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I summarize recent results on the small-z behaviour of QCD structure functians, which im-
prove the formulation of the next-to-leading BFKL equation by incorporating renormalization
group constraints in the collinear limits.

I have been asked to report on the status of the hard pomeron 2. So, I should immediately
say that it is recovering from a serious illness, thanks to massive injections of Renormalization
Group (R.G.) 45,

Since last year, a somewhat paradoxical situation has arisen. On one hand, the Q2-depen-
dence of the small-z rise of the structure functions at HERA is perfectly explained by two-loop
QCD evolution, except perhaps for a residual slope dillfé% ~.2 at Q3 =4 (GeV)2.

On the other hand, the original prediction F;(z) ~ z~9P(@%) of the BFKL equation, yielding
too large a slope at leading level (wp = .55 for a; = .2) has been pushed to NL level after many
years of theoretical effort. The result is 23

2 = (2 = (N2 - Neas
wp(Q?) =4log2a,(Q°) (1-6.47a5(Q°) + .,.),a3=——7r—— , (1)
showing a huge NL coefficient, so that the small-z expansion appears essentially unstable®.

Nevertheless, such seemingly contradictory outputs describe two different regimes of the same
theory (QCD), so that a calculational method interpolating both must be found, eventually. The
obvious hint is to make the small-z expansion consistent with the QCD collinear behaviour; how,
is what I am going to describe.

Note first that the BFKL approach is normally set up for hard processes with two scales, that
we call k (upper) and kg (lower) scale. For instance, we may set k = @ (the photon virtuality)
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and ky = p; (the pion transverse momentum) if we look at DIS scattering with production of
a forward hard pion. The total DIS cross section case obtains for kg = hadronic mass, so that
k > ko (single scale limit). Roughly, one has the k-factorization formula: 7

o(s, ko ko) = [ & ( d

w
2 %> Gu(k,ko) (Impact Factors), (2)

where we have taken the symmetrical scaling variable kko/s and G, is the BFKL gluon Green’s
function.

The collinear properties of (1) come out in the DGLAP limit k£ 3> kg, where RG factorization
is argued to hold (t = log %) 8

Gu(k,kq) = Fo(t)Fu(to) + higher twists , (t — to > 1) (3)
Here F,(t) is the solution of the homogeneous BFKL equation
Ky F, =wF, (4)

and carries the t-dependence of the gluon density, while F,,(to) carries the Pomeron singularity
wp and contains a nonperturbative part, depending on the details of a(t) in the strong coupling
region k% ~ A2 (where the perturbative Landau pole is).

The first improvement of Eq(4) that we propose 4 is to construct a RG invariant kernel K,
with correct collinear behaviour to all orders. Its form is

dequfxmmw“ Kk k'), (5)

n=0

where the K%’s are scale-invariant kernels, with the eigenvalue functions x4 (7), to be constructed
with the requirements of (i) matching the exact expressions xo(v) and x;(v) of the leading and
NL kernels 23 and (i) having the correct collinear singularities to all orders, of the form*
CApL (A —1)b
v = PRI e,
1-(A1=b)...(A; —nb)
(1 =7+ sw) -t

, -k, (6)

where A;(w) is the w-moment of the nonsingular part of the DGLAP splitting function Py —
2N./z, and b is the beta function coefficient.

The peculiar w-dependence of the y-singularities in Eq.(6) is due to the choice of kkg/s as
scaling variable in Eq.(2). The structure (6) insures w-independent poles at ¥ = 0 for scaling
variable k?/s and k > kg, and at v = 1 in the opposite limit, as required by single-logarithmic
scaling violations in the two cases. The w-shift is thus a method to resum double-logs* in the
scale-dependent contributions to the kernel®. The precise form of x4 and x4 can then be derived
on this basis.

The second important improvement is to provide a solution for Eq.(4) with the kernel (5)
by the so-called w- expansion method®. That is

KE(t) = [ ST = (), M
where "
X(1w) = - X (1,w) = xi (1) +w S0 4 O(w?), 8)
d X0 (’7)



o=k k’
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Figure 1: The effective eigenvalue function x(7y,w) for different values of w

and the terms of NNL order or higher have explicit form in terms of the x%’s, with n > 2.

Superficially, Eq.(8) amounts to the replacement &@5(t) = w/x§ in the NL expansion, but it
is actually a general method for solving Eq(4), which is able to resum the collinear behaviour.
A striking feature of (8) is that it has simple «y-poles only, and that the leading twist ones cancel
from NNL level on.

The above improvements stabilize the estimate of both anomalous dimension and hard
pomeron, in a nearly scheme-independent way ®. Fig.(1) shows x(7,w) in Eq.(8) for various
values of w. It decreases smoothly with w by retaining its shape, it has shifted v-poles and a
stable minimum up to sizeable w-values.

The resummed L,NL,... anomalous dimensions are related to a saddle point value 9,,(t) of
Eq.(7), given by bwt = x(¥,w). The latter fails at some w value ws = Xmin(t)/bt, which signals
the breakdown of the small-z expansion and is plotted in Fig.(2). Compared to its leading and
NL approximations, the resummed estimate works up to low t-values, and is wy = .27 + .32 for
as = 2+.3.
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Figure 2: The leading, pure next-to-leading and resummed hard pomeron.

Furthermore, the anomalous dimension itself can be continued past the saddle point failure
59 by direct evaluation of Eq.(7) and of veq(7,t) = §u(t)/gu(t). The result is shown in Fig. (3),
and compared to L and NL approximations. The resummed expression joins smoothly to the
fixed order perturbative one until very close to the singularity point, which is somewhat lower
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than the w; value (see® for the details).
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Figure 3: The anomalous dimension in various approximations.

To sum up, the good news come from an improved small-z equation, which incorporates the
RG constraints, is able to predict resummed anomalous dimensions which interpolate smoothly
between fixed order and hard pomeron regimes, and in able to provide a stable estimate of the
latter.
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