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Abstract

In this thesis we shall apply the effective approach first to set up a gen-
eralised method for the effective semiclassical truncation of a general class of
two–component dynamical systems (applicable to homogeneous cosmology) and
provide a general construction for switching clocks in such systems. Next we shall
put this method in use and evaluate relational dynamics of the closed Friedman–
Robertson–Walker cosmological model filled with a minimally coupled massive
scalar field in a semiclassical approximation. We have chosen this model as an
interesting representative on account of three of its characteristics. Firstly, the
model features a non–trivial coupling of the relational clock to the evolving
degrees of freedom, secondly, a temporally global clock variable does not exist
for such a system, and finally, this model universe is non–integrable, which
is a typical feature for generic dynamical systems. The effective approach is
especially well–designed for addressing the concept of relational evolution in this
context as it makes a resolution of the evolution possible through transformations
between different clocks and still manages to provide a (locally) sensible time
evolution in transient observables as long as we do not leave the domain of
semiclassical approximation. Evidence will be provided that relational evolution
generically breaks down in the region of maximal expansion and a good relational
evolution appears to be only a transient and semiclassical phenomenon. This is
a direct consequence of a defocusing of classical trajectories which leads to rapid
spreading of states that are initially sharply peaked and to a mixing of internal
time directions in this region. These results are qualitatively compared to the
previous work on this model. Attention is paid to conceptual issues raised earlier
in the literature. A short qualitative overview of other FRW models is offered.



Abstrakt

Táto dizertačná práca sa zaoberá popisom neintegrabilných dynamických
kvantových systémov v efektívnej formulácii relačnej dynamiky. Pre triedu dvoj-
komponentových dynamických systémov sme v semiklasickej aproximácii vytvo-
rili zovšeobecnený postup redukcie a proces zámeny hodín. Postup sme konkrétne
použili na vyhodnotenie relačnej dynamiky uzavretého Friedmanovho–Robertso-
novho–Walkerovho (FRW) kozmologického modelu vyplneného hmotným skalár-
nym poľom s minimálnou väzbou. Tento model je z hľadiska napredovania re-
lačnej dynamiky veľmi zaujímavý a dôležitý, pretože v ňom relačný čas má netri-
viálnu väzbu s vyvíjajúcimi sa stupňami voľnosti, neexistuje tu globálna časová
veličina a v neposlednom rade je tento model ako typický zástupca všeobec-
ných dynamických systémov neintegrabilný. Práve efektívna formulácia relačnej
dynamiky sa ukazuje ako veľmi vhodný nástroj pre popis takýchto systémov,
nielenže je vývoj systému zabezpečený mechanizmom zámeny hodín, navyše
pokiaľ neopustíme doménu semiklasickej aproximácie je možné lokálne rozuzliť
problematický časový vývoj v „prechodnýchÿ veličinách. Ukážeme, že chaotic-
kosť zvoleného modelu spôsobuje rozplynutie počiatočne si blízkych klasických
trajektórií a teda relačný vývoj sa pre prípad všeobecne zvoleného systému
„pokazíÿ v intervale maximálnej expanzie. „Slušnýÿ časový vývoj, možný len
pre dostatočne vhodne zvolené trajektórie, je len dočasným a semiklasickým
fenoménom. Zhrnieme konceptuálne problémy vybraného modelu rozoberané
v dostupnej literatúre a vlastné výsledky kvalitatívne porovnáme doterajšími.
Text doplníme o krátku kvalitatívnu diskusiu k ďalším FRW modelom.
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‘Were I to await perfection, my book would never be finished.’

- Tai T’ung, ‘Principles of Chinese Writing’



Preface

Quantum Mechanics and General Relativity stand on strong foundation stones,
both very well respected, proved correct by numerous experiments and continu-
ously give testable predictions to high order of accuracy. Neither of the theories
ever failed in its region of validity and thus we have complete trust in both. The
quest of bringing the theories together is made even more complicated by this
fact for neither of the theories presents as the one true theory, correct in itself,
and thus suggesting it is the other one, that needs to be bent and shaped to fit
their joint picture perfectly.

Both theories emerged as completely strange for their day, with brand new
ideas and concepts to lead the way; General Relativity, set in the realm of dif-
ferential geometry, equipped with new mathematical tools conceived just for the
occasion of Einstein’s new physics. Quantum Mechanics stands on the shoulders
of Schrödinger’s equation that came as almost a providential insight not having
a tiny lead to where the idea came from but thoroughly supported by all the
experimental data ever since. It would be very strange and foolish to expect two
such profoundly different theories to agree with one another in any easy way.

Understandably, there are various efforts to provide the bridge between the
quantum world of tiny and cosmologically huge via gravity quantisation, as we
all believe there must be a way.

With reference to a starting point of our chosen quantum theory of gravity
there are two main options to choose from. There is the primary approach to
follow — one is to start with classical theory and apply heuristic quantisation
rules, i.e. General Relativity → ‘quantum General Relativity’ ( with subchoices
of covariant quantisation — preservation of four–dimensional covariance at every
step, or canonical quantisation — split of space–time into space and time at the
classical level). There the advantage is our familiarity with the starting point
(one does not arrive at the unified theory of all interactions though and this may
be seen as a disadvantage by many of the–holy–grail–of–physics seekers). Opting
for the secondary approach one is to start with fundamental quantum framework
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PREFACE 2

of all interactions and try to derive General Relativity in limiting situations, i.e.
String Theory. The upside of such approach is that it automatically yields the
‘Theory of Everything’ (TOE), but on the downside, not to step on any toes,
the starting point is entirely speculative.

Just as there are many different approaches that are tackling the problem, so
the expectations of the theory of quantum gravity vary from one such approach
to the next. However, any one of the theories has to satisfy at least these two
requirements to become a valid contestant: i) the theory needs to be internally
consistent and ii) the theory must reproduce the known physical theories when
taken at the appropriate limit (i.e. the theory must yield General Relativity for
the Planck constant approaching zero, alternatively making the gravitational
constant vanish should give us Quantum Mechanics).

And what is the motivation for this great undertaking? The first reason
would be the quest to find The Holy Grail of Physics, the Theory of Everything,
the Unification Theory of all interactions. Apart from the wish for the physics
of the universe to remain beautiful in its simplicity, the reductionist point of
view has been amply supported historically as well; moreover, the Unification
could hopefully cure divergence problems in Quantum Field Theory (Canonical
Quantum Gravity and String Theory are two candidates for such a divergence–
free theory). The second reason is to get to the understanding of cosmology and
Black Holes, where singularities live and the breakdown of General Relativity
happens, as at the moment there is still an acute lack of understanding of the
early universe (i.e. initial conditions near the Big Bang/Bounce) and the final
stages of Black Holes. Yet another reason would be to give the answer to the
multifaceted problem of time.

This thesis deals with a much simpler problem than reconciling the jumpy
Quantum Mechanics with smoothness of General Relativity. The techniques that
we shall put in use in this work (stemming from the primary approach) are not
a rigorous attempt at quantising gravity, they merely shed a first light beyond
the classical theory, but the results are convincing enough for these efforts to be
worth pursuing.

Quantum Gravity:
The troublesome double–act

Of Little and Large

—
from ‘Cosmological Haiku’ by Peter Coles



Chapter 1

Introduction

“How can a unitary evolution in a ‘classical’ time emerge from the full quantum
theory?”: that is The question. The question impersonating one of the greatest
puzzles in quantum gravity and cosmology, ‘the many–faceted problem of time’,
has been extensively studied in works of [1–11].

The root of all evil in this case is the absence of the time coordinate in the
quantum theory and the need to employ dynamical degrees of freedom as the in-
ternal clock variables [12–17]. Clock variables of these types (i.e. relational clock
variables) are not at all of the likes of our well–known classical and perfect mono-
tonic clocks measuring the proper time of some observer. They are rather true
quantum degrees of freedom, occasionally running backwards even classically,
suffering the fate of being a subject to quantum fluctuations; this phenomenon
is referred to as the global problem of time [1–7]. Such imperfect clocks are in
general coupled to other quantum degrees of freedom in the system; this coupling
causes back–reaction and complicates the interpretation of the evolution of the
rest of degrees of freedom in a chosen clock [18–20]. To be specific, resolution of
unitary relational quantum evolution requires for the degrees of freedom and the
clock to be separated, however this may prove to be impossible for the highly
quantum states [6, 7, 11, 18–20]. Thus recovering a unitary evolution remains a
difficult task even in the semiclassical regime.

One generally achieves the extraction of valid dynamical information from
finite dimensional systems as in (loop) quantum cosmology by deparametrisa-
tions in specific matter degrees of freedom, such as dust or free scalar fields (or
model specific geometrical degrees of freedom [21]), which assume the role of
internal clocks. Great progress has been made in this arena [22–26]. However,
the standard free scalar field [24–26], as well as the recently discussed dust fields
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CHAPTER 1. INTRODUCTION 4

[27, 28] are rather special clocks, as they decouple from the other degrees of
freedom, yield a ‘time–independent’ Hamiltonian and correspond to the ‘ideal
clock limit’ of [18].

Extracting relational quantum dynamics from generic models in quantum
cosmology is not an easy undertaking. Despite the fact that dynamical systems
in general are non–integrable and this characteristics has severe implications for
the relational evolution, this point has not been addressed in the literature on
relational dynamics properly. Examination of an evolution of a system is impeded
in particular by the fact, that the Hamiltonian constraint is the only global
constant of motion [29–31]. Thus the question arises, whether it is even relevant
to discuss relational evolution in such a case. Fortunately, as the relational
observables can and do still exist implicitly and locally, the relational evolution
is locally (in ‘time’) meaningful.

Analysis of generic situations in quantum cosmology features many technical
difficulties, such as construction of a positive–definite inner product on the space
of solutions to the quantum constraints known as the Hilbert space problem [1–
5]. The effective techniques have been developed [22, 23, 32–34] not as a way of
tackling the problem head–on, but to sidestep the issue altogether. These tech-
niques allow us to extract qualitative and generic features from the systems that
would otherwise be too intricate to be solved exactly. Based on the techniques,
an effective approach to the problem of time has been introduced [6, 7] (see also
[35] for a brief and [11] for comprehensive summary) which permits to evaluate
the relational quantum dynamics of systems featuring the global time problem
in the semiclassical regime. This effective approach allows us to depart from the
idealised relational clock references and to study employment of more general
degrees of freedom as imperfect clocks, including non–monotonic clocks as well
as clocks coupled to evolving degrees of freedom. In this sense, (temporally) local
time evolution with (temporally) local relational observables is made feasible and
provides a way to singlehandedly avoid clock pathologies stemming from evolving
the system in imperfect clocks by explicitly switching back and forth between
different internal times.1 In this manner the tools for covering the semiclassical
evolution trajectories by patches of local relational times are provided.

In this work we will take a step out of deparametrisations with ‘ideal clocks’.
Instead, we shall explore a generic situation by considering (more realistically)
coupled clock degrees of freedom in a non–integrable cosmological model. To be
specific, even though observationally a flat universe seems to be favoured [36], we

1 This effective approach was used to extract the relational evolution in two simple toy
models with decoupled clocks in [7].
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will investigate the closed FRW model filled with a minimally coupled massive
scalar field in order to specifically address the issue of relational evolution.
This model universe has been studied extensively in the literature [37–48], in
particular, because it constitutes a simple cosmology which ‘generically’ produces
inflation.2 We will include a short overview of general FRW models as well.

In the main chapters of this work we shall provide explanation of some of
the quantum troubles and — at least in the semiclassical regime — make some
progress with regards to the relational evolution of this model universe by means
of the effective approach. We will focus on the region of maximal expansion which
features a chaotic scattering and thus proves to be especially challenging for
relational dynamics.3 In addition, conceptual issues raised earlier in the literature
regarding the initial value problem and the semiclassical limit [8–10, 46, 48] will
be addressed.

The primary result of this work is strong evidence that the quantum relational
evolution in the investigated models, while possible for sufficiently semiclassical
states, generically breaks down in the region of maximal expansion and the
breakdown of semiclassicality is ultimately rooted in non–integrability. These
results shed a first light on the breakdown of relational quantum evolution in
generic models.

The rest of this thesis is organised as follows: Chapter 2 introduces the prob-
lem of time and relational dynamics and Chapter 3 provides effective formulation
of constrained quantum systems. Chapter 4 details the effective semiclassical
truncation of a general class of two–component dynamical systems (applicable
to homogeneous cosmology) and provides the general construction for switching
clocks in such systems. Chapter 5 is dedicated to a thorough examination the
closed FRW model universe minimally coupled to a massive scalar field both
classically and within the effective framework and ends with a short discussion on
general FRW models with the additional feature of a cosmological constant. We
will conclude the work in Chapter 6 with a discussion and an outlook. Also, this
thesis suffers from Appendicitis as some details of the analysis in chapters 4 and 5
have been removed from the main body. Finally, a recipe for an effective semi-
classical relational evolution of a quantum system is included in the Cookbook.

2The classical dynamics of this model has been studied in a great depth [39, 41, 42, 44],
however its complete and consistent quantisation is still pending in any approach to quantum
cosmology, obstacles to the complete quantisation stemming from the non–integrability of the
system and an absence of a global internal clock.
3Report on singularity avoidance in this model within the framework of semiclassical gravity

has been previously published by [49], resolution of the classically singular region through a
quantum bounce in effective loop quantum cosmology was studied in [47].
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Chapter 2

The problem of time and
relational dynamics

Time itself can not be observed. This is an inescapable fact. One can observe and
measure only change and motion of objects. Heraclitus’ Panta Rhei, absolute
Newtonian time, Mach’s and Einstein’s (also) temporal relativity, quantum–
mechanically preferred clocks, gravity’s proper time in a chosen spacetime, many–
fingered time. . . — the understanding of the concept of time has been evolving
with humanity. In the following chapter we will discuss the way time is featured
in Quantum Mechanics and General Relativity and show how the problem of
time arises when one tries to unite the two in the elusive full theory of quantum
gravity. A conceptual solution in the form of relational dynamics will be offered.

2.1 What time is it?

2.1.1 Time in Quantum Mechanics

In the realm of Quantum Mechanics, time is an external parameter and all
events unfold on the ready–made canvas that is our universe, with this preferred
time (direction)1 as an absolute element. This means that the scalar product
is conserved in time (unitarity), which in turn expresses conservation of total
probability that is precisely the reason why the absolute nature of time is crucial
for interpretation of Quantum Mechanics. Introduction of time as a quantum
operator is problematic, mainly because of the explicit presence of t in the

1[50] discusses the difference between the problem and the arrow of time

7



CHAPTER 2. THE PROBLEM OF TIME 8

Schrödinger equation

i~∂tψ(q, t) = Ĥ(q̂, p̂)ψ(q, t), (2.1.1)

where it is a background parameter. In fact it is Newton’s absolute time, and we
have it at our disposal before we solve any equations of motion.

The difficulty with promoting time to the space of operators was explained
by Pauli in [51]. The idea is simple: if time t̂ is a self–adjoint operator with a
continuous spectrum and we consider the Hamiltonian operator Ĥ as a time
translator, these two should satisfy a general commutator relation from which it
then follows that Ĥ is also an unbounded and continuous operator. However, as
this has not been observed, we shall abandon our attempts at establishing the
concept of the time operator altogether.

The distinguished time t is of key importance in Quantum Mechanics, see
e.g. Chapter 3.2 of [52]: (i) the observables are measured for a fixed t, (ii) the
quantum state of a system, characterised by a set of observables is defined in a
fixed t for which the observables are evaluated, and (iii) the scalar product is
evaluated for a fixed t.

This concept of time is smoothly reconciled in Special Relativity with ap-
pointing a t parameter for every inertial observer; General Relativity, however,
has a very different view on the matter.

2.1.2 Time in General Relativity

Meanwhile, time in General Relativity is coupled to space in a concept of space–
time, a dynamical object that influences material clocks (i.e. their way of showing
proper time) and these clocks react on metric and change geometry (metric itself
is a clock [46]). A quantisation of the metric can thus be seen as a quantisation of
the concept of time [53]. GR is a fully constrained covariant theory governed by a
Hamiltonian constraint (classical constraints do not contain any time parameter)
instead of a true Hamiltonian (with respect to a distinguished time variable) and
the time evolution of a given system only makes sense once the Einstein equations
for the system have been solved.

Physical time is given to us via proper time of the observer. As all observers
have been created equal and a preferred proper time does not exist, all observers
are equipped with their own proper time defined in an unambiguous manner as

τ =

∫ √
−gαβuα(s)uβ(s)ds. (2.1.2)
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Another notion of time arises in canonical formulation by introducing the de-
composition of space–time into foliations of spatial hypersurfaces, there however
the ’time t’ is not a distinguished time with a unique physical meaning — the t
is a reparametrisation invariant parameter that can be chosen at liberty. General
relativity thus in fact sees physics as purely relational.

2.1.3 Time in Quantum Gravity

The fact that in General Relativity there does not exist a background metric and
we do not define any hidden space–time structure, while quantum mechanically
all of physics is tied to the background Minkowski space–time metric is the reason
for the concept of time in quantum gravity being very unclear.

Naturally, quantising efforts need to manage this issue in some way, and apart
from searching for a novel concept of time and thus solving the puzzle once and
for all, one of these three approaches is usually pursued [1, 5, 53, 54]: ‘time before
quantisation’ or ‘time after quantisation’; else one is left with ‘timeless options’.

Following the ‘time before quantisation’ approach one takes ADM variables,
decomposes into embedding variables and true degrees of freedom, solves con-
straints on the classical level, inserts the solution into action, and derives the
equations of motion from the Hamiltonian.

Some of the positive aspects of this approach include the fact that the time
variable is isolated on the classical level, the resulting formalism is similar to
ordinary Quantum Field Theory, and along with the distinguished time variable
come both the natural Hilbert space and observables.

There are however many more obstacles: for one, the multiple choice problem
manifests — swhich variables shall we choose for the embedding? Secondly, it is
not possible to find a global time variable. The true Hamiltonian depends (non–
trivially) on the time variable and this fact prohibits a general rigorous definition.
Moreover the presence of quantum anomalies may spoil the consistency of the
approach and finally ‘the problem of construction’ arises as the decoupling of
the time variable from the other ‘true’ evolving degrees of freedom has been
managed only for special cases. All in all it may seem that this approach does
not solve the problem of time in the general case.

To employ the ‘time after quantisation’ procedure, one needs to use com-
mutation rules to arrive at the wave functionals; dynamics is then implemented
via quantisation of constraints, and as a result one obtains the Wheeler–DeWitt
equation as the equation for the wave functional. However the factor ordering
problem, the need for regularisation (and possibly renormalisation as well), the
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potential presence of anomalies, and the choice of a Hilbert space and inner
product all present problems associated with the equation in question. Addition-
ally, as Kiefer writes in [53], ‘the standard concept of time in quantum theory
emerges only in semiclassical approximation — the Wheeler–deWitt equation
itself is ‘timeless’.’

Timeless, ‘frozen’ dynamics is a result of an attempt to directly follow Dirac’s
quantisation procedure and apply the Hamiltonian constraint on the physical
states (that are to vanish) — this leads to i~∂t|ψ〉 = Ĥ|ψ〉 = 0. As physical quan-
tities (=observables) are to be gauge invariant, they are required to commute
with all the constraints in quantum theory (we shall not make any distinction
between the Hamiltonian and other constraints). The apparent notion of ‘frozen
dynamics’ where ‘nothing is moving’ constitutes the problem of time [11].

2.2 Relational dynamics

The dynamics can still be extracted from quantum systems with all due respect
to the principles of General Relativity, and that is by employing the concept of
the relational dynamics. Evolution of the system is hence not being measured
against some distinguished time parameter, as one rather uses other internal
degrees of freedom as a ’temporal’ reference. Such a clock does not need to
coincide or be linked with any observer’s proper time and this evolution is then
interpreted locally, with respect to the chosen local internal clock. Ultimately,
in quantum gravity we end up studying coupled systems of dynamical internal
clocks with gravitational degrees of freedom, see a reference to the concept of
’evolving constants of motion’ by Rovelli in [12–14]. These would be relational
Dirac observables which measure the interaction between the chosen internal
clock and other degrees of freedom of the system.

Once we make a choice of the clock variable, our notion of time and thus
evolution of the system has been settled as these are inherently connected.

However, even looking at and working in this setting of the ‘relational time
fix’, there are still many technical problems that persist: the Hilbert space
problem (which Hilbert space and which inner product on such space to choose?),
the multiple choice problem (which internal variable is to be our chosen clock?),
the global time problem, problem of observables (how to construct a sufficient
set of observables?), the operator–ordering problem, and the problem of non–
integrability (a problem that is usually overlooked in the literature and shall be
addressed in the thesis).
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The relational evolution is made difficult to interpret as the physical clocks
are neither universal nor perfect and moreover are rarely globally valid (this is
the impersonification of the global problem of time). A perfect clock is a function
whose increment is monotonic (such clock always runs forward) and coincides
with an increment of some observer’s proper time. The imperfect clocks are not a
problem at the classical level, yet promoting the system to a quantum one is a bit
more challenging. Classically, when our chosen clock starts to run slowly, or even
backwards, we just make a different choice of a local time coordinate and patch
the evolutions (in a time–wise orderly fashion) together. Quantum uncertainties
however, make the patching in the full quantum theory highly problematic.
Nevertheless, in the semiclassical regime a similar strategy to classical treatment
is possible, and as this approach provides enough information about the system
and thus offers a helpful insight, it may indeed be of use when the time comes to
tackle the problem in all generality [7]. To be specific, what we need and search
for in a good clock function is that it (i) is sufficiently fast and (ii) interacts
with measured degrees of freedom on a sufficiently small scale to obtain a good
resolution of the relational quantum evolution of our chosen system.

In the following text we shall employ a notion of internal clocks as a measure
of relational time, moreover, we will work in the effective approach to the problem
of time developed in [6, 7] that takes advantage of using an internal (local) time
(or clock), when global time is not defined and switching to a new suitable local
internal time when neccessary, just as one would switch between local coordinates
on a manifold.

It is obvious that if one was able to work out the procedure of covering the
manifold with maps in local internal times in the full theory, this could solve the
problem of time in Quantum Gravity altogether.



Chapter 3

Effective framework

The biggest advantage that the use of the methods and techniques of the effec-
tive framework offers, lies in its representation independence. Despite the fact
that the method employs an idea of circumventing the Hilbert space problem
altogether, it still allows us to study a quantum constrained system and its
dynamics in great detail. We shall sum up the neccessary techniques in the
following chapter, for the proper introduction to the matter refer to founding
papers [6, 7, 32–34], else see references [11, 22, 23] for reviews.

3.1 Effective equations

Effective equations of a quantum system describe the system by a study of the
expectation values of the operators in a quantum state. When comparing these
equations to classical equations of motion, one can immediately see what effect
the quantum corrections have. In addition, if such equations can be set up and
solved, the quantum nature of the system will manifest itself.

We will work in the semiclassical approximation to the problem and use the
fact that there is a clear hierarchy to the magnitude of contributions of various
quantum corrections. Also longer (i.e. cosmological) evolution times may lead
to greater changes in quantum states, highlighting the quantum corrections and
thus the quantum nature of the system even further.

The key idea of this algebraic approach is to extract representation indepen-
dent information, with operator algebras of standard quantum mechanics serving
as a motivation.

12
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Let us work with an algebra A with elements âi that satisfy the commutation
relations

[âi, âj] = i~Aijkâk. (3.1.1)

The expectation value that a state φ assigns to the operator â will be de-
noted 〈â〉φ. The full information about the system is then hidden in the ex-
pectation values of the (physical) variables and in the countably infinite set of
quantum moments [6, 7, 22, 23, 32–34]

∆(am1
1 ...amnn ) := 〈(â1 − 〈â1〉)m1 ...(ân − 〈ân〉)mn〉Weyl. (3.1.2)

The subscript ’Weyl’ denotes totally symmetrised ordering of the product of
operators inside the brackets. There are two big advantages to working directly
with expectation values and moments: immediately treating physical variables
of interest and having a clear hierarchy of order of magnitude of the quantum
corrections (when evaluated in the semiclassical approximation) that are supplied
via quantum moments.

The natural phase space structure is carried by the Poisson bracket defined by

{〈Â〉, 〈B̂〉} =
〈[Â, B̂]〉
i~

(3.1.3)

for any pair of operators Â and B̂ of the algebra A, extended to the moments
using the Leibniz rule and linearity.

In this thesis we will be inspecting systems generated by pairs of canonical
variables (q̂1, p̂1; q̂2, p̂2; · · · q̂n, p̂n) where the commutation relations (3.1.1) take
the form of

[q̂i, p̂j] = i~δij. (3.1.4)

The quantum state is then described through the values it assigns to the
expectation values 〈q̂i〉, 〈p̂i〉, 〈q̂j〉, 〈p̂j〉, ... and the (countably) infinite set of
moments [6, 7, 22, 23, 32–34]

∆(qa11 p
b1
1 q

a2
2 p

b2
2 · · · ) := 〈(q̂1−〈q̂1〉)a1(p̂1−〈p̂1〉)b1(q̂2−〈q̂2〉)a2(p̂2−〈p̂2〉)b2 · · · 〉Weyl ,

(3.1.5)
defined for

∑
i(ai + bi) ≥ 2, where the latter quantity will be referred to as the

order of a given moment. Totally symmetrised ordering of the product of the
operators inside the bracket needs to be consistently employed.

Relation (3.1.3) implies the classical Poisson bracket for the expectation
values to be

{〈q̂i〉, 〈p̂i〉} = δij. (3.1.6)
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Assuming a true Hamiltonian generating the evolution of the system in some
definitive time t, we will derive the Hamiltonian flow generating the evolution of
expectation values and quantum moments from the Heisenberg equation

d

dt
〈Â〉 =

〈[Â, Ĥ]〉
i~

+
∂〈Â〉
∂t

(3.1.7)

and the Poisson structure (3.1.3) as

d〈Â〉
dt

=
{
〈Â〉, HQ

}
+
∂〈Â〉
∂t

, (3.1.8)

where HQ = 〈H(q̂i, p̂i)〉Weyl [32, 33].
Taylor expansion gives us the Hamiltonian flow of the quantum Hamiltonian

function as a function of expectation values and quantum moments:

HQ(〈q̂i〉, 〈p̂i〉,∆(· · · )) = 〈H(〈q̂i〉+ (q̂i − 〈q̂i〉)), (〈p̂i〉+ (p̂i − 〈p̂i〉))〉Weyl

= H(〈q̂i〉, 〈p̂i〉)

+
∞∑
a1=0

∞∑
b1=0

∞∑
a2=0

∞∑
b2=0

· · · 1

a1! b1! a2! b2! · · ·
∂a1+b1+a2+b2+···H(〈q̂i〉, 〈p̂i〉)

∂a1〈q̂1〉∂a1∂a1〈p̂1〉〈q̂2〉∂a1〈p̂2〉 · · ·

.∆(qa11 p
b1
1 q

a2
2 p

b2
2 · · · ).

Equations of motion on the quantum phase space are then

d〈q̂i〉
dt

= {〈q̂i〉, HQ},

d〈p̂i〉
dt

= {〈p̂i〉, HQ},

d∆(· · · )
dt

= {∆(· · · ), HQ}. (3.1.9)

Thus we have ‘simplified’ our problem from solving a single partial differential
equation into solving (in general and full theory) infinitely many (in general
coupled) ordinary differential equations (3.1.9).

For the moments to represent a true quantum state an equivalent of the
Schwarz inequalities must be satisfied, thus we impose

〈(Â− 〈Â〉)2〉〈(B̂ − 〈B̂〉)2〉 ≥ 1

4
|〈−i[Â, B̂]〉|2 +

1

4
|〈[(Â− 〈Â〉), (〈(B̂ − 〈B̂〉)]+〉|2,

(3.1.10)
where Â, B̂ are Hermitean operators representing any two observables and [., .]+
denotes an anticommutator. This, in fact, is a generalised uncertainty relation.
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3.2 Effective constraints

In all of the further work we will consider quantum systems that are governed
by one single constraint Ĉ that plays the role of the Hamiltonian constraint.
When following Dirac’s quantisation programme, one demands that physical
states satisfy Ĉ|ψ〉 = 0, thus

C(〈q̂i〉, 〈p̂j〉,∆(· · · )) := 〈Ĉ〉 = 〈C(q̂i, p̂j)〉 = 0. (3.2.1)

Imposing such a first class constraint will take care of one canonical pair of
variables, however the (infinite tower of the) moments of the eliminated pair
will remain unconstrained. In order to restrict all of the quantum modes of the
constraint operator, one needs to impose a further set of constraints, where in
fact for physical states the expectation values must vanish as

〈f(q̂i, p̂i)Ĉ
n〉 = 0, n > 0

for any phase space function f .
It turns out [32, 33] that it is sufficient to impose these conditions in form of

Cpol(〈q̂i〉, 〈p̂j〉,∆(· · · )) := 〈(p̂ol − 〈p̂ol〉)Ĉ〉 = 〈p̂olĈ〉 = 0 (3.2.2)

for all polynomials p̂ol in the basic operators.
The set (C,Cpol) is thus a complete set of first class constraints. These

are independent and there are infinitely many constraints for infinitely many
quantum variables on the quantum phase space [32].

Notice that quantum constraints, unlike the quantum moments, are not
defined via totaly symmetric ordering of the quantum operators, as under Weyl–
ordering the constraints would neither form a closed set nor be first class [11, 32].

The non–symmetric ordering in (3.2.2) has two important consequences:
quantum constraint functions induce quantum gauge transformations and some
quantum constraints take complex values, for a comprehensive discussion see [11].

To summarise, at the moment we have to treat a quantum system of an
infinite number of degrees of freedom that is governed by an infinite number of
equations of motion and is subject to an infinite number of constraint equations.
The first step, however, should not be to reduce the system via action of the
‘CH ’ constraint; we should rather take advantage of the fact that our system can
be approximated by a finite number of degrees of freedom in the semiclassical
approximation [32, 55–57].
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3.3 Semiclassical approximation

Constructing the effective constraints on a quantum system yields an infinite
system (infinitely many constraints for infinitely many variables). A (some)
truncation of a system is needed in order to be able to extract any significant
information about the system. It is very useful to employ a semiclassical approxi-
mation, as one takes advantage of the clear hierarchy that the quantum moments
follow when evaluated in the semiclassical expansion for a class of Gaussian
states in an ordinary Schrödinger representation of a quantum particle [58]. This
hierarchy holds for more general states as well.

To any given order in ~, only finitely many constraints as well as quantum
moments are contributory. Referring to the Poisson structure defined in (3.1.1),
one can see that in a truncation to a certain order, the Poisson bracket of a
moment of that order with all other moments can be consistently neglected, as
the evolution of moments of higher order is slower, than that of lower orders. As
regards the order of a moment, we assume that a moment of the order N is of
(the same semiclassical) order (as) ~N/2.

Note that the semiclassical expansion used as described will be an important
consequence for counting the degrees of freedom: only expectation values of op-
erators form a symplectic submanifold on the quantum phase space as quantum
moments to any order feature a degenerate Poisson tensor1 [33]. Thus in the
effective approach one works with constrained systems on Poisson manifolds and
not every independent first class constraint generates an independent flow.

We choose to truncate the system by both truncating the degrees of freedom
and the system of constraints at some finite order in the semiclassical expansion.
Once the system of constraints has been truncated, we shall refer to these
constraints as the ‘effective’ ones. In the following work we shall focus on the
leading quantum correction that corresponds to truncating the system at the
order ~, which effectively means cutting out all the contributions of the moments
from the order of ~3/2 and higher.

1Consider the canonical pair q̂, p̂. The Poisson structure to the order of ~ is clearly
degenerate as there is an odd number of second order moments associated to it [11].



Chapter 4

Effective relational dynamics

4.1 Leading order quantum corrections

The effective relational dynamics has been set up in quite some detail in [6, 7, 22,
23, 32], both general aspects and several toy models have been explored therein.

Although at first we treated the system and computed the model from first
principles, see Appendix for details, in this chapter we shall provide the setup
in the generalised form that we derived for the classical Hamiltonian constraints
that are of the form

Cclass = p2
1 − p2

2 − V (q1, q2) , (4.1.1)

where V (q1, q2) is polynomial, or at least has a convergent power series expansion
in q1 and q2. This class of Hamiltonian constraints covers several homogeneous
cosmological models and the treatment of such models is a natural step forward
in the investigation of the validity of the effective approach as regards to more
comprehensive systems.

The fact that none of the terms involve noncommuting variables allows us to
take the corresponding constraint operator in the form of

Ĉ = p̂2
1 − p̂2

2 − V (q̂1, q̂2). (4.1.2)

We will systematically impose the constraint conditions (3.2.2) by demanding

〈q̂a1 p̂b1q̂c2p̂d2Ĉ〉 = 0 , (4.1.3)

for all non–negative integer values of a, b, c, d.

17
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As has already been established in the theoretical introduction, we will be
interested not in the full system, but only its truncation at the order of ~
— the semiclassical approximation. As it transpires, our quantum system is
then described by four expectation values of the form a = 〈â〉 ∝ ~0, four
spreads of the form (∆a)2 = 〈(â − a)2〉 ∝ ~ and six covariances of the form
∆(ab) = 〈(â− a)(b̂− b)〉Weyl ∝ ~. One needs to bear in mind that due to the
symmetrisation process ∆(ab) = ∆(ba). Also, a is used both to refer to the
expectation value of the quantum operator â and the classical variable as well,
it should be clear from the context which one is represented.

After the truncation, only five nontrivial constraint functions survive to
govern the system. We will have a closer look at how to arrive at this set of
constraints. First, we will derive the 〈Ĉ〉 constraint. The trick is to perform the
substitution â = a + (â − a) and then Taylor–expand Eq.(4.1.3) around the
expectation values,

C := 〈Ĉ〉 = 〈p̂1〉2 − (p̂1 − 〈p̂1〉)2 − 〈p̂2〉2 + (p̂2 − 〈p̂2〉)2 + 〈V (q̂1, q̂2)〉

−1

2
〈V̈ (q̂1, q̂2)〉(p̂1 − 〈p̂1〉)2 − 1

2
〈V ′′(q̂1, q̂2)〉(p̂2 − 〈p̂2〉)2

−〈V̇ ′(q̂1, q̂2)〉(p̂1 − 〈p̂1〉)(p̂2 − 〈p̂2〉), (4.1.4)

where the shorthand notation concerning the potential has been introduced as
follows: the dots over the potential V indicate partial derivative with respect to
the variable q1 and primes then label differentiation with respect to the second
variable, q2. We can also omit the explicit reference to the arguments without
loss of clarity and the notation becomes e.g.: V̇ = ∂V

∂q1
(q1, q2).

When calculating the second order constraints that are in fact the quantum
flows generated by the quantum moments, the question of ordering arises. Let
us examine the procedure of obtaining these constraints by means of calculating
one of the constraints imposed, Cq1 ,

Cq1 = 〈(q̂1 − 〈q̂1〉)Ĉ〉
= 〈(q̂1 − 〈q̂1〉)(p̂2

1 − p̂2
2 − V (q̂1, q̂2)〉. (4.1.5)

We will work explicitly with the first term as there the issue of ordering arises:

〈(q̂1 − 〈q̂1〉)p̂1
2〉 = 〈(q̂1 − 〈q̂1〉)(〈p̂1〉+ (p̂1 − 〈p̂1〉))2〉

= 〈q̂1 − 〈q̂1〉〉〈p̂1〉2

+2〈p̂1〉〈(q̂1 − 〈q̂1〉)(p̂1 − 〈p̂1〉)〉+ 〈(q̂1 − 〈q̂1〉)(p̂1 − 〈p̂1〉)2〉,
(4.1.6)
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where the first term vanishes on account of 〈q̂1 − 〈q̂1〉〉 = 〈q̂1〉 − 〈q̂1〉 = 0.
In order to be able to write the resulting expression in terms of moments,

the remaining terms need to be ordered symmetrically, which will be done using
the canonical commutation relations. The term then becomes

〈(q̂1 − 〈q̂1〉)p̂1
2〉 = 〈p̂1〉(2〈(q̂1 − 〈q̂1〉)(p̂1 − 〈p̂1〉)〉Weyl + i~)

+〈(q̂1 − 〈q̂1〉)(p̂1 − 〈p̂1〉)2〉Weyl,

where

〈(q̂1 − 〈q̂1〉)(p̂1 − 〈p̂1〉)2〉Weyl =
1

3
〈(q̂1 − 〈q̂1〉)(p̂1 − 〈p̂1〉)2

+ (p̂1 − 〈p̂1〉)(q̂1 − 〈q̂1〉)(p̂1 − 〈p̂1〉)
+ (p̂1 − 〈p̂1〉)2(q̂1 − 〈q̂1〉)〉

is a third order moment to be discarded in the truncation to the order ~, and

〈(q̂1 − 〈q̂1〉)(p̂1 − 〈p̂1〉)〉Weyl =
1

2
〈(q̂1 − 〈q̂1〉)(p̂1 − 〈p̂1〉) + (p̂1 − 〈p̂1〉)(q̂1 − 〈q̂1〉)〉

= 〈(q̂1 − 〈q̂1〉)(p̂1 − 〈p̂1〉)〉+
1

2
i~.

Proceeding in this fashion with the rest of the terms of the constraint, one
arrives at the full expression for the constraint Cq1

Cq1 := 〈(q̂1 − q1)Ĉ〉 = 2p1∆(q1p1) + i~p1 − 2p2∆(q1p2)

− V̇ (∆q1)2 − V ′∆(q1q2), (4.1.7)

where we have adopted the 〈x̂〉 = x, 〈(q̂1 − 〈q̂1〉)(p̂1 − 〈p̂1〉) = ∆(q1p1) and the
(q̂1 − 〈q̂1〉)2 = (∆q1)2 labeling.

The full set of non–zero constraint flows truncated to the order ~ expressed
in symmetrically ordered moments reads as follows:

C := 〈Ĉ〉 = p2
1 − p2

2 + (∆p1)2 − (∆p2)2 − V − 1

2
V̈ (∆q1)2

− 1

2
V ′′(∆q2)2 − V̇ ′∆(q1q2),

Cq1 := 〈(q̂1 − q1)Ĉ〉 = 2p1∆(q1p1) + i~ p1 − 2p2∆(q1p2)− V̇ (∆q1)2 − V ′∆(q1q2),

Cp1 := 〈(p̂1 − p1)Ĉ〉 = 2p1(∆p1)2 − 2p2∆(p1p2)− V̇ (∆(q1p1)− i~
2

)− V ′∆(p1q2),

Cq2 := 〈(q̂2 − q2)Ĉ〉 = 2p1∆(p1q2)− 2p2∆(q2p2)− i~ p2 − V̇∆(q1q2)− V ′(∆q2)2,

Cp2 := 〈(p̂2 − p2)Ĉ〉 = 2p1∆(p1p2)− 2p2(∆p2)2 − V̇∆(q1p2)− V ′(∆(q2p2)− i~
2

).

(4.1.8)
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4.2 The choice of a local clock: the Zeitgeist

We will be studying systems that possess only a non–global internal time vari-
able, as these systems feature the global time problem. By the non–global in-
ternal time we mean a clock variable, whose hypersurfaces of equal time can be
intersected more than once (or not at all) by a classical trajectory and the clock
will thus pass through more extrema in its classical evolution. An example of
such a system is a closed FRW model filled with a massive scalar field that will
be studied in detail in Chapter 5. In this model, evolution with respect to local
time variables is required in order to make any headway.

The system (4.1.8) of constraint functions is quite easy to solve, however the
integration and interpretation of the Poisson flows these constraints generate is
much more complicated. We shall take advantage of the general feature of these
flows: as a consequence of the degeneracy in the Poisson tensor, a non–trivial
combination of the constraints has a vanishing flow. Following the reasoning
and methods first proposed in [32, 33] it is helpful to fix three out of the four
independent gauge flows at order ~ and interpret the single remaining quantum
flow as the dynamics of the system.

As has been argued before, there are not to be any distinguished clocks and
thus one can treat all the clock choices equally. To advance, let us make an
arbitrary choice of q1 as the clock variable. We shall impose three ‘q1–gauge’
conditions, so as to ‘project the relational clock q1 to a classical parameter’ [6, 7]

φ1 := (∆q1)2 = 0, φ2 := ∆(q1q2) = 0, φ3 := ∆(q1p2) = 0. (4.2.1)

After employing the gauge, the constraint Cq1 evaluates the covariance of the
clock and its conjugate momentum as ∆(q1p1) = − i~

2
. One gauge flow remains,

which preserves both the constraints and the above gauge conditions and is
generated by the ‘Hamiltonian’ constraint1

CH := C + βCp1 + γCp2 + εCq2 . (4.2.2)

To find this gauge flow, one needs to evaluate the prefactors β, γ and ε. Let us
make use of the simple requirement that each of the gauge conditions commutes
with the Hamiltonian constraint, i.e. {CH , φi} = 0.

1see Appendix for details on how to obtain CH
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It is quite helpful to work out the general Poisson algebra betwen constraints
and gauge conditions featuring derivatives of the potential:

φ1 φ2 φ3

C 2i~ −2∆(q2p1) −2∆(p1p2)

Cp1 4i~p1 −4p1∆(q2p1) + 2∆(q2p2)
+ V ′(∆q2)2 − i~p2

−4p1∆(p1p2) + 2p2(∆p2)2

− V ′(∆(q2p2) + i~
2

)

Cq2 0 −2p1(∆q2)2 −2p1∆(q2p2)− i~p1

Cp2 0 −2p1∆(q2p2) + i~p1 −2p1(∆p2)2

Table 4.1: The Poisson algebra between constraints and gauge conditions

Using the results of the Poisson algebra of Table 4.1 one will arrive at
the general expression for the (multiplication) prefactors in the Hamiltonian
constraint

CH := C − 1

2p1

Cp1 −
p2

2p2
1

Cp2 −
V ′

4p2
1

Cq2 . (4.2.3)

For consistency of this interpretation we require that the values of these
variables satisfy positivity conditions

q2, p2, (∆q2)2, (∆p2)2,∆(q2p2) ∈ R,
(∆p2)2, (∆q2)2 ≥ 0,

(∆q2)2(∆p2)2 − (∆(q2p2))2 ≥ 1

4
~2, (4.2.4)

for the proof see Appendix B in [7].
In [6, 7] it has been shown that the expectation value of the clock picks up a

specific imaginary contribution

=[q1] = − ~
2p1

(4.2.5)

in order for the constraint CH of (4.2.3) to be consistently satisfied and for the
evolving variables to remain real along the flow generated by it. This “complex
imaginary time” feature is precisely the reason, why the relational evolution
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breaks down and one needs to resort to patching the regions evolved in local
times (this issue will be discussed further in Section 4.3 and Chapter 5).

The gauge–fixing conditions, positivity conditions (4.2.4) and the interpreta-
tion of the remaining flow as the evolution of the system in the internal clock q1

will be referred to as the “Zeitgeist” associated with q1. The observables of the
system measured in a selected clock are now temporally local and we shall refer
to them as “fashionables”. These aptly named variables are given as a correlation
of moments and expectation values with the expectation value of the clock and
can be interpreted as describing approximate unitary evolution in q1. They are
valid only as long as their corresponding Zeitgeist is and “fall out of fashion”
with its breakdown.

Once we have obtained the Hamiltonian constraint, we are finally able to
construct the equations of motion (3.1.9) and evolve the system. As the previ-
ously chosen temporality–resolving variable experiences the fate of the imperfect
clock and its corresponding Zeitgeist is doomed to break down, one needs to
alternatively choose q2 as a clock function, working in an analogy with the
sequence of steps starting with the gauge conditions (4.2.1) and arriving at a
slightly altered expression for the Hamiltonian constraint CH , as the subtraction
sign in front of the momentum of the new clock changes the expression to be

CH := C − 1

2p2

Cp2 −
p1

2p2
2

Cp1 −
V̇

4p2
2

Cq1 , (4.2.6)

with the derivative label switching from prime to dot.
The gauge–fixing conditions and the imaginary contribution to the clock and

positivity conditions are all obtained by simple switching between the “1” and
“2” labels.

Notice that relational evolution in a chosen clock is not only most conve-
niently interpreted in the corresponding Zeitgeist, but, furthermore, in every
Zeitgeist we evolve a different set of relational observables, fashionables, as these
go in and out of fashion every time we pick a fresh clock variable (see [6] and
especially Sec. IV C in [7]).
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4.3 Breakdown of a Zeitgeist and clock trans-
formations

We have already indicated that the failure of the Zeitgeist is inevitable. For the
class of Hamiltonian constraints that we are considering in this work, a globally
valid clock along the gauge orbits does not exist.

The breakdown of the evolution generally happens, when in the q1–gauge
{q1, Cclass} = 2p1 = 0, i.e. the evolution of the clock vanishes and its direction
reverses. This is a direct consequence of the fact, that the momentum is not a
constant of motion in this system. Looking from the effective point of view, the
failure of the Zeitgeist happens when the Zeitgeist with its interpretation leave
the domain of validity of the semiclassical approximation. As the momentum
of the clock approaches zero, the imaginary contribution to the clock (4.2.5)
becomes divergently large. In addition, the equations of motion become singular
in p1 and the moments diverge too, as the coefficients in (4.2.3) also diverge when
one is approaching the turning point. We could interpret this situation intuitively
by stating that the breakdown of the Zeitgeist happens as the clock’s momentum
becomes small (when compared with the scales of the system), i.e. the clock
variable becomes too slow to resolve and will lead to large fluctuations in the
evolution of the other (faster) evolving degrees of freedom. Such fluctuations are
divergent in the interval where the clock approaches the concept of a maximally
“imperfect” clock and ultimately “stops”. This feature of the effective treatment
is in fact an analogy to the evolution non–unitarity in q1. Requiring the clock’s
spread to vanish in q1–Zeitgeist leads to an inconsistency in the turning region
— in general there is loss of normalisation, the clock can no longer be projected
to a classical parameter and mixing of internal time directions occurs [6, 7].
This statement concurs with the analysis in [18–20] where it was shown that a
good resolution of relational observables and evolution requires the clock to
be essentially decoupled from the other evolving degrees of freedom and its
momentum to be large. 2

However, this does not indicate, that the situation is desperate and that we
have lost the semiclassicality altogether. The semiclassicality only breaks with
respect to the chosen set of gauge conditions, and should we evolve the system
in some other, say q2, Zeitgeist, the approximation would hold again, as long as
we would not overstep the region of validity of {q2, Cclass} = 2p2 6= 0. We can

2However, large energies (or momenta) are a complex issue in gravitational physics due
to black hole formation. Consequently, there is a limit on the clock’s energy and thus on the
accuracy of physical clocks [59, 60].
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select q2 to serve as a clock, fix the corresponding gauge, set up the equations
of motion and evolve the system analogously with the procedure explained in
the previous section for the q1 clock. This new clock may (and probably will)
turn out to be only of local nature as well, resulting in our gauge eventually
failing again, however at this point we might find it safe to use the first (in this
case q1) gauge again. The crucial point in this idea is to find such a sequence of
clock variables, where the semiclassical approximation holds for respective clocks
before/after the clock change.3

It is precisely because of the transient nature of the non–global internal clocks
that we refer to the gauge and its dynamical interpretation as the q1–Zeitgeist
(ghost of the time) and the transient relational observables as fashionables, as
they are the true physical observables only while their corresponding Zeitgeist
is valid and fall out of fashion with its breakdown.

In both [6, 7] it has been shown, that the clock–variable choice/change
amounts to a mere gauge transformation and by implementing it as such, we have
actually solved the multiple–choice aspect of the problem of time. In order to be
able to consistently change between two clock variables one thus needs a method
for transferring the relational information between the two gauge frameworks.
The transformations that follow have been developed in a generalised notation
to use for the systems governed by a single Hamiltonian constraint, featuring the
potential of the form of (4.1.1), for the ease of computation when dealing with
various models of this class. The details of the procedure of arriving at these
transformations will be reviewed in the following section.

4.3.1 Gauge transformations between two different
Zeitgeister

The gauge transformations between Zeitgeister are based on idea explained in [7]
and have been computed with a substantial help from MATHEMATICA 8.

First, let us provide a quick outlook on the situation: the two component
systems we are studying truncated to the order ~ are described by fourteen
kinematical degrees of freedom. The truncated system of constraints comprises
of five functionally independent conditions Ci = 0, which leaves us with a
nine–dimensional constraint surface. The five constraint functions in general
generate four independent vector fieldsXCi , which integrate to a four dimensional

3We shall see that for the class of cosmological models considered in this work one will in
general fail to secure this condition in the region of maximal expansion and as a consequence
the breakdown of relational evolution will occur.
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gauge orbit. Once we have chosen our clock variable and imposed the three
corresponding Zeitgeist conditions φi = 0, these will take care of three of the four
gauge conditions and we are left with one combination of the vector fields that
preserves the gauge; this will be interpreted as the dynamics of the corresponding
clock variable. As regards the geometrical interpretation of the situation, these
one–dimensional orbits are formed by the intersection of the surface defined by
the set of gauge conditions φi = 0 with the integral orbits of the set of vector
fields XCi on the constraint surface. It is obvious that a different set of gauge
conditions, e.g. φ′i = 0 associated with a different clock will lead to a different
evolution flow, as the intersections with gauge orbits will be different. What we
need to do to be able to switch between different clocks in the system is to go
from one surface φi = 0 to another φ′i = 0 without leaving a given gauge orbit.
We will try to do this in a most natural way that comes to mind, which is we
will find such a combination of vector fields XCi , whose integral curves intersect
both φi = 0 and φ′i = 0.

We shall work with q1–gauge conditions, however it will prove more conve-
nient to use the set in the form of φ1 := (∆q1)2 = 0, φ2 := ∆(q1q2) = 0 and
φ3 := ∆(q1p1) = −i~/2 rather than the original set (4.2.1). Note, however, that
both φ3 conditions are equivalent (this follows from Cp1 once the other two gauge
conditions are imposed on the set of constraints). The same exchange shall be
performed for the q2–gauge conditions. Looking for such gauge transformations
we ask that these fulfill the following requirement: to transform from q1–gauge
to q2–gauge we need to find a combination of the vector fields G =

∑
i ξiXCi ,

such that a (possibly finite) integral of its flow transforms the variables as
(∆q2)2 = (∆q2)2

0

∆(q1q2) = 0

∆(q2p2) = ∆(q2p2)0

→


(∆q2)2 = 0

∆(q1q2) = 0

∆(q2p2) = −i~/2,

(4.3.1)

where the subscript ‘0’ labels the value of the corresponding variable prior to
the gauge transformation.

This transformation is unique up to the two Hamiltonian constraints that it
preserves, to fix this freedom, we opt for the numeric prefactor of the vector field
XC to be zero. After we are rid of C, three independent flows remain. The first
flow that we search for must satisfy the conditionG1(∆(q2p2)) = G1(∆(q1q2)) = 0
on the constraint surface, and rescale the flow so that G1((∆q2)2) = 1. The
condition for the second one will be of the form G2((∆q2)2) = G2(∆(q1q2)) = 0
on the constraint surface, and rescale the flow so that G2(∆(q2p2)) = 1. The
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required condition then amounts to integrating the flow along

G = −(∆q2)2
0G1 − ((∆(q2p2))0 + i~/2)G2.

The condition ∆(q1q2) = 0 is shared by both gauge choices and is preserved
by the G by construction. We will use the condition for simplification of the form
of the gauge transformation fields G1 and G2. After engaging MATHEMATICA 8
one can see the explicit effect of G1 and G2 on the free variables of the q2–gauge

G1(q1) = −p1V̇ + 2p2V
′

4p1p2
2

, G2(q1) = − 1

p1

,

G1(p1) = −p1V̈ + p2V̇
′

4p2
2

, G2(p1) = 0 ,

G1(q2) =
V ′

4p2
2

, G2(q2) =
1

p2

,

G1(p2) = −p1V̇
′ + p2V

′′

4p2
2

, G2(p2) = 0 ,

G1

(
(∆q1)2

)
= −p

2
1

p2
2

, G2

(
(∆q1)2

)
= 0 ,

G1

(
(∆p1)2

)
= −V̇ p1V̇ + 2p2V

′

4p1p2
2

, G2

(
(∆p1)2

)
= − V̇

p1

,

G1 (∆(q1p1)) = −p1V̇ + p2V
′

2p2
, G2 (∆(q1p1)) = −1 .

The transformations between the two gauges that would respect the condi-
tions summed up in (4.3.1) would in fact translate into following the integral
curve of the vector field G, for the length of the interval of the flow parameter
equal to unity. Let us denote the flow of G by αsG, where s is the flow param-
eter. If C is the constraint surface, then the scalar functions transform through
αsG.f(x) = f(αsG(x)), x ∈ C. The translated functions vary differentiably along
the flow as

d

ds
(αsG.f)(x) = G(αsG.f)(x). (4.3.2)

Provided f(x) is smooth along the field G, it is possible to construct the solution
to the equation above as a derivative power series

αsG.f(x) =
∞∑
n=0

sn

n!
Gn(f)(x), (4.3.3)
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where Gn(f) is the nth derivative of f along the G.
In our case, the interest lies in transformations to the order of ~, moreover

s = 1 and G = aG1 + bG2, where a, b are constants of the order of ~. For
truncation at the order of ~ it thus follows that G1(f) and G2(f) are classical for
all of the moments and expectation values. We can thus make an approximation
for the transformation in the leading–order term in the form of

α1
G.f(x) = f(x) +G(f)(x) +O(~2). (4.3.4)

The evolving variables in the q2–Zeitgeist (appearing on the left hand side
with the subscript ”new”) in terms of those in q1 gauge (appearing on the right–
hand side) are given by

q1 new = q1 +
i~
2p1

+
p1V̇ + 2p2V

′

4p1p2
2

(∆q2)2 +
1

p1

∆(q2p2),

q2 new = q2 −
i~
2p2

− V ′

4p2
2

(∆q2)2 − 1

p2

∆(q2p2),

p1 new = p1 +
p1V̈ + p2V̇

′

4p2
2

(∆q2)2,

p2 new = p2 +
p1V̇

′ + p2V
′′

4p2
2

(∆q2)2,

(∆q1)2
new =

p2
1

p2
2

(∆q2)2,

∆(q1p1)new = ∆(q2p2) +
p1V̇ + p2V

′

2p2
2

(∆q2)2,

(∆p1)2
new =

1

p2
1p

2
2

[
p4

2(∆p2)2 + p2
2(p1V̇ + p2V

′)∆(q2p2)

+
1

4
(p1V̇ + p2V

′)2(∆q2)2

]
, (4.3.5)
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while the reverse transformation is given by:

q1 new = q1 −
i~
2p1

+
V̇

4p2
1

(∆q1)2 − 1

p1

∆(q1p1),

q2 new = q2 +
i~
2p2

− 2p1V̇ + p2V
′

4p2
1p2

(∆q1)2 +
1

p2

∆(q1p1),

p1 new = p1 −
p1V̈ + p2V̇

′

4p2
1

(∆q1)2,

p2 new = p2 −
p1V̇

′ + p2V
′′

4p2
1

(∆q1)2,

(∆q2)2
new =

p2
2

p2
1

(∆q1)2,

∆(q2p2)new = ∆(q1p1)− p1V̇ + p2V
′

2p2
1

(∆q1)2,

(∆p2)2
new =

1

p2
1p

2
2

[
p4

1(∆p1)2 − p2
1(p1V̇ + p2V

′)∆(q1p1)

+
1

4
(p1V̇ + p2V

′)2(∆q1)2

]
. (4.3.6)

Few points to bear in mind: as has been expected, the two transformations
can be inverted into each other up to the order of ~3/2, preserve the positivity
conditions and are consistent with imaginary contribution to the expectation
value of the clock.



Chapter 5

Closed
Friedman–Robertson–Walker
model minimally coupled to a
massive scalar field

Let us now extend the application of the effective framework to quantum cos-
mology described in chapters 3 and 4. We shall review characteristics of the
closed Friedman–Robertson–Walker model (see e.g. [61–63]) first classically, then
discuss the problems of quantisation of this model and finally provide a detailed
treatise of its effective dynamics.

5.1 Classical dynamics

The action of a homogeneous massive scalar field φ(t) minimally coupled to a
(homogeneous and isotropic) closed Friedman–Robertson–Walker spacetime, of
topology R× S3 and described by the metric

ds2 = −N2(t) dt2 + a2(t) dΩ2, (5.1.1)

(where dΩ2 is the line element on a unit S3), is given by

S[a, φ] =
1

2

∫
dtNa3

(
−
(

1

aN

da

dt

)2

+
1

a2
+

(
1

N

dφ

dt

)2

−m2φ2

)
. (5.1.2)

29
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Variation of the action with respect to lapse N , field φ and scale factor a yields
the Friedman equation, ‘Klein–Gordon’ equation and Raychaudhuri equation,
respectively, (where ˙ = N−1 d

dt
)

ȧ2 = −1 + a2
(
φ̇2 +m2φ2

)
, (5.1.3)

φ̈+
3ȧ

a
φ̇+m2φ = 0, (5.1.4)

ä = a
(
m2φ2 − 2φ̇2

)
. (5.1.5)

These equations of motion are clearly not all independent (e.g., differentiating
(5.1.3) and combining it with (5.1.4) gives the Raychaudhuri equation (5.1.5)).
Despite the apparent simplicity, this model possesses a rich solution space. We
refer to [37, 39–44] as we do not intend to review all the details here, but only
wish to summarise and pinpoint those classical aspects that are of consequence
for our further discussion in the quantum theory.

This model has enjoyed a lot of press, mainly on account of the mass term
that generically produces inflation.1 Indeed, one can study various phases of
cosmological evolution in this model, as the equation of state of the scalar field
varies itself throughout evolution [41, 66]. Let us start with a small value of
the scale factor a. The scalar field φ(t) gradually decreases with increasing a,
generating an inflationary phase2 and evolves to the equilibrium value φ ≈ 0
around which the field begins to oscillate with frequency m.3 The model universe
experiences a matter–dominated era in which a ∝ t2/3 [37, 39–41, 48]. Now the
scale factor begins to oscillate between points of regular (non–global) maxima
amax,k and (non–global) minima amin,k [39–42]. A generic solution will evolve to
a point of maximal expansion—the turning point—amax (with a possibility of
few oscillations around this point) and eventually recollapse into a Big Crunch
singularity [37, 39, 41]. Thus, clearly, both φ and a will generically fail to be
globally valid internal clock functions in this model.4

Two typical classical solutions are displayed in Figure 5.1.
Relational evolution offers an even worse scenario: in [37–39, 41, 44] it has

been shown that there exists a countably infinite discrete set of periodic solutions
1This is quite a fortunate setting, considering [64, 65].
2The larger the initial value φ0 of the scalar field the longer the inflationary period [37].
3A solution that expands out to a length scale of the order of 1060 Planck lengths requires

at least 1060 such oscillations of φ, see [38, 48].
4For small masses m, the scalar field φ(t) is still a monotonically increasing function of t

as in the massless case and thus a good global clock (see the discussion in [42], esp. the region
in configuration space called ‘region 0’).
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(a)

Φ

Α

(b)

Φ

Α
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Φ

Α

(d)

Figure 5.1: Two typical classical solutions to the closed FRW spacetime — both φ
and a generically fail to be globally valid internal clock functions in this model.
Here we used α = ln(a) as appropriate for the canonical discussion following
(5.1.6), (5.1.7). (a) and (c) show extended segments of (both the expanding
and re–contracting branch of) relational evolution up to the point of maximal
expansion αmax = ln(amax). The (new) scale factor α oscillates between points
of regular (non–global) maxima αmax,k = ln(amax,k) and (non–global) minima
αmin,k = ln(amin,k); (b) shows the relational configuration space trajectory of (a),
but zoomed into the region of αmax, displaying the non–global extrema in greater
detail, while (d) depicts a close–up of an intermediate section of trajectory (c).
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which bounce without ever encountering a spacetime singularity. Moreover, there
exists an uncountably infinite discrete set of perpetually bouncing aperiodic
solutions5 which exhibits an interesting fractal–like behaviour, see [39, 42, 44]. It
is thus the non–integrability and chaotic nature [39, 42, 44] of the system (5.1.3),
(5.1.4) that is responsible for our problems in the quantum regime.

The Hamiltonian formulation for this model universe makes the comparison
of the classical with effective features (in Section 5.3 below) possible. Moreover
after its careful inspection one can also see wherefrom the absence of the global
clock arises.

For the ease of the further calculations we shall perform a variable trans-
formation α = ln(a) and henceforth work with α. The reasoning behind this
transformation would comprise of three arguments. Firstly, in the quantum
theory, one completely avoids the factor ordering problem in the Hamiltonian
constraint [5, 48]; secondly, the resulting quantum Hamiltonian constraint (5.2.6)
is immediately of the form (5.1.6) and thus the effective constructions of the
Section 4.1 are directly applicable; and thirdly, the domains for our variables are
now α ∈ (−∞,∞) and φ ∈ (−∞,∞) and thus our working configuration space
is Q = R2, which is arguably simpler to quantise than Q = R × R+ [5, 67], as
for instance, p̂a is not self–adjoint on L2(R+, da), or, when choosing L2(R, da)
instead, one would have to give meaning to a < 0. On the other hand, p̂α is
self–adjoint on L2(R, dα) and α ∈ (−∞,∞). Once we have chosen to work with
this transformation, we also have the advantage of the Big Bang and Big Crunch
singularities appearing now at α → −∞ which is sufficient for us since in the
effective approach, we shall be focussing on the regime of maximal expansion of
the scale factor a.6

Choosing a gauge N = e3α, it is straightforward to arrive at the Hamiltonian
constraint corresponding to the system (5.1.2) as7

CH = p2
φ − p2

α − e4α +m2φ2e6α = 0, (5.1.6)

which is precisely of the form of (4.1.1). The term m2φ2e6α acts as the coupling
term between the relational clock, i.e. either α or φ, and the evolving configura-
tion variable, i.e. either φ or α, respectively. In fact, the squared mass m2 can be

5(of measure zero in the space of solutions [43, 44])
6Apparently, only a full quantisation can cope with the classically singular regime, however

see [47]. Furthermore, when discussing the quantum dynamics in sections 5.2 and 5.3 below,
note that small (big) fluctuations in α do not necessarily translate into small (big) fluctuations
in a.
7see also [48, 68]
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interpreted as the coupling constant, while the factor e6α can in certain regimes
be treated as an adiabatic factor [18, 48]. This coupling term will have a great
effect on quantum relational evolution. Using the symplectic structure on T ∗Q,
the corresponding canonical equations of motion read

α̇ = {α,CH} = −2pα,

ṗα = {pα, CH} = 4e4α − 6m2φ2e6α,

φ̇ = {φ,CH} = 2pφ,

ṗφ = {pφ, CH} = −2m2φe6α, (5.1.7)

where now the overdot refers to differentiation with respect to the time coordi-
nate t. As a consequence of our gauge choice of N = e3α, note that henceforth
t does not coincide with the proper times τ of comoving observers in (5.1.1).
Figure 5.2 depicts the behaviour of the canonical variables for a rather benign
solution.

In the work of Hájíček, see [68], where the investigation of the finite di-
mensional parametrised systems in the quantum theory via relational evolution
is performed, a direct link has been established between the unitarity of the
system and the requirement of the existence of a (temporally) global internal
clock already at the classical level. This, in turn, was shown as equivalent to the
classical system to be reducible.

As an example, the system governed by (5.1.2, 5.1.6) was considered and it
was shown that [68]: firstly, the constraint surface C defined by (5.1.6) in T ∗Q
is of topology C = R2 × S1 and thus connected but not simply connected, and
secondly, the flow of CH on C does not have any critical points, but incontractible
cycles (around S1).

These incontractible cycles correspond to the periodically bouncing solutions
[37, 39, 42, 44] and as such prevent the system from being reducible and pos-
sessing a global clock.

5.1.1 Non–integrable systems

We shall now comment on a few aspects of our chosen non–integrable model
universe with regard to the relational evolution. These comments are of the
utmost importance for the further investigation of the model universe in question,
as the standard literature on relational evolution does not provide any space
for the discussion of non–integrability, in spite of the fact, that it is a typical
feature in generic dynamical systems (that are in fact chaotic) [29–31] and that
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Figure 5.2: Graphs of the canonical variables governed by (5.1.7) for a rather
benign classical solution. Notice how α features quasi–turning points closely to
the turning points of φ (also manifested in pα having a local minimum close to
the zeros of pφ).

the aftermath of the non–integrability in relational dynamics can not be simply
ignored. Thus we believe that the results of the present work are a first step
towards a more general discussion of the fate of relational dynamics, specifically
in the quantum theory.

A general system that does not possess the full set of constants of motion
is known as a non–integrable system. To be specific, the only global constant
of motion (i.e. Dirac observable) that our model possesses is the Hamiltonian
itself [29–31]; this Hamiltonian constraint (5.1.6) in fact coincides with the
first integral of motion defined by the Friedman equation (5.1.3). Even though
globally valid Dirac observables are not available, one can still derive locally
valid Dirac observables and make the relational evolution work at least locally
(in time).8 This is where we expect the effective approach to relational evolution
[6, 7] to be of benefit since it enables one to make sense of local time evolution
and (temporally) local relational observables (fashionables in the terminology of
[6, 7]) in the semiclassical regime. Note that in contrast to integrable systems,
even if locally a complete set of relational observables is derived, this set in
general does not characterise the orbit anymore on account of the fact that
chaotic systems typically possess ergodic orbits. These orbits come arbitrarily

8For instance, in Eq. (5.6) of [48] the relational observable φ(a) is given for the matter
dominated phase of expansion where a ∝ τ2/3 and τ is proper time.
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close to any point on the energy surface (which for constrained systems is the
constraint surface [29–31]).

The evolution is furthermore plagued by the instability of initial data, another
generic feature of chaotic systems. The instability in chaotic systems manifests
as some initial data based trajectory in the system, that approaches arbitrarily
close to a closed (periodic or nonperiodic) orbit, will typically diverge from such
orbit to the point of becoming entirely uncorrelated.9 Detailed discussion on
the closed orbits of the present model was presented in [39, 42, 44] with a very
nice demonstration of the fractal structure in the space of initial data and the
consequent divergence of solutions first arbitrarily close to each other in [44].
In fact, defocusing of nearby trajectories occurs in the present model also for
trajectories not arbitrarily close to a closed orbit.

Let us examine e.g. Figure 5.3 that shows how neighbouring trajectories
defocus in the region of maximal expansion already for a rather well–behaved
classical solution. For generic solutions exhibiting more oscillations in both φ and
α [42], this feature will get more pronounced. Such fanning out of the trajectories
will be particularly relevant in the quantum theory, since it constitutes the
ultimate cause of a generic breakdown of semiclassicality and relational evolution.

Φ

Α

Figure 5.3: Defocusing of nearby trajectories, caustics develop along the extrema
of φ (see also [40]).

In the classical theory we have an equal choice of using either α or φ as a global
clock function despite the fact, that the turning points of the clock variables lead

9Clearly, such a statement depends strongly on the time coordinate which is potentially
dangerous in general relativity, however, there exists a very general definition of chaotic
behaviour which takes this into account and essentially requires a defocusing of trajectories
(without any statement to the rate of the defocusing), as well as ergodicity [69].
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to the relational observables to be multi–valued, as we can always remedy the
situation by selecting the gauge parameter so as to provide the ordering to the
correlations [7]. Still, one will find calculations less demanding should one choose
to employ α as an internal clock for large parts of the evolution, as the scalar field
exhibits as highly oscillatory at large volumes and thus proves more difficult to
work with. However in quantum theory one will not be able to work with either
of the variables globally on account of non–unitarity of the chosen model.

In the classical case, one using CH imposes suitable initial data at some
fixed time t = t0, with the relational initial value problem (IVP) solved in the
following manner: if α was used as a clock, then one could choose φ(α0) and
pφ(α0) at some value α0 = α(t0), which corresponds to a point in the phase space.
Should one choose, for instance, the negative sign solution for the initial clock
momentum, pα(t0) (via the constraint (5.1.6)), this could be some configuration
on the expanding branch of cosmic evolution. Indeed, in relativistic systems
subject to constraints quadratic in the momenta, a relational IVP additionally
requires an initial internal time direction in order to relationally evolve [7, 70].
We continue with evolution of the system by evolving the data through maximal
extension into the big crunch singularity, with the expanding branch being
the logical predecessor of the contracting branch. In contrast to earlier work
[8–10, 46, 48] on the quantum theory of (5.1.2), we shall perform the same IVP
construction for sufficiently semiclassical states in the effective framework in
Section 5.3 below.

5.2 Troubles for Hilbert space quantisations

As has been hinted previously, quantum dynamics of the present model will not
be easy to extract. In general, moving from the classical to the quantum version of
the problem is a highly non–trivial undertaking whatever our setting is, however,
when we consider chaotic models, the challenge moves to a completely different
level [29–31]. There has been great attention paid to better our understanding
of at least the semiclassical solutions to the present model in various approaches
[37, 38, 40, 46–49], however real progress (even research, for that matter) within
relational dynamics has not been made yet, mainly because (non–trivial) exact
quantum solutions are not known. In order to be able to compare with the
effective relational dynamics of Section 5.3, we ideally would like to extract
(at least approximate) dynamical information from the Hilbert space or path–
integral quantisations carried out thus far.

In the present section, we will briefly summarise the hindrances to obtaining
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the relational dynamics from any of the previously employed approaches.
Let us first recall the result of [7], where effective relational dynamics was

studied in a toy model lacking global clocks — semiclassically (at the order of ~),
the system was shown to be equivalent with the dynamics in local internal time
Schrödinger regime by carrying out a local deparametrisation of the classical
model and its subsequent quantisation. Local deparametrisation of a model
governed by a quadratic constraint of the form C = p2

t−H2(t, q, p) was performed
via choosing a local clock, in this case t, and factorising the constraint as
C = C+C− = (pt +H)(pt −H).

The standard quantisation of C± constraint yields a Schrödinger equation
with ‘time–dependent’ square–root Hamiltonian Ĥ (defined by a spectral de-
composition)

i~∂tψ(t, q) = ±Ĥ(t, q̂, p)ψ(t, q), (5.2.1)

which, if t is a non–global internal clock, is only locally valid (in ‘time’ t) on
account of non–unitarity.

Naturally a question arises as to whether a similar construction would not
work for the present model so that one would compare the local dynamics of the
Schrödinger regime with the effective results.

In fact, this question has already been considered in an early work on quan-
tum cosmology by Blyth and Isham [71], in which they investigated a reduced
quantisation of FRW models filled with a homogeneous scalar field. Various
choices have been employed, with relational time variables (chosen before quan-
tisation) which all yield distinct time–dependent Schrödinger equations with
square–root Hamiltonians that describe precisely the desired Schrödinger regimes.
The motivation behind the chosen quantisation procedure (quantisation by re-
duction, rather than Dirac quantisation) was to avoid the non–positive definite-
ness of Klein–Gordon type inner products.

Regarding the relation between the Schrödinger regime and a Dirac quanti-
sation yielding a Wheeler–DeWitt (WDW) equation (with quantised t̂),

Ĥ2(t̂, q̂, p̂)ψ̃(q, t) = p̂2
t ψ̃(q, t) = −~2∂2

t ψ̃(q, t), (5.2.2)

it was noted in [71] that (5.2.2) does not follow from (5.2.1) when Ĥ is explicitly
time dependent, because acting with ±Ĥ on both sides of (5.2.1)—rather than
(5.2.2)—yields

Ĥ2(t, q̂, p̂)ψ(t, q) = −
(
~2∂2

t ± i~∂tĤ(t, q̂, p̂)
)
ψ(t, q). (5.2.3)
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Note, that in [6] it was shown that to the order of ~ the expectation value
versions10 of (5.2.1) and (5.2.2) are solved by the same state ψ = ψ̃ if the
expectation value of the ‘internal time operator’ t̂ in (5.2.2) is complex with an
imaginary part coinciding with the effective result (4.2.5)

=[〈t̂〉] = − ~
2〈p̂t〉

. (5.2.4)

Thus, away from classical turning points, the solution to the relativistic WDW
equation can be locally approximated by the Schrödinger regime up to the
semiclassical order.

Note, however, that only k = 1, m = 0 and k ≤ 0, m 6= 0 FRW models
have been treated explicitly in [71], with the reason for these choices as fol-
lows: when treating the closed model with coupled massive scalar field as we
do (5.1.6), the classical Hamiltonian for evolution in t = α time is given by

H(α;φ, pφ) =
√
p2
φ − e4α +m2φ2e6α, while the one for evolution in t = φ time

reads H(φ;α, pα) =
√
p2
α + e4α −m2φ2e6α. As a result our quantum Hamiltonian

Ĥ(t, . . .) is not only ‘time–dependent’, it also fails to commute with itself at
different ‘times’, [Ĥ(t, . . .), Ĥ(t′, . . .)] 6= 0 for both t = α, φ. The unfortunate
consequence then is the fact, that the ‘energy’ eigenstates at a given ‘time’ are
no longer eigenstates at later ‘times’ and subsequently the formal solution to
(5.2.1) involves a Dyson time–ordering

ψ(t, q) = Û(t, t0)ψ(t0, q) = T

[
exp

(
∓ i
~

∫ t

t0

Ĥ(s, q̂, p̂)ds

)]
ψ(t0, q). (5.2.5)

Unfortunately, we have to conclude that the construction of the explicit time–
evolution operator Û(t, t0) with either Ĥ(α; φ̂, p̂φ) or Ĥ(φ; α̂, p̂α) does not seem
feasible for this non–integrable system even to the order of ~ and thus we will
not make any further attempts at constructing a local Schrödinger regime.

In another approach to the problem of obtaining the relational dynamics from
the quantum theory, one could try to solve the WDW equation and consider a
suitable inner product so as to compute expectation values which may then
be compared to their effective counterparts. Following this line of argument,
the canonical Dirac quantisation was considered, e.g., see [40, 46, 48]. The
standard quantisation of (5.1.6) leads to a Klein–Gordon type hyperbolic partial

10Assuming a standard t = const Schrödinger theory inner product away from any turning
points.
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differential equation (setting for now ~ = 1),(
∂2

∂α2
− ∂2

∂φ2
− e4α +m2φ2e6α

)
ψ(α, φ) = 0, (5.2.6)

with variable mass M2 = e4α(e2αm2φ2 − 1) in the 2D Lorentzian superspace
metric

ds2 = −dα2 + dφ2. (5.2.7)

Thus, α = const is a ‘spacelike’ slice in minisuperspace.
In [37, 40, 44, 45, 48] WKB approximation has been extensively studied and

despite attacking the idea from various perspectives, all papers have reported
the breakdown of the semiclassical regime in the region of maximal expansion.
A WKB approximation ψ =

∑
nCn(α, φ) exp(±iSn(α, φ)) is valid only if the

amplitude Cn varies much slower than the phase Sn [37, 40, 45, 48, 72]. As
has been pointed out in [40, 44], the caustics resulting from focussing of nearby
classical trajectories (see also Figure 5.3 above) cause |Cn|2 → ∞, while |Cn|2
goes rapidly to zero where classical trajectories defocus. See for instance the
region of maximal expansion in Figure 5.3, which leads to a generic breakdown
of the WKB approximation. As this is relevant for a qualitative comparison to
the effective results displayed in Section 5.3 below, we shall provide a summary
of the most important features of these semiclassical constructions.

Kiefer in [48] imposed initial data for ψ on a ‘spacelike’ slice α = const
in order to construct wave packets in minisuperspace, approximately solving
(5.2.6) via a Born–Oppenheimer (with expansion parameter m−1

p ) and a sub-
sequent WKB approximation. It is possible to construct classically expanding
and contracting universes represented by tubelike standing waves as solutions if
some additional conditions were imposed on account of ‘normalisability’, namely
ψ → 0 as α → ∞. This condition is not a normalisation condition, however, as
normalisation would require an inner product.

The turning point αmax(n) of the individual oscillator modes in the wave
packet depends strongly on the mode n. The reflection of the wave packet at
the average αmax = αmax(n̄) is thus described by a scattering phase shift that is
dependent on the mass and is an integer multiple of π only for discrete values
of m [48]. This means, that one can construct the narrow wave tubes on the
expanding and re–contracting branch only for these special values of m, provided
one keeps away from the classical turning region, i.e. only for α << αmax.

Furthermore, Hawking applied the ‘no–boundary–proposal’ [73] to the present
model [37], providing boundary conditions for the path–integral for quantum
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gravity which should specify the quantum state of the universe uniquely by
requiring that the wave function of any compact spatial three–geometry G(3)

be given by a path–integral over all compact Euclidean four–geometries G(4)

having G(3) as the only boundary. An IVP is thereby rendered superfluous and
the resulting wave functions turn out to be non–normalisable.

The following semiclassical wave function can be interpreted as a superposi-
tion of quantum states peaked around an ensemble of non–singular bouncing so-
lutions with a long inflationary period which corresponds to the aforementioned
set of measure zero periodic and aperiodic solutions [39, 42, 44].11 Numerical
evidence for these results was given in [38], while report on similar outcomes
with special attention to singular classical trajectories was given in [45]. Page
approximated the Hawking wave function in [40] by starting from the canonical
constraint (5.2.6) and translating the ‘no–boundary–condition’ into sufficient
Cauchy data. Unfortunatelly also this WKB approximation breaks down due to
caustics at the extrema of φ [40].

Regarding the classical determinism, mentioned in Section 5.1.1, of having
the re–contracting branch as the logical successor of the expanding one, it was
maintained in [8–10, 46, 48] that:

(1) The quantum and classical IVP are very different from one another. Initial
data have to be imposed on all of the minisuperspace–slices α = const,
implying that both the expanding and the re–contracting branch have to
be present ‘initially’ (in α). It is not possible to distinguish between the
‘initial’ and ‘final state’ anymore.

(2) Extension of classical paths through the turning region of α into the re–
collapsing phase in quantum cosmology is completely without meaning.
The WKB approximation does not provide the complete classical trajec-
tory. Obtaining the latter could only be accomplished through continuous
measurement by higher degrees of freedom (which would suppress the
scattering at αmax).

These statements are, however, partially dependent on the construction used in
[48], namely, (a), on the way of obtaining the semiclassical limit by means of a
WKB approximation, (b), on singular use of α, rather than φ, as the internal
clock and, (c), on the ‘final condition’, ψ → 0 as α→∞. Let us discuss each of
these points separately.
11This is in agreement with standard results on the semiclassical limit of quantum models

which are classically chaotic. Semiclassical states are typically concentrated on the closed orbits
of measure zero [29–31].



CHAPTER 5. CLOSED FRW MODEL 41

(a) Even though a WKB approximation represents one of the possible ways
of extracting semiclassical information from a quantum model, it is not the most
general of the semiclassical approximations and it inevitably breaks down for
chaotic systems [44]. Meanwhile, the semiclassical approximation employed in the
effective approach is very general in nature. We shall see in the following section
that semiclassicality can be achieved in the classical turning region, however,
only for sufficiently peaked initial effective states. A fairly classical trajectory
with the expanding branch serving as a logical predecessor of the re–collapsing
branch can thus be obtained without the spoiling effect of the decoherence in
additional degrees of freedom.

(b) The chaotic scattering of the wave packet around αmax [46, 48] manifests
non–unitarity in the α evolution. As different modes have different turning points
there is an interference of segments of the wave packet before and after the
turning interval of the non–global time function resulting in a superposition of
internal time directions.12 This ultimately leads to a breakdown of the evolution
in the non–global clock and of inner products based on its level surfaces before the
classical turning point. In agreement with the analysis in [18] that concerns the
reconstruction of the unitary Schrödinger and Heisenberg picture from relational
quantum dynamics, this turns out to be only locally feasible for the states that
are sufficiently semiclassical and for the clock degrees of freedom far enough from
their turning points. Unitarity in a chosen time variable is equivalent to preserva-
tion of such inner products in the evolution with respect to the time variable and
apparently is not possible here. What one could do instead would be to switch to
a new degree of freedom to serve in a relational evolution as an alternate clock,
should this one behave sufficiently semiclassically in the problematic turning
region of the first clock [6, 7]. The breakdown of the relational evolution occurs
in a case when such a degree of freedom is unavailable. In the present model
universe, φ may be used for sufficiently well–behaved and semiclassical states as
an intermediate clock in the turning regions of α. Although unclear as to how
to manage the idea at the level of the WDW equation, this is precisely what
can and will be carried out in the effective framework in Section 5.3. At the
effective level, we will lose the non–local IVP and single evolution generator of
[8–10, 46, 48] to a local IVP imposed on one of the (expanding or re–contracting)
branches alone and the necessity of two evolution generators, one in α, the other
in φ time.

(c) In fact, it is the ‘final condition’ which prevents narrow wave packets

12i.e. of positive and negative frequencies associated to the spectrum of the momentum
conjugate to the internal clock function
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around αmax; only exponentially (in α) decreasing modes are allowed and the
data for both the expanding and re–contracting branch must be present initially
at α0, although it is subsequently scattered at αmax [8–10, 46, 48]. On the other
hand, we can not impose any final condition in the effective approach. This
yields semiclassical trajectories in the region of maximal expansion for sufficiently
benign states.

As it is not clear what the physical inner product should be for the present
model, let us consider some (näıve) possibilities.

(i) Since the operator Ĥ2 = −∂2
φ − e4α + m2φ2e6α is not generally non–

negative, evolution with respect to α is non–unitary and a standard Schrödinger
type inner product is clearly not preserved.

(ii) Group averaging [74, 75] is commonly employed in constructing physical
inner products in quantum cosmology. As it requires integrating over the flow of
the quantum constraint, this does not seem practical on account of the classical
non–integrability.

(iii) There exists a method going back to DeWitt [70, 76] which leads to a
conserved quadratic form on Hphys from Haux which in the present case amounts
L2(R2, dαdφ):

Theorem 5.2.1. Let (Q, η) be an n–dimensional configuration manifold with
volume form η, and Ĉ be a second–order differential operator on C2

0(Q,C) (space
of twice differentiable complex functions with compact support on Q) that is
symmetric with respect to the scalar product on L2(Q, η). Then, for any Ψ,Φ ∈
C2

0(Q,C), there is a vector field ~J [Ψ,Φ] on Q such that

(ĈΨ)∗Φ−Ψ∗(ĈΦ) = Divη ~J. (5.2.8)

Clearly, if both Ψ,Φ are annihilated by a hyperbolic Ĉ, ~J defines a conserved
current on the space of solutions to Ĉψ = 0. It is not difficult to show, that
for the constraint (5.2.6) ~J is just given by the standard Klein–Gordon current
vector,

Ja = gab[(∂aΨ
∗)Φ−Ψ∗(∂aΦ)], (5.2.9)

where gab is the inverse 2D minisuperspace metric (5.2.7), such that the conserved
quadratic form provided by the theorem coincides with the Klein–Gordon inner
product. Here one can not restrict the attention globally to positive or negative
frequency modes (on subspaces thereof the Klein–Gordon product would be
positive definite) as it was possible in the case of a Klein–Gordon particle.
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It is a consequence of the non–existence of a global clock, with subsequent
mixing of positive and negative frequencies in α time in the turning region
of α. What is more, the Klein–Gordon charge is identically zero for real Ψ,Φ
and thus conserved trivially. The semiclassical solutions of [37, 38, 40, 48] are
real. Consequently, it is not possible to use the Klein–Gordon inner product even
as an approximation for known semiclassical states on only the ‘negative’ (i.e.
expanding) or ‘positive frequency’ (i.e. re–collapsing) that branch away from
the turning region in which frequencies mix. It thus remains unclear what the
correct physical inner product should be and how the Hilbert space problem
could be solved.

Thus it indeed seems that (at the moment) relational dynamics of a given
non–integrable model is only practically solvable in the effective approach (and
also there only in a limited regime) since it sidesteps many technical difficulties
associated with the Hilbert space quantisation [7]. This shall be the topic of the
next section.

5.3 Effective dynamics

Following the general procedure laid down in Chapter 3 and Section 4.1, we shall
now turn to the effective treatment of the closed FRW model.

The non–integrability will not become an issue for us; since we are only
interested in semiclassical solutions, we shall refrain from attempting to solve
the full quantum dynamics of the model but will only ‘expand around’ classical
trajectories.

Even though we shall focus our attention on rather well–behaved trajectories
it will already be evident what would (and ultimately will) happen for more
generic and complicated solutions.

Using the potential V (α, φ) = e4α−m2φ2e6α in (4.1.8), the constraint (5.1.6)
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translates to order ~ into the following five quantum constraint functions

C = p2
φ + (∆pφ)2 − p2

α − (∆pα)2 − e4α +m2φ2e6α

+m2e6α(∆φ)2 + 12m2φe6α∆(αφ) + (18m2φ2e6α − 8e4α)(∆α)2,

Cα = 2pφ∆(αpφ)− 2pα∆(αpα)− i~ pα + 2m2φe6α∆(αφ)

+ (6m2φ2e6α − 4e4α)(∆α)2,

Cφ = 2pφ∆(φpφ) + i~ pφ − 2pα∆(φpα) + (6m2φ2e6α − 4e4α)∆(αφ)

+ 2m2φe6α(∆φ)2,

Cpα = 2pφ∆(pαpφ)− 2pα(∆pα)2 + (6m2φ2e6α − 4e4α)(∆(αpα)− 1

2
i~)

+ 2m2φe6α∆(φpα),

Cpφ = 2pφ(∆pφ)2 − 2pα∆(pαpφ) + (6m2φ2e6α − 4e4α)∆(αpφ) + 2m2φe6α∆(φpφ)

− i~m2φe6α. (5.3.1)

Due to the degeneracy in the quantum Poisson structure the five constraints
(5.3) generate only four independent gauge flows. To remove redundant degrees
of freedom, we choose a relational clock and a corresponding Zeitgeist, thereby
fixing three of the four independent gauge flows. We are then left with just one
(Hamiltonian) constraint governing the evolution of the system.

5.3.1 Evolution in α

Let us make use of the advantage that the α clock provides, i.e. the evolution
of the system being technically less demanding if we consider the system first in
the α–Zeitgeist

(∆α)2 = ∆(φα) = ∆(αpφ) = 0, (5.3.2)

which, as can be easily checked by solving Cα, leads to a saturation of the
generalised uncertainty relation for the clock degrees of freedom.

After one employs the gauge conditions, the rest of the constraints simplify
to form the following system:

C = p2
φ + (∆pφ)2 − p2

α − (∆pα)2 − e4α +m2φ2e6α +m2e6α(∆φ)2,

Cφ = 2pφ∆(φpφ) + i~ pφ − 2pα∆(φpα) + 2m2φe6α(∆φ)2,

Cpα = 2pφ∆(pαpφ)− 2pα(∆pα)2 + 2m2φe6α∆(φpα)− i~(6m2φ2e6α − 4e4α),

Cpφ = 2pφ(∆pφ)2 − 2pα∆(pαpφ) + 2m2φe6α∆(φpφ)− i~m2φe6α. (5.3.3)
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The spread (∆pα)2 of the clock variable’s conjugate momentum, as well as both
its covariances ∆(φpα) and ∆(pαpφ), do not represent any physical variables, thus
they shall be referred to as the “unphysical” moments. The gauge conditions can
be used to solve for these.

Relational evolution of the remaining degrees of freedom in α is generated
by the remaining first–class (Hamiltonian) constraint which, by (4.2.3), in the
α–Zeitgeist reads

CH = p2
φ − p2

α − e4α +m2φ2e6α +

[
1−

p2
φ

p2
α

]
(∆pφ)2 − 2m2φe6αpφ

p2
α

∆(φpφ)

+

[
m2e6α − m4φ2e12α

p2
α

]
(∆φ)2 + i~

3m2φ2e6α − 2e4α

pα
. (5.3.4)

Through the Poisson structure (3.1.3) this constraint generates the following
equations of motion:

α̇ =− 2pα +
2p2

φ

p3
α

(∆pφ)2 +
4m2φe6αpφ

p3
α

∆(φpφ) +
2m4φ2e12α

p3
α

(∆φ)2

− i~ 3m2φ2e6α − 2e4α

p2
α

,

ṗα = 4e4α − 6m2φ2e6α +
12m2φe6αpφ

p2
α

∆(φpφ)− i~ 18m2φ2e6α − 8e4α

pα

−
[
6m2e6α − 12m4φ2e12α

p2
α

]
(∆φ)2,

φ̇ = 2pφ −
2pφ
p2
α

(∆pφ)2 − 2m2φe6α

p2
α

∆(φpφ),

ṗφ =− 2m2φe6α +
2m2e6αpφ

p2
α

∆(φpφ) +
2m4φe12α

p2
α

(∆φ)2 − i~ 6m2φe6α

pα
,
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˙(∆φ)2 = 4

[
1−

p2
φ

p2
α

]
∆(φpφ)− 4m2φe6αpφ

p2
α

(∆φ)2,

˙∆(φpφ) = 2

[
1−

p2
φ

p2
α

]
(∆pφ)2 + 2

[
m4φ2e12α

p2
α

−m2e6α

]
(∆φ)2,

˙(∆pφ)2 =
4m2φe6αpφ

p2
α

(∆pφ)2 + 4

[
−m2e6α +

m4φ2e12α

p2
α

]
∆(φpφ). (5.3.5)

It is straightforward to show that the evolving degrees of freedom in the
α–Zeitgeist, i.e. φ, pφ, (∆φ)2, (∆φpφ) and (∆pφ)2, can be consistently chosen to
be real if α picks up the imaginary part (4.2.5) (with q1, p1 replaced by α, pα),
see [6, 7]. The set (5.3.1) can be solved numerically, yielding the evolution of
the transient observables of the α–Zeitgeist (i.e. the correlations of the evolving
variables with <[α]).

As the general discussion in Section 4.2 reveals, the α–Zeitgeist possesses
only a transient validity because α is a non–global clock. To remedy this ailment
in the turning region(s) of α, we will choose φ as the new clock and evolve the
system in the corresponding φ–Zeitgeist.

5.3.2 Evolution in φ

The φ–Zeitgeist,

(∆φ)2 = ∆(αφ) = ∆(φpα) = 0, (5.3.6)

by solving Cφ, leads to a saturation of the generalised uncertainty relation for
the canonical pair (φ, pφ). The secondary constraints are now given by

C = p2
φ + (∆pφ)2 − p2

α − (∆pα)2 − e4α +m2φ2e6α

+ (18m2φ2e6α − 8e4α)(∆α)2,

Cα = 2pφ∆(αpφ)− 2pα∆(αpα)− i~ pα + (6m2φ2e6α − 4e4α)(∆α)2,

Cpα = 2pφ∆(pαpφ)− 2pα(∆pα)2 + (6m2φ2e6α − 4e4α)

(
∆(αpα)− i~

2

)
Cpφ = 2pφ(∆pφ)2 − 2pα∆(pαpφ) + (6m2φ2e6α − 4e4α)∆(αpφ)

− 2i~m2φe6α, (5.3.7)
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and, again, can be used to solve for the unphysical moments ∆(αpφ), ∆(pαpφ)
and (∆pφ)2.

The Hamiltonian constraint in the φ–Zeitgeist reads

CH = p2
φ − p2

α − e4α +m2φ2e6α −

[
1− p2

α

p2
φ

]
(∆pα)2

− pα
p2
φ

(6m2φ2e6α − 4e4α)∆(αpα) + i~
m2φe6α

pφ

+

[
18m2φ2e6α − 8e4α +

(3m2φ2e6α − 2e4α)2

p2
φ

]
(∆α)2 (5.3.8)

and generates the following set of equations of motion for α, pα, (∆α)2, (∆pα)2

and ∆(αpα) which constitute the evolving degrees of freedom in the φ–Zeitgeist :

φ̇ = 2pφ −
2p2

α

p3
φ

(∆pα)2 +
pα
p3
φ

(
12m2φ2e6α − 8e4α

)
∆(αpα)

− (6m2φ2e6α − 4e4α)2

2p3
φ

(∆α)2 − i~ m
2φe6α

p2
φ

,

ṗφ =− 2m2φe6α +
12pα
p2
φ

m2φe6α∆(αpα)

−

[
36m2φe6α +

12m2φe6α(3m2φ2e6α − 2e4α)

p2
φ

]
(∆α)2 − i~ m

2e6α

pφ
,

α̇ =− 2pα +
2pα
p2
φ

(∆pα)2 − 6m2φ2e6α − 4e4α

p2
φ

∆(αpα),

ṗα = 4e4α − 6m2φ2e6α +
pα
p2
φ

(36m2φ2e6α − 16e4α)∆(αpα)− i~ 6m2φe6α

pφ

−

[
108m2φ2e6α − 32e4α

+
(18m2φ2e6α − 8e4α)(6m2φ2e6α − 4e4α)

p2
φ

]
(∆α)2,
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˙(∆α)2 =− 4

[
1− p2

α

p2
φ

]
∆(αpα)− pα

p2
φ

(12m2φ2e6α − 8e4α)(∆α)2,

˙∆(αpα) =− 2

[
1− p2

α

p2
φ

]
(∆pα)2

− 2

[
18m2φ2e6α − 8e4α +

(3m2φ2e6α − 2e4α)2

p2
φ

]
(∆α)2,

˙(∆pα)2 =
pα
p2
φ

(12m2φ2e6α − 8e4α)(∆pα)2

− 4

[
18m2φ2e6α − 8e4α +

(3m2φ2e6α − 2e4α)2

p2
φ

]
∆(αpα). (5.3.9)

Once more, the clock variable φ develops a complex nature, in agreement
with (4.2.5), Imφ = − ~

2pφ
, while the evolving degrees of freedom are chosen to

be real. After bridging the region of maximal expansion it is once more safe to go
back to evolving the system in agreement with Section 5.3.1 in the α–Zeitgeist
and recover the re–contracting branch.

5.3.3 Numerical results

In this part we shall analyse the numerical behaviour of the effective system
that is the truncated closed FRW cosmological model with a minimally coupled
massive scalar field. The system starts off peaked about classical trajectories
and as this model universe does not possess a globally valid clock function, both
the scalar field and the scale factor are possible candidates for only a locally
valid clock.

For simplicity, let us concentrate on the well–behaved systems, i.e. those,
where trajectories only have few extrema in the scale factor. More general tra-
jectories can in theory be treated as well, only in that case the switching between
internal clocks would need to be done many times to evolve the system through
the whole trajectory. The ‘simple’ cases that will be considered are ‘easy’ enough
to make the evolution work throughout its course and rich enough still to exhibit
several generally valid characteristics (i.e. changing the internal clocks in the
region of maximal expansion will not work in a generic solution) to let us draw
relevant conclusions.
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Figure 5.4: (a) Classical trajectory (dotted) and patched effective trajectory:
α–gauge (solid), φ–gauge (dashed). (b) Moments in α–gauge on the incoming
branch: (∆φ)2 (thick, dashed), (∆pφ)2 (thin, dashed), ∆(φpφ) (solid). αQ1 is the
quasi–turning point of α on the incoming branch where the clock becomes ‘slow’
(see text and figure 5.6(a)).
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Figure 5.5: (a) Moments in φ–gauge: (∆α)2 (thick, dashed), (∆pα)2 (thin,
dashed), ∆(αpα) (solid). (b) Moments in α–gauge on the outgoing branch: (∆φ)2

(thick, dashed), (∆pφ)2 (thin, dashed), ∆(φpφ) (solid). αQ2 is the quasi–turning
point of α on the outgoing branch where the clock becomes ‘slow’ (see text and
Figure 5.6(b)).
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Figure 5.6: (a) Classical momenta on the incoming branch with quasi–turning
point αQ1 of the clock α: pφ (dashed), pα (solid). (b) Classical momenta on the
outgoing branch with quasi–turning point αQ2 : pφ (dashed), pα (solid).

Figure 5.4(a) shows two trajectores in the configuration space obtained by
consistently switching gauges and clocks according to the general method devel-
oped in Section 4.3.1. One is the classical trajectory of the system, the other, in
fact identical to the classical one, is the patched effective trajectory. The effective
trajectory has been obtained by first evolving the system in the α–Zeitgeist, then
switching to φ clock between the extremal points φ = φmin and α = αmax, only
to finish the evolution in the α–Zeitgeist again, once α = αmax has been passed
and just before φ = φmax has been reached.

The quantum scale for this particular numerical evolution has been chosen
so that

√
~ ∼ 10−4 while the expectation values of operators are of the order of

unity. The quantum corrections are of the order of ~ in the leading order and
are thus of the magnitude of ∼ 10−8 . This large separation of the quantum
corrections and the classical variables has been a deliberate choice: quantum
back–reaction is virtually non–existent and the classical variables can evolve
independently of the quantum modes.

Moments in figures 5.4(b)–5.5(b) illustrate, how the classical chaoticity of
the system penetrates to the quantum system: the initial values of the moments
in the α–Zeitgeist are close to ~, however they will start growing at some
point to reach values 104 greater than the initial one thus leaving the region
of semiclassicality.
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The “spikes” in the moments, particularly (∆pφ)2, in figures 5.4(b) and 5.5(b)
are a direct consequence of the classical quasi–turning points of the internal clock
α = αQ1 and α = αQ2 , where α̇ = −2pα is small and the clock α thus becomes
‘too slow’ for resolving the evolution of other degrees of freedom with respect to
itself (also see discussion in Section 4.3.1).

An obvious attempt at treating the problem would involve evolving the sys-
tem through the problematic region using φ as the internal clock, this, however,
may not always be possible, as the quasi–turning points in α may lie so close to
turning points of φ, that the φ is still a bad clock at the time, and α is already a
bad clock itself. Such a situation is illustrated in figures 5.6(a) and 5.6(b) for the
incoming and outgoing branches respectively, where one can see the proximity
of the local minima in pα and the points where pφ = 0.

Drawing from the general discussion of classical solutions in [42], this property
features generically in the space of solutions and is indeed the origin of all
problems concerning the good resolution of transient quantum observables. Both
α and φ (and their momenta that also feature turning points) are thus ‘bad
clocks’ in the immediate vicinity of each other, leading to a poor resolution
of relational evolution with a large growth of the moments as a consequence.
Unfortunately we are not able to perform any clock change that could cure
this ailment, since if α and φ fail to resolve the evolution, then neither can any
function f(α) or g(φ) serve as a good clock for the problematic piece of trajectory
as (∆f)2 ∝ (∆α)2 and (∆g)2 ∝ (∆φ)2 and since it is not possible for both (∆α)2

and (∆φ)2 to vanish in this region, the possibility of a valid f–, or g–Zeitgeist
does not exist either.

Nevertheless, even if for the particular trajectory presented here the relational
evolution is not impeded by an overwhelming growth of moments (as these
manage to stay within the bounds of the semiclassical approximation), we shall
discuss further that for more generic trajectories this becomes a fundamental
problem that makes relational evolution impossible altogether.

There is, in fact, a more general problem underlying the abovementioned
issue: an arbitrary classical trajectory in this model will exhibit a structure
where local maxima and minima occur at all scales.

Let us stress again, that the first trajectory we investigated was a well–
behaved one and on account of the close investigation of this nicely–evolving
system that has been performed, one is now quite easily able to identify potential
problems and draw relevant conclusions as regards the relational evolution of
a more general model. Namely, one is able to predict the difficulties arising
from picking such a generalised classical trajectory, that is only slightly more
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complicated, e.g. one plotted in Figure 5.7.
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Figure 5.7: Left: a classical configuration–space trajectory of the same model
parameters as in Figure 5.4(a), but different initial conditions: incoming branch
(solid), outgoing branch (dashed). Right: a closeup of the same trajectory near
α = αmax; there are two other local extrema in α labeled by α′ (a maximum)
and α′′ (a minimum), and φ reaches a locally minimal value φ1 very near α = α′′.
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Figure 5.8: Moments in α–gauge on the incoming branch evolved effectively in a
state initially peaked around the trajectory in Figure 5.7 : (∆φ)2 (thick, dashed),
(∆pφ)2 (thin, dashed), ∆(φpφ) (solid).
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This trajectory shares the same m and ~ parameters, but differs from the
trajectory in Figure 5.4(a) in initial conditions. Moreover, the trajectory features
three local extrema in the scale factor at α = αmax, α

′, α′′. The resulting effective
system is so unstable already along the incoming branch (when evolved in α–
clock), that by the time it reaches the vicinity of the classical turning points in
α, the quantum moments are of the order comparable to the separation between
the three extrema of α (Figure 5.8). And the situation gets dire when we try
to evolve the system further. With the separation between the turning point
of φ, where φ = φ1, and the local minimum in α, where α = α′′, is of order√
~, it ceases to be possible to resolve the two points even with well–behaved

quantum moments, thus one is not able to resolve the effective evolution of the
given system in the chosen quantum scale.

This result is quite general: there is an infinite set of classical trajectories
with extrema in α and φ for any given choice of the quantum scale, that are
separated on or below that scale [42] and for which an effective–procedure–
motivated construction of semiclassical states evolving through the region of
maximal expansion in a well–behaved manner is fundamentally ‘flawed’ and thus
not feasible. Let us have a closer look at this breakdown of relational evolution
in the following section.

5.4 Breakdown of relational evolution

As can be deduced from classical dynamics, the wealth of structure of generic
semiclassical trajectories, that we have discussed above is present in all scales;
impedes resolution via clock transformations and ultimately leads to a generic
breakdown of quantum relational evolution in the region of maximal expansion.
Let us discuss this issue in greater depth. Consider an arbitrary classical phase
space trajectory and choose an arbitrary open neighbourhood, through which
this trajectory passes.13 We demand that a phase space function must grow
monotonically along the trajectory in our chosen open neighbourhood to be
deemed a good relational clock. For the situation to be ideal, one would expect
the level surfaces of the clock function to be orthogonal to the tangent vector
of the trajectory at each point, meaning the trajectory and the clock function
should optimally vary at the same order of magnitude. However, this ideal
situation does not occur on account of the instability of the initial data in this

13As a matter of fact, it is possible to choose any open neighbourhood, as in chaotic systems
a generic trajectory passes through any open neighbourhood on a constraint surface.
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chaotic model.
A trajectory, initially close to some other particular trajectory, is in the end

bound to suffer uncorrelated fate. Thus in any open neighbourhood a phase space
function that initially was deeemed a good relational clock function for one tra-
jectory shall ultimately fail to be a good relational clock for any other trajectory.
This orbit dependence manifests further, as we investigate different trajectories
passing through any arbitrarily small neighbourhood on the constraint surface.
Since the system is chaotic, there will be an infinite number of uncorrelated
trajectories which pass through the neighbourhood in all directions. Since an
internal time direction of a clock function is orthogonal to its level surfaces
at every phase space point, we can already conclude that there does not exist
any phase space function that could be a good clock for all the uncorrelated
trajectories in the entire neighbourhood.

Effective semiclassical trajectories suffer greatly on account of this fact. Quan-
tum moments cause that evolving an effective solution through the quantum
phase space is in fact equivalent to evolving a neighbourhood of volume of the
order of ~2 through the phase space (the order is given by the fact that our
system contains four canonical variables). We are of course still working at
semiclassical order ~. As the example above manifests, this may work for the
states that are initially highly semiclassical, i.e. that correspond to the unique
superposition of there being special classical solutions featuring low numbers
of turning points in the clock functions that vary roughly on the same scales.
Should we happen to come across initially semiclassical effective states corre-
sponding to a superposition of (in the end) unrelated generic classical orbits,
the relational evolution must break down in the region where these classical
trajectories fan out. There might, in fact, exist neighbourhoods where the phase
space function could be deemed a good clock for the given trajectory, however
as such a clock is highly orbit dependent, in the generic case there does not exist
any neighbourhood of volume of order ~2 (or larger) exists where any phase
space function could be a good clock for all classical orbits in the superposition.
As this would be a requirement for the relational evolution of a semiclassical
state, we have to conclude that at this stage, that it is not possible to perform
any clock change and relational evolution must break down altogether. For such
trajectories, it is then fundamentally impossible, using the effective method, to
construct entire semiclassical states that would evolve seamlessly throughout
the region of maximal expansion. In addition, effective relational evolution (in a
‘classical’ clock) is sure to break down for general (non–semiclassical) effective
states: if one attempted to evolve a neighbourhood larger than the considered
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~2–order one through the quantum phase space, the above mentioned problems
must only intensify.

5.5 Review of FRW models

In the previous text we have detailed both classical and effective treatment of the
closed FRW model with a minimally coupled massive scalar field. In the following
short section we shall review both open and flat model with a cosmological
constant Λ, as well as the closed FRW model featuring Λ.

5.5.1 General FRW setting

General expression for the Hamiltonian constraint for an FRW model filled with
a minimally coupled massive scalar field admitting all three possible values for
the curvature as well as the possibility of the cosmological constant reads:

CH = p2
φ − p2

α − ke4α + (
Λ

3
+m2φ2)e6α, (5.5.1)

where ke4α − (Λ
3

+m2φ2)e6α is the potential V (α, φ).
Let us discuss different combinations of parameters involved. It is obvious

that depending on the choice of the curvature parameter k and cosmological
constant Λ, we will get a cosmology either qualitatively very similar to the one
discussed in sections 5.1–5.3, or a model universe that is somewhat different.14

The resulting potential functions for different parameter choices are summed up
in Table 5.1, with |Λ| = λ.

5.5.2 Discussion

It is obvious that only overall sign of the (−λ
3

+m2φ2) bracket is important for
the following discussion. FRW models with cosmological constant Λ > 0 and
λ < 3m2φ2 are qualitatively indistinguishable from their counterparts without
Λ. This is in agreement with statements that the mass of the scalar field acts as
an effective cosmological constant [37–48].

14 Indeed, should we opt for a massless case the model would become separable and the non–
global clock problem would dissolve immediately. Some examples have been studied in [79],
albeit for a model with an ordering issue present that arises from a different Lapse function
gauge choice.
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Λ < 0 Λ = 0 Λ > 0

k = 1 e4α − (−λ
3

+m2φ2)e6α e4α −m2φ2e6α e4α − (λ
3

+m2φ2)e6α

k = 0 −(−λ
3

+m2φ2)e6α −m2φ2e6α −(λ
3

+m2φ2)e6α

k = −1 −e4α− (−λ
3

+m2φ2)e6α −e4α−m2φ2e6α −e4α−(λ
3

+m2φ2)e6α

Table 5.1: The potential function V (α, φ) of various FRW cosmological universes
featuring different choices of the curvature parameter and cosmological constant.

FRW models that possess a cosmological constant Λ < 0 and λ > 3m2φ2

yield an opposite sign before the ‘effective cosmological constant’ term, thus
promising a slightly different evolution. The work on these models is underway.

After a preliminary treatment of a flat FRW model without Λ, the effective
results appear to be qualitatively reproducing those of the closed FRW model;
this too however is a work in progress and so is a treatise on the last, open,
model universe.

In [80, 81], it has been shown that (most) FRW models with a conformally
coupled massive scalar field are non–integrable (save some exceptions in pa-
rameter fine tuned flat variants). We have numerically sampled several classical
FRW models with minimal coupling to find that these are all non–integrable
in, at least, a certain defined interval and thus pose the same problem for the
resolution of their relational evolution. There will ultimately occur a breakdown
of the relational evolution in the region of maximal expansion precipitating from
the wealth of structure of these non–integrable model universes. Even though it
would be interesting to check rigorously for integrable exceptions in these models,
we can conclude, that since the generic type of the system is non–integrable,
any exception due to fine tuning can not be regarded as a valid representative
of functionality of the relational evolution, merely a favourable occurrence and
could serve as a checking mechanism for the relational calculations at best.



Chapter 6

Conclusion and Outlook

The work presented in this thesis is the first step towards the study of relational
quantum dynamics in the generic case of a non–integrable system with the
added feature of a non–trivial coupling of the clock function to the evolving
variables. To advance our understanding of such systems we have made use of
the effective approach of [6, 7] as the framework enables one to resolve temporally
local time evolution via fashionables – transient relational observables and clock
transformations between different Zeitgeister.

We have applied the effective approach to the FRW model universes filled
with a minimally coupled massive scalar field, with emphasis on the closed FRW
model, as quantum dynamics thereof have thus far not been properly studied.

The numerical results that have been obtained for the closed FRW model
exhibit sensitivity to initial conditions in the region of maximal expansion al-
ready for the well–behaved trajectories and predict a failure of the semiclassical
approximation in more generic cases since a semiclassical state peaked on initially
nearby classical trajectories will ultimately spread apart. This is in sharp contrast
with simpler toy models discussed in [7] where, for one, it is the coherent states
that are sharply peaked even in the turning regions of the clock functions, and
moreover, the non–global clocks are decoupled there, thus a correlation between
the “badness” of these clocks does not exist.

As has been confirmed in this work, the chaotic scattering forming in the
region of maximal expansion poses a great challenge for the relational dynamics,
since the dynamics is only feasible for sufficiently sharply peaked states and
generally breaks down in the region of maximal expansion. It is evident, that
it is not advisable to trust the effective semiclassical truncation in this regime
anymore, as the quantum moments first leave the truncation order and ultimately

57



CHAPTER 6. CONCLUSION AND OUTLOOK 58

diverge. The quantum back–reaction is not to be a culprit as this effect does not
play any prominent role in our situation (by construction). After examining the
classical trajectory we identify the problem to be rooted in the quasi–turning
points of the clock α that immediately follow/precede a turning point of the
field φ [42], thus making the two clock conjugate momenta small (or vanish) in
immediate neighbourhood of each other.1 This in turn leaves both clocks ‘too
slow’ for a proper resolution of relational evolution [6, 7, 18–20, 77], meaning a
change of clock can not remedy the situation. A system more generic, featuring
more oscillations in both α and φ than the one studied in this thesis, would
obviously fare even worse.

In agreement with the discussion in [6] we interpret such a breakdown of the
effective semiclassical truncation as an evidence, that the relational evolution
generally breaks down on account of mixing of internal time directions and
consider this an analogy to how a non–unitarity in a deparametrisation at a
Hilbert space level causes a failure of any inner product based on level surfaces
of the local clock function.

Both the ultimate breakdown of the WKB approximation to (5.2.6) that has
been reported in the earlier literature [40, 44–46, 48] and the generic breakdown
of semiclassicality in the region of maximal expansion are in agreement, note
however, that contrary to a very specific semiclassical limit obtained by the WKB
techniques, the semiclassical approximation we have employed was a very general
one. Precisely on account of this fact the arguments of [8–10, 46, 48] regarding
the semiclassical limit obtained via WKB approximation are in contrast with our
effective approach, where it has been shown possible to obtain the semiclassical
states and evolve them through the region of maximal expansion if they were
initially sufficiently sharply peaked with sufficiently well–behaved corresponding
classical trajectory. All one needs to do is to follow the general construction
presented in Chapter 4 and switch the relational clocks as required. As a result
one obtains a system with an expanding branch as the logical predecessor of the
re–contracting branch, just as one would in the classical system and in disagree-
ment with the discussion in [8–10, 46, 48]. Note, however, that the recovery of a
good temporally local relational evolution is highly state–dependent.

Since non–integrability is the generic feature of chaotic systems [29–31], we
propose, that the qualitative results we have obtained in Chapter 5 dealing
with the breakdown of the semiclassical approximation and of the relational
evolution will be present in quantum cosmology and gravity systems generically,

1 Moreover, one is not able to employ the conjugate momenta as the clock variables as
these are of highly oscillatory nature in general.
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and thus, generically, a ‘good relational evolution’ appears to be only a transient
and semiclassical phenomenon.

The natural step forward when pursuing the path of relational evolution in
semiclassical approximation could be made in two directions, that is, one could
either incorporate higher order quantum corrections (that would mean taking
into account moments of order ~3/2 or even higher) into the solutions of one of
the previously treated models, or choose rather more complex model universes
(e.g. Bianchi models) in order to introduce more degrees of freedom/anisotropy,
first investigated in order ~ with higher order quantum corrections to follow in
a sequel.

The main obstacle to the sensible evolution of non–integrable systems is
their sensitivity to initial data. However, as Loop Quantum Cosmology (LQC) is
equipped with a minimal length scale that arises as a consequence of the minimal
area gap [22–26], one might wonder whether the chaotic behaviour of the FRW
model universes could be resolved within LQC on account of this feature and
therefore provide a nicer, better–behaved theory.



Appendix

Effective relational dynamics of the closed FRW
model in detail

In sections 4.1 and 4.2 we have devised a generalised form of the effective
calculation for models governed by the classical Hamiltonian constraint of the
form (4.1.1). When one is treating a different model however, the full calculation
‘from first principles’ may be useful.

Let us start the formulation of the problem with noting the standard metric
of an FRW spacetime (5.1.1) and the action of a homogeneous massive scalar
field minimally coupled to such a spacetime (5.1.2). After fixing k = 1 for the
closed model and adopting a dot as a shorthand notation for the ‘t’ derivative,
one is left with the action in the form that agrees with [48]

S =
1

2

∫
dtNa3

[
− ȧ2

N2a2
+

1

a2
+

φ̇

N2
−m2φ2

]
. (A.1)

It is straightforward to arrive at a Hamiltonian function

CH = N

[
p2
φ

2a3
− p2

a

2a
− a

2
+

1

2
m2φ2a3

]
, (A.2)

where the presence of a lapse function N actually reveals that the CH is not a
true Hamiltonian, but a Hamiltonian constraint. The lapse function can easily
be eliminated by a gauge choice at a later time. (Note that we shall not employ
the usual choice of equating the lapse function to unity.)

The Hamiltonian constraint features two canonical pairs of variables, (a, pa)
and (φ, pφ). For the ease of calculations, we shall perform the transformation
α = ln a and work with a new canonical pair, (α, pα) from this point forward.
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The Hamiltonian constraint acquires the form of

CH = N

[
1

e3α
[p2
φ − p2

α]− eα +m2φ2e3α

]
. (A.3)

To keep the calculations as simple as possible, we shall take the advantage
of the prefactor 1

e3α
that has emerged after the scale factor transformation and

absorb it in the gauge choice for the lapse function. That leaves us with the
classical constraint

CH = p2
φ − p2

α − e4α +m2φ2e6α. (A.4)

Next we need to get a quantum version of C. A naive approach would be to
promote each term to an operator Ĉ = p̂2

φ − p̂2
α − ê4α +m2φ̂2e6α. What actually

needs to be done, is the following: one needs to express the operators through
their expectation values and spreads, achieving this in two terms through the
Taylor expansion around the expectation values of corresponding operators. We
want to pursue the semiclassical approach to the order of ~, thus we drop terms
with spreads of order 2 (these would correspond to terms of ~3/2) and higher.
Also, there will not be an ordering issue so far as α and φ commute with each
other. The desired constraint is then a sum of the terms of the four Taylor
expansions around the expectation values to the order of ~, namely

C = 〈p̂φ〉2 + (∆pφ)2 − 〈p̂α〉2 − (∆pα)2 − e4〈α̂〉 − 8e4〈α̂〉(∆α)2 +m2〈φ〉2e6〈α̂〉

+m2e6〈α̂〉(∆φ)2 + 12m2〈φ〉e6〈α̂〉∆(αφ) + 18m2〈φ〉2e6〈α̂〉(∆α)2.(A.5)

To be able to write down the full set of constraints for the model we need to
formulate second–order constraints defined by Eq.(3.2.2):

Cα = 〈(α̂− 〈α̂〉)Ĉ〉,
Cφ = 〈(φ̂− 〈φ̂〉)Ĉ〉,
Cpα = 〈(p̂α − 〈p̂α〉)Ĉ〉,
Cpφ = 〈(p̂φ − 〈p̂φ〉)Ĉ〉. (A.6)

Let us demonstrate the procedure of obtaining the second order constraints
by means of calculating the Cα constraint explicitly,

Cα = 〈(α̂− 〈α̂〉)Ĉ〉 = 〈(α̂− 〈α̂〉)(p̂2
φ − p̂2

α − ê4α +m2φ̂2e6α)〉.
(A.7)
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We will work with the second term as there the issue of ordering arises:

〈(α̂− 〈α̂〉)p̂2
α〉 = 〈(α̂− 〈α̂〉)(〈p̂α〉+ (p̂α − 〈p̂α〉))2〉

= 〈α̂− 〈α̂〉〉〈p̂α〉2

+2〈p̂α〉〈(α̂− 〈α̂〉)(p̂α − 〈p̂α〉)〉+ 〈(α̂− 〈α̂〉)(p̂α − 〈p̂α〉)2〉,
(A.8)

where the first term vanishes on account of 〈α̂− 〈α̂〉〉 = 〈α̂〉 − 〈α̂〉 = 0.
In order to be able to write the resulting expression in terms of moments, the

remaining terms need to be ordered symmetrically, which will be made possible
by use of the canonical commutation relations. The term becomes

〈(α̂− 〈α̂〉)p̂2
α〉 = 〈p̂α〉(2〈(α̂− 〈α̂〉)(p̂α − 〈p̂α〉)〉Weyl + i~)

+〈(α̂− 〈α̂〉)(p̂α − 〈p̂α〉)2〉Weyl,

where

〈(α̂− 〈α̂〉)(p̂α − 〈p̂α〉)2〉Weyl =
1

3
〈(α̂− 〈α̂〉)(p̂α − 〈p̂α〉)2

+ (p̂α − 〈p̂α〉)(α̂− 〈α̂〉)(p̂α − 〈p̂α〉)
+ (α̂− (p̂α − 〈p̂α〉)2〈α̂〉)〉

is a third order moment and will be discarded in the truncation to the order ~,
and

〈(α̂− 〈α̂〉)(p̂α − 〈p̂α〉)〉Weyl =
1

2
〈(α̂− 〈α̂〉)(p̂α − 〈p̂α〉) + (p̂α − 〈p̂α〉)(α̂− 〈α̂〉)〉

= 〈(α̂− 〈α̂〉)(p̂α − 〈p̂α〉)〉Weyl +
1

2
i~.

Proceeding in this fashion one arrives at the full expression for the con-
straint Cα

Cα = 2pφ∆(αpφ)− 2pα∆(αpα)− i~ pα + 2m2φe6α∆(αφ)

+(6m2φ2e6α − 4e4α)(∆α)2, (A.9)

where the 〈x̂〉 = x labeling has been adopted.
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Consistent truncation at the order ~ yields these five non-zero constraints on
our system:

C = p2
φ + (∆pφ)2 − p2

α − (∆pα)2 − e4α +m2φ2e6α

+m2e6α(∆φ)2 + 12m2φe6α∆(αφ) + (18m2φ2e6α − 8e4α)(∆α)2,

Cα = 2pφ∆(αpφ)− 2pα∆(αpα)− i~ pα + 2m2φe6α∆(αφ)

+(6m2φ2e6α − 4e4α)(∆α)2,

Cφ = 2pφ∆(φpφ) + i~ pφ − 2pα∆(φpα) + (6m2φ2e6α − 4e4α)∆(αφ)

+2m2φe6α(∆φ)2,

Cpα = 2pφ∆(pαpφ)− 2pα(∆pα)2 + (6m2φ2e6α − 4e4α)(∆(αpα)− 1

2
i~)

+2m2φe6α∆(φpα),

Cpφ = 2pφ(∆pφ)2 − 2pα∆(pαpφ) + (6m2φ2e6α − 4e4α)∆(αpφ) + 2m2φe6α∆(φpφ)

−i~m2φe6α. (A.10)

Evolution in α–Zeitgeist

To extract the dynamics of the system in the α–Zeitgeist we shall impose the
corresponding gauge:

φ1 = (∆α)2 = 0, φ2 = ∆(φα) = 0, φ3 = ∆(αpφ) = 0. (A.11)

Imposing the gauge directly on the set of constraints leads to saturation of
the uncertainty condition in the Cα constraint:

−2pα∆(αpα)− i~ pα = 0 → ∆(αpα) = −i~
2
,

with the rest of the constraints appearing in somewhat simplified form:

C = p2
φ + (∆pφ)2 − p2

α − (∆pα)2 − e4α +m2φ2e6α +m2e6α(∆φ)2,

Cφ = 2pφ∆(φpφ) + i~ pφ − 2pα∆(φpα) + 2m2φe6α(∆φ)2,

Cpα = 2pφ∆(pαpφ)− 2pα(∆pα)2 + 2m2φe6α∆(φpα)− i~(6m2φ2e6α − 4e4α),

Cpφ = 2pφ(∆pφ)2 − 2pα∆(pαpφ) + 2m2φe6α∆(φpφ)− i~m2φe6α. (A.12)

The quantum version of the Hamiltonian constraint is a linear combination of
the four constraints, namely: CH = C+κCφ+βCpα+γCpφ . Imposing a condition
that the Hamiltonian constraint must commute with the gauge we shall make
use of the Poisson algebra table:
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φ1 φ2 φ3

C −2i~ 2∆(φpα) −2∆(pαpφ)

Cpα −4i~pα 4pα∆(φpα)− 2∆(φpφ)
− 2m2φe6α(∆φ)2 + i~pφ

4pα∆(pαpφ)− 2pφ(∆pφ)2

− 2m2φe6α(2∆(φpφ) + i~)

Cφ 0 2pα(∆φ)2 2pα∆(φpφ)i~pα

Cpφ 0 2pα∆(φpφ)− i~pα 2pα(∆pφ)2

Table 6.1: The Poisson algebra of constraints and gauge conditions in α–Zeitgeist

and obtain the coefficients

κ = −m
2φe6α

2p2
α

, β = − 1

2pα
, γ = − pφ

2p2
α

,

from which the quantum version of the Hamiltonian constraint that accounts for
the relevant moments follows as

CH = p2
φ − p2

α − e4α +m2φ2e6α +

[
1−

p2
φ

p2
α

]
(∆pφ)2 − 2m2φe6αpφ

p2
α

∆(φpφ)

+

[
m2e6α − m4φ2e12α

p2
α

]
(∆φ)2 + i~

3m2φ2e6α − 2e4α

pα
. (A.13)

The solutions to unphysical moments, that follow from the constraint equa-
tions, read:

∆(φpα) =
pφ
pα

∆(φpφ) +
m2φe6α

pα
(∆φ)2 + i~

pφ
2pα

,

∆(pαpφ) =
pφ
pα

(∆pφ)2 +
m2φe6α

pα
∆(φpφ)− i~ m

2φe6α

2pα
,

(∆pα)2 =
p2
φ

p2
α

(∆pφ)2 +
2m2φe6αpφ

p2
α

∆(φpφ) +
m4φ2e12α

p2
α

(∆φ)2

−i~ 3m2φe6α − 2e4α

2pα
. (A.14)
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Corresponding equations of motion are generated through ẋ = {x,CH} as:

α̇ = −2pα +
2p2

φ

p3
α

(∆pφ)2 +
4m2φe6αpφ

p3
α

∆(φpφ) +
2m4φ2e12α

p3
α

(∆φ)2

−i~ 3m2φ2e6α − 2e4α

p2
α

,

ṗα = 4e4α − 6m2φ2e6α +
12m2φe6αpφ

p2
α

∆(φpφ)

−
[
6m2e6α − 12m4φ2e12α

p2
α

]
(∆φ)2 − i~ 18m2φ2e6α − 8e4α

pα
,

φ̇ = 2pφ −
2pφ
p2
α

(∆pφ)2 − 2m2φe6α

p2
α

∆(φpφ),

ṗφ = −2m2φe6α +
2m2e6αpφ

p2
α

∆(φpφ) +
2m4φe12α

p2
α

(∆φ)2 − i~ 6m2φe6α

pα
,

˙(∆φ)2 = 4

[
1−

p2
φ

p2
α

]
∆(φpφ)− 4m2φe6αpφ

p2
α

(∆φ)2,

˙∆(φpφ) = 2

[
1−

p2
φ

p2
α

]
(∆pφ)2 + 2

[
m4φ2e12α

p2
α

−m2e6α

]
(∆φ)2,

˙(∆pφ)2 =
4m2φe6αpφ

p2
α

(∆pφ)2 + 4

[
−m2e6α +

m4φ2e12α

p2
α

]
∆(φpφ). (A.15)

The transient validity of the α–Zeitgeist on account of α being a non–global
clock will result in the breakdown of the relational evolution in the turning
region(s) of α, thus we shall choose a new clock variable and evolve the system
in the corresponding, here φ–, Zeitgeist, that will allow us to evolve through the
aforementioned turning region(s).

Evolution in φ–Zeitgeist

Again, imposing the gauge

φ1 = (∆φ)2 = 0, φ2 = ∆(αφ) = 0, φ3 = ∆(φpα) = 0 (A.16)

on the set of constraints leaves us with the uncertainty relation

−2pφ∆(φpφ)− i~ pφ = 0 → ∆(φpφ) = −i~
2
,
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and the set of four simplified constraints

C = p2
φ + (∆pφ)2 − p2

α − (∆pα)2 − e4α +m2φ2e6α

+(18m2φ2e6α − 8e4α)(∆α)2,

Cα = 2pφ∆(αpφ)− 2pα∆(αpα)− i~ pα + (6m2φ2e6α − 4e4α)(∆α)2,

Cpα = 2pφ∆(pαpφ)− 2pα(∆pα)2 + (6m2φ2e6α − 4e4α)

(
∆(αpα)− i~

2

)
Cpφ = 2pφ(∆pφ)2 − 2pα∆(pαpφ) + (6m2φ2e6α − 4e4α)∆(αpφ)

−2i~m2φe6α, (A.17)

that combined such that C +κCα +βCpα + γCpφ yield a quantum version of the
Hamiltonian constraint CH .

Employing the commutation relations of the Hamiltonian constraint with the
gauge

φ1 φ2 φ3

C 2i~ −2∆(αpφ) −2∆(pφpα)

Cpφ 4i~pφ −4pφ∆(αpφ)+2∆(αpα)−i~pα
+ (6m2φ2e6α − 4e4α)(∆α)2

−4pφ∆(pφpα) + 2pα(∆pα)2

−(6m2φ2e6α−4e4α)(∆(αpα)+ i~
2

)

Cα 0 −2pφ(∆α)2 −2pφ∆(αpα)− i~pφ
Cpα 0 −2pφ∆(αpα) + i~pφ −2pφ(∆pα)2

Table 6.2: The Poisson algebra of constraints and gauge conditions in φ–Zeitgeist

one arrives at the coefficients:

κ =
3m2φ2e6α − 2e4α

2p2
φ

, β = − pα
2p2

φ

, γ = − 1

2pφ
,

giving the quantum Hamiltonian constraint the form of

CH = p2
φ − p2

α − e4α +m2φ2e6α −

[
1− p2

α

p2
φ

]
(∆pα)2

−pα
p2
φ

(6m2φ2e6α − 4e4α)∆(αpα) + i~
m2φe6α

pφ

+

[
18m2φ2e6α − 8e4α +

(3m2φ2e6α − 2e4α)2

p2
φ

]
(∆α)2. (A.18)
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Equations of motion follow from the Poisson structure

φ̇ = 2pφ −
2p2

α

p3
φ

(∆pα)2 +
pα
p3
φ

(
12m2φ2e6α − 8e4α

)
∆(αpα)

−(6m2φ2e6α − 4e4α)2

p3
φ

(∆α)2 − i~ m
2φe6α

p2
φ

,

ṗφ = −2m2φe6α +
12pα
p2
φ

m2φe6α∆(αpα)

−

[
36m2φe6α +

12m2φe6α(3m2φ2e6α − 2e4α)

p2
φ

]
(∆α)2 − i~ m

2e6α

pφ
,

α̇ = −2pα +
2pα
p2
φ

(∆pα)2 − 6m2φ2e6α − 4e4α

p2
φ

∆(αpα),

ṗα = 4e4α − 6m2φ2e6α +
pα
p2
φ

(36m2φ2e6α − 16e4α)∆(αpα)− i~ 6m2φe6α

pφ

−

[
108m2φ2e6α − 32e4α

+
(18m2φ2e6α − 8e4α)(6m2φ2e6α − 4e4α)

p2
φ

]
(∆α)2,

˙(∆α)2 = −4

[
1− p2

α

p2
φ

]
∆(αpα)− pα

p2
φ

(12m2φ2e6α − 8e4α)(∆α)2,

˙∆(αpα) = −2

[
1− p2

α

p2
φ

]
(∆pα)2

−2

[
18m2φ2e6α − 8e4α +

(3m2φ2e6α − 2e4α)2

p2
φ

]
(∆α)2,

˙(∆pα)2 =
pα
p2
φ

(12m2φ2e6α − 8e4α)(∆pα)2

−4

[
18m2φ2e6α − 8e4α +

(3m2φ2e6α − 2e4α)2

p2
φ

]
∆(αpα). (A.19)

To complete the treatment of the system, one needs to make use of the
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constraint equations to retrieve the solutions to the unphysical moments,

∆(αpφ) =
pα
pφ

∆(αpα)− 3m2φ2e6α − 2e4α

pφ
(∆α)2 + i~

pα
2pφ

,

∆(pαpφ) =
pα
pφ

(∆pα)2 − 3m2φ2e3α − 2e4α

pφ
∆(αpα) + i~

3m2φ2e6α − 2e4α

2pφ
,

(∆pφ)2 =
p2
α

p2
φ

(∆pα)2 − pα
p2
φ

(6m2φ2e6α − 4e4α)∆(αpα)

+
(3m2φ2e6α − 2e4α)2

p2
φ

(∆α)2 + i~
m2φe6α

pφ
. (A.20)



Cookbook

The recipe for an effective semiclassical relational
evolution of a quantum system

A systematic method for switching between different clocks in semiclassical
regime is now available for investigating the evolution of more interesting, non-
integrable systems. Using this method, it is possible to obtain semiclassical solu-
tions which follow classical trajectory if the state is initially sufficiently sharply
peaked and corresponding classical trajectory is sufficiently well–behaved. In
generic case, effective relational dynamics breaks down in the region of maximal
expansion on account of a wealth of structure on all scales of the chaotic model
and no change of clock can remedy this. Generically, a good relational evolution
appears to be only a transient and semiclassical phenomenon. Nevertheless, the
results for the well–behaved trajectory are still valuable as they are the first step
beyond a classical treatise and we therefore wish to summarise the main points
of the effective treatment in the following ‘recipe’:

1. Perform effective analogue of Dirac quantisation:
impose Cpol = 〈p̂olĈ〉 = 0 for all polynomials in basic variables.

2. Truncate the system at your favourite order N of ~N .

3. Perform classical type constraint analysis.

4. Partially fix gauge freedom: choose your Zeitgeist.

5. Interpret remaining quantum flow as the dynamics of the system with
respect to the chosen clock. (The clock picks up imaginary contribution as
is required for the consistency and reality of evolving variables.)

6. Pathologies of non-global clocks near their turning points can be avoided
by systematic translation between different Zeitgeister.

7. Semiclassical evolution is patched by different ‘physical coordinate sys-
tems’.

69
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