme low
98 threshold detection, charge gain, ion detection; explore
99 new ideas in light detection, e.g. new technologies, ge-
100 ometries, materials, wavelength shifters.
- 101 • New modalities for signal detection: going beyond the cur-
102 rent paradigm of just collecting electrons and photons, e.g.

RDC 1	Noble Element Detectors
RDC 2	Photodetectors
RDC 3	Solid State Tracking
RDC 4	Readout and ASICs
RDC 5	Trigger and DAQ
RDC 6	Gaseous Detectors
RDC 7	Low-Background Detectors
RDC 8	Quantum and Superconducting Detectors
RDC 9	Calorimetry
RDC 10	Detector Mechanics
RDC 11	Fast Timing

Table 1: The eleven RDCs formed by CPAD

meta-stable fluids, micron-scale tracking, combined multi-
modal sensors; enhancement in the electronics and readout
of the detectors, e.g. photonic readout solutions, new and
enhanced architectures at the front-end, AI/ML inside the
detector.

- Challenges in scaling technologies: scaling of purification, radiopurity, doping, high voltage, and other target challenges, e.g. large-scale purification, removing radioactive contaminants at multi-ton scale.

3.2. RDC 2: Photodetectors

- Innovative photosensors: achieve technological breakthroughs for new science reach, e.g. Superconducting Nanowire Single Photon Detectors, VUV sensitive detectors for low-light detection.
- Photosensor development to enhance experimental capabilities, e.g. improving single photon detection, timing or radiation hardness: SiPM, MicroChannel Plate PMT, CCD, Accessories such as filters, lenses, wavelength shifters, waveguides, fibers, and optics.
- Large Area Photodetection Systems: photo collectors and integrated readout for photo sensors.
- Scalability of light readout: moving to a hundred times larger detectors in the future. Challenges include noise hit rates, radiopure materials, power dissipation and large bandwidth signal transmissions.

3.3. RDC 3: Solid State Tracking

- Adapting non-silicon and novel-configuration sensors with improved costs, area, radiation tolerance and performance
- Develop scalable, low-mass detector systems, e.g. MAPS-based tracking (Monolithic Active Pixel Sensors)
- R&D on trackers for lepton colliders, which have similar requirements for timing and spatial resolution
- R&D on trackers for hadron colliders, which need to withstand extreme radiation and provide fine timing and spatial resolution
- Advances in detector physics modeling and device simulation

<p>140 3.4. RDC 4: Readout and ASICs</p> <ul style="list-style-type: none"> • Circuits and architectures for 4D tracking and calorimetry: picosecond timing circuits, monolithic readouts, models and techniques for extreme radiation • Big data management: energy efficient architectures and circuits, on-chip computing, on-chip AI/ML, fast interconnections and I/Os, advanced integration • Cryogenics and deep cryogenics: 4K circuits and architectures for QIS, circuits and architectures for noble liquid detectors, cryogenic models and libraries • Methodologies, tools and workforce development: design for verification methodologies, CAD tools and foundries with joint access, shared libraries and access model, domain knowledge transfer and training <p>154 3.5. RDC 5: Trigger and DAQ</p> <ul style="list-style-type: none"> • Intelligent data reduction and processing: real-time or low-latency data reduction and feature extraction, fast artificial intelligence and neuromorphic computing on real-time hardware • Link technology development: high-bandwidth, radiation hard, low-power optical link above 50 Gbps, wireless readout • Integrating modern computing architecture and emerging technologies • Self-running DAQ systems • Timing distribution with pico-second synchronization over long distances <p>167 3.6. RDC 6: Gaseous Detectors</p> <ul style="list-style-type: none"> • Advance gas TPC readout to performance limits, enabling new experiments: maximize sensitivity by achieving 3D single electron counting, minimize background by developing radio-pure MPGDs, develop matching, highly scalable front-end electronics and readout systems, develop on-detector AI/ML and trigger-driven, highly multiplexed readouts • Advance MPGDs for high-background environments: develop cylindrical and exotic-shape tracking layers, develop pico-second timing layers, improve radiation hardness, rate capability, robustness against sparking and aging • Establish MPGD development, prototyping and production facility in the US 	<p>181 3.7. RDC 7: Low-Background Detectors</p> <ul style="list-style-type: none"> • CCDs for rare event searches: CCD R&D specific to low-backgrounds, lowering energy sensitivity, and minimizing dark rates. Moving to Ge CCDs, further development of skipper CCD infrastructure, utilizing novel substrates in industrial fabrication • Monolithic charge readout: R&D to lower thresholds and backgrounds for point-contact and contact-free charge readout schemes for monolithic crystals • Superconducting phonon sensing: R&D specific to phonon sensing for low-background detectors targeting dark matter and neutrino scattering • Radiopurity R&D: research to produce readout electronics and support infrastructure that are radiopure and consistent with needs of low-background experiments • Novel materials for rare event searches: develop new targets compatible with low-background searches at sub-eV scales for low-background experiments <p>195 3.8. RDC 8: Quantum and Superconducting Sensors</p> <ul style="list-style-type: none"> • Perform R&D into pairbreaking sensors, as well as photon and phonon sensors • Develop coherent wave sensors • Develop AMO, clocks, interferometry, NMR and optomechanical sensors • Invest in the advancement of theory, simulation and novel material developments <p>207 3.9. RDC 9: Calorimetry</p> <ul style="list-style-type: none"> • Enhance calorimetry energy resolution for precision electroweak mass and missing-energy measurements • Advance calorimetry with spatial and timing resolution and radiation hardness to master high-rate environments • Develop ultra-fast media to improve background rejection in calorimeters and particle identification detectors <p>219 3.10. RDC 10: Detector Mechanics</p> <ul style="list-style-type: none"> • Light-weight composite materials for detector support: dual use by providing structural support while also being thermally or electrically conductive • Develop detector mechanics while accommodating cooling, alignment, shock and vibrations, system integration aspects, radiation environments, thermal expansion • Failure management: maintainability, services, maximum duty cycle • Experimental magnet developments
---	---

224 **3.11. RDC 11: Fast Timing** 275

- 225 • Pico-second timing: for muon colliders (10ps) and for 276
226 hadron colliders (1ps) while maintaining 10 μ m of spa-277
227 tial resolution or better; for neutrino experiments (>100ps)
228 with sub-cm spatial resolution 278
- 229 • Develop new materials to reach pico-second timing: ex- 279
230 pand from silicon 280
- 231 • Leveraging fast photodetection in cryogenic detectors 281
- 232 • High precision GPS-based synchronization and time 282
233 stamping over long distances for neutrino applications 283
- 234 • Fabrication techniques to reduce costs of large area detec- 284
235 tors 285
- 236 • Integration with readout electronics, such as fast MAPS, 286
237 low capacitance hybrids, and development of photosensor 287
238 electronics 288

239 **4. Particle Physics Project Prioritization Panel - P5** 292

240 Following the Snowmass community planning process, the
241 Particle Physics Project Prioritization Panel, P5, went to work.²⁹³
242 It took the Snowmass report and many other inputs and formu-²⁹⁴
243 lated a 10-year strategic plan with a 20-year vision for HEP.²⁹⁵
244 While the RDCs can be organized as a grassroots effort, the²⁹⁶
245 rest of the Instrumentation Frontier recommendations require²⁹⁷
246 enhanced budgets for detector R&D. The vision of the HEP²⁹⁸
247 community now needs the support from the funding agencies.²⁹⁹
248 The last P5 report from 2013 received broad community sup-³⁰⁰
249 port and was crucial to growing the HEP budget in the US. In³⁰¹
250 the 2023 P5 Report ([3]) the following detector-related recom-³⁰²
251 mendations to the funding agencies can be found: "The parti-³⁰³
252 cle physics community has identified the need for stronger co-³⁰⁴
253 ordination between the different groups carrying out detector³⁰⁵
254 R&D in the US. We strongly support the R&D Collaborations³⁰⁶
255 (RDCs) that are being established and will be stewarded by³⁰⁷
256 CPAD, the Coordinating Panel for Advanced Detectors, over-³⁰⁸
257 seen by the APS/DPF. The RDCs are organized along specific³⁰⁹
258 technology directions or common challenges, and aim to define³¹⁰
259 and follow roadmaps to achieve specific R&D goals. This co-³¹¹
260 ordination will help to achieve a more coherent detector instru-³¹²
261 mentation program in the US, and will help to avoid duplication³¹³
262 while addressing common challenges. International collabora-³¹⁴
263 tion is also crucial, especially in cases where we want to have
264 technological leadership roles. Involvement in the newly estab-³¹⁵
265 lished Detector R&D Groups at CERN is encouraged, as are
266 contributions to the design and planning for the next generation³¹⁶
267 of international or global projects."

268 Additionally, several of the more targeted Area Recom-
269 mendations are addressing some of the recommendations made in
270 the Snowmass Instrumentation Frontier report:

- 271 • **Area Recommendation 6:** Increase the budget for
272 generic Detector R&D by at least \$20 million per year in
273 2023 dollars. This should be supplemented by additional
274 funds for the collider R&D program.

- **Area Recommendation 7:** The detector R&D program
should continue to leverage national initiatives such as
QIS, microelectronics, and AI/ML.

5. Summary and Outlook

A multi-year strategic planning process for HEP in the US has concluded recently. Several key recommendations for Detector Instrumentation have been identified. Among them is the formation of R&D Collaborations aligned with different technology areas. This has now begun in form of the recently formed CPAD RDCs. Several of the RDCs are in the process of identifying specific R&D programs, collaborators, institutions and resource needs and are preparing funding proposals to be submitted to the Comparative University DOE Funding Opportunity Announcement in September 2024. Once the funding agencies had sufficient time to address the recommendations in the P5 report, we will hopefully see new and increased ways of funding these efforts, which will benefit the field at large.

References

- [1] B. Fleming, I. Shipsey, M. Demarteau, J. Fast, S. Golwala, Y.-K. Kim, A. Seiden, J. Hirschauer, G. Sciolla, O. Palamara, K. Scholberg, J. Cooley, D. McKinsey, C. Chang, B. Flaucher, S. Demers, M. Pepe-Altarelli, F. Lanni, R. Rusack, R. Guenette, J. Monroe, L. Winslow, P. Krizan, A. Geraci, K. Irwin, G. Carini, M. Newcomer, M. Artuso, C. Haber, D. Acosta, T. Bose, M. Begel, M. Narain, D. Dwyer, A. Connolly, A. Sonnenschein, R. Henning, K. Dawson, L. Newburgh, M. Reece, N. Serra, N. Akchurin, S. Eno, P. Rumerio, R. Zhu, J. Raaf, A. Pocar, J. Asaadi, H. Lippincott, G. Giovanetti, A. Lita, F. Sefkow, G. Campbell, A. Sushkov, R. Walsworth, A. Grassellino, A. Dragone, M. Garcia-Sciveres, T. Shaw, J. Thom-Levy, A. Tricoli, P. Merkel, W. Ketchum, J. Zhang, P. O'Connors, G. Karagiorgi, C. Ashton, L. Chaterjee, P. Lee, D. Hornback, H. Matis, M. Shinn, K. Byrum, G. Crawford, E. Lessner, D. Nevels, G. Rai, K. Turner, R. Ruchti, Basic Research Needs for High Energy Physics Detector Research & Development: Report of the Office of Science Workshop on Basic Research Needs for HEP Detector Research and Development: December 11-14, 2019 (2019). URL: <https://www.osti.gov/biblio/1659761>. doi:10.2172/1659761.
- [2] P. Barbeau, P. Merkel, J. Zhang, et al., Report of the instrumentation frontier working group for snowmass 2021, arXiv:2209.14111[hep-ex] (2022) 53. URL: <https://arxiv.org/abs/2209.14111>. doi:10.48550/arXiv.2209.14111.
- [3] Exploring the Quantum Universe - Pathways to Innovation and Discovery in Particle Physics. Report of the 2023 Particle Physics Project Prioritization Panel (2023) 180. URL: <https://www.usparticlephysics.org/2023-p5-report/>.