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Sommario

L’obiettivo del presente lavoro di tesi ¢ di analizzare la propagazione della luce
in presenza di un campo elettromagnetico esterno e ipotizzando l'interazione con un
campo scalare o pseudoscalare neutro, a cui € associata una corrispondente particella
di spin 0. La forma di tale interazione viene assunta sulla base di considerazioni
generali fondate sull’invarianza di gauge e su simmetrie discrete della teoria. Per
il caso della particella pseudoscalare, la struttura della relativa interazione trae
le sue origini dalla necessita di trovare una naturale soluzione al problema delle
violazioni di CP nelle interazioni forti, nell’ambito della cromodinamica quantistica.
In particolare, vengono studiate varie situazioni a seconda che la propagazione della
luce sia in campi esterni elettrici o magnetici e in presenza di particelle scalari o
pseudoscalari ultraleggere.

Successivamente, si descrivono gli effetti ottici che possono essere ricavati dalle
equazioni del moto per la particella e per il campo elettromagnetico in un caso
specifico. Infine, vengono presentate brevemente le tecniche sperimentali atte a
rivelare tali particelle e si discutono i risultati conseguiti e i recenti obiettivi per la

ricerca nel settore.

Abstract

The aim of this work is to analyze the propagation of light in the presence of
an external electromagnetic field, under the assumption of an effective interaction
between the electromagnetic field and a neutral scalar or pseudoscalar field, to
which is associated a corresponding spin 0 particle. The shape of this interaction
has been assumed from general considerations based on gauge invariance and
discrete symmetries of the theory. In the pseudoscalar case, the structure of the
corresponding interaction originates from the efforts of finding a natural solution to
the problem of CP violations in strong interactions, in the framework of quantum



chromodynamics. In particular, different scenarios are analyzed, which correspond
to the cases of light propagation in static external electric or magnetic fields and in
the presence of scalar or pseudoscalar ultralight particles.

Thereafter, the focus goes to optical effects that are derived from the equations
of motion for the particle and for the electromagnetic field in a specific case. Finally,
the various experimental techniques aimed at detecting the effects of such particles
are reviewed, including a discussion on the relevant results obtained by these
experiments and their implications for the research in this sector.
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Capitolo 1

Introduzione

L’obiettivo del presente capitolo € di esporre brevemente i fondamenti teorici
che spingono a considerare un’interazione tra una particella ultra leggera di spin 0
e la radiazione elettromagnetica, per poi descrivere le ricerche sperimentali dedicate
a testare ed approfondire tali modelli.

Generalmente, parlando di una particella pseudoscalare ultra leggera di spin 0 ci
si riferisce all’assione o alle ALPs (Axion-Like Particles). Questo venne teorizzato
per la prima volta nel 1977 da Peccei e Quinn [1] in un contesto di cromodinamica
quantistica (QCD), la teoria moderna fondamentale delle interazioni forti [2, 3|,
per garantire in modo naturale la conservazione della simmetria discreta di CP !
nei fenomeni delle interazioni forti. L’anno successivo arrivo un’altro importante
contributo da parte di Wilczek [4], che identifico nell’assione il quanto del campo
pseudoscalare responsabile dell’interazione in grado di conservare CP.

Come verra spiegato in seguito, 'interazione tra il campo elettromagnetico
costituisce un’interazione effettiva. Quest’ultima é caratterizzata dal prodotto
Lorentz invariante tra il campo pseudoscalare e il tensore elettromagnetico contratto
con il suo duale. Per questioni dimensionali, tale interazione fondamentale & divisa
per una scala effettiva che ne identifica I’accoppiamento, che in unita relativistiche
ha le dimensioni di un’energia. Siccome le predizioni teoriche indicano che la
costante di scala deve essere molti ordini di grandezza al di sopra del GeV, l'effetto
di interazione con i campi elettromagnetici tipicamente impiegati in laboratorio
risulta estremamente soppresso e pertanto difficile da osservare.

Negli anni successivi, furono ideati una serie di modelli per la realizzazione di
esperimenti adatti a rivelare la presenza dell’assione in base alla sua interazione
con il campo elettromagnetico. Percio, a causa dell’interazione effettiva, si genera
un fenomeno di mixing tra il campo elettromagnetico e quello dell’assione nella loro

propagazione libera. In tale contesto, sono particolarmente rilevanti i contributi di

La trasformazioni di CP & il prodotto delle due trasformazioni discrete associate alla
coniugazione di carica (scambio particella-antiparticella) e parita.



Maiani, Petronzio e Zavattini [5], su cui ¢ fondato nella maggior parte questo lavoro
di tesi, e di Raffelt e Stodolsky [6], che tra le altre cose estende I'analisi di Maiani,
Petronzio e Zavattini discutendone i risultati. Da cid hanno origine una serie di
esperimenti, come PVLAS [7-9], che si prefiggono di studiare le proprieta ottiche
del vuoto e che permettono di stabilire dei limiti sulla massa e sull’accoppiamento
dell’assione.

Tuttavia, il problema di CP forte non € I'unico ambito per il quale ’assione costi-
tuisce una possibile soluzione: in astrofisica, esso rappresenta il principale candidato
non-WIMP (Weakly Interacting Massive Particle) per la materia oscura [10-12].
Una grande quantita di risorse sono state dunque impiegate per la ricerca degli
assioni solari. Ad esempio, sulla base di modelli come quelli di KSVZ [13, 14] e
DFSZ [15, 16], & stato progettato 'esperimento CAST (CERN Axion Solar Telesco-
pe), che non ¢ stato in grado di rivelare alcun segnale al di sopra del background, ma
che ha stabilito come limite superiore per I'inverso della costante di accoppiamento
dell’interazione 8,8 - 107" GeV ! per una massa dell’assione m < 0,02eV [17, 18].
In breve, i fondamenti del funzionamento di CAST sono i seguenti: il forte campo
magnetico del Sole genera un fenomeno di mixing tra i fotoni e gli assioni come
conseguenza dell’interazione, descritta in precedenza, in presenza di un campo
magnetico esterno, cosi le particelle pseudoscalari possono arrivare fino alla Terra.
Teoricamente, in laboratorio dovrebbe essere possibile sfruttare il processo inverso
e convertire gli assioni in fotoni, in modo da vedere comparire una radiazione
elettromagnetica essenzialmente dal nulla [19]. Analogamente, una riconversione di
questo tipo viene impiegata anche negli esperimenti di light shining through the
wall. Oltre a questi, molte altre ricerche puntano alla scoperta di assioni, sia basate
su modelli astrofisici che non [20].

In questo contesto, sono state analizzate le soluzioni delle equazioni che regola-
no la propagazione della luce in presenza di un campo elettromagnetico esterno
omogeneo e costante nel tempo. Tali equazioni sono state ricavate tenendo conto del-
l'interazione effettiva tra il campo elettromagnetico e i campi pseudoscalare (assione)
o scalare ultra leggeri, secondo quanto descritto in precedenza. Successivamente,
sono state studiate le proprieta ottiche del sistema. In particolare:

Il capitolo 2 permette di ricavare le equazioni del moto per il campo elettro-
magnetico e per il campo scalare o pseudoscalare in presenza di un campo
esterno magnetico o elettrico, utilizzando un formalismo tipico della teoria

dei campi classica.

Il capitolo 3 restringe ’analisi al caso di una particella pseudoscalare in un campo
magnetico esterno e analizza gli effetti ottici causati dall’interazione effettiva
tra tale particella e il fotone, per poi descrivere brevemente le tecniche di
ricerca e i risultati dell’esperimento PVLAS.



Il capitolo 4 riassume il procedimento seguito nel presente lavoro di tesi e ne

espone le conclusioni.

L’appendice A richiama le convenzioni, le notazioni e i formalismi utilizzati nel

corso del lavoro.

I’appendice B descrive alcuni risultati dell’elettrodinamica classica, soprattutto

in relazione al formalismo relativistico.

L’appendice C riporta la lagrangiana di Euler-Heisenberg nella forma esatta e
in una possibile espansione perturbativa.






Capitolo 2

Modello teorico

Lo scopo del capitolo corrente ¢ quello di analizzare le equazioni di campo
classiche nell’ambito del modello accennato in precedenza, in cui il campo elettro-
magnetico ha un’interazione effettiva con un campo pseudoscalare classico ¢. In
questo caso, la lagrangiana classica libera ¢ data dalla somma della lagrangiana di
Maxwell e di quella di Klein—Gordon, da cui derivano le omonime equazioni. In
particolare, per le corrispondenti densita di lagrangiane libere, utilizzando come
spiegato in appendice A la convenzione h = c¢ =1, si ha

1 .
EM = _Z ,uVF/W - ]uA'ua (21>
1 " 1 5,
ﬁKG:§ L 0 P gmien (2.2)

In tale notazione, j* rappresenta il quadrivettore densita di corrente, A* ¢ il
quadripotenziale elettromagnetico e ¢ ¢ il campo associato alla particella di massa
m. Infine, F'*” & il tensore elettromagnetico, che si pud esprimere a seconda delle
occasioni sia in funzione del quadripotenziale vettore che dei campi magnetico
ed elettrico. Insieme, queste lagrangiane costituiscono la parte cinetica libera del
sistema in questione.

A questo punto, si tratta di completare la lagrangiana con la parte di interazione
tra il campo elettromagnetico e quello della particella in analisi, che verra discussa

in seguito.

2.1 Particella pseudoscalare

Nel caso di una particella pseudoscalare, 'interazione effettiva tra il campo
elettromagnetico e un campo pseudoscalare neutro ¢ la seguente:

‘CP F;u/ﬁ/“/, (23)

PTG

dove F w = %EW,\UF A indica il tensore elettromagnetico duale. Nella sua espres-

sione compare €27 il simbolo di Levi-Civita: si tratta del tensore totalmente



antisimmetrico in 4 dimensioni. Esso ¢ completamente determinato, ad esempio,

0123 — 1. 1l parametro Mp, invece, caratterizza l'intensi-

fornendo la condizione ¢
ta dell’interazione ed ha, in unita relativistiche, le dimensioni di un’energia. La
lagrangiana totale é allora data da £ = Ly + Lkg + Lp.

Bisogna ora identificare i campi dinamici rilevanti per il problema in esame.
Prendendo in considerazione questi, poi, verranno applicate le equazioni di Eule-
ro-Lagrange. Poiché si ¢ interessati allo studio della propagazione della luce in
presenza di un campo elettromagnetico esterno statico ed omogeneo, ¢ conveniente

decomporre il campo elettromagnetico come segue:
Frv = P 4 ghAY — 9UA>», (2.4)

Il tensore FH rappresenta il campo esterno (elettrico o magnetico), mentre A* ¢ il
campo di radiazione associato all’onda luminosa. Questa separazione é giustificata
dalla validita del principio di sovrapposizione e della linearita della teoria proposta.
In assenza di tali ipotesi, non sarebbe possibile trattare separatamente i contributi
del sistema e del campo esterno.

In generale, in coordiante cartesiane in base agli assi definiti da r = (z,y, z), &
possibile esprimere il tensore relativo al campo esterno sulla base delle componenti
di campo elettrico £ e campo magnetico B come

0 —-BE —E, —F;
E, 0 —B; DBy
Ey B 0 -B
Ey —By B, 0

= (2.5)

Siccome poi, nelle condizioni trattate, si & in assenza sia di cariche che di

correnti, si ha j# = 0, per cui la lagrangiana in questione ¢ della forma:
1

1 1 1 ~
L= _ZFHVFNV + 5(%90 8”@ — §m2ﬁp2 + M@FNVFMV- (26)

Si ricordi ora che una trasformazione di gauge é definita come
A, = A+ 0N, (2.7)

dove A rappresenta una qualsiasi funzione scalare differenziabile nelle variabili z*.
Siccome sia F* che F* sono invarianti per trasformazioni di gauge, lo sono anche
la lagrangiana di Maxwell e la lagrangiana di interazione.

A questo punto, é necessario introdurre ulteriori ipotesi per concentrarsi su

un’analisi specifica delle varie situazioni.

2.1.1 Campo magnetico esterno

Se il campo esterno ¢ un campo magnetico omogeneo e costante nel tempo B
con direzione perpendicolare a quella di propagazione del fascio laser, si ha E = 0
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e il tensore si riduce a

0 O 0 0

g _ [0 0 =By B (2.8)
0 Bj 0 —-B;
0 -B, B, 0

Bisogna ora riscrivere la lagrangiana £ in modo che sia possibile applicare le
equazioni di Eulero-Lagrange. E necessario dunque esplicitare le dipendenze dai
campi che vengono presi in considerazione, cioé A" e . Si deve anche tenere
in conto, dato che ci si aspetta di trovare delle correzioni piccole alle equazioni
classiche, che, dopo aver applicato le equazioni di Eulero—Lagrange, si intendono
tenere solo i termini lineari in A e ¢, trascurando tutti quelli di ordine superiore,
che caratterizzano 'interazione tra il campo dinamico ¢ e A. Tale approssimazione
é giustificata dalla scala dell’interazione Mp, nel caso dell’assione vari ordini di
grandezza al di sopra del GeV. Essa ¢ molto pitt grande delle frequenze caratteri-
stiche w relative al problema in questione, tipicamente nel range della luce laser
visibile. Questa assunzione permette, in un contesto di teoria delle perturbazioni,
di trovare una soluzione esatta alle equazioni di Eulero-Lagrange approssimate al
primo ordine perturbativo nelle espansioni in w/Mp.

E conveniente ora procedere analizzando un pezzo alla volta. Si cominci con
la descrizione della lagrangiana di Maxwell libera, avendo separato il campo di

radiazione dal campo magnetico esterno omogeneo e costante nel tempo:
1/~ ~ - ~
Ly = -1 <FWF“" + 2F,,, 0'A” — 2F,,,0"A" + 20,A, 0"A” — 20,A, 8”A”> . (2.9)

Svolgendo allora esplicitamente alcune delle somme sugli indici p e v e tenendo
conto delle condizioni dettate in precedenza, la lagrangiana puo essere riscritta
come

1 ~ ~ ~
Lo = -3 (aHAV OMA” — 9,A, O"A" + BB + g-:ijkB’@JAk> ) (2.10)

Nella precedente espressione compaiono degli indici rappresentati da lettere del-
I’alfabeto latino. Come spiegato nell’appendice A, essi si riferiscono solamente
alle componenti spaziali. E stato introdotto anche il simbolo di Levi-Civita in
3 dimensioni, €Y%, Esso ¢ determinato fornendo la condizione £'?* = 1. Si noti
come il contributo quadratico nel campo magnetico derivi dal fattore quadratico
nel tensore del campo esterno, come era prevedibile dalla struttura dell’invariante
relativistico F, WF\ #_Inoltre, per lo stesso motivo, il termine che contiene il simbolo
di Levi-Civita non ¢ altro che un prodotto scalare tra campo magnetico esterno e
campo magnetico di radiazione. Scritta in tale forma, la lagrangiana di Maxwell

dipende solamente dal quadripotenziale vettore e dalle sue derivate.
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La lagrangiana di Klein—-Gordon ¢ gia scritta nella forma richiesta poiché le
uniche variabili che compaiono sono il campo ¢ e le sue derivate.

A questo punto, é possibile svolgere un lavoro analogo sulla lagrangiana di
interazione. In funzione del quadripotenziale A* relativo al campo di radiazione e
del tensore elettromagnetico associato al campo esterno, essa assume la forma:

Lp = Ls@ Euvro (ﬁﬂ”ﬁm + AFMOPAT 1 49MAY aAAU> . (2.11)
8Mp

Bisogna ora specificare quali sono le ipotesi sul quadripotenziale. Innanzitutto,
in virtu della liberta legata all’invarianza di gauge, si sceglie di porsi nel gauge
di Coulomb, V- A = 0. E necessario poi considerare un termine che emerge
nell’interazione come prodotto tra campo esterno e campo di radiazione: @EiGiAO.
Nello spazio di Fourier, le derivate spaziali vengono sostituite dalle rispettive
componenti del vettore d’onda che definisce la direzione di propagazione. Ma
questo é ortogonale a B , per cui il contributo si annulla e, di conseguenza, Ag si
disaccoppia dall’interazione e non partecipa alla dinamica. Per questo motivo, &
lecito imporre la condizione aggiuntiva Ay = 0. Cio corrisponde alla scelta di gauge
di un potenziale scalare nullo, come nel caso della pura radiazione in assenza di
cariche.

Ancora una volta, svolgendo le somme sui vari indici si ottiene ’espressione
finale per la lagrangiana di interazione:

1
~ My

Tale lagrangiana contiene sia il campo di radiazione che quello associato alla parti-

Lp (EiaOAi 4 ey afA’f) . (2.12)

cella preudoscalare, come deve essere. In analogia con quanto evidenziato prima,
poi, si noti che il contributo di puro campo esterno si annulla come conseguenza
del fatto che E = 0. In pitl, i termini rimanenti sono dati da una combinazione di
campo elettrico esterno e campo elettrico e magnetico di radiazione. Per rendere
pit evidenti tali considerazioni, é utile riscrivere le lagrangiane in funzione delle

quantita vettoriali in gioco:

1 ~ ~
Ly=—3 <8MAV DAY — 9,A, A" + B2+ B - (V x A)> , (2.13)
_ 1 a0 0
EP—M—Pcp(B-@AJraA-(VxA)). (2.14)

Ricapitolando, la lagrangiana totale, scritta in termini del campo magnetico

esterno e delle variabili dinamiche rilevanti associate al campo di radiazione, risulta

1 A ~
£=— (0,4, 04" — 0,4, 0°4" + BB + 20 B o7A"

1 1

- 5(9#@ oM — §m2g02 (2.15)
1 9041 040 Qipk

T (BZGA +e,u0"A 6A>.



Le equazioni di Eulero-Lagrange in forma Lorentz covariante si possono scrivere

come 5 0L L 5 0L oC 2.16)
“3(0ap)  0p’ © 5(0uAs)  0As |

Affinché sia possibile svolgere correttamente i calcoli, é necessario tenere conto delle

seguenti regole sulle derivate nel formalismo di Eulero-Lagrange, che provengono
dallindipendenza delle variabili dinamiche 0, e d,Ag per ogni valore di u, a e 3:

0(0up) _ <a 0(0uA) _ ca s
5 )—% SO — 5967, (2.17)

in cui I'espressione d;; costituisce una delta di Kronecker in 4 dimensioni.

A questo punto, sostituendo la lagrangiana ricavata nella prima delle equazio-

ni (2.16) e riordinando i vari termini, si ottiene

1 ~ 0A
——B-—+ (O+m?) p= 2.1
X T ( m)gp 0, (2.18)

dove compare Poperatore di d’Alembert O = 9,0* = §2/0t* — V2. Si tratta di
una correzione all’equazione di Klein—Gordon grazie all’aggiunta di un termine che
dipende dal campo esterno e dal campo di radiazione. Si noti come a contribuire
all’equazione (2.18) siano la lagrangiana di Klein-Gordon e quella di interazione, ma
non quella di Maxwell. Inoltre, nell’arrivare all’espressione finale si é trascurato il
contributo derivante dall’ultimo termine di Lp per le ragioni esposte in precedenza:
esso ¢ cubico rispetto ai campi nella lagrangiana e, di conseguenza, quadratico
rispetto ai campi nelle equazioni di Eulero-Langrange.

Ripetendo lo stesso procedimento per la seconda delle equazioni (2.16) ricor-
dandosi della condizione V - A = 0, si ricava

1 Op 5
DA—FEEB—O. (2.19)

Analogamente a quanto evidenziato in precedenza, I’equazione d’onda libera per A
¢ una conseguenza delle equazioni di Maxwell, mentre il secondo termine costitui-
sce una correzione dovuta all’interazione del campo elettromagnetico con quello
pseudoscalare. In pii, la lagrangiana di Klein-Gordon non modifica in alcun modo
I’equazione. Infine, per la stessa motivazione portata prima, il contributo dovuto
all’'ultimo termine della lagrangiana di interazione viene trascurato. Si noti che,
nei limiti di validita delle approssimazioni considerate, se non ci fosse interazione
tra il campo pseudoscalare e il campo di radiazione, le equazioni del moto per il
campo A di pura radiazione rimarrebbero quelle classiche relative al campo libero
anche in presenza di un campo elettromagnetico esterno, come deve essere.

Insieme, le equazioni (2.18) e (2.19) rappresentano il punto di partenza della
presente discussione, poiché costituiscono il sistema di equazioni lineari che bisogna
risolvere per prevedere quali effetti ottici misurabili sperimentalmente possono
essere indotti dalla presenza della particella pseudoscalare.



2.1.2 Campo elettrico esterno

Si consideri ora una situazione in cui il campo esterno € un campo elettrico omo-
geneo e costante nel tempo E con direzione perpendicolare a quella di propagazione
del fascio laser. Partendo dall’equazione (2.5), con B = 0, si ottiene

~B, —E, -E;
B 0o 0 o0 (220
0 0 0 ‘

0 0 0

Per quanto riguarda la lagrangiana di Maxwell Ly, bisogna proseguire dall’e-
quazione (2.9) tenendo conto della presenza del campo elettrico esterno E. Dunque

si ottiene 1’espressione
1 AN AN AN .
Ly = —5 (@LA,, or'AY — 0,A, 0"A" — E,E" + EZOOAZ) . (2.21)

Si noti la presenza, nell’ultimo termine, del prodotto tra campo elettrico esterno e
campo elettrico di radiazione. Per renderlo piu evidente, si puo anche scrivere

Ly = —% <8MAV PA” — 9,A, A" — E* + E - OOA) : (2:22)

A proposito invece della lagrangiana di interazione Lp, € possibile proseguire
dall’equazione (2.11) poiché cio che viene modificato ¢ solamente 1'espressione del
tensore di campo esterno. Rimangono valide le considerazioni della sottosezione
precedente, in particolare quelle riguardanti il gauge di Coulomb V- A =0 e le
soppressioni dei termini causate dalla scala dell’interazione. Ancora, il potenziale
scalare non compare nell’interazione associato al campo elettrico esterno e risulta
disaccoppiato, dunque é possibile specificare di nuovo la condizione Ay = 0. Effet-
tuando la sostituzione per il tensore del campo esterno e svolgendo alcune delle

somme sui vari indici, si ricava allora
1 i aj Ak 0Ai a3 Ak
ﬁp = —¢ <_5ijkE 0’A + 5ijk8A ’A > . (223)
Mp
Ancora una volta, il contributo di puro campo esterno si annulla perché, in questa
occasione, B = (. Rimangono dunque un termine di puro campo di radiazione ed

uno misto di campo esterno e campo di radiazione. Infatti, riscrivendo 1’equazione

in funzione di quantita vettoriali,

1

Lp=—
P Mo

(_E. (V x A)+ A - (V x A)) . (2.24)

Entrambi i contributi, percio, sono dati dal prodotto scalare tra un campo elettrico
ed un campo magnetico (che siano di radiazione o esterni). Dunque, la lagrangiana
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totale £ = Ly + Lxg + Lp risulta infine
1 ~ o~ .
L=Ly=—3 <8MAV oA — 9,A, A" — E,E + Ei(?OAZ>

1 1
+ §8ug0 oMy — §m2<p2 (2.25)

1 ~ o
+ Y <—€ijkE’8]Ak + £jx0°A’ (%4’“) .

A questo punto, si possono applicare le equazioni di Eulero—Lagrange in forma
Lorentz covariante (2.16) rispetto ai campi dinamici A* e ¢ per ricavare le equazioni
del moto:

LB (vxa)+ (O+m?) ¢ =0, (2.26)
Mp

DA—L(ExV)gozo. (2.27)
Mp
1l termine E x V rappresenta un operatore vettoriale, le cui componenti si ottengono
trattando I'operatore V come un comune vettore. Si puo notare che, in questo caso,
sono le componenti di A ortogonali al campo esterno a interagire con il campo
pseudoscalare. Anticipando cio che verra detto piu avanti, l'interazione di una
particella pseudoscalare in un campo elettrico presenta una chiara analogia con
quella di una particella scalare in un campo magnetico.

2.2 Particella scalare

Nel caso di una particella scalare di massa m, I'interazione effettiva tra il campo

elettromagnetico e un campo scalare neutro y é

1
Ls = ——F,,F". 2.28
S 4MSX 122 ( )

Anche questa volta, il parametro Mg caratterizza l'interazione ed ha le dimensioni
di un’energia.

Per un campo esterno omogeneo e costante nel tempo B , la cui direzione di
propagazione ¢ ortogonale a quella del fascio laser, il tensore relativo al campo
esterno & quello dato dall’equazione (2.8). Rimane anche valida la separazione del
tensore elettromagnetico in base al contributo di radiazione e a quello di campo
esterno, espressa dall’equazione (2.4). La lagrangiana totale £ = Ly + Lxg + Ls
risulta percio

1

1 1 1
L= _ZFNVFMV + 58,0( 8“)( - §m2X2 + MXF;U/FHV' (229)

A questo punto, si vuole riscrivere la lagrangiana in funzione dei campi dinamici

A* e x e delle loro derivate. Valgono ancora le considerazioni fatte per la particella
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pseudoscalare in campo magnetico. In particolare, si sceglie di porsi nel gauge di
Coulomb, V - A = 0. In piu, si pud imporre di nuovo la condizione Ay = 0 perché
il potenziale scalare ¢ disaccoppiato dall’interazione. Inoltre, si suppone che, come
nel caso dell’assione, la scala dell’interazione sia tale da permettere di limitarsi
ai contributi lineari in A* e x. Per quanto riguarda la lagrangiana di Maxwell e
quella di Klein—Gordon, esse sono fornite rispettivamente dall’equazione (2.10) e
dall’analogo dell’equazione (2.2). Per la lagrangiana di interazione, invece, si ricava

un’espressione simile a quella di Maxwell:

1

Ls=—
S 2MSX

(0ud 074" — 0,4, 0°4" + BB + e A" ). (2.30)
Rispetto al caso pseudoscalare, questa volta l'ultimo termine della lagrangiana di
interazione rappresenta un prodotto scalare tra campo magnetico esterno e campo
magnetico di radiazione, come conseguenza del fatto che non ¢ coinvolto il tensore

elettromagnetico duale. Infatti, seguendo una notazione vettoriale, si ottiene

1

Ls=—ro
S 2MSX

(@AV DAY — 9,A, AP + B2+ B - (V x A)) . (2.31)

In definitiva, la lagrangiana totale puo essere espressa in funzione dei campi

dinamici e delle loro derivate come

1 ~ ~
£=— (04, 04" = 0,4, 0°A" + BB + ey B'oPA"

1 1

+ 50X 0"x = 5m*X (2.32)
- LAYV VAM R . i2J Ak

+2Msx(8uAV8A d,A, 0"A* + B;B +5UkB8A>.

Applicando le equazioni di Eulero-Lagrange in forma Lorentz covariante (2.16)
rispetto ai campi A* e y sulla lagrangiana totale £ si ottengono le equazioni del
moto per il campo elettromagnetico e per il campo scalare:

1 o) n2 2 _
—2—Ms<B-(V><A)+B>+(D+m)X_O, (2.33)
1 /-~
DA+2—MS<B><V>X:0. (2.34)

Come conseguenza di queste equazioni, solo la componente di A perpendicolare
al campo magnetico esterno B risente dell’interazione con la particella scalare,
diversamente da quanto accade con la particella pseudoscalare in presenza di un
campo magnetico. Infatti, a meno di fattori costanti, le equazioni del moto sono
analoghe a quelle ottenute per una particella pseudoscalare in un campo elettrico.
Cio ¢ dovuto alla struttura degli invarianti relativistici F),, F*" e F, wﬁ # - In altre
parole, i tensori F* e S ottengono 1'uno dall’altro mandando un campo

magnetico in un campo elettrico e viceversa, eventualmente a meno di un segno.
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Per lo stesso motivo, se si volesse estendere la presente analisi al caso di una
particella scalare in un campo elettrico, verrebbero sicuramente evidenziate delle
analogie con la situazione in cui un campo pseudoscalare interagisce con un campo

elettromagnetico di radiazione in presenza di un campo magnetico esterno.
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Capitolo 3

Propagazione in campo magnetico

3.1 Effetti ottici da campo pseudoscalare

(i si restringa ora al caso di una particella pseudoscalare in presenza di un campo
magnetico esterno omogeneo e costante nel tempo, trattato nella sottosezione 2.1.1.
Come anticipato, per trovare le correzioni alla propagazione della luce causate dalla
particella in questione bisogna analizzare le equazioni (2.18) e (2.19):

1 ~ 0A ,
—M—PB'W—F(D—HTL)QO—O,
1 0y 4
OA+——FB=0.
T o

Si noti che I'unica componente di A che risente della presenza del campo magnetico
é proprio quella parallela a B. Dunque, per un’onda polarizzata linearmente nella
direzione perpendicolare a B, é possibile porre

Ay (r,t) = ekt (3.1)

dove wy e k rappresentano rispettivamente la frequenza e il numero d’onda del
fascio iniziale. Per le caratteristiche del sistema, valgono poi le relazioni k = wy
ek-B=0.In pratica, le equazioni precedenti esprimono un effetto di mixing
tra i fotoni polarizzati nella direzione parallela a Belil campo . Di conseguenza,
la frequenza con cui avviene la propagazione risulta modificata. Si cercano allora
delle soluzioni della forma:

A” (’I", t) ~ A 6i(k~7’—wt)7 (32)
o(r,t) ~ O lkr—eb, (3.3)
Sostituendo allora le funzioni di prova nelle equazioni lineari, i fattori di fase si

semplificano e ci si riduce a trattare un’equazione algebrica che esprime w come
radice dell’equazione secolare:

§2

2 2\ (1.2 2 2y D7
(k: w)(k+m w) M%w

2 =0. (3.4)
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Si tratta di un’equazione di secondo grado in w?. Le soluzioni sono dunque

~ ~ 2 ~
| B\ 1 B2\ 4B
2 2 2
iy - Z ) £, [ m2 . 3.5
Y= +2<m+M§.> 2 <m+M§>+ M2 (3:5)

Poi, ¢ anche utile utilizzare una notazione pitt comoda per distinguere le radici

dell’equazione secolare:
wi =k*+ 0y, (3.6)

con w_ < w < w, perché - <0 < .. Sinoti che wft > 0 per ogni possibile scelta
dei parametri, e inoltre w_ = 0 per £ = 0. Questo perché, in assenza di campo
esterno, gli w4 si riconducono alle leggi di dispersione della componente di A paral-
lela al campo magnetico (per w_) e al campo pseudoscalare (per w, ). L'interazione
con il campo esterno mischia i due stati in un fenomeno simile all’oscillazione, che
a questo punto non sono piu autostati dell’hamiltoniana. L’invarianza di gauge,
pero, impedisce nella lagrangiana la presenza di un termine di massa esplicito per
il fotone, del tipo maA,A*/2, in quanto questo non sarebbe gauge invariante. Cio
vale anche in presenza di un campo esterno. Pertanto, nel limite in cui &k — 0,
deve risultare necessariamente che w_ — 0, poiché nel caso contrario verrebbe
generato un termine di massa per il fotone. Viceversa, il campo pseudoscalare non
é protetto dall’invarianza di gauge ed ¢é lecito che esso acquisti un contributo finito
alla sua massa, per cui per k —s 0 si ha che w? — m? + B2/M2.

A questo punto, per determinare unicamente la soluzione del problema é
necessario imporre delle condizioni iniziali. Queste sono

Ay(0,0) =1, ©(0,0) = 0. (3.7)

Per soddisfare tali condizioni, é necessario scrivere le soluzioni come combinazioni
lineari di contributi a frequenza wy e w_, rispettivamente. Cio ¢ possibile in virtu
della linearita delle equazioni (2.18) e (2.19). Allora, sotto tali ipotesi e tenendo

gia conto delle condizioni iniziali nell’espressione delle ampiezze, si puod scrivere

Aj(r,t) = Aei®r=eeh) 4 (1 — A) eilbr=e-t),
o 1) = @ (eilkr=wst) _ gilkr—w-0))

In particolare, ¢ stato scelto di prendere per entrambe le frequenze w? la radice
positiva.

Sostituendo ancora una volta nell’equazione (2.19) le espressioni per A e ¢, ¢
possibile semplificare la dipendenza spaziale e raggruppare i termini a frequenza
diversa. Siccome allora l'uguaglianza vale per ogni valore di ¢, entrambi i coefficienti

si devono annullare identicamente. Cio permette, in definitiva, di ricavare 'ampiezza
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del campo Aj:

wy (k? —w?)
Cowp (k2 —w?) —wo (k2 —w?)

w_ (k2 — wi)
wy (k2 —w?) —w_ (k2 —w?)

i(kr—wyt)

(3.10)

i(kr—w_t)

Si puo verificare facilmente che tale espressione rispetta le condizioni al contorno
richieste.

Da questo punto in poi, si ometta la dipendenza da r, che é banale, e si
introducano i versori ¢ e J, che rappresentano rispettivamente la direzione parallela
aBe ortogonale sia a B che a k. Allora, imponendo che inizialmente il campo
A sia polarizzato linearmente ad un angolo 6 rispetto alla direzione di E, si pud
scrivere

A(0) = cosfi+sinb j. (3.11)

Ad un tempo successivo, le componenti perpendicolare e parallela evolvono separa-

tamente e in maniera diversa, dunque si ha
A(t) = Aj(t) cos 01 + e " sinb 3. (3.12)

Cio indica che, a causa del mixing con il campo ¢, che introduce frequenze diverse
da quella iniziale, I’'onda non é piu polarizzata linearmente. Infatti, sotto certe

condizioni, dopo un tempo ¢ = L ¢ possibile approssimare A con l'espressione
A (L) = (L+e(L) +iv(L)) e ™", (3.13)

dove ¢ e 7 sono quantita molto piccole. Le equazioni (3.12) e (3.13) rappresentano,
all’ordine pit basso in € e 7, un’onda polarizzata ellitticamente. In particolare, il
potenziale vettore descrive un’ellisse con I'asse maggiore ad un angolo rispetto a B
pari a

(L) =6— %e(L) sin (26) . (3.14)

In piu, ellitticita e, definita come rapporto tra asse minore e asse maggiore, risulta

e = shi(D)] (3.15)

Tali effetti sono misurabili e permettono, in linea di principio, di stimare la massa
m e la costante di accoppiamento dell’interazione Mp relative alla presenza della
particella pseudoscalare.

E importante notare che la rotazione netta, (L) — #, dipende dal segno di
f, che cambia se, per un B fissato, si modifica il verso di k. Di conseguenza,
non & possibile accumulare 'effetto di rotazione facendo passare ripetutamente il
fascio avanti e indietro nel magnete. Viceversa, l'ellitticita costituisce un effetto

cumulativo.
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A questo punto, € necessario fare delle considerazioni per trovare i valori di
e e . In particolare, si possono distinguere tre differenti regimi a seconda della
velocita della variazione dei fattori di fase a frequenza w. della componente parallela

rispetto a quello a frequenza wy della componente perpendicolare.

Primo caso |wy —wp| L < 27. In tale situazione, entrambi i fattori a frequenza
w4 variano lentamente rispetto al contributo a frequenza wy poiché, appunto,
gli w4 sono molto vicini ad wy. Dunque sia Ay che ¢ si propagano in maniera
coerente con A lungo tutta la distanza L. Partendo allora dall’equazione (3.10) e
sfruttando I'equazione (3.5), si possono espandere gli wy intorno a wy ricordandosi
della condizione wy = k. In particolare, i primi termini non nulli si ottengono
sviluppando i fattori di fase in serie di potenze fino al terzo ordine. Alla fine si
giunge all’espressione

B2]2 B2m2I3 .
Ay(L) = (1 el ) g0t (3.16)

T2 T B

Come anticipato, i termini residui sono proporzionali a L? e L3. Dalla precedente
formula ¢ possibile percido dedurre che

B2 . BPm*L?

[)=———+ L)=-""" 1

Le condizioni di validita di tale approssimazione possono essere imposte con un certo
grado di arbitrarieta. Si sceglie dunque come limite I'uguaglianza (w; — wp) L = 2,
per cui 'onda a frequenza w, cessa di propagarsi in maniera coerente. Riscrivendo
tale condizione in funzione dei parametri m ed Mp, si ha

dove sono state introdotte per comodita le quantita m3 = 4mwwy/L e My = EL/47T.
Percio questo indica quali valori della massa della particella pseudoscalare e del
parametro caratteristico dell’interazione danno origine a una propagazione coerente

di entrambe le onde a frequenza w. .

Secondo caso (w; —wp) L > 271 > (wy —w-) L. Nella regione in questione,
solo 'onda a frequenza w_ rimane coerente. Viceversa, il fattore di fase a frequenza
w, varia rapidamente rispetto a quello a frequenza wy. Di conseguenza, la sua media
sui tempi considerati si annulla e il termine corrispondente pud essere trascurato. B
sufficiente allora sviluppare il fattore di fase in w_ fino al primo ordine per trovare

I’espressione:

weoo Lo\
Ay(L) = <1+ w;5+ —ig ) et (3.19)
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Questa volta, i termini dell’espansione sono costanti o lineari in L. I parametri
dello sviluppo sono

. W+5, . L(S,

€(L) - 2&10 )

(L) (3.20)

wWo 6+’

dove i valori dei 04+ coincidono con quelli introdotti in precedenza. In definitiva,
la regione in questione rispecchia una situazione intermedia se confrontata con le
altre due.

Terzo caso |wy — wo| L > 2m. In queste condizioni, A risulta totalmente
incoerente. Il limite di validita per tale situazione si pud imporre a (wy — w_) L = 2.
Convertendo 'espressione sulla base dei parametri m ed Mp, si ottiene

m® =mg (Vg - ) : (3.21)

Questa regione corrisponde a valori decisamente non realistici del parametro Mp,
in particolare perché implicherebbe Mp < M,. Ad esempio, per valori caratteristici
degli esperimenti in laboratorio, cioé B~l1TeL~1 m, la scala di M, é dell’ordine
di qualche decina di MeV, ben al di sotto della scala prevista per Mp dai modelli
teorici dell’assione, che ¢ dell’ordine di 10'° GeV.

3.2 Implicazioni dell’esperimento PVLAS

PVLAS (Polarizzazione del Vuoto con LASer) ¢ un esperimento finanziato
dall'INFN e attivo dal 2002, prima nella sede dei Laboratori Nazionali di Legnaro,
vicino a Padova, e poi presso il Dipartimento di Fisica dell’Universita di Ferrara [7—
9]. Esso si propone di misurare le proprieta ottiche del vuoto, cioé le deviazioni
della propagazione della luce nel vuoto, nello specifico in presenza di forti campi
magnetici, rispetto alle previsioni dell’elettrodinamica di Maxwell. Principalmente,
questi effetti di interazioni non lineari del campo elettromagnetico sono descritti,
nell’ambito dell’elettrodinamica quantistica |21, 22|, o QED, dalla lagrangiana
effettiva di Euler—Heisenberg [23-25], riportata in appendice C. Tale lagrangiana
si ottiene considerando l'interazione del campo elettromagnetico con il campo di
Dirac dell’elettrone e il principio di indeterminazione di Heisenberg. In particolare,
I’emissione e ’assorbimento di coppie elettrone-positrone nel vuoto, permessi dal
principio di indeterminazione, contribuiscono alla generazione di termini non lineari.
Al primo ordine nello sviluppo in F),, F*, la lagrangiana di Maxwell acquista
dei contributi non lineari di ordine (F wl ‘“’)2 e (F Wﬁ ’“’)2. L’espansione diventa
ragionevole quando l'intensita del campo elettromagnetico esterno é piccola rispetto
al campo critico, che risulta dell’ordine di E, ~ 10*” Vm~!. Tali termini provocano
pertanto una prima modifica alle leggi di dispersione di un’onda elettromagnetica
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che si propaga in un campo magnetico esterno, a seconda anche del suo stato
di polarizzazione. Cio spiega le proprieta di birifrangenza del vuoto predette
dalla QED. Tuttavia, questi effetti risultano molto piccoli per campi magnetici
di laboratorio, per cui la sensibilita degli esperimenti attuali non ¢ sufficiente per
osservarli. Di conseguenza, ogni potenziale rivelazione di simili effetti costituisce

un’osservazione indiretta della presenza di nuova fisica.

Nella versione attuale, 'apparato sperimentale si basa su una cavita di Fa-
bry—Perot immersa in un forte campo magnetico, attraverso la quale viene fatto
passare pitl volte un fascio laser, inizialmente polarizzato linearmente, per au-
mentare il cammino ottico ed accumulare gli effetti che si vogliono misurare. Il
campo magnetico, ortogonale alla direzione di propagazione del fascio, & generato
da due dipoli magnetici permanenti, ognuno da 2,5 T, che sono in grado di ruotare.
Il tutto ¢ montato su un supporto in granito, che isola sismicamente ’apparato
sperimentale. Rispetto alla versione precedente, i magneti permanenti sostituiscono
un magnete superconduttore allo scopo di migliorare le condizioni sperimentali e

limitare 1 costi.

Nello specifico, ’esperimento ¢ concepito per misurare, grazie ad un ellissometro,
possibili effetti di birifrangenza e dicroismo tra le componenti in polarizzazione del
fascio laser. Introducendo infatti I'indice di rifrazione complesso come N = n + ik,
la birifrangenza An = n| — n ¢ proporzionale all’ellitticita, mentre il dicroismo
Ak = k) —k_ ¢ proporzionale alla differenza di fase tra le due polarizzazioni. Questo
significa che, in presenza di ellitticita, le due componenti viaggiano a velocita diverse;

in presenza di dicroismo, esse vengono assorbite in maniera diversa.

In realta, 'elettrodinamica quantistica non € I'unica teoria che prevede simili
proprieta ottiche del vuoto. Si possono considerare altri modelli come quello delle
particelle millicharged o, appunto, quello dell’assione. A livello sperimentale, la
sostanziale differenza tra 'elettrodinamica quantistica e il modello assionico sta
nell’ordine di grandezza degli effetti misurabili, molto superiore nel caso dell’assione.
Inoltre, la birifrangenza ha segni opposti a seconda della natura della particella che
I'ha indotta (scalare o pseudoscalare), e cido permette di distinguere tra i due casi.
Nel 2006, in seguito alla misura di un dicroismo che si discostava dalle predizioni
dell’elettrodinamica quantistica, fu pubblicato un articolo riguardante proprio la
possibile rivelazione indiretta di un assione, dove venivano calcolati dei valori di
m~ 1meV e Mp ~ 4-10° GeV. In seguito, tuttavia, tale risultato venne escluso
sia dallo stesso PVLAS che da altri gruppi di ricerca ed attribuito a problemi
sperimentali legati ad errori sistematici sul campo magnetico, non considerati nella
prima fase dell’esperimento. Ad ogni modo, le nuove misure di PVLAS sono state
in grado di stabilire alcune condizioni sia sulla massa m che sulla costante di
accoppiamento Mp di un eventuale assione. Tali limiti si aggiungono ad altri che
provengono da considerazioni di tipo astrofisico [20].
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Oltre a PVLAS, altri progetti di ricerca che mirano allo studio delle proprieta
ottiche del vuoto sono, ad esempio, gli esperimenti QQ & A, BMV e OSQUAR [7].
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Capitolo 4

Conclusioni

Con il presente lavoro di tesi, si é voluta studiare tramite un approccio di
teoria dei campi classica l'interazione tra un campo elettromagnetico di radiazione
e un ipotetico campo, scalare o pseudoscalare, in presenza di un campo esterno
omogeneo e costante nel tempo. Questo porta alla modifica delle equazioni del
moto di Maxwell e di Klein—-Gordon grazie, appunto, a termini che derivano
da un’interazione effettiva. Sono stati discussi, dunque, i casi di una particella
pseudoscalare in un campo magnetico, di una particella pseudoscalare in un campo
elettrico e di una particella scalare in un campo magnetico, riproducendo nella prima
situazione ed estendendo nelle altre 'analisi di Maiani, Petronzio e Zavattini [5]. In
particolare, nel caso del campo pseudoscalare, questo é associato all’assione, uno
dei candidati a spiegare alcuni fenomeni legati alla materia oscura. Tale particella
trova le sue giustificazioni teoriche nella necessita di salvaguardare la conservazione
di CP nel caso dell’interazione forte.

Successivamente, si € passati allo studio degli effetti ottici che I'interazione puo
generare nel caso della particella pseudoscalare in campo magnetico. In particolare,
si € mostrato come, su un fascio laser inizialmente polarizzato linearmente, la
presenza della particella pseudoscalare generi effetti di birifrangenza e dicroismo
che possono essere misurati sperimentalmente. In pii, tali fenomeni sono ben pit
evidenti per l'interazione analizzata che per le correzioni derivanti dall’elettrodi-
namica quantistica. Cio significa che sarebbe possibile attribuire alla presenza
dell’assione eventuali deviazioni consistenti dalle predizioni della QED.

Infine, sono stati descritti brevemente i metodi e gli obiettivi dell’esperimento
PVLAS, che si prefigge di misurare le proprieta ottiche del vuoto e che potreb-
be trovare delle conferme al modello dell’assione o a teorie relative a eventuali
accoppiamenti del campo elettromagnetico con particelle scalari neutre.
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Appendice A

Formalismo e convenzioni

Lo scopo di questa appendice & di specificare le convenzioni e le notazioni
utilizzate nell’intero lavoro di tesi.

Prima di tutto, per praticita sono state impiegate le unita relativistiche h = ¢ =1
per la costante di Planck ridotta e per la velocita della luce e eg = 9 = 1 per la
costante dielettrica del vuoto e per la permeabilita magnetica del vuoto. In questo
modo, alcune unita di misura vengono modificate. Ad esempio, energia, massa,
momento, frequenza, 'inverso di un tempo e l'inverso di una posizione possono
essere espressi con la stessa unita di misura.

Per indicare un quadrivettore, vengono impiegate come indici le lettere del-
I’alfabeto greco, mentre quelle dell’alfabeto latino sono riservate per indicare i
vettori tridimensionali. Dunque, a* = (a°, a’) = (a°, a) rappresenta un generico
quadrivettore controvariante, mentre b, = (bo, b;) = (bo, b) rappresenta un generico
quadrivettore covariante.

Per quanto riguarda la metrica relativistica, si ¢ scelto di utilizzare la convenzione

dei segni (4, —, —, —), per cui il tensore metrico risulta
1 0 0 0
0 -1 0 O
M = G = Al
To79 =10 0 -1 0 (A1)
0o 0 0 -1

Di conseguenza, per passare da un quadrivettore controvariante ad uno controvarian-
te, cioé per abbassare gli indici, ¢ necessario cambiare il segno della componente spa-
ziale, mentre quella temporale resta inalterata. Dunque a,, = (ag, —a;) = (ag, —a).
La metrica dello spazio tridimensionale ¢ invece essenzialmente euclidea e piatta,
per cui ¢ indifferente per un vettore tridimensionale porre gli indici in alto o in
basso.

Allo scopo di semplificare le equazioni e di evitare di scrivere i simboli che
rappresentano le sommatorie, si sceglie di impiegare la notazione di Einstein per

le sommatorie: ogni qual volta un indice (greco o latino) & ripetuto in basso ed
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in alto in un prodotto, si assume implicitamente che 1’espressione venga sommata
rispetto a quell’indice.

Per le derivate, invece, si utilizza la scrittura

) )
O =5 = (&’V> . (A.2)

E da notare il segno positivo per la parte spaziale del quadrivettore covariante.

Inoltre, per convenzione, quando compare un simbolo di derivata, questo agisce
solo sull’elemento che sta immediatamente pit a destra. Cido permette di non
appesantire la notazione con troppe parentesi.

Ancora, il tensore totalmente antisimmetrico é rappresentato dal simbolo di
Levi-Civita. Esso é completamente determinato specificando una qualsiasi delle
sue componenti, poiché tutte le altre possono essere ricavate da questa in base alle
sue proprieta. Si scelgono allora, rispettivamente in 3 e 4 dimensioni, le condizioni

2123 _ o 20123 _ |
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Appendice B

Potenziali e campi elettromagnetici

In questa appendice, si vogliono richiamare e chiarire alcuni concetti relativi
all’elettrodinamica in notazione relativistica, utili a comprendere e controllare i
calcoli dei capitoli precedenti in maniera piu semplice.

Si ricordi innanzitutto il tensore elettromagnetico in coordinate cartesiane:

0 —-E -E, —I
E, 0 —B; By
Ey B, 0 -B
Ey —By B, 0

= (B.1)

Esso ¢ legato al tensore elettromagnetico duale dalla relazione P o= %E”VAUF \o -
Percio, svolgendo le somme sugli indici A e o, si ottiene

0 —-By —By —DBj
B, 0 Es  —Ey
By —F35 0 Ey
Bs Ey —-E; O

F = (B.2)

Entrambi i tensori sono antisimmetrici. In piu, il tensore duale si ottiene dal
tensore elettromagnetico effettuando una sostituzione del tipo £ — B, B — —E.
Questa é 'origine dell’analogia che intercorre tra il caso della particella pseudoscalare
in campo elettrico e quello della particella scalare in campo magnetico.

Sono di fondamentale importanza gli invarianti relativistici che comprendono

prodotti tra il tensore elettromagnetico e il suo duale:

F,F* =2 (B* - E?), (B.3)
F.,F" = —AE.B. (B.4)
In funzione del quadripotenziale elettromagnetico A* = (¢, A), il tensore

elettromagnetico si puo esprimere come
Fr = gFAY — 07A*. (B.5)
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Cio permette di riscrivere le formule precedenti sostituendo ai campi elettromagne-

tici le corrispondenti espressioni in funzione dei potenziali:

oA
E=-Vj— 7 (B.6)
B=Vx A, (B.7)

Praticamente tutte le lagrangiane del capitolo 2 si possono ricavare utilizzando una
logica di questo tipo.
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Appendice C

Lagrangiana di Euler—Heisenberg

La lagrangiana effettiva di Euler-Heisenberg [23-25] & la seguente:

Lgy = - (E* — B?)
+oo

+ € iv* (E - B)

N —

Ccos (131\/E2 — B2 +2i (EB)) + cc

oS (Eic\/E2 — B2+ 24 (EB)> —cc

—T

+E+ %:ﬂ (B*—E?) |

p dzr, (C.1)

dove E. = m?/e costituisce il valore critico del campo, e ¢ la carica dell’elettrone,
me la sua massa, = la variabile di integrazione e l’espressione cc rappresenta il
complesso coniugato di cio che la precede.

Per energie del campo di radiazione ben al di sotto della massa dell’elettrone
e campi esterni di intensita piccole rispetto ai valori critici, la lagrangiana si puo
espandere come [7]

(E2— B?) + #4%4 (B~ B’ +7(E-B)).  (C2)

N | —

EEH -

Si noti che, come anticipato, i termini di correzione alla lagrangiana di Maxwell
sono di ordine (FM,,F‘“’)2 e (FWFW)Q.
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