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Abstract

Cosmology is currently sitting on a ticking time bomb that will result

in an unprecedented explosion in the quantity and quality of data. In

preparation, physicists are starting to incorporate into their theoretical

predictions more of the physical, observational and instrumental effects

which, until now, could be overlooked. In practice, this translates into

a dramatic increase in the number of parameters that future analyses

will have to consider. This combination of large data sets with complex

models will (and in many cases already does) overwhelm the inference

methods we currently use to constrain the values of these parameters.

In this thesis, we propose two solutions to this problem. First, we show

how gradient-based inference algorithms can dramatically speed up the

numerical marginalisation of high dimensional parameter spaces. Second,

we show how analytical marginalisation schemes, such as the Laplace ap-

proximation, can achieve similar speed increases. Crucially, both these

methods rely on having access to computationally affordable gradients of

the cosmological models, stressing the importance of developing differen-

tiable analyses pipelines for future cosmological surveys.





Chapter 1

Introduction

1.1 Cosmology

1.1.1 Background

Cosmology is the study of the Universe as a whole. On such large scales (megaparsecs

[Mpc] to gigaparsecs [Gpc]), the primary form of interaction is the force of gravity.

While the exact place of gravity alongside the other fundamental forces in the stan-

dard model is uncertain, cosmologists have come up with a very successful operational

understanding of gravity, General Relativity (GR). GR proposes that the observed

richness of gravitational interactions boils down to bodies finding their shortest path

through a warped space-time whose curvature is sourced by the mass of the very same

bodies [6–8] (See Fig. 1.1).

In the absence of matter, the intertwining of space and time is given by the

Minkowski metric:

ηµν =

(
−c2 0

0 δij

)
, (1.1)

where c is the speed of light and δij is the Kronecker delta symbol which provides the

metric in traditional Euclidean spaces. Thus, distances on this manifold are given by:

ds2 = dxνηνµdx
µ = −c2dt2 + dx2 + dy2 + dz2 . (1.2)

From now on we set the speed of light to one (c = 1) for convenience.

When matter is present, the metric needs to be found by solving the Einstein Field

Equations (EFE) which establish the relationship between matter and curvature:

Gµν + Λgµν = κTµν . (1.3)

The left-hand side of the EFE is known as the geometry term, while the right-hand

side is known as matter term. The geometry term captures the geometrical properties
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Figure 1.1: Visualisation of GR. In the absence of matter the space-time metric is
given by Eq. 1.1. When matter is introduced the space-time curves following the
EFE. Original picture credit: NASA.

of the space-time manifold given by the Einstein tensor Gµν , the cosmological constant

Λ and the space-time metric gµν . The matter term features the stress-energy tensor

Tµν which describes the energy-matter content of the Universe and κ, a proportionality

constant tuned to κ ≡ 8πG whereG is Newton’s constant such that Newtonian gravity

is returned in the small mass limit.

The EFE describe a complicated system of non-linear, coupled, tensorial equa-

tions which can only be solved numerically even for fairly simple distributions of

matter. Thus, cosmologists rely on assumptions to simplify Eq. 1.3 and solve for the

space-time metric. In Cosmology, the most important assumption is the Copernican

principle, which states we are not a privileged observer of the Universe and that what

we see must be the same as what other observers see, independent of their location.

For this to be the case, it follows that the Universe must be homogeneous and isotropic

on large enough scales. In other words, the Universe must be invariant under trans-

lations and rotations. These homogeneity and isotropy requirements imply that, for

a given time, the associated space-like hypersurface must possess constant curvature.

This set of assumptions is so vital to Cosmology that it is also often referred to as

the cosmological principle.

By combining the different implications of the Copernican principle we can con-

struct an ansatz for what the form of the solution to Eq. 1.3 should be, known as the

Friedmann, Lemâıtre, Robertson, and Walker (FLRW) metric [9, 10]:

gµν =


−1 0 0 0

0 a2(t)
1−kr2

0 0

0 0 a2(t)r2 0
0 0 0 a2(t)r2 sin2 θ

 , (1.4)
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where we have chosen spherical coordinates, {r, θ, ϕ}, to describe the spatial part of

the metric, a(t) is an unknown and k is the curvature constant of the space hyper-

surface. The role of a(t) is best understood by considering the line element of the

FLRW metric:

ds2 = −dt2 + a2(t)

[
dr2

1− kr2 + r2dΩ2

]
, (1.5)

where dΩ2 = dθ2 + sin2 θdϕ2. Thus a(t) rescales the spatial sector of the metric at

any given time, hence, it is known as the scale factor. Note that it is common to

reparameteriseEq. 1.4 in terms of the comoving radial distance, χ, such that the line

element is given by:

ds2 = −dt2 + a2(t)
[
dχ2 + E(χ, k)dΩ2

]
, (1.6)

where E(χ, k) is a function of curvature. In the absence of curvature r ≡ χ and

E(χ, k) ≡ χ2 such that the two parametrisations become equivalent. Thus, when

discussing flat models we will use the two coordinates indistinguishably.

The cosmological principle also implies that the distribution of matter in the

Universe must be equally invariant to translations and rotations. Assuming that

matter in the Universe is described by a perfect fluid, the stress-energy tensor can

then be written as

Tµν = (ρ+ p)UµUν + pgµν , (1.7)

where p(t) ≡ p and ρ(t) ≡ ρ are the mean pressure and energy density of Universe,

Uµ is the four-velocity of the fluid and gµν is the aforementioned metric.

Using Eq. 1.4 to compute the Einstein tensor and substituting Eq. 1.7 into the

right-hand side of Eq. 1.3 results in the Friedmann Field Equations (FFE), given by:

ȧ2

a2
=

8πG

3
ρ+

Λ

3
− k

a2
(1.8)

ä

a
= −4πG

3
(ρ+ 3p) +

Λ

3
(1.9)

where Eq. 1.8 is also known as the Hubble rate, H(a) ≡ ȧ/a. Thus, the FLRW metric

describes a Universe with a dynamical size that evolves according to the FFE, where

H > 0 describes an expanding Universe, H < 0 describes a contracting Universe and

finally H = 0 corresponds to a static Universe.

Unfortunately, Eqs. 1.8 and 1.9 define a system of two differential equations with

three unknown variables: a(t), p(t) and ρ(t), meaning that their solution is under-

determined. Thus, we must provide an additional equation. A good initial guess is

5



to enforce conservation of energy and momentum; i.e. ∇αT
α
β = 0, to derive a third

continuity equation. Doing this leads to the following conservation equation:

ρ̇+ 3
ȧ

a
(p+ ρ) = 0 . (1.10)

However, conservation of energy and momentum is already implied in the FFE by

the construction of the Einstein tensor through the twice contraction of the Bianchi

identities. Thus, Eq. 1.10 is not independent of the FFE. Instead, we must specify

the matter content in the Universe. In order to do so, we must introduce an equation

of state relating our matter density and pressure:

p = wρ , (1.11)

where w is that equation of state parameter and can be understood as the speed of

sound through the specific fluid squared1. Plugging Eq. 1.11 into Eq. 1.10 allows us

to find solutions for the evolution of the matter content of the Universe depending on

its nature, i.e. its value of w.

The current cosmological paradigm, the Λ - Cold Dark Matter (ΛCDM) model

[11], proposes that the Universe is composed of four different fluids: baryonic matter,

dark matter, radiation and dark energy. Baryonic matter corresponds to traditional

matter as described by the standard model of particle physics. Dark matter is an

enigmatic form of matter which is dark, meaning that it does not interact electro-

magnetically, only gravitationally. Radiation encompasses the photons and other

relativistic species (including massless neutrinos) travelling through the Universe.

Finally, dark energy is another mysterious electromagnetically dark fluid which is be-

lieved to be the contribution of the cosmological constant to the Hubble rate. Both

baryonic and dark matter are described by w = 0, such that the evolution of the total

matter density is given by:

ρm(t) = ρm 0a(t)−3 , (1.12)

where ρm 0 is matter density today. Radiation is described by w = 1/3. Hence,

radiation density evolves according to:

ρr(t) = ρr 0a(t)−4 , (1.13)

where ρr 0 is radiation density today. Finally, one can straightforwardly see that the

Λ contribution to the FFE is equivalent to that of a exotic form of matter with state

parameter w = −1.

1Note that interpreting w as the square of the speed of sound through the fluid is not so straight
forward when w takes negative values
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Substituting Eqs. 1.12 and 1.13 into Eq. 1.8 results into the ΛCDM expression

for the Hubble rate:

H2(a) =
8πGρm 0

3a3
+

8πGρr 0
3a4

+
Λ

3
− k

a2
, (1.14)

which is now a fully determined ordinary differential equation (ODE) from which we

can solve the scale factor to specify the FLRW metric in terms of the contents of the

Universe. However, it is possible to further simplify the expression in Eq. 1.14. In

order to do so, let us start by dividing both sides of Eq. 1.14 by H2(a) to obtain:

1 =
8πGρm0

3H2
a−3 +

8πGρr 0
3H2

a−4 +
Λ

3H2
− k

H2
a−2 , (1.15)

Now setting t = t0 and rearranging we get:

1 + Ωk = Ωcdm + Ωb + Ωr + ΩΛ , (1.16)

where Ωm ≡ 8πGρm 0/3H
2
0 , Ωr ≡ 8πGρr 0/3H

2
0 , ΩΛ ≡ Λ/3H2 and Ωk ≡ k

H2
0

are

matter, radiation, dark energy and curvature cosmological densities. The cosmological

curvature density has been repeatedly been measured to be consistent with Ωk = 0

[12, 13]. Using this knowledge, we can use Eq. 1.16 to write ΩΛ in terms of the other

cosmological densities leading to the following expression for the Hubble rate in the

flat ΛCDM model:

H(a) = H0

√
Ωma−3 + Ωra−4 + (1− Ωm − Ωr) . (1.17)

Armed with Eq. 1.17 we can answer one of the simplest, yet non-trivial, questions

in Cosmology: How far are objects in the cosmos? Assuming that we observe them

through light, the photons that reached us did so by following the radial null geodesics

of the manifold described by the FLRW metric (Eq. 1.4). This means that the 4-

modulus of the distance must be zero and that the only non-zero terms are the time

and the radial coordinate, leading us to the following expression:

ds2 = dxνgνµdx
µ = −dt2 + a2(t)dχ2 = 0 . (1.18)

Thus our radial separation to the source is given by:

χ(t) =

∫ 0

t

dt

a(t)
, (1.19)

where t is the time at which the photons were emitted. However, observers rarely have

access to the time of the emission of the photons. Instead, we normally measure the
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redshift of the source, z, i.e. how much the wavelength of the original light emission

has dilated due to the expansion of the Universe along its trajectory

z(t) ≡ λ0 − λ(t)

λ(t)
=
λ0(1− a(t))

λ0a(t)
=

1

a(t)
− 1 , (1.20)

where λ0 is the observed wavelength. We can then use the following substitution to

express Eq. 1.19 as a function of redshift:

dt = dz
dt

da

da

dz
=

−dz
H(z)(1 + z)

. (1.21)

Thus, in a flat ΛCDM model, the comoving distance (i.e. accounting for the expansion

of the Universe) is given by:

χ(z) =
1

H0

∫ z

0

dz√
Ωm(1 + z)3 + Ωr(1 + z)4 + (1− Ωm − Ωr)

. (1.22)

Astronomers rarely observe the comoving distance itself. Instead, we often observe

proxies of it. One of the most common ways in which distances are determined in

astronomy is by measuring the angle subtended by an object of known physical size

d. Assuming the angle subtended, θ, is small, the angular diameter distance to the

object is given by:

DA =
d

θ
. (1.23)

However, in an expanding Universe, the size of the object scales as d/a, where a is

the scale factor. Inserting this into Eq. 1.23 and solving for θ we get:

θ =
d/a

χ
, (1.24)

where χ is the previously derived comoving distance. Thus we can see that in an

expanding Universe, the angular diameter distance to an object is given by:

DA ≡ aχ =
χ

1 + z
. (1.25)

Another common proxy is the so called luminosity distance. The luminosity dis-

tance is related to the flux of photons (F ) through a comoving spherical shell irradi-

ated by an object of known luminosity (L):

F =
L

4πχ2
. (1.26)

In an expanding Universe, Eq. 1.26 needs to be modified to account for two effects.

First, the energy of the photons crossing the spherical shell will by reduced as a

8



consequence of redshift. Second, the interval between the arrival of different photons

will also be dilated by the expansion of the Universe. Adding these two effects into

Eq. 1.26 we obtain:

F =
La2

4πχ2
. (1.27)

Thus, in an expanding Universe the luminosity distance (DL) is given by:

DL ≡
χ

a
= (1 + z)χ . (1.28)

1.1.2 Inhomogeneities

So far we have concerned ourselves with the background dynamics of space-time due

to the presence of different species of matter as described by the EFE/FFE. In order to

do so, we have assumed the distributions of these different components to be perfectly

homogeneous and isotropic at every point in the history of the Universe. However,

galaxy surveys have uncovered that our Universe possess a large scale structure made

of objects that span entire fractions of the observable Universe such as the Sloan

Great Wall [14] or the Coma Cluster [15]. This large scale structure, often referred

to as the cosmic web [16], is believed to be the result of the gravitational collapse

of primordial matter inhomogeneities [17]. However, the origin of these primordial

inhomogeneities is still subject of speculation [18].

At first, it might seem like the presence of this large scale structure might violate

the cosmological principle. However, the cosmological principle only requires the

Universe to be statistically homogeneous and isotropic. Meaning that, on large enough

scales, the Universe possess the same statistical properties for all observers. This

means that on such scales the inhomogeneities can be considered to be small. Thus,

we can study the formation of this structure as a linear perturbation on top of a

FLRW background. In such a scenario, and on small enough scales, the gravitational

fields involved are weak enough that we can, for the most part, do away with GR and

follow the Newtonian dynamics of the fluid [7]. The dynamics of a non-relativistic

fluid are then determined by three equations:

Dv

Dt
= −∇p

ρ
−∇Φ , (1.29)

Dρ

Dt
= −ρ∇ · v , (1.30)

∇2Φ = 4πGρ , (1.31)
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where D/Dt = ∂t + v · ∇ is the Lagrangian derivative of the fluid. The first equation

is the Euler equation and it encapsulates conservation of momentum of the fluid. The

second equation describes the conservation of energy in the fluid. Finally, the last

equation is the Poisson equation for gravitational collapse. In a fully relativistic set

up, these equations would correspond to the space-like and time-like components of

the divergence stress energy tensor of a perfect fluid and the time-like FFE.

Our goal now is to linearise these equations by assuming small perturbations in

the density, velocity and gravitational fields:

ρ(t,x) = ρ̄(t) + δρ(t,x) , (1.32)

v(t,x) = v̄(t) + δv(t,x) , (1.33)

Φ(t,x) = Φ̄(t) + δΦ(t,x) , (1.34)

where ρ̄(t) is the background FLRW density, Φ̄(t) is its associated gravitational po-

tential and v̄(t) is the velocity due to the expansion rate of the Universe given by

Hubble’s law v̄(t) = Hx.

Since the perturbations are small we can set the quadratic terms to zero. More-

over, the zero-th term cancels due to the FFE. Thus, one arrives at the following

linearised equations for the dynamics of the perturbations:

d

dt
(δv) = −∇δp

ρ̄
−∇δΦ− δv ·H , (1.35)

d

dt
δ = −∇ · δv , (1.36)

∇2δΦ = 4πGρ̄δ , (1.37)

where d/dt = ∂t + v̄ · ∇ and δ ≡ ρ/ρ̄− 1.

Given that we are interested in the gravitational collapse dynamics on top of the

background expansion of the Universe, it is useful to make the expansion implicit in

our coordinates such that the equations of motion only explicitly describe the per-

turbed dynamics. We can achieve this by introducing a series of comoving coordinates

that move along the Hubble flow:

x(t) ≡ a(t)χ(t) , (1.38)

δv(t) ≡ a(t)u(t) , (1.39)

∇x ≡
1

a
∇χ , (1.40)

(∂t)x = (∂t)χ–H χ∇χ . (1.41)
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From now on we will assume that ∂t and ∇ indicate the comoving time and spatial

derivatives (i.e. with respect to χ) and drop the subscripts. Thus, for an observer

moving alongside the expansion of the Universe, Eqs. 1.35 and 1.36 appear as:

u̇ + 2Hu =
∇δΦ
a2
− ∇δp

ρ̄
, (1.42)

δ̇ = −∇ · u , (1.43)

∇2δΦ = 4πGa2ρ̄δ , (1.44)

where we have introduced ˙≡ d/dt for simplicity.

We find ourselves in a similar situation to the one we were in when studying

the FFE. The conservation equations of the fluid and its Poisson equation defines

a system of 3 coupled ODEs with 4 variables: δ, u, δΦ and δp. Similarly to then,

the solution is to bring the state equation of the fluid in. Since we are interested in

the large scales, we can assume that the fluid is pressureless. This because, generally

speaking, the baryonic effects that would source said pressure have a much shorter

effective range than gravitationally effects and thus only become relevant at small

scales. Thus, we can get rid of the last term of Eq. 1.42. We can then construct a

fully determined ODE for the amplitude of the matter inhomogeneities. In order to

do so, let us take the gradient of Eq. 1.42:

∇ · u̇ + 2H∇ · u =
∇2δΦ

a2
. (1.45)

Then we can take time derivative of Eq. 1.43 to obtain:

δ̈ = −∇ · u̇ . (1.46)

Thus substituting Eqs. 1.43 and 1.46 into Eq. 1.45 we can remove the dependency on

u. Moreover, we can use the Poisson equation to express the the right-hand side of

Eq. 1.45 in terms of the background density. Putting all of this together, we arrive at

the following second order, linear, homogeneous equation for amplitude of the matter

inhomogeneities:

δ̈ + 2Hδ̇ − 3

2
Ωm(z)H2δ = 0 , (1.47)

known as the Jeans equation. In order to relate the predictions of the Jeans equation

to observations it is useful to rewrite it in terms of the variable f = d ln δ/d ln a,

known as the growth rate, leading to the following formulation:

f ′ + f 2 +

(
1 +

d ln aH

d ln a

)
f =

3

2
Ωm(z) , (1.48)
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where f ′ ≡ d f/d ln a and Ωm(z) = (ΩmH
2
0 )/(a3H2).

Since during our derivation we considered matter to be presureless fluid, our ex-

pression for the Jeans equation does not involve any scale-dependent terms 2. Thus,

inhogeneities evolve equally regardless of their scale. In other words, the evolution of

matter inhomogeneities is self-similar. Therefore, the solution to the Jeans equation

is a function exclusively of redshift:

D(z) =
δ(z,x)

δ(0,x)
. (1.49)

This function is known as the linear growth factor since it describes the evolution of

the matter inhomogeneities under gravitational collapse in the linear regime. More-

over, the linear growth factor can be directly related to the growth rate as:

f(z) =
d lnD(z)

d ln a
. (1.50)

Thus it also possible, and sometimes convenient, to write to Eq. 1.48 as a system of

ODEs on D(z) and f(z) as we will see in Sect. 2.

1.1.3 Power Spectra

In the last section, we showed how matter inhomogeneities exist and evolve in an

statistically homogeneous and isotropic Universe. As a matter of fact, most of modern

observational cosmology is concerned with studying the statistical properties of these

inhomogeneities.

The primordial inhomogeneities onto which surrounding matter started accreting

are believed to be Gaussianly distributed [7, 8]. This belief is strongly supported

by observations of the Cosmic Microwave Background (CMB) [18, 19]. The CMB is

the background of photons that were first able to travel freely after recombination,

380,000 years after the big bang. The inhomogeneities in the temperature and po-

larisation of the CMB are sourced by perturbations in the density of photons and in

the gravitational potential at early times, and thus provide a picture of the state of

matter in the early Universe. From then, the action of gravity has had two effects

on this Gaussian field. On the one hand, the accretion of matter onto small inho-

mogeneities increased the overall variance of the field over time. On the other hand,

since the density of a region cannot go below zero gravity, the distribution of the

inhomogeneities is skewed to be dominated by empty regions or voids, leading to a

2Scale-dependent terms would come about in the form of pressure gradients
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non-Gaussian distribution at late times. Thus the Universe today displays a richly

non-Gaussian structure with great degree of variance.

If we stick to large enough scales the distribution of matter is still roughly Gaus-

sian. This is because, as we saw in Sect. 1.1.2, in this regime the action of gravity is

effectively linear. Since the linear combination of Gaussian variables is another Gaus-

sianly distributed variable, linear evolution preserves the Gaussianity of the matter

density field. For a Gaussian field, all its statistical information is contained in its

first two moments: the mean and the variance (which will be defined formally in Sect.

1.2). Of these two statistics, we are particularly interested in studying the variance

of the field for two reasons. First, the variance of the inhomogeneities directly traces

the action of gravity. Second, by construction, the mean of the inhomogeneities is

zero.

Before we go any further, it is important to notice that studying the variance of the

matter density field of the Universe is not a particularly well posed question. This is

because the concept of variance is defined as an average over a multitude of different

realisations. However, there is only one Universe. Once again, the cosmological

principle is key to wiggle ourselves out of this hurdle. Since we expect the Universe

to be homogeneous and isotropic over large enough scales, we can assume that by

averaging over large enough volumes we return the true underlying statistics of the

Universe. In other words, as the volume of integration increases, we expect the volume

average to resemble the ensemble average over many Universes. This equivalence

between volume and ensemble averages is known as ergodicity and will come back

later in the context of Monte Carlo Markov chains.

Now let us start by defining the two point correlation function of the matter

density field,

ξ(x,y) = ⟨δ(x)δ(y)⟩ , (1.51)

where x and y are two arbitrary position vectors and ⟨·⟩ denotes the ensemble average

over all possible Universes. Since the matter density field is statistically homogeneous,

it can be shown that the correlation function can only depend on the separation vector

between two two points, r = x−y. Moreover, the statistical isotropy of matter density

field implies that there cannot be a preferred direction to the correlation function.

Thus, the correlation function can only depend on the magnitude of the separation

vector matters, r ≡ |r|.
Separating the large linear scales, where the cosmological principle holds, from

the small problematic scales in real space can be very challenging. An effective way
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of doing so is to think of the observed density field as a continuous3 superposition of

different Fourier modes:

δk ≡
∫
dx e−ik·xδ(x) ↔ δ(x) ≡

∫
dk

(2π)3
eik·x δk. (1.52)

Thus, we can write the previous correlation function as a Fourier expansion [20]:

ξ(r) = ⟨δ(x)δ(x + r)⟩ =

〈∫
dk

(2π)3

∫
dq

(2π)3
δkδ

∗
qe

i(k−q)xe−ikr

〉
. (1.53)

There are a number of important simplifications we can make to Eq. 1.53. First,

we can use the completeness of the Fourier basis to invoke a Dirac delta function and

remove one of the summations in Eq. 1.53 leading to:

ξ(r) =
1

(2π)3

∫
dk3 Pk e

ik·r , (1.54)

where

⟨δkδq⟩ ≡ (2π)3δD(k + q)P (k) , (1.55)

is the matter spectral density of Fourier modes often referred to as matter power

spectrum for brevity and δD denotes the Dirac delta function. Second, we can bring

back the isotropy requirement to make Eq. 1.54 a function of the magnitude of the

separation vector only. Similarly, since the field is isotropic its power spectrum can

only depend on the magnitude of the wave-vectors, k. Incorporating these into Eq.

1.54 we obtain:

ξ(r) =
1

2π2

∫
P (k)

sin kr

kr
k2dk . (1.56)

The question is now: what is the shape of P (k)? The current leading theory for

the early expansion of the Universe, Inflation, predicts that the primordial (i.e. at

times shortly after the beginning of the Universe) matter power spectrum should be

a featureless power law4:

P (k) ∝ kns , (1.57)

where ns is known as the spectral index and controls the prominence of small versus

large scales. Moreover, Inflation requires a roughly scale invariant primordial matter

power spectrum, meaning ns ∼ 1. Recent observations of the CMB [13, 19] have

found the spectral index to be just below one, as Inflation would suggest.

3The expression in Eq. 1.52 becomes continuous as a result of imposing periodic boundary
conditions in the limit of infinitely large volumes. This is done to incorporate fact the Universe is
indeed infinite!

4This is because the accelerated expansion of Inflation has no preferred scale, i.e. all the scales
evolve for the same amount of time.
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Fortunately for careers in Cosmology, the matter power spectrum is not a com-

pletely featureless power law. While Eq. 1.57 is a good starting point, P (k) actually

possess a rich range of features due to the interactions of dark and baryonic matter

as well as radiation at different stages of the evolution of the Universe. Moreover, we

expect the matter power spectrum to evolve in time as gravity progressively shifts

power from the larger scales into the smaller scales.

Predicting the original shape of these features and their evolution until today is a

theoretically challenging task. To correctly include large scales, we must work with

relativistic perturbation theory. Furthermore, treating matter as a perfect fluid is no

longer accurate. Instead, we have to consider the phase space distribution of matter

W (x,p) which describes the probability of finding a number of particles at a given

position x with a given momentum p. The evolution of W (x,p) is given by the

Boltzmann-Einstein equation:(
pµ

∂

∂xµ
− Γµ

αβp
αpβ

)
W = C , (1.58)

where Γ is the Levi-Civita connection of the space-time metric and C contains the

scattering physics of the matter species being evolved (Compton scattering, breaking

radiation... etc). Solving this system involves a set of coupled partial differential

equations, and can only be done numerically [21]. Computer codes that solve the

Einstein-Boltzmann equations are known as Boltzmann codes. Currently the two

most popular cosmological codes are CAMB [22] and CLASS [23].

Hopefully the paragraph above has been intimidating enough to dissuade the

reader from seeking a thorough description of how P (k, z) is actually computed since

we will not provide one. As a matter of fact, even the approach we described above

is not correct on sufficiently small scales. Modern cosmological analyses often rely

on running actual N-body simulations of the different matter species of the Universe

from which P (k, z) is measured as opposed to directly predicting the matter power

spectrum.

However, it turns out that against all odds we can make an educated guess on

the shape of P (k, z) that is good enough to fit a significant fraction current data

in Cosmology without the need of Boltzmann codes or N-body simulations. As we

saw in Sect. 1.1.2, right after Inflation the matter power spectrum was a featureless

power law. However, once Inflation was over, the different matter species re-entered

the horizon decaying at different rates. This induced a series of series of features in

the matter power spectrum. In order to capture this effects, we need to multiply

the original matter power spectrum by a Transfer function, that bridges the gap
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between the end of Inflation and today. Thus, the matter power spectrum today can

be approximated as:

P0(k) ∝
(
k

H0

)ns

T 2(k) , (1.59)

where T 2(k) is the aforementioned Transfer function. The most popular prescriptions

for T (k) are Bardeen et al. [24] and Eisenstein and Hu [25, 26].

In order to compute the matter power spectrum at a given redshift we can then

make use of the fact that the evolution of the matter inhomogeneities in the linear

regime is scale-independent (See Sect. 1.1.2) such that:

P (k, z) ∝ P0(k)D2(z) , (1.60)

where D(z) is the linear growth factor defined in Sect. 1.1.2.

The only thing left is to find the overall amplitude of P0(k) which is directly

linked to the amplitude of the primordial inhomogeneities. Since we don’t have access

to this information a popular approach is to normalise P0(k) at an arbitrary scale

and then rescale it by the measured value from our observations. It has become

customary in Cosmology to normalise the matter power spectrum by its variance

within spheres of 8/h[Mpc] radius where h is the dimensionless Hubble parameter

defined as H0 = h∗ (100 [km/s/Mpc]). Thus, this normalisation constant is known as

σ8. In order to do so we need to compute the filtered variance using the convolution

theorem:

σ2
8 ≡

1

(2π)2

∫
dk k2P0(k)|Wk|2 , (1.61)

where Wk is the Fourier transform of the filter. In our case the filter is a top-hat

function given by:

Wk =
3

y3
(sin(y)− y cos y) , (1.62)

where y ≡ k · 8/h[Mpc].

Putting all of this together, we have derived a linear approximation to the real

matter power spectrum, accurate on the largest scales. However, modern surveys

observe the matter power spectrum well beyond the linear regime. In order to use Eq.

1.59 to match modern observations we must include non-linear effects. Thankfully, the

literature contains a plethora of phenomenological prescriptions of what the impact

of the non-linear terms should be on Eq. 1.59. The most popular prescription is

the Halofit formula [27, 28] which was derived by fitting the measured matter power

spectrum in N-body simulations. We show the impact of this non-linear effects on

the linear matter power spectrum in Fig. 1.2. As one might expect, including these
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Figure 1.2: The impact of non-linear effects on the linear matter power spectrum as
described by the Halofit formula. The grey zone represents the region beyond which
the linear approximation fails.

non-linear interactions raises the power of the smallest scales at which gravitational

accretion is enhanced. Moreover, we can observe that the linear approximation cannot

be trusted for k < 0.1 [Mpc−1].

1.1.4 Angular Power Spectra

In the previous section, we discussed how to build theoretical predictions for the

expected statistical properties of the matter density field. The question now is: how

can we relate these theoretical predictions to actual observations? In order to answer

this question, there is a fundamental obstacle that we have to overcome: our telescopes

do not directly observe the matter density field. Thus, cosmologists often talk of

tracers of the matter density field.

A natural way of thinking of these tracers is as sampling 3D fluctuations of the

matter density field. While fully 3D approaches have been developed [29], the current

uncertainty in the redshift of the objects that constitute the tracer often renders this

approach unfeasible. Thus it is common for cosmological analyses to project the

observed fields on the celestial sphere by integrating over the line-of-sight with a

radial selection function qf (χ) [30]:

f(n̂) =

∫
dχ qf (χ)F (χn̂, z), (1.63)

where n̂ is a unit vector on the sphere and z is the redshift corresponding to the

comoving distance χ such that the integral is taken along the lightcone (i.e. it accounts
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for the time evolution of the field along the photons’ paths). From now on, we will

refer to the radial selection functions as the tracers’ kernels since they are responsible

for establishing the relationship between the observed field and the underlying matter

density field.

Following this formalism we can derive an expression for the angular correlation

function (ξfg), meaning the correlation function of two projected quantities, given a

3D correlation function (ξFG):

ξfg(θ) =

∫
dχ1qf (χ1)

∫
dχ2qg(χ2) ξFG

(√
χ2
1 + χ2

2 − 2χ1χ2 cos θ

)
, (1.64)

where qf and qg are radial selection functions of the two fields being correlated. As

shown in Eq. 1.56, we can perform a Fourier expansion of the correlation function to

derive a similar expression for the angular power spectrum:

Cfg
ℓ =

2

π

∫
dχ1qf (χ1)

∫
dχ2 qg(χ2)

∫ ∞

0

dk k2jℓ(kχ1)jℓ(kχ2)PFG(k). (1.65)

Note that since we are working now on the sphere, instead of a Fourrier expansion,

we need to perform an expansion in spherical harmonics. Thus, Eq. 1.65 features jℓ,

the spherical Bessel functions. Since the radial dimension has been integrated, Eq.

1.65 is often referred to as the angular power spectrum.

Thus computing 2D projections of 3D fields involves performing a costly series of

nested integrals over highly oscillatory functions, involving jℓ(x). We can, though,

leverage the properties of the integrands in Eq. 1.64 and 1.65 to simplify this process.

The fundamental realisation is that the value of the correlation function is only signif-

icant when the points being correlated are close by. Moreover, for most cosmological

fields, the radial selection functions are much smoother than the correlation function

or the Bessel functions, meaning that they are approximately constant across small

intervals. This set of assumptions is known as the Limber approximation 5 [31, 32].

In order to formalise our assumptions, allow us to reparameteriseEq. 1.64 in terms

of χ1,2 = χ± r/2:

ξfg(θ) =

∫
dχ dr qf (χ− r/2) qg(χ+ r/2) ξFG

(√
2χ2(1− cos θ) + r2(1 + cos θ)/2

)
.

(1.66)

5Note that these are two conflicting assumptions. On the one hand, we want sufficiently large
scales such that we can trust our estimate of the non-linear matter power spectrum. However, if
the scales become too large we can no-longer trust the the Limber approximation. Thus, these
assumptions define an upper and lower bound for the scales our models can actually fit.
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Now, taking the limit in which r, θ → 0, the tracers’ kernels are approximately con-

stant meaning that qf,g(χ± r/2) ≃ qf,g(χ). Moreover, in this limit cos θ ≃ 1− θ2/2.

Plugging these into our previous expression we get:

ξfg(θ) ≃
∫ ∞

0

dχqf (χ)qg(χ)

∫ ∞

−∞
dr ξFG

(√
χ2θ2 + r2

)
. (1.67)

If we now focus on the power spectrum, the spherical Bessel functions jℓ(x) at

high ℓ (i.e. for close separations in real space) are sharply peaked around x ∼ ℓ+1/2.

Thus we can approximate them as:

jℓ(x) ≃
√

π

2ℓ+ 1
δD(ℓ+ 1/2− x), (1.68)

where the prefactor is added to preserve the normalisation of the Bessel functions as

a basis and δD is the Dirac delta function. Applying this to Eq. 1.65 leads us to the

much simpler expression for the angular power spectrum:

Cfg
ℓ =

∫
dχ

χ2
qf (χ)qg(χ)PFG

(
ℓ+ 1/2

χ
, z

)
. (1.69)

Having derived an expression for the angular power spectrum in terms of two

arbitrary tracers, our goal now is to specify what these tracers look like. For the

purposes of this thesis we will focus on two particular tracers of the matter density

field, galaxy clustering and weak gravitational lensing.

1.1.4.1 Galaxy Clustering

Galaxy Clustering (GC) carries information about the inhomogeneity of the under-

lying matter distribution. The fundamental idea is that the formation of galaxies

requires the presence of deep gravitational wells. Thus galaxies form in the densest

regions of the matter density field. Hence galaxies constitute a biased tracer of the

matter density distribution. On large scales, we expect such bias to be linear [33].

Thus we can establish the following relationship between the measured 3D galaxy-

galaxy power spectrum and the matter power spectrum:

δg(x) ≃ bgδ(x) , (1.70)

where δg is the galaxy overdensity field and bg is a linear bias parameter.

Incorporating this linear bias into the tracer kernel, the GC radial selection func-

tion is given by:

qg(χ) = bgp(z)
dz

dχ
, (1.71)
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where p(z) is the distribution of galaxies along the line of sight normalised to one

and dz/dχ relates the distributions of galaxies defined as a function of redshift to the

tracer kernel defined as a function of radial distance.

1.1.4.2 Weak Lensing

Gravitational lensing is the phenomenon in which the light emitted by an object

is deflected by the gravitational field of matter across its path. Weak gravitational

lensing, or Weak Lensing (WL) for short, refers to the regime where said effects

contribute a mere few percentages to the observed image. Since WL is associated

with weak gravitational fields we can model it by considering the linear perturbations

of the FLRW metric.

Within this framework, it can be shown that the travel time of a photon propa-

gating through an inhomogenous Universe is given by:

t =

∫
a(χ)(1− Φ(χ))dχ . (1.72)

Analogous to traditional optics, the potential in Eq. 1.72 acts as a medium with

variable refractive index, deflecting the direction of light across its path. Hence, the

phenomenon is known as gravitational lensing. Applying Fermat’s principle to Eq.

1.72, one can derive an equation for the deflection of the angle:

α̂ = −
∫
∇⊥Φdχ , (1.73)

where ∇⊥ is the gradient along the perpendicular direction to the light path.

In order to derive an expression for the weak lensing kernel, let us consider the

separation vector between two photons converging onto an observer which have been

distorted by a source at radial distance χ′ at a perceived angle θ. This separation will

be given by a combination of the distance suggested by the apparent angle (assuming

no distortion) minus the lensing distortion:

x(χ) = x0(χ) +

∫ χ

0

(χ− χ′)dα̂ (1.74)

= χθ −
∫ χ

0

(χ− χ′)∇⊥Φ(θ, χ′)dχ′ . (1.75)

Dividing the previous expression by the radial distance we can write the following

lensing equation:

β = θ −α , (1.76)
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where θ is the observed angular separation between the sources, β is the true angular

separation and α is the scaled deflection angle given by the following integrated effect:

α(χ) =

∫ χ

0

(χ− χ′)

χ
∇⊥Φ(θ, χ′)dχ′ . (1.77)

Therefore, gravitational lensing can be understood as a differentiable map between

real and the distorted images given by the Jacobian A = ∂β/∂θ. This transformation

is often represented as an amplification matrix with components:

Aij =
∂βi
∂θj

= δDij −
∂αi

∂θj
= (1.78)

δDij − ∂i∂jψ , (1.79)

where ∂θ = 1
χ′∂x and we have introduced the lensing potential:

ψ(θ, χ) =

∫ χ

0

(χ− χ′)

χχ′ Φ(θ, χ′)dχ′ . (1.80)

Thus we can write the components of the amplification matrix explicitly in terms of

the lensing potential:

Aij =

(
1− κ− γ1 −γ2
−γ2 1− κ− γ1

)
, (1.81)

where

κ =
1

2
(∂1∂1 + ∂2∂2)ψ , (1.82)

γ1 =
1

2
(∂1∂1 − ∂2∂2)ψ and (1.83)

γ2 = ∂1∂2ψ . (1.84)

Therefore WL can be broken down in two distinct effects. On the one hand, we have

the convergence, κ, responsible for the isotropic magnification or reduction of the size

of the observed objects. On the other hand, we have γ, the shear, responsible for shape

distortions. Shear is often written an as complex quantity given by γ = γ1 + iγ2 =

|γ|e2iϕ where ϕ is a complex phase. Thus it is easy to see that shear transforms as a

spin-2 quantity which is to be expected given the symmetry properties of the elliptical

shapes of galaxies.

Our goal now is to relate the previously derived expression for the convergence

and shear components to the underlying matter density field sourcing the lensing.

21



In principle, the two lensing components need to be treated differently since con-

vergence is a scalar quantity while shear is a spin-2 quantity6. While scalars are

rotationally invariant. However, it turns out that we can model the two components

identically. Any spin-s quantity can be associated with a scalar quantity, the E-mode,

and a pseudo-scalar quantity, the B-mode. Since lensing is the result of the second

derivative of a scalar quantity (i.e. the lensing potential defined in Eq. 1.80), the

convergence is identical to the E-mode of the shear. Moreover and for the same rea-

son, the B-mode is exactly zero. Thus both convergence and shear can be modelled

indistinguishably [34].

Armed with this knowledge, let us consider the convergence definition in Eq. 1.82.

Moving the Laplace operator inside the lensing potential we obtain:

κ(θ, χ) =

∫ χ

0

(χ− χ′)

χχ′ ∇
2
⊥Φ(θ, χ)dχ′ . (1.85)

We can then use the Newton-Poisson equation (Eq. 1.44) to relate the Laplacian of

the gravitational potential to the matter inhomogeneities directly 7. Thus, we obtain

the following expression.

κ(θ, χ) =
3H2

0Ωm

2
Gℓ

∫ χ

0

dχ′

a(χ′)

(χ− χ′)

χ
χ′δ(θχ′, χ′) , (1.86)

where

Gℓ ≡
√

(ℓ+ 2)!

(ℓ− 2)!

1

(ℓ+ 1/2)2
, (1.87)

is a scale dependent prefactor needed to transform the 2D angular Laplacian in the

lensing equation to the 3D Laplacian featured in the Newton-Poisson equation. How-

ever, Eq. 1.86 is a 3D expression. In order to obtain a projected quantity we need to

average Eq. 1.86 over the distribution of sources along the line of sight:

κ(θ) =

∫ ∞

z(χ)

p(z)κ(θ, χ(z))dz . (1.88)

Exchanging the order of the integrals in Eq. 1.88, we can derive an expression for the

convergence tracer as a projection of the 3D matter density field:

κ(θ) =

∫ χ

0

qγ(χ′)δ(θχ′, χ′)dχ′ , (1.89)

6The spin of a quantity describes its properties under rotations. Scalar quantities (such as point
quantities) are invariant under rotations and possess spin-0. Spin-n quantities are invariant under
2π/n radians rotations.

7The Laplacian inside Eq. 1.85 is the transverse Laplacian rather than full Laplacian featured in
the Poisson equation. However, we can seamlessly exchange the two since the radial component of
the full Laplacian integrates out to zero by parts.
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where qγ is the kernel of the convergence/shear tracer defined as:

qγ(χ) ≡ Gℓ
3H2

0Ωmχ

2a(χ)

∫ ∞

z(χ)

dz′n(z′)
χ(z′)− χ
χ(z′)

. (1.90)

From now on we will refer to this particular kernel as the cosmic shear kernel since,

observationally, gravitational lensing is associated with measurements of shape dis-

tortions of galaxies.

A special case of the gravitational lensing effect is the distortion of the CMB pho-

tons. As these photons propagate through the Universe towards us, their trajectories

are deflected via lensing, giving rise to secondary distortions in the CMB. These can

be used to reconstruct the intervening gravitational potential.

Modelling the gravitational lensing of the CMB (also known as CMB lensing)

is remarkably similar to modelling the gravitational lensing of photons emitted by

nearby galaxies. The key difference is that in the case of CMB lensing the distribution

of sources along the line of sight is given by a delta function:

p(z) = δD(χ(z)− χ∗(z)) , (1.91)

where χ∗ is the radial distance associated with the redshift at which photons decoupled

also known as the surface of last scattering. Thus, substituting Eq. 1.91 into Eq. 1.90

we can derive the following expression for the CMB lensing tracer:

qκ(χ) ≡ Kℓ
3H2

0Ωmχ

2a(χ)

χ∗ − χ
χ∗ , (1.92)

where

Kℓ ≡
ℓ(ℓ+ 1)

(ℓ+ 1/2)2
(1.93)

is the equivalent term to Gℓ in Eq. 1.90.

Similarly to how galaxy gravitational lensing is observationally associated with

the shear component, CMB lensing is observationally associated with the conver-

gence component since it is measured in the form of the magnifications in the CMB

inhomogeneities. Accordingly we refer to Eq. 1.92 as the CMB convergence tracer.

1.1.5 Tomography and Systematics

As we saw in the last section, even when treated as 2D projected quantities, both GC

and WL are related to the observed distribution of galaxies along the line of sight.
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However, determining this radial distribution is a difficult task since we often only

have access to inaccurate estimates of the redshifts of these sources.

Astronomers produce two different types of redshifts in galaxy catalogues: spec-

troscopic redshifts and photometric redshifts. The distinction between spectroscopy

and photometry can be summarised as quality versus quantity [35]. On the one hand,

spectroscopic catalogues measure the spectral energy distribution (SED) of the light

of each source allowing them to accurately determine the associated redshift. How-

ever, the exposure time required to do so means that only a relatively small number

of sources can be resolved. Moreover, spectroscopic redshifts tend be biased towards

certain galaxy populations in terms of stellar mass and magnitude, as well as galax-

ies with emission lines. On the other hand, photometric catalogues are composed of

images filtered through a small number of colour bands, needing a much smaller ex-

posure time to resolve each source than spectroscopic catalogues. Thus, they contain

orders of magnitude more objects. However, the measurements of the SEDs are much

coarser, leading to a far greater uncertainty in the sources’ redshifts.

Cosmology, by its nature, is bound to the realm of large numbers in order to

effectively beat shot noise. This is specially true in WL analyses where very large

number of galaxies are necessary to beat the shape measurement noise. Thus, a large

fraction of the catalogues used in modern Cosmology are photometric. This means

that there is a large degree of uncertainty in the observed p(z).

One way in which cosmological analyses address this issue is by binning the dis-

tribution of galaxies in redshift bins, known as tomographic bins. However, it is often

difficult to calibrate said bins (meaning to assign each galaxy to its correct bin) due

to degeneracies between the photometric redshift estimate and other properties of

galaxies. Since WL is already an integrated effect, broad photometric bins, that are

easier to calibrate but that wash off the radial information, are often used. In the

case of GC, narrower bins are normally beneficial. This allows us to measure the

effective value of the angular power spectra at the mean redshift of the tomographic

bin. Moroever, given the large uncertainties on p(z), most of the information is also

captured [36].

Binning the data by approximate redshift also allows us to model systematic

effects in a much more tractable way. The first and most common systematic we

have to address is the uncertainty in the radial distribution of galaxies. The way this

uncertainty is most often captured by cosmological analyses is by introducing a shift

parameter between the observed and the true distribution of galaxies per tomographic
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bin:

p(z) = p̃(z + ∆z) , (1.94)

where p̃(z) is the observed radial distribution of galaxies and ∆z is a free shift parame-

ter. The range of ∆z can be estimated by comparing our photometric estimate of p(z)

with smaller samples of spectroscopic galaxies via direct calibration, [37, 38], cluster-

ing redshifts [39–42] or and shear ratios [43, 44] among other techniques. However

it has been argued that this methodology fails to adequately capture the uncertainty

in the radial distribution of galaxies, specially at high redshift where spectroscopic

observations are extremely sparse [45, 46].

There are reasons to believe that one single shift parameter per tomographic bin

might not be enough to encapsulate the whole of our uncertainty on p(z) [5]. For

example, models with an additional width parameter, wz, have been studied [4]:

p(z) = p̃(zc + wz(z − zc) + ∆z), (1.95)

where zc is the redshift at which p̃(z) peaks. However, as we will see in Sect. 5, more

complex models can also be considered.

In addition to this, there are systematics specific to each tracer. In Sect. 1.1.4.1,

we saw that in Eq. 1.70 the galaxy distribution was related to the matter distribution

by a simple linear bias parameter. In the context of tomography, this implies that

we consider one bias parameter per tomographic bin in a clustering analysis. Such

a linear parameter was argued to be enough when the analysis was limited to large

scales (k < 0.15 [Mpc−1]). However, future surveys will go well beyond this limit.

In order to rise to this challenge, cosmological analyses have come up with two

strategies. The first method consists on going beyond the linear bias by considering

an effective field theory of galaxy formation [47]. Over mildly non-linear scales, one

can relate ∆g with scalar combinations of the Hessian of the gravitational potential

∂i∂jΦ. Following McDonald and Roy [48] and [49], the second order bias expansion

is given by:

∆g(x) = b1δ(x) +
b2
2!

(δ(x)2 − ⟨δ(x)2⟩) +
bs
2!

(s2 − ⟨s2⟩) + b∇∇2δ(x). (1.96)

Here s2 ≡ sijs
ij is the trace of the squared tidal tensor, where sij ≡ ∂i∂jΦ−∇2Φ/3.

The quantities b1, b2, bs, and b∇ are the so-called “linear”, “quadratic”, “tidal”, and

“non-local” bias parameters, which characterise the response of the galaxy overdensity

to the corresponding terms in perturbation theory.

The second approach uses N-body simulations of galaxy formation to establish an

empirical relationship between the observed galaxy field and the underlying matter
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density. Then an emulator, i.e. an easier to evaluate approximate model to the orig-

inal function, can be built relating the two quantities [50]. Both approaches however

increase the number of parameters that need to considered in each tomographic bin.

Moving on to weak lensing, the first systematic that we have to think about is

the potential mismatch between the observed galaxy image and the actual shape of

the galaxy. This is often taken into account in the form of one multiplicative bias

parameter per tomographic bin that modifies the WL radial kernel as:

(1 +m)qγ(χ) , (1.97)

where qγ is given by Eq. 1.90. Given current error budgets, the contribution of

multiplicative biases to our theoretical predictions is negligible [51]. Hence, there is

currently no need to consider more complex models.

More fundamental to WL is the phenomenon of intrinsic alignments. Galaxy

shapes are not only correlated by cosmic shear but also by intrinsic alignments (IAs)

in the orientation of galaxies due to local interactions. Within the so-called Non-

Linear Alignment [NLA, 52] model this can be accounted for by adding an extra

contribution to the final shear kernel given by:

qI(χ) = AIA(z)H(z)p(z), (1.98)

where AIA(z) is:

AIA(z) = AIA,0

(
1 + z

1 + z0

)ηIA 0.0139Ωm

D(z)
, (1.99)

where AIA,0 and ηIA are two free parameters, z0 is a redshift pivot (which we fix to

z0 = 0.62 as in [51, 53]), and D(z) the linear growth factor. Thus, the final WL radial

kernel is given by:

qI + (1 +m)qγ(χ) . (1.100)

It is worth noting that even when the analysis is performed tomographically, only a

set of intrinsic alignment parameters are shared between all the bins.

One can imagine that the contribution of all these systematic effects obfuscates

the role of the cosmological parameters of interest. One way in which modern cos-

mological analyses overcome this issue is by analysing together cross-correlations of

different tracers. The reason why joint analyses are helpful is because, while dif-

ferent tracers have different systematics, they all depend on the same underlying

cosmological parameters. This allows us to isolate the impact of the different con-

tributions. The most popular of these combinations is the so called 3x2-pt analysis
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Figure 1.3: Bottom panel shows the binned p(z)’s of an example galaxy clustering
(blue) and weak lensing (red) survey. Top panel shows the ΛCDM prediction for the
growth factor, D(z) (See Eq. 1.49), as well as the measurements from the different
tomographic bins of the survey.

where WL auto-correlations are analysed together with GC auto-correlations as well

as the cross-correlation between GC and WL.

This style of tomographic analysis has very interesting properties. Not only do

they allow us to combine extremely large numbers of data and disentangle systematic

effects, they also allow us to measure phenomena across cosmic time. In Fig. 1.3, we

show an example of how tomography can be used to measure cosmological functions as

a function of redshift. Bottom panel shows the binned p(z)’s of an example GC (blue)

and WL (red) survey. Top panel shows the ΛCDM prediction for the growth factor,

D(z) (See Eq. 1.49), as well as the measurements from the different tomographic

bins of the survey. Precise measurements can be obtained even from WL data despite

their broad bins by cross-correlating them narrower GC bins. This has been done to

great success for a variety of cosmic phenomena [54–57].

However, performing this combination of data also presents major challenges. The

first challenge is how to combine all the different tracers in a statistically consistent

manner [20, 58, 59]. Effectively, what we want to avoid is double counting the same

galaxies. In practice, this is a rather convoluted exercise since each survey observes
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a limited fraction of the sky with a non-trivial shape which may or may not overlap,

partially or completely, with other surveys. Thus the cross-covariance between the

different fields has to be carefully computed.

The second challenge is brought about by the very same number of tomographic

bins involved in these analyses. The problem stems from the fact that each to-

mographic bin will have a number of free parameters associated with its different

systematics. Parameters associated with the modelling of systematics are often re-

ferred to by cosmologists as nuisance parameters. This is because their value is often

uninteresting but they must be included in the analysis so as not to overestimate our

confidence in the parameters we ultimately care about.

Current 3x2-pt analyses manage of order of 5 to 10 tomographic bins which lead

to a total 20 to 30 free parameters when including both cosmological and nuisance

parameters [13, 51, 60, 61]. The next generation of surveys, known as stage IV, have

to consider several folds more parameters for two reasons. First Stage-IV surveys will

provide data of unprecedented quality. This means that all the models considered in

this section will have to be extended to encompass smaller scales to higher degree of

precision. These complex models will inexorably bring along higher numbers of nui-

sance parameters per tomographic bin. In addition to this, Stage-IV will also bless us

with unprecedented quantities of data. Thus, we expect a several fold increase in the

number of tomographic bins considered by each individual survey. The combination

of more tomographic bins with larger numbers of nuisance parameters per bin will

result in 3x2-pt analyses of Stage-IV surveys having to consider unprecedented num-

bers of free parameters. Finally, note that one does not need to stop at 3x2-pt and

that larger numbers of correlations have and will be considered [54, 62]. Managing

these large number of parameters will be one of the greatest challenges of Cosmology

in the future.
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1.2 Statistical Inference

1.2.1 Traditional Inference Algorithms

As we saw towards the end of Sect. 1.1.5, Cosmology is currently sitting on a ticking

time bomb that will result in an unprecedented explosion in the quantity and quality of

data. In order to match the quality of the data, physicists are starting to incorporate

into their theoretical predictions more of the physical, observational and instrumental

effects which, until now, could be overlooked. In practice, this translates into a

dramatic increase in the number of parameters that future analyses will have to

consider. This combination of large data sets with complex models will (and in many

cases already does) overwhelm the inference methods we currently use to constrain

the values of these parameters.

The fundamental problem of Cosmology is that there is only one Universe 8. To

date, cosmologists have not figured out how to reproduce the birth, life and death of

the Universe in a laboratory. This lack of reproducible experiments means that the

only way we can learn about our Universe is through the limited observations our

telescopes provide us with.

Statistical inference is the exercise of learning the properties of a population given

a limited sample [63]. In Cosmology, this translates into learning the properties of the

Universe from a small fraction (millions) of galaxies. These galaxies, however, all stem

from the same Universe realisation. One can imagine a distribution over all possible

Universes in terms of some cosmological parameters, P (θ). Within this framework,

our Universe is nothing more than a particular draw from such a distribution 9. If one

had access to P (θ), it would be possible to quantify the likelihood of the particular

properties of our Universe. This is the end goal of Cosmology.

If the Universe were reproducible, we could directly learn P (θ) using a frequentist

approach by repeating such a hypothetical experiment many times. The limitations

brought about the Universe’s singular nature make Cosmology a profoundly Bayesian

discipline. The key notion of Bayesian inference is that one can make up for the lack

of draws by coming up with a model for the phenomenon being observed [64, 65]. In

Cosmology we often refer to such models as cosmological models.

One can then derive an expression for P (θ) by considering the joint probability

of the parameters and the data, P (θ,d), and expanding it in terms of conditional

8We briefly discussed this issue in the context of computing the variance of the matter density
field in Sect. 1.1.3

9The idea of a distribution over possible Universes was originally proposed by Leibniz who argued
we must live in the best possible one of them.
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probabilities. Since, by definition, P (θ,d) = P (d,θ), it then follows that:

P (θ,d) ≡ P (θ|d)P (d) = P (d|θ)P (θ) . (1.101)

Isolating P (θ|d) and renaming the different probabilities directly leads to the famous

Bayes’s theorem:

P (θ|d) =
L(d|θ)Π(θ)

Z(d)
. (1.102)

In this equation, P (θ|d) is the distribution of the parameters, θ, given the data d and

is known as the posterior. L(d|θ) is the likelihood of the data given the parameters

and is commonly referred to as the likelihood. Note that the likelihood hides a

dependency on the model chosen to fit the observations, L(d|m(θ)) ≡ L(d|θ). Π(θ)

is our belief in the distribution of parameters prior to the observations and is referred

to as the prior. Finally,

Z =

∫
L(d|θ)Π(θ)dθ , (1.103)

is known as the evidence and it is an integral over all the possibilities of the model.

The evidence is often ignored since computing it is very computationally challenging

and its contribution amounts to a normalisation factor on the posterior. However,

it is very useful when performing comparisons between different models. Inside Eq.

1.103 there are two competing factors. On the one hand, the contribution of the

likelihood to the integral will increase, the better the model fits the data. On the

other hand, the contribution of the prior will decrease the more complex the model is.

This means that the evidence is maximum for models that strike a balance between

goodness of fit and simplicity10.

Cosmologists thus use Bayesian statistics to make statements about the proper-

ties of the Universe. As in any other probabilistic problem, anything that can be

said about the values of cosmological parameters must be spoken in the language of

expectation values also known as moments:

E(θn
i ) =

∫
θni dP (θ|d) =

∫
θni P (θ|d)dθ ∀θi ∈ θ , (1.104)

where E(θni ) is the nth moment of a particular parameter θi in the set of cosmological

parameters θ distributed as P (θ|d). The most sought-after moments are the first

(n = 1) and second moments (n = 2) since they relate to the mean, ⟨θi⟩ = E(θ1i ), and

10This is the same logic behind Occam’s razor or Leibniz’s sufficient reason arguments.
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the variance, σ2(θi) = E(θ2i )−E(θ1i )2, of the distribution11. This is because, if P (θ|d)

is Gaussian, then the mean and the variance contain all the information about the

distribution.[63].

Ideally, one would have a close form for the posterior such that Eq. 1.104 can be

computed analytically. However, we started under the premise that we don’t know

P (θ|d). As we will see, this idea will make a comeback in Sect. 1.2.3. Until then,

we are bound to numerical methods. Naively, we may try to map P (θ|d) using suffi-

ciently fine grids such that the posteriors can be fully characterised. However, given

the average cost of evaluating cosmological models this approach becomes computa-

tionally unfeasible once the number of dimensions surpasses three. For example, given

a likelihood that costs one second to evaluate and a hundred nodes grid, mapping a

one-dimensional posterior takes a minute an a half, doing so for two dimensions takes

nearly three hours and raising the number to three dimensions costs just short of two

weeks.

Computing moments on a grid is not only very costly but also extremely inefficient.

In order to understand why we have to return to Eq. 1.104 and note that only a

relatively small fraction of the domain of θ, the one in which P (θ|d) is distinctively

non-zero, contributes most to the integrating volume dθ [66]. This domain of interest

is known as the typical set. However, finding the typical set of P (θ|d) if P (θ|d) itself

is unknown to us can be very challenging. Thankfully, there is a literature full of

algorithms specifically designed for this purpose. This is not surprising given how

ubiquitous statistical inference is as a problem. The algorithms designed to find the

typical set in an inference problem are known as inference algorithms or samplers

since they output samples of the typical set.

Most of the inference algorithms currently used in cosmology map P (θ|d) through

a variety of stochastic processes that diffuse towards the typical set. In a Bayesian

setting, the starting point of the process is often sampled from the prior. However, it

is not uncommon to run an optimisation algorithm such that the process starts from

the maximum of the posterior, known as the maximum a posteriori (MAP) point.

This usually results in efficiency gains since the MAP often is already in the typical

set12. The properties of the process that follows are dictated by a transition kernel

that defines the probability of the next sample. Often, these processes are chosen to

be Markovian and thus the transition kernel only depends on the latest sample such

11Note that in the case of multivariate distributions the variance is promoted to the covariance
matrix whose entries are given by Covij− = E(θiθj)− E(θ1i )E(θ1j ).

12Note that the MAP can be outside the typical set for multimodal or sharply peaked distributions.

31



that the transition kernel is given by Q(θi+1|θi). The result is a chain of samples

of the typical set. Expectation values can then be computed using straight forward

Monte Carlo integration [67]. Hence these methods are known as Monte Carlo Markov

Chains (MCMCs).

MCMCs are extremely popular due to their asymptotic properties. Given enough

integration time, a stochastic process is guaranteed to visit every point of the dis-

tribution. In other words, it is ergodic. Thus, for a given moment of the posterior

distribution, the ensemble average (what we are after) is the same as the time average

over the MCMC samples:

E(θni ) ≡
∫
θni P (θ|d)dθ = lim

T→∞

1

T

∫
θ(t)dt . (1.105)

Moreover, by looking at the trace (i.e. the distribution of samples over time) it

is possible to observe whether or not the algorithm has found the typical set. For

example one would expect the mean of the variance, σ̄2(θ), to be constant across

integration time. Similarly, the variance of the mean, σ2(θ̄), should be zero hence why

the typical set is also commonly referred to as the stationary distribution. Formally,

the posterior distribution is said to be stationary if it satisfies detailed balance [68]:

P (θ|d)Q(θ|θ′) = P (θ′|d)Q(θ′|θ) , (1.106)

meaning that there’s the same probability of the chain transitioning from θ to θ′

as from θ′ to θ. Therefore, the MCMC of a stationary distribution is said to be

reversible.

The most common metric to assess whether the process has spent enough time in

the stationary distribution is the Gelman-Rubin statistic13 [69]. The Gelman-Rubin

statistic is based around the fact that for a sufficiently long chain one expects:

lim
N→∞

σ2(θ̄i) = lim
N→∞

(
1

N
σ̄2(θi)

)
= 0 . (1.107)

The Gelman-Rubin statistic is then given by:

Ri =

√
1 +

σ2(θ̄i)− 1
N
σ̄2(θi)

σ̄2(θi)
. (1.108)

If the typical set is sufficiently well explored, one would expect Ri ≈ 1 for all param-

eters of the chain. Thus, it is common to stop the inference process once

Ri − 1 ≤ 0.01 ∀θi ∈ θ . (1.109)

13Florian Beutler has a nice practical tutorial on how to compute R.
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Figure 1.4: Depiction of the concentration of measure problem. In high-dimensions,
the volume term, dθ, dominates over the probability density, P (θ), dragging the
typical set away from P (θ)’s mean.

Once this criterion is met, the chain is said to have converged to the stationary

distribution. In Fig. 1.4 we show the traces of three different parameters in a MCMC.

By visually observing the three different stochastic processes and noting the variability

of their mean and variance it is possible to see that that θ0 is more converged than

θ1 which is more converged than θ2. This end condition is one of the most attractive

properties of MCMC methods.

The most popular of these MCMC methods is the Metropolis Hastings (MH)

algorithm [70]. In a MH algorithm samples from the transition kernel, known as

candidates, are not directly accepted into the MCMC. Instead, candidates have a

probability of being accepted into the MCMC given by:

α = min

(
1,

Q(θi|θi+1)P(θi+1|d)

Q(θi+1|θi)P(θi|d)

)
. (1.110)

When the transition kernel is symmetric Eq. 1.110 reduces to:

α = min

(
1,

P(θi+1|d)

P(θi|d)

)
. (1.111)

This acceptance process is known as the Metropolis adjustment and is responsible for

two critical properties of MH. First, if the next sample has higher probability it will

always be accepted, meaning that the random walk process will always eventually

dissipate towards the typical set. Second, the Metropolis adjustment guarantees that

the samples that make it into the chain are distributed as P (θ|d). Thus the MH
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algorithm will always converge to the true posterior distribution as opposed to some

biased stationary distribution. Putting these notions together we can explicitly write

the MH algorithm as Alg. 1 where θ0 is the starting point, ϵ is the step size and N

is the number of steps.

Algorithm 1 Metropolis Hastings

Require: θ0, ϵ, N
for i=1 to N do

Set θi ← θi−1

Sample θ̃ ∼ N (θi, ϵI) ▷ Propose sample

With probability α = min(1, P(θ̃)
P(θi−1)

), set θi ← θ̃ ▷ Metropolis adjustment

end for

It is easy to see then that the success of the MH algorithm depends on how

likely the proposal distribution is to generate an accepted sample (i.e. a sample of

the typical set). Far from being a problem specific to MH, choosing the particular

form of the proposal distribution is the fundamental problem of all MCMC methods.

Most approaches involve assuming that samples from the typical set live close to one

another and thus they assume a Gaussian transition kernel of the form:

Q(θi+1|θi) = N (θi, ϵI) , (1.112)

where ϵ defines the standard deviation of the proposal distribution, acting as the step

size of the process.

In the absence of multi-modality, one should indeed expect samples of the typical

set to live close by. However, it is crucial to quantify how far and, specially, in

what direction. Too large of a step size will result in the algorithm proposing too

many samples outside of the typical set which will be rejected. Simultaneously, a

step size too small will lead to samples with a high degree of auto-correlation. While

this correlation doesn’t bias our estimates of the posterior, it nonetheless means that

we require more samples to obtain a representative picture. Therefore, in MCMC

methods, it is common to talk about the effective sample size (ESS) meaning the

number of uncorrelated samples accepted into the MCMC [71]. The ESS of a MCMC

can be estimated14 as:

ESS ≡ N

1 + 2
∑∞

t=0 ρt
, (1.113)

14Note that the actual ESS cannot be computed from a finite chain, thus Eq. 1.113 is an approx-
imate estimate [72].
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where N is the number of samples in the chain and ρt is the auto-correlation of the

stochastic process at given lag t:

ρt =
1

σ2

∫
θ(n)θ(n+t)dθ , (1.114)

where σ2 is the variance (or covariance matrix) of the samples [72]. Thus, adequately

tuning the value of ϵ is vital for the efficiency of the MH algorithm. Moreover, it is

easy to see that Eq. 1.112 will struggle for non-isotropic typical sets where, at a given

point, there’s a preferred direction along which one would ideally propose samples.

Despite the success of this methodology [see 13, 51, 60, 61, 73, among others.],

MH becomes very inefficient at high dimensions. In order to understand why, we have

to revise our intuition of what happens to distributions as we increase the number

of dimensions. Most cosmologists have an intuition that things become nice as we

increase the number of dimensions due to the central limit theorem. This is true to

some extent. The central limit theorem makes it such that the mean of the posterior

distribution P (θ|d) becomes Gaussianly distributed as the size of θ increases. This

is why marginalised posterior distributions become Gaussian even if P (θ|d) is not

Gaussian itself.

However, the central limit theorem says nothing about what P (θ|d) looks like

and helps us very little finding the typical set. To understand why things become not

so nice when we increase the number of dimensions, we must note that the typical

set is located in the regions of high probability mass, not probability density. The

probability mass is given by the zeroth moment:

E(θ0
i ) =

∫
P (θ|d)dθ . (1.115)

Inside Eq. 1.115 there is two competing forces. For the sake of argument, let us

consider a set of parameters for which P (θ|d) is Gaussian such that there is a well

defined set of radial coordinates centred at the mean of P (θ|d). In such scenario,

P (θ|d) is a cloud of probability centred around its mean. However, dθ increases

as we move further away from the posterior’s mean. In order to understand this,

it is useful to consider how the volume inside a solid angle increases as the radial

coordinates l. In low dimensions, the contribution of P (θ|d) dominates and the typical

set is distributed around the distribution’s mean. However, in high dimensions, the

contribution of dθ will start to take over, shifting the mode away from the mean,

dragging along the typical set with it. Thus, for a high-dimension Gaussian, most of

the probability mass lives in an increasingly thin shell around the distribution’s mean.
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Figure 1.5: Depiction of the concentration of measure problem. In high-dimensions,
the volume term, dθ, dominates over the probability density, P (θ), dragging the
typical set away from P (θ)’s mean.

This phenomenon is known as the concentration of measure [66] and it is depicted in

Fig. 1.5.

The concentration of measure has disastrous consequences for the efficiency of

the MH algorithm at high dimensions. This is because it directly invalidates the as-

sumptions made when constructing the transition kernel shown in Eq. 1.112. First,

since the typical set is now an extremely thin shell, the chances of randomly stepping

into it plummet as the dimensionality increases. Second, even if one were to find

one sample of the typical set, other points are no longer homogenously distributed

around the first as the covariance of Eq. 1.112 would suggest. Instead, the transition

kernel would need to follow the probability mass shell, something which is extremely

challenging using random guesses. In combination these two effects drastically reduce

the acceptance rate of samples into the MCMC. Eventually, the number of likelihood

calls (and thus the computing time) required to obtain enough samples representative

of the posterior becomes unfeasible. This effect is known as the ”curse of dimension-

ality”.

1.2.2 Gradient-Based Inference Algorithms

In the previous section we saw that in order to perform statistical inference in more

than a handful of dimensions we rely on MCMC methods. However, MCMC methods
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live and die by the ability of their transition kernels to track the typical set. The

question is then laid as follows: is there a systematic way of constructing Q(θi+1|θi)

such that it tracks the typical set?

The intuitive idea is to use some information about P (θ|d) (which we will refer to

as P (θ) from now on for simplicity) to construct a better transition kernel at every

point. Ensemble samplers [74] such as EMCEE [75] are based on running multiple

MCMCs (referred to as particles) in parallel. The position of the particles furthest

away from the typical set are moved towards those closest. However, this approach

has a couple of drawbacks. On the one hand, it introduces correlations between the

different chains obscuring their interpretation. On the other hand, it assumes that at

least some particles find the typical set, which is not guaranteed.

Ensemble samplers fundamentally attempt to track the rate of change of the pos-

terior by using several points of P (θ). Thus one might wonder why not use the gra-

dient of the posterior, ∇P (θ), directly. We will refer to inference algorithms that use

the gradient of posterior to construct their transition kernels, Q(θi+1|θi,∇P (θi)), as

gradient-based inference algorithms [76–80]. However, how to specifically use ∇P (θ)

is not a straight forward question. The gradient of the posterior defines a vector field

at every θ that points towards the regions of highest probability density, not mass

which is what we are after. Thus, blindly following ∇P (θ) will make us descend to

the minimum of the posterior, throwing us off the thin shell where the typical set

lives. Therefore, in order to efficiently explore the typical set we have to provide

∇P (θ) with additional structure.

1.2.2.1 Hamiltonian Monte Carlo

Hamiltonian Monte Carlo (HMC) [66, 76] is a MCMC algorithm that explores a

parameter space by simulating the dynamics of a Hamiltonian system. This is done by

introducing a set of auxiliary momenta variables, p, that are independent of the target

distribution (i.e. the posterior). The joint distribution of the position (i.e. the original

parameters) and momentum variables is then defined by a Hamiltonian function which

governs the dynamics of the system. The Hamiltonian is typically chosen to be the

sum of the potential energy, defined as the negative logarithm of probability density

of the likelihood, and the canonical kinetic energy of the momentum variables:

H(θ,p) ≡ K(p) + U(θ) =
1

2
pTΛ−1p− logP (θ) , (1.116)

where U(θ) is the potential energy and Λ is the mass matrix of the momenta vari-

ables, i.e. a positive definite matrix which acts as covariance matrix of the momenta
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variables. The dynamics associated with the Hamiltonian Eq. 1.116 are given by the

following Eqs. of motion:

θ̇ =
∂H

∂p
= Λ−1p (1.117)

ṗ = −∂H
∂θ

= ∇ logP (θ) (1.118)

At each HMC iteration, a new sample is proposed by simulating the dynamics of

the system for a fixed number of steps using a numerical integration scheme. Tradi-

tionally, Leapfrog integration is used to evolve the Hamiltonian dynamics given its

symplectic properties which ensure that the volume of the phase-space is preserved

along the trajectory. The acceptance probability of the new sample is then computed

using a Metropolis adjustment based on the Hamiltonian energy difference between

the current sample and the proposal.

Thus, the full HMC inference algorithm can be written as shown in Alg. 2,

where θ0 is the starting point, ϵ is the step size of the Leapfrog integrator, M is the

number of steps in the Hamiltonian trajectory and N is the number of samples. In

this algorithm, it is possible to see that the Hamiltonian dynamics act as a form of

deterministic transition kernel. However, the overall process remains stochastic since

the momentum is re-sampled every M steps. If we were to set M = 1, HMC returns

to form of MH.

Algorithm 2 Hamiltonian Monte Carlo

Require: θ0, ϵ, M, N
for i=1 to N do

Sample p0 ∼ N (0, I) ▷ Sample new momentum
Set θi ← θi−1 ,pi ← pi−1 ▷ Set in case of rejection
Set θ̃ ← θi−1 , p̃← p0 ▷ Set variables for recursion
for m=1 to M do ▷ Hamiltonian trajectory

Set θ̃, p̃← Leapfrog(θ̃, p̃, ϵ)
end for ▷ Metropolis adjustment

With probability min(1, exp(−H(θ̃,p̃)
exp(−H(θi−1,pi−1))

), set θi ← θ̃ ,pi ← p̃

end for

function Leapfrog(θ,p, ϵ)
Set p̃← p + ϵ

2
Λ∇U(θ) ▷ Half step in momentum

Set θ̃ ← θ + ϵΛ−1p̃ ▷ Step in space
Set p̃← p + ϵ

2
Λ∇U(θ̃) ▷ Half step in momentum

retrun θ̃, p̃
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Finally, the so much sought-after posterior can be returned by marginalising the

aforementioned Hamiltonian distribution over the momenta variables:

P (θ) =
1

Z

∫
exp(−H(θ,p)) dp , (1.119)

where Z is the canonical partition function given by:

Z =

∫
exp

(−1

2
pTΛ−1p

)
dp . (1.120)

1.2.2.2 The No U-Turns Sampler

One of the challenges of HMC is choosing the Leapfrog step size and number of in-

tegration steps in Alg. 2, which can have a significant impact on the performance of

the algorithm. On the one hand, a large step size can lead to the Hamiltonian energy

not being conserved along the Hamiltonian trajectory when moving through regions

where the gradient of the posterior is large. Conservation errors above a certain

threshold will cause the sample to be automatically rejected, known as a divergence.

A large number of divergences can lead the sampler over-rejecting samples in these

regions leading to biased estimates of the posterior. On the other hand, a small step

size will result in an inefficient exploration of most regions of the parameter space

where the gradient of the posterior is small. The role of the number of integration

steps is slightly more subtle. Choosing a small number of integration steps reduces

the distance between the current sample and the proposed sample which increases

the degree of auto-correlation between the samples in the MCMC. Choosing a large

number of steps not only increases the number of likelihood calls (and hence the com-

puting cost) but it also does not ensure that the new sample will be uncorrelated.

This counter-intuitive phenomenon follows from the fact that all Hamiltonian trajec-

tories eventually return to already explored parts of their phase space. Thus, HMC

trajectories must be run for just the right number of steps. This raises the question,

how can such number of steps be known?

To address these challenges, the No U-Turn Sampler [NUTS, 77] algorithm was

proposed as an extension of HMC. NUTS introduces a recursive algorithm that de-

termines the optimal number of trajectory steps for each step in the MCMC. The

algorithm generates a tree of proposals by evolving the Hamiltonian dynamics for-

wards and backwards in time until one of the branches starts to turn on itself. At

each step of the branching processes the proposed samples undergo a MH adjustment

to be accepted to the tree. Once the turn occurs, the latest sample in the tree to
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Algorithm 3 No U-Turns Sampler

Require: θ0, ϵ, N
for i=1 to N do

Sample p0 ∼ N (0, I) ▷ Sample momentum
Set θi ← θi−1 ,pi ← pi−1 ▷ Set in case of rejection
Set θ− ← θi−1 ,θ+ ← θi−1 ,p− ← p0 ,p+ ← p0 ▷ Set variables for recursion
Set j ← 0 , s← 1 ▷ Counter and while condition
while s=1 do ▷ Branching

v ∼ B({−1, 1}, 0.5) ▷ Choose a direction
θ−,p−,θ+,p+ ← BuildTree(θ−, p−, v, j, ϵ)
s← s̃ I{(θ+ − θ−)p− ≥ 0}I{(θ+ − θ−)p+ ≥ 0} ▷ No U-turn
j ← j + 1

end while
end for

function BuildTree(θ,p, v, j, ϵ)
Recursion - Build left and right tree.
θ−,p−,θ+,p+ ← θ,p,θ,p
if v = 1 then

θ−,p−,−,− ← Leapfrog(θ−, p−, v · ϵ) ▷ Backwards
Set θ̃ ← θ− , p̃← p−

else
−,−,θ+,p+ ← Leapfrog(θ+, p+, v · ϵ) ▷ Forwards
Set θ̃ ← θ+ , p̃← p+

end if ▷ Metropolis adjustment

With probability min(1, exp(−H(θ̃,p̃)
exp(−H(θi−1,pi−1))

), set θi ← θ̃ ,pi ← p̃

return θ−,p−,θ+,p+

function Leapfrog(θ,p, ϵ)
Set p̃← p + ϵ

2
Λ∇U(θ) ▷ Half step in momentum

Set θ̃ ← θ + ϵΛ−1p̃ ▷ Step in space
Set p̃← p + ϵ

2
Λ∇U(θ̃) ▷ Half step in momentum

return θ̃, p̃
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pass the MH adjustment is accepted into the MCMC. Thus we can write the NUTS

algorithm by appending this logic to the HMC algorithm as Alg. 3.

NUTS is normally paired with a series of prescriptions to tune the step size of the

Leapfrog scheme. A good heuristic to avoid divergences is that ϵ should be at least

twice as small as the smallest eigenvalue of the posterior covariance matrix. Since we

rarely have access to such information prior to the inference, practitioners have had

to come up with dynamical tuning routines that tweak ϵ along the process to avoid

divergences. These tuning routines can be fundamentally classified in two groups

depending on whether they target the error in the conservation of energy along the

Hamiltonian trajectory or the acceptance rate of the MH adjustment. The first type

of strategies establish a target energy conservation error and then update the value

of step size at each trajectory step based on the difference between the target and

the obtained energy conservation error. This updating is usually done using a dual

averaging scheme. The second set of schemes establish a target acceptance probability

(TAP) of the samples during the MH adjustment. Thus, if the acceptance rate is too

low, the step size is lowered and vice-versa. The second strategy is the most popular

of the two since it can be shown that for a Gaussian posterior there is an optimal

acceptance rate equal to 65% which can be used as well-motivated initial guess for

the TAP.

Finally, one can imagine that setting ϵ to be in the same order of magnitude as

the smallest eigenvector of the covariance matrix of the posterior will significantly

hamper performance if all the other dimensions have a much greater variance. HMC

algorithms address this problem by tweaking the mass matrix, Λ, of the momenta

variables. One can think of Λ as a transformation from the original parameter space

to a secondary space where the variance of all the parameters is of order one. Thus

the optimal mass matrix is given by:

Λ = E(θθ′)−1/2 . (1.121)

Of course, we don’t have information on the variance of the posterior ahead of the

inference. Thus the variance is periodically estimated from the samples accepted in

the MCMC so far. One can imagine however that if we first tune ϵ and then adapt

Λ the value of ϵ found will no longer be adequate. Thus it is common to tune Λ and

ϵ iteratively until:

E(ΛθΛθ′) ≈ I . (1.122)
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1.2.3 The Laplace Approximation

1.2.3.1 Formalism

So far we have focused on how to use the gradient of the posterior to construct

proposal distributions for high-dimensional MCMC methods. In this section, we will

show how gradients can be used to reduce the dimensionality of the problem so that

traditional MH becomes viable again.

One can imagine that the premise of running an inference process implies that

for some parameters in our model we expect a rather nasty (i.e. non-Gaussian, in

surprising ways) distribution that we hope to learn. However, we also expect to

have parameters in our model which are there to only account for our own lack of

knowledge about some menial aspect that we ultimately don’t care about. In Cos-

mology, the former type of parameters are the cosmological parameters that describe

the properties of the Universe. In addition to this, in recent years, the increase in

the quality of data has fuelled the appearance of a large number of parameters of

the latter kind. As discussed in Sect. 1.1.5, future cosmological analyses will have to

consider progressively larger numbers of nuisance parameters whose sole purpose is to

account for a plethora of theoretical and observational uncertainties that we can no

longer ignore. Moreover, these parameters often remain unconstrained by the data,

returning to their assigned prior distribution. Thus, nuisance parameters often act as

a Bayesian propagation of errors of sorts.

Formally, the spaces of parameters can be decomposed as θ⃗ = {Ω,n}, where

Ω is a set of cosmological parameters that we care about, and n is a vector of

nuisance parameters, which are largely irrelevant to the fundamental question being

explored. Thus, hypothetically we would only need to compute the contribution of

these parameters to the expectation values of the cosmological parameters without

computing their own expectation values. In other words, we only care about the

marginalised posterior:

P (Ω) =

∫
P (Ω,n) dn . (1.123)

The Laplace approximation [4, 5, 81] is a gradient-based analytical marginalisation

scheme based on building a Gaussian approximation to the posterior distribution

such that the integral in Eq. 1.123 can be performed analytically. This is achieved

by Taylor-expanding the log-posterior distribution around the best-fit values of the

dimensions we wish to Gaussianise. By virtue of expanding around the best-fit values,

the linear term of the expansion vanishes by definition, leaving only the zeroth term

and the quadratic term. Since the zeroth term does not depend on n, the dependence
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of the log-posterior on n becomes quadratic, leading to a Gaussian form for the

posterior.

In order to understand how this is done in practice, let us start by considering the

best-fit value of the nuisance parameters having fixed Ω. That is, we define n∗(Ω) as

n∗(Ω) ≡ arg maxnP (Ω,n) . (1.124)

Assuming that the distribution is differentiable at all points, n∗ then satisfies

∂χ2

∂n

∣∣∣∣
n∗

= 0, (1.125)

where we have defined χ2 = − logP (θ). Following [82], we can then approximate the

distribution at each value of Ω by expanding χ2 to second order in n around n∗, i.e.:

χ2(Ω,n) ≃ χ2
∗(Ω) + ∆nTF∗∆n , (1.126)

where χ2
∗(Ω) ≡ χ2(Ω,n∗), ∆n ≡ n− n∗, and we have defined the matrix

F∗,ij =
1

2

∂2χ2

∂ni∂nj

∣∣∣∣
n∗

. (1.127)

In this limit, the distribution is locally (i.e. at each Ω) a multivariate normal dis-

tribution in n, and thus the integral in Eq. (1.123) can be solved analytically. The

resulting marginalised likelihood has a χ2
m(Ω) ≡ −2 log p(Ω|d) given by

χ2
m(Ω) ≃ χ2

∗(Ω) + log {det [F∗(Ω)]}+ const. . (1.128)

In what follows, we will label the two contributions in Eq. (1.128), χ2
∗ and log detF∗,

as the profile and Laplace terms respectively:

1. The profile term is related to the profile likelihood [83], defined as

Pprof(Ω) ∝ P (Ω,n∗). (1.129)

The profile likelihood is a tool commonly used in frequentist parameter infer-

ence [84]. The advantage of the profile likelihood is that its maximum is, by

definition, the global maximum of the joint distribution. Understanding this

maximum as an estimator for Ω given the data, constraints on Ω can be ob-

tained by calculating this maximum for random simulated realisations of the

data. Additionally, the posterior profile likelihood is, by construction, centred

on the best-fit parameters, and is thus free from volume effects associated with

the choice of the nuisance parameters [19, 85, 86].
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Figure 1.6: Joint posterior distribution on two parameters, Ω and n, with an ap-
proximate degeneracy of the form nΩ1.2 ∼ const. The large bottom left panel shows
the joint distribution as red contours, with the position of the best-fit value of n as
a function of Ω in solid black. The central panel shows the χ2 for a fixed value of
Ω = Ω0 (shown as the dotted line in the first panel). The red line shows the true χ2,
while the dashed black line shows the Laplace approximation. The top panel shows
the probability distribution along Ω = Ω0 (given by p ∝ exp(−χ2/2)), with the ex-
act distribution and its Laplace approximation in red and dashed black respectively.
The bottom right panel shows the distribution of Ω marginalised over n. The exact
result is shown in red, with its Laplace approximation shown in dashed black. The
blue line shows the marginalised profile likelihood obtained by simply maximising the
joint likelihood over n for each Ω. The Laplace approximation provides an excellent
description of the marginalised distribution, while the profile likelihood returns a dis-
tribution with very similar width but centred, by construction, on the best-fit value
of Ω, avoiding volume effects.
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2. The Laplace term, sometimes referred to as Occam’s razor term, is associated

with the quadratic contribution to the Laplace approximation (Eq. (1.128)),

and accounts, to first order, for the volume in the space of nuisance parameters

n that has been integrated over for fixed Ω (i.e. the local curvature of the joint

distribution at each Ω)15. The Laplace term is associated with volume effects,

and is subdominant with respect to the profile term for sufficiently constraining

data.

The role of the profile and Laplace terms is illustrated in Fig. 1.6. The figure shows

a bivariate distribution for two parameters with an approximate degeneracy of the

form nΩ1.2 ∼ const. The contour levels of the true distribution are shown in red

in the bottom left panel, while the black solid line shows the best-fit value of n

as a function of Ω. The middle panel shows the exact χ2 of the distribution as a

function of n for a fixed Ω = Ω0 (for convenience, we chose Ω0 to be the maximum

of the distribution, also shown as a dotted line in the bottom panel). The black

dashed line shows the quadratic Laplace approximation to the red curve, with the

position of the best-fit n (for Ω = Ω0) marked by the blue line. The top panel

shows the distribution along the Ω = Ω0 line. The exact distribution is again shown

in red, and the Laplace approximation to it is shown in dashed black. The “profile

likelihood” approximation, which fixes n to its best-fit value, is shown in blue. Finally,

the bottom right panel shows the distribution marginalised over n, p(Ω). The true

marginal is shown in red. The result of analytically marginalising over n using the

Laplace approximation is shown in dashed black, and recovers the true marginal

almost exactly. Finally, the conditionally maximised distribution accounting only for

the profile term in Eq. (1.128) is shown in blue. As mentioned above, the profile-

only approximation recovers a distribution that is centred at the best-fit value of Ω

(marked by the dotted line).

Two qualitative results should be borne in mind in what follows. First, the Laplace

approximation provides a reasonably accurate prediction for the marginal for suffi-

ciently well-behaved distributions. Secondly, keeping only the profile term, P (Ω,n∗),

recovers a distribution that has approximately the same width but is, by construction,

centred on the maximum of the full (un-marginalised) distribution, P (Ω,n).

It is worth noting that including the Laplace term in Eq. (1.128) should come

at virtually no additional computational cost. Finding n∗(Ω) requires solving for

∂nχ
2 = 0, which can be done efficiently using gradient descent methods. Finding

15In the frequentist context, [87] introduced the formula in Eq. (1.128) under the name of “modified
profile likelihood”.
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the optimal step size in these algorithms often requires evaluating the Hessian of the

function being minimised, and therefore the matrix F∗ entering the Laplace term, is

already a product of the minimisation algorithm. For instance, the iteration in the

case of the Newton-Raphson algorithm is given by

n∗,i+1 = n∗,i −
(
[∇n∇T

nχ
2]−1 · ∇nχ

2
)
i
, (1.130)

where ∇nχ
2 is the gradient of χ2 with respect to n, and ∇n∇T

nχ
2 ≡ 2F is its Hessian

matrix. In the applications we will explore here, when Eq. (1.125) cannot be solved

analytically, we will make use of a modified version of the Newton-Raphson algorithm

[88].

1.2.3.2 Gaussian likelihoods

Let us now apply the method described in the previous section to the case of Gaussian

likelihoods. In this case we assume that the posterior distribution takes the form:

−2 log p(Ω,n|d) = (d− t)TC−1(d− t) + χ2
p,Ω(Ω) + χ2

p,n(n). (1.131)

Here, t(Ω,n) is the theory vector, which depends on the model parameters, C is

the covariance matrix of the data, which we assume to be model-independent, and

χ2
p,Ω and χ2

p,n are the parameter priors. Although the methodology described below

is straightforward to generalise to the case of arbitrary priors, for simplicity we will

assume that the nuisance parameters have Gaussian priors, and therefore

χ2
p,n(n) = (n− np)

TC−1
n (n− np), (1.132)

where Cn is the prior covariance. In the case of non-Gaussian priors, it is often

possible to apply a transformation to the nuisance parameters that Gaussianizes (e.g.

via normalising flows [89]) without introducing any pathologies (singularities, etc.).

In order to find n∗ and F , we need the first and second derivatives of the χ2 with

respect to n. In this case, these are given by:

∂χ2

∂ni

= −2∂it
TC−1(d− t) + 2

∑
j

[
C−1
n

]
ij

(nj − np,j), (1.133)

Fij = Fij + ∆Fij, (1.134)

where we have used the shorthand ∂i ≡ ∂/∂ni, and we have defined

Fij ≡ ∂it
TC−1 ∂jt +

[
C−1
n

]
ij
, (1.135)

∆Fij ≡ ∂i∂jt
T C−1(t− d). (1.136)

On the one hand, the first contribution to F , F , has three interesting properties:
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• It is positive-definite, and therefore invertible;

• It is independent of the data d;

• It coincides with the Fisher matrix of the Gaussian likelihood of Eq. (1.131)

with respect to the nuisance parameters.

On the other hand, when evaluated on the hypersurface n = n∗(Ω), t is close to d,

and therefore the contribution from ∆F is usually smaller than F .

1.2.3.3 Linear Parameters

Let us now consider the case of linear parameters. Consider a Gaussian likelihood in

the form of Eq. (1.131) where all parameters live in the theory prediction, which has

the form

t = t0 + Tn, (1.137)

where t0 and T are a vector and a matrix independent of n, but potentially dependent

on Ω. For simplicity, we will assume that the prior on n is centred at zero (np = 0).

This can always be achieved by simply redefining n′ ≡ n − np, and adding the

contribution Tnp to t0.

The case of linear parameters is particularly interesting, because the χ2 is quadratic

in n by construction, and the Laplace approximation is exact. Since the second deriva-

tives of the theory vector are zero, ∆F = 0, and the Fisher matrix is independent of

n and given by

F = F = TTC−1T + C−1
n . (1.138)

Furthermore, the best-fit parameters can be found analytically:

n∗ = F−1 TTC−1r, (1.139)

where r ≡ d− t0 is the data rescaled by the n-independent component of the theory.

Using n∗ to compute the χ2, and using Eq. (1.138), we obtain the marginalised χ2
m

of Eq. (1.128) which, as we said, is exact in this case.

The first thing worth noting is that, if the matrix T is independent of Ω, then

F is constant, and so is the Laplace term. Up to an irrelevant overall constant, the

marginalised χ2 is then equivalent to χ2
∗, obtained by substituting the best-fit value

of n. Thus, the approximate relation between marginalisation and maximisation we

outlined in the previous section becomes an equivalence when the data is Gaussian

with a linear model in n since, in this case, there are no volume effects. All volume
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effects resulting from a dependence of T on Ω are otherwise incorporated exactly

in the Laplace term. If the priors on n are sufficiently tight, the second term in

Eq. (1.138) dominates, and these volume effects become negligible.

Let us now focus on the profile term. Substituting n∗ from Eq. (1.139), we obtain

χ2
∗ = (Wr)TC−1(Wr) + rTC−1TF−1C−1

n F−1TTC−1r, (1.140)

where the second term comes from the prior on n, and we have defined the matrix

W ≡ I− TF−1TTC−1, (1.141)

with I the identity.

First, consider the limit of no external prior (i.e. C−1
n = 0). In this case, we can

ignore the second term in Eq. (1.140), and the Fisher matrix is F = TTC−1T. We

can then see that the matrix W projects r onto the subspace that is orthogonal to all

the columns of T (with orthogonality defined using the inverse covariance of the data

C−1 as a dot product). Marginalising over linear parameters is therefore equivalent

in this limit to deprojecting all modes of the data that live in the subspace spanned

by the columns of T [90]. Secondly, Eq. (1.140) can be simplified significantly into

χ2
∗ = rT C̃−1r, (1.142)

where C̃ is a modified covariance given by

C̃ = C + TCnT
T . (1.143)

To obtain this beautifully simple result, one only needs to expand first term in

Eq. (1.140), simplify the result, and make use of the Woodbury matrix identity [91].

We can then plug this modified covariance matrix into Eq. 1.131 to obtain:

−2 logP (Ω|d) ≃(r− t̄)T C̃−1(d− t̄) + χ2
p,Ω(Ω)

+ log
[
det

(
TTC−1T + C−1

n

)]
+ const.. (1.144)

It is worth stressing again that this result is an exact expression for both the

marginal posterior and the conditionally maximised posterior. Maximising and marginal-

ising over n therefore result in the same Gaussian likelihood with the theory vector

evaluated at n = 0 (or at its prior mean if non-zero), and a modified covariance

C̃, obtained by simply assigning additional variance in quadrature to the modes of

the data that align with the columns of T (with this extra variance given by the n

parameter priors).
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To summarise: in the case of Gaussian data, negligible parameter dependence of

the covariance matrix, and a theory model that is linear in the nuisance parameters,

the Laplace approximation is exact. In this case, there is a mathematical equiva-

lence between marginalisation, χ2 minimisation, deprojection, and simply adding in

quadrature the prior uncertainty on the marginalised parameters at the data level. If

the modes associated with n (i.e. the columns of T) depend on the other parameters

of the model, the associated volume effects are captured exactly by the Laplace term,

which is simply given by the log-determinant of Eq. (1.138). Importantly, while this

approach is algorithmically the fastest, it does not produce a best-fit value of a given

nuisance parameter.

49



1.3 Computer Differentiation

1.3.1 Finite Differences

In Chap. 1.2 we showed how the gradients of the posterior distribution will be an

invaluable tool to fight off the curse of dimensionality as the number of parameters in

cosmological analyses increases. However, one can imagine a situation where the cost

of the gradient surpasses the efficiency improvement of the better transition kernel.

Thus, careful attention has to be paid to how the gradients are computed. This

is particularly true in high dimensions for which the methods we currently use to

numerically compute such gradients become costly.

The derivative of a function, f(x), is a second function which tracks the rate of

the change of the former [92]. A function is differentiable across its domain iff [93]:

df

dx
= lim

ϵ→0

f(x+ ϵ)− f(x)

ϵ
∀x ∈ R. (1.145)

If the function is multivariate, f(x), the object of interest is often the gradient, defined

as:

∇f(x) =

(
df

dxn
,

df

dxn−1

, ...,
df

dx0

)
(1.146)

Besides being the fundamental definition of a derivative, Eq. 1.145 acts as a

prescription to compute the derivative of a given function. However, humans rarely

use Eq. 1.145 to compute derivatives, at least not explicitly. Instead, we memorise the

derivative of common place algebraic expressions which we then compose to compute

the derivatives of complicated functions. Thus, given a complicated function, f(x),

we can always express it as a composition of simpler functions Wi(x) whose derivative

we know, f(x) ≡ Wn(Wn−1(...W1(W0))) where Wn ≡ f , W0 ≡ x and n is the number

of compositions needed. It can then be shown from Eq. 1.145 that the derivative of

f(x) can be expressed in terms of known derivatives of the composites as:

df

dx
=

n−1∏
i=0

dWn−i

dWn−(1+i)

. (1.147)

This expression is known as the chain rule.

The story is slightly different for computers. Inside computers, functions are

often represented as algorithms, also referred to as programmes. In order to compute

the gradient of a programme, computers have traditionally relied on numerically
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approximating Eq. 1.145. Since computers cannot take infinitesimal limits, this

method is known as finite differences [94]:

df

dx
=
f(x+ ϵ)− f(x)

ϵ
, (1.148)

where ϵ is a small but finite quantity which determines the error of the approximation.

More accurate schemes that improve on Eq. 1.148 can be devised by comparing to

the Taylor expansion of f(x). However, they often require evaluating f(x) at more

points. Thus it is common to talk of the m-th point finite differences derivative where

m is the number of evaluations of f(x).

The main problem of using finite differences to compute gradients of computer

programs is that the algorithm scales poorly with the number of dimensions of the

programme being differentiated. This can be seen by the fact that, given a function

that takes n inputs, computing the m-th point finite differences gradient takes n×m
calls of the original function. Moreover, the obtained derivative will be subject to

truncation errors of order O(ϵm).

1.3.2 Auto-Differentiation

Ideally, one would compute the gradient of the program analytically and then write

a second program for it. The problem with this approach is that writing analytical

derivatives for modern computer programs is often too cumbersome and error prone

given their complexity 16.

Would it not be nice then if computers could systematically apply the chain

rule through their programmes just like their programmers do for analytical expres-

sions? This is exactly what computer scientists have been attempting since the in-

ception of computer science. Quite literally, the first ever PhD thesis in computer

science awarded to R.E. Wengert proposed ”A simple automatic derivative evalua-

tion program”[96], kick-starting the entire field of Automatic Differentiaton (AD). As

we will see, AD would go on to become an essential enabler of the neural network

revolution we are currently living through.

Fundamentally, AD is a series of algorithms that allow computers to apply the

chain rule to differentiate through computer programs. Just like we humans do, AD

achieves this by algorithmically reducing complex computer programs to a series of

compound primitive operations (i.e. +,
√

, sin, exp ...etc) whose derivatives are

16Note that, while tedious, this approach is not impossible. With heroic efforts, the BORG
collaboration managed to write fully analytical gradients for complex N-body simulations [95].
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Figure 1.7: Wengert tape of Alg. 4.

known such that the derivative of the whole program can be computed. The reason

why AD is hard, but also mesmerising for computer scientists, is because it requires

teaching computers some form of understanding of the programs they execute. This

is akin to how humans intuitively perceive complicated functions as compositions of

simpler ones.

AD achieves this understanding by building an schematic representation of the

computer program that specifies the relationships between its inputs, the primitive

operations and the final output. This schematic representation is commonly refereed

to as the Wengert tape, after Wengert [96].

In order to understand this taping process, let us consider a simple toy example of

a computer program that will be familiar to most cosmologists: the expansion history

of a Universe with matter, a cosmological constant but no radiation

H(z) =
√

(1 + z)3Ωm − (1− Ωm). (1.149)

The associated algorithm with Eq. 1.149 is given by Alg. 4.

Algorithm 4 Expansion History

Require: Ωm, z
return

√
(1 + z)3Ωm − (1− Ωm)

The key insight is to think of this program as a composition of sums, products

and powers whose relationship is given by the Wengert tape shown in Fig. 1.7. Once

we know the primitives and their relationships, we can differentiate through them

to obtain the derivatives of the program as shown in Tab. 1.1. In Tab. 1.1 ∂iW0

and ∂iW1 are known as the seeds and control the variable with respect to which the

derivative is taken. Hence, once the tape is recorded, setting ∂iW0 = 1 and ∂iW1 = 0

allows AD to compute ∂ΩmH(z). Similarly, the seed ∂iW0 = 0 and ∂iW1 = 1 results

in ∂zH(z). This allows AD to easily compute multivariate gradients with one single

tape [97].
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Table 1.1: Tape of Alg. 4 for a flat-ΛCDM radiation-less expansion history.

Primitives Derivatives

W0 ≡ Ωm ∂iW0

W1 ≡ z ∂iW1

W2 = 1 +W1 ∂iW2 = ∂iW1

W3 = W 3
2 ∂iW3 = 3W 2

2 ∂ΩmW2 = 3W 2
2 ∂iW1

W4 = W0 ∗W3 ∂iW4 = ∂iW0W3 +W0∂iW3 = ∂iW0W3 + 3W0W
2
2 ∂iW1

W5 = 1−W0 ∂iW5 = −∂iW0

W6 = W4 +W5 ∂iW6 = ∂ΩmW4 + ∂ΩmW5 = ∂iW0W3 + 3W0W
2
2 ∂ΩmW1 − ∂iW0

H(z) ≡ W7 =
√
W6 ∂iW7 = ∂iW6

2
√
W6

= ((W3 − 1)∂iW0 + 3W0W
2
2 ∂iW0)/(2

√
W6)

Analogously to when humans perform the chain rule, AD can operate in two

different modes, forwards and backwards. The distinction boils down to whether we

start applying the chain rule by computing the derivatives of the primitives with

respect to the independent variables until reaching the original function or if instead

we start by computing the derivative of the original function with respect to the

primitives until reaching the independent variables. The first strategy corresponds

to forwards AD while the second is backwards AD. Going back to our example,

if we wanted to compute ∂ΩmH(z), forwards AD would compute it as ∂ΩmH(z) =
∂W6

∂W1

∂W7

∂W6

∂W8

∂W7
while backwards AD would instead perform ∂ΩmH(z) = ∂W8

∂W7

∂W7

∂W6

∂W6

∂W1
.

While backwards and forwards AD are algebraically identical, they are compu-

tationally very distinct. Given a function f : RN → RM, forwards AD will be more

efficient at computing ∇f if N < M . If, on the other hand, M < N , backwards

AD is preferred [97]17. This difference in performance originates from the fact that

the number of passes the forwards AD needs to generate the Wengert tape of a pro-

gram scales with the number of inputs while backwards AD scales with the number

of outputs. This makes backwards AD particular useful in optimisation problems

with a scalar loss function [97]. Wengert’s first algorithm operated in the forwards

mode and went on fairly unnoticed. Backwards AD was originally proposed by Seppo

Linnainmaa in his Master’s thesis written in Finnish and was only translated into

English in 1976 [98]. Today, backwards AD is one of the key technologies under-

pinning the multi-billion dollar AI industry. Indeed, most of the popularity of AD

is due to its application to neural networks where its backwards mode allows us to

17The performance of backwards and forwards AD is also impacted by the size of the operation
being differentiated.
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optimise models with millions of parameters. Hence why AD is also commonly known

as backpropagation.

A careful reader might have realised that I have stealthily glided over how com-

puters actually generate the Wengert tape of a program. This is because taping is a

rather arcane process with a great deal of complexity. However, we need to develop

an operational understanding in order to learn how to write computer programs com-

patible with AD algorithms. The two most popular approaches to write this tape are

through either Operator Overload (OO) or by Source Transformation (ST) [99, 100].

On the one hand, OO extends the operators of a given programming language to

include a tracing operation that tracks the operations that the inputs of a given pro-

gram undergo. This makes OO fairly permissive of most modern coding practices

such as control flow or variable mutation. However, tracking every single input can

add significant overhead as well as memory requirements, leading to inefficiencies. On

the other hand, ST extends the programming language compiler to explicitly write a

tape for the program as a form of intermediate representation. This puts much more

stringent demands on the control flow of the program as well as other open-ended

operations it may contain. However, it is far more efficient than OO [101].

In addition to this, it is also possible to perform completely tapeless AD using dual

numbers. Dual numbers are special type of numbers of the form a+ bϵ where ϵ2 = 0

but ϵ ̸= 0. Thus, it can be shown that given a generic function, f(x), its derivative

can automatically obtained by considering f(a + ϵ) = f(a) + ϵf ′(a) where a ∈ R.

This can be proven by considering its Taylor expansion of the previous expression:

f(a+ ϵ) =
∞∑
n=0

f (n)(a+ ϵ)

n!
(x− a− ϵ)n ≈

∞∑
n=0

f (n)(a)

n!
(x− a− ϵ)n = (1.150)

(f(a) + f ′(a)(x− a) +
1

2
f ′′(a)(x− a)2 + ...) + ϵ(f ′(a) + f ′′(a)(x− a) + ...) =

(1.151)
∞∑
n=0

f (n)(a)

n!
(x+ a)n + ϵ

∞∑
n=0

f (n+1)(a)

n!
(x+ a)n = (1.152)

f(a) + ϵf ′(a) . (1.153)

Therefore, AD can also be achieved by teaching computer programs how to parse

dual numbers without the need of a schematic representation of the program being

differentiated through. Since dual numbers are a special type of input, AD based on

this technique is limited to the forward mode which might be a problem depending

on the application.

54



1.4 Gaussian Processes

1.4.1 Motivation

In the previous sections we have focused on how better modelling of systematics will

lead to an unmanageable number of free parameters for future cosmological analyses.

However, there are good reasons to believe that systematics might not be the only

aspect that need better modelling.

The dramatic increase in precision experienced by cosmology over the last 30 years

has recently led to the discovery of potential inconsistencies in our cosmological model

that previously might have been obscured by statistical errors. The most famous man-

ifestation of this tension is the 4σ to 5σ difference in the value of the Hubble constant

[102, 103], H0, between supernova luminosity distance estimates [104, 105] and the

early-Universe cosmic microwave background (CMB) probe Planck [13]. Somewhat

less known but equally important is the fact that late-Universe probes of the large-

scale structure, such as weak gravitational lensing (WL) and galaxy clustering, also

prefer a 3σ to 4σ lower amplitude of the growth of structure than Planck. This tension

is encapsulated in the parameter S8 = σ8

√
Ωm

0.3
, where σ8 is the standard deviation of

matter density fluctuations in spheres of radius 8h−1Mpc today and Ωm is the matter

density parameter. Hence, it is known as the S8 tension [54, 60–62, 106, 107].

Both of these tensions are highly suggestive of either unaccounted systematic

effects or new physics beyond the ΛCDM model [108]. If we assume we can trust our

measurements, we would still have to identify the physics that need to be modified.

Moreover, even if we successfully identified the new physics, we would still have to

come up with a specific parametrisation for the phenomena [109]. This problem has

single-handedly propped an entire publication industry based on considering ever so

slightly different parametrisations of different beyond-ΛCDM physics. Unfortunately,

there is no a candidate currently that can resolve the aforementioned tensions while

leaving the successes of the ΛCDM model intact [110].

Model-agnostic Cosmology offers a path forward to continue probing potential new

physics by inverting the aforementioned process. Instead of marrying a particular

parametrisation of the new phenomena and then contrasting it with the available

data, one can infer directly from the data the favoured functional forms and then

map said forms to particular theories. Thus, model-agnostic Cosmology is also known

as data driven Cosmology or non-parametric Cosmology. The later refers to the fact

that no one parametrisation is preferred. However, these methods often involve more

parameters, not less!
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As one can imagine, model-agnostic Cosmology boils down to the particular

method one uses to determine the functional forms from the data. Two of the most

popular ways of doing so are symbolic regression [111, 112] and Gaussian processes

[113]. The key difference between the two approaches is that symbolic regression

considers the functional forms explicitly while Gaussian processes do so implicitly as

expectations values of high dimensional distributions. In this thesis, we will focus our

discussion of Gaussian processes for the sake of brevity.

1.4.2 Formalism

In the same way that probability distributions describe the statistical properties of

scalars or vectors, stochastic processes describe the statistical properties of functions.

Thus, a Gaussian process (GP) is a continuous generalisation of the Gaussian prob-

ability distribution. Formally, a GP is a collection of random variables (nodes), each

of them sampled from a multivariate Gaussian distribution [114]. Thus a GP g(x)

where x is a arbitrary vector representing the position of the nodes, is fully specified

by a mean function:

m(x) ≡ E[g(x)] , (1.154)

where E[· · · ] is the expectation value over the ensemble of realisations of g(x), and a

covariance function:

K(x,x′) ≡ E[(g(x)−m(x))(g(x′)−m(x′))] . (1.155)

In combination, the mean and covariance functions determine the statistical prop-

erties of the random variables that thus define the family of shapes (functions) that

the GP can take. This is obvious if we consider the eigenfunction decomposition of

the covariance function:

K(x,x′) =
∞∑
i=1

λiϕi(x)ϕi(x
′)† , (1.156)

where λi denotes the eigenvalues and ϕi the eigenfunctions. These eigenfunctions

describe the basis of a space of functions thus establishing the link between the

covariance matrix and the family of functions it embodies.

The choice of mean function is trivial since it is always possible to map the prob-

lem to a zero-mean scenario by removing the mean of the observations. However,

parametrising the covariance matrix has to be done rather carefully in order to reflect

the statistical properties of the observations or the assumed underlying function. The
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most common such parametrisation is the square exponential covariance matrix given

by the following kernel:

K(x,x′) = η2 exp

[−|x− x′|2
2l2

]
, (1.157)

where η and l are two so called ”hyperparameters” that control the statistical proper-

ties of the family of functions described by the GP. In this particular case, η controls

the amplitude of the GP in the absence of data while l acts as a correlation length. In

other words, l gives us the distance after which a point in the GP becomes effectively

independent from another one.

GPs have been extensively used in astrophysics as tools to model different quan-

tities in an agnostic way [1, 2, 115–126]. Given a likelihood L(y|x,σ) for a set of

data points y(xy) ≡ y at a set of positions xy, with a set of errors σ, and a set of

random variables x, a GP can be employed as a prior over all the possible families of

functions used to fit the observations.

Observations can then be used to inform the GP posterior (i.e. the statistical

properties of the assemble of random variables), P(g(x)|y,σ), which determines the

family of functions most consistent with the data. This makes GPs extremely versatile

as agnostic models for functions we might know little about. Moreover, GPs are also

easy to interpret. Being probability distributions over a basis of functions, GPs have

a naturally built-in concept of statistical certainty encapsulated in the covariance

matrix of their posterior distribution. In Fig. 1.8 we show an example how data can be

used to constrain the family of functions described by a GP. The left-hand side panels

show the GPs mean and standard deviation prior to the inference process (bottom

panel) as well as the correlation matrix between the nodes (top panel). Similarly, the

right-hand side panels show the equivalent quantities after the inference process. We

can observe how the mean GP has been adapted to follow the trends of the data.

Moreover, its standard deviation follows the sparsity of the data points, narrowing

in populated regions and brocading where observations are lacking. Looking at the

correlation matrix we can see that the data has induced a non-trivial structure which

washes off once data becomes sparse (where the GP returns to its prior).

When the relationship between the data and the GP is linear, GPs become par-

ticularly attractive modelling tools since the posterior distribution of the GP can be

found analytically. Consider a set of points x∗ where we want to probe the predictions

of GP, it can be shown [113] that the mean of the GP in light of observations is given

by:

E [g(x∗)] = K(xy,x
∗)T

[
K(xy,x

′
y) + σ

]−1
y . (1.158)
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Figure 1.8: The left-hand side panels show the GPs mean and standard deviation prior
to the inference process (bottom panel) as well as the correlation matrix between the
nodes (top panel). Similarly, the right-hand side panels show the equivalent quantities
after the inference process.
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Similarly, the covariance matrix of these predictions is given by:

cov [g(x∗)] = K(x∗,x∗′)−K(xy,x
∗)T

[
K(xy,x

′
y) + σ

]−1
K(xy,x

∗) . (1.159)

Most importantly, neither Eq. 1.158 nor Eq. 1.159 depend on the original random

variables x. Thus the final predictions only depend on the chosen kernel for the GP

which implicitly depends on the GP hyperparameters.

When the relationship between the data and the GP is non-linear, it is no longer

possible to find the posterior of the GP analytically. Moreover, the posterior will

depend on the position of the original random variables x meaning that we have to

explicitly treat them as free parameters. In such scenario, it is useful to think of GPs

as a mapping from a white noise process to a correlated process. Formally this can

be expressed as:

g(x) = m(x) + L(K) · ν , (1.160)

where ν ∼ N (0, I) and L(K) is the lower Cholesky triangle of the GP kernel which

acts as a rotation of ν on to the correlated space. The reason why Eq. 1.160 is a

useful representation is because it is much simpler to sample a white noise process

than directly from a GP.

Since in the non-linear scenario nodes become free parameters it often becomes

undesirable, if not simply unfeasible, to directly sample the GP at the data points.

This is specially true if the data are numerous, which is a pre-requirement to perform

data-driven Cosmology. Thankfully, sampling GPs directly at the points is not only

inefficient but also unnecessary. Indeed it is more advantageous to consider a small

number of nodes which we can then map to the positions of the data using the Wiener

filter given by the kernel of the GP:

g(xy) =Wxxy [g(x)] =
K(xy,x)

K(x,x′)
· g(x) . (1.161)

Predictions for the data can then be found as:

y ∼ N (F [g(xy)] ,σ) , (1.162)

where we have assumed a Gaussian likelihood for the sake of argument and F is the

non-linear mapping between the GP and the data.

However, even after using a Wiener filter to map the GP to a lower dimensional

space, one might find that the number of free parameters is still too large for tradi-

tional inference methods (See Sect. 1.2.1). Here’s where another important property

of GPs comes into play: GPs are as differentiable as their covariance kernel [113].
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Indeed, the derivative of a GP g(x) ∼ N (m(x), K(x,x′)) is another GP given by

ġ(x) ∼ N (∂xm(x), ∂x∂x′K(x,x′)). Moreover GPs, by virtue of are abased on linear

algebra, are also compatible with all forms of auto-differentiation. Thus, GPs are

extremely synergistic with the gradient-based inference algorithms discussed in Sect.

1.2.2.

Finally, once the posterior of the GP has been found numerically or otherwise, its

values can be probed at arbitrary points using the Wiener filter given by the posterior

covariance matrix of the GP and the set of probing points.

1.4.3 Interpretation

In the previous section, we described how to use GPs as agnostic priors over families

of functions. In this section, we will discuss how to interpret the results obtained.

However, as we will see, this is no easy task. The problem fundamentally stems from

the fact that a GP is not a single parameter with a singular figure of merit (e.g. the

standard deviation), but a vector of parameters. Nonetheless, we need to devise a

compact and useful way of compressing (and comparing) the information we get from

the GP.

As discussed in Sect. 1.4.2, the statistical properties of a GP are encapsulated in its

mean and covariance function. Therefore, if one wishes to measure how constrained

a GP is, the first intuition would be to turn to the covariance matrix of the GP’s

posterior; the multi-dimensional equivalent of the standard deviation. The problem

that arises is finding a way to compress such a covariance matrix into a meaningful

measurement

On the one hand, one could look at the determinant of said covariance matrix.

However, the determinant mixes contributions from both the diagonal elements of

the matrix; i.e. the standard deviation in each node, and from the off-diagonal

elements of the matrix; i.e. the correlations between the nodes, in a non-trivial

way that obfuscates its interpretation. One could think of just think of looking

at the diagonal of said covariance. However, this approach runs into the opposite

problem. How does one interpret two GP’s with the same variance but with different

degrees of correlation? In the context of CMB data compression, Bond et al. [127]

proposed to study one over the diagonal of the inverse covariance matrix as a way

of incorporating off-diagonal contributions. Alternatively, one could diagonalise the

covariance matrix. However, both inverting ad diagonalising are non-linear operations

which makes interpreting the resulting errors a non-trivial task.
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On the other hand, one could take advantage of the so called hyperparameters of

the GP. Hyperparameters dictate the values that the nodes are allowed to take and

that act as a high level description of the statistical properties of the nodes. The most

relevant hyperparameter would be the amplitude of the GP covariance matrix which

dictates how much the GP can deviate from its mean. This measurement partially

solves the issue of including the off-diagonal entries in an interpretable manner since

the hyperparameter controls the amplitude of both the diagonal and off-diagonal el-

ements of the matrix. However, it is unclear how to compare two covariance matrix

amplitudes with two different correlation length values. Most importantly, this mea-

surement of uncertainty does not directly relate to the nodes of the GP themselves,

only to their allowed values. In summary, there is not a singular way of quantifying

the uncertainty of a GP, especially using one single number.
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Chapter 2

Model-independent constraints on
Ωm and H(z) from the link between
geometry and growth

2.1 Introduction

When observing and characterising the Universe on large scales, there are two broadly

different, yet intertwined, types of observations [128]. In the first type of observation,

one endeavours to constrain the expansion rate of the Universe at different times.

This can be done by measuring the expansion rate itself at a particular redshift.

Alternatively, one can measure the expansion rate as an integrated effect in form of

different cosmological distance measures such as angular diameter distances, luminos-

ity distances, standard sirens, etc. Fundamentally, all of these distances are derived

from the radial comoving distance,

χ(z) =

∫ z

0

cdz

H(z)
. (2.1)

In the second type of observation, one focuses on the rate at which structures

undergo gravitational collapse on the expanding background. It can be shown (see

Sect. 1.1.2) that under the assumptions that the bulk of matter in the recent past

can be described by a pressureless fluid and that neutrino effects can be neglected,

the density contrast, δ, obeys the following evolution equation of the form:

f ′ + f 2 +

(
1 +

d ln aH

d ln a

)
f =

3

2
Ωm(z) , (2.2)

where the prime denotes a derivative with regards to ln a, the growth rate is defined

as f ≡ d ln δ/d ln a and Ωm(z) is the fractional energy density in matter as a function
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of redshift. The latter quantity depends, through the Einstein Field Equations, on

H ≡ H(z) so that

Ωm(z) =
ΩmH

2
0

a3H2
, (2.3)

with Ωm ≡ Ωm(0), which we use for ease of notation. Thus, a measurement of the

growth rate of structure at different redshifts (or times) can also be used to reconstruct

H(z) over time as well as the fractional matter density today, Ωm.

The challenge of modern cosmology has been to use a wide range of different

cosmological observables to constrain H(z) as a function of time or redshift (and,

of course, Ωm) and, crucially, to pin down the underlying cosmological model which

describes H(z) in terms of a greatly reduced set of cosmological parameters. The

front-runner is the Λ Cold Dark Matter (ΛCDM) model, whose parameters are now

constrained to an unprecedented precision [13]. However, interestingly, inconsisten-

cies, or tensions, have begun to emerge. Different probes are leading to different con-

straints on, for example, the Hubble constant, H0 [e.g. 104, 129, 130] or the density-

weighted amplitude of fluctuations, S8 ≡ σ8 (Ωm/0.3)0.5 [e.g. 54, 60, 61, 131–135],

where σ8 is the variance of δ, in spheres of radius 8h−1 Mpc.

In this chapter, we ask if it is possible to obtain meaningful, or precise, constraints

on cosmological parameters with minimal assumptions about the cosmological model.

To be more specific, we step back and try to find model-independent constraints

on H(z) and Ωm from measurements of the expansion history itself, cosmological

distances and the growth rate. This allows us to contrast the constraining power of

these two very different sets of observables, to explore how combining them improves

constraints and, most importantly, how much constraints improve once one assumes

a cosmological model. The hope is that understanding this process will shed light

on the analysis of theories that go beyond ΛCDM, but also may have bearing on

the current inconsistencies in parameter constraints. We will implement our model-

independent approach using Gaussian processes [113, 114]. Gaussian processes allow

us to reconstruct a well-defined distribution of histories of H(z). The data then allows

us to constrain the parameters of this distribution and, in doing so, tells us at what

redshifts H(z) is well determined and at what redshifts it is determined poorly.

The literature already hosts a number of examples of the possible uses of Gaus-

sian Processes to test certain aspects of the present cosmological paradigm in model-

agnostic ways. For example, one can find tests for the model dependence of the

H0 [115–118] and S8 [119, 120] tensions, for the non-zero curvature of space-time

[121–123], as well as tests for the density and the equation of state of dark energy

63



[124, 125]. More closely related to the topic of this work, in Perenon et al. [126] Gaus-

sian processes were used to study the statistical correlations between the expansion

history, cosmological distances, and the linear growth rate without appealing to the

physical relationships between the three functions. However, the clearest precedent of

the methodology used here is Li et al. [136] who already employ Gaussian Processes

to obtain model-independent constraints for Ωm and σ8 based on the relationship be-

tween the expansion history and the linear growth rate. The methodology developed

in the present chapter expands and improves many aspects of their analysis. First,

our Gaussian process extends all the way to recombination. This allows us to solve

the Jeans equation (Eq. 3.3) without using fitting formulas. Moreover, we also em-

ploy cosmological distances to constrain the evolution of the expansion history. This,

in combination with the extended range of the Gaussian Process, allows us to use the

position of the first acoustic peak of the CMB temperature power spectrum to con-

strain expansion history far into the past. Finally, and most importantly, we sample

our Gaussian Process simultaneously with the cosmological parameters, allowing us

to observe potential correlations between the two.

The structure of this chapter is as follows: in Section 2.2 we present the method-

ology of this work regarding the use of Gaussian Process to compute predictions for

cosmological observables. In Section 2.3 we describe the cosmological observables

from which we employ data and motivate their use in the context of this work. We

present our results in Section 2.4 and discuss the implications of our work in Section

2.5.

2.2 Methods

2.2.1 A Gaussian Process for H(z)

Connecting the expansion rate with observations when H(z) is directly observed is

trivial. In the case of distances, we can see from Eqs. 1.22, 1.25 and 1.27 that it

is possible to generate predictions for the observables from any choice of H(z) by

performing the relevant integral. In the case of growth (Eq. 1.48), we are faced with

the problem that most observations do not report f but the combined quantity fσ8.

Thus, it is convenient to rewrite Eq. 1.48 in terms of the latter. This can be done

as follows: assuming that perturbations grow in a self-similar manner, we can define

δ(t,x) ≡ D(t)δ0(x), where δ0 is the density contrast today. Then, we can rewrite Eq.
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1.48 as
d

da

(
a2H

dD

d ln a

)
=

3

2
Ωm(a) aH D . (2.4)

Defining y ≡ a2E dD
d ln a

, with E ≡ H/H0, and switching to the integration variable

s ≡ ln(1 + z), this equation can be written in terms of a system of coupled first-order

equations:

dy

ds
= −3

2

Ωm

aE
D ,

dD

ds
= − y

a2E
. (2.5)

Then, it is possible to transform the quantities y(s) and D(s) into fσ8(s) and

σ8(s) by applying the following transformation

σ8(s) = σ8(0)
D(s)

D(0)
, fσ8(s) =

y(s)σ8(0)

E(s)D(0)
e2s . (2.6)

The thrust of this work is to keep the analysis as model-independent as possible.

Yet, as we can see, it is still possible to extract information about some of the cosmo-

logical parameters. For a start, combining the information from distances and growth

allows us to constrain Ωm. But we also have, automatically, H0 ≡ H(z = 0) and, as

we just saw, we can calculate σ8 ≡ σ8(z = 0) (or S8 as a derived parameter).

In this chapter, we will model the time (or redshift) dependent Hubble rate, H(z),

as a Gaussian Process (GP) spanning over the redshift range 0 < z < 1100. We

describe GPs extensively in Sect. 1.4. For the purposes of this chapter it is enough to

remember that GPs are a generalisation of Gaussian distributions and that as such

they are fully determined by a mean and covariance function:

GP (z) ∼ N (m(z), K(z, z′)) . (2.7)

Since the Hubble rate is generally regarded as a monotonically increasing function,

it is important to define a non-zero mean for the GP. This prevents the GP from

simply fitting the long range upwards trend of H(z) while washing out interesting

local features [137]. In this chapter, we define the mean of the GP in terms of the

Planck 2018 TTTEEE [13] best fit ΛCDM expansion history, HP18(z).

In order to prevent the choice of mean from biasing our constraints on the cos-

mological parameters, we define a free amplitude parameter A0 that multiplies the

mean of the GP such that

Hm(z) ≡ A0HP18(z) . (2.8)

In a Bayesian framework, this is equivalent to setting a prior over a family of possible

mean functions where the distribtion on A0 captures our prior degree of confidence

in Planck 2018’s expansion history being the true expansion history of the Universe.
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In [1], we show these effects can substantially bias the constraints we obtain in

the absence of A0. Simply put, if the data is somewhat away from what one might

expect from the fiducial ΛCDM background, the GP will have to soak up the large

scale differences, or trends, in detriment to the small scale, local features. Moreover,

in those regions, where data is sparse, the GP’s constraints are highly dominated

by their prior; i.e. the chosen mean. If such a mean systematically falls beneath or

above the data, it can lead to spurious trends in the final results. For these reasons,

we advise against common practices such as employing a constant as a mean for a GP

modelling the recent expansion history or extrapolating GP results to regions where

they become dominated by the choice of mean and covariance function.

The Hubble rate must also be a continuous and smooth function. Therefore, it is

important that the covariance function of the GP reflect such properties [138]. Ulti-

mately, we chose a square exponential covariance function to model the correlations

between the different nodes of the GP (see Eq. 1.157). This decision was made based

on the fact that the square exponential is computationally inexpensive and infinitely

differentiable kernel appropriate for modelling smooth fluctuations around the mean

of the GP. In addition to this, a white noise term with amplitude 10−3 was added

to the covariance function to ensure numerical stability. This particular amount of

noise was found to reliably make the kernel invertible while remaining a sub-dominant

component of the noise budget. Thus, the final covariance function is given by:

K(x,x′) = η2 exp

[−|x− x′|2
2l2

]
+ σI , (2.9)

where η and l are known as the GP’s hyperparameters and control the amplitude and

the correlation length of the process respectively. Moreover, σ is the amplitude of

the jitter. Finally, we define the GP not over the Hubble rate itself but as a relative

deviation from the ΛCDM background:

H(z) = Hm(z)[1 + δH(z)] . (2.10)

This allows us to define our GP as a zero mean process given by:

δH(z) = L(K) · ν , (2.11)

where nodes of the GP are distributed as ν ∼ N (0, I) and L(K) denotes the lower

Cholesky triangle of the GP kernel. This approach has the added benefit of normal-

ising the amplitude of the oscillations of the GP with respect to the mean making

the sampling of the hyperparameters of the GP kernel far more efficient by virtue of

reducing its potential range of values.
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2.2.2 Likelihood

As discussed in Sect. 1.4, sampling over GPs is extremely efficient when the model

for the observed data is linearly related to the GP and the likelihood is Gaussian.

In this case, each node of the GP; i.e. each dimension of the multivariate Gaussian

distribution, must be treated as a newly added degree of freedom in the sampling

process (i.e. a new parameter). As described in Sect. 1.2, exploring such a vast

parameter space is effectively unfeasible with traditional non-gradient-based sampling

algorithms and requires more sophisticated samplers. In this work, we employ the

No U-turn Sampler (NUTS) [77] described in Sect. 1.2.2.2. We employ the NUTS

implementation of the python package Pymc3 [139]. This inference algorithm allows us

to handle hundreds or thousands of parameters during the inference process efficiently.

A concern when using gradient-based inference algorithms is how to efficiently

compute the gradient of the likelihood function. As discussed in Sect. 1.3.2, in the

absence of analytical derivatives auto-differentiation algorithms are the most efficient

way of computing said gradients. Pymc3 makes use of the tensor package Theano [140]

as a back-end to build a symbolic graph (See Sect. 1.3.2 for a discussion of program

graphs and Wegnert tapes) of the model used to fit the data. This graph is then used

to perform AD [141] to obtain the gradient of the regression model.

Through out the likelihood we make use of simple integration schemes; e.g. Runge-

Kutta, trapezoidal rule, on which Theano can apply automatic-differentiation to

make the likelihood differentiable in all parameters. In the case of distances (see Eq.

1.22), the integral over 1/HGP was performed using the trapezoidal rule with s ≡
ln(1 + z) as the integration variable. In the case of the linear growth rate, the system

of differential equations shown in Eq. 2.5 was solved for y(s) and D(s) employing a

second order Runge-Kutta scheme, integrating over the redshift range 0 < z < 1100

from the past into the present with initial conditions D(z = 1100) = a(z = 1100)

and y(z = 1100) = a(z = 1100)3E(z = 1100). Note that these initial conditions are

only strictly correct for a purely matter-dominated universe, which is not accurate

at z ∼ 1000. However, the impact of this assumption is negligible by comparison

to current uncertainties on growth measurements. In combination, these methods

allow us to obtain sub-percent accuracy through out the entire redshift range of the

GP with respect to the output of cosmological CLASS [22], which performs the full

numerical calculation.

In order to cover the redshift range 0 < z < 1100 while keeping the numerical

errors under control, we sampled the GP evenly in s as opposed to redshift itself.

This variable concentrates most of the GP samples at low redshift where most of our

67



Table 2.1: Sampled parameters and their priors in the analysis. N (m, s) describes a
Gaussian distribution with mean m and standard deviation s and U(a, b) a uniform
distribution with boundaries a and b.

Parameter Prior

η N1/2(0, 0.2)

l U(0.01, 6)

Ωm U(0, 1)

σ8 N (0.8, 0.5)

A0 U(0.8, 1.2)

M N (−19.2, 1)

rs N (150, 5)

data lays while offering great numerical accuracy [142]. This allowed us to cover our

desired redshift range with only 200 nodes; i.e. with a 200-dimensional GP.

In addition to the 200 parameters associated with the GP, we also sample over the

the amplitude of GP mean, A0, and the hyperparameters of the GP kernel, η and l,

described in Eq. 1.157. We also marginalise over the cosmological parameters present

in Eq. 1.48; i.e. Ωm and σ8, as well as the absolute magnitude of the supernovae M

(See Sect. 2.3.2 for details), the scale of the sound horizon rs.

It is important to emphasise that we perform a fully Bayesian inference over the

GP, as opposed to what it is known as an empirical Bayesian analysis in which first,

the marginal likelihood of the GP hyperparameters is maximised; and then, keeping

their values fixed, the conditional posterior over the GP is inferred. While for large

sets of data, the output of the two approaches converges to the same results, when

only sparse data is available the fact that the empirical Bayesian analysis does not

account for the full posterior volume of the hyperparameters can lead to an under-

accounting of uncertainties.

A summary of the priors used in the fiducial analysis can be found in Tab. 2.1. As

a general rule, when performing Bayesian inference one should avoid broad, uniform

priors [143]. This is mainly due to the fact that they do not accurately represent the

prior knowledge, put a lot of posterior mass in unlikely values and introduce hard

boundaries which can be difficult to motivate. This last consideration is particularly

important when using HMC since sharp edges in parameter space can lead to the

sampling process becoming inefficient. Following this principle, we employed a half-

Gaussian distribution with zero mean and standard deviation 0.2 as prior distribution

for the hyperparameter η to down-weight extreme deviations (i.e. 20% and above,
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well within the observational errors on H(z)) from the chosen GP mean without

introducing any unnecessary hard boundaries1. In the case of l we used a uniform

distribution between 0.01 < l < 6 for the following reasons. First, there is no reason

to down-weight long correlation modes against short ones or vice versa. Second,

looking at Eq. 1.157, it is possible to see that as l → 0 the value of the covariance

function approaches zero regardless of the value of η. This opens a vast a volume in

the parameter space which can lead to an inefficient sampling. Third, the likelihood

function becomes flat at such small scales since there is no information in the data

to constrain those small scale modes. Fourth, the expansion rate is expected to have

some degree of temporal correlations, and therefore the limit l = 0 must be excluded.

The parameter Ωm was sampled from a uniform distribution between 0 and 1 to

enforce the physical boundaries on the allowed values for the cosmological matter

density when considering flat cosmologies. In the case of σ8, for which there is no

physically-motivated upper limit, we employ a better behaved Gaussian prior centred

at 0.8 and with 0.5 standard deviation. Given the degeneracy of A0 with the GP

parameters, the parameter was sampled from a uniform distribution between 0.8 and

1.2, which amply encompasses the current discrepancy in H0 between CMB data and

local measurements. The supernova absolute magnitude parameter M was sampled

from a Gaussian distribution centred at value found by the SH0ES collaboration for

the parameter M = −19.2, with a standard deviation of 1. While the mean value

corresponds to a local expansion rate of H0 ≃ 74.0 km/s/Mpc, the standard deviation

ensures that all values in the range 50 < H0 < 100 km/s/Mpc fall within the 1σ region

of the prior distribution. Finally, the sound horizon scale, rs, was sampled from a

Gaussian distribution centred at 150 Mpc with a standard deviation of 5 Mpc. We

do this instead of computing rs from the expansion history in combination with the

BBN prior to allow for larger deviations from the fiducial cosmology.

2.3 Observables and Data sets

In order to make the most of the modelling freedom offered by GPs we consider as

much data as possible. In this work, we use a combination of several different probes

that together account for 91 data points for a variety of cosmological observables. A

summary of the data used in this work can be found in Tab. 2.2 and Fig. 2.1.

1Note that the standard deviation of a half-Gaussian is not well defined. Thus the value we quote
is what the standard deviation of a full Gaussian would be.
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Figure 2.1: Data points from the different surveys used in this work across redshift
for the three cosmological functions of interest H(z), DM and fσ8. Radial comoving
data is displayed relative to the Planck 2018 mean to show the spread of the data
points.

Table 2.2: Data sets used in our analysis, listing the probe, the redshift range of the
probe, the choice of observable and the size of the data vector. See Fig. 3.1 for a
pictorial representation.

Data Set Probe Redshift
Observable

Data Points
H(z) DM(z) fσ8

CC’s [121] CC’s 0.07 - 2.36 ✓ × × 35
Pantheon DS17[144] SNe Ia 0.38 - 0.61 × ✓ × 40

BOSS DR12 [73] BAO+RSD 0.38 - 0.61 ✓ ✓ ✓ 3× 3
eBOSS DR16 [145] BAO+RSD 1.48 ✓ ✓ ✓ 1× 3

Wigglez [146] RSD 0.44 - 0.73 × × ✓ 3
DSS [147] RSD 0 × × ✓ 1

Planck 2018 [13] CMB 1090.30 × ✓ × 1
DESI [148] BAO+RSD 0.15 - 1.85 ✓ ✓ ✓ 3× 18
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2.3.1 Cosmic Chronometers

Cosmic Chronometers (CCs) are tracers of the evolution of the differential age of the

Universe as a function of redshift. Since H(z) ≡ ȧ/a = −(dt/dz)/(1 + z) a mea-

surement of dt/dz directly yields the expansion rate [149]. By measuring the age

difference between two ensembles of passively evolving galaxies at different redshifts,

one can determine the derivative of redshift with respect to cosmic time, dz/dt. Mas-

sive, early, passively-evolving galaxies have been found to be very good tracers in this

sense [150–154] and have been used extensively over the past two decades to measure

H(z) up to z ≈ 2. In this work we make use the H(z) measurements from CCs

summarised in Table 1 of Vagnozzi et al. [121].

2.3.2 Supernovae

Type Ia supernovae (SNe Ia) — titanic explosions of white dwarfs in multi-star sys-

tems [155, 156], are highly prized observations in cosmology due to their capacity to

act as standard candles [157, 158].

However, SNe Ia by themselves can only inform their relative distance to one an-

other and need to be calibrated with nearby SNe Ia of known redshift and luminosity

distance DL to obtain absolute distances. Thus, SNe Ia inform the relationship

µ(z) = 5 ln10DL(z) + 25 +M , (2.12)

known as the luminosity distance modulus where M is the calibrator known as the

absolute magnitude of the SNe Ia. Therefore, once M has been determined SNe Ia

luminosity distance measurements can be used to inform the Hubble rate.

In this work, we fit the compressed data vector of the Pantheon sample, known

as DS17, composed of 40 measurements of the distance modulus (See Eq. 2.12) in

the range 0.15 ≤ z ≤ 1.615 [144]. The original Pantheon sample is composed of

the optical light curves and redshifts for 365 spectroscopically confirmed Type Ia

supernovae (SNe Ia) discovered by the Pan-STARRS1 (PS1) Medium Deep Survey

combined with the subset of 279 PS1 SN Ia (0.03 < z < 0.68) with useful distance

estimates of SN Ia from SDSS, SNLS, various low-z and HST samples to form the

largest combined sample of SN Ia consisting of a total of 1048 SN Ia ranging from

0.01 < z < 2.3 [144].

In the light of recent works in the literature questioning the accuracy of the ab-

solute calibration of important sectors of Pantheon sample [159], we marginalise over

the absolute magnitude of the supernovae as opposed to fixing its value. Due to
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the degeneracy between M and H0, this is equivalent to fitting the expansion rate,

E(z) = H(z)/H0, as opposed to the Hubble rate, H(z).

2.3.3 Baryon Acoustic Oscillations

Baryon acoustic oscillations (BAOs) enhance matter overdensities at a characteristic

physical separation scale which corresponds to the size of the sound horizon at the

end of the drag epoch, rs(zd) [160, 161]. The sound horizon is defined as the distance

a pressure wave can travel from its time of emission in the very early Universe up to

a given redshift. This can be expressed as

rs(z) =

∫ ∞

z

cs dz′

H(z′)
, (2.13)

where cs denotes the speed of sound, and where H(z) is the expansion rate at redshift

z. The end of the drag epoch is defined as the time when photon pressure can no

longer prevent gravitational instability in baryons around z ∼ 1020 [162].

The BAO feature can be measured in the directions parallel and perpendicular

to the line of sight. Perpendicular to the line of sight, the BAO feature informs the

trigonometric relationship

θ =
rs(zd)

DM(z)
, (2.14)

where θ is the angle under which the scale of the sound horizon is observed. Parallel

to the line of sight, the BAO feature informs the relationship ∆z = H(z)rs(zd) which

can be used to constrain the expansion history of the Universe directly.

In this work, we make use of the twelfth data release of the galaxy clustering data

set of the Baryon Oscillation Spectroscopic Survey (BOSS DR12) which forms part of

the Sloan Digital Sky Survey (SDSS) III. BOSS DR12 comprises 1.2 million galaxies

over an area of 9329 deg2 and volume of 18.7 Gpc3, divided into three partially

overlapping redshift slices centred at effective redshifts 0.38, 0.51, and 0.61.

We fit the Alcock-Paczynski (AP) parameters α∥ and α⊥ as reported by the BOSS

DR12 data products

[H(z)]fid
α∥

=
H(z)[rs(zd)]fid

rs(zd)
, α⊥[χ(z)]fid =

χ/rs(zd)

[rs(zd)]fid
, (2.15)

from the reconstruction of the BAO feature at the three different redshift bins where

[rs(zd)]fid = 147.78 Mpc is the scale of the sound horizon at drag epoch as given

by the fiducial cosmology used for the reconstruction. [H(z)]fid and [χ(z)]fid are
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the corresponding Hubble parameter and comoving radial distance for the fiducial

cosmology, respectively.

In addition to this, we employ the anisotropic clustering of quasars in the sixteenth

data release of the extended Baryon Oscillation Spectroscopic Survey (eBOSS DR16

163), which forms part of the Sloan Digital Sky Survey (SDSS) IV [164]. The eBOSS

DR16 catalogue contains 343,708 quasars between 0.8 < z < 2.2, from which BAO

and RSD measurements are obtained at an effective redshift of zeff = 1.48 [165]. We

use the results from the configuration space analysis performed by measuring the

two-point correlation function and decomposing it using the Legendre polynomials.

Similarly to BOSS DR12, the BAO signal is measured both parallel and perpendicular

to the line of sight. This allows for the measurement of the geometrical relationships

DH(zeff)/[rd]fid and DM(zeff)/[rd]fid respectively, where DH(z) ≡ c/H(z) and [rd]fid =

147.3.

Finally, we make use of the Planck 2018 measurement of the BAO angular scale

θ∗ = DA(z∗)
rs(z∗)

, where z∗ ∼ 1100 is the redshift of the last scattering surface. We use

the Planck measurement from the temperature and polarisation maps denoted as

TTTEEE + lowE.

2.3.4 Redshift Space Distortions

Redshift space distortions (RSDs) are modifications to the observed redshift of a given

object caused by its radial peculiar velocity [166]. RSDs are caused by deviations

from the Hubble flow that are gravitationally induced by inhomogeneities in the

gravitational potential of the surrounding matter distribution. On large, linear scales,

RSDs are dominated by the infall towards overdense structures, known as the Kaiser

effect [167]. Clustering two-point statistics as a function of transverse and line-of-

sight separation are sensitive to the quantity fσ8 via RSDs [168]. Alternatively, SNe

Ia themselves can be used as a probe of the local velocity field [147, 169, 170], which

can also be used to measure this parameter.

We use the three measurements of fσ8(z) from RSD from the BOSS DR12 data,

obtained using the anisotropic clustering of the pre-reconstruction density field [73].

We also include the value of fσ8(zeff) measured from the BOSS DR16 quasar sample.

The BAO and RSD measurements of both datasets are extracted from the same set

of observations. As such, they are not statistically independent, and we account for

their full covariance matrix in our analysis [73, 145]. In addition to these, we use the

fσ8 measurements reported by the WiggleZ Dark Energy Survey at the Australian

Astronomical Observatory [171] at redshifts 0.44, 0.60 and 0.73.
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Finally, we also use the value of fσ8(z = 0) derived from the measured peculiar

velocities of the Democratic Samples of Supernovae [147, DSS], the largest catalogue

used to study bulk flows in the nearby Universe, compiled of 775 low-redshift Type

Ia and II supernovae (SNe Ia & II).

2.3.5 Synthetic Stage-IV Data

In addition to the previously discussed observables and data sets, we also produce

forecasts for future experiments, focusing on the Dark Energy Spectroscopic Instru-

ment (DESI). DESI is a galaxy and quasar redshift survey currently taking data from

the Mayall 4 meter telescope at Kitt Peak National Observatory. The baseline area

is 14000 sq. deg. We use the forecast errors for the measurements of the Hubble

rate, H(z); the angular diameter distance, DA(z); and the growth rate measurement

fσ8 reported by Font-Ribera et al. [148] to create a set synthetic measurements for

H(z), DA(z), and fσ8 at an array of 18 redshifts from 0.15 to 1.85. The synthetic

measurements were generated using the best-fit Planck 2018 cosmology, including

measurement noise following the statistical uncertainties reported by Font-Ribera

et al. [148].

2.4 Results

2.4.1 Current constraints

2.4.1.1 Cosmological functions

Before presenting the results for the cosmological functions of interest; i.e. the ex-

pansion history H(s) and linear growth rate fσ8, we must first discuss the results on

the core of our analysis, the GP on δH(s). We found that our analysis of current

data produces δH(s) constraints compatible with 0 at all redshifts at less than 1σ

deviation. This means that the mean of the GP, Hm(s) = A0HP18(s), is capable of

capturing the long range trend of the data allowing the GP to fit local features. The

recovered bounds on δH are shown in Fig. 2.2.

Moreover, we quantified how well different combinations of data can constrain

δH(s). In other words, we measured how strong the agreement of δH(s) with zero is,

and how it is affected by the data considered and the analysis choices. However, the

fact that δH(s) has a multivariate distribution means that there is not a unique figure

of merit for how well data constrains it. In this work, we focused in two numbers. On

the one hand, we looked at the hyperparameter η that constrains the prior distribution
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Table 2.3: One dimensional constraints on the hyperparameters η and l (first and
second column) and the mean variance of δH(z) (third column) for different data
combinations.

Analysis η l σ(δH(s))

All data (ΛCDM) Fixed Fixed 0.011± 0.003

DESI+CMB (ΛCDM) Fixed Fixed 0.002± 0.001

All data 0.113± 0.075 3.22± 1.62 0.094± 0.004

No CMB 0.142± 0.096 3.26± 1.59 0.125± 0.016

No DSS 0.111± 0.074 3.22± 1.60 0.091± 0.005

Growth data 0.147± 0.114 3.21± 1.65 0.183± 0.003

Geometry data 0.122± 0.077 3.37± 1.49 0.098± 0.005

DESI + CMB 0.085± 0.074 3.47± 1.54 0.08± 0.004

of values that δH(s) can take. On the other hand, we computed the mean variance of

the δH(s) samples across redshift. In other words, for each parameter of δH(s) (i.e.

{δH(s1), δH(s2), ..., δH(s200)}), we computed the variance of the HMC samples.

Then, we took mean value of those variances, which is equivalent to averaging over

redshift. We refer to this statistic as σ(δH(s)). The motivation behind σ(δH(s)) lies

in the fact that it directly translates to average fractional constraints on H(z) that

can be readily interpreted.

A summary of the impact of the different data sets and analysis choices on the

distribution of η, l and σ(δH(s)) can be found in Tab. 2.3. Note that all the analyses

quoted in this table were run until the convergence criterion R−1 < 0.05 was satisfied

for all variables where R is the Gelman-Rubin statistic (See Sect. 1.2 for a discussion

of the Gelman-Rubin statistic). For the combination of data sets employed in our

analysis, we find η = 0.113 ± 0.075 and an σ(δH(s)) = 0.094 ± 0.004 corresponding

to an average 9.4 ± 0.4% constraint on H(z) across redshift. Removing the CMB

data point significantly worsened both constraints finding η = 0.142 ± 0.096 and an

average 12.5±1.6% constraint on H(z) across redshift. In order to better understand

this effect we can look at the first panel in Fig. 2.2. In this figure, we can observe how

removing the CMB data from the analysis significantly widens the constraints of the

GP, specially beyond z > 2.5 (see Table 2.3). This is to be expected as the CMB data

is the only point we have above z = 2.5. Thus, the constraints from this integrated

effect are expected to become dominant in the redshift range between 2.5 < z < 1100.

However, it is important to note that the CMB is not the only contributor to the δH(s)

constraints over this redshift range since fσ8 data also constraints δH(s) over its whole
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domain through its role in solving the Jeans equation. The associated constraint is

however very weak. Finally, looking at the obtained l constraints, we can observe

that regardless of the data employed l remained largely unconstrained, returning its

prior. Thus, our GP on the expansion history doesn’t exhibit a strong preference for

a particular correlation length when considering either current or future data.

For the purpose of studying the effect of different data types, we split the data

points within the data sets employed in the fiducial analysis in two groups: geometry

– exclusively containing measurements of the expansion history – and growth – solely

containing fσ8 measurements.

As we can see in the second panel of Fig. 2.2, growth data only is much weaker at

constraining δH(z). From Table 2.3 we see that constraints from growth data alone

on σ(δH(s)) are approximately twice as wide as those resulting from analysing the

entire data set. These constraints are consistent with the prior on the hyperparameter

η. On the other hand, the constraining power of the geometry data is only slightly

weaker than that of the entire data set. Hence the δH(z) constraints are mostly

dominated by the geometry data sets as one would expect. Nonetheless, the addition

of growth data increases constraining power. This is shown explicitly in the last panel

of Fig. 2.2, which shows the results of using geometry data alone compared to those

using the full data set. This recovers the expected behaviour: more data increases

the constraining power and the contours shrinks.

We now shift the focus of our discussion to the constraints we derive from δH(s)

for the expansion history itself, H(z), and the linear growth of matter anisotropies,

fσ8. Comparing the constraints for both cosmological functions from our analysis of

current data with the Planck 2018 predictions, we find an overall good agreement,

finding both functions to contain the Planck 2018 predictions within their 2σ confi-

dence contours. This can be seen in Fig. 2.3. Nonetheless, two remarks can be made.

First, we observed a greater than 1σ preference for a lower fσ8 between 0 < z < 0.75,

mostly driven by the DSS data point. However, the constraining power of current

fσ8 data is too weak to make a case for the presence of new physics. Second, our

model-independent analysis finds the supernova absolute magnitude parameter to be

M = −19.43± 0.026, a constraint which is in 5σ tension with the SHOES preferred

value [103]. However, this is not surprising given the known tension between the data

sets used to inform the GP reconstruction.
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Figure 2.2: 1σ-constraints on δH(z) broken down by type of data considered. Solid
lines represent the mean of the GPs at each redshift. In red we display the constraints
resulting from the analysis of all present data, in blue the effect of removing the CMB
data set, in black the effect of fixing the Ωm and σ8 to their best-fit (BF) value; in
magenta, the constraints resulting of only considering growth data; and in green, the
constraints resulting of only considering geometry data.
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the Planck 2018 constraint is displayed in the form of a blue band for comparison.
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Table 2.4: Constraints on the cosmological parameters Ωm, σ8, S8, and H0 (first to
fourth columns respectively) for each of the different analyses (rows), as well as the
Planck 2018 constraints and ΛCDM analyses of current and DESI+CMB for reference
(first to third row respectively).

Analysis Ωm σ8 S8 H0

Planck 2018 0.317± 0.008 0.812± 0.007 0.834± 0.016 67.27± 0.006

All data
(ΛCDM)

0.283± 0.007 0.8± 0.029 0.777± 0.028 68.601± 0.775

DESI+CMB
(ΛCDM)

0.316± 0.006 0.812± 0.003 0.834± 0.008 66.992± 0.311

All data 0.224± 0.066 0.946± 0.158 0.788± 0.029 67.715± 0.93

No CMB 0.227± 0.068 0.936± 0.156 0.786± 0.03 67.94± 1.034

No DSS 0.229± 0.106 0.974± 0.218 0.791± 0.047 67.766± 0.96

DESI + CMB 0.293± 0.013 0.839± 0.014 0.828± 0.008 66.788± 0.371

2.4.1.2 Cosmological parameters

We now focus on the constraints on the specific cosmological parameters Ωm and

σ8. We will also show constraints on the derived parameter S8 = σ8
√

Ωm/0.3 and

on the local value of the expansion rate, given in our case by H0 ≡ A0HP18(s =

0) (1 + δH(s = 0)). A summary of the constraints obtained by the different analyses

considered in this work can be found in Table 2.4 with a graphical illustration in Fig

2.4. We primarily focus our discussion on the cosmological parameter Ωm, the only

remaining degree of freedom in Eq. 3.3.

To establish a benchmark against which to compare our method, we start by

examining the constraints obtained assuming a ΛCDM model in which we vary H0,

Ωm and σ8. This allows us to quantify the impact of performing a model-independent

analysis using GPs on the final constraining power. Looking at Fig. 2.4 and Table 2.4

we can observe that, assuming ΛCDM, Ωm = 0.283 ± 0.007. In other words, for the

setup used in this work, we can constrain Ωm to around 2% precision if we undertake

a model-dependent analysis with ΛCDM. In this case, Ωm receives information from

both background and perturbations.

In turn, our fiducial model-independent analysis yields Ωm = 0.224±0.066, inflat-

ing the uncertainty by a factor of ∼ 9. Comparing this result with the Planck 2018,

Ωm = 0.317± 0.008, our Ωm constraint is lower but statistically compatible with the

Planck 2018 constraint and our ΛCDM analysis both at 1.5σ.

Looking at the relevance of the different individual data sets on the constraints,
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we observe an excellent agreement between all the different combinations considered

(see Fig. 2.4 and Tab. 2.4). Removing the DSS data, one of the most precise

fσ8 measurements, significantly worsens the Ωm constraints by nearly 60%. On the

other hand, removing the CMB data set resulted in nearly identical constraints for

the cosmological parameters. This is due to the fact that, in the presence of other

geometry data to inform the expansion history, Ωm constraints become dominated

by growth data through the relationship between both. Thus, it is fair to ask what

the impact of completely removing any type of geometry data from the analysis is.

Analytically, we can see from Eq. 1.48 that in the presence of measurements of the

linear growth rate and an arbitrary value of Ωm one can always find a expansion

history that solves the differential equation. This degeneracy between the expansion

history and Ωm in Eq. 1.48, prevents our methodology from obtaining any meaningful

constraints on Ωm in the absence of Geometry data that is not completely dominated

by our choice of GP mean and hyperparameter priors.

Looking at the parameters σ8 and S8 in more detail, we found compatible con-

straints with the Planck 2018 cosmology up to 1σ. However, it is worth mentioning

that our results show a mild tendency towards higher σ8 values which, combined with

the tendency towards lower Ωm values, results in lower S8 values. This is consistent

with the underprediction of fσ8 between 0 < z < 0.75 we discussed in the previous

section. A lower value of S8 would also be consistent with the most recent measure-

ments by large scale structure experiments [54, 60, 61, 135, 172], the origin of which

could lie in a lower value of Ωm [173].

2.4.2 Forecasts

Our model-independent analysis leads to far weaker constraints than assuming the

ΛCDM model. Being data-driven, the performance of the method used here may

improve significantly with the advent of next-generation surveys with significantly

tighter uncertainties. To quantify this, we repeated our fiducial analysis pipeline on

mock data generated based on the forecasted errors for the DESI mission [148] in

combination with the Planck measurement of θ∗. The results can be found in Fig.

2.5. In this figure we can observe a 10% improvement between the expected δH(z)

constraints from DESI with respect to those of current data. The corresponding

η and σ(δH(s)) constraints (shown in Tab. 2.3) improve by approximately 15%:

η = 0.085 ± 0.074 and σ(δH(s)) = 0.080 ± 0.004. Looking at the cosmological

parameters, DESI [148] in combination with the CMB data set results in nearly 5

times tighter Ωm constraints and 10 times better constraints on σ8.
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Figure 2.5: Forecast 1σ-constraints on δH(z) when using a Gaussian Process on H(z)
(the model of this work) to analyse DESI data (blue) and current data (red). Solid
lines represent the mean of the GPs at each redshift.

While these constraints are still significantly worse than the Planck 2018 results,

they are comparable if not better than using the ΛCDM model to analyse the currently

available data used in this work. For example, while GP constraints on Ωm from

DESI are two times wider than those currently found assuming a ΛCDM model, the

constraints on σ8 and S8 are 2.3 and 3.6 times tighter respectively.

If we, instead, compare how a model-independent analysis of DESI data using this

methodology will pitch against a ΛCDM analysis, we find that the gap between the

model-independent and the model-dependent constraints shrinks. This can be see in

the fact that, with current data, the ΛCDM constraint on Ωm is 9.2 times tighter

than the one obtained with our methodology. However, in our DESI forecast, it is

only twice as good. Similarly, the improvement for the parameter σ8 reduces from five

times tighter constraints to about four times. Our understanding is that, as better

data allow us to better reconstruct H(z), the difference between the reconstructed

and model-dependent H(z) shrinks, as long as the assumed model fits the data well.

As a consequence, the constraints on the other parameters (Ωm, σ8 and S8) become

more similar. Thus, we expect that in the future, as the quality of the data keeps

improving, cosmological constraints from model-independent methodologies, such the

one proposed in this work, will rival model-dependent ones.
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2.5 Conclusions

In this work we have developed a method to obtain constraints on H(z) and Ωm

purely based on the relationship between the expansion history and the linear growth

rate. In order to do so, we employ a Gaussian process to model the evolution of the

expansion history from present time to recombination.

From this expansion history, we have derived predictions for the comoving distance

and the linear growth rate fσ8 making use of the physical relationships between the

three quantities. Constraints for ΛCDM parameters were obtained by simultaneously

fitting a suite of the latest measurements of these three cosmological functions. The

data combination used for our fiducial analysis consisted of cosmic chronometers,

the Pantheon supernova catalogue, BAO and RSD data, peculiar velocity data from

supernovae, and the position of the first acoustic peak in the CMB power spectrum.

Moreover, we also obtained forecast constraints on these cosmological functions from

the future DESI data.

Current data can constrain theH(z) Gaussian process at an average 9.4% through-

out all redshifts. These constraints are compatible up to 1σ with the best-fit Planck

2018 expansion history across 0 < z < 1100. Our constraints on the expansion

rate fσ8 lie below the corresponding Planck prediction by less than 2-σ in the range

0 < z < 0.75 (a result driven by the Democratic Supernova Sample data).

Translating the Gaussian Process constraints into constraints of cosmological pa-

rameters, we find a model-independent measurement of Ωm = 0.224 ± 0.066. This

result is lower than, but statistically compatible with, the Planck 2018 [13] cosmol-

ogy. We also find S8 = 0.788± 0.029, an intermediate value, statistically compatible

with both the Planck 2018 cosmology [13] and recent local measurements from weak

lensing and galaxy clustering[54, 60, 61, 135, 172].

The forecast analysis performed using the methodology of this work predicts that

combining the DESI measurements with the CMB BAO data used in this work will

yield 15% tighter constraints on H(z) across redshift as well as five times tighter

constraints on Ωm. Moreover, constraints applying our methodology to future DESI

data would achieve five times tighter Ωm and four times tighter S8 constraints than

when using currently available data. This would make future model-independent

constraints on cosmological parameters comparable to current model-dependent con-

straints. Thus, in the future it will be possible to weigh in on the ongoing S8 tension

making use of model-independent methods. Moreover, we also show that, as the
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quality of the data increases as we go into the future, the gap between the constrain-

ing power of model-independent and model-dependent constraints will significantly

shrink.

Future implementations of this methodology could explore several possible exten-

sions. On the one hand, the types of data used in this work are greatly limited by lack

of differentiable tools to obtain theoretical predictions for observables with greater

constraining power. The development of tools such as differentiable Boltzmann codes,

differentiable emulators of the non-linear matter power spectrum, or differentiable

Limber integrators would allow us to fit the power spectrum data directly. These

developments would enable model-agnostic analyses similar to that of Garćıa-Garćıa

et al. [54] but with a greatly reduced number of assumptions and a more reliable

measure of uncertainty in their results. On the other hand, it would also be possi-

ble to explore the use of Gaussian processes to constrain general forms of modified

gravity, generalising works such as Raveri et al. [174], Espejo et al. [175], Park et al.

[176], Raveri et al. [177], Pogosian et al. [178], and study how these theories can be

informed by the relationship between background and perturbations. Gaussian Pro-

cesses are an exceptional tool to constrain modified gravity since they don’t require

assuming a particular parametrisation of such deviations. A comprehensive list of

different departures from ΛCDM that could be explored with a similar methodology

to the one presented in this work can be found in Baker et al. [179]. Alternatively,

one could consider comparing the performance of Gaussian processes against other

popular tools for non-parametric cosmology such as genetic algorithms [180, 181] or

neuronal networks [182]. The convenience of using Gaussian processes lies in that they

naturally provide easily interpretable information on both the reconstructed function

and its posterior uncertainties.
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Chapter 3

The impact of the Universe’s
expansion rate on constraints on
modified growth of structure

3.1 Introduction

As described in Sect. 1.4, the numerous tensions in modern Cosmology are sugges-

tive of new, undiscovered physics. The growth of structure in the Universe is one of

the most sensitive probe of fundamental physics [183, 184]. It is driven by gravita-

tional collapse but is also sensitive to additional forces which may be undetectable

on smaller, laboratory scales. It has been shown that measurements of the rate of

growth of structure can be used to test gravity and constrain, as yet, elusive fifth

forces [185].

To be specific, the motion of matter in the Universe can, in general, be subjected

to an effective force, F⃗ eff of the form:

F⃗ eff = −∇⃗ΦN − ∇⃗Φ5. (3.1)

Here, ΦN is the Newtonian potential and Φ5 is the potential for a possible long range

force that co-exists with gravity on large scales. The properties of Φ5 may depend

on the state of the Universe (its expansion rate, the fractional energy densities of

its different constituents) or even on local environmental properties [186, 187]. Thus

Φ5/ΦN will, generally, be a function of space and time.

If we restrict ourselves to purely long range forces with no environmental de-

pendence, we can define a generalised Newtonian potential, Φ ≡ Φ5 + ΦN . In an

expanding Universe with scale factor, a, Φ satisfies a Newton-Poisson equation on
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sub-horizon scales (See Sect. 1.1.2),

∇2δΦ = 4πGµa2ρ̄δ , (3.2)

where G is Newton’s constant, ρ̄ is the background energy density of non-relativistic

matter, δ is the density contrast. We will assume µ is a function of time only although,

in certain scenarios, it can be scale dependent. The relative amplitude of the new

force, at any moment in time, is given by µ− 1.

From the linearised Newton-Poisson, continuity and Euler equations one can derive

and evolution equation for the growth rate of structure, f ≡ d ln δ/d ln a, given by

f ′ + f 2 +

(
1 +

d ln aH

d ln a

)
f =

3

2
µΩm(a) , (3.3)

where prime is derivative with regards to ln a, H is the Hubble rate and Ωm(z) is the

fractional energy density in matter as a function of redshift [128, 179, 183]. Thus, as

we can see, the evolution of f depends on µ. This means that, in theory, one can use

measurements of the growth rate to constrain the presence of fifth forces.

The situation is, of course, more complex. The evolution of the growth rate

depends on the evolution of H and Ωm(a). The latter quantity depends, through the

Einstein Field Equations, on H(a) so that

Ωm(a) =
Ωm(0)H2

0

a3H2
. (3.4)

Thus, measurements of the growth rate can be used to place constraints on the time

evolution of µ and H, and on the fractional matter density today, Ωm(0) (for ease of

notation, we will now refer to it as Ωm with no argument). But this means that con-

straints on these various quantities are intertwined and, unless we have independent

methods for pinning down H and Ωm, they will hamper our ability to determine µ.

This degeneracy between µ and the expansion history (encapsulated in H, for

example) was discussed in Simpson and Peacock [188]. There, it was shown that

there is a degeneracy between γ ≡ ∂ ln f/∂ ln Ωm and the equation of state of the dark

energy component, w ≡ PDE/ρDE, where ρDE (PDE) is the energy density (pressure)

of the substance responsible for the accelerated expansion of the Universe at late

time (the dark energy). In Baker et al. [179], explicit expressions for the degeneracy

between µ and w were found using the linear response approach.

Most attempts at constraining µ(z) have assumed a Universe in which the accel-

erated expansion at late time is driven by a cosmological constant: the Λ Cold Dark
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Matter (ΛCDM) model [13, 107, 189]. A further assumption is that µ(z) can be mod-

elled in terms of a simple function with one (or at most two) parameters [13]. In a few

cases, a more general form for µ(z) has been assumed with a few independent values

at different redshifts (for a notable example see Joudaki et al. [107]). Alternatively,

model specific time dependencies for µ(z) have been assumed to arise from theoretical

arguments, either from the Effective Field Theory of dark energy [175, 190] or from

choices for the underlying model of gravity (such as shift symmetric scalar tensor

gravity and its extensions [191]). Most of these attempts at constraining µ(z) have

side-stepped the issue of the degeneracy described above although we highlight Raveri

et al. [177] in attempting to obtain model-independent constraints.

In this chapter, we will explore how current constraints on µ are affected by our

assumptions about the expansion rate of the Universe. In particular, we will see

how more or less restrictive assumptions about the parametric form of H(z) impact

the uncertainty with which we can determine µ(z). In the limit in which we do not

assume a parameterised form for H(z) we will show that a fundamental degeneracy

between Ωm and µ(z) manifests itself and, in that regime, we must resign ourselves

to constraining the combination Ωmµ(z).

The structure of this chapter is as follows. In Section 3.2 we present the main

method of this work, the use of a Gaussian Process as a model-independent param-

eterisation of µ(z). In Section 3.3 we describe the cosmological observables and the

associated data sets which we will use to find the constraints in this chapter. In Sec-

tion 3.4.1 we present our constraints on µ(z) and how they depend on what we assume

as a model for the background evolution; we will focus on ΛCDM and its extension

wCDM, in which we assume an (possibly time varying) arbitrary equation of state,

w. In Section 3.4.2 we completely free the background evolution and model H(z) as

a Gaussian Process. This gives rise to a strong degeneracy between Ωm and µ(z) and

we can only constraint µ̃(z) = Ωmµ(z). In Section 3.5 we discuss both our finding

about the role of Gaussian Processes in cosmological analysis and the constraints we

have found on µ(z).

3.2 Methods

3.2.1 A Gaussian Process for µ(z)

The goal of this work is to quantify the uncertainty in our knowledge of µ(z). The

quality of this constraint will depend on both the quality of the data and the as-

sumptions we make about the underlying cosmology through the expansion rate. We
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want to assume that we have no prior knowledge of the time dependence of µ(z),

apart from the fact that it is relatively smooth. Thus, we choose to model µ(z) as a

Gaussian Process (GP) (See Sect. 1.4).

As opposed to the expansion history, µ(z) has, a priori, a trivial mean, µ̄(z) = 1,

corresponding to the GR value. Thus we only have to concern ourselves with the

choice of kernel function. Following the same reasoning as for H(z), we choose a

combination of a square exponential kernel (See Eq. 1.157) with a white noise term

for numerical stability as the covariance function of the GP:

K(x,x′) = η2 exp

[−|x− x′|2
2l2

]
+ σI , (3.5)

where η is the amplitude of the oscillations around the mean, l is the correlation

length between the GP realisations and σ is the noise amplitude chose at 10−5. Thus

the final process for µ(z) is given by:

µ(z) = 1 + L(K) · ν , (3.6)

where the nodes of the GP are distributed as ν ∼ N (0, I) and L(K) denotes the lower

Cholesky triangle of the GP kernel.

3.2.2 Likelihood

Given a likelihood L(y|x,σ) for a set of data points y, with a set of errors σ, and

a set of random variables x, a GP can be employed as a prior over all the possible

families of functions used to fit the observations. Observations can then be used to

inform the GP posterior (i.e. the statistical properties of the assemble of random

variables), P(g(x)|y,σ), which determines the family of functions most consistent

with the data.

Since we do not have direct measurements of µ(z), we have to infer it from mea-

surements of the growth rate. However, as one can see from Eq. 3.3, fσ8 also depends

on H(z) and Ωm. Thus, we must jointly determine µ(z), H(z) and Ωm in terms of

measurements of fσ8 and H(z), or derived quantities such as the comoving (DM(z)),

luminosity (DL(z)) or the angular diameter (DA(z)) distances, which relate to H(z)

via

(1 + z)DA =
DL

1 + z
= DM =

∫ z

0

dz′

H(z′)
. (3.7)

In summary, as we can see from Eqs. 3.3 and 3.7, computing predictions for our

observables will involve a non-linear, non-local mapping between the quantities we
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are interested in (µ(z), Ωm, H(z)...) and the data. For example, a measurement of

fσ8 at a particular redshift, z, constrains the history of µ up until that redshift and

not only the value of µ at that redshift.

As in Sect. 2.2, the relationship between the GP and the data is once again non-

linear meaning that each GP node has to be sampled as an independent parameter

(See Sect. 1.4 for details). This means that our model will contain of the order

of O(102) parameters. In order to explore this large parameter space, we resort

to the gradient-based inference algorithm NUTS described in Sect. 1.2.2.2. We

write our likelihood using the Python package PyMC3 [139]. PyMC3 uses the auto-

differentiation (AD) [141, 192] library Theano [140] to draw a graph (i.e. a symbolic

representation) of statistical models written on it (See Sect. 1.3.2 for a discussion

of program graphs and Wegnert tapes). This then allows Theano to compute the

gradients of the likelihood function required by NUTS cheaply and accurately.

Table 3.1 contains the prior distributions assumed for each for our models. In

general, the priors are chosen broad enough to prevent biasing our results. In partic-

ular, the priors on the hyperparameters of the GP on µ(z) (ηµ and lµ), common in

all the studied cases. As discussed in Ruiz-Zapatero et al. [1], when using gradient

based methods it is best-practice to use smooth priors unless there’s physical limit

on the values that the parameter can take (e.g. Ωm ∈ [0, 1]).

Thus, the prior of the amplitude of the GP, ηµ, is a half normal distribution

N1/2(0, 0.5); i.e. centred at 0 with 0.5 standard deviation. On the other hand, the

correlation length lµ has an uniform prior U(0.01, 6). The reason for a uniform prior

(i.e. not smooth) is two fold. On the one hand, when sampling lµ, it is extremely

important to avoid small values in order to avoid volume effects (See Eq. 1.157). On

the other hand, we do not want to down/up-weight a particular correlation scale for

the nodes of GP.

Moving on to the cosmological parameters, only Ωm has an uniform prior U(0, 1)

to enforce the physical limits on the values of the parameter. All the others have

normal distributions whose details can be found in Table 3.1. For the cases with

a Planck 2018 prior, we use the values quoted in Planck Collaboration et al. [13].

In particular, for the ΛCDM P18 + µGP case (second column), we used the TT-

TEEE+lowE+lensing+BAO ΛCDM constraints (last column of Tab. 2 in Planck

Collaboration et al. [13]), while for the wCDM P18 + µGP case (fourth column), we

used the TTTEEE+lowE+lensing+BAO+SNe wCDM constraints (first column of

Tab. 6 in Planck Collaboration et al. [13]). Note that in the wCDM case the con-

straints also include SNe data which are not present in the ΛCDM constraints. This
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is because TTTEEE+lowE+lensing+BAO data cannot constrain wCDM models by

itself. Note that for both the ΛCDM and the wCDM models we fix ΩR = 9.245×10−5.

ΩΛ is then derived using 1 = Ωm + ΩR + ΩΛ.

We must also consider a number of nuisance parameters needed to model the

specific data sets chosen for this work. For instance, in order to relate the luminosity

curves of the Pantheon data set to luminosity distances one needs to know the value of

the absolute magnitude of the supernovae, M . In this work we choose the agnostic way

and marginalise over M , assuming a normal prior N (−19.2, 1), which encompasses

both Riess et al. [104]’s and Planck Collaboration et al. [13]’s H0 values. On the other

hand, we make extensive use of measurements of both parallel and perpendicular BAO

measurements. In order to relate these measurements to H(z) and DM(z) one needs

to know the value of the sound horizon at either drag (rd) or recombination (r∗)

epochs. In order to obtain rd and r∗ we use a modified version of the Eisenstein and

Hu fitting formula [26, 193] given by

rd ≈
45.5337 ln (7.20376/Ωm)√

1 + 9.98592ω0.801347
b

Mpc, (3.8)

where Ωm = Ωm(H0/100)2 and ωb = Ωb(H0/100)2. Then, noting that the ratio

between rd and r∗ can be approximated as a function exclusively of Ωb, we derive the

fitting formula (rd
r∗

)
(Ωb) ≈ 1.11346− 2.7985Ωb + 16.5111Ω2

b . (3.9)

Hence, combining Eqs. 3.8 and 3.9 we can obtain a prediction for r⋆. This

approach is capable of reproducing the CLASS ΛCDM predictions for rd and r∗ to an

average of 1.5% precision within the considered Ωm ∈ [0.1, 0.6] and Ωb ∈ [0.03, 0.07].

Since the wCDM model we consider doesn’t include early dark energy, we can also

use Eqs. 3.8 and 3.9 to predict the values of rd and r∗ in such case. On the other

hand, when a second GP is used to model H(z), Ωm is absorbed into the GP on µ(z)

to form µ̃(z). This disallows us from following the same approach to obtain rd and r∗

as when assuming a ΛCDM or wCDM model. In this scenario we sample rd directly

as a parameter from N (145, 5). Then, to get r∗ we use Eq. 3.9 as a function of rd

and Ωb using the same Ωb as in the ΛCDM and wCDM case.

Finally, in order to interpret the results of the analysis, we will focus on two

metrics. At the most basic level, we will study µ(z) itself and our constraints on its

full redshift dependence. We will pay particular attention to µ(z = 0) since it gives

us information on the strength of the fifth force today and can easily be related to

other, laboratory or astronomical constraints [184]. In a more abstract level, we will
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Table 3.1: Priors used for the different parameters of the models considered in this
work. The first column shows the complete list of parameters. U stands for a uni-
form distribution; N (a, b) and N1/2(a, b), for a normal and half-normal distribution,
respectively, centred at a and with standard deviation b. Empty entries represent
parameters not sampled by the model.

HP18
ΛCDM + µgp HΛCDM + µgp HP18

wCDM + µgp HwCDM + µgp Hgp + µ̃gp

A0 - - - - N (1.0, 0.2)

ηH - - - - N1/2(0, 0.2)

lH - - - - U(0.01, 6)

ηµ N1/2(0, 0.5) N1/2(0, 0.5) N1/2(0, 0.5) N1/2(0, 0.5) N1/2(0, 0.5)

lµ U(0.01, 6) U(0.01, 6) U(0.01, 6) U(0.01, 6) U(0.01, 6)

Ωm N (0.316, 0.008) U(0, 1) N (0.307, 0.011) U(0, 1) -

Ωb - U(0.03, 0.07) - U(0.03, 0.07) U(0.03, 0.07)

H0 N (67.27, 0.6) N (70, 5) N (68.31, 0.82) N (70, 5) -

σ8 N (0.811, 0.007) N (0.8, 0.5) N (0.82, 0.01) N (0.8, 0.5) N (0.8, 0.5)

w0 - - N (−1, 0.5) N (−0.95, 0.08) -

wa - - N (0, 0.5) N (−0.29, 0.3) -

M - N (−19.2, 1) - N (−19.2, 1) N (−19.2, 1)

rd - Derived - Derived N (150, 5)

r∗ - Derived - Derived Derived

Table 3.2: Data sets used in our analysis, listing the probe, the redshift range of the
probe, the choice of observable and and the size of the data vector.

Data Set Probe Redshift
Observable Data

PointsH(z) DM(z) fσ8

CC’s [121] CC 0.07 - 1.965 ✓ × × 33

Pantheon DS17[144] SNe Ia 0.38 - 0.61 × ✓ × 40

BOSS DR12 [73] BAO+RSD 0.38 - 0.61 ✓ ✓ ✓ 3× 3

eBOSS DR16 [145] BAO+RSD 1.48 ✓ ✓ ✓ 1× 3

Wigglez [146] RSD 0.44 - 0.73 × × ✓ 3

Vipers [194] RSD 0.60 - 0.86 × × ✓ 2

6dF [195] RSD 0.067 × × ✓ 1

FastSound [196] RSD 1.4 × × ✓ 1

DSS [147] RSD 0 × × ✓ 1

Planck 2018 [13] CMB 1090.30 × ✓ × 1

DESI [148] BAO+RSD 0.15 - 1.85 ✓ ✓ ✓ 3× 18
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also look at the constraints on the hyperparameter η that describes the amplitude of

the covariance matrix of the GP (i.e. the allowed deviation of the nodes from their

mean).

3.3 Observables and Data sets

As previously stated, the quality of our data is just as important as our assumptions

on H(z) to determine our ability to constrain µ(z). In this section, we will discuss the

data used in this work, as well as how we forecast what future data will be capable

of. Let us begin by discussing the currently available data. We employ the same

ensemble of data used in Sect. 2.3, as well as additional measurements of fσ8. These

can be seen in Fig. 3.1 and in the summary Tab. 3.2. The observables and data sets

we consider are:

Cosmic Chronometers (CCs) are tracers of dt/dz where t is cosmic time. Since H(z) ≡
ȧ/a = −(dt/dz)/(1 + z), a measurement of dt/dz directly yields the expansion rate

[149]. Here, we use the H(z) measurements from CCs summarised in Table 1 of

Vagnozzi et al. [121].

Type Ia supernovae (SNe Ia) are explosions of white dwarfs [155, 156], which can be

used as standard candles [157, 158]. SNe Ia obey the relationshipm(z) = 5 logDL(z)+

25+M , where m(z) is known as the distance modulus and M is the absolute (appar-

ent) magnitude of the SNe Ia. Knowing M , one can use SNe Ia to reconstruct DL(z).

Here we use a compressed version of the Pantheon sample, known as DS17, composed

of 40 measurements of the distance modulus in the range 0.15 ≤ z ≤ 1.615 [144]. We

marginalise over the absolute magnitude of the supernovae as opposed to fixing its

value [159]; this is equivalent to fitting the expansion rate, E(z) = H(z)/H0.

Baryon acoustic oscillations (BAOs) are set by the size of the sound horizon at the end

of the drag epoch (z ∼ 1020), [160–162] rs(z) =
∫∞
z

[cs/H(z′)] dz′, where cs denotes

the speed of sound. The BAO feature can be measured in the directions parallel and

perpendicular to the line of sight to determine H(z) and DM(z) respectively. Here we

use the twelfth data release of the Baryon Oscillation Spectroscopic Survey (BOSS

DR12) which forms part of the Sloan Digital Sky Survey (SDSS) III. In addition

to this, we employ the sixteenth data release of the extended Baryon Oscillation

Spectroscopic Survey (eBOSS DR16 163), which forms part of the Sloan Digital Sky

Survey (SDSS) IV [164]. Finally, we make use of the Planck 2018 measurement

of the BAO angular scale at z∗ ∼ 1100. We use the Planck measurement from
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Figure 3.1: Data points from the different surveys used in this work across redshift
for the three cosmological functions of interest H(z), DM and fσ8. Radial comoving
data is displayed relative to the Planck 2018 mean to show the spread of the data
points. Note the addition of extra fσ8 data with respect to Fig. 1 2.1.

the temperature, polarisation and lensing maps combined with BAO measurements

denoted as TTTEEE+LowE+Lensing+BAO.

Redshift space distortions (RSDs) are modifications to the observed redshift of a

given object caused by its radial peculiar velocity [166]. These leave a character-

istic anisotropic imprint in the correlation function of galaxies that can be used to

measure the growth of structure. Here, we use the three measurements of fσ8(z)

from the BOSS DR12 data [73], and one value from the BOSS DR16 quasar sample.

We include full covariance matrix between the BAO and RSD measurements from

these data sets [73, 145]. We also include the fσ8 measurements reported by the Wig-

gleZ Dark Energy Survey [171]. Despite not being RSDs based, we also include the

fσ8(z = 0) derived from the measured peculiar velocities of the Democratic Samples

of Supernovae [147]. In addition to these, we consider three additional RSD based

fσ8 measurements not included in Sect: 2.3. Namely, the fσ8 measurements from the

VIMOS Public Extragalactic Redshift Survey (VIPERS), the 6dF Galaxy Survey and

the Subaru FMOS galaxy redshift survey (FastSound).

Finally, we are interested in how future surveys will allow us to improve on current

measurements. In order to do so, we generate synthetic data based on the forecast

errors for The Dark Energy Spectroscopic Instrument (DESI). DESI is currently tak-

ing data from the Mayall 4 meter telescope at Kitt Peak National Observatory to

construct a galaxy and quasar redshift survey. We use the Font-Ribera et al. [148]

forecast errors for the observables – H(z), DA(z), and fσ8 – over 18 redshift bins

from 0.15 to 1.85. Then, we use the fiducial values of these quantities for the best-

fit Planck 2018 TTTEEE+LowE+Lensing+BAO ΛCDM cosmology (ΩP18
M = 0.315,

ΩP18
Λ = 0.685, ΩP18

b = 0.049, HP18
0 = 67.36 and σP18

8 = 0.811) to generate a synthetic
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data set. In the following sections, we will use this synthetic data to forecast how

well a stage IV survey will do in constraining µ(z) relative to existing data.

3.4 Results

3.4.1 Model-dependent constraints

Having discussed our modelling of µ(z) and the data we will use to constrain it, we

are now at a position to start obtaining constraints for µ(z). In this section, we will

focus on constraints which assume a particular model for the background expansion

rate H(z), while modelling µ(z) as a GP. Please note that we restrict ourselves to

models without curvature (i.e. Ωk = 0). This is motivated by the results of Baker

et al. [179] where it was shown that the equation of state for the energy component

responsible for the accelerated expansion of the Universe would be degenerate with

µ(z).

We start by considering a fiducial expansion rate – the expansion rate given by

the Planck 18 [13] ΛCDM TTTEEE+LowE+Lensing+BAO posteriors. In this set

up, we only make use of our fσ8 measurements to constrain our model since we are

already using Planck 2018’s posterior as a constraint on the expansion history. The

parameters varied in this set up with their respective priors can be found in the first

column of Tab. 3.1. This will give us a best case scenario and will allow us to identify

a benchmark against which all other constraints can be compared.

We then relax this assumption, removing the Planck prior and freeing up the

ΛCDM parameters where

H(z) = H0

√
Ωm(1 + z)3 + Ωr(1 + z)4 + ΩΛ , (3.10)

and Ωm, ΩR and ΩΛ are the cosmological matter, radiation and dark energy densities,

respectively, today. We then use the measurements of H(z), DM(z) and fσ8 to

constrain these parameters at the same time as we constrain µ(z). The details of this

model can be found in the second column of Tab. 3.1.

In the next study case, to further loosen our assumptions, we chose a background

rate of expansion using a general model of dark energy with an equation of state

w(a) = w0 +wa(1− a) (wCDM). In such model the expression for the expansion rate

becomes

H(z) = H0

√
Ωm(1 + z)3 + Ωr(1 + z)4 + ΩΛ(1 + z)ν(z), (3.11)
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Figure 3.2: Obtained model-dependent constraints on µ(z). Top panel shows the
constraints obtained assuming a ΛCDM model for H(z) both when when using Planck
2018’s ΛCDM posterior as a prior and when using current late time data to inform it
(blue and red respectively). Bottom panel shows the equivalent wCDM constraints
(green and purple respectively)

where

ν(z) =
3(1 + w0 + z(1 + w0 + wa))

1 + z
. (3.12)

Similarly to the ΛCDM model, we consider two cases. In the first case, we use a

fiducial wCDM expansion rate – given by Planck’s wCDM TTTEEE+lowE+lensing+BAO+SNe

posteriors, where we only use fσ8 measurements to constrain our model. We include

SNe measurements since the TTTEEE+lowE+lensing+BAO combination considered

so far is not able to place tight constraints on the equation of state on its own. The

details for this model can be found in the third column of Tab. 3.1. In the second

case, we free the expansion rate parameters (including w0 and wa) and use our whole

suite of measurements to inform our constraints. The details of this model can found

in the fourth column of Tab. 3.1.

We find that regardless the model assumptions made (ΛCDM or wCDM), µ(z) is

in excellent statistical agreement with the GR value µ(z) = 1 at all redshifts up to

95



1σ. We find the same consistency with GR when using the Planck 18 prior on the

cosmological parameters (including w0 and wa in the wCDM case) and when freeing

them. Fig. 3.2 shows the constraints obtained on µ(z) in both cases, with the con-

straints obtained assuming ΛCDM on shown in the top panel and those assuming

wCDM in the bottom panel. In both panels, we compare the contours obtained using

the Planck 2018 posterior as a prior in combination with our fσ8 measurements, and

by using our whole suite of measurements to inform our constraints. We can see

that imposing the Planck 2018 prior significantly reduces the uncertainty on µ(z) at

all redshifts. More quantitatively (see Tab. 3.3), the uncertainty on µ0 ≡ µ(z = 0)

decreases by roughly ∼ 35% for both a ΛCDM or wCDM cosmology and, remarkably,

the uncertainty in µ0 remains unchanged when using the more complex wCDM back-

ground model. Thus, we can conclude that the combination of cosmic chronometers,

BAO and SNe data are sufficiently precise to pin down the equation of state for the

purpose of constraining µ0.

Finally, regardless of the model assumed or how the expansion history was con-

strained, we observe that the uncertainty in µ(z) blows up around z ∼ 2. This is

because this is the point around which our data on fσ8 ends. The reason why the GP

on µ carries some constraining power beyond the redshift of our last fσ8 data point

(z = 1.48) is two-fold. On the one hand, the GP has a given correlation length. In

other words, the GP doesn’t immediately decohere and suddenly return to its prior

after the data stops. Second, in order to solve for fσ8 we have to solve a differential

equation on µ(z), which involves integrating over the later quantity. This means that

points in fσ8 do no precisely match to a singular point in µ(z).

It is interesting to understand this result in light of the discussion in Baker et al.

[179]. There, it was shown that, while a measurement of fσ8 at one redshift would

lead to a severe degeneracy between µ and w, measurements at multiple redshifts

combined with distance measurements could, in principle, break this degeneracy and

decorrelate constraints between the two parameters. However, as we have seen in

Fig. 3.2, current data is capable of breaking this degeneracy. This can be better

appreciated in Fig. 3.3. In this figure, we show the 1D and 2D distributions for

the parameters w0, wa and µ0. We superpose the contours obtained when using the

Planck 2018 prior (blue) and when only using current data to constrain the wCDM

parameters (red). As we can observe, the current data contours show a degeneracy

between w0-wa which is not present when using the Planck 2018 prior. However,

neither w0 nor wa are degenerated with µ0 in any case.
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Table 3.3: Model-dependent constraints on Ωm, σ8 and µ0, reporting the mean value
and the 1σ errors.

Ωm σ8 µ0

ΛCDM 0.302± 0.007 0.789± 0.027 -

wCDM 0.292± 0.013 0.801± 0.034 -

µ(z) + ΛCDMP18 0.314± 0.007 0.811± 0.006 0.904± 0.123

µ(z) + wCDMP18 0.306± 0.008 0.821± 0.014 0.899± 0.123

µ(z) + ΛCDM 0.302± 0.007 0.878± 0.127 0.850± 0.191

µ(z) + wCDM 0.29± 0.016 0.887± 0.127 0.862± 0.190
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Figure 3.3: Constraints for the cosmological parameters w0, wa and µ0. Diagonal
panels show 1D distributions. Off-diagonal panels show 2D distributions. In each
panel we superpose the contours obtained when assuming Planck 2018’s wCDM pos-
terior as a prior (blue) and when marginalising over a wCDM background (red) given
current late time data.
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Figure 3.4: Constraints for the cosmological parameters Ωm, σ8 and µ0. Diagonal
panels show 1D distributions. Off-diagonal panels show 2D distributions. Bottom
triangle shows the constraints obtained when assuming a ΛCDM background both
when imposing the Planck 2018’s ΛCDM posterior as a prior (blue) and when us-
ing current late time data to inform it (red). The top triangle shows the equivalent
constraints when a wCDM background was assumed instead (green and purple re-
spectively).

We further note that the uncertainty in µ(z) increases as we look at higher red-

shifts, but not excessively so. Two factors are at play here. First, since the data are

a non-local function of µ(z) (i.e. µ(z) needs to be integrated to solve for f in Eq.

3.3), they allow us to place constraints on higher redshift values of µ(z). In addition

to this, we are marginalising over the hyperparameters of the Gaussian Process. This

means that the data at lower redshifts can put a constraint on the amplitude and

correlation length of the GP’s kernel. This effectively limits the variance of the GP

even in regions with no data.

We have seen that assuming a wCDM for H(z) as opposed to ΛCDM model does

not degrade our constraints on µ(z). It is then interesting to explore the relationship
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between µ(z) and other cosmological parameters of our models, particularly Ωm and

σ8. Fig. 3.4 shows the 1D and 2D contours for the parameters Ωm, σ8 and µ0 obtained

when assuming the ΛCDM and wCDM models to parameterise H(z). In each panel,

we superpose the results obtained when assuming Planck 2018’s posterior as a prior

for the expansion rate as opposed to letting background data inform the constraints.

We show the associated numerical constraints in Tab. 3.3. We also display the

constraints obtained by fitting a ΛCDM and wCDM model while keeping µ(z) = 1

(i.e. GR) for context.

Looking at Eq. 3.3 one would expect a great degeneracy between Ωm and µ(z).

However, if we look at the bottom left corner panel (ΛCDM) and top right panel

(wCDM) of Fig. 3.4 we can see how information about the background breaks this

degeneracy. Therefore, it is not clear that a better constraint on one will lead to an

improvement on the other.

We show our constraints on Ωm for the different models in Fig. 3.5, including

constraints for the ΛCDM and wCDM models when keeping µ(z) = 1 (i.e. GR) for

reference. Regardless of whether we assume a ΛCDM or wCDM model for H(z) we

obtain a slightly lower value for Ωm than the one obtained by Planck 2018 (and the one

obtained using Planck 2018’s posterior as a prior). Nonetheless, once the size of the

error bars is taken into account, the constraints are in reasonable statistical agreement

(less than 1.5 σ tension). Moreover, assuming wCDM systematically results in a lower

yet statistically compatible constraint of Ωm than assuming a ΛCDM model. Finally,

it is interesting to note that introducing µ(z) barely degrades the constraint on Ωm

if the background is ΛCDM. On the contrary, for a wCDM model, introducing µ(z)

leads to a ∼ 20% larger error bar on Ωm. This is caused by the fact that freeing the

equation of state reduces the ability of the background to constrain Ωm and, thus, the

wCDM Ωm constraint increasingly depend on the growth data to inform its value.

Moving to σ8, current growth data cannot break the degeneracy between σ8 and

µ0. This can be seen in the middle panel of the bottom row and the right panel

of the middle row. Therefore, when assuming a model for H(z), the bottleneck in

constraining µ0 is how well we know σ8. This explains why our constraints on µ(z)

drastically improve when imposing the Planck 2018 prior since it imposes a much

tighter constraint on σ8, breaking the degeneracy with µ(z).

3.4.2 Model-independent constraints

We now proceed to further relax our assumptions about the background expansion

rate by promoting H(z) to a GP. We do so by following the methodology developed
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Figure 3.5: Constraints obtained for Ωm for each model considered in this work. Side
panel shows the uncertainty of each constraint.

in Ruiz-Zapatero et al. [1]. More specifically, we model H(z) as

H(z) = A0H
P18(z)(1 + δHgp) , (3.13)

where A0 is a free parameter, HP18(z) is the Hubble rate for our ΛCDMPlanck 18

best-fit fiducial cosmology (see Sect. 3.2), and δHgp is a relative deviation that we

model as a Gaussian Process. This is a Bayesian approach to GP’s in which one

marginalises simultaneously over the GP itself and its mean. In Ruiz-Zapatero et al.

[1] we showed that this approach shields our cosmological constraints from potentials

biases introduced by our choice of mean function. More recently, Hwang et al. [197]

showed that unphysical oscillations can appear in the reconstructed functions if one

does not marginalise over a possible family of mean functions for the GP. However,

it is worth noting that the degeneracies between the GP and the A0 parameter make

exploring the parameter space significantly more expensive.

Therefore, our inference process now involves two GPs. This allows us to mea-

sure the degeneracy between modifications of the expansion history and the Poisson

equation in the prediction of fσ8 without having to assume a particular model.

However, becoming fully model-independent comes at the cost of no-longer being

able to constrain Ωm with measurements of background quantities. This is because
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H(z) is no longer a function of cosmological parameters. Thus, we have no indepen-

dent way of constraining Ωm apart from the relationship between H(z) and fσ8(z).

Revisiting Eq. 3.3, we can also see that we are now faced with an unbreakable de-

generacy between Ωm and µ(z). In order to deal with this degeneracy, in this section

we consider the new, combined parameter

µ̃(z) =
Ωm

ΩP18
M

µ(z) , (3.14)

where ΩP18
M is the Planck 18 TTTEEE+LowE+Lensing+BAO, ΛCDM best fit value

of Ωm.

In order to solve Eqs. 3.3 and 3.7 when considering two GPs, we employ the

same combination of numerical methods as in Ruiz-Zapatero et al. [1] (where we also

modelled H(z) as a GP), albeit with some modification. In Ruiz-Zapatero et al.

[1] we assigned a node of the GP to each node of the numerical grid used to solve

the growth equation and the comoving distance integral. This approach becomes

very computationally expensive when we introduce a second GP. In order to make

our model more computationally efficient, we decouple the number of nodes in the

numerical integration schemes from the number of nodes used for each GP, linearly

interpolating where necessary. This allows us to significantly reduce the number of

parameters of the model while preserving the necessary numerical accuracy. Reducing

the number of nodes in the GP’s means that the degeneracy between the remaining

nodes is reduced. This latter aspect is particularly helpful when using HMC which is

most efficient when the parameters are as uncorrelated as possible. The end result of

reducing the number of parameters and the degeneracy between them is a substantial

speed-up in the time needed for the sampler to converge.

We show the obtained model-independent constraints for µ̃(z) in Fig. 3.6. On the

one hand, in the top panel of the figure, we can observe that the model-independent

constraints on µ̃(z) are only marginally worse than the model-dependent constraints

on µ(z) (5%− 10% depending on whether we consider the ΛCDM or wCDM model).

This means that, even when completely relaxing our assumptions about H(z), current

data have enough constraining power to break the degeneracy between H(z) and µ̃(z).

This can be further seen in the correlation matrix between the GP’s nodes of µ̃(z)

and H(z). Fig. 3.7 shows that, although µ(z) and H(z) nodes have a great degree

of auto-correlation (as expected for a GP), the correlation coefficients between both

quantities are never larger than 5%. This can be seen as a generalisation of the lack

of correlation we observed between the background parameters and µ0 in Sect. 3.4.1.
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Figure 3.6: Top panel: constraints on µ(z) for current data when assuming the ΛCDM
model to model background expansion of the Universe (red) and when using a second
GP (green). Note that when using a second GP the quantity being constrained is
µ̃(z) as opposed to µ(z). Bottom panel: constraints obtained on µ̃(z) when using a
second GP to model H(z) for both current data (green) and mock DESI data (blue).

Moreover, we can see that H(z)’s low redshift nodes are much less correlated with

high redshift nodes than those of ˜µ(z).

It is important to bear in mind that these are constraints on µ̃(z), not on µ(z).

Converting constraints on µ̃(z) into constraints on µ(z) requires a measurement of Ωm.

However, in the process of freeing H(z) we have lost all of our knowledge of Ωm. Thus,

an external, model-independent measurement of Ωm would be needed to transform

µ̃(z) constraints into µ(z) constraints. The constraints on µ̃(z) should therefore be

understood as the most optimistic model-independent constraint on µ(z) possible

given current data; i.e. the case for which we have a perfect model-independent

measurement of Ωm.

Finally, we find σ8 = 0.886 ± 0.138 when a second GP is used to model H(z).

This means that not assuming a ΛCDM or wCDM model for the expansion history

degrades our σ8 constraint by around ∼ 10%. Nonetheless, the degree of correlation

between σ8 and µ̃0 remains virtually identical to that of model-dependent analyses.

Thus, model-independent constraints on µ̃(z) will also benefit greatly from ways of
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GP on µ(z). This plot can be seen as a generalisation of Fig. 3.3, showing that the
expansion rate and the modifications of the linear growth are already independent
with the constrain level of current data.

tightening their constraint on σ8, just as we saw in the model-dependent case. We

will discuss this further in the next section when considering our analysis of mock

DESI data.

3.5 Conclusions

In this chapter, we have assessed the importance of our current knowledge of the ex-

pansion rate history on our ability to constrain µ(z) in a model-independent manner.

As was argued in Simpson and Peacock [188] and Baker et al. [179], the assumptions

that go into the modelling the Hubble rate as a function of redshift, H(z) will impact

constraints on µ(z) from the growth rate of structure. It was shown that the more

conservative (or looser) the model for H(z), the weaker the constraints on µ(z) should

be.

We have found that, however, current constraints on the expansion rate from

cosmic chronometers, supernovae and BAO data are sufficiently tight that the as-

sumptions made about the underlying background model are not important when con-

straining µ(z). To show this, we have used a completely general form for µ(z) (a Gaus-

sian Process), and quantified whether assuming a simple equation of state for Dark

Energy (w = −1), or a more general equation of state of the form w = w0 +wa(1−a)
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Figure 3.8: Comparison of different measures of uncertainty in µ(z) between the
different models considered in this work. The top panel shows the mean value of the
amplitude of the covariance matrix of µ(z) for each model. The bottom panel shows
the uncertainty in µ(z = 0) ≡ µ0. Note that when a second GP is considered to
model H(z) (i.e. last two entries) µ̃(z) is shown as opposed to µ(z).

affects the final constraints on µ(z). We also considered a completely general form for

H(z) which we also modelled as a Gaussian Process. In this case, we are faced with

a fundamental degeneracy between µ(z) and Ωm and thus, we present our results in

terms of µ̃(z) = Ωmµ(z)/ΩP18
M where we recall that ΩP18

M is the best fit value of Ωm

for the Planck 2018 TTTEEE+LowE+Lensing+BAO analysis of the ΛCDM model.

As discussed in Section 3.2, we summarise our results on the constraints on µ(z)

using two statistics. On the one hand, we look at the uncertainty in µ0 ≡ µ(z = 0) as

it directly relates to the strength of any possible fifth force today. On the other hand,

we consider the mean value of the amplitude of the Gaussian process covariance

matrix, ηµ, which is an abstract measurement of the uncertainty of the Gaussian

process through its whole domain.

We present the corresponding results in Fig. 3.8. Reassuringly, we find that

the two statistics offer us the same picture: the less assumptions we make on the

expansion history, the more uncertainty on µ(z). However, it is extremely important
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to stress that the loss in constraining power is marginal. Comparing assuming a

ΛCDM vs wCDM model, we find that it makes effectively no difference and there is

no degradation in our constraints on µ(z). Even when a second GP is used to model

H(z) the constraint is only a few percentages larger.

Focusing on µ0, we find that σ(µ0) ≃ 0.12 if we assume Planck 2018’s posterior

as a prior, for either the ΛCDM or wCDM model. This uncertainty increases to

σ(µ0) ≃ 0.19 if instead of imposing Planck 2018’s posterior as a prior we use our

collection of late time H(z), DM(z) and fσ8 measurements to inform our constraints.

The main difference between assuming Planck 2018 posteriors and using late-time

data to inform our models is that the former provides us with a much tighter constraint

on σ8, the main bottle-neck when constraining µ(z) in a model-dependent fashion.

Looking at the model-independent constraint, we find that σ(µ̃(z)) ≃ 0.21.

If we instead look at the constraints on ηµ, we find the exact same trend as in µ0.

While one would expect the two statistics to agree, µ0 only probes the GP at z = 0

while ηµ contains information about the whole GP domain. We find that for our

best-case scenario, in which we assume Planck 2018’s ΛCDM background, ηµ = 0.25.

Letting late time data inform a ΛCDM model instead returns ηµ = 0.32. Furthermore,

if we assume a wCDM model, we find ηµ = 0.26 when using the Planck’s posteriors to

pin it and ηµ = 0.32 when letting late time data inform it. Finally, we find ηµ = 0.33

in the model-independent case.

The fact that constraints on µ are (relatively) insensitive to our parameterisation

of H(z) is not unexpected. This is because current background data is powerful

enough to constrain H(z) independently of the assumptions made. In the analysis of

Ruiz-Zapatero et al. [1], we found that constraints on Ωm from the growth rate were

not strongly dependent on our modelling choices of the Gaussian process on H(z).

There have been other attempts at constraining µ(z). In Planck Collaboration

et al. [13] an uncertainty of σ(µ0) ≃ 0.25 was found under the assumption that µ

evolves as µ(z)− 1 ∝ [1− Ωm(z)]. However, different assumptions about the specific

time dependence of µ (e.g. µ(z) ∝ an) lead to constraints that are strongly dependent

on the choice of n[189], with µ0 in the range σ(µ0) ∈ (0.04, 1.5). Assuming that the

modified Poisson equations arises from scalar-tensor theories, one can use the tools

of Effective Field Theory [177] or simply assume specific classes of models [191] to

obtain σ(µ0) ≃ 0.25. As we can see, our methodology returns stronger constraints

with σ(µ0) ∈ (0.12, 0.19) depending on the strength of the assumptions made on

H(z). We note however that it can be misleading to directly compare σ(µ0) as they
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can be heavily dependent on the underlying model and choice of data sets one is

using.

It is instructive to see how much our constraints will improve with future data.

As an example, we choose the specifications for the DESI data set, described in Sect.

3.3, and combine it with the Planck 2018 CMB BAO measurement to pin down the

GP on H(z) at high redshift. Our analysis of DESI mock data shows that we will

obtain constraints on µ̃(z) (i.e. with a model-independent H(z)) which are twice as

tight as with current data when assuming either a ΛCDM or wCDM background.

This is in spite of the DESI constraint on σ8 being about six times wider than Planck

2018’s. The reason behind this improvement in constraining power boils down to the

fact that DESI alone will offer nearly twice as many measurements on fσ8 as the

number considered in this work over a larger redshift window. Moreover, DESI fσ8

measurement will have significantly smaller errors bars than currently available ones.

It is particular important to focus on the smaller size of said error bars relative to the

expected dynamic range of fσ8 in the redshift window probed. This will greatly help

break the degeneracy between the amplitude of fσ8 (given by σ8) and its shape (given

by µ(z) in the presence of background data to pin down Ωm) present in current data.

Finally, there are several avenues through which the results and methodology pre-

sented here could be further explored. One can ask the question: how well do we need

to measure Ωm to obtain a competitive model-independent constraint on µ(z) with

current data. Using propagation of errors; σ(µ)/µ =
√

(σ(µ̃)/µ̃)2 + (σ(Ωm)/Ωm)2, we

find that model-independent measurement of Ωm to 10% precision would be enough to

match model-independent constraints on µ(z) to model-dependent constraints with

current data. Similarly, a percentage model-independent measurement of Ωm would

allow us to constrain µ(z) to virtually the same precision as µ̃(z). This measurement

of Ωm would need to be independent from the model assumed for the background

expansion and for the parameterisation of the Poisson equation. Future works could

attempt to obtain an alternative model-independent constraint on Ωm to break the

µ̃(z)− Ωm degeneracy found in this methodology.
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Chapter 4

LimberJack: Auto-differentiable
methods for angular power spectra
analyses

4.1 Introduction

As discussed in Sect. 1.1.5, Cosmology is currently experiencing an unprecedented

increase in the quantity and quality of data. The Dark Energy Spectroscopic Instru-

ment (DESI) [198] has already recorded more galaxy spectra in its first two years of

operations than previously done in the whole history of humanity. Moreover, next-

generation surveys such as Legacy Survey of Space and Time (LSST) [199], Euclid

[200], the Nancy Grace Roman space telescope [201], the Simons Observatory [202],

CMB-HD [203] or CMB-S4 [204] promise to further accelerate this trend in the next

decade.

In order to match the quality of the data, physicists are starting to incorporate

into their theoretical predictions more of the physical, observational and instrumental

effects which, until now, could be overlooked. In practice, this translates into a

dramatic increase in the number of parameters that future analyses will have to

consider. This combination of large data sets with complex models will (and in many

cases already does) overwhelm the inference methods we currently use to constrain

the values of these parameters.

In a Bayesian framework (See Sect. 1.2), the statistical distribution of a set of

parameters, θ, given some data, d, is given by Bayes theorem:

P(θ|d) ∝ L(d|θ)Π(θ) , (4.1)

where P (θ|d) is the posterior distribution of the parameters given the data, L(d|θ)

is the likelihood of the data for a set of parameters and Π(θ) are the prior beliefs
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on the distribution of the parameters. Current cosmological analyses explore their

parameter spaces by mapping out P (θ|d) according to some stochastic process by

which the direction of exploration is chosen. Despite the success of this methodology,

relying on stochastic methods becomes inefficient at high dimensions. This effect is

known as the curse of dimensionality (See Sect. 1.2.1).

One of the most effective ways of overcoming the curse of dimensionality is using

the gradient of the posterior; ∇P (θ|d) ∝ ∇(L(d|θ) Π(θ)), to guide exploration to-

wards regions of interest in parameter space. Algorithms that use the gradient of the

likelihood to explore parameter space are known as gradient-based samplers [76–79].

Unfortunately, traditional methods of finding numerical gradients, such as the finite-

difference method, scale poorly with the number of dimensions. Moreover, they can

be prone to numerical instabilities. This can render the use of gradient information

counter-productive.

Thankfully, in the last decades a series of algorithms known as auto-differentiation

(AD) [94, 141, 192] have grown in popularity. Given a generic computer program that

maps a series of inputs to a series of outputs (i.e. a function inside a computer), AD is

a family of algorithms designed to produce a symbolic representation of such computer

program such that the chain rule can be systematically applied to produce a second

program for the gradient of the original function. Unlike finite differences, AD is not

subject to truncation errors and its computational cost scales much more favourably

with the dimensionality of the original function [94]. Thus, the goal of this chapter

is to make the theoretical predictions described in Sect. 1.1 compatible with the AD

methods described in Sect. 1.3.2 to enable the gradient-based inference algorithms

described in Sect. 1.2.2.

We present LimberJack.jl, an auto-differentiable angular power spectra analysis

code fully written in Julia. LimberJack.jl is designed after the Core Cosmology Li-

brary [CCL 205] developed by the LSST Dark Energy Science Collaboration, aiming

to fulfil the similar scientific goals. LimberJack.jl allows the user to easily compute

ΛCDM model predictions for the angular power spectra of weak lensing, CMB lensing

and clustering surveys using the Limber approximation [31, 32]. Most importantly,

LimberJack.jl can also provide the user with accurate gradients of these predic-

tions in a computationally efficient way, due to its compatibility with Julia’s AD

libraries ForwardDiff.jl and ReverseDiff.jl. While LimberJack.jl is currently

more limited than CCL, its modular design means that it can easily be extended by

the community. This will allow the community to add new features that will be neces-

sary for the analysis of future data which are currently not present in LimberJack.jl;
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such as more precise prescriptions of the non-linear corrections to the matter power

spectrum or going beyond the Limber approximation [206].

A number of auto-differentiable cosmological codes have been presented in the lit-

erature. The most notable precedents are JAX-COSMO [207] and CosmoPower-JAX [208].

JAX-COSMO’s functionalities and goals are very similar to those of LimberJack.jl

both basing their design on CCL. CosmoPower-JAX is a neural-network emulating

framework for the matter power spectrum originally developed in TensorFlow [209]

and later ported to JAX to be paired with JAX-COSMO. The main difference between

JAX-COSMO, CosmoPower-JAX and LimberJack.jl is the AD ecosystem they make

use of. Both JAX-COSMO and CosmoPower-JAX are written in JAX, a scripting pro-

gramming language which interfaces with a lower-level language, XLA, a just-in-time

(JIT) compiled language with AD capabilities. JAX’s main strengths are its powerful

parallelisation schemes on both CPUs and GPUs, its performant AD methods and

the fact that it shares API with the ubiquitous Python library NumPy. On the other

hand, LimberJack.jl is fully written in Julia, a general-purpose, JIT-compiled,

programming language with native AD capabilities. Julia’s main advantage is the

lack of a lower-level programming language meaning that Julia can directly generate

its machine code. This is not the case in other popular AD environments such as

TensorFlow and JAX that interface with C++ and XLA respectively to generate their

machine code. This transparency makes Julia an excellent language to develop com-

plex libraries with customised methods. A recent practical example where this feature

has played a key role is the development of the first AD Boltzmann solver, Bolt.jl

[210], a challenging task for JAX and TensorFlow but which, nonetheless, was possible

in Julia.

The structure of this chapter is as follows: in Sect. 4.2 we describe the theoret-

ical predictions computed by LimberJack.jl, how LimberJack.jl computes these

predictions in an auto-differentiable way and how AD can be used to speed up statis-

tical inference. In Sect. 4.3, we use LimberJack.jl to reproduce the DES Y1 3x2-pt

analysis and to perform a Gaussian process reconstruction of the growth factor across

redshift. Finally, in Sect. 4.4, we summarise our work and interpret our results.

4.2 Methods

4.2.1 LimberJack.jl

The key feature of LimberJack.jl which sets it apart from similar, more extensively

tested codes (such as CCL Chisari et al. [205]) are its AD capabilities. AD methods
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can be classified into two groups, forwards and backwards. In order to understand

the difference, let us consider a complicated function of an independent variable,

f(x), one can represent the function as a composition of simpler functions, f(x) =

wn(wn−1(...w1(w0)), where w0 = x. Thus, in order to obtain the gradient of f(x),

one can either find the gradient of the simpler functions with respect the independent

variable or, alternatively, find the gradient of the original function with respect the

simpler functions. The first of these different strategies to accumulate terms in the

chain rule corresponds to forwards AD, while the second to backwards AD. Whether

to use forwards or backwards AD will greatly depend on the nature of the problem.

Generally1, given a function f : RN → RM, forwards AD will be more efficient at

computing ∇f if N < M . If, on the other hand, M < N , backwards AD is preferred.

LimberJack.jl is currently capable of forwards and backwards AD through the

Julia libraries ForwardDiff.jl and ReverseDiff.jl respectively. However, only

forwards AD is efficiently implemented. Both ForwardDiff.jl and ReverseDiff.jl

perform AD by pushing special types of numbers through the original computer pro-

gram. On the one hand, ForwardDiff.jl uses dual numbers. Dual numbers are

expressions of the form a + ϵb such that ϵ2 = 0 but ϵ ̸= 0. It can then be shown

that given a generic function f(a + bϵ) = f(a) + bϵf ′(a) (see Sect. 4 of Hoffmann

[211] for proof) the gradient of the original function can be easily obtained. This

means that ForwardDiff.jl imposes little to no constraints on the program it dif-

ferentiates through2. On the other hand, ReverseDiff.jl uses taping numbers, a

special type of numbers that records all the operations the number undergoes, to

generate a trace of the basic operations that compose a generic computer program

[100]. Given this record, ReverseDiff.jl can then generate an expression for the

gradient of the program. Thus ReverseDiff.jl requires two passes through the orig-

inal program. First, a forward pass generates the program’s operation trace. Then,

a backwards pass computes the partial derivatives and accumulates their values as

the input is back-propagated. Because of the greater complexity of the algorithm,

ReverseDiff.jl imposes strong demands on the computer programs it acts upon.

Commonplace computations such as control flow or variable mutation are examples

of operations that must be handled carefully.

The implementation of the expressions discussed in Sect. 1.1.4 within LimberJack.jl

will are thus constrained by the demands of the AD methods used to obtain their

1The performance of backwards and forwards AD is also impacted by the size of the operation
being differentiated.

2Since Julia is a typed language, some considerations have to be made about potential type
instabilities introduced by the use of dual numbers.
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gradients. The computation of Eq. 1.69 fundamentally involves two different types

of quantities, the radial kernels and the matter power spectrum. On the one hand

computing the radial kernels boils down to evaluating the expansion history of the

Universe, H(z), and its integral over time, i.e. the comoving radial distance, χ(z).

Calculating the expansion history, as given by the ΛCDM model, amounts to eval-

uating H(z) = H0

√
Ωm(1 + z)3 + Ωr(1 + z)4 + (1− Ωm − Ωr) on a grid of redshifts

where Ωm and Ωr are the cosmological matter and radiation density respectively. The

radial comoving distance is then obtained integrating over the grid using Simpson nu-

merical integration which is generically compatible with AD methods. In the left and

centre columns of Fig. 4.1 we show a comparison between the LimberJack.jl and CCL

predictions for the expansion history and comoving distance between 0 < z < 1100

(top panels). Each panel contains a subpanel where the relative difference between

the CCL and LimberJack.jl predictions is shown. We find that the relative difference

between the predictions of CCL and LimberJack.jl are smaller than 10−4 at all red-

shifts. Moreover, we also show a comparison for the derivative of said quantities with

respect to Ωm when computed by LimberJack.jl using AD and finite differences for

the same redshift range (bottom panels). Similarly, each panel contains a subpanel

where the relative difference between the AD and numerical gradient is shown. We

find that the relative difference between the two methods is smaller than 10−4 at

all redshifts. When interpreting comparisons between finite differences and AD, it is

worth noting that finite differences gradients are not inherently correct. Indeed, as

stated in Sect. 4.1, AD does not suffer from the numerical errors that finite differences

do. Thus, differences between AD and finite differences often occur due the numerical

noise in finite differences.

On the other hand, computing the matter power spectrum in an AD-compatible

way is a much more difficult problem. The first and most challenging obstacle is

obtaining the linear matter power spectrum. As described in Sect. 1.1.3, computing

the matter power spectrum involves solving a coupled system of linear differential

equations with time- and scale-dependent coefficients. This task has proven a major

challenge for most AD environments [207] as it requires tweaking the lower-level

programming languages. This is however not a problem for the Julia AD ecosystem

which has a (currently under development) full Boltzmann-Einstein solver, Bolt.jl

by Li and Sullivan [210]. While still in its early days, Bolt.jl can provide users with

full numerical solutions for the linear power spectrum and its derivatives with respect

to the ΛCDM parameters. LimberJack.jl can then interface with Bolt.jl to obtain

said predictions.
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Figure 4.1: Left column: Top panel shows a comparison between the LimberJack.jl
(solid green) and the CCL (dashed red) computation of the expansion history between
0 < z < 1100. Bottom panel shows a comparison between the derivative of the
expansion history with respect to Ωm computed using AD (solid blue) and finite
differences (dashed orange) for the same redshift range. Middle column: Top panel
shows a comparison between the LimberJack.jl (solid green) and the CCL (dashed
red) computation of the comoving distance between 0 < z < 1100. Bottom panel
shows a comparison between the derivative of the comoving distance with respect to
Ωm computed using AD (solid blue) and finite differences (dashed orange) for the
same redshift range. Right column: Top panel shows a comparison between the
LimberJack.jl (solid green) and the CCL (dashed red) computation of the linear
growth factor 0 < z < 3. Bottom panel shows a comparison between the derivative
of the linear growth factor with respect to Ωm computed using AD (solid blue) and
finite differences (dashed orange) for the same redshift range.
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However, solving the full Boltzmann-Einstein equations is very computationally

expensive (being the bottleneck of most cosmological analyses) even in fast program-

ming languages such as C++ (CLASS), Fortran (CAMB) or Julia. Therefore, it

is common to look for ways to bypass solving the Boltzmann-Einstein equations in

cosmological analyses where speed is important. When the evolution of the matter

power spectrum can be assumed to be scale independent, P (z, k) can be computed by

constructing a fitting formula that approximates the true value of the matter power

spectrum at z = 0, P0(k), at an array of scales and then evolving P0(k) into the

past using the linear growth factor. The first commonly applied fitting formula for

P0(k) was the Bardeen-Bond-Kaiser-Szalay [BBKS 24] formula which modifies the

Harrison-Zeldovich power spectrum [160, 212, 213] by a transfer function:

P0(k) ∝
(
ck

H0

)ns

T 2(k) , (4.2)

where T (k) is the transfer function. The most popular fitting formula is that of

[25, 26, E&H from now on], which follows the same strategy as the BBKS formula

of approximating the transfer function but with a more complex expression that

includes baryonic effects such as baryonic acoustic oscillations and small-scale power

suppression. Thanks to these inclusions the E&H formula is accurate enough to

return unbiased cosmological constraints for the 3x2-pt DES Y1 analysis as shown

in Campagne et al. [207]. However, it is important to keep in mind that the E&H

formula will not be accurate enough to analyse future data set as well as some current

ones.

In recent years, a new family of fitting formulae, known as emulators, have grown

in popularity. Emulators are computer models (such as neural networks or Gaussian

Processes) whose weights are optimised to reproduce a target function over a certain

domain. The main advantage of emulators over traditional fitting formulae is that

they automate the majority of the trial and error process of building an accurate

fitting formula. Moreover, they tend to require less knowledge of the physical problem

to be constructed. However, emulators require vasts amounts of training data and the

resulting models tend to be far larger than traditional fitting formulae. Nonetheless,

emulators have found great success in astrophysics in recent years, offering extremely

accurate yet affordable approximations to different functions [214, 215], including the

matter power spectrum [209, 216].

The great advantage of these fitting formulae is that they effectively amount to

algebraic expressions through which AD algorithms can easily differentiate as shown

in Piras and Spurio Mancini [208] and Bonici et al. [215]. Combined with their speed,
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fitting formulae can often be the preferred way to obtain estimates for the primordial

power spectrum in gradient-based analyses. For these reasons, LimberJack.jl is

equipped with both a native Julia implementation of the E&H formula and the

recently developed Gaussian process based emulator EmuPk [216] for the linear matter

power spectrum.

The next challenge is to compute the growth factor, D(z), to find the evolution of

the linear power spectrum. As discussed in Sect. 1.1.4, the growth factor is obtained

by solving the Jeans equation (see Eq. 2.4) which is an inhomogeneous ordinary

differential equation. Differentiating through the solutions of differential equations

can be done by writing a recursive numerical scheme to solve the differential equation.

These schemes amount to a series of linear operations that update mutating variables.

While mutating variables can pose challenges for certain backwards modes of AD, the

numerical schemes can otherwise be differentiated through to yield gradients for the

solution of a differential equation. Thus, LimberJack.jl solves the Jeans equation

using a second order Runge-Kutta solver. Returning to Fig. 4.1, in right column of

this figure, we show a comparison between the LimberJack.jl and CCL predictions

for the linear growth factor (top panels). We also shown a comparison between the

derivatives of LimberJack.jl’s D(z) with respect to Ωm when computed using AD

and finite difference (bottom panels) for the redshift range 0 < z < 3. Again, each

panel contains a subpanel where the relative difference between the two compared

quantities is shown. Concerning the growth factor itself, we find that the relative

difference between the CCL and LimberJack.jl predictions are smaller than 10−4 for

all the redshift window. Concerning the derivatives of the growth factor, the relative

differences between AD and finite differences are again smaller than 10−4 for all the

redshift window.

To compute the necessary non-linear corrections at small scales, LimberJack.jl

is equipped with an auto-differentiable implementation of Halofit as given by Smith

et al. [27] with revisions of Takahashi et al. [28]. The biggest obstacle to accomplish

this is differentiating through the root finding process that occurs within Halofit.

Similarly to solving differential equations, root finding can be differentiated through

by writing a recursive numerical scheme of linear operations with mutable variables

[217]. The Halofit implementation within LimberJack.jl uses the secant method

for its root finding through which most AD methods can differentiate. Putting all

of these together LimberJack.jl can perform a fully auto-differentiable computation

of the non-linear matter power spectrum at any redshift or scale. In Fig. 4.2 we

show a comparison between the predictions for the non-linear matter power spectrum

115



from LimberJack.jl and CCL for z = [0.0, 0.5, 1.0, 2.0] and −2 < log(k) < 4 (top

panels). Both the CCL and LimberJack.jl predictions are obtained using the E&H

linear power spectrum. Then Halofit was used to obtain the non-linear corrections.

Moreover, we also show a comparison between the derivative of the LimberJack.jl

power spectra with respect to Ωm when computed using AD and finite differences.

Finally, each panel contains a subpanel where the relative difference between the two

compared quantities is shown. Concerning the power spectra, we find that the relative

difference between the CCL and LimberJack.jl predictions are smaller than 10−3 for

all the redshift window. However, we observe that the Halofit implementation of

LimberJack.jl systematically over-predicts the non-linear matter power spectrum at

higher redshifts. As we will see this bias will manifest when considering angular power

spectra involving the CMB lensing tracer later on but it nonetheless doesn’t prevent

us from achieving our accuracy goals. In the future, we aim to implement more

accurate prescriptions of the non-linear matter power spectrum such as as HMCode

[218] or baccoemu [219]. Concerning the derivatives of the same power spectra, the

relative differences between AD and finite differences are again smaller than 10−3 for

all the redshift windows.

The only step left to compute angular power spectra is to bring the radial ker-

nels and the matter power spectrum together and perform the Limber integral (see

Eq. 1.69). Similarly to the computation of comoving distances, this is done within

LimberJack.jl by evaluating all the quantities within the integrand at a regular ar-

ray of logarithmic scales, log10(k), and then performing the numerical integral for the

desired multi-poles, ℓ, using Simpson numerical integration. One small challenge in

doing so is finding the corresponding redshift associated with the comoving distance

given by the scale and the multipole to evaluate the radial kernels. This inconvenience

is a result of LimberJack.jl defining the radial kernels as functions of redshift instead

of comoving distance. Normally, finding the redshift at a given comoving distance

would involve a costly root finding process. However, LimberJack.jl handles this by

building an interpolator between redshift and comoving distance and then inverting

the interpolator to establish a straight forward comoving distance to redshift map for

a given set of cosmological values.

In Fig. 4.3 we show a comparison between the predictions of LimberJack.jl and

CCL for the angular power spectra of different types of tracers for 10 < ℓ < 1000. We

consider the auto- and cross-correlations of galaxy clustering, cosmic shear and CMB

convergence. In all cases the E&H formula was paired with Halofit to obtain the

matter power spectrum. We also assume a Gaussian redshift distribution centred at
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Figure 4.2: Top panels show a comparison between the LimberJack.jl (solid green)
and the CCL (dashed red) computation of the non-linear matter power spectrum for
z = [0.0, 0.5, 1.0, 2.0] and −4 < log(k) < 2. Both LimberJack.jl and CCL used the
E&H formula to compute the linear matter power spectrum. Then, Halofit was used
to obtain the non-linear corrections in both cases. Bottom panels shows a comparison
between the derivative of the LimberJack.jl matter power spectra with respect to
Ωm computed using AD (solid blue) and finite differences (dashed orange). Each
panel contains a subpanel where the relative difference between the two compared
quantities is shown.
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z = 0.5 with a standard deviation σz = 0.05, sampled at 1000 evenly-spaced intervals

in the range 0 < z < 2. We observe that the discrepancy between LimberJack.jl and

CCL is smaller than 10−3 for all angular power spectra except for the auto-correlation

of CMB lensing where the discrepancy is larger but nonetheless stays below 10−2.

This is due to the discrepancy in the evolution of the Halofit non-linear matter

power spectrum between LimberJack.jl and CCL shown in Fig. 4.2. Similarly,

in Fig. 4.4, we show a comparison for the derivatives of the same quantities with

respect to Ωm when computed using AD and finite differences. The derivative of the

clustering tracer proved to be extremely sensitive to the resolution of the numerical

integration scheme used to normalise the galaxy distributions leading the observed

oscillatory behaviour. Thus, even if the AD derivative is exact, the fact that we are

differentiating through a numerical scheme introduces numerical noise. Despite this,

we nonetheless observe a sub-percentage-level agreement between the two approaches

in all cases. It also worth remembering that disagreements between AD and finite

differences don’t necessarily imply a mistake in the AD. Indeed finite differences are

more likely to differ from the underlying true derivative given that they are subject

to truncation errors.

4.3 Results

4.3.1 DES Y1 3x2-pt

In order to validate the constraints obtained using LimberJack.jl, we first replicate

two different analyses based of DES Y1 3x2-pt [51, 220] data. The Dark Energy

Survey is a photometric, 5-year survey, that has observed 5000 deg2 of the sky using

five different filter bands (grizY ). The observations were made with the 4m Blanco

Telescope, provided with the 570-Mpix Dark Energy Camera (DECam), from the

Cerro Tololo Inter-American Observatory (CTIO), in Chile. In particular, we use

the public METACALIBRATION source catalog3, which is divided in four redshift bins

covering the range z ≲ 1.6 [221]. A full description of the methods used to estimate

these power spectra, and their associated covariance matrix, from the DES-Y1 data

is provided by the authors.

The two aforementioned analyses were done using the well-established Bayesian

inference framework Cobaya which employs a Metropolis Hastings (MH) sampler. In

the first analysis, both LimberJack.jl and Cobaya used the E&H formula to obtain

3https://desdr-server.ncsa.illinois.edu/despublic/y1a1_files/
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Figure 4.3: Comparison between the LimberJack.jl (solid green) and the CCL

(dashed red) computation of auto- and cross-correlation angular power spectra of
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1 < log(ℓ) < 3. Both LimberJack.jl and CCL used the E&H formula to compute
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the matter power spectrum. In the second analysis, Cobaya used the CLASS code

to obtain the matter power spectrum while LimberJack.jl used the EmuPk emulator

[216], which was trained on CLASS. We use the Garćıa-Garćıa et al. [54] (CGG21 from

now on) angular power spectra and covariance matrix of the DES Y1 3x2-pt analysis

based of the DES Y1 cosmological catalogue Abbott et al. [51] (See Sects. 3.1, 4.1

and 42. of CGG21). The same scale cuts as in CGG21 (see Tab. 4 of CGG21) were

applied to the data vector.

With this aim, we make use of the Julia library for statistical inference Turing.jl

[222]. Turing.jl is a probabilistic programming language (PPL) that allows the user

to create statistical models by explicitly writing the relationship between the sampled

parameters and the theoretical predictions for the observed data. Turing.jl uses

this information to draw a likelihood density function compatible with the Julia AD

infrastructure as long as the internal computations of the model are also compatible

with AD. The user can then condition this function on the observations and sample it

using a series of sampling back-ends. In this work we make use of the NUTS sampler as

implemented in the Julia library AbstractHMC.jl within Turing (See Sect. 1.2.2.2

for details on the algorithm). Moreover, we choose the AD library ForwardDiff.jl

to provide NUTS with the gradient of the likelihood. Note that using forwards AD

for statistical inference is sub-optimal since the likelihood is a function that maps a

high-dimensional space to a single scalar (See Sect. 1.3.2 for more details). In the

future, we aim to implement efficient backwards AD in LimberJack.jl.

The same priors were used in the two cases for both the Cobaya and LimberJack

analyses. A summary of the priors can be found in Tab. 4.1. We show the resulting

posteriors in Fig. 4.5. We observe an excellent agreement between the LimberJack.jl

and Cobaya pipelines regardless of whether the E&H formula or CLASS/EmuPk is used

to obtain the primordial matter power spectrum.

We compare the performance of the two samplers by looking at the number of

effective samples [i.e. number of statistically independent samples in the Markov

chain 223] per number of likelihood calls. This metric is independent of the hardware

used to run the analysis and the time taken by LimberJack.jl and Cobaya to evaluate

the likelihood. Thus, this metric allows us to look at the improvement purely brought

about by using gradient-based inference methods. Analysing the Markov chains of

the different samplers, we find that NUTS is approximately 1.5 times more efficient

than Cobaya at generating effective samples. However, in order to fairly compare

the performance of the two samplers we must take into account that NUTS computes

the gradient of the likelihood at every step. Given the 25 parameters of the DES
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Table 4.1: Prior distributions for the DES Y1 3x2-pt analysis parameters based on the
prior range of EmuPk [216]. In this table U(N , a, b) represents a truncated Gaussian
distribution with boundaries a and b.

DES Y1 3x2-pt Analyses Priors

Parameter Prior Parameter Prior

Cosmology Shear calibration bias

Ωm U(0.2, 0.6) mi N 0.012, 0.023)

Ωb U(0.028, 0.065) Galaxy bias

h U(N (70, 5), 0.55, 0.91) big N 0.8, 3.0)

ns U(0.87, 1.07) Intrinsic Alignments

σ8 U(0.6, 0.9) AIA,0 U(−5.0, 5.0)

ηIA U(−5.0, 5.0)

Lens redshift calibration Sources redshift calibration

∆z1 N (0.0, 0.007) ∆z1 N (−0.001, 0.016)

∆z2 N (0.0, 0.007) ∆z2 N (−0.019, 0.013)

∆z3 N (0.0, 0.006) ∆z3 N (0.009, 0.011)

∆z4 N (0.0, 0.01) ∆z4 N (−0.018, 0.022)

∆z5 N (0.0, 0.01)

Y1 3x2-pt analysis, evaluating the gradient of the likelihood using ForwardDiff.jl

is roughly 5 to 6 times more expensive than evaluating the likelihood itself which

is an order of magnitude faster than if we had used finite differences. In order to

compensate for this extra cost the efficiency improvement of NUTS over MH should

be equal or larger than the relative cost of computing the gradient of the likelihood.

Therefore the efficiency improvement of NUTS is not enough to compensate for the

cost of computing the gradient in this particular application.

There exist two avenues to tilt the balance in favour of NUTS. On the one hand,

increasing the efficiency of the sampler. On the other hand, reducing the cost of the

likelihood gradient. However, the current bottleneck is the efficiency of the sampler

as even more specialised AD methods (such as Zygote.jl4) would take at least twice

the time to compute the likelihood to obtain its gradient. Future works could ex-

plore initialising the NUTS mass matrix using the posterior covariance estimate from

variational inference5 algorithms such as PathFinder.jl [78]. Therefore, in order to

4https://github.com/FluxML/Zygote.jl/tree/master
5Variational inference algorithms iteratively build an approximation of their target distribution

based on a finite number of samples by combining different distributions of their variational family
of distributions. Thus, they are often understood as a form of kernel estimation.
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showcase the strength of the methods developed on this work we need an application

for which the efficiency of gradient-based samplers truly outpaces that of traditional

inference methods.

4.3.2 Growth Factor Reconstruction

In the previous section, we showed the reliability of LimberJack.jl by reproduc-

ing the official DES Y1 3x2-pt analysis. In this section, we will showcase how

LimberJack.jl can be used to perform statistical inference on models outside of

the reach of traditional inference methods. In order to do so we perform a model-

independent reconstruction of the growth factor using a Gaussian Process (GP) with

more than a hundred parameters (See Sect. 1.4 for a detailed description of GPs).

In this work, we use a GP composed of 101 nodes equally spaced through the

redshift window 0 ≤ z ≤ 3. The mean of the GP is given by the best-fit ΛCDM

Planck 2018 [13, P18 from now on] prediction for D(z). While this choice of mean

will bias the reconstruction towards the P18 prediction outside of the data domain,

its impact in the data dominated regions is small [see e.g. 1, 2, for similar examples

of this GP behaviour in the literature.]. Regarding the covariance matrix, we choose

a square exponential covariance function, defined as:

K(x,x′) = η2 exp

[−|x− x′|2
2l2

]
+ σI , (4.3)

where η is the amplitude of the oscillations around the mean, l is the correlation length

between the GP realisations and σ is the noise amplitude chose at 10−5. This decision

was made based on the fact that the square exponential is a computationally inex-

pensive and infinitely differentiable kernel, appropriate to model smooth fluctuations

around the mean of the GP.

Therefore, the growth factor is given by:

D(z) = DP18(z) + L(K) · v , (4.4)

where v is a vector of the GP nodes sampled from a unit variance, diagonal, mul-

tivariate normal distribution, z denotes the redshift array at which said nodes sit,

DP18(z) is the P18 growth factor evaluated at z and L(K) is lower-triangular ma-

trix obtained from the Cholesky decomposition of the covariance matrix. A way of

interpreting Eq. (4.4) is as a rotation given by LC on a vector of white noise v that

imposes the correlations of the GP kernel.
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This model is similar to the one considered in CGG21, but using a GP to recon-

struct the growth factor instead of splines. The reasoning behind the choice of GPs

over splines for this work is threefold. First, GPs offer a well-defined measure of the

uncertainty in their predictions which makes assessing the statistical significance of

their results straightforward. Second, GPs are not subject to the strict assumptions

that can bias spline reconstructions such as the choice of linear or cubic interpola-

tions. However, it is important to bear in mind that GPs are far from assumption

free as their structure is constrained by the properties of the chosen covariance ker-

nel. Nonetheless, as we will show, these assumptions can indeed be neglected when

the data is constraining enough. Third, GPs are as differentiable as their covariance

matrix kernel [113]. The derivative of a GP g(x) ∼ N (m(x), K(x,x′)) is another

GP given by ġ(x) ∼ N (∂xm(x), ∂x∂x′K(x,x′)). This is a very desirable feature that

will allow us to use growth rate measurements (i.e. measurements of the gradient of

the growth factor) to further constrain the reconstructed growth. As will be shown,

the growth rate measurements will highly restrict the evolution of the growth.

In order to constrain this model, we use the south data collection described in

CGG21 composed of the 3x2-pt DES Y1 data, the auto-correlation of eBOSS DR16

quasars and the cross-correlation of CMB lensing data with eBOSS DR16 quasars,

DES Y1 clustering and DES Y1 weak lensing data. Therefore, our analysis com-

bines a total of 7 two-point statistics which we will refer to as “7×2-pt” hereafter.

These particular cross- and auto-correlations correspond to the physical overlap of

the different surveys in the sky shown in Fig. 4.7. We explicitly list the considered

auto- and cross-correlations in Tab. 4.2. In this table, we can see that the DES Y1

galaxy clustering (GC) data is divided into 5 redshift tomographic bins. The DES

Y1 weak lensing (WL) data is divided into 4 redshift tomographic bins. Similarly,

the eBOSS DR16 quasar data is divided into 2 redshift tomographic bins. We used

the Planck 2018 lensing convergence map. We process all these data following the

CGG21 angular power spectra analysis described in Sects. 3.1, 3.2, 3.3, 4.1 and 4.2.

Thus we consider a total of 42 different angular power spectra which amount to 665

different data points. The associated covariance matrix of these data was computed

using Cosmoteka 6 [59] and it is shown in Fig. 4.6. The scale cuts considered for

each angular power spectrum are listed in the triangle of Tab. 4.2. For a detailed

description of these data, we refer the reader to Sect. 3 of CGG21. Besides the

aforementioned data, we also consider a collection of redshift-space distortion (RSD)

measurements by the BOSS DR12 [73], eBOSS DR16 [145], Wigglez [146], 6dF [195]

6https://github.com/xC-ell/xCell
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described in Tab. 4.2.

and VIPERS [194] surveys. This analysis constitutes the first combination of all these

different data, dramatically improving the constraints by constraining the evolution

of the growth factor. We summarise these data in Tab. 4.3 and plot it in Fig. 4.8.

For a full description of these data, we refer the reader to Ruiz-Zapatero et al. [1].

These data allow us to constraint the growth factor and its derivative across

redshift. In order to do so we relate fσ8(z) with the reconstructed D(z) by

fσ8(z) = −σ8P18(1 + z)
∂D(z)

∂z
, (4.5)

where σ8P18 is the σ8 of the ΛCDM P18 cosmology and D(z) is given by Eq. 4.4.

The main difference in Eq. 4.5 with respect to the ΛCDM model is that σ8 is kept

fixed. This is because in our ΛCDM analysis we defined D(z = 0) = 1.0 such that

the amplitude of the growth factor varies by σ8. Unlike in ΛCDM, in our GP model

the amplitude of the growth factor is not fixed, but varies with each GP realisation.

Therefore, the role of σ8 would be completely degenerate with the amplitude of the

z = 0 GP node and hence is kept fixed.

Once we have drawn an expression for fσ8(z) in our GP model, the next question

is how to evaluate it. While this might seem straightforward, the gradient of the
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Tab. 4.2.
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Figure 4.8: fσ8 data points from the different surveys used in this work across redshift.
Numerical values can be found in Tab. 4.3
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Table 4.3: Lists the RSD data used in this analysis.

Data set Redshifts Data Points
BOSS DR12 [73] 0.38 - 0.61 3
eBOSS DR16 [145] 1.48 1
Wigglez [146] 0.44 - 0.73 3
VIPERS [194] 0.60 - 0.86 2
6dF [195] 0.067 1

growth factor is extremely sensitive to numerical errors which can lead to non-physical

predictions for fσ8(z). One solution to this problem would be to compute the gradient

analytically using the properties of GPs as discussed above. However, in practice

evaluating the derivative of the GP analytically involves treating said derivative as

a second GP with a cross-covariance matrix with the original GP. Computing and

inverting the cross-correlation matrix between the original GP and its derivative at

every step of the Markov chain for the number of nodes used in this analysis proved

too computationally expensive.

The solution found was to use the noise properties of the GP to interpolate the

GP to a finer grid such that a finite difference can be taken to obtain the gradient to

enough precision. Effectively, this is done by applying a Wiener filter to the original

GP where the kernel used for the filtering is the covariance matrix of the GP. In

this scenario, the Wiener filter is just given by W (z∗, z) = K(z∗, z)K−1(z, z) where

z∗ is the finer nodes array of redshifts. The resampled growth factor is then given

by D(z∗) = DP18(z
∗) +W (z∗, z)D(z). While this approach also involves inverting a

matrix, this is just the covariance matrix of the GP which is a much cheaper operation.

Having discussed our model it is time to discuss how theory and observations

are brought together to constrain the model. We built a Gaussian likelihood assum-

ing the RSD and angular power spectra measurements are completely uncorrelated

such that the final likelihood is the product of the likelihoods of the individual data

types. This is a fair assumption given that the RSD data is mostly located in the

northern hemisphere whereas the angular power power spectra are located further

South, resulting in a small overlap between the surveys. We then derived constraints

for the GP and cosmological parameters by applying Bayes theorem using the priors

displayed in Tab. 4.5.

Note that the GP hyperparameters l and η were kept fixed. On the one hand,

fixing the hyperparameters avoids the volume effects on the posteriors expected from

including these parameters. On the other hand, fixing the hyperparameters to a

particular set of values will introduce certain biases in the final reconstruction of
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the growth factor specially in the regions where data is sparse. For example, fixing

the correlation length is expected to induce spurious oscillations in the reconstructed

function outside of the data range. Nonetheless the decision to keep both parameters

fixed was made as freeing them introduces severe non-Gaussian degeneracies in the

posteriors which pose a challenge even to gradient-based methods such as HMC or

NUTS. This is due to their hierarchical relationship with the GP nodes. Future studies

that wish to undertake a completely model independent reconstruction will need to

explore inference methods specifically tailored to deal with such non-Gaussianity such

as Riemannian HMC [224].

The number of parameters listed in Tab. 4.5 adds up to 128, a dimensionality

which requires gradient-based samplers. For this reason, we employed a Gibbs sam-

pling set up where GP parameters were sampled by one NUTS sampler, keeping all

other parameters fixed, and then the rest of the parameters (cosmology and nuisances)

were sampled by their own NUTS sampler keeping the GP parameters fixed to their

last sample. Moreover, the chains were started at the DES Y1 ΛCDM best-fit cos-

mology with the GP nodes starting from zero. The Gibbs scheme combined with the

starting point proved to greatly increase the efficiency of the NUTS adapting phase

in this high dimensional space.

In total, four analyses were run. First, we ran two ΛCDM analyses, one of the

7×2-pt data and another of 7×2-pt + RSD data. In these analyses, we used the

ΛCDM model to predict the growth factor as opposed to doing a GP reconstruction.

Then the same two analyses were ran but performing the GP reconstruction. In

addition to these, we also rerun the CGG21 analysis of 7×2-pt data using the priors

listed in Tab. 4.5 in order to be able to compare our results against the Cobaya

pipeline.

We also study the sampling efficiency in each of these four cases. A summary

of our analysis can be found in Tab. 4.4. Starting with the ΛCDM, we find that

the effective sample size per calls of the likelihood of the NUTS algorithm with the

7×2-pt data is once again approximately 1.5 times larger than when using the MH

algorithm. Remarkably, we found that computing the gradient of the likelihood in

this analysis, using AD, was roughly 5 times more expensive than computing the

likelihood itself, the same relative cost as the DES Y1 likelihood gradient. Adding

RSD data to the ΛCDM analysis results in virtually the same effective sample size

per calls of the likelihood when using the NUTS sampler. This is to be expected

given that fact that the posteriors remain Gaussian and the number of dimensions is

unchanged. Looking at the GP analyses, the addition of 101 extra new parameters
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Table 4.4: Effective sample size per calls of the likelihood for MH and NUTS samplers
when analysing 7×2-pt and 7×2-pt +RSD data using both ΛCDM model as well as
the GP reconstruction.

Analysis
ESS/ Lkl. calls t[∇L]

t[L]NUTS MH

7×2-pt ΛCDM 0.0105 0.0073 4.95

7×2-pt +RSDΛCDM 0.0980 - 5.12

7×2-pt GP 0.0030 - 28.45

7×2-pt +RSDGP 0.0071 - 28.60

renders the MH algorithm computationally unfeasible. Thus, we cannot directly

compare the effective sample sizes per calls of the likelihood of the two samplers.

However, we can still draw comparisons with previous analyses. We find that the

efficiency of the NUTS sampler when performing a GP reconstruction based on the

7×2-pt data is around half the efficiency of the ΛCDM analysis of same data using

the MH algorithm. Moreover, if we add RSD data to the analysis we find that the

efficiency of the sampler becomes virtually identical to that of the ΛCDM analysis of

the 7×2-pt data using the MH algorithm. This is due to the RSD data constraining

the derivative of the growth and, therefore, putting stronger constraints on the GP

nodes. Taking into account the cost of the likelihood gradient, we find that adding an

extra 101 free parameters increases the relative cost of the gradient of the likelihood

to a factor of ∼ 30 when using AD. However, using AD to obtain the gradient of the

likelihood remains an order of magnitude cheaper than using finite differences despite

the extra 101 free parameters. This showcases the favourable scaling of AD methods

with the dimensionality of the problem. Hypothetically, an even more favourable

scaling could be achievable by implementing an efficient backwards AD algorithm

to obtain the gradient. In combination these two achievements managed to produce

converged constraints for our GP analyses in O(102) CPU hours. For reference, our

ΛCDM analysis of 7×2-pt data using the MH sampler took 24 CPU hours to converge.

Thus our methods make analyses with a O(100) parameters computationally feasible

while leaving ample room for speed ups.

4.3.2.1 ΛCDM Results

We start by analysing our data using a traditional ΛCDM model where the growth

factor is obtained from the ΛCDM parameters by solving the Jeans equation for the

matter anisotropies. This allows us to establish a frame of reference against which to
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Table 4.5: Prior distributions for parameters considered for the Growth Factor Re-
construction. We sample the cosmological parameters keeping σ8 fixed to avoid de-
generacies with the Gaussian process. For the same reason the Gaussian process
hyperparameters are also kept fixed.

Growth Factor Reconstruction Priors

Parameter Prior Parameter Prior

Cosmology DES Y1 - Sources redshift cal.

Ωm U(0.2, 0.6) ∆z1wl N(−0.001, 0.016)

Ωb U(0.028, 0.065) ∆z2wl N(−0.0019, 0.013)

h U(N(70, 5), 0.55, 0.91) ∆z3wl N(0.009, 0.011)

ns U(0.87, 1.07) ∆z4wl N(−0.018, 0.022)

σ8 0.81

DES Y1 - Lens redshift cal. Intrinsic Alignments

∆z1gc N(0.0, 0.007) AIA,0 U(−5, 5)

∆z2gc N(0.0, 0.007) ηIA U(−5, 5)

∆z3gc N(0.0, 0.006) eBOSS - Galaxy bias

∆z4gc N(0.0, 0.01) biQSO U(0.8, 5.0)

DES Y1 - Shear calibration bias Gaussian Process

mi N(0.012, 0.023) η 0.2

DES Y1 - Galaxy bias l 0.3

bigc U(0.8, 3.0) vi U(N(0, 1),−2, 2)
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compare the results of the GP reconstruction. Moreover, it also allows us to ground

our analysis by comparing it with previous analyses of the same combination of data

in the literature, namely CGG21.

In Fig 4.9, we show the obtained Ωm, σ8 and S8 posteriors when performing a

ΛCDM analysis of the 7×2-pt data set with and without including additional RSD

data (green and red contours respectively). We also show the contours obtained by

the CGG21 pipeline when analysing the 7×2-pt data using black dashed lines. Our

ΛCDM analysis of the 7×2-pt data found Ωm = 0.287 ± 0.027, σ8 = 0.809 ± 0.045

and S8 = 0.789 ± 0.016. The reanalysis of CGG21 using the priors shown in Tab.

4.5 found Ωm = 0.296 ± 0.028, σ8 = 0.794 0.043 and S8 = 0.786 ± 0.015. Thus, we

can observe that the constraints produced by the LimberJack.jl pipeline presented

in this work are completely consistent with the results of the Cobaya pipeline of

CGG21. Combining the 7×2-pt with the RSD data we found Ωm = 0.277 ± 0.021,

σ8 = 0.827 ± 0.034 and S8 = 0.793 ± 0.015. The addition of RSD data improved

the constraints on Ωm and σ8 by 20%. However, the constraints on S8 were largely

unaffected. Regardless of whether or not RSD data are included, our results are in 2

σ disagreement with the P18 results which found S8 = 0.832 ± 0.013 [See Tab. 1 of

13]. The full numerical posteriors of the LimberJack.jl ΛCDM analyses of 7×2-pt

and 7×2-pt plus RSD data can be found in the first two columns of Tab. 4.6.

4.3.2.2 GP Results

We are now in a position to start discussing the GP reconstruction of the growth

factor. We start by considering how introducing the GP affects the parameter con-

straints previously discussed in Sect. 4.3.2.1. In order to establish a comparison we

derive constraints for σ8 ≡ σ8(z = 0) and S8 ≡ S8(z = 0) from the GP reconstruction

of the growth factor. From Eq. 4.5, we can see that within the GP model:

σ8 = σP18
8 D(z = 0) , (4.6)

S8 = σP18
8 D(z = 0)

√
Ωm/0.3 , (4.7)

where D(z) is given by 4.4.

In Fig. 4.10, we show four different set of posteriors for the parameters Ωm, σ8

and S8. In the lower triangle, we show the contours obtained when using the ΛCDM

model (red) and the GP model (blue) to analyse the 7×2-pt data. Similarly, in the

upper triangle we show the contours obtained when using the ΛCDM model (red)

and the GP model (blue) to analyse the 7×2-pt data in addition to RSD data. The

associated numerical constraints for the GP reconstructions are Ωm = 0.289± 0.026,
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Figure 4.9: 2D and 1D marginal distributions for the parameters Ωm, σ8 and S8 of
the ΛCDM analysis of 7×2-pt data (red) and 7×2-pt plus RSD data (green). Black
dashed contours show the reanalysis of the CGG21 using Tab. 4.5’s priors.
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σ8 = 0.839± 0.067 and S8 = 0.839± 0.067 when 7×2-pt alone is consider and Ωm =

0.286± 0.023, σ8 = 0.815± 0.039 and S8 = 0.793± 0.017 when RSD data is included.

The full posteriors can be found in the last two columns of Tab. 4.6. Performing

the GP reconstruction of the growth factor greatly reduces the constraining power

of the 7×2-pt data. We observe ∼30% wider constraints when using the GP model

to analyse the data on average across the three parameters. It is important to note

that the overwhelming majority of the impact occurs in the parameters explicitly

related to the growth factor such as σ8 and S8 and the linear bias parameters of the

different probes. Other parameters such as h or ns remain virtually unchanged. The

S8 constraint is also centred at a significantly higher value than when performing

a ΛCDM analysis. This due to the lack of data at z = 0 to constrain the GP,

which is reflected in the large error bar in the constraint. When RSDs are included

the degradation in constraining power when performing the GP reconstruction is

much smaller, with constraints only being ∼10% wider. Moreover, the S8 constraint

becomes centred at exactly the same value as when performing the ΛCDM analysis

of the same data. Due the larger error bar, we observe that nonetheless the tension

with the P18 ΛCDM value drops to 1.7 sigma.

In order to understand how the inclusion of RSD data leads to these changes, we

have to look at the reconstructed growth factor. In each of the rows of Fig. 4.11, we

show the constraints obtained for D(z), S8(z) and fσ8(z) (in this order) as functions

of redshift. In each panel, we compare the constraints obtained when using the ΛCDM

model against the GP reconstruction. The left-column panels show analyses where

only the 7×2-pt data was used while the right column shows the respective analyses

when RSD data were included. Moreover, each panel has a subpanel showing the

evolution of the 1σ confidence interval of each function over redshift.

Let us begin the discussion by focusing on the top panels of Fig. 4.11, which show

the evolution of the growth factor. In these panels, we can see how introducing a

GP to reconstruct the growth factor from the data increases the error bars in the

predictions of D(z) by one to two orders of magnitude when compared to the ΛCDM

prediction based on the same data. Including RSD data significantly contributes to

constraining D(z) regardless of the model considered. In the case of ΛCDM analyses,

we observe a 10% reduction in the standard deviation of D(z) across redshift. The

impact of RSD data is even bigger when we instead use a GP to reconstruct D(z). In

this case we observe a 20% to 30% percent improvement in the constraints depending

on the redshift window. Nonetheless, we observe that in all four cases the obtained

growth factor is compatible with the P18 prediction at all redshifts.
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Figure 4.11: Evolution across redshift of the reconstructed D(z) (first row), S8(z)
(second row) and fσ8(z) (third row). Results based on 7×2-pt data are shown on
the left column while results combining 7×2-pt plus RSD data are shown in the right
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data as well as the result of the GP reconstruction. Moreover, we also overplot the
P18 ΛCDM prediction using a black dashed line for reference. Finally, each panel
counts with a subpanel where the we show the evolution of the 1σ confidence intervals
of the plotted functions across redshift.
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It is important to note that the uncertainty of the D(z) ΛCDM prediction actually

falls to zero at z = 0 since in this model the growth factor is re-scaled to be precisely

one at this redshift. Therefore, by looking at the ΛCDM prediction of D(z) we are

omitting a large contribution to the uncertainty of the growth factor in this model,

its amplitude. Therefore, it is useful to consider quantities such as S8(z) that do

incorporate the uncertainty in the amplitude of the growth factor in the ΛCDM

model, encapsulated in the parameter σ8. In the second row of panels of 4.11 we

show the associated S8(z) constraints for the four scenarios considered. In these

panels, we can see that the uncertainty in S8(z) of the GP reconstruction at low

redshift is actually comparable to that of the ΛCDM model the uncertainty in the

amplitude is taken into account. However, the uncertainty of the GP reconstruction

quickly increases once the data becomes sparse as seen in the D(z) panels.

It is also interesting to note that, as expected, fixing the correlation length of the

GP induces oscillations in the reconstructed growth factor and S8(z). This is visible in

the GP reconstruction of D(z) based on 7×2-pt data. However, including RSD data

nullifies these oscillations. In order to understand these behaviours we need to look at

the third rows of panels of Fig. 4.11. In these panels we show the associated fσ8(z)

predictions as a function of redshift. In the left panel we can see how the oscillations

on the growth factor induced by our assumptions on the GP hyperparameters result

in non-physical predictions for fσ8(z) despite the growth factor itself being perfectly

compatible with the P18 ΛCDM prediction. Including RSD data solves this problem

by directly constraining the possible values of fσ8(z) given the current data. These

constraints on fσ8(z) translate into strict demands for the evolution of the gradient

of the growth factor. Therefore, when RSD data are included, we can see how the

oscillatory behaviour present in the reconstruction from only 7×2-pt data disappears.

This means that when the data is constraining enough the GP reconstruction remains

unbiased by the assumptions introduced by fixing the hyperparameters.

Finally it is relevant to compare the growth factor reconstruction performed in this

work using GPs against the reconstruction performed by CGG21 from the same data

using splines. In Fig. 4.12 we can observe that our GP reconstruction stands in good

statistical agreement with the four constraints on S8(z) at z = [0.24, 0.53, 0.83, 1.5]

obtained by CGG21. This reinforces the notion that these different model-agnostic

approaches are data-driven, and not biased by their own individual assumptions.
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Table 4.6: Posterior distributions of the Growth Factor Reconstruction analyses.
Error bars denote the 1σ confidence interval.

Growth Factor Reconstruction Posteriors

Param. 7×2-pt ΛCDM 7×2-pt +RSDΛCDM 7×2-pt GP 7×2-pt +RSDGP

χ2 658 645 652 635

χ2

d−p
1.03 0.99 1.21 1.16

Ωm 0.287+0.026
−0.030 0.277± 0.021 0.289+0.025

−0.031 0.286+0.022
−0.026

Ωb 0.0450+0.0086
−0.012 0.0433+0.0084

−0.012 0.0448+0.0082
−0.012 0.0444+0.0086

−0.012

h 0.725+0.042
−0.050 0.733± 0.039 0.726± 0.040 0.731± 0.040

ns 0.960± 0.056 0.965± 0.059 0.961+0.058
−0.069 0.948+0.054

−0.078

σ8 0.809+0.043
−0.051 0.827+0.033

−0.037 0.839+0.056
−0.079 0.815± 0.039

S8 0.789± 0.016 0.793+0.016
−0.014 0.820+0.036

−0.052 0.793± 0.017

b1gc 1.46± 0.10 1.418± 0.082 1.46± 0.10 1.444± 0.090

b2gc 1.77± 0.11 1.729± 0.084 1.84+0.12
−0.13 1.771+0.094

−0.11

b3gc 1.75± 0.10 1.705± 0.078 1.87± 0.14 1.752+0.092
−0.11

b4gc 2.13± 0.12 2.081± 0.095 2.29+0.18
−0.26 2.13+0.11

−0.14

b5gc 2.19± 0.13 2.14± 0.11 2.31+0.22
−0.34 2.18+0.13

−0.15

∆z1gc 0.0031± 0.0067 0.0040± 0.0066 0.0027± 0.0067 0.0039± 0.0068

∆z2gc 0.0029+0.0076
−0.0066 0.0030± 0.0067 0.0016± 0.0067 0.0025± 0.0066

∆z3gc 0.0013± 0.0056 0.0006± 0.0060 0.0004± 0.0057 0.0007± 0.0056

∆z4gc 0.0025+0.0085
−0.0097 0.0028± 0.0096 0.0019± 0.0095 0.0024± 0.0090

∆z5gc −0.0013± 0.0095 −0.001± 0.010 −0.0011± 0.0099 −0.0010± 0.0099

m1
wl 0.020± 0.023 0.022± 0.023 0.016± 0.022 0.022± 0.022

m2
wl 0.014± 0.021 0.009± 0.022 0.012± 0.022 0.009± 0.022

m3
wl 0.011+0.022

−0.020 0.009± 0.021 0.012± 0.020 0.009± 0.020

m4
wl 0.003± 0.022 0.006± 0.020 0.007± 0.021 0.006± 0.021

∆z1wl 0.006± 0.012 0.009± 0.013 0.003± 0.013 0.009± 0.013

∆z2wl −0.030± 0.010 −0.035± 0.011 −0.031± 0.011 −0.035± 0.011

∆z3wl 0.0064± 0.0099 0.007± 0.010 0.0093± 0.0099 0.0070± 0.0096

∆z4wl −0.025+0.021
−0.018 −0.025± 0.019 −0.020± 0.020 −0.024± 0.018

b1QSO 2.24+0.19
−0.22 2.18± 0.17 2.18+0.29

−0.44 2.26+0.23
−0.26

b2QSO 2.42± 0.22 2.36± 0.19 2.28+0.32
−0.42 2.48+0.28

−0.33

AIA 0.28+0.16
−0.19 0.31± 0.19 0.28+0.17

−0.19 0.31+0.17
−0.20

αIA 0.2± 2.3 0.1± 2.5 −0.2+2.5
−3.2 0.0± 2.5139
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Figure 4.12: Comparison between the reconstructed growth factor in this work using
a GP (blue) and the CGG21 reconstruction based on splines (black dots) of the same
7×2-pt data. We also overplot the P18 ΛCDM prediction for the growth factor (black
dashed line) for reference.

4.4 Conclusions

In this work, we have presented LimberJack.jl, an auto-differentiable cosmolog-

ical code to compute angular power spectra fully written in Julia. The goal of

LimberJack.jl is to enable the use of gradient-based inference methods in cosmo-

logical analyses. LimberJack.jl core strength’s are:

• Auto-Differentiablility: Every step in between the input cosmological param-

eters and the output theoretical prediction in LimberJack.jl is compatible with

Julia’s auto-differentiation (AD) libraries ForwardDiff.jl and ReverseDiff.jl.

These methods result in gradients up to an order of magnitude faster than when

using finite differences. This is the key feature that makes the use of gradient-

based inference methods possible with LimberJack.jl

• Speed: LimberJack.jl is equipped with a native implementation of the matter

power spectrum emulator EmuPk [216] which makes it orders of magnitude faster

than CLASS or CAMB. When the emulator is not used, Julia’s C-like speed makes

the performance of LimberJack.jl comparable to those of other cosmological

codes written in C or FORTRAN.

• Accuracy: The LimberJack.jl theoretical predictions have been thoroughly

tested against those of the well-established cosmological code CCL, as well as

the quality of the AD gradients against the more costly finite difference results.
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• Interoperability: Thanks to its modular structure, LimberJack.jl can be

easily interfaced with other Julia libraries to increase its capabilities. For

example, LimberJack.jl can be interfaced with the Bolt.jl library [210] to

gain access to the first auto-differentiable Boltzmann code.

Furthermore, we presented two examples of how LimberJack.jl can be employed

to perform present and future cosmological analyses using the gradient-based infer-

ence algorithm NUTS [77], a self-tuning formulation of the Hamiltonian Monte Carlo

algorithm. In the first example we reproduced two analyses of DES Y1 3x2-point

data performed using the well established Cobaya library to ensure the reliability of

LimberJack.jl. LimberJack.jl’s constraints were found virtually identical to those

obtained with Cobaya regardless of whether the matter power spectrum was com-

puted using the Eisenstein and Hu [25, 26] formula or EmuPk [216] to emulate CLASS

[22]. Moreover, the NUTS sampler proved to be 1.5 times more efficient (measured

as effective samples per likelihood call) than the MH sampler used by Cobaya. How-

ever, this improvement in efficiency proved to be not enough to compensate for the

cost of computing the gradient of the likelihood despite using AD methods. Further

work is necessary to determine the point at which gradient-based inference methods

out-weight the cost of computing the likelihood gradient in angular power spectra

analyses.

In the second example, we showcased the unique capabilities of LimberJack.jl

by performing a Gaussian process (GP) reconstruction of the growth factor across

redshift adding to a total of 128 parameters. In order to constrain this model we

employed a combination of DES Y1 galaxy clustering and weak lensing data, eBOSS

QSO’s and CMB lensing (referred to as 7×2-pt in the text) as well as a collection of

the latest RSD measurements of fσ8. We started by considering a ΛCDM analysis

of the aforementioned data to establish a baseline for the GP reconstruction. Our

ΛCDM analysis of the 7×2-pt data found S8 = 0.789 ± 0.016. Adding the RSD

data yielded S8 = 0.793 ± 0.015. Regardless of whether or not RSD data are in-

cluded, our results are in 2σ disagreement with the Planck 2018 results which found

S8 = 0.832 ± 0.013 [See Tab. 1 of 13]. Performing the GP reconstruction instead

yielded S8 = 0.839 ± 0.067 when 7×2-pt alone is considered and S8 = 0.793 ± 0.017

when RSD data is included. Looking at the reconstructed growth factor we observed

a reasonable agreement between the GP and the Planck 2018 ΛCDM prediction re-

gardless of the data combination used. However, including RSD data significantly

smoothed the reconstruction of the growth factor, disfavouring large oscillations.

Moreover, it improved the constraints on the reconstructed growth factor by 20% on
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average across redshift. This stresses the importance of including RSD data in future

cosmological analyses, specially given the up coming DESI survey [198]. In terms of

sampling efficiency, our GP analysis of 7×2-pt +RSD data using the gradient-based

NUTS sampler managed to achieve the same sampling efficiency as our reference

ΛCDM analysis of 7×2-pt data. Moreover, LimberJack.jl’s AD methods reduced

the cost of the likelihood’s gradient by an order magnitude with respect finite differ-

ences. In combination, these two achievements made a previously unfeasible analysis

computationally possible, taking O(102) CPU hours to reach convergence.

Auto-differentiable and gradient-based inference methods will play a crucial role

speeding up future cosmological analyses as well as enabling entirely new science.

For instance, analyses of multiple auto- and cross-correlations between stage-IV sur-

veys may contain up to a hundred free parameters. This will be the case even when

performing traditional ΛCDM analyses with minimalistic modelling of systematics

simply due to the large number of tomographic bins that will be involved. Future

surveys will, however, provide unprecedented measurements of small scales. In order

to fit these scales and further our understanding of non-linear cosmology, more com-

plex modelling of baryonic effects will have to be included. Similarly, the constraining

power provided by the new data will enable analyses with beyond ΛCDM physics as

well as model-agnostic reconstructions such as the one presented in CGG21 and this

work which will have a similar effect in the number of free parameters. In addition to

this, gradient-based inference methods are already indispensable to undertake field

level inference cosmology [225–227] and they will become more so in the future.

Finally, while LimberJack.jl is already a fully functional tool, there are several

avenues for future improvement:

1. Improved predictions: the methods currently implemented in LimberJack.jl

provide enough accuracy to analyse DES Y1 data. However, these methods will

need to be improved in order to analyse DES Y3 data or future data sets such

as LSST. Here we present a non-exhaustive list of possible extensions:

• Non-linear corrections to the matter power spectrum beyond the Halofit

formula.

• Small scale baryonic effects on the galaxy and matter power spectra.

• Angular power spectra beyond the Limber approximation [206].

• Scale-dependent growth of structure.

• Perturbatory expansion models for the matter-galaxy bias [228].
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2. Parallelisation: currently the threading parallelisation of LimberJack.jl is

suboptimal. This is because the default Julia threading parallelisation scheme

does not handle the shared memory between the threads efficiently enough.

At the moment computing resources are best spent running different instances

of LimberJack.jl in parallel as opposed to parallelising one instance. Future

works could study alternative parallelisation schemes or manually managing

the memory between the threads to improve the multi-core performance of

LimberJack.jl.

3. GPUs: LimberJack.jl currently cannot run on GPUs which are known to

significantly speed-up cosmological inference. This is due to LimberJack.jl

performing scalar indexing operations at several points of the computation of

angular power spectra. Future work could study how to bypass these operations

and to make LimberJack.jl compatible with Julia’s GPU libraries such as

CUDA.jl.

4. Backwards-AD: currently LimberJack.jl’s preferred AD mode is forward-

AD. However, statistical inference preferred AD mode is backwards-AD, spe-

cially as the number of parameters increases. Future works could look into

making LimberJack.jl compatible with the latest Julia AD libraries such as

Zygote.jl or Enzyme.jl to implement efficient backwards-AD.
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Chapter 5

Analytical Marginalisation over
Nuisance Parameters in
Tomographic Analyses of Large
Scale Structure

5.1 Introduction

As discussed in Sect. 1.1.5, unprecedentedly precise observations in Cosmology are

driving equally as precise models for different systematic effects. These models for

systematics are parametrised in terms of additional free parameters which threat to

overwhelm our current inference methods. These parameters are often referred to as

nuisance parameters. This is because we are normally not interested in learning their

particular distribution, but rather in their impact of the cosmological parameters of

interest.

This problem can be addressed through various approaches. In Chapter 4, we

focused on gradient-based sampling algorithms, such as Hamiltonian Monte-Carlo

[76, 77]. In this chapter, we will focus on the analytical marginalisation schemes,

namely, the Laplace approximation described in Sect. 1.2.3.

The goal of this chapter is to exhaustively validate this approximate marginali-

sation scheme in the context of 3x2-pt and cosmic shear analyses. We will start by

proving that we are able to replicate the constraints on cosmological parameters of

DES-Y1 3 × 2-pt analysis [51] using the Laplace approximation. We will also show

that the approximation holds for futurist data-sets that resemble what Stage-IV sur-

veys will provide us with. Then, we will turn our attention to the marginalisation

of photometric uncertainties in the radial distribution of galaxies, p(z), in cosmic

shear analyses. We consider both a simple parametrisations of these uncertainties,
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in terms of shifts to the mean of the distribution, as well as a completely general,

non-parametric model. In the later model, we treat the amplitude of the p(z) in

narrowly-spaced intervals of z as free parameters, leading to a model with more than

∼ 100 nuisance parameters. In order to numerically marginalise over such large pa-

rameter spaces, we use the recently developed LimberJack.jl (See Chapter 4) in

combination with gradient-based inference algorithms (See Sect. 1.2.2). Similarly

to the 3x2-pt case, we also consider a futuristic Stage-IV survey, where photometric

redshift uncertainties will likely make up a large fraction of the total error budget.

It is worth noting that similar methods have been put forward in the past [e.g.,

82], with a variety of applications in mind [229]. Moreover, analytical marginalisation

schemes for photometric redshift uncertainties have already been proposed in the lit-

erature. In Stölzner et al. [230] an analytic marginalisation scheme for photometric

redshift uncertainties was proposed based on Gaussian mixture models and applied

to the analysis of KV450 data [231]. In Zhang et al. [232] a resampling approach to

marginalise over these uncertainties was proposed and applied to the analysis HSC

data. Similarly, Reischke [233] proposed an approach based on functional derivatives

was proposed and applied to Euclid-like [201] and KV450 [231] data. Alternatively,

Cordero et al. [234] proposed an approach using hyperrank, a method based on rank-

ing discrete samples from the space of all possible redshift distributions of discrete

realisations, and applied it to DESY3 data [235].

This chapter is structured as follows. In Sect. 5.2 we describe how the Laplace

approximation is applied in practice to the different nuisance parameters of 3x2-pt

analyses. Sect. 5.3 presents the Dark Energy Survey data used to produce realistic

source redshift distributions and their associated uncertainties, as well as the models

used to simulate future datasets. Finally in Sect. 5.4 presents our results, quantifying

the performance of analytical marginalisation methods in the two scenarios. Finally,

we present our conclusions in Sect. 5.5.

5.2 Methods

Nuisance parameters can be divided into two groups based on their prior distributions:

calibrated and non-calibrated parameters. The non-calibrated parameters can only be

constrained by the data and, as such, typically have largely non-constraining priors.

On the other hand, we can place tighter priors on the calibrated parameters, either

by accurately characterising the instrument measurements or by using independent

external observations. It is important to stress that whether a parameter is calibrated
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or not is not inherent to the parameter but to whether a sufficiently tight prior

on it can be placed (e.g. from external data). In the context of 3x2-pt analyses,

mass-galaxy biases [48, 49] and the impact of galaxy intrinsic alignments [52] are

often a non-calibrated systematic. On the calibrated side, the two best examples are

multiplicative shape measurement systematics, and the uncertainties in the redshift

distribution of the target source galaxies [221, 230–232, 236]. In this section, we will

discuss how the Laplace approximation introduce in Sect. 5 can be applied in practice

to these two types of parameters.

5.2.1 Calibratable systematics

In the presence of tight priors, which we will further assume to be Gaussian, the

nuisance parameters may not stray far from their prior mean. In that case, we can

Taylor-expand the theory prediction as in Eq. (1.137)

t(Ω,n) = t0(Ω) + T (n− np), (5.1)

where np is the prior mean, and

t0 ≡ t(Ω,np), T ≡ ∂t

∂n

∣∣∣∣
np

. (5.2)

Since now the theory is linear with respect to n − np, we can then follow the

procedure in Section 1.2.3.3 to analytically marginalise over those parameters. As

we discussed, we simply modify the covariance of the data vector (in this case, a

collection of power spectra) as in Eq. (1.143), and then sample the resulting Gaussian

likelihood evaluating t at the prior mean of n. Two important things should be noted.

First, in doing this, we have neglected the parameter dependence on Ω of the Laplace

term, given by

log
[
det

(
TTC−1T + C−1

n

)]
(5.3)

and therefore omit it from the calculation, as it only adds a multiplicative constant

in this approximation. If the prior is sufficiently tight, this term is dominated by

the constant C−1
n contribution, so the approximation is reasonable. Second, since the

modified covariance matrix (Eq. (1.143)) now involves a term of the form TCnT
T , in

principle it depends on Ω through T. Calculating the covariance at each point in the

likelihood may be computationally costly, depending on the size of T. Instead, we will

simply evaluate T at the best-fit value of Ω, and ignore all parameter dependence on Ω

of the covariance. It was shown in Kodwani et al. [237] that the parameter dependence

of the covariance can generally be neglected and, furthermore, for a sufficiently tight
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prior, the TCnT
T contribution should be subdominant. Hadzhiyska et al. [238] also

showed that the choice of fiducial Ω does not affect the final results as long as they are

close to the centre of the posterior distribution. Adopting these two approximations

(in addition to the Taylor expansion of t) is therefore well justified and, as we will

show in Section 5.4.1.1, leads to accurate results.

We stress that we can apply the same procedure to any other parameter that

appears to behave linearly in the theoretical model. This is the case for any other

nuisance parameters with a sufficiently tight prior, and in fact this procedure is rou-

tinely used for multiplicative bias parameters in cosmic shear analyses [231]. We note

that the general procedure of using the Laplace approximation is exact in the case of

truly linear parameters, regardless of their priors. A good example of this is the am-

plitude of shot noise or stochastic contributions to galaxy clustering auto-correlations

[54].

Of these calibrated systematics the dominant source of uncertainty in photomet-

ric surveys is the accuracy of redshift distributions, which are known to strongly

affect the accuracy of cosmological constraints. The vital quantity to determine is

the redshift distribution of each tomographic sample of galaxies. Photometric galaxy

uncertainties, p(z), can be calibrated through various methods, e.g.: weighted direct

calibration with a sufficiently complete spectroscopic sample [37, 38], clustering red-

shifts [39–42], and shear ratios [43, 44, 239]. This typically leads to relatively tight

priors on the p(z), but the residual uncertainties in this prior must be propagated

into the final parameter constraints.

To characterise these uncertainties, we will make use of two different methods,

which encompass the range of model complexity we may reasonably expect from

current and future data.

• Method 1: z shifts. Most cosmic shear analyses to date [53, 60, 231, 240, 241,

among others] have summarised the uncertainty in the calibrated pα(z) into a

single parameter ∆zα that shifts the mean of the redshift distribution; i.e. let

p̂α(z) be the best-guess redshift distribution. The true redshift distribution is

then given by Eq. 1.94. A prior on ∆zα can be derived using the calibration

methods listed above. We will refer to this method as parametric.

This simple model turns out to be relatively well suited to describe the impact

of p(z) uncertainties in the case of cosmic shear data [242] even from stage-IV

surveys [243]. Since weak lensing is a radially cumulative effect, the amplitude

of the weak lensing kernel (Eq. 1.90) is mostly sensitive to the mean redshift
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of the sample, and thus much of the effect on cosmic shear observables is well

described by this parameter [244].

Other modes of p(z) uncertainty, such as the distribution width, may be more

relevant for galaxy clustering observables, or for the intrinsic alignment contri-

bution to cosmic shear. Near-future cosmic shear samples may indeed require

a more sophisticated description of the p(z) uncertainty, and thus we turn to a

more general method.

• Method 2: p(z) bin heights. Most p(z) calibration methods (e.g. direct

calibration or clustering redshifts) will produce a binned measurement of the

p(z) with deterministic redshift bin ranges, and uncertain bin heights. The

most general method to propagate these uncertainties is therefore to treat each

bin height pi ≡ p(zi) as a free parameter in the model, with a prior given by

the calibration uncertainties. The latter may be in the form of individual 1σ

errors for each bin height, if the uncertainties are approximately uncorrelated,

or a full covariance matrix covering all bin heights.

The resulting parametrisation thus sidesteps any attempt at summarising the

uncertainty into effective parameters, and thus we will refer to this method as

non-parametric. The method therefore fully propagates all calibration uncer-

tainties into the final constraints with minimal approximations.

The key practical difference between both methods, in the context of error propa-

gation, is the additional complexity they incur. The parametric approach (Method 1)

introduces one free parameter per redshift bin. For O(5) bins, this is already enough

to significantly impact the performance of standard MCMC algorithms. In turn, the

non-parametric approach (Method 2) introduces tens or hundreds of parameters per

redshift bin, and one must resort to advanced sampling methods in order to fully

explore the resulting model without assumptions.

5.2.2 Non-calibratable systematics

Most sources of astrophysical uncertainty cannot be well-constrained from external

data, and thus must be constrained at the same time as the cosmological parameters,

and marginalised over. In this case, the linearisation described in the previous section

is not appropriate, and we must resort to numerical methods in order to obtain n∗

and the Laplace contribution in Eq. (1.128).
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In the model introduced in Sect. 1.1.5, these astrophysical uncertainties are de-

scribed by the bias and intrinsic alignment parameters. Comparing Eq. (1.71) and

Eq. (1.100), we see that we can describe both tomographic galaxy clustering and

cosmic shear as a projected tracer with radial kernels qα with the generic form

qα = ϵq q
α
M +

∑
k

bqα,k q
α
k , (5.4)

where buα,k are bias parameters (specifying the tracer type q), qαM and qαk are pro-

jected quantities that depend only on cosmological observables (matter overdensities,

comoving distances etc.), and ϵq is a Boolean variable that is either 1 if the tracer

contains an unbiased contribution (as is the case of cosmic shear), and 0 otherwise

(as is the case of galaxy clustering). The index α in Eq. (5.4) runs over the redshift

bins, which allows for the general case of having redshift-dependent bias functions. If

this is not the case, buα,k ≡ buk can optionally be assumed to not vary across redshift

bins.

Although the bias/IA description used here covers a wide range of state-of-the-art

physical models used in current 3×2-pt analyses, it is mathematically exceptionally

simple. From Eq. (5.4), we see that the cross-correlation between any two such tracers

(qα, gβ) is a simple quadratic function of the bias parameters:

Cqα,gβ

ℓ = ϵqϵgC
qαM ,gβM
ℓ +

∑
i

bqα,iϵgC
qαi ,g

β
M

ℓ

+
∑
j

ϵqb
g
β,jC

qαM ,gβj
ℓ +

∑
i,j

bqα,ib
g
β,jC

qαi ,g
β
j

ℓ . (5.5)

Here, C
qα
M/i

,gβ
M/j

ℓ are the power spectra between the cosmological projected fields qαM/i

and gβM/j, defined in Eq. (5.4), and the sums run over the associated bias terms. Since

these only involve radial projections of purely cosmological quantities, they can be

treated as templates that only depend on the cosmological parameters. Note that,

in principle, these templates also depend on the calibratable nuisance parameters

described in the previous section (e.g. through the modification in the radial kernels

due to p(z) uncertainties). However, we assume that we have been able to marginalise

over these analytically as we described above, and therefore they can be treated as

fixed for all intents and purposes.

The first derivative of the power spectrum with respect to the bias parameters is
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thus a linear polynomial:

∂Cqα,gβ

ℓ

∂brγ,k
= δKα,γδ

K
q,r

[
ϵgC

qαk ,g
β
M

ℓ +
∑
j

bwβ,jC
qαk ,g

β
j

ℓ

]

+ δKβ,γδ
K
g,r

[
ϵqC

qαM ,gβk
ℓ +

∑
i

buα,iC
qαi ,g

β
k

ℓ

]
, (5.6)

where δK is the Kronecker delta, and brγ,k denotes the kth bias term of tracer type r

(i.e., galaxy overdensity or shear) in redshift bin γ. Finally, the Hessian is constant

with respect to the bias parameters

∂2Cuα,wβ

ℓ

∂brγ,k∂b
s
σ,m

= (5.7)[
δKγ,αδ

K
σ,βδ

K
r,uδ

K
s,w + δKγ,βδ

K
σ,αδ

K
r,wδ

K
s,u

]
C

rγk ,s
σ
m

ℓ .

These expressions are remarkably simple and fast to evaluate, and thus computing

the χ2 and its derivatives (needed for minimisation, and to calculate the Laplace

contribution) can be done extremely efficiently. As we will see, in practice we find

that finding the minimum of the χ2 takesO(10−100) Gauss-Newton iterations, each of

which is orders of magnitude faster than recomputing the power spectrum templates

when changing cosmological parameters. Computing the Laplace approximation to

the marginalised posterior at each sample of the cosmological parameters is therefore

virtually equivalent to evaluating the joint posterior for new cosmological + nuisance

parameters if using brute-force marginalisation.

5.3 Data

5.3.1 DES Y1

In order to evaluate the performance of the Laplace approximation, we make use of

data from the first-year of the Dark Energy Survey [DES-Y1 220] described in Sect.

4.3.1. We do so to demonstrate that the method can be successfully implemented in

real data, with real-life complications (e.g. noisy p(z)s, numerical covariances, astro-

physical and observational systematics). As advertised in Sect. 5.1, we will reproduce

the 3x2-pt analysis. Moreover, we will also study the validity of the approximation

in the context of cosmic shear analyses. In order to do so, we employ the angular

power spectra provided by Nicola et al. [245]. A full description of the methods used

to estimate these power spectra, and their associated covariance matrix, from the
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Figure 5.1: Top row: normalised galaxies’ redshift distributions for each of the 4
redshift bins. Bottom row: correlation matrix obtained using the DIR algorithm for
each of the 4 galaxies’ redshift distributions. Note that for visualisation purposes we
display the absolute values of the each correlation matrix in logarithmic scale. In this
plot, we can see that the covariance matrices obtained through the DIR algorithm
are mostly diagonal.

DES-Y1 data is provided by the authors. We use the calibrated redshift distribu-

tions of the METACALIBRATION sample provided by Garćıa-Garćıa et al. [246]. The

p(z)’s were estimated via direct calibration [DIR 37], using the COSMOS 30-band

catalogue [247] as a calibrating sample. The uncertainties of the measured redshift

distributions were estimated analytically, as described in Garćıa-Garćıa et al. [246],

accounting for both shot noise and sample variance, and represent a realistic level

of p(z) uncertainty achieved by current existing datasets. The redshift distributions

were sampled on 40 bins of width δz = 0.04 covering the range 0 ≤ z ≤ 1.6. Fig.

5.1 shows, in the first row, the redshift distributions of the four METACALIBRATION

samples and their statistical uncertainties. Note that we estimated the full covari-

ance matrix of the p(z) bin heights. As can be seen in the bottom panels of Fig.

5.1, the covariance is dominated by the diagonal. Oddly, it is possible to observe a

lack of nearest-neighbours correlations, specially at the high redshift tails of the two

last tomographic bins. However, the calibration of these distributions is beyond the

scope of this work. A full description of the methods used to estimate these power

spectra, and their associated covariance matrix, from the DES-Y1 data is provided

by the authors.

152



5.3.2 Synthetic Stage-IV data

We also consider a futuristic, idealised data set that resembles the characteristics of

LSST. It is important to test our method in the low-noise regime, where the inferred

posterior is even more sensitive to redshift distribution uncertainties or, in general,

degeneracies between cosmological and nuisance parameters, and where the final error

budget is more dominated by these effects.

To define the clustering and shear samples we follow the same procedure out-

lined in Nicola et al. [248]. The shear sample is defined following the LSST Science

Requirements Document [243] (see Appendices D1 and D2). We divide this red-

shift distribution into 5 bins in photometric redshift space, each containing the same

number of sources. We assume a Gaussian photometric redshift uncertainty with

standard deviation σz = 0.05(1 + z), which thus defines the true-redshift tails of the

distribution in each tomographic bin. The sample has an overall angular number

density of 27 gals. arcmin−2. For galaxy clustering, we define a sample extending

out to z ∼ 1.5 with a total density of 4 gals. arcmin−2 (as would be expected of an

LRG-like sample for LSST). This number density and the associated redshift distri-

bution were estimated using measurements of the luminosity function for red galaxies

as described in Alonso et al. [249]. The sample was divided into 6 redshift bins

equi-spaced in photometric redshift space, and assuming a photometric redshift un-

certainty of σz = 0.02(1 + z). To simplify the analysis, we assume a constant linear

galaxy bias b1 = 1, and set all higher-order bias coefficients to zero. The results

obtained in the next section should be largely insensitive to this choice.

For simplicity, we use a Gaussian covariance to describe the uncertainties of the

resulting data vector, calculated assuming a sky fraction fsky = 0.4. The LSST data

vector was generated assuming a true cosmology with parameters

(Ωm,Ωb, h, ns, σ8) = (0.3, 0.05, 0.7, 0.96, 0.8), (5.8)

where Ωm and Ωb are the total matter and baryon fractions, h is the reduced Hubble

parameter, ns is the scalar spectral index, and σ8 is the standard deviation of linear

density perturbations smoothed on spheres of radius 8 Mpch−1 at redshift z = 0.

5.4 Results

5.4.1 DES Y1 3x2-pt

Let us start by validating the Laplace approximation. We will do so by reproducing

the 3 × 2-pt DES Y1 analysis as well as a futuristic LSST-like 3-pt analysis based
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Parameter priors

Parameter Prior Parameter Prior

Cosmology Redshift calibration

Ωm U(0.07, 0.8) ∆z1s N (∆z1s,∗, 0.016)

Ωb U(0.03, 0.07) ∆z2s N (∆z2s,∗, 0.013)

h U(0.55, 0.91) ∆z3s N (∆z3s,∗, 0.011)

ns U(0.87, 1.07) ∆z4,5s N (∆z4,5s,∗ , 0.022)

σ8 U(0.5, 1.1) ∆z1g N (∆z1g,∗, 0.007)

Bias parameters ∆z2g N (∆z2g,∗, 0.007)

bi1 N (1.5, 100) ∆z3g N (∆z3g,∗, 0.006)

bi2,s,∇ N (0, 100) ∆z4,5,6g N (∆z4,5,6g,∗ , 0.01)

AIA,0 N (0, 100) wi
z,g N (1.00, 0.08)

Table 5.1: Prior distributions for the nuisance parameters entering our “3×2pt” anal-
ysis for each tracer. U(a, b) and N (µ, σ) describe a uniform distribution with bound-
aries (a, b) and a Gaussian distribution with mean µ and variance σ, respectively. The
index i in big and mi runs over the different redshift bins. ∆z∗ denotes the deviation
from zero of the central/best-fit value of each redshift uncertainty parameter.

on synthetic data described in Sect. 5.3. We will start by marginalising over the

calibratable nuisance parameters, namely the multiplicative bias and the photometric

uncertainties. Then we will marginalise over the remaining non-calibratable nuisance

parameters, i.e. mass-galaxy biases and intrinsic alignments.

To obtain constraints on cosmological parameters from both real and synthetic

data, we will assume that the data vector (i.e. the clustering and shear power spec-

tra), follows a Gaussian likelihood, with a parameter-independent covariance. The

model will be described by 5 cosmological parameters, listed in Eq. (5.8), one or

four linear parameters for each clustering redshift bins (for linear and PT bias re-

spectively), one intrinsic alignment amplitude, one redshift shift parameter for each

clustering and cosmic shear bin, and one redshift distribution width parameter for

each clustering bin. The priors used for all parameters are provided in Table 5.1.

The priors on cosmological parameters are roughly based on the choices made for the

DES-Y1 analysis, except we sample over σ8 instead of the scalar spectrum amplitude

As. The priors on the redshift shift parameters are based on the calibration of the

DES-Y1 data [221], and thus represent achievable calibration levels. In addition to

the usual shift parameters, ∆z, we also consider a series of width parameters, wz,

such as the final galaxy redshift distribution is given Eq. 1.94 . The priors on the

redshift width parameters are commensurate with those used in the DES Year-3 anal-
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ysis [61] (the DES-Y1 analysis did not introduce width parameters). Note that these

width parameters are an extension of the method 1 described in Sect. 5.2. Moreover,

the no multiplicative biases in the shear data were considered. Finally, we place an

uninformative Gaussian prior on all the bias parameters, centred at zero and with a

standard deviation of 100. The choice of using a very broad Gaussian prior as opposed

to simply a flat prior is intended to enforce a smooth distribution as a function of

these parameters, and to potentially aid the Gauss-Newton iterator when minimising

the χ2.

We employ the cobaya MCMC sampler [250, 251] with a convergence condition

that the Gelman-Rubin diagnostic, R, ought to satisfy R − 1 < 0.01. When using

the Laplace approximation, we minimise the χ2 over the nuisance parameters using a

Gauss-Newton iterator, using the analytical derivatives with respect to bias param-

eters as described in Section 5.2.2, and modify the log-probability to be sampled by

cobaya to be that of Eq. (1.128). We find that, in order to reduce the number of

steps taken by the Gauss-Newton iterator, it is useful to determine a well educated

global best-fit for the full parameter space before taking any samples, and to start

the iterator from the corresponding best-fit value of the nuisance parameters.

Throughout, we made use of the fitting formula of Eisenstein and Hu [26] to

calculate the linear matter power spectrum. We do this to speed up the calculations,

and we have verified that the results obtained on the DES-Y1 data are insensitive to

this choice compared to using a Boltzmann solver such as CLASS [252]. The non-linear

matter power spectrum is then computed using Halofit [28].

5.4.1.1 Calibratable nuisance parameters

We begin by focusing on calibratable systematics, for which we will follow the proce-

dure described in Section 1.2.3.3: we will linearise the dependence of the theoretical

prediction with respect to these parameters, for which a relatively tight prior can be

obtained, and simply modify the covariance matrix as in Eq. (1.143), with T evalu-

ated at a fixed set of parameters (fixing all cosmological parameters to the best-fit

values found by Planck [13] and all bias parameters to their best-fit values). At this

stage, we will thus only consider the nuisance parameters describing the uncertainty

in the redshift distributions of the tracers under study, described in the right col-

umn of Table 5.1. All other parameters (cosmological, bias, and intrinsic alignment

parameters) will for now be marginalised “brute-force” (i.e. treating them as free

parameters in the MCMC chains). For simplicity, we will consider only linear bias,

using scales k < 0.15 Mpc−1, as described in Section 1.2.3.3.
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Figure 5.2: Contours comparing brute-force (black) with analytic marginalisation
over photo-z uncertainties (red; see Sect. 1.2.3.3). Results are shown for the DES-Y1
data (left) and the LSST-like data (right). We find that the contours are virtually
unchanged in both cases, demonstrating the benefit of using an efficient analytic
marginalisation scheme. We also show for posterity the result of assuming negligible
error on the photo-z distributions (blue). In the case of LSST-like data the errors on
the nuisance parameters were quadrupled. Thus, we assert that the Laplace approx-
imation holds even in the conservative scenario of large photometric uncertainties in
futuristic data.

We first compare the performance of the method when applied to the 3×2pt anal-

ysis of DES-Y1 data (Section 5.3). The results are shown in the left panel of Fig. 5.2;

with the exact results shown as black contour lines, and the results of the analytical

marginalisation shown in red. We find that using the analytic marginalisation tech-

nique not only yields contours that are almost indistinguishable from those obtained

by the traditional approach, but also does so significantly faster (by a factor ∼ 10)

with many fewer parameters. The blue contours in the figure show the constraints

found by fixing the nuisance parameters to their prior means, instead of marginalising

over them. In this case, we observe that the redshift distribution uncertainties cause

only a mild broadening of the marginalised contours, which is not very challenging

for the analytical approximate marginalisation to reproduce.

In order to explore a more challenging scenario, we now move on to the case of an

LSST-like 3×2-pt dataset, as described in Sect. 5.3. Moreover, we will assume the

same prior uncertainties are 4 times larger than the DES-Y1 ones. This will allow

us to quantify the validity of the analytical marginalisation approach in a conserva-
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tive scenario, in which, in spite of the much higher sensitivity of Stage-IV data, the

precision with which we are able to calibrate redshift distributions has not improved

with respect to the performance achieved with current data. The reasoning behind

this test is two-fold: on one hand, our marginalisation method is an approximation

that works in the regime where photometric uncertainties are linearisable and testing

when that assumption breaks is essential; on the other hand, it is likely that, at the

highest redshifts, and for the faintest samples, the p(z) uncertainties will be somewhat

larger for LSST than those of current surveys, especially at high redshifts. Hence,

quadrupling the errors is an important worst-case scenario to consider.

It is important to note that the results in this section are not meant to be inter-

preted as forecasts on the constraining power of LSST on cosmological parameters, but

only as a quantification of our ability to analytically marginalise over photometric un-

certainties when inferring the underlying cosmology. A more thorough analysis would

include a realistic treatment of the LSST true redshift distribution and noise, and a

more careful treatment of galaxy bias and intrinsic alignments. As such, the results

presented here give us a conservative estimate of the effect of analytic marginalisation

on cosmology constraints.

We present the results of the LSST-like 3×2-pt analysis in the right panel of

Fig. 5.2. The marginalised constraints on the cosmological parameters are virtually

unchanged when we switch from the brute-force to the analytical marginalisation.

This latter method is therefore successful at recovering accurate marginalised con-

straints on cosmological parameters. Also shown in blue are the constraints found

assuming perfect knowledge of the redshift distributions (i.e. fixing all p(z) parame-

ters). In this case, the uncertainties on the redshift distributions have a much larger

effects than for the DES-Y1 data, inflating the uncertainties on S8 significantly. This

is partially due to quadrupling the uncertainty in the redshift nuisance parameters.

In spite of this, we find that the analytic marginalisation method not only yields

virtually the same constraints on the cosmological parameters, but does so 3-10 times

faster than the traditional approach. This implicitly validates the approximation that

a first-order expansion of the theory data vector with respect to a change in redshift

distribution is sufficient, even for prior uncertainties on p(z) that are substantially

worse than those achieved by current datasets.

5.4.1.2 Uncalibratable Nuisance Parameters

Let us now focus on the bias parameters. In this case, the absence of an informative

prior prevents us from linearising the dependence of the theory on these parameters,
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Figure 5.3: Same as Fig. 5.2, but we also marginalise over the bias parameters using
the Laplace approximation. This reduces the parameter space to only the cosmolog-
ical parameters without degrading the accuracy of the constraints. The agreement
with the full numerical marginalisation (black) is almost perfect.

and we must therefore calculate the profile and Laplace terms numerically.

Similarly to Sect. 5.4.1.1, we make use of the DES-Y1 data, marginalising only

over a single linear galaxy bias parameter per clustering bin, as well as an intrin-

sic alignment amplitude (i.e. a total of 6 nuisance bias parameters). The results are

shown in the left panel of Fig. 5.3. The exact marginalised constrains (solid black con-

tours) are accurately recovered by the Laplace approximation (red contours). While

the former are obtained by running an MCMC with 11 free parameters (5 cosmologi-

cal, 6 nuisance parameters), the latter involve only a 5-dimensional parameter space,

which is therefore significantly simpler to explore. Concretely, the 5-parameter chain

converged 3 times faster than the 11-parameter chain. The blue contours in the same

figure shows the constraints obtained after fixing the bias parameters to the best-fit

values found by DES [253]. Fixing the galaxy bias shifts the cosmological constraining

power from the cosmic shear data to the higher signal-to-noise clustering data, thus

significantly reducing the uncertainties. Note that, although the red contours show

the result of the full Laplace approximation (i.e. profile + Laplace contributions),

the Laplace contribution is negligible, and the profile term is enough to recover the

marginalised posterior.

In order to explore the performance of the method with a significantly larger num-

ber of nuisance parameters, while still remaining in the regime where these parameters
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can be well constrained by the data, we now move to the LSST-like synthetic dataset,

making use of the second-order perturbative expansion of Eq. (1.96) to describe galaxy

bias. In this case, we include 4 free bias parameters in each of the 6 clustering redshift

bins, adding up to a total of 25 nuisance parameters when combined with the intrinsic

alignment amplitude. The results are shown in the right panel of Fig. 5.3, again as

black lines for the brute-force marginalisation, i.e. considering all 30 free parameters,

and as red contours for the 5-parameter Laplace approximation. As before, we find

that the approximation is able to recover the marginalised constraints almost exactly.

Note that, in both of these cases, besides the bias parameters, we have also

marginalised over a number of redshift distribution uncertainty parameters (14 for

DES-Y1, 17 for LSST), thus reducing the model dimensionality from 47 and 28 for

LSST and DES-Y1, respectively, to only 5 cosmological parameters. Obtaining con-

verged MCMC chains for these 5 cosmological parameters takes approximately 2

hours for the LSST-like dataset, a factor ∼ 6 faster than the chains with only the

p(z) parameters analytically marginalised over, and a factor ∼ 30 times faster than

the full brute-force chains. The magnitude of these speed gains, however impressive,

must be taken with a pinch of salt. The performance of MCMC sampling may depend

significantly upon the design of the likelihood code, and whether it allows the sam-

pler to decompose the space between “fast” and “slow” parameters, over-sampling

the former, and making use of “dragging” techniques [254, 255]. The fast-slow split

allows one to effectively marginalise over the fast subspace, and becomes particu-

larly powerful in the presence of a large number of nuisance parameters on which

the likelihood has a computationally simple dependence (as is the case of the bias

parameters in our model). To provide a fairer assessment of the computational gains

obtained using the Laplace approximation, we wrote an optimised version of the 3×2-

point likelihood that allows cobaya to exploit the fast nature of the bias parameters

as efficiently as possible (assuming all p(z) parameters are fixed). In this case, the

speed-up factor for the cases explored here ranged between ∼ 1.5 and ∼ 11. Ulti-

mately the performance difference depends on the design of the likelihood code, the

complexity in the parameter dependence of the likelihood, and the efficiency of the

χ2 minimisation method used to calculate n∗. On this latter point, we find that the

Gauss-Newton method used here typically achieves convergence after only 10-20 itera-

tions. Thus finding the best-fit bias parameters is significantly faster than calculating

the cosmology-dependent power spectrum templates of Eq. (5.5).
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Parameter priors

Parameter Prior Parameter Prior

Cosmology Redshift calibration

Ωm U(0.1, 0.9) ∆z1 N 0.0, 0.016)

Ωb U(0.03, 0.07) ∆z2 N (0.0, 0.017)

h U(0.55, 0.91) ∆z3 N (0.0, 0.013)

ns U(0.87, 1.07) ∆z4 N (0.0, 0.015)

σ8 U(0.6, 0.9) pi N (p̄i,C)

Shear multiplicative bias

mi 0.012

Table 5.2: Prior distributions for the parameters considered in this work. Note that
the redshift calibration section contains the priors for both the ∆z and pα(z) models
which are not sampled simultaneously.

5.4.2 DES-Y1 Shear Photometric Redshift Uncertainties

Let us now turn our attention to the study of photometric redshift uncertainties in

cosmic shear analyses. As in the previous section, we will consider shear data from

both the DES-Y1 survey and a LSST-like synthetic data set as described in Sect.

5.3. Moreover, we will study the two uncertainty models described in Sect. 5.2.1

Thus, we will either consider one redshift shift parameter ∆zα for redshift bin, when

employing the parametric description of p(z) uncertainties (Method 1), or a set of

bin heights for each redshift bin determining pα(z), when using the non-parametric

approach (Method 2). The first case will introduce 4 new parameters to the model,

while the latter will introduce 4× 40 = 160 new amplitude parameters.

Table 5.2 shows the parameter priors used for this study. All cosmological param-

eters take uniform, largely uninformative priors. For simplicity, the multiplicative

bias parameters were fixed at the centre of the Gaussian priors from the official anal-

ysis of DES-Y1 [51]. When using Method 1 to numerically marginalise over the p(z)

uncertainties, we used Gaussian priors on each of the shift parameters ∆zα, following

those used by DES-Y1 [51]. When using Method 2 (marginalisation over p(z) bin am-

plitudes) some considerations about the physical object being statistically modelled

need to be taken into account. By virtue of describing a probability distribution, the

samples of pi have to add up to one. One way in which this constraint can be incor-

porated into the model is by imposing a Dirichlet prior on pi which naturally imposes

this requirement by sampling its values from a simplex1[256]. However, applying

1A simplex is a series of numbers that add up to a constant
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the Laplace approximation with a Dirichlet prior or auto-differentiating through it is

not trivial. An alternative approach is to sample p(z) from a Gaussian distribution

and then impose the normalisation constraint a posteriori. This approach naively

bypasses the above described problem. However, it is important to understand why.

The distribution of galaxies per bin in inherently Poisson. For highly populated bins,

the Poisson distribution can be approximated as Gaussian around a non-zero mean.

However, this is not true in sparsely populated bins. In the later, the sampled num-

ber of galaxies for per bin cannot be negative. Moreover, galaxies removed from one

bin need to be added to one of their neighbours. Thankfully, given the photometric

calibration of DES Y1, these sparsely populated bin possess very narrow error bars

such that they still disfavour values close to zero and we can ignore the above de-

scribed problems. Thus we can assume a multi-variate Gaussian prior for p(z) with

a covariance matrix described in Sect. 5.3 and shown in Fig. 5.1. We then normalise

samples a posterirori to enforce the fact that p(z) describes a probability distribution.

For both p(z) uncertainty models, when using analytical marginalisation, we use

Eq. 1.144 and modify the covariance as in Eq. 1.143, with P given by the priors

described above. When using numerical marginalisation, we simply explore the pos-

terior distribution of the full model, including all the p(z), pi, parameters. In the case

of Method 2, this involves sampling a distribution with 165 parameters, of which the

bulk (160 parameters) describe the p(z) uncertainty. This is not feasible for standard

Metropolis-Hastings MCMC methods [70, 257] due to the curse of dimensionality. In

order to overcome this issue, we write our pipeline using LimberJack.jl (See Sect.

4) which thanks to its auto-differentiable methods allows us to use the gradient-based

sampler NUTS [NUTS 77] (See Sect. 1.2.2) to beat the curse of dimensionality. In

particular, we use the NUTS implementation within the Julia library for statistical

inference Turing.jl [222].

5.4.2.1 Linearising ∆z

Let us begin the discussion of our results by considering the simplest of the two models

of the photometric uncertainties studied in this work, the ∆z model (called Method

1 above). As discussed in the previous section, this model introduces 4 new shift

parameters ∆z (one per redshift bin) in addition to the 5 ΛCDM parameters. All

other nuisance parameters are kept fixed. For the DES-Y1 and LSST-like datasets, we

will compare the result of analytically marginalising over the ∆z parameters against

performing the full numerical marginalisation on the corresponding cosmological con-

straints. In order to quantify the contribution of redshift uncertainties to the total
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error budget, we will also present results for the case when the ∆z parameters are

fixed (i.e. assuming perfect knowledge of the redshift distributions).
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Figure 5.4: Marginalised posterior distributions for the combination of parameters
Ωm, σ8 and S8 obtained when considering the ∆z model for photometric uncertainties
for DES-Y1 data. The blue contours correspond to the case where the ∆z parameter
are fixed. The magenta contours are obtained when numerically marginalising over
the ∆z parameters. Finally, the black dashed contours are obtained when analyti-
cally marginalising over the ∆z parameters. We can observe that the analytical and
numerical marginalisation return nearly identical posteriors.

Our results for DES-Y1 data are shown in the left panel of Fig. 5.4, with the errors

on all parameters listed in Table 5.3. On the one hand, we find that marginalising

analytically or numerically over the ∆z parameters leads to the same marginalised

posterior for the cosmological parameters. On the other hand, fixing the ∆z param-

eters returns a posterior distribution that is only mildly narrower than the marginal

distribution. Thus, if we truly wish to study the effect of marginalising analytically

as opposed to numerically over the ∆z parameters we will have to consider futuristic

LSST-like data, where the impact of these uncertainties will likely be higher.

We show results for futuristic LSST-like data on the right panel Fig. 5.4, with

the parameter constraints listed in Table 5.3. First of all, in the case of LSST-like

data we observe that not marginalising over the ∆z parameters in the model results

in significantly narrower posteriors, with the final uncertainties shrinking by a factor

∼ 2. The impact of redshift distribution uncertainties in this case is thus much

more relevant, and the accuracy of the analytical marginalisation scheme becomes
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∆z model Fixed Numerical Analytical

Ωm
DES-Y1 0.333 ± 0.055 0.3 ± 0.056 0.306 ± 0.055

LSST 0.311 ± 0.011 0.317 ± 0.02 0.317 ± 0.02

σ8
DES-Y1 0.724 ± 0.072 0.765 ± 0.077 0.758 ± 0.076

LSST 0.82 ± 0.015 0.821 ± 0.027 0.823 ± 0.027

S8
DES-Y1 0.753 ± 0.015 0.756 ± 0.015 0.756 ± 0.015

LSST 0.833 ± 0.002 0.833 ± 0.005 0.833 ± 0.006

Table 5.3: Numerical values for the mean and 1σ confidence intervals for the 1D
marginalised posterior distributions of the cosmological parameters Ωm, σ8 and S8

obtained when considering the first method (z shifts) to characterise the photomet-
ric redshift uncertainties. The first column shows the values obtained when the ∆z
parameters were kept fixed, the second column when they were marginalised numeri-
cally and the third column when they were marginalised analytically. In each row we
display the constraints obtained when using DES-Y1 or LSST-like data to constrain
the models.

paramount. However, comparing the contours obtained by numerical and analytical

marginalisation, we observe that both methods return largely equivalent posterior

distributions, with the final uncertainties changing by much less than 10%. This

holds even in the case the ∆z prior worsen by a factor 4 as seen in Figure 5.8, in Sect.

5.4.2.4. Therefore, linearising the likelihood around the ∆z parameters will be a good

enough approximation for LSST-data, at least for relatively simple parametrisations

of the p(z) uncertainty, which will allow us to reduce the dimensionality of the model

and make parameter inference more efficient.

It is worth emphasising that the results in this section are not meant to be inter-

preted as forecasts on the constraining power of LSST on cosmological parameters,

but only on our ability to analytically marginalise over photometric uncertainties in

inferring the underlying cosmology. The recovered constraints depend strongly on

assumptions such as the redshift calibration that LSST will be able to achieve for the

different samples involved. As such, the results presented here are only a conservative

estimate of the effect of analytic marginalisation on cosmological constraints.

5.4.2.2 Linearising pα(z)

In the previous section we have shown that, even for futuristic LSST-like data, it is

possible to marginalise over redshift uncertainties analytically, assuming a relatively

simple parametrisation of these uncertainties. We now turn to more complex models

to characterise these uncertainties.
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In order to do so, we consider the previously discussed pα(z) model (called Method

2 above), which turns the height of each bin in the redshift distribution histograms

into a free parameter. This results in 40 new free parameters per redshift bin with a

total of 160 parameters for the data considered in this work.

We start by revisiting the DES-Y1 data analysis, presenting our results in the

left panel of Fig. 5.5. As we observed in the previous section, we find that even for

the far more general pα(z) model there is no significant difference between numeri-

cally marginalising over the pα(z), or doing so through our approximate analytical

approach. Furthermore, as before, fixing the shape of the redshift distribution leads

to only mildly tighter constraints. On the one hand, this means that the result found

for the ∆z model is not reliant on the simplicity of the model, but instead inherent

to the sensitivity of DES-Y1 data. On the other hand, this also means that we must

turn once again to futuristic LSST-like data to study the impact of a more general

parametrisation of photometric uncertainties.
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Figure 5.5: Marginalised posterior distributions for the combination of parameters
Ωm, σ8 and S8 obtained when considering the pα(z) model for photometric uncer-
tainties for DES-Y1 data. The blue contours correspond to the case where the pα(z)
parameter are fixed. The magenta contours are obtained when numerically marginal-
ising over the pα(z) parameters. Finally, the black dashed contours are obtained
when analytically marginalising over the pα(z) parameters. We can observe that the
analytical and numerical marginalisation return nearly identical posteriors.

The results for futuristic LSST-like data are shown in the right panel of Fig. 5.5.

As in the case of the ∆z parametrisation, we find that, in the case of LSST-like data,
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pα(z) model Fixed Numerical Analytical

Ωm
DES-Y1 0.333 ± 0.056 0.308 ± 0.055 0.312 ± 0.057

LSST 0.311 ± 0.011 0.317 ± 0.02 0.317 ± 0.021

σ8
DES-Y1 0.723 ± 0.073 0.755 ± 0.075 0.75 ± 0.077

LSST 0.824 ± 0.015 0.816 ± 0.026 0.815 ± 0.027

S8
DES-Y1 0.753 ± 0.015 0.755 ± 0.015 0.755 ± 0.015

LSST 0.838 ± 0.002 0.837 ± 0.006 0.837 ± 0.006

Table 5.4: Numerical values for the mean and 1σ confidence intervals for the 1D
marginalised posterior distributions of the cosmological parameters Ωm, σ8 and S8

obtained when considering the second method (p(z) bin heights) to characterise the
photometric redshift uncertainties. The first column shows the values obtained when
the pα(z) parameters are kept fixed, the second column when they are marginalised
numerically, and the third column when they are marginalised analytically. In each
row we display the constraints obtained when using DES-Y1 or LSST-like data to
constrain the models.

not including the pα(z) parameters in the model results in significantly narrower

posteriors. By looking at the corresponding numerical values in Tab. 5.4, we see

that the S8 constraints become twice as tight when the pα(z) parameters are fixed.

Most importantly, we find that marginalising over the pα(z) parameters analytically

or numerically yields almost indistinguishable posteriors. Thus, the results found in

Sect. 5.4.2.1 for the simple ∆z parametrisation, in fact hold for significantly more

general models of the uncertainty in the galaxy redshift distributions.

Finally, in Fig. 5.6 we present the constraints obtained for the 160 pα(z) param-

eters for both the DES-Y1 (top panel) and LSST-like data (bottom panel) in colour

bands. We observe that the posterior distributions are largely dominated by the prior

(shown in dashed black line with error bars) and, thus, the redshift distribution is

not significantly self-calibrated by the data in either case.

Before moving to the next section, it is worth stressing that constraining such a

large parameter space has only been possible thanks to the auto-differentiable nature

of the code used to obtain theoretical predictions, allowing us to use gradient-based

samplers, much more efficient that standard samplers. The development of such

auto-differentiable codes will therefore become imperative in the near future given

the increasing complexity of models used in cosmological analyses.

5.4.2.3 ∆z vs pα(z)

In the previous sections, we have focused in the impact of how we marginalise over

the different parametrisations of photometric redshift uncertainties. In this section
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Figure 5.6: Posterior distributions for the pα(z) parameters when considering DES-
Y1 data (top row) and futuristic LSST-like data (bottom row). The black dashed
line shows the mean of the Gaussian prior of the pα(z) parameters. The error bars
show their corresponding error.

we will focus instead on what we marginalise over, i.e. the impact of the choice

of parametrisation. The question is then: Can a one-parameter-per-bin model (∆z

model) capture all the meaningful modifications to photometric redshift distributions?

In order to answer this question, we constrain the cosmological parameters for the

∆z and pα(z) models in the case with futuristic LSST-like data. In both cases, we

marginalise numerically over their respective nuisance parameters. As shown in Fig.

5.7 and Tables 5.3 and 5.4, both methods recover the same posterior distributions

with small differences. Moreover, we observed no biases with respect to the fiducial

cosmology regardless of the parametrisation of the photometric redshift uncertainty

or the method used to marginalise over it.

Thus, it is in principle possible that even Stage-IV surveys will be able to use

relatively simple models to describe the redshift distribution of cosmic shear samples2.

Note however that this result is subject to the modelling of the rest of the systematic

effects in the survey. More complex modelling of IA might require of better control on

the p(z) systematics. In such case, the ∆z parametrisation might become insufficient

2Note, however, this is likely not the case for photometric galaxy clustering studies where other
properties of the redshift distribution (e.g. its width) have a stronger impact on the theoretical
prediction [258].
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Figure 5.7: Comparison between the obtained marginalised posterior distributions
of the cosmological parameters when numerically marginalising over the ∆z (black
dash-dotted) and pα(z) (orange) photometric uncertainties models when applied to
LSST-like futuristic data. Dotted lines mark the values of the fiducial cosmology used
to generate the data. We can observe that both parametrisations of the photometric
redshift uncertainties return identical posteriors for the cosmological parameters.
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and one would expect a difference between said parametrisation and sampling the full

pα(z).

5.4.2.4 Stress-testing the approximation

As described in Sect. 5.2, the approximation used here to analytically marginalise

over the redshift calibration parameters assumes a sufficiently tight prior on these pa-

rameters, such that the dependence of the theory prediction on them can be linearised.

Testing whether this assumption might break in a realistic scenario, is therefore es-

sential. This is important in the context of Stage-IV since, even though it is expected

that spectroscopic samples and the associated calibration techniques will improve

over time, the increase in depth that LSST-like surveys will represent may make the

calibration of the faintest samples in the survey particularly challenging.

To further stress-test our approximate method, we repeat our analysis of the

LSST-like futuristic data using the ∆z model for redshift uncertainties with priors 4

times larger than used in our fiducial analysis (which themselves were based on ex-

isting calibration samples). The result of this test is shown in Fig. 5.8. Reassuringly,

the results show that, despite quadrupling the uncertainty in the redshift nuisance

parameters, the analytic marginalisation method yields virtually the same constraints

on the cosmological parameters as the brute-force marginalisation, in spite of the sig-

nificantly broader posterior contours. This implicit validates the approximation that

a first-order expansion of the theory data vector with respect to a change in redshift

distribution is sufficient over a conservative range of calibration priors.

5.5 Conclusions

Forecasts of the next decade in cosmology predict that meaningful constraints on

fundamental unknowns such as the mass of neutrinos and the nature of dark matter

and dark energy will come from multi-scale, multi-tracer efforts, encompassing a

wide range of probes and redshifts. It is for this reason that the efficient analysis of

joint data sets combining low- and high-redshift probes in an accurate manner is of

great importance to the field of large-scale structure analysis. However, this comes

at the cost of adding a colossal number of nuisance parameters characterising the

observational and theoretical systematic uncertainties of all probes involved, which

can noticeably slow down the sampling of the parameter space. In galaxy clustering

and weak lensing joint studies, the most significant obstacles to overcome are the
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Figure 5.8: Comparison between the obtained marginalised posterior distributions
of the cosmological parameters when analytically marginalising over the ∆z (black
dashed) and when performing the full numerical marginalisation (orange) when
analysing LSST-like data. In both cases the ∆z prior distributions where made 4
times wider. Dotted lines mark the values of the fiducial cosmology used to generate
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accurate modelling of the redshift distribution, the galaxy bias relation, and intrinsic

alignments.

In this chapter, we have introduced the Laplace approximation, an analytical

marginalisation scheme for speeding up the sampling process in the presence of a

large number of nuisance parameters, and investigated its accuracy when applied to

photometric survey data. In particular, we studied the current DES-Y1 data set as

well as a synthetic data vector from an LSST-like survey to validate whether the

Laplace approximation is capable of reproducing the posterior contours and con-

straints one arrives at when adopting the traditional method of diligently varying

tens of nuisance parameters. We focused in two particular cases of study. First, we

aimed at reproducing current 3x2-pt analyses, marginalising over all sorts of nuisance

parameters. Second, we focused on the impact of redshift photometric uncertainties

in shear analyses and studied the equivalence between different parametrisations of

said uncertainties.

Let us start by summarising our study of 3x2-pt analyses. Our results showed that

the Laplace approximation produces indistinguishable posteriors for the cosmologi-

cal parameters from those obtained performing full numerical marginalisation. Most

importantly, the analytical marginalisation proved to be several fold faster than its

numerical counterpart. This success was achieved by dividing the marginalisation

process into two steps. First, we marginalised over the photometric redshift uncer-

tainties by linearising their contribution to the likelihood function. In Sect. 1.2.3.3 it

was shown that in such scenario, marginalising over these parameters amounts to pre-

computing a modification to the data covariance matrix. Having marginalised over

the linearisable parameters, we turned to the bias an intrinsic alignments nuisance

parameters. In order to marginalise these parameters, we exploited the fact that

they contribute to the theory prediction (not the likelihood function) linearly. This

allowed us to derive analytical expressions for the gradient of the likelihood function

with respect to said parameters, significantly speeding up the optimisation process

described in Sect. 1.2.3.1.

Concerning our study of photometric redshift uncertainties, our results show that,

for present cosmic shear surveys, marginalising over these uncertainties has only a

mild impact on the constraints on cosmological parameters. Nonetheless, our analyt-

ical approximation is able to capture their contribution accurately. This is true for

the two parametrisations of the photometric uncertainties considered in this work, in

terms of mean redshift shifts or redshift distribution histogram heights. However, the

impact of redshift distribution uncertainties changes dramatically for future LSST-like
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surveys. In this case, redshift uncertainties commensurate with current calibration

samples lead to a degradation in the final constraints on cosmological parameters up

to a factor ∼ 2. Capturing this effect for an arbitrarily complex parametrisation of

the redshift distribution uncertainties is an a priori difficult task without resorting

to a full exploration of the parameter space. Nevertheless, we find that the Laplace

approximation is still able to recover the marginalised constraints on cosmological

parameters to high fidelity, even after marginalising over more than 100 nuisance pa-

rameters. This means that, while future surveys will certainly have to account for

these uncertainties, they will be able to do so using fast marginalisation methods

without increasing the dimensionality of their astrophysical and cosmological models.

Moreover we showed that simple parametrisations of the redshift distribution for cos-

mic shear samples, in terms of shifts in the mean redshift, are, surprisingly, able to

reproduce the impact of the full uncertainty on p(z) on the final constraints to high

precision. Although this result will likely not hold for other probes (e.g. tomographic

galaxy clustering), it should certainly simplify the analysis of future cosmic shear

data.
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Chapter 6

Conclusions

In this thesis, I have made a case for the need to develop auto-differentiable analysis

pipelines for future cosmological surveys. I argue that the number of free parameters

in future (and to some extent present) cosmological analyses will render traditional

inference algorithms, such as Metropolis Hastings, computationally unfeasible. This

will be due to two phenomena:

• Systematic effects: as the quality of data improves so will our treatment of its

systematics. More complex models for these effects will bring along larger num-

ber of free parameters to capture the richer phenomenology (See Sect. 1.1.5).

• Model-agnostic analyses: in the face of the current inconsistencies in our

theory of Cosmology, performing analysis that bypass these assumptions will

become pressing. Removing these assumptions from our analyses will directly

lead to a larger number of parameters to constrain (See Sect. 1.4).

In order to overcome this challenge, I have proposed and applied two possible

solutions, one analytical and one numerical. Starting with the latter, gradient-based

inference algorithms can characterise posterior distributions with thousands if not

millions of dimensions (See Sect. 1.2.2). In particular, through this thesis I have

made extensive use of the No-U-Turns sampler, a self-tuning version of traditional

Hamiltonian Monte Carlo. However, they need to be provided with the gradient of

the Bayesian likelihood function.

In Chapter 2, I developed an auto-differentiable framework to fit data from the

expansion history, cosmological distances and the growth factor. This allowed me

to develop a model-independent methodology to constrain Ωm and H(z). I obtained

Ωm = 0.224± 0.066, a lower but statistically compatible value with the Planck 2018

constraints. Similarly, the Gaussian Process reconstruction of the expansion history
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proved to be compatible with the expectation from Planck despite fitting SH0ES

supernova data. Instead, the tension manifested in the supernova absolute magnitude

which was treated as a free parameter. I found M = −19.43 ± 0.026 which is in 5σ

tension with the SH0ES value.

In Chapter 3, I applied the same methodology to constrain possible deviations of

General Relativity in the form of modifications to the Poisson equation. These can

effectively be understood as a time-varying Newton’s constant given by G̃ = Gµ(z)

which enhances or depresses the growth of structure. I also studied the degeneracy of

this type of modifications with modifications to the background Cosmology. Namely,

we consider three possible background models. First, a traditional ΛCDM model.

Second, wCDM parametrised in terms of the w0 and wa parameters. Third, a second

Gaussian Process for H(z), similarly to Sect. 2. My study found that µ(z) was

largely independent on the modelling of the background expansion as opposed to

what was formerly believed. This is because current measurements can effectively

constrain the expansion history when ΛCDM or wCDM are considered. The story

changes when a second Gaussian Process is used to model H(z) since background

data can no longer constrain Ωm. In this scenario, Ωm and µ(z) become completely

degenerate. Thus we group them into the new variable µ̃(z) ≡ Ωmµ(z). Regardless

of the background model considered, I found the constraints on µ(z) and µ̃(z) to

be statistically compatible the General Relativity value with error bars ranging from

10% to 20%, depending on the specific model.

In Chapter 4, I developed and showcased LimberJack.jl, an open source library

written Julia which extends the previously described auto-differentiable methods to

angular power spectra analyses. Armed with this new tool, I performed a Gaus-

sian Process reconstruction of the growth factor, D(z), based on a combination of

clustering, weak lensing and CMB lensing power spectra cross-correlations and the

direct growth rate measurements considered in chapters 2 and 3. The results show

that, despite being less than 2% of the data, growth rate measurements constitute

20% of the constraining power on the growth factor in the analyses. Moreover, the

inclusion of growth data significantly smooths the reconstructed D(z), disfavouring

strong oscillations. Nonetheless, my results also tell a cautionary tale about deploying

gradient-based inference algorithms at low dimensions. Thus, I found that, in these

scenarios, the efficiency boost resulting from using the gradient of the likelihood can

be outweighed by the cost of computing it, even when using auto-differentiable meth-

ods.
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Finally, in Chapter 5, I showed how analytical marginalisation schemes can vastly

reduce the number of free parameters in the analysis by getting rid of nuisance pa-

rameters. In particular, I studied the Laplace approximation which involves Taylor

expanding the log-likelihood function around the best-fit value of the nuisance param-

eters. This expansion Gaussianises the posterior distribution along these parameters

which can then be integrated analytically. Since the Laplace approximation entails

optimising for the best-fit value of the nuisance parameters for a given cosmology,

having access to the gradient of the likelihood function is also extremely beneficial.

This reinforces the notion that auto-differentiable pipelines are an unavoidable step

in order to deal with models with large numbers of parameters either numerically or

analytically.

I first showed the reliability of the Laplace approximation by reproducing the

DES-Y1 3x2-pt analysis as well as a futuristic 3x2-pt analysis. This proved that

the Laplace approximation can be used to marginalise over all sorts of nuisances pa-

rameters when analysing both present and future data. Most importantly, using the

Laplace approximation resulted in up to 15 times faster analyses. I then turned to

explore different parametrisations of the photometric redshift uncertainties in cos-

mic shear analysis. I proposed a new model of this systematic effect in which each

individual histogram bin in each of the tomographic bins of the galaxy distribution

is treated as a free parameter with a Gaussian prior given by the covariance of the

photometric calibration. I tested this model and compared it against the usual shift

parameter model for the weak lensing data of the DES-Y1 survey. In this partic-

ular analysis the 4 tomographic bins of the weak lensing data contribute a total of

160 nuisance parameters. I used LimberJack.jl to numerically constrain the model

and then compared the results with the analytical marginalisation performed using

the Laplace approximation. My results showed that both the analytical and numer-

ical approaches yielded indistinguishable posteriors for the cosmological parameters.

Moreover, I showed that the current parametrisation of photometric uncertainty with

one shift parameter per bin results in the same posteriors for the cosmological pa-

rameters as my more general model. Finally, the previous results were also found to

hold when a futuristic cosmic shear analysis was considered instead of DES-Y1 data.

While I believe that the case made above is already compelling, there’s nonetheless

a plethora of avenues for improvement and continuation:

• Precision measurements of the growth rate: current measurements of the

growth rate by SDSS collaboration [73, 145] and others are not precise enough

to untangle the effects of varying Ωm and σ8. This will drastically change with
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the arrival of DESI data [198]. The forecasts I presented in Sect. 2 and Sect. 3

showed that DESI data will improve model-agnostic constraints of Ωm and µ(z)

several fold. Moreover, in Sect. 4, we showed that already current growth rate

measurements are extremely powerful when included in angular power spectra

analyses. Future DESI measurements will further improve this picture, making

these RSD measurements part of the standard 3x2-pt cosmological analysis.

• Better Auto-differentiable tools: while LimberJack.jl is already a tool

ready to perform current cosmological analyses, it can be improved in many

ways. First, the implementation of auto-differentiation could be more efficient

by making LimberJack.jl compatible with backwards auto-differentiation al-

gorithms. Second, LimberJack.jl currently only runs on CPU. A significant

speed boost would be obtained by making LimberJack.jl run on GPU’s.

Third, LB’s current parallelisation routines have an underwhelming perfor-

mance. On top of this, future cosmological analyses will require additional

features such as better modelling of the non-linear matter power spectrum or

beyond-Limber integration which currently not present in LimberJack.jl or

similar libraries such as JAX-COSMO. This is due to most of these libraries

being developed by independent teams with limited resources. In the future

we expect large collaborations to start backing up these technologies leading to

libraries of auto-differentiable methods akin to LSST’s CCL among others.

• Generic implementation of the Laplace approximation: the implemen-

tations of the Laplace approximation shown in Sect. 5 were tailored to the

particular analyses being undertaken. This is a major obstacle to a wider adop-

tion of the method. Once again, this is mostly due to lack of resources to

properly develop a generic, public implementation. In the future, we expect

larger collaborations to adopt these methods, popularising them to a broader

audience.
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D. L. Harrison, S. Henrot-Versillé, C. Hernández-Monteagudo, D. Herranz, S. R.

Hildebrandt, E. Hivon, M. Hobson, W. A. Holmes, A. Hornstrup, W. Hovest,

Z. Huang, K. M. Huffenberger, G. Hurier, A. H. Jaffe, T. R. Jaffe, W. C.

Jones, M. Juvela, E. Keihänen, R. Keskitalo, J. Kim, T. S. Kisner, R. Kneissl,

J. Knoche, M. Kunz, H. Kurki-Suonio, G. Lagache, A. Lähteenmäki, J. M.
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A. Kannawadi, B. Stölzner, T. Tröster, J. L. van den Busch, A. H. Wright,

M. Bilicki, C. Blake, J. de Jong, A. Dvornik, T. Erben, F. Getman, H. Hoekstra,
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wult, V. Le Brun, O. Le Fèvre, D. Maccagni, K. Ma lek, F. Marulli, M. Polletta,

A. Pollo, L. A. M. Tasca, R. Tojeiro, D. Vergani, A. Zanichelli, S. Arnouts,

E. Branchini, J. Coupon, G. De Lucia, J. Koda, O. Ilbert, F. Mohammad,

T. Moutard, and L. Moscardini, aap 604, A33 (2017), arXiv:1612.05645 [astro-

ph.CO] .

[195] F. Beutler, C. Blake, M. Colless, D. H. Jones, L. Staveley-Smith, G. B. Poole,

L. Campbell, Q. Parker, W. Saunders, and F. Watson, mnras 423, 3430 (2012),

arXiv:1204.4725 [astro-ph.CO] .

[196] T. Okumura, C. Hikage, T. Totani, M. Tonegawa, H. Okada, K. Glazebrook,

C. Blake, P. G. Ferreira, S. More, A. Taruya, S. Tsujikawa, M. Akiyama, G. Dal-

ton, T. Goto, T. Ishikawa, F. Iwamuro, T. Matsubara, T. Nishimichi, K. Ohta,

I. Shimizu, R. Takahashi, N. Takato, N. Tamura, K. Yabe, and N. Yoshida,

PASJ 68, 38 (2016), arXiv:1511.08083 [astro-ph.CO] .

199

http://dx.doi.org/10.1146/annurev.nucl.53.041002.110503
http://dx.doi.org/10.1146/annurev.nucl.53.041002.110503
http://arxiv.org/abs/hep-ph/0307284
http://dx.doi.org/10.1016/j.physrep.2012.01.001
http://dx.doi.org/10.1016/j.physrep.2012.01.001
http://arxiv.org/abs/1106.2476
http://dx.doi.org/10.1016/j.physrep.2014.12.002
http://arxiv.org/abs/1407.0059
http://dx.doi.org/10.1103/PhysRevD.81.043512
http://arxiv.org/abs/0910.3834
http://arxiv.org/abs/0910.3834
http://dx.doi.org/10.1093/mnras/stx3232
http://arxiv.org/abs/1612.00812
http://dx.doi.org/10.1088/1475-7516/2015/11/029
http://arxiv.org/abs/1506.03047
http://dx.doi.org/10.1103/PhysRevD.104.083502
http://arxiv.org/abs/2103.11195
http://dx.doi.org/10.48550/arXiv.2110.06209
http://arxiv.org/abs/2110.06209
http://dx.doi.org/10.1103/PhysRevD.104.043521
http://arxiv.org/abs/2106.00428
http://dx.doi.org/10.1051/0004-6361/201630295
http://arxiv.org/abs/1612.05645
http://arxiv.org/abs/1612.05645
http://dx.doi.org/10.1111/j.1365-2966.2012.21136.x
http://arxiv.org/abs/1204.4725
http://dx.doi.org/10.1093/pasj/psw029
http://arxiv.org/abs/1511.08083


[197] S.-g. Hwang, B. L’Huillier, R. E. Keeley, M. J. Jee, and A. Shafieloo, arXiv

e-prints , arXiv:2206.15081 (2022), arXiv:2206.15081 [astro-ph.CO] .

[198] DESI Collaboration, A. Aghamousa, J. Aguilar, S. Ahlen, S. Alam, L. E. Allen,

C. Allende Prieto, J. Annis, S. Bailey, C. Balland, O. Ballester, C. Baltay,

L. Beaufore, C. Bebek, T. C. Beers, E. F. Bell, J. L. Bernal, R. Besuner, F. Beut-

ler, C. Blake, H. Bleuler, M. Blomqvist, R. Blum, A. S. Bolton, C. Briceno,

D. Brooks, J. R. Brownstein, E. Buckley-Geer, A. Burden, E. Burtin, N. G.

Busca, R. N. Cahn, Y.-C. Cai, L. Cardiel-Sas, R. G. Carlberg, P.-H. Carton,

R. Casas, F. J. Castander, J. L. Cervantes-Cota, T. M. Claybaugh, M. Close,

C. T. Coker, S. Cole, J. Comparat, A. P. Cooper, M. C. Cousinou, M. Crocce,

J.-G. Cuby, D. P. Cunningham, T. M. Davis, K. S. Dawson, A. de la Ma-

corra, J. De Vicente, T. Delubac, M. Derwent, A. Dey, G. Dhungana, Z. Ding,

P. Doel, Y. T. Duan, A. Ealet, J. Edelstein, S. Eftekharzadeh, D. J. Eisenstein,

A. Elliott, S. Escoffier, M. Evatt, P. Fagrelius, X. Fan, K. Fanning, A. Farahi,

J. Farihi, G. Favole, Y. Feng, E. Fernandez, J. R. Findlay, D. P. Finkbeiner,

M. J. Fitzpatrick, B. Flaugher, S. Flender, A. Font-Ribera, J. E. Forero-Romero,

P. Fosalba, C. S. Frenk, M. Fumagalli, B. T. Gaensicke, G. Gallo, J. Garcia-

Bellido, E. Gaztanaga, N. Pietro Gentile Fusillo, T. Gerard, I. Gershkovich,

T. Giannantonio, D. Gillet, G. Gonzalez-de-Rivera, V. Gonzalez-Perez, S. Gott,

O. Graur, G. Gutierrez, J. Guy, S. Habib, H. Heetderks, I. Heetderks, K. Heit-

mann, W. A. Hellwing, D. A. Herrera, S. Ho, S. Holland, K. Honscheid, E. Huff,

T. A. Hutchinson, D. Huterer, H. S. Hwang, J. M. Illa Laguna, Y. Ishikawa,

D. Jacobs, N. Jeffrey, P. Jelinsky, E. Jennings, L. Jiang, J. Jimenez, J. John-

son, R. Joyce, E. Jullo, S. Juneau, S. Kama, A. Karcher, S. Karkar, R. Kehoe,

N. Kennamer, S. Kent, M. Kilbinger, A. G. Kim, D. Kirkby, T. Kisner, E. Ki-

tanidis, J.-P. Kneib, S. Koposov, E. Kovacs, K. Koyama, A. Kremin, R. Kron,

L. Kronig, A. Kueter-Young, C. G. Lacey, R. Lafever, O. Lahav, A. Lambert,

M. Lampton, M. Landriau, D. Lang, T. R. Lauer, J.-M. Le Goff, L. Le Guil-

lou, A. Le Van Suu, J. H. Lee, S.-J. Lee, D. Leitner, M. Lesser, M. E. Levi,

B. L’Huillier, B. Li, M. Liang, H. Lin, E. Linder, S. R. Loebman, Z. Lukić,
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D. Walton, T. Blümchen, C. Bonoli, F. Bortoletto, C. Cerna, L. Corcione,

C. Fabron, K. Jahnke, S. Ligori, F. Madrid, L. Martin, G. Morgante, T. Pam-

plona, E. Prieto, M. Riva, R. Toledo, M. Trifoglio, F. Zerbi, F. Abdalla,

M. Douspis, C. Grenet, S. Borgani, R. Bouwens, F. Courbin, J. M. Delouis,

P. Dubath, A. Fontana, M. Frailis, A. Grazian, J. Koppenhöfer, O. Man-
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D. L. Burke, J. Carretero, A. Choi, H. T. Diehl, S. Everett, B. Flaugher, E. Gaz-

tanaga, J. Gschwend, I. Harrison, W. G. Hartley, B. Hoyle, M. Jarvis, M. D.

Johnson, R. Kessler, R. Kron, N. Kuropatkin, B. Leistedt, T. S. Li, F. Menan-

teau, E. Morganson, R. L. C. Ogando, A. Palmese, F. Paz-Chinchón, A. Pieres,

C. Pond, M. Rodriguez-Monroy, J. A. Smith, K. M. Stringer, M. A. Troxel,

D. L. Tucker, J. de Vicente, W. Wester, Y. Zhang, T. M. C. Abbott, M. Aguena,

J. Annis, S. Avila, S. Bhargava, S. L. Bridle, D. Brooks, D. Brout, F. J. Cas-

tander, R. Cawthon, C. Chang, C. Conselice, M. Costanzi, M. Crocce, L. N. da

Costa, M. E. S. Pereira, T. M. Davis, S. Desai, J. P. Dietrich, P. Doel, K. Eck-

ert, A. E. Evrard, I. Ferrero, P. Fosalba, J. Garćıa-Bellido, D. W. Gerdes,
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Goldstein, I. Hook, Ž. Ivezić, S. M. Kahn, S. Kamath, D. Kirkby, T. Kitching,

E. Krause, P.-F. Leget, P. J. Marshall, J. Meyers, H. Miyatake, J. A. Newman,

R. Nichol, E. Rykoff, F. J. Sanchez, A. Slosar, M. Sullivan, and M. A. Troxel,

arXiv e-prints , arXiv:1809.01669 (2018), arXiv:1809.01669 [astro-ph.CO] .

[244] C. Bonnett, M. A. Troxel, W. Hartley, A. Amara, B. Leistedt, M. R. Becker,

G. M. Bernstein, S. L. Bridle, C. Bruderer, M. T. Busha, M. Carrasco Kind,

M. J. Childress, F. J. Castander, C. Chang, M. Crocce, T. M. Davis, T. F.

Eifler, J. Frieman, C. Gangkofner, E. Gaztanaga, K. Glazebrook, D. Gruen,

T. Kacprzak, A. King, J. Kwan, O. Lahav, G. Lewis, C. Lidman, H. Lin,

N. MacCrann, R. Miquel, C. R. O’Neill, A. Palmese, H. V. Peiris, A. Re-

fregier, E. Rozo, E. S. Rykoff, I. Sadeh, C. Sánchez, E. Sheldon, S. Uddin,

R. H. Wechsler, J. Zuntz, T. Abbott, F. B. Abdalla, S. Allam, R. Armstrong,

M. Banerji, A. H. Bauer, A. Benoit-Lévy, E. Bertin, D. Brooks, E. Buckley-
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