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Abstract

We discuss various aspects of black hole scattering. Firstly, we consider non-
extremal rotating black branes. We solve the wave equation for a massless scalar field
and calculate the absorption cross section. We obtain a function of two temperature
parameters once we move away from extremality, which is similar to the case of Kerr-
Newman black holes. We discuss the implications of this result to the AdS/CFT
correspondence. Secondly, we study a system of maximally-charged slowly-moving
black holes and take the limit of a continuous self-interacting matter distribution
(black string). We quantize the system by using the path integral method. We show
that a careful implementation of the Faddeev-Popov gauge-fixing procedure leads to a
Hamiltonian possessing a well-defined vacuum. The Hamiltonian consists of a kinetic
energy term and a potential which is the generator of special conformal transforma-
tions. We obtain an explicit expression for the Hamiltonian of a ring-shaped formation
and show that it is equivalent to a harmonic oscillator in the non-relativistic limit.
Thirdly, we investigate quasinormal modes. We develop a perturbative method of cal-
culating quasinormal frequencies in the high temperature limit of AdS Schwarzschild
spacetimes of varying dimensionality. In 2+1 dimensions, exact expressions involv-
ing hypergeometric functions have been obtained. We discuss the (4+1)-dimensional
case in detail. In this case, the calculation of quasinormal modes amounts to solving
Heun’s equation. Higher dimensions are also considered. Our analytical results are
in agreement with numerical results for the low-lying frequencies.
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Chapter 1

Introduction

The concept of a black hole was proposed in 1784 by John Michell [1], but did not
receive much attention until the arrival of general relativity in the early twentieth
century when solutions to the Einstein field equations containing singularities were
discovered. The term ‘black hole’ was first used in 1967 by Wheeler [2].

It was Bekenstein in 1972 [3] who first pointed out the similarity between the
non-decreasing area theorem and the second law of thermodynamics. He proposed
that the area of the black hole horizon should be proportional to its entropy. This idea
contradicted the traditional idea that entropy should be proportional to the volume
of the system. In 1973, Bardeen, Carter and Hawking [4] provided a rigorous proof
of the first law of black holes,

δM =
κ

8π
δA+ ΩHδJH + . . . (1.1)

and the second law, the non-decreasing of the horizon area of a black hole, δA ≥ 0,
where M is the mass of the black hole, κ its surface gravity, ΩH and JH are its
angular velocity and momentum, respectively, and the dots represent work done by
other parameters. The third law is the unattainability of a zero-value of κ, stating
that it takes an infinite amount of energy or time to reduce κ to zero.

In analogy to the laws of thermodynamics, κ should represent the temperature,
T , and A should represent the entropy, S. However, in classical relativity, T is zero
and S is infinite. In [5], Bekenstein suggested that the non-zero value of temperature
and finite value of entropy should be the result of quantum effects. This implies that
when T 6= 0, black holes should radiate particles out of the horizon, resulting in a
decreasing entropy. In 1974, by applying second quantization to a boson field near
the horizon, Hawking [6] proposed that the total entropy of a system that includes a
black hole be given by

S =
A

4
+ S ′ (1.2)
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where S ′ is the entropy in the exterior of the black hole. It should be emphasized
that the constant multiplying the area of the horizon A (1/4 in units in which G =
c = ~ = k = 1, where G in Newton’s constant, c is the speed of light, h is Planck’s
constant (~ = h/2π) and k is Boltzmann’s constant) is fixed. The importance of S ′ is
that it prevents the total entropy from decreasing by a decay process of the black hole
or by an absorbing-entropy process into the black hole, such as very slowly dropping
a box of entropy into the black hole, which causes the entropy of the box to disappear
and the area of the horizon to barely increase [7]. The temperature at equilibrium is
called the Hawking temperature

TH =
κ

2π
. (1.3)

Radiation from the black hole at this temperature is called Hawking radiation. On
the other hand, superradiance occurs when ω < mΩ, where ω is the energy of the
emitted particles from the black hole, m is the magnetic quantum number and Ω is
the angular velocity of the black hole. In this case, an observer far away from the
black hole sees a flux reflected from the black hole greater than the incident flux [8, 9].

The above semiclassical description has become the foundation of quantum
gravity. To date, the research on this subject can be categorized into three groups
[10]:

(I) classical calculation of the interior entropy which is proportional to the horizon
area [11],

(II) the study of entanglement entropy resulting from quantum field correlations
between the exterior and the interior of the black hole [12], and

(III) calculation of the entropy and scattering cross section (absorption coefficients)
from the low energy effective action in (super)string theory.

String theory has been the most successful theory to provide an entropy
value microscopically in agreement with the macroscopic value from general rela-
tivity (A/4). Moreover, scattering cross sections (absorption coefficients) from string
theory have been shown to agree with classical results [13]. This correspondence is
described in more detail in chapter 2. A review of string theory and the extended
objects that arise as solutions (such as D-branes) can be found in numerous sources,
such as [14, 15, 16, 17].

This dissertation is organized as follows.
In Chapter 2, we discuss the scattering cross section of scalar absorption by N

D3-branes which are extended objects arising in (super)string theory. We divide the
discussion into three sections. In section 2.1, we review the derivation of Dp-brane
solutions in string theory and use them (in the p = 3 case) to calculate the entropy
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and absorption coefficients. They are found to be in agreement with results from
corresponding conformal field theories, showing that a certain correspondence exists
between supergravity models arising from string theory and conformal field theories
living at the boundary of spacetime. This correspondence is further supported by the
calculation of Green functions. Section 2.2 contains examples of the calculation of
decay rates of a scalar field in 3+1 and 4+1 dimensional Kerr-Newman black holes,
where a function of two temperature parameters, left and right, are obtained. The
results in section 2.1 and 2.2 are described from literature as a motivation to calculate
D3-brane absorption coefficients in section 2.3. We use the method in section 2.2 to
calculate scattering cross sections of scalar fields off of non-extremal rotating black
branes in section 2.3 and we also find the two temperature function. We comment
on the implications of our results on the supergravity/field theory correspondence
observed in the extremal limit.

In Chapter 3, we consider the quantization of a multi black hole system. Unlike
chapter 2, where we study scattering off of a single extended object, here we discuss
scattering of black holes by other black holes. We quantize the system in the extremal
case, in which a non-relativistic expansion is possible, using the path-integral method.
The Hamiltonian of this system appears to possess an ill-defined ground state. The
problem can be fixed by the addition of a potentialK. K turns out to be the generator
of special conformal transformations. We show that the addition of K arises naturally
from a careful implementation of the gauge-fixing procedure, following [18, 19]. We
start by reviewing the quantization of a particle near a black hole, specializing to
extremal Reissner-Nordström spacetimes, in Section 3.2. In Section 3.3, we extend
the discussion to the quantization of slowly-moving maximally-charged black holes.
The results in section 3.1, 3.2 and 3.3 are described from literature where we extend
our calculation in section 3.4. In section 3.4, we consider a continuous self-interacting
matter distribution (black string) and quantize it in the non-relativistic limit. We
calculate the potential K explicitly for a ring-shaped formation and show that the
Hamiltonian is equivalent to a harmonic oscillator Hamiltonian.

In Chapter 4, we calculate AdS Schwarzschild black hole quasinormal modes.
In this chapter, we turn our attention back to scattering off of a single black hole
in AdS Schwarzschild spacetime. Quasinormal modes are the solutions to the wave
equation where the wave is ingoing at the horizon and outgoing at the boundary of
spacetime (far away from the black hole). From the AdS/CFT correspondence, the
poles of the Green functions (quasinormal frequencies) should provide information
regarding perturbations of the corresponding conformal field theory residing at the
boundary of AdS spacetime. The quasinormal frequencies are complex numbers whose
imaginary part is negative, since the modes are decaying at the black hole horizon.
The wave equation can be solved exactly in 2+1 dimensions. This is reviewed in
section 4.2. The work in section 4.1 and 4.2 are from literature. In section 4.3,
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we tackle the (4+1)-dimensional case in which the wave equation turns into Heun’s
equation. We develop a perturbative method to calculate the quasinormal modes in
the limit of high temperature, or large black hole. Our results are in agreement with
results obtained through numerical methods for the low-lying frequencies. We then
extend our method to higher dimensions and obtain explicit expressions in 6+1 and
3+1 dimensions in section 4.4.

Finally, Chapter 5 contains a discussion of our results. We summarize our
conclusions, discuss related work that has appeared in the literature and present
possible future directions.
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Chapter 2

Absorption Coefficients of Branes

In January 1998, Maldacena [20] proposed a correspondence between (super)gravity
models arising from (super)string theory and supersymmetric quantum field theories
in one less dimension. For example, it was conjectured that N = 4 super Yang-Mills
theory in four dimensions can be derived from type-IIB superstring theory in the
presence of a large number of parallel D3-branes. In the strong coupling limit, the
spacetime near the D3-branes is AdS5 × S5 and the super Yang-Mills theory, which
is a superconformal field theory, lives on the boundary of the anti-de Sitter space
AdS5. This conjecture has led to a booming research on the subject and today, there
is considerable evidence of the AdS/CFT correspondence, confirming Maldacena’s
conjecture. The correspondence has been extended toM2 orM5 branes (supergravity
based on AdS7 × S4) and the (0,2) superconformal field theory in six dimensions,
as well as D1 + D5 branes (supergravity based on M4) and (4,4) superconformal
field theory. In general, the supergravity model is defined in one more dimension
than the corresponding field theory. Thus, we see the emergence of a holographic
principle according to which all the degrees of freedom of the supergravity theory
lie on a hypersurface (usually, the boundary) of the spacetime on which the theory
is defined [21]. An extensive review on the AdS/CFT correspondence can be found
in [22]. Our work in this chapter is part of on-going research on (super)gravity
models related to D3-branes and the (super)conformal field theories they correspond
to. Before going into the details of our work, we shall review the key developments in
the subject. There is a vast literature on the subject, so only a few significant results
will be discussed.

For completeness, we should mention that a similar idea was proposed back in
1992, suggesting that the 1+1-dimensional QCD theory is equivalent to string the-
ory [23]. Also more recently, Strominger [24] proposed that a similar correspondence
exists between D-dimensional de-Sitter space (dS) and (D − 1)-dimensional confor-
mal field theories living in the infinite past and future of the dS space. For details,

5



see [25].
The structure of this chapter is the following. Section 2.1 contains the gen-

eral properties of non-rotating D3-branes, a discussion of the Bekenstein-Hawking
entropy, and extremal D3-brane absorption coefficients which we compare with those
from conformal field theory providing a crucial piece of evidence of the AdS/CFT
correspondence. In section 2.2, we present examples of absorption coefficients of
Kerr-Newman black holes in 3+1 and 4+1 dimensions. The method used in sec-
tion 2.2 is employed in section 2.3 to obtain absorption coefficients of rotating branes
off extremality.

2.1 D3-Branes and the AdS/CFT correspondence

2.1.1 Black strings and p-branes

In this subsection we present the derivation of non-rotating D3-branes, following the
work of Horowitz and Strominger [26] and also Gibbons [27] and Maeda [28]. We
start from the low energy effective action from IIB super string theory [16, 14]

S =

∫
d10x

√
−g
[
e−2φ

[
R + 4(∇φ)2

]
− 2e2αφ

(D − 2)!
F 2

]
(2.1)

where F is a (D − 2) form with dF = 0. The magnetic charge proportional to
∫
F

is carried by a spatially extended (10−D)-dimensional object, assuming D ≥ 4, for
example D3-branes whereas the electrical charge can be obtained from dualizing F ,
[29]. By assuming that the branes are flat, the solution can be written in the form

ds2 = eAdŝ2 + eBdxidx
i, (2.2)

where dŝ2 is a D-dimensional metric, xi are p-dimensional cartesian coordinates with
p = 1, ..., 10−D and all fields are independent of xi. Substituting the metric into the
action (2.1), we obtain a D-dimensional action. In order to turn the action into the
standard Einstein action, A, B and φ may be simplified into the linear combination
of two scalar fields, ρ and σ, where F 2 does not couple to σ. The linear combinations
of ρ and σ are

βφ = ρ
(4α+ 7−D)

2
− σ

(D − 3)

2

[
10−D

D − 2

]1/2

βA = ρ

[
α− D − 4

D − 2

]
− σ(α+ 1)

[
10−D

D − 2

]1/2

βB = ρ(α+ 1) + σ
(D − 2)α−D + 4

[(10−D)(D − 2)]1/2
, (2.3)
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where

β = −
[
4α2 + 2α(7−D) + 2

D − 1

D − 2

]1/2

. (2.4)

The D-dimensional action, after substituting these parameters, is

S =

∫
dDx

√
−ĝ
[
R̂− 1

2
(∇ρ)2 − 1

2
(∇σ)2 − eβρ

2F 2

(D − 2)!

]
. (2.5)

The equations of motion from the action (2.5) are

0 = ∇µ1
(
eβρFµ1...µD−2

)
,

∇µ∇µσ = 0, ∇µ∇µρ =
2β

(D − 2)!
eβρF 2,

R̂µν =
1

2
∇µρ∇νρ+

1

2
∇µσ∇νσ +

2

(D − 3)!
eβρFµλ1...λD−3

F λ1...λD−3
ν

−ĝµν
2(D − 3)

(D − 2)(D − 2)!
eβφF 2. (2.6)

To solve these equations, the metric, dŝ2, in D dimensions may be written in the form

dŝ2 = −λ2dt2 + λ−2dr̂2 +R2dΩ2
D−2, (2.7)

where λ and R are function of r̂. The solution can be simplified by letting the scalar
fields vanish asymptotically. From the first equation of motion, F can be written as

F = QεD−2, (2.8)

where Q is the charge of the black holes and εD−2 is the volume of the unit D-
dimensional sphere, or

∫
SD εD = 2π(D+1)/2/Γ((D + 1)/2). Then from this result,

(1/(D − 2)!)F 2 = Q2/R2D−4. As is known from general relativity only timelike R̂00,
radial R̂11 and spherical R̂22 tensors give independent results and also one can find
out that R̂00 = (D − 3)R̂22, or in terms of R and λ,

1

2
R2−D(RD−2(λ2)′)′ = −(D − 3)R2−D(RD−3λ2R′)′ + (D − 3)2R−2, (2.9)

where a prime means differentiating with respect to r̂. From the third line in the equa-
tion of motion (2.6) R̂00 = ((D−3)/β(D−2))∇2ρ. By setting Z = λ2e−2(D−3)ρ/β(D−2),
this equation turns into

(RD−2λ2(lnZ)′)′ = 0. (2.10)

7



With the asymptotically flat and horizontally regular boundary conditions, these
equations can be solved and the results are

F = QεD−2,

dŝ2 = −
[
1− (r+/r)

D−3
] [

1− (r−/r)
D−3
]1−γ(D−3)

dt2

+
[
1− (r+/r)

D−3
]−1 [

1− (r−/r)
D−3
]γ−1

dr2

+r2
[
1− (r−/r)

D−3
]γ
dΩ2

D−2,

eβρ =
[
1− (r−/r)

D−3
]γ(D−3)

,

σ = 0, (2.11)

where

γ =
2β2(D − 2)

(D − 3)(2(D − 3) + β2(D − 2))
. (2.12)

The coordinate r relates to r̂ by rD−4dr = RD−4dr̂. The parameters r+ and r− are
related to Q and M by these two equations

Q =

[
γ(D − 3)3(r+r−)D−3

2β2

]1/2

, M = [1− (D − 3)γ]rD−3
− + rD−3

+ . (2.13)

For r− = 0, then F = 0, ρ = 0 and the metric reduces to the D-dimensional
Schwarzschild solution. For r = r+, the timelike Killing field becomes null and there
exists an event horizon, but for r = r−, the horizon area shrinks to zero and there
emerges a curvature singularity, therefore this solution describes black holes only for
r+ > r−.

From (2.2), the solution in ten dimensions is

F = QεD−2,

ds2 = −
[
1− (r+/r)

D−3
] [

1− (r−/r)
D−3
]γx−1

dt2

+
[
1− (r+/r)

D−3
]−1 [

1− (r−/r)
D−3
]γr

dr2

+r2
[
1− (r−/r)

D−3
]γr+1

dΩ2
D−2 +

[
1− (r−/r)

D−3
]γx

dxidxi,

e−2φ =
[
1− (r−/r)

D−3
]γφ , (2.14)

where

γr =
(α− 1)

(2α2 + (7−D)α+ 2)
− D − 5

D − 3

γx =
(α+ 1)

(2α2 + (7−D)α+ 2)

γφ = − (4α+ 7−D)

(2α2 + (7−D)α+ 2)
. (2.15)
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The solutions are invariant under the symmetry R×SO(D − 1)×E(10 − D), where
E(n) is the n dimensional Euclidean group. Notice that under the extremal condition
r+ = r−, the symmetry group is SO(D−1)×P(11−D) where P(n) is the n dimensional
Poincaré group.

We are interested in the case of p = 10−D = 3, D3-branes. From [29], a self-
dual five-form is contained in the chiral IIB. This implies that black holes coupling
to this F have to carry both electric and magnetic charges simultaneously and the
solution can not be obtained directly from (2.14). In this case it is obvious that F
is not a source of the dilaton, therefore one can let the dilaton be a constant. Then
there is a only one equation of motion left

Rµν = Fµα1...α4F
α1...α4
ν . (2.16)

One can repeat the same step as before and obtain (or let α = 0)

ds2 = −(1−
r4
+

r4
)(1−

r4
−

r4
)−1/2dt2 +

dr2

(1− r4+
r4

)(1− r4−
r4

)

+r2dΩ2
5 + (1−

r4
−

r4
)1/2dxidx

i,

F = Q(ε5 + ∗ε5), φ = φ0, (2.17)

where the charge Q is
Q = 2r2

+r
2
−. (2.18)

2.1.2 Black 3-brane entropy

In this subsection we will describe the Bekenstein-Hawking entropy near the extremal
limit and compare it with the entropy of field theories, following [30, 31, 32]. We start
with the metric (2.17). The 8-dimensional area of the horizon is, substituting r = r+,

A = ω5r
5
+L

3(1−
r4
−

r4
+

)3/4, (2.19)

where ω5 = π3 is the area of the unit 5-sphere and L is the radius of a large 3-torus,
T 3, wrapped around the 3-branes. Notice that when r+ = r−( the extremal limit),
the area vanishes. The Bekenstein-Hawking entropy of the black 3-branes is

SBH =
A

4
. (2.20)

A non-zero value of the entropy can be obtained by considering the metric slightly
off the extremal limit by a small ADM mass, δM . The value of δM can be obtained
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in terms of a boosting parameter α. By boosting the metric (2.17) with constant
momentum P along a spatial direction, x1, we obtain on the branes,

ds2 = −(cosh2 α4+ 4−1/2
− − sinh2 α41/2

− )dt2

+(cosh2 α41/2
− − sinh2 α4+ 4−1/2

− )dx2
1

+ sinh(2α)(41/2
− −4+4−1/2

− )dtdx2
1

+41/2
− (dx2

2 + dx2
3) +4−1

+ 4−1
− dr2 + r2dΩ2

5, (2.21)

where 4± = 1− r±/r. The total ADM momentum is

P =
L3ω5

8π
sinh(2α)(r4

+ − r4
−)

=
2πn

L
. (2.22)

Because α is an independent parameter, n is set in the above equation to be an
integer. Assuming finite ADM momentum slightly away from the extremal limit, or
r2
+ ≈ r2

− + δM , we obtain

PADM ∼ L3ω5Q

[
e2α

′ δM

M

]
, (2.23)

where M and Q are from (2.13). Therefore, δM/M ∼ e−2α. The entropy in the near
extremal limit can be found from the area of the horizon,

SBH ∼ ω5

4
r5
+L

3
[
4−(r+)3/4

]
coshα

∼ ω5L
3r5

0

[
δM

M

]3/4

eα. (2.24)

The entropy of non extremal 3-branes from statistical mechanics can be obtained
from the IIB partition function [30]

Z =
∏
~n∈Z3

(
1 + q|~n|

1− q|~n|

)6

, (2.25)

where the momenta of the quantized string states are

~p =
2π

L
~n, (2.26)
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q = e−2π/LT , at temperature T and the number 6 represents the transverse oscillation
modes, instead of 8, as expected [30]. By using the standard thermodynamic relations

F = −T logZ, E = T 2 ∂

∂T
logZ, S = (E − F )/T,

one arrives at

E =
3π2

8
L3T 4, S =

π2

2
L2T 3. (2.27)

The equation above holds for a single 3-brane, however if there are N 3-branes stacked
together with no binding energy among them, the possibility strings connected be-
tween two 3-branes is N2. Therefore for N 3-branes the energy and entropy are,
respectively,

E =
3π2

8
N2L3T 4, S =

π2

2
N2L2T 3. (2.28)

T can be eliminated and the entropy can be rewritten as

S = 25/43−3/4
√
πNL3/4E3/4. (2.29)

By setting E = δM , using the ground state mass

M0 =

√
π

κ
nL3 (2.30)

and the mass of the excited 3-branes [15],

M = M0 + δM =

√
π

κ
L3 +

k∑
i=1

2π

L
|~ni|+O(g), (2.31)

where κ =
√

8πGN , G is the Newton’s constant and k is the number of open strings,
the entropy changes to

S = 25/43−3/4π7/8N5/4κ−3/4L3(δM/M0)
3/4. (2.32)

To be able to compare with SBH let us consider the ADM mass of the metric (2.17)
[33],

MADM =
ω5L

3

2κ2
(5r4

+ − r4
−) (2.33)

and let r+ = r− = r0, where MADM becomes M0. Then r0 is

r4
0 =

√
π

2ω5

Nκ. (2.34)
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However, we need the answer away from the extremal limit, so let r+ = r0 + ε. Then
from MADM in (2.33), δM0/M becomes

δM

M
∼ 6

ε

r0
. (2.35)

From the horizon area of the metric (2.17),

AH = ω5r
5
+L

3

(
1−

r4
−

r4
+

)3/4

= 29/4ω5r
5
0L

3

(
ε

r0

)3/4

= 21/43−3/4π−1/8(Nκ)5/4L3(δM/M0)
3/4, (2.36)

the Bekenstein-Hawking entropy is

SBH =
2πA

κ2
= 25/43−3/4π7/8N5/4κ−3/4L3(δM/M0)

3/4, (2.37)

which is exactly the same as in (2.32).
The entropy of near extremal Dp-branes is calculated in [34] which gives the

same leading contribution.

2.1.3 Extremal D3-brane absorption coefficients

In this subsection, we seek to gain further insight into the AdS/CFT correspondence
by calculating and comparing absorption coefficients from N extremal non-dilatonic
D3-branes and the corresponding conformal field theory. The non-dilatonic condi-
tion causes the metric to be considerably simplified, i.e., no singularity exists in the
transverse part [35, 36]. From (2.17), changing the parameter r at the extremal limit
r+ = r− = R to (1− r4

+/r
4)1/2 → (1 +R4/r4)−1/2, we obtain

ds2 =

(
1 +

R4

r4

)−1/2

(−dt2 + dx2
1 + dx2

2 + dx2
3) +

(
1 +

R4

r4

)1/2

(dr2 + r2dΩ2
5). (2.38)

We are interested in the case of N parallel D3-branes stacked together with no
bindinding among them, which is also considered in subsection 2.1.2. The curva-
ture of these N non-dilatonic D3-branes is of order, [37]

1√
Nκ10

∼ 1

α′
√
Ng

. (2.39)
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where κ10 =
√

8πG10 = gα′. G10 is Newton’s constant in ten dimensions, g is a
coupling constant and α′ is related to the tension of the string, T , by T = 1/2πα′.
To be able to control the order of expansion of 1

Ng
, consider the double scaling limit

Ng →∞, ω2α′ → 0, (2.40)

where ω is the frequency of the incident mode. We also keep

Nκ10ω
4 ∼ Ngα′2ω4 (2.41)

small. The classical absorption cross section is normally of order ω4/(curvature)2,
which is the same as the combination of parameters in the above equation.

From the metric for N non-dilatonic extremal D3-branes (2.38), the radial
part of the massless wave equation is[

ρ−5 d

dρ
ρ5 d

dρ
+ 1 +

(ωR)4

ρ4

]
φ(ρ) = 0, (2.42)

where ρ = ωr. The absorption coefficient can be obtained by matching the near
solution (small ωr) to the far solution (large ωr) in the low energy limit (small ωR).
For the near solution, let z = (ωR)2/ρ. Then (2.42) turns into[

d2

dz2
− 3

z

d

dz
+ 1 +

(ωR)4

z4

]
φ = 0. (2.43)

Separating the singularity by letting φ = z3/2f(z), the above equation becomes[
d2

dz2
− 15

4z2
+ 1 +

(ωR)4

z4

]
f = 0. (2.44)

The last term in the near region can be ignored, since z � ωR. The equation becomes
a Bessel equation. Thus, the incoming wave for small r can be written in terms of
Bessel functions as

φ = i(ωR)4ρ−2

[
J2

(
(ωR)2

ρ

)
+ iN2

(
(ωR)2

ρ

)]
. (2.45)

In the far region, letting φ = ρ−5/2ψ in (2.42), we obtain[
d

dρ2
− 15

4ρ2
+ 1 +

(ωR)4

ρ4

]
ψ = 0, (2.46)

where ρ � (ωR)2. Again, the solution is a Bessel function. By matching the two
solutions in the overlapping region, the solution in the far region is determined to be

φ =
32

π
ρ−2J2(ρ). (2.47)
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The absorption coefficient is defined as the ratio of the flux at the throat to the
incoming flux from infinity,

F =
π

162
(ωR)8. (2.48)

The absorption cross section in D dimensions is [38]

σ =
(2π)D−1

ωD−1ΩD−1

F , (2.49)

where ΩD = 2π(D+1)/2

Γ((D+1)/2)
is the volume of the unit D-dimensional sphere. Therefore,

the D3-brane absorption cross section is (setting D = 6)

σ3−brane =
π4

8
ω3R8. (2.50)

Next, we compare the above supergravity result to a field-theoretical calculation. We
shall derive the absorption cross section of a scalar, e.g., the dilaton φ, using field
theory. The relevant part of the D3-brane action is [39]

S = T3

∫
d4x

[
1

2

9∑
i=4

∂µX
i∂µX i − 1

4
e−φF 2

µν

]
, (2.51)

where Fµν is the field strength on the D3-brane and the six fields X i (i = 1, . . . , 6)
describe the transverse oscillations of the brane. T3 =

√
π/κ10 is the D3-brane ten-

sion [40]. By fixing the gauge for Aµ, we obtain two physical photons (two transverse
polarizations). Then the dilaton coupling term to each photon polarization in the
D3-brane action can be written as

−1

2

∫
d4xφ∂µÃ∂

µÃ,

where ∂µÃ is a canonically normalized physical field. The action in the 10-dimensional
bulk space is

Sbulk =
1

2κ2
10

∫
d10x

√
g

[
R− 1

2
∂µφ∂

µφ+ . . .

]
(2.52)

and so the canonically normalized dilaton field is

φ̃ =
φ√
2κ10

.

Therefore, the dilaton coupling term in the D3-brane action can be written as

−κ10√
2

∫
d4xφ̃∂µÃ∂

µÃ. (2.53)
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By assuming a scalar incident on the brane at right angles splitting into two massless
bosons which then move on the brane with momenta p1, p2, respectively, the scattering
amplitude can be calculated using standard field-theoretical methods. The result is

A = −κ10√
2
2
p1 · p2√
2ω3/2

= −κ10

√
ω

2
, (2.54)

where we used p0
1 = p0

2 = ω/2, −~p1 = ~p2 and p1 · p2 = ω2/2. The absorption cross
section is

σ = 2
1

2

∫
d3p1

(2π)3

∫
d3p2

(2π)3
(2π)4δ(E1 + E2 − ω)δ3(~p1 + ~p2)|A|2, (2.55)

where the factor of 2 is due to the two polarization states of the physical photon and
the factor of 1/2 comes from the two identical particles. After integrating, we obtain

σ =
κ2

10ω
3

32π

For a stack of N D3-branes, there are 2N2 possibilities for the photon states. There-
fore the total absorption cross section for a stack of N D3-branes is

σ3−brane =
κ2

10N
2ω3

32π
. (2.56)

To compare with the supergravity result (2.50), note that the ADM mass per unit
volume of the 3-brane, 2π3R4

κ2
10

, is equal to π
κ10
N [40]. This gives

R4 =
κ10N

2π5/2
. (2.57)

Using this expression for R4 in (2.50), it is seen immediately that the two expressions
for the total absorption cross section (2.50) and (2.56) agree with each other. More
details of the calculation of D3-brane absorption coefficients are presented in [41].
Other kinds of D-brane absorption coefficients have also been calculated, for example
for D2-branes and D5-branes, in [37, 42].

2.1.4 Correlators

In previous sections, we calculated the entropy and absorption coefficients providing
compelling evidence for the proposed AdS/CFT correspondence betweenN D3-branes
in type-IIB superstring theory and N = 4 supersymmetry Yang-Mills theory (confor-
mal field theory). Moreover, note that the two theories share symmetry groups. The
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superconformal group in the super YM theory, SO(2,4) [20], is also the isometry group
of AdS5, and the isometry group of the sphere S5, SO(6), is isomorphic to the super-
symmetry group SU(4) in the super YM theory [43, 44, 45]. This correspondence of
supersymmetries is further investigated in [46].

Here, we show that correlators in AdS5 × S5 are also in agreement with their
super-YM counterparts [35]. We start with the supergravity calculation. The metric
of spacetime for a stack of N D3-branes in the large-N limit (zero Hawking temper-
ature) is (cf. (2.38))

ds2 =

(
1 +

R4

r4

)−1/2

(−dt2 + d~x2) +

(
1 +

R4

r4

)1/2

(dr2 + r2dΩ2
5).

At large r (far away from the branes), the metric becomes flat ten-dimensional
Minkowski metric. Near the throat, r ∼ R, the metric can be simplified by changing
parameters to z = R2/r,

ds2 =
R2

z2
(−dt2 + d~x2 + dz2) +R2dΩ2

5. (2.58)

The range of z can be divided into two regions, the near region (between z = ∞ and
z = R, or r = R and r = 0) and the far region (between z = R and z = 0, or r = R
and r = ∞). The near region is AdS space and the fields, e.g., a scalar field, may
be viewed as entering from its boundary [35]. To obtain the generating functional
of connected Green functions, the extremum of the supergravity action S[φ(xµ, z)],
which is a classical action, is related to the generator of connected Green functions
in the gauge field theory, e−W [φ(xµ)], through

W [φ(xµ)] = S[φ(xµ, z)]
∣∣∣
δS=0

. (2.59)

A similar idea was presented in [47]. The simplest example is the action of a free
scalar field φ in a fixed gravitational background AdS5 × S5,

S =
1

2κ2

∫
d10x

√
G[

1

2
GMN∂Mφ∂Nφ]. (2.60)

The action in the near region is further simplified by letting the angular momentum
on the sphere S5 vanish. We obtain

S =
π3R8

4κ2

∫
d4x

∫ ∞

R

dz

z3

[
(∂zφ)2 + ηµν∂µφ∂νφ

]
, (2.61)

where Greek indices represent the 4-dimensional spacetime (boundary of AdS5). Vary-
ing φ in the action, we obtain the equation of motion[

z3∂z
1

z3
∂z + ηµν∂µ∂ν

]
φ = 0, (2.62)
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whose solution is

φk(x
µ, z) = λke

ik·xφ̃k(z), φ̃k(z) =
z2K2(kz)

R2K2(kR)
, (2.63)

where k2 = ~k2−ω2. The modified Bessel function K2(kz) is chosen because it falls off
exponentially at large z (near the horizon), whereas the other solution I2(kz) increases
exponentially. Integrating by parts, we obtain the classical supergravity action

S
∣∣∣
δS=0

= W [φ(xµ)]

=
π3R8

4κ2

∫
d4x

∫ ∞

R

dz

z3

[
−φ
(
z3∂z

1

z3
∂z + ηµν∂µ∂ν

)
φ+ z3∂z

(
φ

1

z3
∂zφ

)]
where φ(xµ) is the Fourier transform of λk,

φ(xλ) =

∫
d4kλke

ik·x. (2.64)

We may write

W =
1

2

∫
d4kd4qλkλq(2π)4δ4(k + q)

N2

16π2
F , (2.65)

where the flux factor F is

F =

[
φ̃k

1

z3
∂zφ̃k

]∞
R

. (2.66)

By differentiating W twice with respect to the Fourier mode λk, we obtain a two-point
function in the conformal field theory (super YM theory) residing at the boundary of
AdS5. Let O be the dual operator in the conformal field theory coupled to the source
φ(xµ). We have

〈O(k)O(q)〉 =

∫
d4xd4yei(k·x+q·y)〈O(x)O(y)〉

=
∂2K

∂λk∂λq
= (2π)4δ4(k + q)

N2

16π2
F

= −(2π)4δ4(k + q)
N2

64π2
k4 ln(k2R2) + ( analytic in k2). (2.67)

In position space,

〈O(x)O(y)〉 ∼ N2

|x− y|8
. (2.68)

This result is in agreement with the result one obtains through a direct calculation in
super YM theory, if O ∼ F 2, where F µν is the field strength of the YM potential. It
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should be noted that the field theory result is obtained in the small coupling (g2
YMN →

0) limit, whereas the supergravity calculation produces results corresponding to the
strong coupling regime (g2

YMN →∞).
The above procedure may also be used to calculate the conformal anomaly [48].

Indeed, noting that the operator coupled to the graviton field hµν is by definition the
stress-energy tensor Tµν [49], the classical value of the supergravity action should yield
the two-point correlation function of two stress-energy tensors, which is proportional
to the central charge in the conformal field theory. It suffices to consider, say, the Txy
component coupled to hxy. A short calculation shows that the Einstein action for hxy
is of the same form as the scalar action (2.60). Therefore, we may repeat the above
steps to arrive at the result

〈Txy(k)Txy(q)〉 = −(2π)4δ4(k + q)
N2

64π2
k4 ln(k2R2) + ( analytic in k2). (2.69)

which is identical to (2.68). Therefore, we obtain the central charge as c = N2/4.
This can be compared to the result from super YM theory,

〈Tαβ(x)Tγδ(0)〉 =
c

48π4
Xαβγδ(1/x

4) (2.70)

where c = N2/4,

Xαβγδ = 2�2ηαβηγδ − 3�2(ηαγηβδ + ηαδηβγ)− 4∂α∂β∂γ∂δ

−2�(∂α∂βηγδ + ∂α∂γηβδ + ∂α∂δηβγ + ∂β∂γηαδ + ∂β∂δηαγ + ∂γ∂δηαβ)

, (2.71)

and � is the four-dimensional Laplacian operator. Thus, we obtain agreement be-
tween the supergravity result (2.69) and the result from conformal field theory (2.70)
on the central charge, providing one more piece of evidence in support of the AdS/CFT
correspondence.

The above results have also been generalized to the massive scalar case as well
as non-vanishing angular momentum in S5 [35].

2.2 Absorption coefficients of black holes

Here, we extend the above results on the AdS/CFT correspondence for D-branes
[20, 42, 36, 51, 52] to black holes. In doing so, we go from zero Hawking temperature
to a system at finite temperature. In the next section, we shall extend the discussion
further to rotating black branes.
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2.2.1 3+1 Dimensions

Here, we calculate the absorption coefficients of (3+1)-dimensional Kerr-Newman
black holes following [53]. The Kerr-Newman metric of a black hole with charge Q,
mass M and angular momentum J = Ma in 3+1 dimensions is

ds2 = −
(

∆− a2 sin2 θ

Σ

)
dt2 −

(
2a sin2 θ(r2 + a2 −∆)

Σ

)
dtdφ

+

(
(r2 + a2)2 −∆a2 sin2 θ

Σ

)
sin2 θdφ2

+
Σ

∆
dr2 + Σdθ2 (2.72)

where
Σ = r2 + a2 cos2 θ, ∆ = r2 + a2 +Q2 − 2Mr. (2.73)

The inner and outer horizons, satisfying ∆ = 0, are

r± = M ±
√
M2 −Q2 − a2. (2.74)

The horizon area A, Hawking temperature TH , angular velocity Ω and electric po-
tential Φ are, respectively,

A = 4π
(
2M2 −Q2 + 2M

√
M2 −Q2 − a2

)
= 4πr2

+,

TH =
(r+ − r−)

A
,

Ω =
4πa

A
,

Φ =
4πQr+
A

. (2.75)

These quantities satisfy the first law of black hole mechanics

dM = THdS + ΩdJ + ΦdQ. (2.76)

where the entropy is

S =
A
4

(2.77)

The wave equation for a massless scalar is

∂Ag
AB
√
−g∂BΦ = 0.
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The solution can separated as [55]

Φ = eimφ−iωtSmA (θ; aω)R(r), (2.78)

where SmA (θ; aω) satisfies(
1

sin θ
∂θ sin θ∂θ −

m2

sin2 θ
+ a2ω2 cos2 θ

)
SmA (θ; aω) = −ASmA (θ; aω). (2.79)

For small aω, we may expand

A = `(`+ 1) +O(a2ω2). (2.80)

R(r) obeys
∆∂r∆∂rR +K2R− λ∆R = 0, (2.81)

where
K = ω(r2 + a2)−ma, λ = A+ a2ω2 − 2mωa.

To solve the wave equation, we consider two separate but overlapping regions of
spacetime outside the horizon, a near region, (r − r+)ω � 1, and a far region, M �
r − r+.

In the near region, we have r ∼ r+, so K2 − λ∆ may be approximated by

K2 − λ∆ ' r4
+(ω −mΩ)2 − `(`+ 1)∆, (2.82)

where we neglected terms of order (ωa)2 and set λ ' A ' `(`+1). The wave equation
(2.81) becomes

∆∂r∆∂rR + r4
+(ω −mΩ)2 − `(`+ 1)∆R = 0. (2.83)

Changing parameters to z = r−r+
r−r− (so that 0 ≤ z ≤ 1), we obtain

z(1− z)∂2
zR + (1− z)∂zR +

(
ω −mΩ

4πTH

)2

(1 +
1

z
)R− `(`+ 1)

1− z
R = 0. (2.84)

The solution to the above equation can be separated as

R = Az
iω−mΩ

4πTH (1− z)`+1F.

where A is a normalization constant. Thus, after removing the singularities, (2.84)
reduces to

z(1− z)∂2
zF +

(
1 + i

ω −mΩ

2πTH
− (1 + 2(`+ 1) + i

ω −mΩ

2πTH
)z

)
∂zF

−
(

(`+ 1)2 + i
ω −mΩ

2πTH
(`+ 1)

)
F = 0. (2.85)
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whose solution is the hypergeometric function F (α, β; γ; z), where

α = `+ 1 + i
ω −mΩ

2πTH
, β = `+ 1, γ = 1 + i

ω −mΩ

2πTH
. (2.86)

Next, we calculate the solution in the far region. From (2.81), letting r �M removes
the effects of the black hole. We obtain

1

r2
∂rr

2∂rR + ω2R− `(`+ 1)

r2
R = 0. (2.87)

whose solution can be written in terms of Bessel functions,

R =
1√
r

[
J`+ 1

2
(ωr) +BJ−`− 1

2
(ωr)

]
. (2.88)

where B is an arbitrary constant.
The coefficients are fixed by matching the expressions in the near and far

regions on the overlapping region. From (2.85), letting r →∞ i.e., 1−z → r+−r−
r

→ 0,
we obtain

R ∼ A

(
r

r+ − r−

)−`−1

Γ

(
1 + i

ω −mΩ

2πTH

)
×[

Γ(−2`− 1)

Γ(−`)Γ(−`+ iω−mΩ
2πTH

)
+

(
r

r+ − r−

)2`+1
Γ(2`+ 1)

Γ(`+ 1)Γ(`+ 1 + iω−mΩ
2πTH

)

]
. (2.89)

This should be matched to (2.88) at small r. We obtain

A = N ′α , N ′ =
(r+ − r−)`ω`+

1
2 Γ(`+ 1)Γ(`+ 1 + iω−mΩ

2πTH
)

2`+
1
2 Γ(`+ 3

2
)Γ(2`+ 1)Γ(1 + iω−mΩ

2πTH
)

. (2.90)

The absorption cross section is a ratio of incoming fluxes, σ =
Fr→r+

Fr→∞
. The fluxes are

F =
2π

i
(R∗∆∂rR−R∆∂rR

∗)

Fr→r+ = 2|α|2

Fr→∞ =
(ω −mΩ)

TH
(r+ − r−)|N ′|2|α|2, (2.91)

and the absorption cross section for the ` partial wave is

σ` =
(ω −mΩ)A

2
|N ′|2. (2.92)
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For ` = 0, we have σ0 = A, which agrees with the general result [38] that the
low energy total cross section of a massless scalar field incident on a black hole is
proportional to the area of the horizon. Notice that σ0 can be negative if ω < mΩ,
which corresponds to superradiance. The decay rates can be written as, [6]

Γ` =
σ`

e
ω−mΩ
4πTH − 1

=
πΓ(`+ 1)2ω2`−1T 2`+1

H A2`+1

22`+2Γ(`+ 3
2
)2Γ(2`+ 1)2

e
−ω−mΩ

2πTH |Γ(`+ 1 + i
(ω −mΩ)

2πTH
)|2.

(2.93)
In the extremal limit, TH → 0, Γ` vanishes for ω > mΩ whereas Γ` → |σ`| for
ω < mΩ.

2.2.2 4+1 Dimensions

The metric in five dimensions may be obtained from the low energy effective string
action in ten dimensions [56],

1

16πG10

∫
d10x

√
−g
[
R− 1

2
(∇φ)2 − 1

12
eφH2

]
(2.94)

whereH is the three-form field strength, G10 is the ten-dimensional Newton’s constant
and φ is the dilaton which vanishes asymptotically. To reduce this to five dimensions,
we shall compactify four of the extra dimensions on a torus T 4 and boost along the
fifth dimension S1 of radius R. By this Kaluza-Klein ansatz, the metric turns into
the form

ds2
10 = e2χdxidx

i + e2ψ(dx5 + Aµdx
µ)2 + e−2(4χ+ψ)/3ds2

5 (2.95)

where µ = 0, 1, ..., 4, i = 6, ..., 9 on the torus T 4, and x5 is periodic with period
2πR. All fields are assumed to depend on xµ only. χ and ψ are assumed to vanish
asymptotically. The five-field Aµ can be labeled by energy, three charges (obtained
by boosting and therefore labeled by parameters (radii) r1, r5 and rn) and R (see
appendix A and [32, 56] for details). The five-dimensional metric is

ds2
5 = −f−2/3

(
1− r2

0

r2

)
dt2 + f 1/3

[(
1− r2

0

r2

)−1

dr2 + r2dΩ2
3

]
(2.96)

where

f =

(
1 +

r2
1

r2

)(
1 +

r2
5

r2

)(
1 +

r2
n

r2

)
. (2.97)

Therefore, in this spacetime the massless wave equation is

1

r3
(1− r2

0

r2
)
d

dr
r3(1− r2

0

r2
)
dφ

dr
+

1

r2
(1− r2

0

r2
)∇2

θφ+ ω2fφ = 0, (2.98)
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where ∇2
θ is the angular Laplacian whose eigenvalues are `(`+ 2) in five dimensions.

The rotation group of this geometry is SO(4). It can be decomposed as SO(4) ∼
SU(2)L×SU(2)R. We shall consider the diagonal representation labeled by (`/2, `/2).

We are interested in the low energy limit ω � 1/r1, 1/r5. Working as before,
we define the far region r � r1, r5. Letting φ = 1

r
ψ and ρ = ωr, the wave equation

becomes
d2ψ

dρ2
+

1

ρ

dψ

dψ
+

(
1− (`+ 1)2

ρ2

)
ψ = 0. (2.99)

The solutions are Bessel functions. We obtain

ψ =
1

ρ
[AJ`+1(ρ) +BJ−`−1(ρ)] . (2.100)

The incoming flux at large ρ is

Fρ→∞ = Im(φ∗r3∂3φ) =
1

πω2

∣∣Aei(`+1)π/2 +Be−i(`+1)π/2
∣∣2 . (2.101)

The small ρ behavior of φ is

φ ∼ 1

ρ

[
A(
ρ

2
)`+1

(
1

Γ(`+ 2)
−O(ρ2)

)
+B(

ρ

2
)−`−1

(
1

Γ(−`)
−O(ρ2)

)]
. (2.102)

The above equation has poles for integer `. The divergence can be avoided by con-
tinuing to non-integer values of `. We shall let ` approach an integer value at the end
of the calculation.

In the near region (near the horizon), r << 1/ω, we let v = r2
0/r

2. The wave
equation becomes

(1− v)2d
2φ

dv2
− (1− v)

dφ

dv
+

(
C +

D

v
+
E

v2

)
φ = 0, (2.103)

where

C =

(
ωrnr1r5

2r2
0

)2

, D =
ω2r2

1r
2
5

4r2
0

+
`(`+ 2)

4
, E = −`(`+ 2)

4
. (2.104)

The solution of (2.103) may be written in terms of a hypergeometric function as

φ = Av−`/2(1− v)−i
ω

4πTH F (−`/2 + q+ i
√
C, −`/2 + q− i

√
C; 1 + 2q; 1− v), (2.105)

where q = i ω
4πTH

. The large r behavior of φ is

φ ∼ Av−`/2
{

Γ(1 + 2q)Γ(1 + `)

Γ(1 + `/2 + q − i
√
C)Γ(1 + `/2 + q + i

√
C)

(1 +O(v))

+ v1+` Γ(1 + 2q)Γ(−1− `)

Γ(−`/2 + q − i
√
C)Γ(−`/2 + q + i

√
C)

(1 +O(v))

}
. (2.106)
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Matching the solutions in the two regions on the overlapping region, we find that A
satisfies

− `
2

+ q + i
√
C = 2A(ωr0/2)−`Γ(1 + `)Γ(2 + `)×

Γ(1 + 2q)

Γ(1 + `/2 + q − i
√
C)Γ(1 + `/2 + q + i

√
C)
. (2.107)

The incoming flux at the horizon is

Fr→r0 = 2r2
0Im(φ∗(1− r2

0

r2
)∂vφ) = 4r2

0|q| |A|2. (2.108)

The cross section of a massless scalar field is obtained by multiplying the absorption
coefficient (ratio of fluxes) by 4π/ω3,

σ` = AH(r0ω)2`

∣∣∣∣ 2`

Γ(1 + `)Γ(2 + `)

∣∣∣∣2
∣∣∣∣∣Γ( (`+2)

2
+ i ω

4πTL
)Γ( (`+2)

2
+ i ω

4πTR
)

Γ(1 + i ω
2πTH

)

∣∣∣∣∣
2

, (2.109)

where

TL,R =
1

TH
± 4π

ω

√
C (2.110)

and
1

TL
+

1

TR
=

2

TH
. (2.111)

A similar result is obtained from calculation of of near-extremal nonrotating D5-
branes, [13, 54]. The two temperature function, (2.111), is also predicted in [54] from
considering the partition function of left and right moving open strings on the branes,
which suggests an agreement between macroscopic calculation from string theory and
microscopic calculation from conformal field theory, subsection 2.2.3. Finally, the
decay rates can be obtained by multiplying the cross section by the Hawking thermal
factor, similar to the (3+1)-dimensional case,

Γ` =
24`+4π2`+3(r2

1r
2
5TLTR)`+1ω2`−1

|Γ(`+ 1)Γ(`+ 2)|2
e
− ω

2TH |Γ(1 +
`

2
+ i

ω

4πTL
)Γ(1 +

`

2
+ i

ω

4πTR
)|2.

(2.112)

2.2.3 Microscopic calculation

Here, we show that the above classical results can be derived microscopically from
superstring theory. We shall work in 3+1 dimensions and outline the changes needed
in 4+1 dimensions at the end.
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The microscopic decay rates can be deduced from the coupling of the scalar
field φ to a chiral operator O in the effective string action,

Sint ∼
∫
dtdσ∂`φ(0, t)O(σ + t) (2.113)

where σ is the spatial worldsheet coordinate. The amplitude M from this interaction
is of the form

M∼
∫
dσ+〈f |O(σ+)|i〉e−iωσ+

, (2.114)

where σ+ = σ + t and ω is the energy of an emitted particle. After squaring and
summing over final states, it becomes∑

f

|M|2 ∼
∫
dσ+dσ+′〈i|O†(σ+)O(σ+′)|i〉e−iω(σ+−σ+′ ). (2.115)

This amplitude should be calculated at thermal equilibrium, where the temperature
is identified with the Hawking temperature. Introducing the weight e−(ω−mΩ)/TH , we
need to calculate ∫

dσ+〈O†(0)O(σ+)〉TH
e−i(ω−mΩ)σ+

.

where σ is periodic, σ ∼ σ+ i2/TH . If O has conformal weight A′, then the two point
function of O is of the form

〈O†(0)O(σ+)〉TH
∼
[

πTH
sinh(πTHσ+)

]2A′

. (2.116)

To avoid the divergence from the pole in calculating the decay rates, we introduce a
small parameter iε in the exponent. We obtain∫

dσ+e−i(ω−mΩ)(σ+−iε)
[

πTH
sinh(πTHσ+)

]2A′

∼ (TH)2A′−1e
−ω−mΩ

2TH

∣∣∣∣Γ(A′ + i
ω −mΩ

2πTH
)

∣∣∣∣2 .
For supersymmetric invariance, the weight of the conformal field is constrained by
A′ ≥ `+1. In the low energy expansion, the leading contribution comes from A′ = `+1
[53]. Therefore, the decay rate is

Γ` ∼ ω2`−1Q4`+2(TH)2`+1e
−ω−mΩ

2πTH

∣∣∣∣Γ(`+ 1 + i(
ω −mΩ

2πTH
)

∣∣∣∣2 (2.117)

where ω2` comes from an integration over energy, 1/ω is the normalization factor of
the outgoing state, and the presence of Q4`+2 is justified on dimensional grounds.
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This expression of the decay rate is in agreement with the classical result (2.93) if we
note that the area of the horizon, A ∼ Q2.

The microscopic decay rate can be calculated in the same fashion in 4+1 di-
mensions. The modifications needed are due to the left-right symmetry. The coupling
of the scalar field in the conformal field theory action is to two operators OL,R of the
form εIJOI

`/2,LOJ
`/2,R [53]. The dimensions of these operators are A′

L = A′
R = 1 + `/2.

The decay rate is calculated in the same manner as in 3+1 dimensions [53],

Γ` ∼ (r2
1r

2
2TLTR)`+1ω2`−1e

− ω
2TH

∣∣∣∣Γ(1 +
`

2
+ i

ω

4πTL
)Γ(1 +

`

2
+ i

ω

4πTR
)

∣∣∣∣2 , (2.118)

which is in agreement with the classical result in 4+1 dimensions (2.112). Absorption
coefficients of other kinds of black holes such as Schwarzschild, Kaluza-Klein, etc,
have been calculated in [57].

2.3 Non-extremal rotating black 3-branes

In this section we explore the properties of rotating black branes away from the
extremality and obtain the absorption coefficients. Extremal rotating charged D3-
branes are studied in [58]. We first introduce the general properties of the branes
and then write down, solve the wave equation for a scalar mode in the vicinity of
the brane and find a similar result as in section 2.2.2, a function of left and right
temperatures.

2.3.1 General properties

Details of the derivation of the metric of rotating charged black 3-branes in ten
dimensions can be found in appendix A, see also [59, 60]. The metric is

ds2 =
1√
H

(
−(1− f

r4
0

r4
)dt4 + dx2

1 + dx2
2 + dx2

3

)
+
√
Hf−1 dr2

λ− r4
0/r

4

+
√
Hr2

(
ζdθ2 + ζ ′ cos2 θdψ2 − `22 − `23

2r2
sin(2θ) sin(2ψ)dθdψ

)
−f 2r4

0 cosh γ

r4

√
H
(
`1 sin2 θdφ1 + `2 cos2 θ sin2 ψdφ2

+ `3 cos2 θ cos2 ψdφ3

)
dt

+f
r4
0

r4

√
H
(
`1 sin2 θdφ1 + `2 cos2 θ sin2 ψdφ2 + `3 cos2 θ cos2 ψdφ3

)2
+
√
Hr2

[(
1 +

`21
r2

)
sin2 θdφ2

1 +

(
1 +

`22
r2

)
cos2 θ sin2 ψdφ2

2
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+

(
1 +

`23
r2

)
cos2 θ cos2 ψdφ2

3

]
, (2.119)

where

H = 1 + f
r4
0 sinh2 γ

r4
(2.120)

f−1 = λ

(
sin2 θ

1 +
`21
r2

+
cos2 θ sin2 ψ

1 +
`22
r2

+
cos2 θ cos2 ψ

1 +
`23
r2

)
(2.121)

λ =

(
1 +

`21
r2

)(
1 +

`22
r2

)(
1 +

`23
r2

)
(2.122)

ζ = 1 +
`21 cos2 θ + `22 sin2 θ sin2 ψ + `23 sin2 θ cos2 ψ

r2
(2.123)

ζ ′ = 1 +
`22 cos2 ψ + `23 sin2 ψ

r2
. (2.124)

To simplify the calculation, we limit ourselves to the case where

`2 = `3 = 0. (2.125)

The metric becomes

ds2 =
1√
H

(
−(1− r4

0

ζr4
)dt2 + dx2

1 + dx2
2 + dx2

3

)
+
√
Hζ

dr2

λ− r40
r4

−2r4
0 cosh γ

ζr4
√
H

`1 sin2 θdφ1 +
r4
0

ζr4
√
H
`21 sin4 θdφ2

1

+
√
Hr2

[
ζdθ2 + λ sin2 θdφ2

1 + cos2 θ(dψ2 + sin2 ψdφ2
2 + cos2 ψdφ2

3)
]
,

(2.126)

where

H = 1 +
r4
0 sinh2 γ

ζr4
λ = 1 +

`21
r2

ζ = 1 +
`21 cos2 θ

r2
. (2.127)

The horizon is at the positive root of λ− r4
0/r

4 = 0,

r2
H =

1

2

(√
`41 + 4r4

0 − `21

)
, (2.128)

the other root being negative, −r2
+, where

r2
+ =

1

2

(√
`41 + 4r4

0 + `21

)
. (2.129)
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It is convenient to introduce the dimensionless parameter 4,

4 =
r2
H

r2
+

. (2.130)

As r0 → 0, we have 4 → 0 (extremal limit) and as `1 → 0, we have 4 → 1. Also
in the extremal limit, as r0 → 0, the horizon shrinks to zero and γ → ∞ so that R4

remains finite, where

R4 =
1

2
r4
0 sinh(2γ), (2.131)

We assume R4 is much larger than the other parameters, `1, r0, rH and r+.
The energy, angular momentum, entropy density, Hawking temperature and

angular velocity deduced from the metric are [61]

ε =
1

4G
r4
0(4 cosh2 γ − 4 cosh γ sinh γ + 1), j =

1

2G
r4
0`1 cosh γ

s =
π

G
r4
0rH cosh γ, TH =

rH
2πr4

0 cosh γ

√
`41 + 4r4

0, ΩH =
`1r

2
H

r4
0 cosh γ

(2.132)

where G is Newton’s constant. The above quantities obey the first law of thermody-
namics,

THds = dε− ΩHdj. (2.133)

In the extremal limit, r0 → 0, the entropy and energy vanish, but the temperature
remains finite, which implies a singularity in this limit. The metric in this case is

ds2 =
1√
H

(
−dt2 + dx2

1 + dx2
2 + dx2

3

)
+
√
Hζ

dr2

λ

= +
√
Hr
[
ζdθ2 + λ sin2 θdφ2

1 + cos2 θ(dψ2 + sin2 ψdφ2
2 + cos2 ψdφ2

3)
]
,

(2.134)

where

H = 1 +
R4

ζr4
= 1 +

R4

(r2 + `21 cos2 θ)r2
. (2.135)

Performing the transformation

y1 =
√
r2 + `21 sin θ cosφ1

y2 =
√
r2 + `21 sin θ sinφ1

y3 = cos θ sinψ cosφ2

y4 = cos θ sinψ sinφ2

y5 = cos θ cosψ cosφ3

y6 = cos θ cosψ cosφ3, (2.136)
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we can write the metric in a multi-center form,

ds2 =
1√
H

(
−dt2 + dx2

1 + dx2
2 + dx2

3

)
+
√
H
(
dy2

1 + dy2
2 + dy2

3 + dy2
3 + dy2

4 + dy2
5

)
.

(2.137)

2.3.2 The wave equation and absorption coefficients

The ten dimensional wave equation, using the metric (2.126),

∂A
√
−ggAB∂BΦ = 0,

can be separated by setting

Φ(xµ; r, θ) = eiωtΨ(r, θ) , (2.138)

assuming that there is no dependence on the three-dimensional flat space, kµ = (ω,~0).
The wave equation becomes

1

r3
∂r

(
(λ− r4

0

r4
)r5∂rΨ

)
+ω2r2Ψ+

ω2λr4
0 cosh2 γ

r2(λ− r4
0/r

4)
Ψ− (L̂2−ω2`21 cos2 θ)Ψ = 0, (2.139)

We shall solve this equation in the the limit where the mass is small compared to the
AdS curvature and the angular momentum is also small,

R, `1 � 1/ω. (2.140)

In this limit, the term proportional to ω2`21 may be ignored, since it is small compared
to the angular momentum term, L̂2, whose eigenvalues are j(j+4). The wave equation
becomes

1

r3
∂r

(
(λ− r4

0

r4
)r5∂rΨ

)
+ ω2r2Ψ +

ω2λr4
0 cosh2 γ

r2(λ− r4
0/r

4)
Ψ− j(j + 4)Ψ = 0. (2.141)

We shall solve this equation in the two asymptotic regimes, r � ωR2 and r � 1/ω
and then match the solutions in the overlapping region.

For r � ωR2, the wave equation becomes

1

r3
∂r(r

5∂rΨ) + ω2Ψ− j(j + 4)Ψ = 0 (2.142)

and the solution is a Bessel function,

Ψ =
1

r2
Jj+2(ωr) (2.143)
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where we drop the other divergent solution. For small r, the solution behaves as

Ψ ∼ ω2

4(j + 2)!

(ωr
2

)j
. (2.144)

In the r � 1/ω regime, the wave equation becomes

1

r3
∂r

(
(λ− r4

0

r4
)r5∂rΨ

)
+
ω2λr4

0 cosh2 γ

r2(λ− r4
0/r

4)
Ψ− j(j + 4)Ψ = 0. (2.145)

We shall solve this equation in the extremal case, 4 = 0, near extremality, 4 → 0
and at the other end of the spectrum, 4 = 1.

I. The end-point 4 = 0.
In this limit, r0 → 0, the horizon shrinks to zero and the wave equation

becomes
1

r3
∂r
(
λr5∂rΨ

)
+
ω2R4

r2
Ψ− j(j + 4)Ψ = 0. (2.146)

Changing variables to u = 1/λ = 1/(1 + `21/r
2), we obtain

(1− u)u2d
2Ψ

du2
+ u(2− u)

dΨ

du
+
ω2R4

4`21
Ψ− j(j + 4)

4(1− u)
Ψ = 0. (2.147)

The singularity at u→ 0 is of the form Ψ ∼ ua, where

a = −1

2
+

1

2

√
1− ω2R4

`21
= −1

2
+ iκ, κ =

1

2

√
ω2R4

`21
− 1 ≈ ωR2

2`1
=

ω

4πTH
, (2.148)

and TH = `1
2πR2 is the Hawking temperature. Notice that when we approach the

extremal limit (r0 → 0), the Hawking temperature does not vanish even though both
the energy and the entropy do.

The other singularity at u→ 1 is of the form Ψ ∼ (1− u)b, where

b =
j + 4

2
. (2.149)

Isolating the singularities,

Ψ = u−1/2+iκ(1− u)j/2+2f(u) (2.150)

the wave equation becomes

(1− u)u
d2f

du2
+ [1 + 2iκ− (j + 4 + 2iκ)u]

df

du
− (j + 3 + 2iκ)2

4
f = 0. (2.151)
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whose solution is a hypergeometric function,

f(u) = A F

(
j + 3

2
+ iκ,

j + 3

2
+ iκ; 1 + 2iκ;u

)
. (2.152)

where A is a coefficient to be determined. To obtain the behavior of Ψ at large r, i.e.,
u→ 1, note the behavior of the hypergeometric function,

F

(
j + 3

2
+ iκ,

j + 3

2
+ iκ; 1 + 2iκ;u

)
=

Γ(1 + 2iκ)Γ(j + 2)

(Γ((j + 3)/2 + iκ))2

1

(1− u)j+2
+ . . .

(2.153)
We obtain

Ψ ≈ A
Γ(1 + 2iκ)Γ(j + 2)

(Γ( j+3
2

+ iκ))2

(
r

`1

)j
. (2.154)

Comparing with the asymptotic form (2.144), we arrive at

A =
(Γ( j+3

2
+ iκ))2

Γ(1 + 2iκ)

ωj+2`j1
2j+2(j + 1)!(j + 2)!

. (2.155)

In the small r limit, we have u ≈ r2/`21. Therefore, the wavefunction Ψ, behaves as

Ψ ≈ A

(
r

`1

)−1+2iκ

. (2.156)

The absorption coefficient (ratio of incoming flux at r → 0 to incoming flux at r →∞)
is

P =
Fr→0

Fr→∞

=
(λr5Ψ∗∂rΨ)r→0

(λr5Ψ∗∂rΨ)r→∞

= 4πκ
|Γ((j + 3)/2 + iκ)|4

|Γ(1 + 2iκ)|2
ω2j+4`2j+4

1

4j+2((j + 1)!(j + 2)!)2
. (2.157)

This absorption coefficient has the same form as the grey-body factors obtained for
black holes in section 2.2 (see also [62]) for large j. Indeed,

P ∼
∣∣∣∣Γ(j + 3

2
+ iκ

)∣∣∣∣4 =

∣∣∣∣Γ(j + 3

2
+ i

ω

4πTH

)∣∣∣∣4 , (2.158)

to be compared with the grey-body factor [62]

Pblack hole ∼
∣∣∣∣Γ(j + 2

2
+

iω

4πT+

)∣∣∣∣2 ∣∣∣∣Γ(j + 2

2
+

iω

4πT−

)∣∣∣∣2 . (2.159)
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Thus, we obtain agreement provided we identify

T+ = T− = TH . (2.160)

This implies the equilibrium of the system at Hawking temperature. It sug-
gests the existence of the AdS/CFT correspondence in the system. In the small
temperature limit, κ→∞, the constant A in (2.155) becomes

A ≈
√
π

ij+2R2j+4ω2j+4

4j+2+iκ/2`21(j + 1)!(j + 2)!

Γ(1
2

+ iκ)

Γ(1 + iκ)
(2.161)

|A|2 ≈ πR4j+8ω4j+8

42j+4κ`41((j + 1)!(j + 2)!)2
, (2.162)

where we used the Gamma function identities

Γ(2x) = 1
2π

22x−1/2Γ(x)Γ(x+ 1/2), Γ(x+ 1) = xΓ(x)
|Γ(1/2 + iκ)|2 = π

cosh(πκ)
, |Γ(1 + iκ)|2 = πκ

sinh(πκ)

The absorption coefficient (2.157) becomes

P = 4πκ`41|A|2 ∼
πR4j+8ω4j+8

42j+3((j + 1)!(j + 2)!)2
, (2.163)

which is in agreement with our earlier result [58, 42].

II. Near the limit 4→ 0
To study the behavior near the horizon, we isolate the singularity there,

Ψ ∼
(

1− r2
H

r2

)b
, (2.164)

Substituting back into the wave equation (2.145), we obtain

b =
iω cosh γr4

0

2rH
√
`41 + 4r4

0

=
iω

4πTH
(2.165)

Let us then rewrite the wavefunction as

Ψ =

(
1− r2

H

r2

)b
f(r). (2.166)

where the function f(r) is regular at the horizon, r = rH . Substituting f(r) back into
the wave equation, we obtain

r2(λ− r4
0

r4
)f ′′ +

[
2(2b+ 1)

r2
H

r2

(
1 +

r2
+

r2

)
+

(
5 + 3

r2
+

r2

)(
1− r2

H

r2

)]
rf ′

+

[
4
r2
H

r2
− 4b2

r2

(
(r2

+ + r2
H)r2

H

r2
+(1 + r2

+/r
2)

+ r2
+ + r2

H(1 + r2
+/r

2)

)
− j(j + 4)

]
f = 0.

(2.167)
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In the limit 4 → 0, we have r+ � rH . We shall solve (2.167) in the asymptotic
regime r � rH and then take the limit r → rH . This will give us an approximate
expression for the behavior of the wavefunction near the horizon. Letting r � rH in
(2.167), we obtain

r2

(
1 +

r2
+

r2

)
f ′′ +

(
5 + 3

r2
+

r2

)
rf ′ +

[
−

4b2r2
+

r2
− j(j + 4)

]
f = 0. (2.168)

This equation is of the same form as (2.146) and its solution is

f(u) = Au−1/2+b(1− u)j/2+2F (
j + 3

2
+ b,

j + 3

2
+ b; 1 + 2b;u), (2.169)

u =

(
1 +

r2
+

r2

)−1

, A =
(Γ(j + 3)/2 + b))2

Γ(1 + 2b)

ωj+2rj+
2j+2(j + 1)!(j + 2)!

. (2.170)

At the horizon, r = rH , we have u = uH = 4/(1 +4) and also

f(uH) = Au
−1/2+b
H (1− uH)j/2+2F (

j + 3

2
+ b,

j + 3

2
+ b; 1 + 2b;uH)

= A4−1/2+b

(
1 +

((j + 3)/2 + b)((j + 1)/2− b)

1 + 2b
4+o(42)

)
.

(2.171)

If j is large and |b| � j, we can use the Gamma functions identities

Γ(2x) =
1√
2π

22x−1/2Γ(x)Γ(x+ 1/2), Γ(x+ 1) = xΓ(x) (2.172)

to bring (2.171) into the asymptotic form

f(uH) =
ωj+2rj+ 4−1/2+b (1 +4)(j−b)/2

2j+2(j + 1)!(j + 2)!
×

(Γ(1 + b))2Γ((j + 3)/2 + b+)Γ((j + 3)/2 + b−)

Γ(1 + b+)Γ(1 + b−)Γ(1 + 2b)
, (2.173)

where

b± = b

(
1±

√
4
2

)
, (2.174)

Let us introduce temperature parameters

T± =
TH

1±
√
4/2

(2.175)
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satisfying
1

T+

+
1

T−
=

2

TH
. (2.176)

This is in agreement with (2.111) and the result from non-rotating D5-branes in [54].
Notice that T± → TH as 4 → 0, as expected in the extremal limit. The absorption
coefficient can be written as

P ∼
∣∣∣∣Γ(

j + 3

2
+

iω

4πT+

)Γ(
j + 3

2
+

iω

4πT−
)

∣∣∣∣2 . (2.177)

This result suggests that fields may not be in thermal equilibrium away from ex-
tremality similar to the case of black holes where two distinct temperature parameters
satisfying (2.176) are obtained [62].

III. The other end-point, 4 = 1.
The limit 4 = 1 corresponds to rH = r0 and `1 = 0 (no rotation). In this

limit, the wave equation (2.145) becomes

1

r3
∂r

(
(1− r4

0

r4
)r5∂rΨ

)
+
ω2λr4

0 cosh2 γ

r2(1− r4
0/r

4)
Ψ− j(j + 4)Ψ = 0. (2.178)

Separating the horizon singularity, (1− r4
0/r

4)iκ, we write

Ψ = A

(
1− r4

0

r4

)iκ
f(r), κ =

ωr0 cosh γ

4
=

ω

4πTH
, (2.179)

where TH = 1
πr20 cosh γ

is the Hawking temperature. The wave equation (2.178) becomes

r2

(
1− r4

0

r4

)
f
′′

+ r

[
5− (1− 2iκ)

r4
0

r4

]
f ′ − j(j + 4)f = −4ω2r4

0 cosh2 γ

r2

1 +
r20
r2

+
r40
r4

1 +
r20
r2

f.

(2.180)
In the asymptotic regime r � r0, it reduces further to

r2f ′′ + 5rf ′ +
ω2r4

0 cosh2 γ

r2
f − j(j + 4)f = 0 (2.181)

whose solution is

f(r) =
1

r2
H

(1)
j+2

(
ωr2

0 cosh γ

r

)
. (2.182)

In the large r limit, we have

Ψ ≈ −iA 2j+2(j + 1)!

r2j+2
0 ωj+2 coshj+2 γ

rj. (2.183)
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Matching this asymptotic form to (2.144), we arrive at

A = i
ω2j+4r2j+4

0 coshj+2 γ

4j+2(j + 1)!(j + 2)!
. (2.184)

The absorption coefficient is

P = 8πκr4
0|A|2|f(r0)|2 ≈ 8πκ|A|2

∣∣∣H(1)
j+2(4κ)

∣∣∣2 . (2.185)

For large κ, we may expand the Bessel function as

H
(1)
j+2(4κ) =

(−i)j+5/2

√
2πκ

(
1 +

i

8κ
(j + 5/2)(j + 3/2) + . . .

)
(2.186)

Using the Gamma function identity (2.172), the Bessel function becomes

H
(1)
j+2(4κ) =

−i
22iκ(2κ)j+2

e4iκ
Γ(j/2 + 5/4− 2iκ)Γ(j/2 + 7/4− 2iκ)

Γ(1− 4iκ)
+ . . . . (2.187)

Finally the absorption coefficient (2.185) can be written as

P ≈ 8πκ

((j + 1)!(j + 2)!)2

|Γ(j/2 + 5/4 + 2iκ)Γ(j/2 + 7/4 + 2iκ)|2

|Γ(1 + 4iκ)|2
(ωr0

2

)2j+4

.

(2.188)
This is of the same form as the result in the extremal case (2.158), except the effective
temperature is half the Hawking temperature. It is not clear what the implications of
this result are to the AdS/CFT correspondence. It is worth looking further into the
fate of the correspondence once the system is heated to a small but finite temperature.
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Chapter 3

Quantization of Maximally
Charged Black Holes

In the previous chapter we discussed the connection between field theory and string
theory in the presence of a single black hole. In this chapter, we discuss the quanti-
zation of a particle near a black hole as well as a multi-black hole system. We also
discuss the quantization of a continuous distribution of matter (black string) and ob-
tain explicit results in the case of a ring-shaped formation. This chapter is organized
as follows. In section 3.1, we review a simple example of a conformal mechanical
system. In section 3.2, we discuss the quantization of a particle near a black hole. In
section 3.3, we extend the discussion to the quantization of a system of slowly-moving
maximally-charged black holes in four and five dimensions. Finally, in section 3.4, we
quantize this system of black holes in the limit of a continuous distribution of matter
(black string).

3.1 A conformal quantum mechanical system

The simplest example of a quantum mechanical system with conformal invariance is
given by the Hamiltonian [73, 74]

H =
p2

2
+

g

2x2
. (3.1)

where g is a coupling constant [73]. H has no well-defined ground state because the
spectrum is continuous down to zero energy. The generator of dilations D and special
conformal transformations K are

D =
1

2
(px+ xp), K =

1

2
x2. (3.2)
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These operators obey the SL(2,R) algebra,

[D,H] = 2iH, [D,K] = −2iK, [H,K] = −iD. (3.3)

Consider the linear combinations of H, D and K,

L±1 =
1

2

(
aH − K

a
∓ iD

)
(3.4)

L0 =
1

2

(
aH +

K

a

)
, (3.5)

where a is a constant with a length-squared dimension. These new operators obey
the Virasoro form of the SL(2,R) algebra,

[L1, L−1] = 2L0, [L0, L±1] = ∓L±1. (3.6)

For a=1, L0 can be written as

L0 =
1

2
(H +K) =

p2

4
+

g

4x2
+
x2

4
(3.7)

which has a well-defined ground state and a discrete spectrum. The problem of an
ill-defined Hamiltonian can thus be fixed by considering a generalized operator L0

proportional to H + K. This leads to a well-defined Hilbert space for the quantum
mechanical system.

3.2 Quantization of a particle near a black hole

In this section we follow the discussion in [18, 19] and quantize a particle moving in the
vicinity of an extremal black hole (zero temperature). We use the standard Faddeev-
Popov procedure and show that in the naive gauge which leads to an obstruction at
the boundary of spacetime (see subsection 3.2.3), one obtains an ill-defined ground
state. We show how the gauge can be fixed properly so that the Hilbert space is
well-defined.

3.2.1 Neutral particle

We start by discussing the quantization of a particle moving in a fixed spacetime
background. We consider its path integral and apply the Faddeev-Popov procedure
to fix the gauge.

I. Flat spacetime
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First, let us review the simple case of a particle of mass m moving in flat
spacetime. The action and the Lagrangian, respectively, are

S =

∫
dτL,

L =
1

2η
ẋµẋµ −

1

2
ηm2, (3.8)

and we adopt the mostly positive signature. Varying η, we obtain the constraint

η2 = −ẋµẋµ/m2. (3.9)

The conjugate momenta are

Pµ =
∂L

∂ẋµ
=
ẋµ
η
, Pη = 0. (3.10)

The Hamiltonian is
H = ẋµPµ − L = mηχ, (3.11)

where χ is given by

χ =
1

2m
PµP

µ +
1

2
m. (3.12)

The action in this case is

S =

∫
dτ(ẋµPµ −mηχ). (3.13)

η is a Lagrange multiplier enforcing the constraint

χ ≡ 1

2m
PµP

µ +
1

2
m = 0, (3.14)

which is the mass-shell condition. This constraint (analogous to Gauss’s Law in
electrodynamics) generates parameterizations of τ through Poisson brackets,

δxµ = {xµ, χ}P δτ =
1

m
P µδτ , δPµ = {Pµ, χ}P δτ = 0. (3.15)

The solutions of these differential equations are the orbits of these transformations,
in this case straight lines,

xµ =
P µ

0

m
τ + xµ0 , (3.16)

with constant vectors P µ
0 and xµ0 . The family of orbits in the same direction P µ

0 fills
spacetime. We can obtain all other families by coordinate transformations (rotations).
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To quantize the system, consider the path integral,

Z = N
∫
DxDPDηeiS

= N
∫
DxDPδ(χ)ei

∫
dτẋµPµ . (3.17)

A choice of gauge fixing condition is

h(xµ) = τ, (3.18)

which defines a hyper-surface that cuts each orbit precisely once. Identifying the func-
tion h(xµ) with the time coordinate means that we choose its conjugate momentum
to be the Hamiltonian H of the reduced system. From the standard Faddeev-Popov
procedure, we write

1 = det{h, χ}
∫
Dε δ(h− {h, χ}ε− τ), (3.19)

and insert the above expression into the path integral. After performing a reparametriza-
tion, we obtain

Z = N
∫
DxDP det{h, χ}δ(h− τ)δ(χ)ei

∫
dτẋµPµ . (3.20)

The dimension is reduced and the Faddeev-Popov determinant is canceled by an
integration over the δ-function. The reduced system can be written in terms of new
coordinates x̄i and conjugate momenta P̄i. The Hamiltonian H of the reduced system
is chosen to be a conjugate momentum to h. The path integral becomes

Z = N
∫
Dx̄DP̄ ei

∫
dτ ˙̄x

i
P̄i−H. (3.21)

A different way to quantize the system in the operator formalism is through Dirac
brackets,

{A,B}D = {A,B}P − {A,χi}P{χi, χj}−1
P {χj, B}P (3.22)

where i, j = 1, 2, χ1 = χ and χ2 = h.
For example, consider the case h(xµ) = x0. The Hamiltonian of the reduced

system is

H = −P0 =
√
PiP i +m2, (3.23)

with the coordinate x̄i = xi. The commutation relations from Dirac brackets are

[Pi, x
j] = −iδji , [H, xi] = −iP

i

H
, (3.24)
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which are appropriate for H given by (3.23). Next, we consider the case of a particle
moving in a curved spacetime background.

II. Curved spacetime
The action in the curved spacetime has the same form as in the flat case. The

difference is the background metric gµν is introduced and the gauge transformation
(3.15) changes to

δxµ =
1

m
P µδτ, δPµ =

1

m
ΓνλµP

µP νδτ, (3.25)

where Γνλµ are the Christoffel symbols. We obtain the equation of geodesic orbits

D
dxµ

dτ
≡ d2xµ

dτ 2
+ Γµνλ

dxν

dτ

dxλ

dτ
= 0,

which may also be written in terms of the conjugate momenta,

dPµ
dτ

+ ΓνλµP
νP λ = 0. (3.26)

The same procedure of quantizing the system in flat space can be performed by using
the path integral and choosing a gauge fixing condition.

3.2.2 Charged particle

Consider a particle of charge q interacting with an external electromagnetic field. The
action is

S =

∫
dτL,

L =
1

2η
ẋµẋµ −

1

2
ηm2 + qẋµAµ. (3.27)

When varying τ , we obtain the constraint

η2 = −ẋµẋµ/m2. (3.28)

The conjugate momenta are

Pµ =
∂L

∂ẋµ
=

1

τ
ẋµ + qAµ , Pη = 0. (3.29)
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The Hamiltonian is

H = ẋµPµ − L = mτχ,

χ =
1

2m
πµπ

µ +
1

2
m,

πµ = Pµ − qAµ. (3.30)

Then the action, in the canonical formalism, changes to

S =

∫
dτ(ẋµPµ −mτχ), (3.31)

which is of the same form as in the non-interactive case (3.8). This implies that η is
a Lagrange multiplier enforcing the constraint

χ ≡ 1

2m
πµπ

µ +
1

2
m = 0, (3.32)

which is the mass-shell condition in the presence of an external vector potential.
The orbits of the gauge transformations (τ reparametrizations) are the trajec-

tories of the equations of motion (Lorentz force law in curved spacetime)

ẋµ =
1

m
πµ,

π̇µ +
1

m
Γνλµπ

νπµ =
q

m
πνFµν ,

Fµν = ∂µAν − ∂νAµ. (3.33)

The equations of motion can also be written in terms of the coordinates xµ

ẍµ + Γµνλẋ
ν ẋλ =

q

m
ẋνFµν . (3.34)

The quantization of this system follows the same steps as in the free particle case.

3.2.3 Extreme Reissner-Nordström black hole

Next, we discuss the quantization of a particle moving near an extreme Reissner-
Nordström black hole, M = Q, [75, 76, 77, 78] in four and five dimensions. We
consider only the extremal case for both the black hole and the particle (charge equal
to mass in units in which G = 1, where G is Newton’s constant). The metric in five
dimensions is

ds2 = − 1

ψ
dt2 + ψd~x2 , ψ = 1 +

Q

~x2
, (3.35)
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with the vector potential

A0 =
1

ψ
, ~A = 0. (3.36)

The constant Q is the total charge (mass) of the black hole. Near the horizon, ψ can
be written as

ψ =
Q

~x2
, (3.37)

which is the Coulomb potential in five dimensions. To simplify the metric, we change
coordinates to polar coordinates and use (3.37) to write the metric in terms of ψ, i.e.,

ds2 = − 1

ψ2
(dt2 − Q

4
dψ2) + 4Q2dΩ2

3. (3.38)

Changing parameters again to

x± = t±
√
Q

2
ψ, (3.39)

t =
x+ + x−

2
, ψ =

x+ − x−√
Q

, (3.40)

the metric and vector potential become

ds2 = − 1

ψ2
dx+dx− +QdΩ2

3, (3.41)

A+ = A− =
1

2ψ
. (3.42)

In four dimensions, the metric and vector potential are, respectively,

ds2 = − 1

ψ2
dt2 + ψ2d~x2 , ψ = 1 +

Q

|~x|
, (3.43)

At = ψ−1 , ~A = 0. (3.44)

Near the horizon, ψ becomes

ψ =
Q

|~x|
, (3.45)

which is the Coulomb potential in four dimensions. After changing the metric to
polar coordinate and switching variables to ψ, we obtain

ds2 = − 1

ψ2
(dt2 −Q2dψ2) +Q2dΩ2

2. (3.46)
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Change parameters again to
x± = t±Qψ, (3.47)

the metric becomes

ds2 = − 1

ψ2
dx+dx− +Q2dΩ2

2, (3.48)

which has the same form as in five dimensions (3.41). Both four and five dimensional
metrics take the form of the product AdS2 × Sn , n = 2 and 3. Therefore, we may
consider the AdS2 part only to tackle the problem. The only non-vanishing connection
coefficients are Γ±±± = ∂± ln |g+−|. The geodesic equations for x± are

ẍ± ± (ln |g+−|)′(ẋ±)2 = ±ẋ±F+−, (3.49)

where A= A+ =A−, and (ln |g+−|)′ = ∂+ ln |g+−| = −∂− ln |g+−| and we used q = m
for the particle. Let us impose the simplest gauge-fixing condition

h(x+, x−) =
1

2
(x+ + x−) = τ. (3.50)

The Hamiltonian, which is the conjugate momentum, generates motion along the
geodesics,

H = −H = P+ + P−. (3.51)

By using ψ dA
dψ

= −A, ψ g+−
dψ

= −2g+− and F+− = 2∂+A, the following quantities can

be straightforwardly shown to be gauge-invariant (constant along geodesics)

H = −P+−P− , D = 2x+P+ + 2x−P− , K = −(x+)2P+− (x−)2P− +
1

2
mQψ.

(3.52)
In AdS2 symmetry, they obey an SL(2,R) algebra

{H , D} = −2H , {H , K} = −D , {K , D} = 2K, (3.53)

which reflect the symmetry in the AdS2 spacetime. H, D and K generate time
translations, dilatations and special conformal transformations, respectively. The
brackets can be defined as Poisson or Dirac, which means this is also an algebra of
the gauge-fixed system. The constraint, generator of gauge transformations, χ ≡
1

2m
πµπµ + 1

2
m = 0, becomes

−4ψ2P+P− + 2mψ(P+ + P−) +
L2

Q
= 0, (3.54)

where L2 = ĝijPiPj is the square of the angular momentum operator. If the constraint
is applied, the Hamiltonian changes to

H =
1

ψ
(−m+

√
m2 + 4(ψ2P 2

ψ + L2)/Q). (3.55)
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Pψ is the conjugate momentum to ψ. The other two operators in the SL(2,R) algebra
are

D = −2τH + 2ψPψ , K =
1

2
τ 2H − 1

4
τD +

1

4
Qψ2H +

1

2
mQψ. (3.56)

In the non-relativistic limit and for large ψ (near the horizon),

H =
2ψP 2

ψ

mQ
, D = 2ψPψ , K =

1

2
mQψ, (3.57)

we express ψ in terms of x as

ψ =
x2

Q
. (3.58)

H, D and K become

H =
P 2

2m
, D = xP , K =

1

2
mx2, (3.59)

where P is the conjugate momentum to x. H in this case has no well-defined vacuum,
as shown before. This implies that the gauge we choose h = τ is not a good one.
However, the theory is gauge invariant, therefore it should be possible to find a gauge
that gives a well-defined ground state. Also note that if K is added to H, the problem
is fixed [73]. This suggests that adding K to H might be equivalent to choosing a
different gauge-fixing condition.

Next we introduce a gauge that gives a well-defined vacuum. Define the gauge-
fixing condition by

h(x+, x−) = arctan

(
ωx+ + ωx−

1− ω2x+x−

)
= τ, (3.60)

where ω is an arbitrary scale. A derivative with respect to τ gives

∂+hẋ
+ + ∂−hẋ

− = 1 , ∂±h =
ω

1 + ω2(x±)2
. (3.61)

The Hamiltonian can be obtained from the Lagrangian,

L = ẋ+P+ + ẋ−P− + Λ̇, (3.62)

where we added the time derivative of a function Λ, which does not alter the dynamics.
Also we can view it as a gauge transformation (A → A + dA). The Lagrangian can
be rewritten in terms of the new coordinate

ζ = arctan

(
ωx+ − ωx−

1 + ω2x+x−

)
, (3.63)
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and the Lagrangian in this new coordinate is

L = ζ̇Pζ − ḣH, (3.64)

where

H = −1

2

(
P+

∂+h
+

P−
∂−h

)
− ∂hΛ =

1

2ω
(H + ω2K ′),

K ′ = −(x+)2P+ − (x−)2P− −
2

ω
∂hΛ. (3.65)

H is the momentum conjugate to h and Pζ is the momentum conjugate to ζ. Because
ḣ = 1, H can be considered as the Hamiltonian. It is convenient to choose Λ so that
K ′ = K to ensure that the constraint χ and the Hamiltonian have no explicit time
dependence, because

∂hK = {χ,K} = 0, (3.66)

from the conservation of the charge K. Λ is obtained from solving (3.66),

Λ =
m
√
Q

4
ln
∂+h

∂−h
= −m

√
Q

4
ln

1 + ω2(x+)2

1 + ω2(x−)2
. (3.67)

The Hamiltonian can be obtained by solving the constraint (3.54),

H =

√
Q

sin ζ

(
−m cos ζ +

√
m2 cos2 ζ + (4 sin2 ζP 2

ζ /Q+
1

2
m2Q sin2 ζ + 4L2)/Q

)
.

(3.68)
In the non-relativistic limit, H can be obtained by letting ζ → 0, or ωx± → 0,

H =
1

2ω

(
P 2

2m
+

1

2
mω2u2

)
, (3.69)

where u2 = Mζ ≈ Mω(x+ − x−), and P is the momentum conjugate to u and the
system under this gauge has a well-defined vacuum. Notice that the spectrum in the
non-relativistic limit is independent of ω as expected.

Notice that the non-relativistic Hamiltonian (3.69) can be written in terms of
the Hamiltonian in the naive gauge (3.50) corrected by the addition of the potential
term K ,

H =
1

2ω
(H + ω2K) , K ≈ 2

ω
∂hΛ =

1

2
mMψ. (3.70)

The question arises as to how these two gauges lead to physically different vacua.
To gain further insight, let us reconsider the Faddeev-Popov gauge-fixing procedure
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in the gauge (3.50). Inserting (3.19) into the path integral and then performing an
inverse gauge transformation to eliminate the gauge parameter, we are led to an
obstruction at the boundary of spacetime. Varying the action (3.8), we obtain

δS =

∫
dτ

d

dτ
(δxµPµ)−

∫
dτεχ̇, (3.71)

using δχ = ε{χ, χ} = 0. The action changes by a total derivative

δS =

∫
dτ

d

dτ
(δxµPµ). (3.72)

Since

δxµ = {xµ, χ}ε =
∂χ

∂Pµ
ε, (3.73)

we have

δS = Pµ
∂χ

∂Pµ
ε

∣∣∣∣
∂

. (3.74)

Note that if the generator of the gauge transformations is quadratic, as is the case for
the free particle in (3.12), after substituting χ in (3.74) and imposing the condition
χ = 0, we deduce δS = 0. However, when we use the naive gauge (3.50), the
generator of the gauge transformation, χ (3.32), is not quadratic due to the presence
of the vector potential. Therefore, δS 6= 0 and the contribution from the boundary
of spacetime cannot be ignored. One has to perform the Faddeev-Popov procedure
in the presence of a boundary [79]. The boundary terms can be avoided if, instead,
we use the gauge condition (3.60). In this case, there is no boundary contribution,
because the Faddeev-Popov determinant

{h, χ} ∝ P+

1 + ω2(x+)2
+

P−
1 + ω2(x−)2

, (3.75)

vanishes at the boundary (as x± → ∞). The boundary contribution to the path
integral is ∫

∂

dεdDxdDP{h, χ}δ(h− τ)δ(χ) exp

(
iPµ

∂χ

∂Pµ
ε

)
. (3.76)

It is absent when {h, χ} = 0 at the boundary. The condition implies invariance under
gauge transformations generated by h, which is the time coordinate after gauge-fixing
(h = τ). Therefore, the boundary ought to be invariant under time translations.
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3.3 Slowly-moving maximally charged black holes

In this section we discuss the quantization of a system of slow-moving maximally
charged black holes. First, we review the general features of the classical system in
five dimensions following [74] (four dimensions is similar [80, 81, 82, 83, 84, 19]).Then
we quantize the system showing that a proper gauge-fixing procedure amounts to the
DFF trick for a conformal quantum mechanical system.

3.3.1 The classical system

The equations of motion for multiple black holes can be solved analytically if the black
holes are maximally charged (each black hole’s mass is equal to its charge, M = Q)
and the speed of each black hole is small (we shall keep only the first-order terms
assuming v � 1 in units in which G = c = 1). The metric and the vector potential
for N static maximally charged black holes, respectively, are [80, 82]

ds2 = −ψ−2dt2 + ψd~x2,

A = ψ−1dt,

where

ψ = 1 +
∑
a

Qa

|~x− ~xa|2
,

The metric near a black hole (singularity) becomes AdS2, leading to a system whose
Hamiltonian has no well-defined ground state (similar to the system discussed in
subsection 3.2.3).

In the non-relativistic limit, we may perturb around the static metric and
vector potential (3.77) and write

ds2 = −ψ−2dt2 + ψd~x2 + 2ψ−2 ~R · d~xdt,
A = ψ−1dt+ (~P − ψ−1 ~R) · d~x . (3.77)

The gravitational and electromagnetic field contributions to the action are [85]

Sfield =
1

2

∫
d5x
√
−g[R− 3

4
F 2] +

1

2

∫
A ∧ F ∧ F, (3.78)

whereas the source (matter) contribution is

Ssource =

∫
d5x
√
−gAµρuµ −

∫
d5x
√
−gρ, (3.79)
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where ρ is the matter density and uµ is the matter four-velocity. Gauss’s Law reads

∇2ψ = −2

3
ψ2ρ→ −4π2

∑
a

Qaδ
(4)(~x− ~xa − ~vat), (3.80)

where vµ = xµ

dt
and the last term is appropriate for a discrete distribution (black

holes). The integral over the mass (charge) density also turns into a sum in the
discrete case turning (3.79) into

Ssource = −6π2
∑
a

Qa

∫
dsa + 6π2

∑
a

Qa

∫
Aµdx

µ. (3.81)

Using (3.77) for the metric and vector potential, we obtain

Ssource = −6π2
∑
a

Qa

∫
dtψ−1

(
1− ~R · ~va −

1

2
ψ3~v2

a

)
+6π2

∑
a

Qa

∫
dt
(
ψ−1 + ~P · ~va − ψ−1 ~R · ~va

)
=

1

2

∑
a

Qa

∫
dt
(
6π2ψ2~v2

a + 12π2~v2
a · ~P

)
. (3.82)

The total action to second order in the velocities is

S =
1

2

∫
d5x{6π2ψ2

∑
a

Qaδ
(4)(~x− (~xa + ~vat))~v

2
a

+12π2
∑
a

Qaδ
(4)(~x− (~xa + ~vat))~va · ~P + 3∂0Pi∂iψ −

3

4
ψ−1(∂[iPj])

2

+
3

2
ψ−2∂[iPj]∂[iRj] −

1

2
ψ−3(∂[iRj])

2 − 3ψ(∂0ψ)2 − 3ψ−1εijkl∂iPk∂jPl

+3ψ−2εijkl∂iPk∂jRl − 3ψ−3εijkl∂iRk∂jRl + t.d.}, (3.83)

where i and j run from 1 to 4 and t.d. stands for total derivative. The equations of
motion are obtained by varying Pi and Ri,

dR = −3ψ2
∑
a

d
Qa

|~x− (~xa + ~vat)|2
∧ va,

dP = 2ψ
∑
a

d
Qa

|~x− (~xa + ~vat)|2
∧ va. (3.84)
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We may use these equations to eliminate P and R from the action. This is straight-
forward, except for the terms which do not contain derivatives of P and R. They
may be massaged as follows:

12π2
∑
a

Qaδ
(4)(~x− (~xa + ~vat))~va · ~P + 3∂0Pi∂iψ

= −3~P · ~∂∂0ψ − 3
∑
a

~∂2 Qa

|~x− (~xa + ~vat)|2
~va · ~P + t.d.

= 3~P · ~∂
∑
a

~va · ~∂
Qa

|~x− (~xa + ~vat)|2
− 3

∑
a

~∂2 Qa

|~x− (~xa + ~vat)|2
~va · ~P + t.d.

= −3
∑
a

~va · ~∂ ~P · ~∂
Qa

|~x− (~xa + ~vat)|2
+ 3

∑
a

~∂
Qa

|~x− (~xa + ~vat)|2
· ~∂ ~P · ~va + t.d.

= −3
∑
a

vai(∂[iPj])∂ajψ + t.d. (3.85)

Then the action becomes, on account of (3.84),

S =
1

2

∫
d5x{−3

2
ψ2
∑
a

~∂2
aψ

2~v2
a − 3ψ

∑
a,b

~va · ~vb~∂aψ · ~∂bψ

+3ψ
∑
a,b

~va · ~∂bψ~vb · ~∂aψ − 3ψ
∑
a,b

~va · ~∂aψ~vb · ~∂bψ

−3ψεijkl
∑
a,b

∂aiψvaj∂bkψvbl + t.d.}. (3.86)

It can be rewritten as

S =
1

4

∫
dt
∑
a,b

(δijδkl + δikδ
j
l − δilδ

j
k + εij kl)∂ai∂bjL vakvbl, (3.87)

where

L = −
∫
d4xψ3. (3.88)

To perform the integration in L, we shall only consider the near horizon limit in which
the metric gets simplified. We have

ψ →
∑
a

Qa

|~x− ~xa|2
.

In the near horizon limit, distances between black holes are much smaller than the
Planck length, LP = 1. The metric in this limit simplifies to

ds2 = −ψ−2dt2 + ψd~x2,
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which leads to a Hamiltonian with no well-defined ground state, as was discussed
before (subsection 3.2.3). The metric of the moduli space of the multi-black hole
system is obtained by differentiating the action with the velocity [74], i.e.,

ds2 =
1

4
(δijδkl + δikδ

j
l − δilδ

j
k + εij kl)∂ai∂bjL dxakdxbl, (3.89)

where a summation over both black hole and space repeated indices is implied. L
splits into three pieces, L = L1 + L2 + L3, representing 1-body, 2-body and 3-body
interactions, respectively,

L1 = −
∑
a

∫
d4x

Qa

|~x− ~xa|6
,

L2 = −3
∑
a 6=b

∫
d4x

Q2
aQb

|~x− ~xa|4|~x− ~xb|2
,

L3 = −
∑
a 6=b6=c

∫
d4x

QaQbQc

|~x− ~xa|2|~x− ~xb|2|~x− ~xc|2
. (3.90)

Note that there are no higher than 3-body interactions. L1 may be ignored because
the variable ~x can be shifted to ~x→ ~x−~xa. L2 gives divergent terms but they may be
eliminated after differentiation with respect to xa and xb. After introducing a cutoff
δ, we obtain (see Appendix B.1)

L2 = −6π2
∑
a 6=b

Q2
aQb

[ln |~xa − ~xb| − ln δ]

|~xa − ~xb|2
. (3.91)

To obtain a Hamiltonian with a well-defined ground state, we shall apply the DFF
trick (section 3.1). To this end, we need to derive an operator that will play the role
of K in the SL(2,R) algebra.

3.3.2 An SL(2,R) algebra

Our goal in this subsection is this subsection is to derive the generators of the SL(2,R)
algebra

[D,H] = 2iH, , [D,K] = −2iK, , [H,K] = −iD.

We shall do this for a general system described by the Hamiltonian [86]

H =
1

2
P †
ag

abPb + V (X), (3.92)
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where a and b are black hole indices. By letting

Pa = gabẊ
b = −i∂a,

Pa and Xa satisfy [Pa, X
b] = −iδba and [Pa, Pb] = 0, where

P †
a =

1√
−g

Pa
√
−g.

D is the generator of dilation operator

D =
1

2
DaPa + h.c., (3.93)

and Xa transforms as
δDX

a = Da(X).

From equation (3.92), the algebra [D,H] becomes

[D,H] = − i
2
P †
a (LDgab)Pb − iLDV −

i

4
∇2∇aD

a, (3.94)

where LD is the Lie derivative which is, on gab,

LDgab = Dcgab,c +Dc
,agcb +Dc

,bgac. (3.95)

Comparing the result to the general form of H, one can find out that

LDgab = 2gab, (3.96)

where setting ∇2∇aD
a = 0, and

LDV = −2V. (3.97)

From [D,K] = −2iK, the algebra can be written in the form of operator L as

LDK = 2K. (3.98)

Also from [H,K] = −iD, the algebra is in the form

D = DadX
a = dK. (3.99)

Then D is a one-form. If D is also exact, K could be written as

K =
1

2
gabD

aDb. (3.100)
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In general D might not be exact, causing K not in the the form of (3.100).
To find an explicit expression for K in our case, note that

dK = Daidx
ai = −gai bjxbjdxai, (3.101)

L3 does not contribute to the operator K because its contribution to D vanishes,

D3ak = −g3ak blx
bl =

1

4
(δijδkl + δikδ

j
l − δilδ

j
k + εij kl)∂ai∂bjL3 x

bl = 0 (3.102)

(appendix B.1). Therefore, only L2 contributes,

Daidx
ai = −g2ai bjx

bjdxai = d

[
3π2

4

∑
a 6=b

Q2
aQb

|~xa − ~xb|2

]
(3.103)

leading to the expression

K =
3π2

4

∑
a 6=b

Q2
aQb

|~xa − ~xb|2
, (3.104)

for the generator of special conformal transformations K.

3.3.3 Quantization

We shall now quantize the multi-black hole system using the path integral method
of section 3.2. Our discussion will follow [19, 18]. We start by re-writing the source
part of the action in terms of coordinates and their conjugate momenta,

Ssource = 6π2
∑
a

∫
dxµa Paµ. (3.105)

The constraint equations are obtained in a similar fashion,

χa ≡
1

2Ma

πaµπ
aµ +

1

2
Ma = 0 , πaµ = Paµ −QaAµ , Qa = Ma. (3.106)

The electromagnetic and gravitational field parts remain the same. Solving the field
equations (Einstein and Maxwell equations), we may express the fields in terms of
the vector potential Aµ as

ψ = A0 , Fij = 2ψFij , Gij = 3ψ3Fij, (3.107)

where we have defined

Fij = ∂iPj − ∂jPi , Gij = ∂iRj − ∂jRi (3.108)
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We also need their duals

F̃ ij = εijklFkl , G̃ij = εijklGkl.

The vector potential Aµ is generated by the source current jµ in flat spacetime

∂µFµν = 2π2jν ,

Fµν = ∂µAν − ∂νAµ,

jµ =
∑
a

Qa

∫
dXµ

a δ
5(x− xa). (3.109)

For the sources, we obtain the Lorentz force equation,

ẍµa + Γµνλẋ
ν
aẋ

λ
a = ẋνaF

µ
ν . (3.110)

To quantize the system, we start with the path integral

Z = N
∫
DgDA

∏
a

DxaDPaδ(χa)eiS. (3.111)

and fix the gauge. An obvious gauge choice is

x0
a = t, (3.112)

for all black holes. Then the current becomes

jµ =
∑
a

Qav
µ
aδ

4(~x− ~xa) , vµa = (1, ~va) , ~va =
d~xa
dt
, (3.113)

and the vector potentials are

A0 = ψ =
∑
a

Qa

(~x− ~xa(t))2
, ~A =

∑
a

Qa~va
(~x− ~xa(t))2

. (3.114)

The conjugate momentum is obtained from solving the constraint χa = 0 in the
non-relativistic limit as

Pa0 =
gijπiπj
2Qa

+QaA0, (3.115)

and the action for the source becomes

Ssource =
∑
a

6π2

∫
dt(ẋiaPai −Ha) , Ha = −Pa0. (3.116)
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Plugging the source action back into the path integral (3.111) and integrating over

the momentum ~Pa, we obtain

Z = N
∫ ∏

a

DxaeiS. (3.117)

where the action may be written as [74]

S = Sfield + Ssource =

∫
dt
∑
a 6=b

Gab(~va − ~vb)2 + . . . , (3.118)

where

Gab =
3π2QaQb(Qa +Qb)

8(~xa − ~xb)4
, ~va =

d~xa
dt
. (3.119)

This leads to a Hamiltonian with no well-defined ground state. This pathology is due
to the fact that the gauge choice (3.112) is not good, which is similar to the problem
we encountered in subsection 3.2.3. We need to make a good gauge choice. Denote
the gauge-fixing condition for the black hole labeled by the index b by

hb(x
µ
b ) = t. (3.120)

This black hole interacts with other black holes by gravitational and electromagnetic
forces. In the case where our bth black hole approaches another black hole, say, the ath,
the influence of the rest of the black holes is negligible. The problem is then reduced
to one that we have already tackled in subsection 3.2.3. The net effect of a good
gauge choice was the addition of a potential to the Hamiltonian. Similarly, here we
expect that a non-relativistic potential will be added our bth black hole Hamiltonian,
of the form

K(b)
a =

3π2QbQ
2
a

4(~xb − ~xa)2
. (3.121)

By applying this argument to the rest of the black holes, we obtain the total potential
energy of our bth black hole in the non-relativistic limit as

K(b) =
∑
a 6=b

K
(b)
(a) =

3π2

4
Qb

∑
a 6=b

Q2
a

(~xb − ~xb)2
. (3.122)

It is convenient to introduce the coordinates

X(b)±
a = x0

b ±
Q

3/2
a

2(~xb − ~xa)2
, (3.123)
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similar to (3.47). We shall choose the gauge-fixing condition (similar to (3.60))

hb(x
µ
b ) = x0

b +
∑
a 6=b

(
arctan

{
x0
b

1 + 1
4
X

(b)+
a X

(b)−
a

}
− x0

b

)
, (3.124)

where we set ω = 1/2, for simplicity. Notice that when (~xb − ~xa)
2 → 0 for a fixed a,

the above expression reduces to (3.60). This ensures that there will be no boundary
contributions, because ḣb → 0, near the boundary of moduli space. We added a total
time derivative to the Lagrangian to ensure that there is no explicit dependence on
hb, resulting in a time-dependent Hamiltonian. Therefore, the action can be written
as

Sb = 6π2

∫
dt(ẋµbPbµ + Λ̇(b)), (3.125)

Λ(b) =
∑
a 6=b

Λ(b)
a ,

Λ(b)
a = −Qb

√
Qa

4
ln

{
1 + 1

4
(X(b)+)2

1 + 1
4
(X(b)−)2

}
. (3.126)

In the non-relativistic limit, hb = t ≈ x0
b and

Λ(b)
a ≈ x0

b

QbQ
2
a

8(~xb − ~xa)2
=

1

2
t
K

(b)
a

3π2
. (3.127)

Thus, the additional term is

Λ̇(b) ≈ 1

2

∑
a 6=b

K
(b)
a

3π2
=

1

2

K(b)

3π2
, (3.128)

as expected. By repeating the above procedure with the rest of the black holes, we
may sum over the index b. Then the action for the source is written as

Ssource =
∑
b

Sb =
∑
b

∫
dt(6π2)

(
ẋµbPbµ + Λ̇(b)

)
. (3.129)

The net effect of the gauge (3.124) in the non-relativistic limit is the addition of the
potential

K =
∑
a

K(a) =
∑
a

∑
b6=a

3π2QaQ
2
b

4(~xa − ~xb)2
,

=
∑
a<b

3π2QaQb(Qb +Qa)

8(~xa − ~xb)2
. (3.130)
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Therefore, by fixing the gauge in a way that eliminates the boundary contribution,
we obtained a potential K (3.130) which needs to be added to the Hamiltonian one
obtains in the naive gauge (3.112). The resulting Hamiltonian has a well-defined
Hilbert space.

3.4 A continuous distribution (Black string)

In this section we extend the previous discussion to a continuous mass distribution.
Only a one-dimensional distribution gives a finite potential K. We shall consider
explicitly the case of a ring-shaped black string. Details of the calculation can be
found in appendix B.2.

3.4.1 The classical system

The metric of a continuous system is [82]

ds2 = −ψ−2dt2 + ψd~x2 + 2ψ2 ~R · d~xdt,

where

ψ = 1 +

∫
d4x′

√
g

ρ(~x′)

|~x− ~x′|2
,

A = ψ−1dt+ (~P − ψ−1 ~R) · d~x.

The field and source parts of the action, respectively, are [74]

Sfield =
1

2

∫
dx5
√
−g
[
R− 3

4
F 2

]
+

1

2

∫
A ∧ F ∧ F,

Ssource =

∫
d5x
√
−gAµρuµ −

∫
d5x
√
−gρ.

The source contribution may be written the terms of the velocity field, ~v, in the
non-relativistic limit,

Ssource =

∫
d5x
√
−gρ

[
Aµu

µ dt

dτ
− 1

]
=

∫
d5xψ2ρ

{
ψ2v2

2
+ ~P · ~v

}
.
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Then the total action can be written in terms of the potentials P and R, as before,

S = Ssource + Sfield

=
1

2

∫
d5x

{
ψ2ρ(ψ2v2 + 2~P · ~v)

+3∂0Pi∂iψ −
3

4
ψ−1(∂[iPj])

2 +
3

2
ψ−2∂[iPj]∂[iRj] −

1

2
ψ−3(∂[iRj])

2

−3ψ(∂0ψ)2 − 3ψ−1εijkl∂iPk∂jPl + 3ψ−2εijkl∂iPk∂jRl

−ψ−3εijkl∂iRk∂jRl + t.d.
}
.

Varying P and R we obtain the equations of motion,

0 = −∂0∂iψ − ∂j(ψ
−1∂[iPj]) + ∂j(ψ

−2∂[iRj])− 2ψ−1εijkl∂kψ∂jPl

+2ψ−3εijkl∂kψ∂jRl +
2

3
ψ2ρvi,

0 = ∂j(ψ
−2∂[iPj])−

2

3
∂j(ψ

−3∂[iRj])− 2ψ−3εljki∂jψ∂lPk

2ψ−4εljki∂jψ∂lRk. (3.131)

By eliminating the εijkl terms, we obtain

∂j
(
ψ−2∂[iRj]

)
= 3∂0∂iψ − 2ψρvi. (3.132)

Introduce a potential ~K obeying

∂[iKj] = ψ−2∂[iRj] =
3

2
ψ−1∂[iPj] (3.133)

Then
∂j∂[iKj] = 3∂0∂iψ − 2ψ2ρvi. (3.134)

Let us choose
∇2Ki = 2ψ2ρvi. (3.135)

We have

∂i∂jKj = 3∂0∂iψ,

∂jKj = 3∂0ψ,

∂j∇2Kj = 3∇2ψ,

∂j(2ψ
2ρvj) = 3∇2ψ. (3.136)

From the continuity equation for the current,

∂j(ρ̄vj) + ∂0ρ̄ = 0, (3.137)
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where ρ̄ = ψ2ρ, we deduce

∇2ψ = −2

3
ρ̄. (3.138)

Using the Green function in four dimensions,

G(~r1, ~r2) = − 1

4π2

1

| ~r1 − ~r2 |2
, (3.139)

we obtain

ψ =
1

6π2

∫
d4r2

ρ̄(~r2)

| ~r1 − ~r2 |2
. (3.140)

Then ~K can be calculated using (3.135), and hence the field strengths of the potentials
P and R are obtained using (3.133),

ψ−2∂[iRj] = − 2

4π2

∫
d4r2

∂[iρ̄vj]
|~r1 − ~r2|2

, (3.141)

ψ−1∂[iPj] = − 1

3π2

∫
d4r2

∂[iρ̄vj]
|~r1 − ~r2|2

. (3.142)

The first term in the action can be manipulated as follows:

ρ̄ψ2v2 =

∫
d4zδ(~U − ~z)ρ̄zψ

2v2
z

=

∫
d4zρ̄zψ

2v2
z(−

1

4π
)∂2
Uj

1

|~U − ~z|2

= −3

2
(

2

3 · 4π2
)3

∫
d4xd4yd4zρ̄xρ̄yρ̄z

v2
z

|~U − ~x|2|~U − ~y|2
∂2
zj

1

|~U − ~z|2

= 3(
2

3 · 4π2
)3

∫
d4xd4yd4zρ̄xρ̄yρ̄z

v2
z

|~U − ~x|2
∂yi

1

|~U − ~y|2
∂zi

1

|~U − ~z|2
+ t.d.. (3.143)

The second and third terms are combined together:

2ρ̄pivi + 3∂0Pi∂iψ = −3∇2ψPivi + 3∂0Pi∂iψ

= 3vi(∂jPi)(∂jψ) + 3Pi(∂jvi)∂jψ − 3Pi∂i∂0ψ + t.d.

= 3vi(∂jPi)(∂jψ) + 3Pi(∂jvi)∂jψ − Pi∂i∇−2∂j(2ρ̄vj) + t.d.

= 3(∂jPi)∂U(
2

3 · 4π2
)

∫
d4z

ρ̄vj

|~U − ~z|2
+ ∂jPi∂i∇−2(2ρ̄vj) + t.d.

= −∂[iPj]∂j
2

4π2

∫
d4z

ρ̄vi

|~U − ~z|2
+ t.d.
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= 3 · 2(
2

3 · 4π2
)2ψ

∫
d4y

∂[iρ̄vj]

|~U − ~y|2

∫
d4zρ̄vi∂Uj

1

|~U − ~z|2
+ t.d.

= 3 · 2(
2

3 · 4π2
)2

∫
d4xd4yd4z

ρ̄xρ̄yρ̄z

|~U − ~x|2
v[yj∂Ui]

1

|~U − ~y|2
vzi∂Uj

1

|~U − ~z|2
+t.d. . (3.144)

The fourth, fifth and sixth terms may be combined into

−3

4
ψ−1(∂[iPj])

2 +
3

2
ψ−2∂[iPj]∂[iRj] −

1

2
ψ−3(∂[iRj])

2

=
3

2
(

2

3 · 4π2
)2ψ

∫
d4yρ̄yv[yj∂Ui]

1

|~U − ~y|2

∫
d4zρ̄zv[zj∂Ui]

1

|~U − ~z|2
+t.d. . (3.145)

The seventh term becomes

−3ψ(∂0ψ)2 = −3(
2

3 · 4π2
)2ψ

∫
d4yρ̄yvyi∂Ui

1

|~U − ~y|2

∫
d4zρ̄zvzj∂Uj

1

|~U − ~z|2
+ t.d. .

(3.146)
The eighth, ninth and tenth terms are

− 3ψ−1εijkl∂iPk∂jPl + 3ψ−2εijkl∂iPk∂jRl − ψ−3εijkl∂iRk∂jRl

= −3

4
(

2

3 · 4π2
)2ψεijkl

∫
d4yρ̄yv[yk∂Ui]

1

|~U − ~y|2
ψ

∫
d4zρ̄zv[zl∂Uj]

1

|~U − ~z|2
+ t.d. . (3.147)

Then the action may be written as

S =
1

2

∫
d5U(

2

3 · 4π2
)3

∫
d4xd4yd4z

ρ̄xρ̄yρ̄z

|~U − ~x|2

3

{
v2
z∂yi

1

|~U − ~y|2
∂zi

1

|~U − ~z|2
+ 2v[yj∂Ui]

1

|~U − ~y|2
vzi∂Uj

1

|~U − ~z|2

+
1

2
v[yj∂Ui]

1

|~U − ~y|2
v[zj∂Ui]

1

|~U − ~z|2
− vyi∂Ui

1

|~U − ~y|2
vzj∂Uj

1

|~U − ~z|2

−1

4
εijklv[yk∂Ui]

1

|~U − ~y|2
v[zl∂Uj]

1

|~U − ~z|2

}
=

1

2

∫
d5U(

2

3 · 4π2
)3

∫
d4xd4yd4z

ρ̄xρ̄yρ̄z

|~U − ~x|2
×

3
{
(v2
z − vyivzi)∂yj∂zj + vyivzj

(
∂yj∂zi − ∂yi∂zj + εijkl∂yk∂zl

)}
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1

|~U − ~y|2|~U − ~z|2
.

(3.148)

Following [74], we introduce the metric of the moduli space of the continuous distri-
bution case as

gaαbβ =
δS

δvaαδvbβ

=
1

2

∫
d5U

(
2

3 · 4π2

)3 ∫
d4xd4yρ̄xρ̄y3 · 2×{

(ρ̄aδabδαβ∂yj∂aj)− δαβ∂aj∂bj + ∂aβ∂bα − ∂aα∂bβ − εαβkl∂ak∂bl
}

1

|~U − ~x|2|~U − ~a|2|~U −~b|2
. (3.149)

We are interested in finding the generators of dilatation D and special conformal
transformations K. We expect that K will play the role of a potential that will lead
to a well-defined ground state for the Hamiltonian, as in the discrete case. From
section 3.3.1 and 3.3.2, we know that if D is exact, then K is related to D by dK =
Daidx

ai = −gai bjbjdai. Because we now have a continuous distribution, we have to
integrate over the continuous index b,∫

gaαbβb
βd4b =

1

2

∫
d5U

(
2

3 · 4π2

)3 ∫
d4xd4bρ̄xρ̄aρ̄b3 · 2{

(aα − bα)∂aj∂bj + bβ(∂aβ∂bα − ∂aα∂bβ − εαβkl∂ak∂bl
}

1

|~U − ~x|2|~U − ~a|2|~U −~b|2
.

(3.150)

To integrate over ~U , we introduce a cutoff δ

|~U − ~a|2 → |~U − ~a|2 + δ2,

|~U −~b|2 → |~U −~b|2 + δ2,

|~U − ~c|2 → |~U − ~c|2 + δ2, (3.151)

We shall let δ → 0 at the end. To perform the integral, we introduce Feynman
parameters. Using the formula

1

D1D2D3

= 2

∫
[dx]

(D1x1 +D2x2 +D3x3)3
,∫

[dx] =

∫ 1

0

dx1

∫ 1

0

dx2

∫ 1

0

dx3δ(1− x1 − x2 − x3) (3.152)
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we obtain∫
gaαbβb

βd4b =
1

2

(
2

3 · 4π2

)3

(3 · 2 · 4)

∫
d4bd4cρ̄aρ̄bρ̄c(2π

2)

∫
[dx]

x1x2(a
α − bα)δ2[

(~a−~b)2x1x2 + (~a− ~c)2x1x2 + (~b− ~c)2x1x3 + δ2
]3

=
1

2

(
2

3 · 4π2

)3

(3 · 2 · 4)

∫
d4bd4cρ̄aρ̄bρ̄c(2π

2)

∫
[dx]

(−1

8
)
∂

∂aα
1[

(~a−~b)2x1x2 + (~a− ~c)2x1x2 + (~b− ~c)2x1x3 + δ2
]2 .

(3.153)

As an example, consider a ring-shaped formation of uniform density ρ̄ and radius R.
The total mass (charge) of the ring is

M = Q = 2πRρ̄. (3.154)

From (3.153), we obtain (see appendix B.2)∫
gaαbβb

βd4b = 4

(
2

3 · 4π2

)3(
M

2π

)3

π3 a
α

R4
.

We also have

Daαdx
aα = −g2aαbβx

bβdxaα,

dK = d

[
3 · 4(

1

6π2
)3(
M

2π
)3 π

3

6R2

]
,

K = (
1

6π2
)3 M

3

4R2
, (3.155)

The Lagrangian in (3.148) reduces to (see appendix B.2)

S = (
1

6π2
)33M3 Ṙ

2

R4
. (3.156)

This leads to a Hamiltonian with no well-defined ground state. With a proper gauge
choice, we expect that this Lagrangian will be the kinetic part T of the Hamiltonian
which will include a potential V = K. Thus, we expect the correct form of the
Lagrangian to be of the form

L = T − V

= (
1

6π2
)3

[
3M3Ṙ2

R4
− M3

4R2

]
, (3.157)
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leading to the Hamiltonian

H =
(6π2)3

12

R4

M3
P 2 +

1

4
(

1

6π2
)3M

3

R2
, (3.158)

where P = (1/6π2)36M3Ṙ/(R4) is the momentum conjugate to R. The three quanti-
ties, H, D = −RP and K obey an SL(2,R) algebra. By changing variables to

u =
31/4

(6π2)3/2

M

R
,

Pu = Mu̇, (3.159)

where Pu is the momentum conjugate to u, the Hamiltonian turns into the Hamilto-
nian for a simple harmonic oscillator,

H =
1√
3

(
P 2
u

2M
+

1

2
Mu2

)
. (3.160)

Thus, the ground state is well-defined and all the eigenvalues are known explicitly.
This is the expected result once a good gauge choice is made, which we proceed to
discuss next.

3.4.2 Fixing the gauge

Here we show that the modified Hamiltonian obtained in the previous section (leading
to a well-defined vacuum) is the result of a gauge-fixing procedure. Our discussion is
an extension of the calculation in the discrete case considered above [87].

Let σ label the points on the black string. Consider the motion of a small
segment of the string of length 2Lδ situated at σ = σ̄ under the influence of the rest
of the string. L is the physical length of the string (L = 2πR in the case of a circular
ring of radius R). The string segment experiences a potential

ψ̄ = ψ(~x(σ̄)) =
1

6π2

∫
dσ
√
g

ρ̄

|~x(σ̄)− ~x(σ)|2 + L2δ2
,

where we regulated the integral by introducing the cutoff δ. This is slghtly different
from the cutoff introduced in the previous section - it is dimensionless. Due to the
singularity, the leading contribution to this integral comes from the neighborhood of
the segment (around σ = σ̄). We obtain

ψ̄ =

∫
dl

ρ̄

l2 + L2δ2
+ . . . =

2ρ̄

Lδ
+ . . . =

m

L2δ2
+ . . . , (3.161)
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where l =
√
g|σ − σ̄| is the distance along the string as measured from σ̄, m = 2ρ̄Lδ

is the mass of the string segment, and the dots represent higher-order terms in δ. If
we place the origin at ~x(σ̄) and approximate the segment by a point particle of mass
m at distance r = Lδ from the origin, we can have radial motion under which the
length of the segment changes, as well as angular motion leaving its length unchanged.
Therefore, the line element along its trajectory can be written as

ds2 = −L
2δ2

m
(dx0)2 +

m

L2
dL2 +mdΩ2

3, (3.162)

which is a line element in AdS2 × S3. Switching variables to ψ̄, we may write

ds2 = − 1

ψ̄2

(
(dx0)2 − m

4
dψ̄2
)2

+mdΩ2
3.

which describes the motion of a particle in the vicinity of a Reissner-Nordström black
hole of mass m, provided ψ̄ � 1. This is satisfied if m � L2δ2. Since m = 2ρ̄Lδ,
we need ρ̄/L � δ, which is certainly true, since δ → 0. We may therefore apply our
earlier results in subsection 3.2.3 to quantize the system at hand.

Introducing new variables

x± = x0 ±
√
m

2
ψ, (3.163)

and their conjugate momenta p±, we may write the constraint (generator of reparametriza-
tions) as

2mχ = −ψ2p+p− +
1

2
mψ(p+ + p−) +

L2

m
= 0, (3.164)

where ~L is the angular momentum operator. χ commutes with

h = −p+ − p− , d = 2x+p+ + 2x−p− , k = −(x+)2p+ − (x−)2p− +
1

2
m2ψ, (3.165)

which form an SL(2,R) algebra.
The simplest and obvious gauge choice is

x0 = τ. (3.166)

leading to a non-relativistic Hamiltonian

h ≈ 2ψ̄p2

m2
,
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where p is the momentum conjugate to ψ̄. The action in this gauge is

S =

∫
dτ

(
p
dψ̄

dτ
− h

)
. (3.167)

After integrating over the momentum in the path integral, the action becomes

S =

∫
dτ

1

2
mψ̄2v2, (3.168)

where v = ṙ is the velocity of the center of mass of the segment. Integrating over the
entire length of the string, we obtain the total action

Smatter =
1

2

∫
dτ

∫
dlρ̄ψ2v2. (3.169)

This action describes a system without a well-defined vacuum. As explained in section
3.2.3, this is due to the fact that (3.166) is not a good gauge choice. A good gauge-
fixing condition is given by

τ(x+, x−) ≡ arctan

(
ωx+ + ωx−

1− ω2x+x−

)
= τ. (3.170)

The conjugate momentum to τ in this case is

pτ = −1

2

(
p+

∂+τ
+

p−
∂−τ

)
=

1

2ω

(
h+ ω2k′

)
, k′ = −(x+)2p+ − (x−)2p−. (3.171)

This momentum, pτ , is not a good candidate for the Hamiltonian of the system
because it is not a conserved quantity (pτ does not commute with χ: {pτ , χ} 6= 0).
The problem can be fixed, as before, by a gauge transformation, A→ A+ dΛ. From
(3.126) and (3.66), we obtain

Λ = −m
3/2

4
ln

1 + ω2(x+)2

1 + ω2(x−)2
(3.172)

leading to a new conjugate momentum

h′ = pτ − ∂τΛ =
1

2ω
(h+ ω2k). (3.173)

Since both h and k commute with χ (conserved quantities), so does h′. It follows that
h′ is also a conserved quantity. In the non-relativistic limit, we obtain

h′ ≈ 1

2ω

(
2ψ̄2p2

m2
+

1

2
m2ω2ψ̄2

)
. (3.174)
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This Hamiltonian has a well-defined ground state thanks to the second term (po-
tential). This is easily seen by the change of variables, ψ = Cx2, under which h′

turns into the Hamiltonian of a harmonic oscillator. Note that ω is arbitrary in the
gauge-fixing condition (3.170), but no physical quantities, such as the eigenvalues of
the Hamiltonian (energy levels), depend on it. The action in this gauge is

Smatter =

∫
dt

∫
dl

(
1

2
ρ̄ψ2v2 − 12π2

(6π2)3
ρ̄3

)
. (3.175)

Adding the contribution of the electromagnetic and gravitational fields, we arrive at
the action

S =

∫
dt(T − V ), (3.176)

where

V = (
1

6π2
)312π2

∫
dlρ̄3 (3.177)

and T is the Lagrangian in (3.148). This modified action describes a well-defined
quantum mechanical system and is the result of a good gauge choice.

As an example, consider a ring-shaped formation of radius R. Its mass is
M = 2πRρ̄ and its charge is Q = M . The kinetic energy part T is obtained in
appendix B.2,

T = (
1

6π2
)3M

3

4

Ṙ2

R4
. (3.178)

The potential is found to be

V = (
1

6π2
)312π2

∫
dlρ̄3 = (

1

6π2
)3 3M3

R2
. (3.179)

Therefore, V = K, on account of (3.155), where K is the generator of special confor-
mal transformations, in agreement with our expectations.
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Chapter 4

Quasinormal Modes of Black Holes

To probe the connection between supergravity on anti-de Sitter spacetime and con-
formal field theories on the boundary [20] further, we shall study quasinormal modes
for an AdS black hole. Quasinormal modes describe small perturbations around
equilibrium and are expected to correspond to perturbations of the corresponding
conformal field theory. This chapter is organized as follows. In section 4.1, we review
general properties of AdS Schwarzschild black holes and their quasinormal modes.
In section 4.2, we concentrate on 2+1 dimensions, where the radial part of the wave
equation can be reduced to a hypergeometric equation whose solution is known. We
obtain an exact expression for quasinormal modes. In section 4.3, we investigate the
(4+1)-dimensional case, in which quasinormal modes are obtained from solutions to
Heun’s equation. Unfortunately, the solution cannot be expressed in terms of known
functions in a closed form [88]. We develop a perturbative method to obtain the
quasinormal modes at high temperature and compare our results to numerical calcu-
lations [89, 90]. In sections 4.4, we extend the discussion to higher dimensions. This
perturbative method can be used as a future direction to analytically calculate the
correct pattern of poles on the complex plane, which contains important informa-
tion of the correspondence Green function in the conformal field theory, because the
quasinormal frequencies turn out to be the poles of the Green function in subsection
2.1.3 and [89, 90].

4.1 Introduction

The metric of an AdS Schwarzschild black hole with mass M , and therefore non-zero
Hawking temperature, in n+ 1 dimensions [91] is

ds2 =

(
r2

b2
+ 1− ωnM

rn−2

)
dt2 +

dr2(
r2

b2
+ 1− ωnM

rn−2

) + r2dΩ2. (4.1)
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The constant ωn is

ωn =
16πGn

(n− 1)Vol(Sn−1)
, (4.2)

where Gn is the n+ 1 dimensional Newton’s constant and Vol(Sn−1) is the volume of
a unit n− 1 sphere. This metric has a horizon at rH , where

r2
H

b2
+ 1− ωnM

rn−2
H

= 0. (4.3)

The entropy of the black hole is [91]

S =
AH
4
,

and the Hawking temperature is

TH =
1

4π

nr2
H + (n− 2)b2

b2rH
. (4.4)

High temperature corresponds to rH → 0 or rH →∞, but only rH →∞ is acceptable
[91] because of the existence of the black hole. At high temperature, the angular part
of the metric dΩ2 becomes asymptotically flat at infinity, r2dΩ2 →

∑
i x

2
i . The horizon

at high temperature is at

rH = b

[
ωnM

bn−2

]1/n

, (4.5)

and the Hawking temperature can be written as

TH =
n

4πb

[
ωnM

bn−2

]1/n

. (4.6)

The method of analyzing quasinormal modes of an AdS Schwarzschild black hole is
discussed in [89]. The wavefunction has to be zero at infinity, because the potential
diverges in this region. In the massless case, the wavefunction at infinity becomes a
constant, which depends on the frequency ω of the mode. Once the constant is set
to zero, only a certain set of complex values of ω are allowed. These values of ω are
the quasinormal frequencies. In 2+1 dimensions, they appear as poles of the retarded
Green’s function [92].

For an (n+1)-dimensional AdS Schwarzschild metric (4.1), the wave equation
is

1√
−g

∂Ag
AB
√
−g∂BΦ = m2Φ.
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In the massless case, Φ is written in the form,

Φ = r
1−n

2 Ψ(r)Y (angles)e−iωt, (4.7)

where Y is a harmonic function on the sphere Sn−1. Changing the parameter r to

dr∗ =
dr

f(r)
(4.8)

where f(r) = r2

b2
+ 1− ωnM

rn−2 , the metric becomes

ds2 = f(r)(−dt2 + dr2
∗) + r2dΩ2

n−1. (4.9)

The wave equation then is written as

[∂2
r∗ + ω2 − Ṽ (r∗)]Ψ = 0 (4.10)

where

Ṽ (r∗) =
(n− 1)(n− 3)

4r2
f 2 +

c

r2
f +m2f, (4.11)

and c = l(l + n − 1) is the total angular momentum on Sn−1. The potential Ṽ is
positive, vanishes at the horizon and diverges at infinity. Near the horizon, Φ behaves
like e−iω(t±r∗). In general, quasinormal modes are defined as solutions which are purely
ingoing at the horizon, Φ ∼ e−iω(t−r∗) and purely outgoing at infinity, Φ ∼ e−iω(t+r∗),
so no outside wave is incoming at infinity. This restricts the frequencies to a discrete
set of complex values, called quasinormal frequencies. For the massless AdS case, Φ
at infinity has to be zero because Ṽ diverges there.

Because we are interested only in ingoing modes near the horizon, we change
the parameter t to v= t+r∗ (ingoing Eddington coordinate), in order to extract some
useful information from the wave equation. The metric reads

ds2 = −f(r)dv2 + 2dvdr + r2dΩ2
n−1. (4.12)

The wavefunction can be written in the form

Φ = r
1−n

2 Ψ(r)Y (angles)e−iωv, (4.13)

and the radial part of the wave equation becomes

f(r)
d2

dr2
Ψ(r) + [f ′(r)− 2iω]

d

dr
Ψ(r)− V (r)Ψ(r) = 0, (4.14)

where

V (r) =
(n2 − 1)

4
+

(n− 1)(n− 3) + 4c

4r2
+

(n− 1)ωnM

4rn
. (4.15)
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V is positive for n ≥ 3. Let us consider the variable r∗,

r∗ =

∫
dr

f(r)
≈
∫

dr
r2

b2
− ωnM

rn−2

at high temperature

=
b2

(ωnMb2)1/n

∫
dy∗

yn∗ − 1
, y∗ =

(ωnMb2)1/n

r

=
b2

(ωnMb2)1/n

n∑
i=1

ln(y∗ − ai)∏
j 6=i(ai − aj)

, (4.16)

where ai is one of the n solutions to yn − 1 = 0. Then the outgoing modes near the
horizon, which should be set to zero, behave like

e−iω(t−r∗) ≈ e−iωv(y∗ − 1)
2iω

4πTH

n∏
i=2

(y∗ − ai)
2iω

4πTH

n∏
i6=j(ai−aj) , (4.17)

where we used TH = n
4πb

[ωnM
bn−2 ]1/n, y∗ = 1 at the horizon and 0 at infinity. From the

above equation, the imaginary part of ω has to be negative, in order to make the
outgoing modes vanish in this region. This can be shown by multiplying (4.14) with
Ψ̄ and integrating r from the horizon to infinity,∫ ∞

rH

dr

[
Ψ̄
d

dr

(
f
dΨ

dr

)
− 2iωΨ̄

dΨ

dr
− V |Ψ|2

]
= 0. (4.18)

Integrating by parts and throwing away the boundary terms (using f(rH) = 0 and
Ψ̄(r = ∞) = 0), the above equation becomes∫ ∞

rH

dr
[
f |Ψ′|2 + 2iωΨ̄Ψ′ + V |Ψ|2

]
= 0. (4.19)

The imaginary part is ∫ ∞

rH

dr
[
ωΨ̄Ψ′ + ω̄ΨΨ̄′] = 0. (4.20)

Integrating by parts the second term

(ω − ω̄)

∫ ∞

rH

drΨ̄Ψ′ = ω̄|Ψ(rH)|2, (4.21)

and substituting this result back into (4.19), we obtain∫ ∞

rH

dr
[
f |Ψ′|2 + V |Ψ|2

]
= −|ω|

2|Ψ(rH)|2

Im(ω)
. (4.22)

The left-hand side is positive, therefore Im ω has to be negative, as expected for
purely ingoing modes near the horizon. There is no solution for Im ω ≥ 0. Only the
solution Im ω < 0 decays in time.
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4.2 2+1 Dimensions

In this subsection the quasinormal modes and frequencies in 2+1 dimensions are
obtained. The wave equation in this case is

1

r
∂rr(

r2

b2
− ω2M + 1)∂rΦ−

1
r2

b2
− ω2M + 1

∂2
tΦ +

1

r2
∂2
θΦ−m2Φ = 0. (4.23)

Let

Φ = eiω
′teil

′θΨ(y), y = (ω2M − 1)
b2

r2
, (4.24)

we obtain

y2(y − 1)∂y(y − 1)∂yΨ +
(ωb)2

4
yΨ +

l2

4
y(y − 1)Ψ +

m2b2

4
(y − 1)Ψ = 0, (4.25)

where 0 < y < 1 and

ω2 =
ω′2

ω2M − 1
∼ ω′2

(2πbTH)2
, l2 =

l′2

ω2M − 1
. (4.26)

Let us factor out the singularities at y = 0, 1 by setting

Ψ = yn(y − 1)pf(y), (4.27)

where

n =
1

2
± 1

2

√
1 +m2b2 p = −iωb

2
∼ 1

TH
. (4.28)

Note that we choose the minus sign for p which corresponds to the ingoing mode at
the horizon. In the massless case, m = 0, n is an integer, n = 0, 1. Then the wave
equation becomes

y(y − 1)∂2
yf + {(1 + 2p)y + 2n(y − 1)} ∂yf +

(
(n+ p)2 +

l2

4

)
f = 0. (4.29)

The ingoing solution is the hypergeometric function

f(y) = F (n+ p+ i
l

2
, n+ p− i

l

2
; 1 + 2p; 1− y)

=
Γ(1 + 2p)

Γ(n+ p+ i l
2
)Γ(n+ p− i l

2
)

+ o(y). (4.30)

As y → 0, Ψ becomes a constant. To make Ψ(y = 0) = 0 [93, 94], we need to set the
argument of the Gamma function in the denominator to zero or a negative integer,

n+ p± i
l

2
= −n′, n′ = 0, 1, 2, . . . (4.31)
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Solving for p = −i(R + iI), we obtain

R = ± l
2
, I = −n′ − n = −1,−2, . . . (4.32)

From [89], it is suggested that the quasinormal frequencies appear as poles in the
retarded Green function, [89, 92, 95, 96]. This is because the Green function is
proportional to the absorption coefficient, which is the ingoing flux at the horizon
divided by the ingoing flux at infinity, and the flux in 2+1 dimensions is F ∼ (1 −
y)Ψ∗∂yΨ.

4.3 4+1 Dimensions

In this subsection we develop a perturbative method to calculate the quasinormal
modes and the lowest lying quasinormal frequency at high temperature. The wave
equation at high temperature is

1

r3
∂rr

3

(
r2

b2
− ωnM

r2

)
∂rΦ−

1(
r2

b2
− ωnM

r2

)∂2
tΦ−

l2

r2
Φ−m2Φ = 0. (4.33)

Let
Φ = eiωtY (angles)Ψ(r), (4.34)

and change the parameter r to y

y =
b2

y+r2
, (4.35)

where y+ = b2/r2
H . The radial part of the wave equation then turns to

y3(y2 − 1)∂y
1

y
(y2 − 1)∂yΨ +W 2yΨ + L2y(y2 − 1)Ψ +m′2(y2 − 1)Ψ = 0, (4.36)

where

W 2 =
(ωb)2/4

y3
+(ω4M/b2)2

∼ (ωb)2/4

(πbTH)2
, L2 =

l2/4

y+ω4M/b2
∼ l2/4

(πbTH)2
, (4.37)

m′2 =
m2/4

y2
+ω4M/b4

∼ m2b2

4
. (4.38)

Next, let us factor out the singularities

Ψ = yn(y − 1)p(y + 1)hf, (4.39)
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where

n = 1±
√

1 +
m2b2

4
, p = −i ω

2πTH
, h = ± ω

2πTH
. (4.40)

Again, we chose the minus sign for p because we are interested in an ingoing mode
at the horizon. In the massless case, m = 0, we have n = 0, 2. The wave equation
becomes Heun’s equation,

y(y2 − 1)∂2
yf +

[
(−1 + 2n)(y2 − 1) + (1 + 2p)y(y + 1) + (1 + 2h)y(y − 1)

]
∂yf

+
[
(n+ p+ h)2y − q

]
f = 0, (4.41)

where
q = (2n− 1)(h− p)− L2 + 4h2. (4.42)

The solutions to Heun’s equation can be written as

f(y) = Af1(y) +Bf2(y), (4.43)

where f1(y) is power series of y

f1(y) =
∑
r

bry
r,

and f2(y) is, where we can set m = 0

f2(y) = f1

∫ y dy

y−1+2n(y − 1)1+2p(y − a)1+2h(f1)2

∼ d0

y2
+
d1

y
+ d2 ln y + d3y + ... . (4.44)

At infinity (y → 0), the wavefunction must vanish. Therefore, we ought to discard
f2(y). Then we need to study the behavior of the acceptable solution f1(y) near the
horizon (y → 1). It can be written as a superposition

f1(y) = Afin(1− y) + Bfout(1− y), (4.45)

where fin is ingoing and fout is outgoing at the horizon. To obtain quasinormal
frequencies, we set B = 0 and solve for the frequencies. Unfortunately, the coefficients
A and B are hard to calculate [88]. Numerical results have been obtained [89,
90]. Here, we develop a perturbative method of solving the wave equation at high
temperatures (or large black hole mass, ω4M/b2 � 1). Changing the parameter y to
x = y2, the wave equation becomes

x(1− x)∂2
xf + [n− (1 + n+ p+ h)x]∂xf − (

n+ p+ h

2
)2f

= (p− h)
√
x∂xf −

q

4
√
x
f. (4.46)
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We shall treat the parameters p and h as small at high temperature, noting that
p, h ∼ 1

TH
. To control the perturbative expansion, we need to add and subtract

(p− h)∂xf + q
4
f ,

x(1− x)∂2
xf + [n+ h− p− (1 + n+ p+ h)x]∂xf −

[
(
n+ p+ h

2
)2 − q

4

]
f

= (p− h)(
√
x− 1)∂xf −

q

4
√
x

(1−
√
x)f, (4.47)

and treat the right-hand side as perturbation. We calculate the constant B pertur-
batively, by expanding f1 and then looking at its behavior near the horizon,

f1 = F0 + F1 + . . .

= (A0 +A1 + . . .)fin + (B0 + B1 + . . .)fout.

Let

H0 = x(1− x)∂2
x + [n+ h− p− (1 + n+ p+ h)x]∂x −

[
(
n+ p+ h

2
)2 − q

4

]
, (4.48)

H1 = −(p− h)(
√
x− 1)∂x +

q

4
√
x

(1−
√
x), (4.49)

The wave equation turns into the set of equations

H0F0 = 0, H0F1 = −H1F0, . . . .

The zeroth order equation reads

x(1−x)∂2
xF0 +[n+h−p− (1+n+p+h)x]∂xF0−

[
(
n+ p+ h

2
)2 − q

4

]
F0 = 0, (4.50)

whose solution is the hypergeometric function

F0 = F (1 +
p+ h+

√
q

2
, 1 +

p+ h−√q
2

, 2 + h− p, x). (4.51)

Its behavior near the horizon is easily deduced from standard hypergeometric function
identities. We have

F0(x) = A0f
(0)
in (x) + B0f

(0)
out(x) (4.52)

where

A0 =
Γ(2 + h− p)Γ(−2p)

Γ(1 +
h−3p+

√
q

2
)Γ(1 +

h−3p−√q
2

)
, B0 =

Γ(2 + h− p)Γ(2p)

Γ(1 +
h+p+

√
q

2
)Γ(1 +

h+p−√q
2

)
(4.53)
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f
(0)
in (x) = F (1 +

h+ p+
√
q

2
, 1 +

h+ p−√q
2

, 1 + 2p, 1− x),

f
(0)
out(x) = (1− x)−2pF (1 +

h− 3p+
√
q

2
, 1 +

h− 3p−√q
2

, 1− 2p, 1− x).(4.54)

At first order, we have

x(1− x)∂2
xF1 + [n+ h− p− (1 + n+ p+ h)x]∂xF1 −

[
(
n+ p+ h

2
)2 − q

4

]
F1

= (p− h)(
√
x− 1)∂xF0 −

q

4
√
x

(1−
√
x)F0,

(4.55)

Near the horizon (x→ 1), the solution behaves as

F1(x) ≈
(1− (1− x)−2p)

(−2p)x
(p− h)

[
1 + ln 2− π2

8

]
+ . . . (4.56)

We deduce

B1 =
1

2p
(p− h)

[
1 + ln 2− π2

8

]
+ . . . , (4.57)

where the dots represent second-order contributions. Expanding B0,

B0 =
Γ(2 + h− p)Γ(2p)

Γ(1 +
h+p+

√
q

2
)Γ(1 +

h+p−√q
2

)

=
1

2p

{
1 + (−1 +

3

4

π2

6
)(p− h) + . . .

}
, (4.58)

where we used

Γ(a+ δ) = Γ(a) + δΓ(a)ψ(a) +
δ2

2
Γ(a)(ψ2(a) + ψ′(a)) + . . . ,

and ψ′(1) = π2

6
, q = −3p+ 3h−L2 + 4h2, we obtain the coefficient B = B0 +B1 + . . .

at first-order,

B =
1

2p
{1 + ln 2 (p− h) + . . .} . (4.59)

Then setting B = 0 and letting p = −i(R + iI), h = ±(R + iI), we obtain

4R = ±2.89, 4I = −2.89, (4.60)

to be compared with the numerical results [89, 90],

4R = ±3.119452, 4I = −2.746676. (4.61)

Thus, we obtain good agreement for the lowest lying quasinormal frequency.
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4.4 Higher dimensions

In this subsection we apply the method in the previous subsection to the higher
dimensions, first any odd and later any even dimensions and then specialize to the
(6+1)-dimensional case (j = 3). We start with an arbitrary odd dimension, d = 2j+1.
The wave equation at high temperature is

1

r2j−1
∂r

(
r2

b2
− ωnM

r2j−2

)
r2j−1∂rΦ−

1
r2

b2
− ωnM

r2j−2

∂2
tΦ+

1
√
g
∂θi
gθiθj

√
g∂θj

Φ = m2Φ. (4.62)

Let

Φ = eiωtY (angles)Ψ(y) , y = (
ωnM

b2j−2
)1/j b

2

r2
. (4.63)

We have 0 < y < 1, the horizon (infinity) being at y = 1 (y = 0). By changing the
parameter r to y, the wave equation becomes

0 = yj+1(yj − 1)∂y
(yj − 1)

yj−1
∂yΨ +W 2yΨ + L2y(yj − 1)Ψ +

m2b2

4
(yj − 1)Ψ

= y2(yj − 1)2∂2
yΨ + y[j(yj − 1) + (yj − 1)2]∂yΨ +W 2yΨ + L2y(yj − 1)Ψ

+
m2b2

4
(yj − 1)Ψ (4.64)

where

W 2 =
ω2b2

4
(
b2j−2

ωnM
)1/j =

(
wb/2

2πbTH/j

)2

, L2 =
l2

4
(
b2j−2

ωnM
)1/j =

(
l/2

2πbTH/j

)2

, (4.65)

and l2 is the total angular momentum in 2j + 1 dimensions. We have singularities at
y = 0, ak, where ak are the roots of yj = 1 (k = 1, . . . , j). We may write

yj − 1 = (y − a1) · · · (y − aj), ak = ei(k−1)·2π/j. (4.66)

To factor out the singularities, we let

Ψ = yn(y − a1)
p1(y − a2)

p2 · · · (y − aj)
pjf, (4.67)

where n and pi satisfy the equations

n2 − jn− m2b2

4
= 0, n =

j

2
± j

2

√
1 +

m2b2

j2
, (4.68)

ai[

j∏
k 6=i

(ai − ak)
2](p2

i − pi) + j[

j∏
k 6=i

(ai − ak)]pi +W 2 = 0, (4.69)
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respectively. By using the equation

yj − 1

y − ai
=

j∏
k 6=i

(y − ak) = yj−1 + aiy
j−2 + . . .+ aj−2

i y + aj−1
i , (4.70)

and
j∏
k 6=i

(ai − ak) = jaj−1
i , (4.71)

then

pk = ±W
j
i
√
ak = ±W

j
e

(k−1)
j

iπ+iπ
2 . (4.72)

We choose the minus sign for p1 corresponding to the ingoing mode at the horizon,
y = a1 = 1. After using the identities

a1a2...aj = 1,

j∑
i

ai = a1 + a2 + ...+ aj = 0

j∑
i<k

aiak = a1a2 + a1a3 + ...+ a1aj + a2a3 + a2a4 + ...+ a2aj + ....+ aj−1aj = 0

r∑
i<k<r

aiakar = 0,
∑

i1<i2<...<ij−1

ai1ai2 ... aj−1 = 0, (4.73)

and factoring out the singularities, the wave equation becomes

y(yj − 1)∂2
yf +

(
j + (1 + 2n)(yj − 1) + 2y

∑
i

pi
yj − 1

y − ai

)
∂yf

+2y
∑
i<k

pipk
yj − 1

(y − ai)(y − ak)
f +

∑
i

p2
i

yj − 1

y − ai
f

+
∑
i

ai
p2
i − pi
y − ai

[
yj − 1

y − ai
−
∏
k 6=i

(ai − ak)

]
f

+L2f + n2yj−1f + 2n
∑
i

pi
yj − 1

y − ai
f = 0. (4.74)

By using the equations

yj − 1

y − ai
=

j∏
k 6=i

(y − ak) = yj−1 + aiy
j−2 + . . .+ aj−2

i y + aj−1
i
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yj − 1

(y − ai)(y − ak)
= yj−2 + (ai + ak)y

j−3 + (a2
i + aiak + a2

k)y
j−4

+(a3
i + a2

i ak + aia
2
k + a3

k)y
j−5 + . . .

+
(
aj−3
i + aj−4

i ak + . . .+ aia
j−4
k + aj−3

k

)
y

+
(
aj−2
i + aj−3

i ak + . . .+ aia
j−3
k + aj−2

k

)
1

y − ai

{
yj − 1

y − ai
−
∏
k 6=i

(ai − ak)

}
= yj−2 + 2aiy

j−3 + 3a2
i y
j−4 + . . .

+(j − 3)aj−4
i y2 + (j − 2)aj−3

i y + (j − 1)aj−2
i , (4.75)

the wave equation can be written as

0 = y(yj − 1)∂2
yf

+

{
j + (1 + 2n)(yj − 1) + 2

∑
i

pi[y
j + aiy

j−1 + . . .+ aj−1
i y]

}
∂yf

+

(
n+

∑
i

pi

)2

yj−1f + 2y
∑
i6=k

Aikpipkf

+
∑
i

{
Bi(p

2
i + 2npi) + Ci(p

2
i − pi) + L2

}
f , (4.76)

where

Aik = (ai + ak)y
j−3 + (a2

i + aiak + a2
k)y

j−4 + . . .

+(aj−2
i + aj−3

i ak + . . .+ aia
j−3
k + aj−2

k )

Bi = aiy
j−2 + a2

i y
j−3 + . . .+ aj−2

i y + aj−1
i

Ci = aiy
j−2 + 2a2

i y
j−3 + . . .+ (j − 2)aj−2

i y + (j − 1)aj−1
i , (4.77)

Next, we let x = yj, and obtain

0 = x(1− x)∂2
xf + [

2n

j
− (1 +

2n+
∑

i 2p

j
)x]∂xf − (

n+
∑

i pi
j

)2f

− 2
∑
i

pi
j

[aiy
j−1 + a2

i y
j−2 + . . .+ aj−2

i y2 + aj−1
i y ]∂yf

− 2

j2yj−1

∑
i6=k

pipk{(ai + ak)y
j−2 + (a2

i + aiak + a2
k)y

j−3 + . . .

. . .+ (aj−2
i + aj−3

i ak + . . .+ aia
j−3
k + aj−2

k )y }f
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− 1

j2yj−1

∑
i

(p2
i + 2npi){aiyj−2 + a2

i y
j−3 + . . .+ aj−2

i y + aj−1
i }f

− 1

j2yj−1

∑
i

(p2
i − pi){aiyj−2 + 2a2

i y
j−3 + . . .+ (j − 2)aj−2

i y + (j − 1)aj−1
i }f

− L2

j2yj−1
f. (4.78)

There are two solutions to this equation,

f1 =
∑
r

bry
r+j

f2 =
∑
n6=j

dn
n− j

f1 + djf1 ln y =
∑
r

cry
r + djf1 ln y. (4.79)

In 6+1 dimensions (j = 3), the wave equation becomes

x(1− x)∂2
xf + [

2n

3
− (1 +

2n+ 2pk
3

)x]∂xf − (
n+ pk

3
)2f

=
2

3
[(pkak)y

2 + (pka
2
k)y]∂xf +

1

9y
[(−1 + 2n)(pkak)− 2P2] f

+
1

9y2

[
(−2 + 2n)(pka

2
k)−W 2 + L2

]
f,

where
P2 = p1p2a3 + p2p3a1 + p3p1a2,

and a summation over k = 1, 2, 3 is implied.
Quasinormal modes in 6+1 dimensions have been calculated numerically [89,

90]. We shall calculate them analytically by extending our perturbative method in
4+1 dimensions that we presented in the previous section. To control the perturbative
expansion, we need to add and subtract the term

−P1∂xf +
1

9
[(−1 + 2n)(pkak)− 2P2] f +

1

9

[
(−2 + 2n)(pka

2
k)−W 2 + L2

]
f,

where

P1 = −2

3
[(pkak) + (pka

2
k)]

and write the wave equation in the form

(H0 +H1)f = 0, (4.80)
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where

H0 = x(1− x)∂2
x +

[
n+ P1 −

(
1 +

2n+ 2pk
3

)
x

]
∂x −

[(
n+ pk

3

)2

− q

]
, (4.81)

and the perturbation is

−H1 =
[
A(y2 − 1) +B(y − 1)

]
∂x +

[
C(y−1 − 1) +D(y−2 − 1)

]
, (4.82)

where

q = −1

9

[
(−1 + 2n)(pkak) + (−2 + 2n)(pka

2
k)− 2P2 −W 2 + L2

]
,

A =
2

3
(pkak), B =

2

3
(pka

2
k),

C =
1

9
[(−1 + 2n)(pkak)− 2P2] , D =

1

9

[
(−2 + 2n)(pka

2
k)−W 2 + L2

]
. (4.83)

The zeroth order equation, H0F0 = 0, is a hypergeometric equation whose solutions
in the massless case (in which n = j = 3) are

F0 = F (1 +
pk
3

+
√
q, 1 +

pk
3
−√q, 3 + P1, x),

G0 = F0

∫ x W

F 2
0

, (4.84)

where W is the Wronskian

W (F0, G0) ∼ x−(2+P1)(1− x)−(1+2p1). (4.85)

The first-order equation H0F1 = −H1F0 may be solved by using

F1 = −G0

∫ x

0

dx′
F0

x′(1− x′)W
H1F0 + F0

∫ x

0

dx′
G0

x′(1− x′)W
H1F0. (4.86)

After some algebra, we obtain

F1 = C F0 + . . . , (4.87)

where

C =

(
−3 ln 3 +

π√
3

+ 1

)
A+

(
−3

4
ln 3− π

4
√

3
+ 1

)
B

+

(
9

2
ln 3−

√
3

2
π − π2

6

)
C +

(
9

4
ln 3 +

√
3

4
π − π2

6

)
D. (4.88)
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After expressing it as a superposition of ingoing and outgoing waves at the horizon,
we obtain the first-order correction to the coefficient B,

B1 =
1

2p1

C

Therefore,

B =
Γ(2 + P1)Γ(2p1)

Γ(1 + pk

j
−√q)Γ(1 + pk

j
+
√
q)

+ B1 + . . .

=
1

2p1

{
1 + P1 − q +

π2

6
+ C + . . .

}
=

1

2p1

{
1− i

(
1

2
ln 3− π

6
√

3

)
W

3
+

(
1

2
ln 3 +

π

6
√

3

)(
−1±

√
3

2

)
W

3
+ . . .

}
(4.89)

where A, B, C, D, P1 and q are from (4.83), i.e., where the two sign choices correspond
to the sign choices in (4.72). We have to choose the same sign in p2 and p3 in order
to obtain non-vanishing real part of the frequency. Writing 2W = R+ iI, and setting
B = 0, we obtain the quasinormal modes at first order. The lowest lying frequency is

R = ±
6
√

3( 1
2

ln 3+ π
6
√

3
)

(ln 3)2+3[ 1
2

ln 3+ π
6
√

3
]2
, I = − 6 ln 3

(ln 3)2+3( 1
2

ln 3+ π
6
√

3
)2

= ±2.616381 = −1.948673,
(4.90)

to be compared with the numerical result [89]

R = 5.008, I = −2.612. (4.91)

Evidently, we need to include higher orders in perturbation theory to obtain a better
agreement.

The above procedure can also be applied to even dimensions with minor mod-
ifications. In 3+1 dimensions, we arrive at the following value of the lowest-lying
quasinormal frequency, W (3+1) = R(3+1) + iI(3+1),

R(3+1) ' ±
√

3[ 1
2

ln 3− π
6
√

3
]

(ln 3)2+3[ 1
2

ln 3− π
6
√

3
]2
, I(3+1) ' − ln 3

(ln 3)2+3[ 1
2

ln 3− π
6
√

3
]2

= ±0.923378, = −2.371139,
(4.92)

to be compared with the numerical result [89]

R(3+1) = 1.849534, I(3+1) = −2.663856. (4.93)

Again, we see that we need to include higher orders in perturbation theory to obtain
a better agreement, or improve on the zeroth-order approximation.
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Chapter 5

Discussion

In chapter 2, we calculated absorption coefficients for non-extremal rotating D3-
branes and found that they were functions of two temperature parameters. This
was similar to the case of Kerr-Newman black holes, reviewed in section 2.2, even
though the geometry of rotating D3-branes, O(4, 20), is considerably more compli-
cated than the geometry of Kerr-Newman black holes, which is based on SO(4) ∼
SUL(2)×SUR(2). The two different temperature parameters suggest the existence of
two distinct ensembles in the system off extremality. It is possible that away from the
extremality and at low temperatures, supersymmetry is broken and the duality be-
tween supergravity and conformal field theory is destroyed. It would be interesting to
examine how the symmetry of D3-branes affects the thermodynamic properties of the
system away from extremality. One could then explore the underlying physics based
on the symmetry group O(11−D, 27−D) for a general dimension D (we considered
the case D = 7). In [98], our method discussed in section 2.3 was used to study
scattering of other fields, such as a scalar and a vector arising from a two-form field,
an antisymmetric tensor from a four-form field and a two-form from an antisymmetric
tensor in the near extremal limit of non-rotating branes. In [99], the radial part of
the scalar wave equation was simplified by a transformation which was obtained by
considering the singularities of the system. The new reduced equation was then solved
perturbatively and the zeroth order solution was shown to be a Hankel function. It
would be interesting to apply the method of [99] to the system of rotating 3-branes
discussed in section 2.3, also extending the results to other fields, such as the ones
discussed in [98]. This should deepen our understanding of the physics giving rise
to the thermodynamic properties of non-extremal rotating branes and the attendant
AdS/CFT correspondence. This is also expected to shed light on the emergence of
extended black objects (black holes, branes, etc) in superstring theory.

In chapter 3, we extended previous results on the quantization of a (discrete)
system of maximally-charged black holes to the continuous case. We showed that

81



a careful implementation of the gauge-fixing procedure on path integrals leads to a
modification of the naive Hamiltonian by the addition of the potential K (generator
of special conformal transformations). We obtained an explicit expression for K in
the case of a ring-shaped black string and showed that the resulting Hamiltonian
was equivalent to the Hamiltonian of a harmonic oscillator. Our calculations were
performed in the extremal case where a static solution to the field equations exists,
permitting the study of the non-relativistic limit. It would be interesting to go away
from extremality, and extend our results to possibly more realistic cases, such as a
Schwarzschild black hole.

In chapter 4, we offered a perturbative method to calculate the quasinormal
modes and frequencies in an AdS Schwarzschild spacetime. Our results in 4+1 dimen-
sions were in agreement with numerical results for the low-lying frequencies. In higher
dimensions, the convergence of the perturbative expansion appears to be slower. As a
possible extension of our work, one should consider higher orders in perturbation the-
ory. It would also be interesting to explore the possibility of improving on the choice
of the zeroth order wave equation. Another direction of interest is the application of
our method to spacetimes of more immediate physical relevance (e.g., Schwarzschild
black holes, based on the approximation to the wave equation discussed in [57]).
Finally, a more complete analysis should include a study of the dependence of the
quasinormal modes on the other parameters of the scattered field (e.g., mass, charge,
angular momentum).

The work that we have carried out amounts to a small part of the current
intensive research on black hole scattering. There is a lot of mystery surrounding
the physics of black holes, which arise as solutions to the classical field equations of
General Relativity, because it is not clear how the Heisenberg Uncertainty Principle
applies to their strong gravitational field. Advances have been made recently in the
quantitative understanding of the microscopic origin of some of their properties (such
as entropy) from superstring theory. Even so, basic properties are barely understood,
such as entanglement information, the information loss paradox and the interior en-
tropy. Today, black holes are undoubtedly the ultimate arena to test our frontier
knowledge. They challenge our imagination and may change our view of Nature by
revolutionizing our understanding of basic physical principles in the years to come.
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Appendix A

Derivation of Metric Tensors of
Rotating Charged Branes

We summarize the procedure of obtaining the metric of D-dimensionally compactified
rotating charged branes in ten dimensions following [59, 60, 63, 64, 65, 66, 67, 68].
From the NS-NS sector of type-IIA superstring theory compactified on a (10 − D)-
torus, the low-energy effective massless field action is obtained as [16, 65, 66]

S =
1

16πG10

∫
d10x

√
−Ĝe−Φ̂

[
RĜ + ĜMN∂M Φ̂∂N Φ̂− 1

12
ĤMNP Ĥ

MNP

−1

4
F̂ I
MN F̂

I MN

]
. (A.1)

G10 is the ten-dimensional Newton’s constant, Ĝ = det ĜMN (M,N = 0, 1, . . . , 9),
RĜ is the Ricci scalar of the metric ĜMN , Φ̂ is the dilaton field, and ĤMN , F̂MN are

ĤMN = ∂M B̂NP −
1

2
AIMF

I
NP + cyclic permutations in M, N, P

F I
MN = ∂MA

I
N − ∂NA

I
M , (A.2)

where B̂MN is an anti-symmetric tensor field and AIM are U(1) gauge potentials
(I = 1, . . . , 16).

To compactify the extra 10 − D dimensions, we employ an Abelian Kaluza-
Klein ansatz in ten dimensions [63, 65],

ĜMN =

(
eaϕgµν +GmnA

(1)m
µ A

(1)n
ν A

(1)m
µ Gmn

A
(1)n
ν Gmn Gmn

)
, (A.3)

where A
(1)m
µ are D-dimensional Kaluza-Klein U(1) gauge potentials (µ = 0,1,...,D−1

and m = 1, . . . , 10−D), ϕ is the dilaton field ϕ = Φ̂− 1
2
ln detGmn, and a = 2

D−2
. It
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is convenient to define a new set of (36− 2D) U(1) gauge potentials Ai
µ by

Ai
µ = (A(1)m

µ , A(2)
µ m, A

(3)I
µ )

A(2)
µ m = B̂µm + B̂mnA

(1)n
µ +

1

2
ÂImA

(3)I
µ

A(3)I
µ = ÂIµ − ÂImA

(1)I
µ (A.4)

and a new anti-symmetric tensor Bµν by

Bµν = B̂µν − B̂µνA
(1)m
µ A(1)n

ν − 1

2
(A(1)m

µ A(2)
νm − A(1)m

ν A(2)
µm). (A.5)

The theory possesses an O(10−D, 26−D) symmetry. Introducing the matrix

M =

 G−1 −G−1C −G−1aT

−CTG−1 G+ CTG−1C + aTa CTG−1aT + aT

−aG−1 aG−1C + a I + aG−1aT

 . (A.6)

where G = [Ĝmn], C = [1
2
ÂImA

I
n + B̂mn] and a = [ÂIm], we may write the D-

dimensionally reduced action (A.1) as

S ∼ 1

16πGD

∫
dDx

√
−g
[
Rg −

1

D − 2
gµν∂µϕ∂νϕ+

1

8
gµνTr(∂µML∂νML)

− 1

12
e−2aϕgµµ

′
gνν

′
gρρ

′
HµνρHµ′ν′ρ′ −

1

4
gµµ

′
gνν

′F i
µν(LML)ijF j

µ′ν′

]
,

(A.7)

where GD = (2π
√
α′)D−10G10 is the Newton’s constant in D dimensions, α′ is related

to the string tension (we let the radius of each compactified dimension equal
√
α′),

g = det gµν , Rg is the Ricci scalar of the metric gµν , F i
µν = ∂µAi

ν − ∂νAi
µ is the field

strength, and

Hµνρ = (∂µBνρ −
1

2
Ai
µLijF j

νρ) + cyclic permutations in µ, ν, ρ.

L ∈ O(10−D, 26−D) is the matrix

L =

 0 I10−D 0
I10−D 0 0

0 0 I26−D

 . (A.8)

The matrices M and L satisfy

MLMT = L, MT = M. (A.9)
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The following O(10−D, 26−D) transformation leaves the action (A.7) invariant,

M → ΩMΩT , Ai
µ → ΩijAj

µ, gµν → gµν , Bµν → Bµν , (A.10)

where Ω satisfies
ΩTLΩ = L. (A.11)

By varying Hµν in the action, we obtain a simple equation of motion

Dµ(e
−2aϕHµνρ) = 0, (A.12)

where Dµ is the covariant derivative of gµν . The solution to the above equation can
be written in the form

Hµνρ = − e2aϕ

2!
√
−g

εµνρλσFλσ, (A.13)

where Fµν is the field strength of the gauge potential Aµ. The rest of the equations
of motion can be obtained from the action (A.7) by varying the fields gµν , Ai

µ and ϕ.
They are much more difficult to solve [65]. A general solution can be constructed by
taking a known special solution, in this case the uncharged D-dimensional rotating
metric [67], and boosting it by a certain matrix. One arrives at the D-dimensional
rotating (Kerr) metric

ds2 = −(∆− 2N)

∆
dt2 +

∆∏[D−1
2

]

i=1 (r2 + l2i )− 2N
dr2

+ (r2 + l21 cos2 θ +K1 sin2 θ)dθ2

+ (r2 + l2i+1 cos2 ψi +Ki+1 sin2 ψi) cos2 θ cos2 ψ1 ... cos2 ψi−1dψ
2
i

− 2(l2i+1 −Ki+1) cos θ sin θ cos2 ψ1 ... cos2 ψi−1 cosψi sinψidθdψi

− 2
∑
i<j

(l2j −Kj) cos2 θ cos2 ψ1 ... cos2 ψi−1 cosψi sinψi...

cos2 ψj−1 cosψj sinψjdψiφj

+
µ2
i

∆
[(r2 + l2i )∆ + 2l2iµ

2
iN ]dφ2

i −
4liµ

2
iN

∆
dtdφi +

∑
i<j

4liljµ
2
iµ

2
jN

∆
dφidφj.

(A.14)

In even dimensions,

∆ = α2

D−2
2∏
i=1

(r2 + l2i ) + r2

D−2
2∑
i=1

µ2
i (r

2 + l21)...(r
2 + l2i−1)(r

2 + l2i+1)...(r
2 + l2D−2

2

),

Ki = l2i+1 sin2 ψi + ...+ l2D−2
2

cos2 ψi... cos2 ψD−6
2

sin2 ψD−4
2
, N = mr,

µ1 = sin θ, µ2 = cos θ sinψ1, ..., µD−2
2

= cos θ cosψ1... cosψD−6
2

sinψD−4
2
,

α = cos θ cosψ1... cosψD−4
2
, (A.15)
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where the indices in φ and ψ, i, j = 1, . . . , D−2
2

, whereas in odd dimensions,

∆ = r2

D−1
2∑
i=1

µ2
i (r

2 + l21)...(r
2 + l2i−1)(r

2 + l2i+1)...(r
2 + l2D−1

2

), N = mr2

Ki = l2i+1 sin2 ψi + ...+ l2D−3
2

cos2 ψi... cos2 ψD−7
2

sin2 ψD−5
2

+l2D−1
2

cos2 ψi... cos2 ψD−5
2
,

µ1 = sin θ, µ2 = cos θ sinψ1, ..., µD−3
2

= cos θ cosψ1... cosψD−7
2

sinψD−5
2
,

µD−1
2

= cos θ cosψ1... cosψD−5
2
. (A.16)

where i, j = 1, . . . D−1
2

. The D-dimensional Kerr solution is parameterized by the
ADM mass m and angular momenta li. It is a solution to the Einstein equations
similar to the four-dimensional Kerr solution [69, 70, 71]. InD = 4 and with vanishing
angular momenta, li = 0, it reduces to the Schwarzschild metric.

Next, we introduce charges by transforming the above uncharged metric to a
charged one. This is done by boosting with a matrix carrying two electric charges
parameterized by parameters δ1 and δ2 [64, 59],

Ω = Ω1Ω2 ,

Ω1 =


cosh δ1 · · · − sinh δ1 ·
· I9−D · · · ·
· · cosh δ1 · · sinh δ1
· · · I25−D · ·

− sinh δ1 · · · cosh δ1 ·
· · sinh δ1 · · cosh δ1



Ω2 =


cosh δ2 · · · · sinh δ2
· I9−D · · · ·
· · cosh δ2 · − sinh δ2 ·
· · · I25−D · ·
· · − sinh δ2 · cosh δ2 ·

sinh δ2 · · · · cosh δ2

 . (A.17)

This is an SO(1, 1) matrix and we have SO(1, 1) ⊂ O(11−D, 27−D). Applying the
transformation (A.10) with the above matrix Ω, we obtain

ds2 = ∆
D−4
D−2W

1
D−2

[
−(∆− 2N)

W
dt2 +

dr2∏[D−1
2

]

i=1 (r2 + l2i )− 2N

+
r2 + l21 cos2 θ +K1 sin2 θ

∆
dθ2
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+
cos2 θ cos2 ψ1 ... cos2 ψi−1

∆
(r2 + l2i+1 cos2 ψi +Ki+1 sin2 ψi)dψ

2
i

− 2
∑
i<j

l2j −Kj

∆
cos2 θ cos2 ψ1 ... cos2 ψi−1 cosψi sinψi...

cos2 ψj−1 cosψj sinψjdψidψj

− 2
l2i+1 −Ki+1

∆
cos θ sin θ cos2 ψ1 ... cos2 ψi−1 cosψi sinψidθdψi

+
µ2
i

∆W

[
(r2 + l2i )∆

2 + 2Nl2iµ
2
i + 4N2 sinh2 δ1 sinh2 δ2(r

2 + l2i (1− µ2
i ))

+2N∆(sinh2 δ1 + sinh2 δ2)(r
2 + l2i )

]
dφ2

i

− 4Nliµ
2
i cosh δ1 cosh δ2

W
dtdφi

+
∑
i<j

4Nliljµ
2
iµ

2
j(∆− 2N sinh2 δ1 sinh2 δ2)

∆W
dφidφj

]
, (A.18)

where W = (2N sinh2 δ1 + ∆)(2N sinh2 δ2 + ∆). The other fields can be extracted
from the matrix M . The ADM mass, angular momentum and U(1) electric charges
are, respectively,

M =
ΩD−2m

8πGD

[(D − 3)(cosh2 δ1 + cosh2 δ2)− (D − 4)],

Ji =
ΩD−2

4πGD

mli cosh δ1 cosh δ2

Q
(1)
1 =

ΩD−2

8πGD

(D − 3)m cosh δ1 sinh δ1

Q
(2)
1 =

ΩD−2

8πGD

(D − 3)m cosh δ2 sinh δ2, (A.19)

where Ω =
2πD+1

2

Γ(D+1
2

)
is the area of the unit (D − 2) sphere.

In D = 7, the above metric describes a 3-brane in ten dimensions [59, 72]. To
simplify the metric further, let one of the charges be zero. We obtain [59, 58]

ds2 =
1√
H

(
−(1− f

r4
0

r4
)dt4 + dx2

1 + dx2
2 + dx2

3

)
+
√
Hf−1 dr2

λ− r4
0/r

4

+
√
Hr2

(
ζdθ2 + ζ ′ cos2 θdψ2 − `22 − `23

2r2
sin(2θ) sin(2ψ)dθdψ

)
−f 2r4

0 cosh γ

r4

√
H(`1 sin2 θdφ1 + `2 cos2 θ sin2 ψdφ2

98



+`3 cos2 θ cos2 ψdφ3)dt

+f
r4
0

r4

√
H
(
`1 sin2 θdφ1 + `2 cos2 θ sin2 ψdφ2 + `3 cos2 θ cos2 ψdφ3

)2
+
√
Hr2

[(
1 +

`21
r2

)
sin2 θdφ2

1 +

(
1 +

`22
r2

)
cos2 θ sin2 ψdφ2

2

+

(
1 +

`23
r2

)
cos2 θ cos2 ψdφ2

3

]
, (A.20)

where

H = 1 + f
r4
0 sinh2 γ

r4
(A.21)

f−1 = λ

(
sin2 θ

1 +
`21
r2

+
cos2 θ sin2 ψ

1 +
`22
r2

+
cos2 θ cos2 ψ

1 +
`23
r2

)
(A.22)

λ =

(
1 +

`21
r2

)(
1 +

`22
r2

)(
1 +

`23
r2

)
(A.23)

ζ = 1 +
`21 cos2 θ + `22 sin2 θ sin2 ψ + `23 sin2 θ cos2 ψ

r2
(A.24)

ζ ′ = 1 +
`22 cos2 ψ + `23 sin2 ψ

r2
, (A.25)

and r4
0 = 2m, γ = δ1. The thermodynamic properties are discussed in section 2.3. The

extremal symmetric case (asymptotically AdS) is obtained by letting l1 = l2 = l3 = 0,
and also the mass m→ 0 (so that the horizon shrinks to zero) and γ →∞, keeping
r2
0 sinh2 γ = R4 fixed. Reparametrizing,

y1 = r sin θ cosφ1

y2 = r sin θ sinφ1

y3 = r cos θ sinψ cosφ2

y4 = r cos θ sinψ sinφ2

y5 = r cos θ cosψ cosφ3

y6 = r cos θ cosψ cosφ3, (A.26)

the metric reduces to

ds2 =
1√
H

(
−dt2 + dx2

1 + dx2
2 + dx2

3

)
+
√
H
(
dy2

1 + dy2
2 + dy2

3 + dy2
4 + dy2

5 + dy2
6

)
(A.27)

with H = 1 + R4

r4
.
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Appendix B

Multi-Black Hole Moduli Space

B.1 The discrete case

In subsection 3.3.1, we found that the metric in moduli space of a multi-black hole
system was given in terms of the quantity (sum over black hole positions (moduli))

L2 = −3
∑
a 6=b

∫
d4x

Q2
aQb

|~x− ~xa|4|~x− ~xb|2
,

This expression needs to be regulated by introducing a cutoff δ. No physical quantities
should depend on δ as δ → 0. We define

L2 = −3
∑
a 6=b

∫
d4x

Q2
aQb

((~x− ~xa)2 + δ2)2((~x− ~xb)2 + δ2)
,

Introducing a Feynman parameter y, we obtain

L2 = −6
∑
a 6=b

∫
d4x

∫ 1

0

dy
Q2
aQb y

[(~x− ~xa)2y + (~x− ~xb)2(1− y) + δ2]3
.

To integrate over ~x, we use the general formula∫
dNU

1

(U2 + 2U · p+M2)A
= πN/2

Γ(A−N/2)

Γ(A)

1

(M2 − p2)A−N/2
. (B.1)

We finally obtain

L2 = −6π2
∑
a 6=b

Q2
aQb

[ln |~xa − ~xb| − ln δ]

|~xa − ~xb|2
. (B.2)
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After differentiating L2 twice, we obtain

∂ai∂bjL2 = 3π2
∑
c 6=b

QbQc(Qb +Qc)

|~xc − ~xb|4
[δca − δba]

{
δij − 6

[xci − xbi][xcj − xbj]

|~xc − ~xb|2

+

(
δij − 4

[xci − xbi][xcj − xbj]

|~xc − ~xb|2

)(
ln |~xc − ~xb|−2 + 4 ln(

δ

2
)

)}
,

where we are summing over the index c only. The contribution of L2 to the generator
of dilatations, D, is

D2akdx
ak = −g2ak blx

bldxak =
1

4
(δijδkl + δikδ

j
l − δilδ

j
k + εij kl)∂ai∂bjL2 x

bldxak

=
3π2

4

∑
b6=c

QbQc(Qb +Qc)

|~xc − ~xb|2
[δca − δba][−2xbkdxak]

=
3π2

4
d
∑
a 6=b

Q2
aQb

|~xa − ~xb|2
. (B.3)

Next, we show that the three-point term

L3 = −
∑
a 6=b6=c

∫
d4x

QaQbQc

|~x− ~xa|2|~x− ~xb|2|~x− ~xc|2

does not contribute to D. To this end, we shall first prove

xai∂aiL3 = −2L3 (B.4)

xblIrik I
rj
l ∂bjL3 = 0, (B.5)

where Ir are the natural triplet of self-dual complex structures on R4 [74], where

Irik I
rj
l = δijδkl − δilδ

j
k + εij kl,

δliI
ri
k I

rj
l = −3δjk. (B.6)

We shall prove (B.4) in detail; the proof of (B.5) is similar. Applying Feynman
parametrization, we obtain

L3 = −
∑
a 6=b6=c

∫
d4x

∫ 1

0

dy1

∫ 1−y1

0

dy2 ×

QaQbQc

[(~x− ~xa)2y1 + (~x− ~xb)2y2 + (~x− ~xc)2(1− y1 − y2)]
3 (B.7)
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Integrating over ~x,

L3 = −
∑
a 6=b6=c

π2

∫ 1

0

dy1

∫ 1−y1

0

dy2
QaQbQc

D

D = (~xc − ~xa)
2(−y2

1 + y1) + (~xc − ~xb)
2(−y2

2 + y2)− 2(~xc − ~xa) · (~xc − ~xb)y1y2.

Differentiating, we obtain the desired result (B.4). We are now ready to show that

g3ak blx
bl = 0. (B.8)

We have

4g3ak blx
bl = (δijδkl + δikδ

j
l − δilδ

j
k + εij kl)∂ai∂bjL3x

bl

= (δikδ
j
l + Irik I

rj
l )∂ai∂bjL3x

bl

= ∂ak∂blL3x
bl + Irik I

rj
l ∂ai∂bjL3x

bl.

Integrating by parts,

4g3ak blx
bl = ∂ak(x

bl∂blL3)− δkl∂alL3 + ∂ai(x
blIrik I

rj
l ∂bjL3)− δliI

ri
k I

rj
l ∂ajL3

and applying (B.4), (B.5) and (B.6), we obtain

4g3ak blx
bl = −2∂akL3 − ∂akL3 − δliI

ri
k I

rj
l ∂ajL3,

= 0.

B.2 A black string

In the continuous case, the generator D is given in terms of an integral,∫
gaαbβb

βd4b = −π
2

8

(
2

3 · 4π2

)3

(3 · 2 · 4)

∫
d4b

∫
d4cρ̄aρ̄bρ̄c

∫
[dx]

∂

∂aα
1

D2
,

D = (~a−~b)2x1x2 + (~a− ~c)2x1x2 + (~b− ~c)2x1x3 + δ2 ,

where we are integrating over the position vectors ~b and ~c, spanning the continuous
matter distribution, and the Feynman parameters with measure [dx] = dx1dx2dx3 δ(1−
x1 − x2 − x3). Concentrating on the case of a circular ring of radius R, we shall
parametrize the position vectors by

~a = Rêx cosφa +Rêy sinφa,

~b = Rêx cosφb +Rêy sinφb,

~c = Rêx cosφc +Rêy sinφc. (B.9)
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Then the denominator becomes

D = −1

z

[
βz2 − (α+ δ2)z + γ

]
, z = eiφc , (B.10)

where

α = (a− b)2x1x2 + a2x1x2 +R2x1x3 + 2R2x3x2,

β = aRx1x3e
−iφa +R2x2x3e

−iφb ,

γ = aRx1x3e
+iφa +R2x2x3e

+iφb . (B.11)

Next, we need to integrate over z along the unit circle |z| = 1. The poles (roots of
D = 0) are at

z± =
1

2

α+ δ2

β
± 1

2

[
(α+ δ2)2

β2
− 4

γ

β

]1/2

. (B.12)

Only one pole (z−) lies inside the circle. Therefore,

1

2πi

∮
dz

z

1

D2
=

d

dz

{
(z − z−)2 z

[βz2 − (α+ δ2)z + γ]2

}
z→z−

=
(α+ δ2)

((α+ δ2)2 − 4βγ)3/2

= − ∂

∂δ2

1

((α+ δ2)2 − 4βγ)1/2
. (B.13)

The metric becomes

gaαbβb
βdb = (3 · 4)

(
2

3 · 4π2

)3 ∫
dbρ̄aλ

2(2π2)×

δ2(−1

8

∂

∂aα
)(2π)(− ∂

∂δ2
)

∫
[dx]

[(α+ δ2)2 − 4βγ]1/2
, (B.14)

where λ = M
2π

is the mass density, M being the mass of the string. The denominator
can be written in the from

(α+ δ2)2 − 4βγ = 4a2R2x2
1x

2
2(1− cos(φb − φa))

2 + f(1− cos(φb − φa)) + g, (B.15)

where

f = (a2 − 2aR +R2)x1x2 + x1x3(a
2 +R2) + 2R2x3x2 + 2R2x2

3 + δ2

g =
[
(a2 − 2aR +R2)x1x2 + x1x3(a

2 +R2) + 2R2x3x2 + δ2
]2

−4r2x2
3(ax1 +Rx2)

2.
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Because of the explicit factor of δ2 in (B.14), only the divergent terms contribute as
δ → 0. We get divergences in the small (φb − φa) region. Notice also that if we let
a = R, then we get

f = 2R2x1x2[2R
2x3(x1 + x2) + 2R2x3 + δ2]

g = [4R2x3(x1 + x2) + δ2]δ2. (B.16)

As δ → 0, we have g → 0, and the integral takes the form
∫
dφ/

√
1− cosφ. Therefore,

we need to keep g in the limit δ → 0 in order to regulate the integral.
Next, we integrate over φb by changing parameters to y = 2 sin2 (φb−φa)

2
. The

integral takes the form∫
dφb

1

[f(1− cosφba) + g]1/2
= 2

√
2

∫ y0

0

dy
1

[fy2 + g]1/2
+ . . .

= 2

√
2

f
ln

[√
1 +

f

g
y0 +

√
f

g
y0

]
+ . . . , (B.17)

where the limit of integration y0 is not important (a change in y0 does not affect the
singular part) and the dots represent finite terms. The metric (B.14) becomes

gaαbβb
βdb = (3 · 4)

(
2

3 · 4π2

)3

λ3(2π2)δ2(−1

8

∂

∂aα
)(2π)

×(− ∂

∂δ2
)

∫
[dx]2

√
2

f
ln

[√
1 +

f

g
y0 +

√
f

g
y0

]

= (3 · 4)

(
2

3 · 4π2

)3

λ3(2π2)δ2(−1

8
)(− ∂

∂δ2
)

∫
[dx](2π)(2

√
2)×{

− f ′α
f 3/2

ln

[√
1 +

f

g
y0 +

√
f

g
y0

]
+

(f ′αg − fg′α)
√
y0

gf
√
g + fy0

}
, (B.18)

where f ′α = ∂f
∂aα and similarly for g′α. Setting a = R, after some algebra, one can

show that the second term in (B.18) vanishes as δ → 0. Thus, only the first term
contributes. Using (B.16), we obtain

gaαbβb
βdb = (3 · 4)

(
2

3 · 4π2

)3

λ3(2π2)δ2(−1

8
)(− ∂

∂δ2
)

∫
[dx](2π)(2

√
2)

{
− f ′α
f 3/2

ln δ

}
To perform the integral over the Feynman parameters, observe

δ2

∫
[dx]

∂

∂δ2
(
f ′

f 3/2

1

2
ln δ2)
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= δ2

∫
[dx]

aα

4R3
√
x1x2

×[
ln δ2

(2R2x3 + δ2)3/2
− 3

2

[2R2x3 +R2x3(1− x3) + δ2]

[2R2x3 + δ2]5/2
ln δ2

+
1

δ2

[2R2x3 +R2x3(1− x3) + δ2]

(2R2x3 + δ2)3/2

]
= δ2 a

α

4R3

∫ 1

−1

dz

∫ 1

0

dx3
1√

1− z2
×[

[2R2x3 + δ2 − 3R2x3 − 3
2
R2x3(1− x3)− 3

2
δ2]

[2R2x3 + δ2]5/2
ln δ2

+
1

δ2

2R2x3 +R2x3(1− x3) + δ2

(2R2x3 + δ2)3/2

]
=

√
2π

3

aα

R4
(B.19)

where we used the substitution

z =
x2 − 1

2
(1− x3)

1
2
(1− x3)

(B.20)

The range of the new parameter is z ∈ [−1, 1]. Therefore, we obtain∫
gaαbβb

βdb = (3 · 4)

(
2

3 · 4π2

)3

λ3π
3

3

aα

R4
. (B.21)

The action

S =
1

2

∫
d5U(

2

3 · 4π2
)3

∫
dlxdlydlz

ρ̄xρ̄yρ̄z

|~U − ~x|2
×

3
{
(v2
z − vyivzi)∂yj∂zj + vyivzj

(
∂yj∂zi − ∂yi∂zj + εijkl∂yk∂zl

)}
1

|~U − ~y|2|~U − ~z|2
,

can be manipulated in a manner similar to the discrete case. After introducing the
regulator δ and integrating over ~U , we obtain

S =
1

2
(

1

6π2
)3

∫
dt(ρ̄xδ)

∫
d4yd4zρ̄yρ̄z ×[

(v2
z − vyivzi)∂yj∂zj + vyivzj (∂yj∂zi − ∂yi∂zj)

]
π2

[
ln((y − z)2/δ2)

(~y − ~z)2 + δ2

]
(B.22)
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where we used the fact that the only contributions to the integral come from the
region where ~x approaches either ~y or ~z. Because of translation invariance, we could
set ~x = ~0 in the integrand, and then

∫
ρ̄xdx ≈ ρ̄xδ. In the case of a circular ring of

radius R and mass M uniformly distributed, we have ρ̄ = M
2πR

. Differentiating with
respect to yi and zi, we obtain

S =
1

2
(

2

3 · 4π2
)3

∫
dt(ρ̄xδ)(

M

2π
)2

∫ 2π

0

dφydφz(v
2
z − ~vy · ~vz)

4π2

((~y − ~z)2 + δ2)2

=
1

2
(

2

3 · 4π2
)3

∫
dt(ρ̄xδ)(

M

2π
)2(−4π3)

Ṙ2

R

∫ 2π

0

dφ

4 sin2(φ/2) + δ2

=

∫
dt(

2

3 · 4π2
)33M3 Ṙ

2

R4
, (B.23)

where we used v2 = Ṙ2.
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