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I summarize recent results on the small-x behaviour of QCD structure functiqns, which im­
prove the formulation of the next-to-leading BFKL equation by incorporating renormalization 
group constraints in the collinear limits. 

I have been asked to report on the status of the hard pomeron 1 •2•3 . So, I should immediately 
say that it is recovering from a serious illness, thanks to massive injections of Renormalization 
Group (R.G.) 4•5. 

Since last year, a somewhat paradoxical situation has arisen. On one hand, the Q2-depen­
dence of the small-x rise of the structure functions at HERA is perfectly explained by two-loop 
QCD evolution, except perhaps for a residual slope J1�:tA c::: .2 at Qa = 4 (GeV)2 . 

On the other hand, the original prediction F2 (x) � x-wp(Q') of the BFKL equation, yielding 
too large a slope at leading level (wp = .55 for a, = .2) has been pushed to NL level after many 
years of theoretical effort. The result is 2•3 

wp(Q2) = 4 log 2a, (Q2) ( 1 - 6.47as (Q2) + . . . ) , as =  Neas , 
7r 

showing a huge NL coefficient, so that the small-x expansion appears essentially unstable 6 .  

( 1 )  

Nevertheless, such seemingly contradictory outputs describe two different regimes o f  the same 
theory (QCD) , so that a calculational method interpolating both must be found, eventually. The 
obvious hint is to make the small-x expansion consistent with the QCD collinear behaviour; how, 
is what I am going to describe. 

Note first that the BFKL approach is normally set up for hard processes with two scales, that 
we call k (upper) and ko (lower) scale. For instance, we may set k = Q (the photon virtuality) 
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and k0 = p� (the pion transverse momentum) if we look at DIS scattering with production of 
a forward hard pion. The total DIS cross section case obtains for ko = hadronic mass, so that 
k » ko (single scale limit) .  Roughly, one has the k-factorization formula: 7 

I dw ( S )w 
a(s, k, ko ) = 

27ri kko 
Gw(k, ko ) (Impact Factors) ,  (2) 

where we have taken the symmetrical scaling variable kko/.s and Gw is the BFKL gluon Green's 
function. 

The collinear properties of ( 1 )  come out in the DGLAP limit k » ko , where RG factorization 
is argued to hold (t = log � ) 8 

Gw (k, ko ) = :Fw (t)fw (to) + higher twists , (t - to » 1) (3) 

Here :Fw(t) is the solution of the homogeneous BFKL equation 

(4) 

and carries the t-dependence of the gluon density, while fw (to) carries the Pomeron singularity 
wp and contains a nonperturbative part, depending on the details of a8(t) in the strong coupling 
region k2 '.:::'. >.2 (where the perturbative Landau pole is) . 

The first improvement of Eq( 4) that we propose 4 is to construct a RG invariant kernel Kw 
with correct collinear behaviour to all orders. Its form is 

00 
Kw (k, k') = L (a8 (t )t+1 K�(k, k') ,  

n=O 
(5) 

where the K':{'s are scale-invariant kernels, with the eigenvalue functions ;:(;; (/'), to be constructed 
with the requirements of (i) matching the exact expressions xo(r) and x1 (r) of the leading and 
NL kernels 2•3 and (ii) having the correct collinear singularities to all orders, of the form 4 

1 · Ai . . . (Ai + (n - l )b) 
(r + �w)-n- i  

1 · (Ai - b )  . . . (A i  - nb) 

(1 - I + �w)-n- i 

I «  1 ,  

(6) 

where Ai (w) is the w-moment of the nonsingular part of the DGLAP splitting function P99 -
2Nc/ z, and b is the beta function coefficient. 

The peculiar w-dependence of the 1-singularities in Eq. (6) is due to the choice of kko/ s as 
scaling variable in Eq. (2) .  The structure (6) insures w-independent poles at / = 0 for scaling 
variable k2 / s and k » k0, and at I = 1 in the opposite limit, as required by single-logarithmic 
scaling violations in the two cases. The w-shift is thus a method to resum double-logs 4 in the 
scale-dependent contributions to the kernel 3. The precise form of Xo and xi can then be derived 
on this basis. 

The second important improvement is to provide a solution for Eq. (4) with the kernel (5) 
by the so-called w- expansion method 5 .  That is 

(7) 

where 
( ) a X ( ) w (  ) x'l (1) O( 2 )  X 1, w  = -8 1, w  = Xo 1 +w --w-( )  + (u , 

I Xo I 
(8) 
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Figure 1: The effective eigenvalue function x(r, w) for different values of w 

and the terms of NNL order or higher have explicit form in terms of the x;:;'s, with n ;::: 2. 
Superficially, Eq. (8) amounts to the replacement a8 (t ) � w/x� in the NL expansion, but it 

is actually a general method for solving Eq(4) , which is able to resum the collinear behaviour. 
A striking feature of (8) is that it has simple 1-poles only, and that the leading twist ones cancei 
from NNL level on. 

The above improvements stabilize the estimate of both anomalous dimension and hard 
pomeron, in a nearly scheme-independent way 5 . Fig. ( 1 ) shows x(r, w) in Eq. (8) for various 
values of w. It decreases smoothly with w by retaining its shape, it has shifted 1-poles and a 
stable minimum up to sizeable w-values. 

The resummed L ,NL,. .. anomalous dimensions are related to a saddle point value i'w (t) of 
Eq. (7), given by bwt = x(i', w) . The latter fails at some w value w5 = Xmin (t)/bt ,  which signals 
the breakdown of the small-x expansion and is plotted in Fig. (2) . Compared to its leading and 
NL approximations, the resummed estimate works up to low t-values, and is w, = .27 7 .32 for 
as = .2 7 .3 . 
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Figure 2: The leading, pure next-to-leading and resummed hard pomeron. 

Furthermore, the anomalous dimension itself can be continued past the saddle point failure 
5•9 by direct evaluation of Eq.(7) and of /err (/, t) = iJw (t)/gw (t ) .  The result is shown in Fig. (3) , 
and compared to L and NL approximations. The resummed expression joins smoothly to the 
fixed order perturbative one until very close to the singularity point, which is somewhat lower 
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than the w, value (see 5 for the details) . 
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Figure 3: The anomalous dimension in various approximations. 

To sum up, the good news come from an improved small-x equation, which incorporates the 
RG constraints, is able to predict resummed anomalous dimensions which interpolate smoothly 
between fixed order and hard pomeron regimes, and in able to provide a stable estimate of the 
latter. 
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