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ABSTRACT The Multi-Knapsack Problem (MKP) is a fundamental challenge in operations research
and combinatorial optimization. Quantum computing introduces new possibilities for solving MKP using
Quadratic Unconstrained Binary Optimization (QUBO) models. However, a key challenge in QUBO
formulations is the selection of penalty parameters, which directly influence solution feasibility and
algorithm performance. In this work, we develop QUBO formulations for two MKP variants—the
Multidimensional Knapsack Problem (MDKP) and the Multiple Knapsack Problem (MUKP)—and provide
an algebraic characterization of their penalty parameters. We systematically evaluate their impact through
quantum simulation experiments and compare the performance of the two leading quantum optimization
approaches: Quantum Approximate Optimization Algorithm (QAOA) and quantum annealing, alongside
a state-of-the-art classical solver. Our results indicate that while classical solvers remain superior, careful
tuning of penalty parameters has a strong impact on quantum optimization outcomes. QAOA is highly
sensitive to parameter choices, whereas quantum annealing produces more stable results on small to mid-
sized instances. Further, our results reveal that MDKP instances can maintain feasibility at penalty values
below theoretical bounds, while MUKP instances show greater sensitivity to penalty reductions. Finally,
we outline directions for future research in solvingMKP, including adaptive penalty parameter tuning, hybrid
quantum-classical approaches, and practical optimization strategies for QAOA, as well as real-hardware
evaluations.

INDEX TERMS Multi-dimensional knapsack problem, multiple knapsack problem, quadratic unconstrained
binary optimization, quantum annealing, quantum approximate optimization algorithm, penalty parameters.

I. INTRODUCTION
The Multi-Knapsack Problem (MKP) is a fundamental
combinatorial optimization problem that generalizes the
classic knapsack problem to multiple knapsacks. The MKP
is classified as an NP-hard problem and holds importance
in operations research due to its wide range of practi-
cal applications across various industries where efficient
resource allocation is critical, such as logistics, production,
and finance [1]. Classical, i.e. non-quantum, optimization
approaches, including exact algorithms, heuristics, and
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metaheuristics, have been highly effective in solving many
MKP instances, enabling robust solutions for both small-
scale and large-scale problems. However, as the landscape of
optimization problems evolves and problem sizes increase,
exploring alternative approaches such as quantum computing
remains valuable to assess their potential contributions
alongside classical methods [2].

Recent advances in quantum computing offer new
approaches to combinatorial optimization problems like the
MKP. Quantum computing exploits quantum mechanical
principles, such as superposition and entanglement, allowing
the exploration of solution spaces through different mech-
anisms compared to classical approaches. Many quantum
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devices primarily support Quadratic Unconstrained Binary
Optimization (QUBO) models, making them suitable for
exploratory research on problems like the MKP [3], [4].
A key difference between classical techniques and QUBO

lies in how constraints are handled. Classical techniques
explicitly model constraints to ensure feasibility and compu-
tational efficiency. In contrast, QUBO integrates constraints
directly into the objective function using penalty parameters,
requiring careful calibration. Penalty parameters play a key
role in enforcing constraints in QUBO formulations. They
must be large enough to prevent constraint violations but
not so large that they distort the optimization landscape.
If penalties are too small, solutions may violate feasibility
conditions. Conversely, excessive penalty values introduce
large energy gaps that hinder search behavior [5], [6].
However, the penalty behavior is platform-dependent, where
the two dominant quantum computing platforms for opti-
mization problems are annealing and gate-based methods.

Quantum annealers solve QUBO problems by gradually
minimizing an energy function, making them naturally suited
for these formulations but susceptible to analog control
imprecisions. Gate-based methods, which predominantly
use QAOA for combinatorial optimization, encode QUBO
problems using quantum circuits, where penalty terms
directly affect circuit depth and noise resilience. As QAOA
is executed through discrete gate operations, higher penalty
values translate into increased gate count, worsening
decoherence effects and reducing solution accuracy [7], [8].

More specifically, quantum annealers, such as those
developed by D-Wave, evolve a quantum system toward its
lowest-energy configuration [9]. Logical variables must be
embedded into the hardware topology, such as Chimera or
Pegasus graphs, increasing qubit requirements and introduc-
ing additional noise [10]. Unlike gate-based quantum com-
puters, annealers use continuous control signals to encode
problem coefficients, which introduces rounding errors in
penalty terms and affects feasibility [11]. Additionally,
decoherence and thermal noise degrade solution quality by
disturbing the quantum state during optimization [12], [13].
The annealing schedule also influences performance: if the
system evolves too quickly, it may settle into local minima
rather than the optimal solution [14]. However, since D-Wave
operates natively on QUBO formulations, it provides a direct
testbed for MKP instances, yet penalty parameters must be
carefully set to ensure constraint enforcement while avoiding
energy barriers that hinder exploration of the solution space.

Gate-based quantum computing platforms, such as IBM
Qiskit (superconducting qubits) and IonQ (trapped-ion
qubits), implement quantum optimization methods like the
Quantum Approximate Optimization Algorithm (QAOA) to
solve QUBO problems [15], [16]. Unlike quantum annealers,
these systems rely on discrete gate operations, requiring a
different approach to constraint handling. Moreover, IBM
Qiskit simulates superconducting qubits, where limited
qubit connectivity forces additional SWAP operations to
enable interactions between non-adjacent qubits [17]. These

additional operations increase circuit depth, amplifying
decoherence effects and reducing solution accuracy [18].
In contrast, trapped-ion quantum computers, such as those
developed by IonQ, offer all-to-all connectivity, eliminating
the need for SWAP gates [16]. However, trapped-ion
platforms have significantly slower gate execution times
compared to superconducting architectures, which limits
scalability [19]. Also, QAOA introduces further complexity
in constraint enforcement, as penalty parameters impact not
only the optimization landscape but also the feasibility of
circuit execution. QAOA depends on tunable parameters
γ and β, which dictate how the quantum state evolves.
These parameters must be carefully optimized, as no
analytical selection rules exist, making QAOA effectivenes
performance dependent on initialization strategies and clas-
sical optimization heuristics [20]. Increasing penalty values
requires additional gate operations, deepening circuits and
amplifying decoherence effects. This makes penalty selection
in QAOA highly sensitive to both problem characteristics and
the hardware used [5], [6].

The characterization and optimization of penalty param-
eters remain underexplored in quantum optimization. Boros
and Hammer [21] introduced the sum of the coefficients
method for pseudo-Boolean optimization problems and
later refined it using posiform transformations [22]. Basic
penalty parameter characterizations for QUBO formulations
were provided by Lucas [3] and Glover et al. [4]. For
knapsack problems specifically, Quintero and Zuluaga [23]
offer a detailed analysis of penalty parameters, while
Awasthi et al. [24] explore quantum computing techniques
for the multi-knapsack problem without addressing penalty
selection. A more general approach was proposed by Verma
and Lewis [5], who developed a heuristic method to derive
lower bounds for penalty parameters in QUBO models.
Building on this, García et al. [6] introduced a sequential
search method to optimize penalty values, testing their
approach across various classical optimization problems.

Building on these foundations, our work advances the
application of quantum computing to the MKP by:

• Developing QUBO formulations for two MKP variants:
the 0/1 Multi-Dimensional Knapsack Problem (MDKP)
and the 0/1 Multiple Knapsack Problem (MUKP).

• Providing a mathematical characterization of penalty
parameters for encoding constraints within MKP-
QUBO formulations.

• Conducting experiments to evaluate the proposed for-
mulations using quantum simulators for D-Wave, IBM
Qiskit, and IonQ, offering an approachable assessment
of performance on actual quantum devices.

The remainder of the paper is organized as follows.
Section II introduces the mathematical model of the two
MKP variants and the characterization of penalty parameters
essential for constraint encoding. In Section III, details of
the quantum optimization methods are presented. Section IV
describes the experimental setup and reports the results
of implementing the formulations on quantum simulators.
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Finally, Section V concludes with a discussion of the findings
and directions for future research.

II. MATHEMATICAL MODELS
In this section, we present classical mathematical formu-
lations of two multi-knapsack problem variants: Multi-
dimensional Knapsack Problem (MDKP) and Multiple
Knapsack Problem (MUKP) together with their correspond-
ing QUBO formulations. In each of these formulations,
some common notation will be used. The set of items is
represented with N of size |N | = N , whereas the set of
knapsacks is represented with K of size |K| = K . For the
multi-dimensional knapsack problem we define the set of
dimensionsD with size |D| = D. The revenue acquired from
placing an item to a knapsack is represented by parameters ri
and the amount of resource consumed by item i is wi. Lastly,
the capacity of knapsack k is shown by parametersWk . These
parameters may be used in multi-dimensional forms if there
are more than one dependency (e.g. rik for revenue earned by
item i placed on knapsack k), which will be clarified in the
corresponding model. Without loss of generality we assume
all the problem parameters r,w,W to be integers.

A. 0/1 MULTI-DIMENSIONAL KNAPSACK PROBLEM
(MDKP)
In MDKP there are N items with revenues ri > 0 and a
single knapsack with multiple dimensions of quantity D with
capacities Wd . Each item i occupies an amount of wid ≥ 0
in the d-th dimension of the knapsack. We define binary
variables xi to represent if item i is being selected or not. The
objective is to maximize the sum of profits of the selected
items so that the sum of weights consumed in each dimension
does not exceedWd . Then the 0/1 MDKP could be expressed
with the following integer programming formulation:

MDKP:

max
N∑
i=1

rixi (1)

s.t.
N∑
i=1

widxi ≤ Wd , d ∈ D (2)

xi ∈ {0, 1}, i ∈ N (3)

In this formulation the objective function (1) maximizes
the total revenue. Constraint set (2) are the capacity
constraints corresponding to each separate dimension of the
knapsack (or in a more generic sense, resource d). Last, the
formulation endswith binary requirements (3) on the decision
variables xi. If D = 1 then, MDKP reduces to the classical
0/1 Knapsack Problem. Without loss of generality, we can
assume that wid ≤ Wd for all dimensions d for each item i.
Otherwise item i can be discarded from the formulation.
Also, we can assume that Wd <

∑n
i=1 wid for at least one

dimension d , since otherwise the solution is trivial.
Next, we derive the first QUBO reformulation of the

MDKP. We add slack variables sd to convert inequality

constraints to equations to get the following equivalent
formulation.

max
n∑
i=1

rixi (4)

s.t.
N∑
i=1

widxi + sd = Wd , d ∈ D (5)

xi ∈ {0, 1}, sd ∈ Z+ i ∈ N , d ∈ D (6)

Then we can rewrite the knapsack constraints as choice
constraints by removing the slack variables and introducing
binary variables ytd as follows:

max
N∑
i=1

rixi (7)

s.t.
N∑
i=1

widxi =

Wd∑
t=1

tytd , d ∈ D (8)

Wd∑
t=1

ytd = 1, d ∈ D (9)

xi, ytd ∈ {0, 1}, i ∈ N , d ∈ D, t ∈ Wd (10)

Here t is an integer running from 1 to Wd . According to
this formulation, for each d , at the optimal solution only the
corresponding ytd variable will be equal to one and the rest
are forced to zero. When all the constraints are carried to
the objective function with penalty parameters λ1 and λ2
corresponding to the first and second set of constraints,
respectively, we get a QUBO reformulation of the original
problem as:

max f (x) =

N∑
i=1

rixi − λ1

D∑
d=1

(
n∑
i=1

widxi −
Wd∑
t=1

tytd

)2

− λ2

D∑
d=1

(
1 −

Wd∑
t=1

ytd

)2

(11)

s.t. xi, ytd ∈ {0, 1}, i ∈ N , d ∈ D, t ∈ Wd (12)

This QUBO formulation can further be improved and can
be represented with less number of slack variables by using
a binary representation of the knapsack capacities as shown
in [3] and [24]. In the new form, the first penalty term of
equation (11) is re-written by binary coefficients on the slack
variables and the second penalty term is dropped resulting in
the following formulation.

MDKP-QUBO:

max
n∑
i=1

rixi − λ

D∑
d=1

 n∑
i=1

widxi −
Md−1∑
t=0

2tytd − αdyMdd

2

(13)

s.t. xi, ytd ∈ {0, 1}, i ∈ N , d ∈ D, t ∈ Md (14)

whereMd = ⌊log2Wd⌋ and αd = Wd + 1 − 2Md .
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Theorem 1: For any penalty constant λ such that λ ≥ R∗,
where R∗

= max{ri : i ∈ N }, the 0/1 multidimensional-
knapsack problem (MDKP) can be reformulated as
(MDKP-QUBO).

Proof: Let g(x, y) represent the objective function of
(MDKP-QUBO) and let x∗ be an optimal solution for
(MDKP). We introduce the vector αd to represent the set of
coefficients of y in the binary expansion form in constraint d .
As x∗ is also a feasible solution for (MDKP), then there exists
y∗, such that wTd x

∗
= αTd y

∗
d for every d ∈ D, satisfying

constraint set (2). Hence, there exists a feasible solution
(x∗, y∗) for (MDKP-QUBO) such that, g(x∗, y∗) = f (x∗) =

rT x∗. Let (x̂, ŷ) be an optimal solution to (MDKP-QUBO),
then g(x̂, ŷ) ≥ g(x∗, y∗) = f (x∗).
To prove the opposite case, i.e., g(x̂, ŷ) ≤ g(x∗, y∗),

we show by contradiction that x̂ is either feasible for (MDKP)
or it can never be optimal for (MDKP-QUBO).

Let g(x̂, ŷ) be an optimal solution for (MDKP-QUBO).
Then if x̂ is feasible for (MDKP), then there exists y∗ such
that wT x̂ = αTt y

∗. Consequently,

g(x̂, ŷ) = g(x̂, y∗) = rT x̂ ≤ rT x∗
= f (x∗) (15)

The first equality is true, because max{g(x̂, y)} occurs when
there is no penalty, meaning wT x̂ = αTt y. The inequality part
is true due to the setting that x̂ is already a feasible solution
for (MDKP).

Let’s create an infeasible solution x ′ for (MDKP) from
the optimal QUBO solution (x̂, ŷ), by randomly choosing an
index (j) from the compliment of the support of x̂, formally,
j ∈ suppc(x) = {i | x̂i = 0} and set x ′

j = 1. We need to prove
that, (x ′, y′) is never optimal for (MDKP-QUBO).

g(x ′, y′)

=

N∑
i=1

rix ′
i − λ

D∑
d=1

(
n∑
i=1

widx ′
i −

Md∑
t=0

αty′td

)2

=

N∑
i=1

rix̂i + rj − λ

D∑
d=1

(
N∑
i=1

wid x̂i + wjd −

Md∑
t=0

αty′td

)2

≤ g(x̂, ŷ)

The last inequality is due to two facts. First,(
N∑
i=1

wid x̂i + wjd −

Md∑
t=0

αty′td

)
> 0

because previously these constraints were not violated and
addition of the new item should violate at least one of the
constraints (otherwise (x̂, ŷ) can not be optimal). Second, as a
consequence of our choice of λ, we can infer:

λ

(
N∑
i=1

wid x̂i + wjd −

Md∑
t=0

αty′td

)2

≥ λ ≥ R∗
≥ rj (16)

So an infeasible solution to (MDKP) can never be optimal
for (MDKP-QUBO). Therefore, if λ > R∗, then x∗ should
be optimal and feasible for (MKP-QUBO) as well. For the

boundary case where λ = R∗, we reach to the same
conclusion, because one can create a feasible solution (x̂, ŷ)
from (x ′, y′), which means (x̂, ŷ) is an alternative optimum
solution for (MKP-QUBO). Therefore, g(x ′, y′) = g(x̂, ŷ) =

rT x̂ ≤ rT x∗
= f (x∗). □

B. THE 0/1 MULTIPLE KNAPSACK PROBLEM (MUKP)
The 0/1 MUKP involves having multiple knapsacks instead
of just one. The objective is to distribute a set of items across
several knapsacks, each with its own capacity, to maximize
the total value without exceeding the capacity of any
knapsack. Formally, given the set N of items, each with a
knapsack dependent revenue rik and weight wi, and a setK of
knapsacks with capacityWk ; how can we optimally distribute
these items into the knapsacks. For this purpose we declare
binary decision variables xik , which becomes one if item i is
placed in knapsack k , and 0 otherwise. Mathematically, the
0/1 MUKP is given by the following formulation.
MUKP:

max f (x) =

K∑
k=1

N∑
i=1

rikxik (17)

s.t.
N∑
i=1

wixik ≤ Wk , k ∈ K (18)

K∑
k=1

xik ≤ 1, i ∈ N (19)

xik ∈ {0, 1}, i ∈ N , k ∈ K (20)

In this formulation, the objective function (17) maximizes
the total value of the selected items. The knapsack capacity
constraints (18) limit the total load of each knapsack k toWk .
Next, we introduce a second set of constraints (19) that
forbids an item to be placed to more than one knapsack
and the formulation ends with binary restrictions (20) on the
decision variables.
Similar to MDKP, to develop the QUBO formulation of

MUKP, we introduce slack variables y ∈ {0, 1}Wk×K for
constraint set (18) and s ∈ {0, 1}N for constraint set (19).
Then the resulting equations are carried to the objective
function by multiplying with penalty parameters λ1 and λ2,
respectively to form the following penalty function P(x, y, s).

P(x, y, s) = λ1

 K∑
k=1

 N∑
i=1

wixik −

Mk−1∑
t=0

2tytk − αkyMkk

2


+ λ2

 N∑
i=1

(
K∑
k=1

xik + si − 1

)2 (21)

Here again Mk = ⌊log2Wk⌋ and αk = Wk + 1 − 2Mk ),
k ∈ K. Notice that, when the polynomials are expanded,
P(x, y, s) will contain a constant term Nλ2 due to the 1 in
the second penalty term. Since the removal of constants has
no effect to the optimal solution, from now on we will assume
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that P(x, y, s) contains only the terms with variables and the
constant term is dropped. The resulting QUBO formulation
of MUKP is shown below.

MUKP-QUBO:

max g(x, y, s) =

K∑
k=1

N∑
i=1

rikxik − P(x, y, s) (22)

xik , ytk , si ∈ {0, 1}, i ∈ N , k ∈ K, t ∈ Mk (23)

Theorem 2: For any penalty constant λ1 and λ2 such that
λ1 ≥ R∗ and λ2 ≥ R∗, where R∗

= max{rik : i ∈ N ,

k ∈ K}, 0/1 the multiple knapsack problem (MUKP) can be
reformulated as MUKP-QUBO.

Proof: Let x∗ be an optimal solution for (MUKP). Also
let α represent the set of coefficients of y in the binary
expansion form. Observe that, x∗ is also a feasible solution
for (MUKP), then there exists y∗, such that wT x∗

= αTt y
∗

for every k ∈ K, satisfying constraint set (18). Also, there
exists s∗ such that constraints (19) are satisfied, resulting in
g(x∗, y∗, s∗) = f (x∗) = rT x∗. Let (x̂, ŷ, ŝ) be an optimal
solution to (MUKP-QUBO), then g(x̂, ŷ, ŝ) ≥ g(x∗, y∗, s∗) =

f (x∗) as (x∗, y∗, s∗) is also a feasible solution to
(MUKP-QUBO).

Next we need to show that g(x̂, ŷ, ŝ) ≤ g(x∗, y∗, s∗) =

f (x∗), by showing that x̂ is a feasible solution to (MUKP).
Here we are going to show a contradiction that an infeasible
MKP solution x ′ (but feasible to MUKP-QUBO) can never
yield a better objective function value. Let’s assume x∗

is optimal for (MUKP). Now we will create an infeasible
solution x ′ for (MUKP) and show that g(x ′, y′, s′) ≤

g(x∗, y∗, s∗) = f (x∗) is never violated.
Let’s randomly choose the index pair (j,m) from the

compliment of the support of x∗, namely, (j,m) ∈ suppc(x) =

{(i, k) | x∗
ik = 0}. Set xjm = 1. In this case, we are

adding an extra item j into knapsack m, which should
result in an infeasible solution for (MUKP). Let’s represent
the new (extended) solution as x ′. Next, one can construct the
following (MUKP-QUBO) by simply separating xjm from the
objective function and also displaying explicitly the m-th and
j-th penalty terms corresponding to respective constraints and
thus introducing PC as the rest of the penalty function P:

g(x ′, y′, s′)

=

K∑
k=1

N∑
i=1

rikx ′
ik − λ1

K∑
k=1

(
N∑
i=1

wix ′
ik −

Mk∑
t=0

αty′tk

)2

− λ2

N∑
i=1

(
K∑
k=1

x ′
ik + s′i − 1

)2

= g(x∗, y∗, s∗) + rjmx ′
jm − λ1

(
N∑
i=1

wix ′
im −

Mm∑
t=0

αty′tm

)2

− λ2

(
K∑
k=1

x ′
jk + s′j − 1

)2

− PC (x ′, y′, s′)

Since x∗ is an optimal (and feasible) solution, f (x∗) =

g(x∗, y∗, s∗). Also, PC (x ′, y′, s′) = 0, as it does not contain
any terms with xjm and corresponds to already satisfied
constraints. Let us define C to represent the sum of the
additional terms in the last equation other than g(x∗, y∗, s∗)
and PC (x ′, y′, s′). The question is, with our current choices
for the values of λ1 and λ2, will we always have C ≤ 0 so
that g(x ′, y′, s′) ≤ g(x∗, y∗, s∗) and so the optimality of the
solution (x∗, y∗, s∗) for (MUKP-QUBO) never fails. As x ′ is
infeasible for (MUKP), it has to violate either m-th knapsack
capacity constraint or j-th knapsack choice constraint or both.
Let us assume that only the first constraint is violated. Then∑N

i=1 wix
′
im −

∑Mm
t=0 αty′tm > 0 and the minimum magnitude

of the violation occurs when
∑Mm

t=0 αty′tm = Wm, which
implies y′tm = 1, t = 0, . . .Mm. As we assumed the second
constraint not to be violated even when x ′

jm = 1, it can only
happen if

∑K
k=1 x

∗
jk = 0 and to offset the penalty s∗j = 1.

When x ′
jm = 1, then

∑K
k=1 x

′
jk = 1 and again we can offset

the penalty by setting s′j = 0. Therefore, the term with λ2 can
be removed and the total amount of change in the objective
function becomes: C = rjm − λ1

(∑N
i=1 wimx

′
im −Wm

)
.

As we defined λ1 ≥ R∗ the following relationship can be
inferred:

λ1

(
N∑
i=1

wix ′
im −Wm

)
≥ λ1 ≥ R∗

≥ rjm (24)

Let us assume the additional item does not cause overflow
in the m-th knapsack capacity constraint, but leads to a
violation in j-th single-choice constraint. Therefore, we still
have

(∑N
i=1 wix

′
im −Wm

)
≤ 0 and so there exists a solution

y′ such that
∑Mm

t=0 αty′tm =
∑N

i=1 wix
′
im compensates the first

penalty term. The amount of violation in the second constraint
can only be 1, as this constraint has not been violated as
x∗
jm = 0. Accordingly, C = rjm − λ2 and then we can infer
that C ≤ 0 through the below relationship:

λ2 ≥ R∗
≥ rjm (25)

When both constraints are violated, we can combine the
individual results and construct the following relationship
which yields C < 0:

λ1

(
N∑
i=1

wix ′
im −Wm

)
+ λ2 ≥ λ1 + λ2 ≥ 2R∗ > rjm (26)

So when C < 0, then g(x∗, y∗, s∗) > g(x ′, y′, s′), which
claims that an infeasible solution to (MUKP) can never
be optimal for (MUKP-QUBO), so this case cannot occur.
Therefore, if λ1 > R∗ and λ2 > R∗, then x∗ should
also be optimal and feasible for (MUKP-QUBO). For the
boundary case where λ1 = R∗ and λ2 = R∗, we obtain
the same conclusion above as one can create a feasible
solution (x̂, ŷ, ŝ) from (x ′, y′, s′), which means (x̂, ŷ, ŝ) is an
alternative optimum solution for (MUKP-QUBO). Therefore,
g(x ′, y′, s′) = g(x̂, ŷ, ŝ) = rT x̂ ≤ rT x∗

= f (x∗). □
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An interesting observation is that, in the third scenario,
when both constraints are violated, the requirement of having
each penalty parameter being at least R∗ is too restrictive. The
coefficient of λ1 can be as large as w∗

= max{wi : i ∈ N },
therefore, as long as w∗λ1 +λ2 ≥ R∗, both formulations may
still have the same optimal solution, which strongly depends
on the problem data.

III. SOLUTION METHODOLOGY
To solve the MKP instances created, we use 4 different
methods. These are (i) solving the classical integer linear
programming formulation of MKP with a solver, (ii) solving
the QUBO version of MKP with a solver, (iii) Quantum
Annealing and (iv) Quantum Approximate Optimization
Algorithm (QAOA). Current state-of-the-art commercial
solvers easily solve our instances using advanced operations
research methods, which are quite mature and sophisticated
and out of the scope of this paper. We will briefly describe
the quantum-based methods, namely quantum annealing and
QAOA.

A. QUANTUM ANNEALING
Quantum annealing uses the physical properties of quan-
tum systems to address optimization problems [14]. This
approach is grounded in a fundamental principle of physics:
systems naturally evolve toward their minimum energy
state [25]. In a quantum annealer, solving a problem involves
designing an entangled quantum system where each qubit
represents a binary variable in the QUBO formulation. The
system is configured such that its minimum energy state
corresponds to the optimal solution of the problem. Upon
measurement, the quantum system collapses, with each qubit
taking a value of 0 or 1, as determined by the optimal
solution [26].
To illustrate the structure of the problem that arises,

consider this minuscule 0−1 knapsack problem instance with
two items and a single knapsack: max{3x1+4x2 : 2x1+3x2 ≤

3, x ∈ {0, 1}}. Its QUBO version is: max{3x1 + 4x2 −

λ (2x1 + 3x2 − y1 − 2y2)2 : x, y ∈ {0, 1}}. After expanding
the squared term, setting λ = R∗

= 4, replacing 3x1 and
4x2 with 3x21 and 4x22 and finally converting the problem into
its minimization form, the following final QUBO is formed:

min{13x21 + 32x22 + 4y21 + 16y22 + 48x1x2 − 16x1y1
− 32x1y2 − 24x2y1 − 48x2y2 + 16y1y2 : x, y ∈ {0, 1}}

(27)

In a typical application of quantum annealing, each binary
variable of the problem is represented as a qubit, and the
relationships between variables are mapped onto interactions
between qubits, represented as quantum entanglement. The
goal is to configure the quantum system so that its lowest
energy configuration corresponds to the optimal solution of
the QUBO problem. Due to the architecture of quantum
computers, the possible number of qubit-to-qubit connections

FIGURE 1. The energy landscape of the example QUBO instance.

is limited, and therefore additional qubits may be needed to
fully map the QUBO onto the quantum hardware.

The annealing process starts with a superposition state
of the qubits; however, when the process ends and a
measurement is taken, then each qubit falls into a basic
state of 0 or 1. Each combination of these basic states
has an associated energy level, which corresponds to the
objective function of the QUBO in equation (27). When all
possible combinations of the basic states are determined and
their corresponding energies are measured, one can create
the so-called ‘‘energy landscape’’ of the quantum system.
Figure 1 represents the energy landscape corresponding to
our example and since there are 4 variables in our QUBO
example, there are 24 = 16 possible solutions. The height
of each state in the energy landscape corresponds to the
cost function value for that state. For instance, in the energy
landscape, binary strings such as 0011 and 1100 have high
energies, which correspond to either not taking any item to the
knapsack (0011) or taking both items to the knapsack causing
infeasibility (1100). After the initialization of the system by
putting all the qubits in superposition, the system is let to
evolve, which progressively biases the system toward lower
energy states. At the end of the process, the system collapses
into a classical state when measured. Each qubit resolves
to a binary value (0 or 1). The final configuration with the
lowest energy corresponds to the optimal solution of the
knapsack problem. For our example, the initial superposition
ensures that all 16 possibilities are explored in parallel and
the annealing process steers the system toward configurations
with lower energies. If the quantum system is set up correctly,
then the annealing process is expected to end up at the
minimum energy with high probability. In our example, the
minimum energy point in the energy landscape corresponds
to the optimal solution of 0111, which can be decoded as the
solution x1 = 0, x2 = 1, y1 = y2 = 1. Here, the second item
is chosen and the auxiliary variables y1 and y2 are equal to
one as the knapsack is fully occupied by item-2.

B. QUANTUM APPROXIMATE OPTIMIZATION ALGORITHM
TheQuantumApproximateOptimizationAlgorithm (QAOA)
is a popular variational quantum algorithm that aims
to solve combinatorial optimization problems that are
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FIGURE 2. Quantum circuit used in QAOA.

classically intractable [27]. It belongs to the class of hybrid
quantum-classical algorithms and operates on gate-based
quantum computers. QAOA uses a sequence of quantum
gates to construct a parameterized quantum circuit that
encodes the optimization problem. It alternates between
two types of gates, corresponding to two Hamiltonians: (i)
Cost Hamiltonian Gates, which encode the problem-specific
objective function (e.g., a QUBO problem) (ii) Mixer
Hamiltonian Gates, that introduce exploration in the solution
space. This gate sequence forms one ‘‘layer’’ of QAOA, and
the circuit can have multiple such layers [28].

QAOA is designed to run on gate-based quantum com-
puters, such as those built on superconducting qubits (IBM,
Rigetti) or trapped ions (IonQ). The algorithm introduces
tunable parameters γ (associated with the Cost Hamiltonian)
and β (associated with the Mixer Hamiltonian). These
parameters are iteratively optimized using a classical non-
linear optimizer, based on the outcomes of measurements
from the quantum circuit [28].

Figure 2 displays the quantum circuit corresponding to the
minuscule 2-item Knapsack instance. As shown in the upper
circuit in Figure 2, the problem data is directly mapped to
the quantum circuit with certain rotations depending on the
coefficients of terms of the QUBO problem instance. The
mixer Hamiltonian is then applied, preparing the circuit for
the QAOA process. After parameter optimization, a final
sampling of the circuit (preferably with a high number
of samples) is expected to yield the minimum energy
configuration of the system, which should correspond to
the optimal solution of the original optimization problem.
The implementation of QAOA involves several configurable
parameters, including circuit depth, parameter initializa-
tion method, and non-linear optimization method, which
significantly affect performance and results.

IV. EXPERIMENTAL ANALYSIS
This section explores the impact of penalty parameters
used in QUBO formulations on the performance of quan-
tum optimization methods for the MKP. By generating
diverse problem instances and varying penalty parameter
values, we assess their effects on solution feasibility,
quality, and computational efficiency across various quantum

technologies, with classical optimization results included for
comparison. These experiments also explore how well the
theoretical adjustments to the penalty parameters perform
in practice for both classical optimization methods and
quantum-based methods. By comparing the experimental
results across different quantum simulators, we will assess
how the characteristics, various settings and the stochasitic
nature of each quantum platform affect the performance and
scalability of MKP-QUBO solutions.

A. TESTBED
Our testbed contains randomly generated multi-knapsack
problems, where the number of items are N ∈ {3, 4, 5, 6}
and number of dimensions / knapsacks vary from D,K ∈

{2, 3, 4}. The revenue values r are selected as random integers
between [1, 10] and the item weights w are chosen as random
integers between [1, 5]. The knapsack capacitiesW are again
randomly calculated as integers that is between 60% to 80%
of the total weight of the items placable to that knapsack to
guarantee that not all items are placable at the same time.
For the penalty parameters λ, the default value is taken
as λ = R∗

= max{rik} (or max{ri}). Then a multiplier
between 0.5 to 1.5 is used to scale the values of λ, where the
multiplier is increased by 0.02, so that 50 different λ values
are generated. Our aim is checking how smaller λ values
causes infeasibility and also the effect of magnitude of the
penalty parameter on the solution time and quality. In total,
4×3×50 = 600 instances are created for each variant of the
multi-knapsack problem. Notice that the problem instances
are very small compared to the scales of MKP instances that
are efficiently solved by the classical computers. However,
as current NISQs contain limited number of qubits, with
the current state of quantum technology it is not possible to
efficiently solve larger instances.

B. EXPERIMENTAL SETUP AND IMPLEMENTATION
DETAILS
To create the instances, we develop a C# console application
using Microsft Visual Studio Community 2022. We create
both the classical MIP formulation and the QUBO formu-
lation of the MKP instances using Gurobi callable libraries
and solve both with Gurobi 12.0 Solver [29] with default
settings and a maximum solution time of 600 seconds. For
the quantum counterparts, we test our instances on three
main quantum technologies: Gate based circuits, trapped-ion
based circuits and annealing. For the quantum annealing tests
we use D-Wave simulator [26]. Using the Python interface
of D-Wave, the QUBO corresponding to each instance is
used to create the optimization problem and then solved
by the annealer. For gate-based experiments, we use IBM
Qiskit libraries [30], where the circuits are created from the
coefficients of the objective function of the QUBO instance.
Then a standard QAOA sub-routine is called to determine
the best solution. Last, we use IonQ Python libraries [31]
to test our MKP instances under the simulators based on
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FIGURE 3. Solution Methodology.

TABLE 1. Per-cent of instances optimal solution found by the
quantum-based method and the average optimality gaps when optimal
solution is not found.

trapped-ion technology. Again, a circuit is created from the
coefficient matrix of the corresponding instance and solved
by a QAOA algorithm. Figure 3 summarizes the methods
used in our experiments.

Each quantum instance is run 10 times with a sample size
(or shot) of 1, 000 to reduce the effects of the stochastic nature
of quantum mechanics mimiced by the simulators. In both
annealing and gate-based solutions, the inherent errors due
to the uncertainty of quantum mechanics is thwarted by
increasing the number of shots. In each experiment we
record, the optimal solution, the optimal objective function
value and the solution time. As classical solvers can easily
solve the basic integer programming (IP) formulation to
optimality, all optimal solutions for all instances are readily
available. Therefore, we also record whether the solution of
the QUBO version solved by the classical solver and the other
three quantum technology-based methods result in a feasible
and/or optimal solution or not.

C. COMPUTATIONAL RESULTS FOR MDKP
We first analyze the solution quality of the three quantum
methods, which are presented in Table-1. These values are
averages of 10 × 50 = 500 (10 random instances with
50 different values of penalty parameter) instances for each
N and D. Here, the first column shows the number of
items and knapsacks of the generated problem instances,
respectively. Next three columns show the per cent of the
instances (out of 500) the quantum method obtains the
optimal solution. The last three columns show the average
optimality gaps for the instances when an optimal solution is
not achieved by the quantum method. For instance, the first

TABLE 2. Comparison of running times across different solvers for
varying values of N (number of items) and D (number of dimensions).

row displays the results for the Multi-dimensional knapsack
instance results with 3 items and 2 dimensions. In these
instances, D-Wave’s annealing method solved all instances to
optimality, whereas QAOAbasedmethods of Qiskit and IonQ
found the optimal in 96.3% of the instances. The average
optimality gap for the remaining 3.7% of the instances
are 1.2% and 0.9%, respectively. The optimality gaps are
calculated using the formula by (zi − z∗)/z∗, where zi is
the objective function value of the quantum method and
z∗ is the optimal solution found by the solver. Table-2
displays the average running times of the quantum-based
methods recorded. In all instances D-Wave outperforms gate-
based methods, where Qiskit simulator is slightly better and
faster than IonQ simulator. Observe that Gurobi solver is
significantly faster than quantum-based simulators for both
the IP and QUBO versions.

Table 2 presents the solution time comparison of all the
methods.

D. COMPUTATIONAL RESULTS FOR MUKP
Next we present our computational results for the MUKP
instances, which are summarized in Table-3 and Table-4.
As one can observe, MUKP instances are yielding relatively
harder optimization problems compared to MDKP.

As expected, Gurobi solver achieves the fastest solution
times for the IP formulation of the MUKP, followed closely
by the QUBO version. The D-Wave quantum annealer
demonstrated comparable performance to Gurobi’s quadratic
solver, solving nearly all instances in under one second.
It is notable that D-Wave’s average running time is smaller
than Gurobi’s quadratic solver for the largest instances
corresponding to 5/6 item and 3 knapsack scenarios. Observe
that for the largest instances, D-Wave may fail to find
the optimal solutions, but the optimality gaps are within
1 − 3% of the optimal. In contrast, QAOA-based methods
are significantly slower, with solution times increasing as the
problem size grows. For the largest instances both gate-based
methods fail to provide solutions either with out of memory
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TABLE 3. Per-cent of instances optimal solution found by the
quantum-based method.

TABLE 4. Comparison of running times across different solvers for
varying values of N (number of items) and K (number of knapsacks).

or timeout errors, where again Qiskit simulator slightly
outperforming IonQ simulator.

E. EFFECTS OF PENALTY PARAMETER
In the penalty parameter characterizations, we claim that
requiring the penalty parameter λ to be at least λ = C∗

=

max{cik} may be overly restrictive for certain instances.
To investigate this, we calibrated the value of λ using a
multiplier ranging from 0.5 to 1.5. Figure 4 illustrates the
average percentage of instances that resulted in feasible
solutions under these varying penalty parameter values.

Each data point in the figure represents the average results
over 10 × 12 = 120 instances (10 random runs across
12 different combinations of N and D/K ). When the penalty
parameter coefficient is set to 1.00, λ equals C∗, and all
QUBO instances produce the same optimal solutions as the
original IP formulation of the MKP.

However, as the penalty parameter is reduced below this
theoretical minimum, a gradual decline in feasibility is
observed, with fewer QUBO solutions satisfying the con-
straints of the original MKP. Observe that, the deterioration
of feasibility is much less for MDKP instances compared to
MUKP instances. More than 85% of the MDKP instances
yield a feasible solution even when the penalty parameter

FIGURE 4. Effect of penalty parameter magnitude on solution feasibility.

FIGURE 5. Effect of penalty parameter on the average optimality gaps for
feasible solutions.

is set as half of the theoretical minimum. Future research
could focus on deriving tighter bounds for penalty parameters
tailored to specific MDKP / MUKP instances, potentially
reducing the need for conservative parameter settings.

Next, we investigate the effect of penalty parameter on the
optimality gaps for the feasible solutions. Figure - 5 displays
the average optimality gap behavior against the magnitude
of the penalty parameter, where the top sub-figure shows the
results for Qiskit simulations and the bottom part shows the
results for IonQ simulations. As D-Wave finds the optimal

47094 VOLUME 13, 2025



E. Güney et al.: QUBO Formulations and Characterization of Penalty Parameters for the MKP

FIGURE 6. Effect of penalty parameter magnitude on running time (MDKP
instances).

solutions in more than 99% of the runs, it is excluded from the
graphics. The results indicate a strong relation between the
average optimality gap and the penalty parameter magnitude.
The average gaps are larger for MUKP instances as it is a
more complex problem than MDKP. Nevertheless, in both
types of MKP variants the average gaps grow as the penalty
parameter increases. Therefore having the penalty parameter
as small as possible will have a positive effect on the solution
quality of MKP instances run on quantum simulators.

Finally, we evaluate how the magnitude of the penalty
parameter affects the running time of the solution methods.
This analysis is based on the running times for 120 instances
across 4 QUBO-based methods. The results are visualized
as box-whisker plots for each method. Figure 6 displays
the results for MDKP instances, whereas Figure 7 displays
the results for MUKP instances. All plots indicate that the
magnitude of the penalty parameter has no significant impact
on running times.

It is worth noting that these results were obtained using
classical simulators of quantum systems, which may not
fully capture the computational dynamics of actual quantum
hardware. Replicating these experiments on real quantum
devices would provide more accurate insights and validate or
disprove the observations made here.

F. SOLVING LARGER INSTANCES ON D-WAVE
Our experiments clearly indicate that QAOA-based methods
are not scalable even for small-sized MKP instances. In con-
trast, D-Wave performs well for all small-sized instances.
To test the scalability limits for D-Wave annealer, we created
larger instances for both MKP variants and executed them on
the D-Wave annealer and Gurobi’s quadratic solver. We set a
time limit of 600 seconds for both solvers and recorded the
best solution achieved within this limit. The results displayed

FIGURE 7. Effect of penalty parameter magnitude on running time (MUKP
instances).

TABLE 5. Average optimality gaps (%) for larger instances.

in Table 5 are obtained for running each instance 10 times for
50 different penalty parameter multipliers and averaging for
only the feasible/optimal solutions.

The Gurobi IP solver can still solve all IP formulations
of these larger instances to optimality in less than a second.
However, both the D-Wave annealer and Gurobi’s quadratic
solver struggle with efficiency on larger problems. Both
methods fail to find optimal solutions within 600 seconds
in most cases, particularly for the largest instances:
(N = 100,D = 25) for MDKP and (N = 25,K = 10)
for MUKP.

For problem sizes beyond these benchmarks (N > 100 for
MDKP and N > 25 for MUKP), D-Wave fails to find
feasible solutions for most instances, so we do not report
results for these very large problems. We conclude that
within the QUBO domain, the D-Wave annealer presents a
promising alternative to classical solvers for problems up to
mid-size instances. Nevertheless, the IP formulations of the
same instances are solved to optimality substantially faster,
demonstrating that quantum-based methods still lag behind
their classical counterparts for these problem classes.

G. TESTS ON SIMULATOR SETTINGS AND QAOA
PARAMETERS
A critical parameter in QAOA is the number of layers (p)
used to create the quantum circuits. As demonstrated by
Farhi et al. [28], when p → ∞, the expected energy obtained
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FIGURE 8. Effect of number of layers (p) used in QAOA on running time
and optimality gap.

from the circuit approaches the optimal solution of the
underlying optimization problem. Therefore, the choice of p
affects the expected value of the QAOA process; however,
it also negatively impacts computation time as a larger
number of layers results in more complex circuits. Various
empirical studies on the choice of p generally favor smaller
values [32], [33]. We tested our two QAOA implementations
against varying values of p = 1, . . . , 10, with results
displayed in Figure 8.
In this figure, the left y-axis values correspond to running

times (displayed as bar charts) while the right y-axis values
correspond to average optimality gaps (plotted as line charts).
We observe that as p increases, the average running times
gradually increase, while the average optimality gaps show
only modest decreases. The reduction in optimality gap
is slightly more pronounced in IonQ simulators compared
to Qiskit. Thus, our findings align with previous research
[32], [33], suggesting that using smaller p values in circuit
construction is preferable unless extended computation time
is not a concern.

Another important parameter in QAOA is the number of
shots, which refers to the number of times a quantum circuit is
executed (or measured) to collect statistical results. Quantum
measurements are probabilistic, meaning that running the
same quantum circuit multiple times may yield different
results due to quantum uncertainty and noise. The number
of shots determines how often the quantum computer runs
the same circuit to estimate the probability distribution of
the measured outcomes. The default value used by Qiskit
and IonQ simulator is 1000. We run experiments on sample
circuits corresponding to various instances of MKP with
5 different shot values {100, 500, 1000, 5000, 10000} to
check its effect on both solution quality and running time.
The results are displayed in Figure 9.
The results show that number of shots have a significant

effect on both running times and optimality gaps. Most
real quantum hardware providers charge significant costs as
the number of shots increases. Hence, researchers may first

FIGURE 9. Effect of number of shots used in QAOA on running time and
optimality gap.

FIGURE 10. Effect of solver choice on QAOA running time and optimality
gap.

test their instances over the free simulators to observe the
trade-off between running time and optimality gap before
carrying their experiments to actual hardware.

Finally, we analyzed various non-linear solvers usedwithin
the QAOA simulators. There are 3 default solvers: COBYLA,
SPSA, and Nelder-Mead. Figure 10 displays the average
running time and average optimality gaps obtained by each
solver. The results indicate that the COBYLA solver performs
best in terms of both optimality gaps and speed, followed by
Nelder-Mead and SPSA solvers.

V. CONCLUSION
In this work, we applied quantum optimization methods to
two variants of the MKP (MDKP and MUKP), using QUBO
formulations. Our focus was on characterizing penalty
parameters for encoding constraints inQUBO representations
and analyzing their impact on solution quality, feasibility,
and computational performance. We conducted quantum
simulation experiments using both annealing and gate-based
QAOA approaches. Our experimental results indicate that:

1) In our application, classical solvers (e.g., Gurobi)
remain superior in efficiency and solution accuracy.
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Among the quantum approaches, annealing performed
promising on small to mid-sized instances, while
QAOA struggled with scalability due to circuit com-
plexity and execution time.

2) Penalty parameter calibration affects solution feasi-
bility and accuracy, highlighting the importance of
selecting appropriate parameter values to enhance
QUBO performance.

3) Both quantum approaches exhibit characteristic
strengths and weaknesses. While quantum annealing
produces stable results, QAOA is more sensitive to
parameter choices, suggesting that improvements in
initialization techniques and optimization strategies
could enhance its performance.

These insights point to several practical next steps for
research:

• While our experiments validate theoretical penalty
parameter thresholds, optimizing them to minimize
infeasibility and enhance solution quality remains an
open challenge. Future work should explore adaptive
penalty selection methods that respond dynamically to
problem characteristics beyond iterative tuning.

• Our results show that QAOA’s performance is depen-
dent on parameter choices, but further investiga-
tion is needed to improve stability and scalability.
Exploring structured parameter optimization techniques
and circuit optimization strategies may enhance its
viability.

• Comparing quantum-classical hybrid approaches: Given
that neither quantum approach outperformed classical
solvers in our study, hybrid strategies should be
explored—in both directions. Classical methods could
assist with problem size reduction, pre-processing
or decomposition [34], while quantum methods may
provide inspiration to solve QUBO models faster with
accompanying classical methods.

• Evaluating performance on real quantum devices:
Finally, while our results establish a baseline in sim-
ulation, but testing on actual devices is essential to
determine whether quantum methods offer meaningful
advantages for optimization in practice. Beyond direct
comparisons, such tests could also inform improve-
ments in quantum simulators and circuit optimization
techniques.

Overall, our study provides an analytical and experimental
foundation for future comparisons between quantum, clas-
sical, and hybrid optimization for variants of the MKP, and
more generally contributes to the investigation of penalty
parameters in quantum optimization from the operations
research perspective.
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