

STATUS OF BFKL POMERON ^a

Marcello Ciafaloni

*Dipartimento di Fisica dell'Università, Firenze
and INFN, Sezione di Firenze, Italy*

I summarize recent results on the small- x behaviour of QCD structure functions, which improve the formulation of the next-to-leading BFKL equation by incorporating renormalization group constraints in the collinear limits.

I have been asked to report on the status of the hard pomeron^{1,2,3}. So, I should immediately say that it is recovering from a serious illness, thanks to massive injections of Renormalization Group (R.G.)^{4,5}.

Since last year, a somewhat paradoxical situation has arisen. On one hand, the Q^2 -dependence of the small- x rise of the structure functions at HERA is perfectly explained by two-loop QCD evolution, except perhaps for a residual slope $\frac{d \log F_2}{d \log 1/x} \simeq .2$ at $Q_0^2 = 4$ (GeV)².

On the other hand, the original prediction $F_2(x) \sim x^{-\omega_P(Q^2)}$ of the BFKL equation, yielding too large a slope at leading level ($\omega_P = .55$ for $\alpha_s = .2$) has been pushed to NL level after many years of theoretical effort. The result is^{2,3}

$$\omega_P(Q^2) = 4 \log 2 \bar{\alpha}_s(Q^2) (1 - 6.47 \bar{\alpha}_s(Q^2) + \dots), \bar{\alpha}_s = \frac{N_c \alpha_s}{\pi}, \quad (1)$$

showing a huge NL coefficient, so that the small- x expansion appears essentially unstable⁶.

Nevertheless, such seemingly contradictory outputs describe two different regimes of the same theory (QCD), so that a calculational method interpolating both must be found, eventually. The obvious hint is to make the small- x expansion consistent with the QCD collinear behaviour; how, is what I am going to describe.

Note first that the BFKL approach is normally set up for hard processes with two scales, that we call k (upper) and k_0 (lower) scale. For instance, we may set $k = Q$ (the photon virtuality)

^aWork supported in part by the E.U. QCDNET contract FMRX-CT98-0194 and by MURST (Italy)

and $k_0 = p_\perp$ (the pion transverse momentum) if we look at DIS scattering with production of a forward hard pion. The total DIS cross section case obtains for $k_0 =$ hadronic mass, so that $k \gg k_0$ (single scale limit). Roughly, one has the k -factorization formula:⁷

$$\sigma(s, \mathbf{k}, \mathbf{k}_0) = \int \frac{d\omega}{2\pi i} \left(\frac{S}{kk_0} \right)^\omega G_\omega(\mathbf{k}, \mathbf{k}_0) \text{ (Impact Factors)}, \quad (2)$$

where we have taken the symmetrical scaling variable kk_0/s and G_ω is the BFKL gluon Green's function.

The collinear properties of (1) come out in the DGLAP limit $k \gg k_0$, where RG factorization is argued to hold ($t = \log \frac{k^2}{\lambda^2}$)⁸

$$G_\omega(\mathbf{k}, \mathbf{k}_0) = \mathcal{F}_\omega(t) \tilde{\mathcal{F}}_\omega(t_0) + \text{higher twists}, \quad (t - t_0 \gg 1) \quad (3)$$

Here $\mathcal{F}_\omega(t)$ is the solution of the homogeneous BFKL equation

$$K_\omega \mathcal{F}_\omega = \omega \mathcal{F}_\omega \quad (4)$$

and carries the t -dependence of the gluon density, while $\tilde{\mathcal{F}}_\omega(t_0)$ carries the Pomeron singularity ω_P and contains a nonperturbative part, depending on the details of $\alpha_s(t)$ in the strong coupling region $k^2 \simeq \lambda^2$ (where the perturbative Landau pole is).

The first improvement of Eq.(4) that we propose⁴ is to construct a RG invariant kernel K_ω with correct collinear behaviour to all orders. Its form is

$$K_\omega(\mathbf{k}, \mathbf{k}') = \sum_{n=0}^{\infty} (\bar{\alpha}_s(t))^{n+1} K_n^\omega(\mathbf{k}, \mathbf{k}'), \quad (5)$$

where the K_n^ω 's are scale-invariant kernels, with the eigenvalue functions $\chi_n^\omega(\gamma)$, to be constructed with the requirements of (i) matching the exact expressions $\chi_0(\gamma)$ and $\chi_1(\gamma)$ of the leading and NL kernels^{2,3} and (ii) having the correct collinear singularities to all orders, of the form⁴

$$\begin{aligned} \chi_n^\omega(\gamma) &\simeq \frac{1 \cdot A_1 \dots (A_1 + (n-1)b)}{(\gamma + \frac{1}{2}\omega)^{-n-1}}, \quad \gamma \ll 1, \\ &\simeq \frac{1 \cdot (A_1 - b) \dots (A_1 - nb)}{(1 - \gamma + \frac{1}{2}\omega)^{-n-1}}, \quad 1 - \gamma \ll 1, \end{aligned} \quad (6)$$

where $A_1(\omega)$ is the ω -moment of the nonsingular part of the DGLAP splitting function $P_{gg} - 2N_c/z$, and b is the beta function coefficient.

The peculiar ω -dependence of the γ -singularities in Eq.(6) is due to the choice of kk_0/s as scaling variable in Eq.(2). The structure (6) insures ω -independent poles at $\gamma = 0$ for scaling variable k^2/s and $k \gg k_0$, and at $\gamma = 1$ in the opposite limit, as required by single-logarithmic scaling violations in the two cases. The ω -shift is thus a method to resum double-logs⁴ in the scale-dependent contributions to the kernel³. The precise form of χ_0^ω and χ_1^ω can then be derived on this basis.

The second important improvement is to provide a solution for Eq.(4) with the kernel (5) by the so-called ω -expansion method⁵. That is

$$\mathbf{k}^2 \mathcal{F}_\omega(t) = \int \frac{d\gamma}{2\pi} e^{\gamma t - \frac{1}{b\omega} X(\gamma, \omega)} = \dot{g}_\omega(t), \quad (7)$$

where

$$\chi(\gamma, \omega) = \frac{\partial}{\partial \gamma} X(\gamma, \omega) = \chi_0^\omega(\gamma) + \omega \frac{\chi_1^\omega(\gamma)}{\chi_0^\omega(\gamma)} + \mathcal{O}(\omega^2), \quad (8)$$

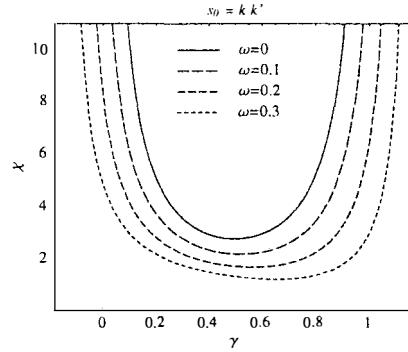


Figure 1: The effective eigenvalue function $\chi(\gamma, \omega)$ for different values of ω

and the terms of NNL order or higher have explicit form in terms of the χ_n^ω 's, with $n \geq 2$.

Superficially, Eq.(8) amounts to the replacement $\bar{\alpha}_s(t) \rightarrow \omega/\chi_0^\omega$ in the NL expansion, but it is actually a general method for solving Eq(4), which is able to resum the collinear behaviour. A striking feature of (8) is that it has simple γ -poles only, and that the leading twist ones cancel from NNL level on.

The above improvements stabilize the estimate of both anomalous dimension and hard pomeron, in a nearly scheme-independent way⁵. Fig.(1) shows $\chi(\gamma, \omega)$ in Eq.(8) for various values of ω . It decreases smoothly with ω by retaining its shape, it has shifted γ -poles and a stable minimum up to sizeable ω -values.

The resummed L,NL,... anomalous dimensions are related to a saddle point value $\tilde{\gamma}_\omega(t)$ of Eq.(7), given by $b\omega t = \chi(\tilde{\gamma}, \omega)$. The latter fails at some ω value $\omega_s = \chi_{\min}(t)/bt$, which signals the breakdown of the small- x expansion and is plotted in Fig.(2). Compared to its leading and NL approximations, the resummed estimate works up to low t -values, and is $\omega_s = .27 \div .32$ for $\bar{\alpha}_s = .2 \div .3$.

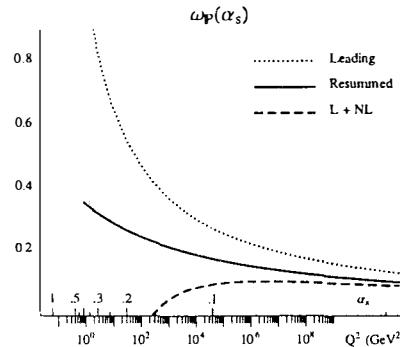


Figure 2: The leading, pure next-to-leading and resummed hard pomeron.

Furthermore, the anomalous dimension itself can be continued past the saddle point failure^{5,9} by direct evaluation of Eq.(7) and of $\gamma_{\text{eff}}(\gamma, t) = \dot{g}_\omega(t)/g_\omega(t)$. The result is shown in Fig. (3), and compared to L and NL approximations. The resummed expression joins smoothly to the fixed order perturbative one until very close to the singularity point, which is somewhat lower

than the ω_s value (see⁵ for the details).

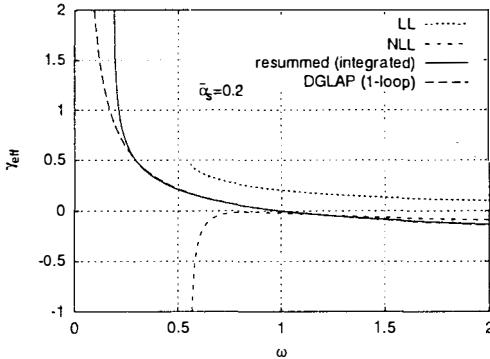


Figure 3: The anomalous dimension in various approximations.

To sum up, the good news come from an improved small- x equation, which incorporates the RG constraints, is able to predict resummed anomalous dimensions which interpolate smoothly between fixed order and hard pomeron regimes, and in able to provide a stable estimate of the latter.

Acknowledgments

I wish to thank Dimitri Colferai and Gavin Salam for friendly and helpful discussions.

References

1. E.A. Kuraev, L.N. Lipatov and V.S. Fadin, JETP **45** (1978) 199; Y.Y. Balitsky and L.N. Lipatov, Sov.J.Nucl.Phys. **28**(1978) 22.
2. V.S. Fadin and L.N. Lipatov, Phys.Lett.**429B** (1998) 127, and references therein.
3. G. Camici and M. Ciafaloni, Phys.Lett.**412B** (1997) 396 and **430B** (1998) 349, and references therein.
4. G. Salam, JHEP **9807** (1998) 19; M. Ciafaloni and D. Colferai, hep-ph/9812366.
5. M. Ciafaloni, D. Colferai and G. Salam, to appear.
6. J. Blümlein and A. Vogt, Phys. Rev. **D58** (1998) 014020; D.A. Ross., Phys. Lett. **431B** (1998) 161; E.M. Levin, hep-ph/9806228.
7. M. Ciafaloni, Phys.Lett.**429B** (1998) 363.
8. J.C. Collins and J. Kwiecinski, Nucl. Phys. **B 316** (1989) 307; G. Camici and M. Ciafaloni Phys.Lett.**395B** (1997) 118.
9. R.S. Thorne, hep-ph/9901331.