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Abstract

Third-order resonance lines will have a detrimental effect
on the high-intensity operation of the Recycler Ring (RR),
under the current Proton Improvement Plan (PIP-II) for the
Fermilab Accelerator Complex. Increasing intensity will
increase space charge effects, leading to the excitation of nor-
mal and skew sextupole lines. Dedicated normal and skew
sextupoles have been installed in order to mitigate the effect
of these resonance lines. By measuring the response matrix
of the third-order Resonance Driving Terms (RDTs) to the
currents of these dedicated elements, this study shows how
several resonance lines can be compensated simultaneously.
Resonance compensation is experimentally verified through
loss maps and emittance growth measurements using the
Ton Profile Monitor (IPM) system in the Recycler.

INTRODUCTION

As the Fermilab Accelerator Complex enters the Pro-
ton Improvement Plan IT (PIP-II) era, new challenges arise
for high-intensity operation. The objective of delivering a
1.2 MW proton beam to the Deep Underground Neutrino
Experiment (DUNE) through the Long-Baseline Neutrino
Facility (LBNF) will require several upgrades to the acceler-
ator complex. This include the addition of an 800-MeV su-
perconducting linear accelerator, as well as several upgrades
to the downstream accelerators, including the Booster Ring,
Recycler Ring and Main Injector [1, 2]. The layout of the
current and future accelerator complex is shown in Fig. 1.
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Figure 1: The past (Tevatron), present and future (PIP-II and
LBNF) of the FNAL Accelerator Complex, taken from [3].

As intensity is increased, the space charge tune shift will
lead to the excitation of third-order resonance lines around
the operation point of the Recycler Ring [1,4]. The nominal
operation point for the tune is Q, = 25.43 for the horizontal
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plane and Q,, = 24.42 for the vertical. Correspondingly, the
resonance lines of interest are 3Q = 76 and O +2Q, = 74,
which come from normal sextupole excitation. In addition,
there are skew sextupole lines with equations 3Qy, = 73 and
20, + Qy = 75. Figure 2 shows a loss map for the tune
region close to operation. The brighter regions in the plot
correspond to regions where more losses occur. The first
thing to note is that the coupling line QO — Qy = 1 s already
being corrected for with skew quadrupoles. Furthermore,
the third-order lines can be superimposed onto the loss map,
coinciding with the regions of beam loss. This work explores
the simultaneous compensation of these resonance lines.
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Figure 2: Loss map for the Recycler Ring with third-order
resonance lines superimposed.

COMPENSATION OF RESONANCES

Resonance Driving Terms

Previous studies in the Recycler Ring have shown the
measurements of the Resonance Driving Terms (RDTs) [5],
in accordance to the general theory of RDTs as described in
Ref. [6]. Table 1 shows how each RDT can be associated
to each resonance line. Table 1 also specifies the first-order
source for each resonance, and, ultimately, the correction
element needed, i.e., either a normal or skew sextupole.

The RDT will quantify the strength of the resonance lines.
Therefore, by cancelling out the real part and the imaginary
part of each RDT, one can effectively compensate each reso-
nance. This will significantly reduce beam losses at these
resonance regions. Figure 3, shows how by introducing
appropriate kicks one can bring the global /3099 term to 0.

In general, RDTs are defined by the order in which they
enter the one-turn normal form Hamiltonian [6]. The general
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Figure 3: Individual correction for the %3 term and local

contributions calculated from the lattice model.

Table 1: Corresponding RDTs and Source for Each Third-
order Resonance Line

Resonance Line RDT Source

30, =76 h3ooo  Normal Sextupole
Ox+20,=74 hi020 Normal Sextupole
30,=173 hoo30 Skew Sextupole
20+ Qy =75 ho010 Skew Sextupole

expression to define RDTs reads:

Jtk  l+m

hjkim = Ejkim Z LiB; B, Vyie! LU= dnitl=mdi]
i

)]

where i, is just a constant defined as:

g 11( n J+k\(l+m
el

For Egs. (1) and (2), n = j + k + [ + m represents the
order of the resonance. The sum over i is done over all
multipoles of order n and length L; that either have a normal
component V,,; = By; if [ + m is even, or a skew component
Vni = Api if [ +m is odd. The symbols for Sy, Byi, ¢xi
and ¢,; represent the beta funtions and phase advances in
each plane, respectively. Figure 3 plots compensated /30,
which reads:

Eikim =

q 1 3 3ids
h =———§ L;B2 B3’ i, 3
3000 = =57 [ iBy;Baie 3

Compensation of Third-Order Resonances

For resonance compensation we have four dedi-
cated normal sextupoles with currents that can be
set to (Lse200, Isc222, Ise319, Ise3p1) and four dedicated
skew sextupoles with currents that can be set to
(Iss323> I55323, I55319, I5s321). As shown in the previous sec-
tion one RDT can be cancelled out with the right kick from
the correction elements, which means the resonances are
corrected to first order.

Nevertheless, by compensating one resonance line, other
resonances might become worse. This is why for simultane-
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ous compensation, compensation currents will vary depend-
ing on the subsets of resonances to compensate. In principle,
the currents /,, needed in each correction element in order
to cancel out the four bare machine RDTs, are given by the
solution to this linear system of equations:

=|h3000] €08 Y3000 Lse220

—| 3000 sin Y3000 Iscom

=|h1020] €08 Y1020 Lse319

—[h1020] sin 1020 _ pr| sest @
=|hoo30| €08 Yoo30 Isso03 |

=|hooz0| sin Y0030 55323

=|h2010] €08 Y2010 55319

—|h2010| sin¥ra010 (Bare) L5321

where M;; is the response matrix for the RDTs with respect
to the currents, and includes any roll that can happen for the
correction sextupoles. This response matrix M;; can be cal-
culated by scanning the currents in each correction element
and looking at the response from the real and imaginary part
of the RDTS, i.e., hjxim = |hjkim|e’¥ikm . Alternatively, the
response matrix can also be calculated theoretically from
the lattice model, by means of Eq. (1). For the Recycler
Ring, both methods predict similar currents for individual
compensation of RDTs.

In reality, there are limitations to solving Eq. (4). The first
one is that all the RDTSs (4 ;) may not be accessible for
measurement, given that they may not show up as a spectral
line. See Ref. [5] for the method used to measure RDTs at
the Recycler Ring. Another limitation is that the solution
for the currents may be outside of the maximum limits for
the correction elements.

One can also try to cancel out a subset of RDTs from
Eq. (4). For example, in order to compensate 30 = 76 and
O« + 20, =74 simultaneously with the normal sextupoles,
the system of equations to be solved is:

—|h3000| €OS ¥3000 Lse20
=|h3000] sin 3000 gl Isea2
=M )
—|h1020] cOs 1020 Isc319
—lh020l sin Y1020/ (e Ise31

Figures 4 and 5 allow for visualization of the solutions to
Eq. (5). If the currents from the solution are introduced into
the correction elements in the lattice, one can verify that
the 3000 and the /1929 are globally adjusted to zero. There
are regions where the local contributions to the A3ggg are
relatively high to bare machine values. Experimentally, the
currents needed for this compensation exceed the maximum
limits that can be set to correction elements. Nevertheless,
other subsets of resonances can be compensated simultane-
ously, as can be seen in Fig. 6.

EXPERIMENTAL VERIFICATION
Loss Maps

As mentioned before, loss maps are a powerful tool to
characterize resonances and their compensation. In particu-
lar, Fig. 6 shows how by solving a subset of equations from
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Figure 4: Profile for h3 term around the ring with 3Q, =
76 and Q +2Q = 74 compensation.
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Figure 5: Profile for ;g0 term around the ring with 3Q, =
76 and Q +2Q = 74 compensation.
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Figure 6: Tune map scan with optimal compensation cur-
rents in corrector elements for 30 and 3Q,, compensation.

Eqg. (4), the beam losses around the resonances are decreased.
Figure 6 can be compared to the bare machine loss map in
Fig. 2. It can be seen that the losses around the 30, = 76
and 3Q, = 73 regions have decreased significantly.

Static Tune Scan

Another tool to visualize resonance compensation are
static tune scans. For the loss maps described in the previous
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section the crossing of the resonance happens dynamically.
Another approach is to set the tune at a certain value and
measure the beam survival ratio, as well as the beam size
for a certain window of time. The beam size is measured
using the Ion Profile Monitor System (IPM) in the ring and
is reported in arbitrary units, just to show a relative effect.
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Figure 7: Measurements of beam size and beam survival
ratio by means of static tune scans for bare machine (top)
and with 30, = 76 compensation (bottom).

The top plot in Fig. 7 shows a static tune scan with no
resonance compensation. No beam survives on top of the
resonance and the beam size also starts blowing up as we
approach the resonance. Nevertheless, when the currents
that cancel out A30gg are set (bottom plot), the beam survival
ratio around 3Q, = 76 increases. There is a valley for
the beam size at this region, but this may be an artifice
from the Gaussian fit. If beam tails are amplified by the
compensation, the Gaussian fit will not give the best fit.
Further investigation into this effect is underway.

CONCLUSIONS

The RDT method can be extended to compensate multiple
resonance lines. Nevertheless, there will be a limit set by
the maximum currents in the correction elements. There
will also be a limit for when the sextupole component is
no longer a perturbation, and the assumption for the RDT
expansion breaks down.
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