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Abstract Finsler geometry is an important extension of
Riemann geometry, in which each point of the spacetime
manifold is associated with an arbitrary internal variable.
Two interesting Finsler geometries with many physical appli-
cations are the Randers and Kropina type geometries. A sub-
class of Finsler geometries is represented by the osculating
Finsler spaces, in which the internal variable is a function of
the base manifold coordinates only. In an osculating Finsler
geometry, we introduce the Barthel connection, with the
remarkable property that it is the Levi–Civita connection of a
Riemannian metric. In the present work we consider the grav-
itational and cosmological implications of a Barthel–Kropina
type geometry. We assume that in this geometry the Ricci
type curvatures are related to the matter energy–momentum
tensor by the standard Einstein equations. The generalized
Friedmann equations in the Barthel–Kropina geometry are
obtained by considering that the background Riemannian
metric is of Friedmann–Lemaitre–Robertson–Walker type.
The matter energy balance equation is also derived. The cos-
mological properties of the model are investigated in detail,
and it is shown that the model admits a de Sitter type solu-
tion and that an effective dark energy component can also be
generated. Several cosmological solutions are also obtained
by numerically integrating the generalized Friedmann equa-
tions. A comparison of two specific classes of models with
the observational data and with the standard �CDM model is
also performed, and it is found that the Barthel–Kropina type
models give a satisfactory description of the observations.
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1 Introduction

Finsler geometry [1–6] is a well-studied generalization of
the Riemann geometry which is constructed from the general
line element ds = F

(
x1, x2, . . . , xn; dx1, dx2, . . . , dxn

) =
F(x, y), where F(x, y) > 0, ∀y �= 0, is a function on
the tangent bundle T (M), and homogeneous of degree 1 in
y. In fact, however, Finsler geometry is not just an exten-
sion of Riemannian geometry, but it is Riemannian geometry
without the quadratic line element restriction [7]. If in Rie-
mannian geometry F2 = gI J (x)dx I dx J [8], in a Finsler
geometry the differential line element ds at x in general
is a function of both x and y, and it is defined accord-
ing to

√
dx · dx = [

gAB(x, y)dx Adx B
]1/2

, respectively. In
the present paper, capital Latin indices take values in the
range (0, 1, 2, 3), while small Latin letters take values in the
range (1, 2, 3). Finsler spaces have a much richer mathe-
matical structure than their Riemannian counterparts. In a
Finsler space, one can define three kinds of curvature ten-

sors
(
Rκ

νλμ, Sκ
νλμ, Pκ

νλμ

)
, and five torsion tensors [5], which

shows that Finsler geometry indeed has a higher degree of
complexity than Riemann geometry.

Finsler spaces have a large number of physical appli-
cations. Randers [9] unified theory of gravity and electro-
magnetism, initially constructed in the framework of five-
dimensional general relativity, proved to be an example of
a Finsler geometry, with ds = (α + β)du, where α =[
gI K (x)y I yK

]1/2
, and β = bI (x)y I , where y I = dx I /du.

Quantum mechanics in its hydrodynamical formulation can
also be interpreted in terms of Finslerian geometry [10–13].

The Einstein gravitational field equations, Gμν = Rμν −
(1/2)Rgμν = κ2Tμν , where Rμν is the contraction of the
Riemann curvature tensor, Rμν = Rκ

μκν , R is the Ricci scalar
R = Rμ

μ , Tμν is the matter energy–momentum tensor, and
κ2 = 8πG/c4 is the gravitational coupling constant, are the
mathematical representation of one of the most beautiful and
successful physical theories ever proposed: general relativ-
ity. However, general relativity has recently begun to face a
number of strong theoretical challenges. The data obtained
from the observations of the type Ia supernovae in [14–20]
suggest that the universe is at present in an accelerated, de
Sitter type expansionary phase. These observations have led
to many observational and theoretical works trying to under-

stand the present-day cosmological dynamics (for a review
of the cosmic acceleration problem see [21]). The Planck
satellite studies of the cosmic microwave background [22],
together with the investigations of baryon acoustic oscilla-
tions [23–25], also confirmed the accelerating expansion of
the universe. But to explain these remarkable discoveries,
we need a fundamental change in our present understand-
ing of the gravitational interaction. The simplest explanation
for the accelerated expansion is obtained by reintroducing in
the gravitational field equations the cosmological constant �
proposed by Einstein in 1917 [26] to obtain a static model
of the cosmos. The Einstein field equations together with the
cosmological constant provide very good fits to all the obser-
vational data, but with the very high price of introducing a
parameter whose physical (or geometric) nature is not (yet)
known (for detailed discussions on the cosmological constant
problem see [27–29]. Hence, in order to solve some of the
theoretical problems of cosmology without resorting to the
cosmological constant, the existence of a new essential com-
ponent of the universe, called dark energy, was postulated.
Many dark energy models have been proposed (for exten-
sive reviews see [30–35]). Perhaps the simplest dark energy
model can be constructed by using a single scalar field, φ,
in the presence of a self-interaction potential V (φ), with the
gravitational action given by

S =
∫ [M2

p

2
R − (∂φ)2 − V (φ)

]
√−gd4x, (1)

where R is the Ricci scalar, and Mp denotes the Planck
mass. The dark energy models obtained in this way are called
quintessence models [36–40].

The dark matter problem represents another fundamen-
tal problem in present-day astrophysics and cosmology (see
[41–43] for detailed reviews of the recent results on the
search for dark matter, and for its properties). The pres-
ence of dark matter at galactic and extragalactic scales is
required to obtain an explanation of two basic astrophysi-
cal/astronomical observations, the behavior of the galactic
rotation curves and the virial mass problem in clusters of
galaxies, respectively. The observations of the galactic rota-
tion curves [44–47] convincingly show that neither Newto-
nian gravity nor Einstein’s general relativity can describe
galactic dynamics. To explain the properties of the galactic
rotation curves and to solve the missing mass problem in
clusters of galaxies, it is necessary to postulate the existence
of a dark (invisible) component of the universe that interacts
only gravitationally with baryonic matter, and which resides
in a spherically symmetric halo around the galaxies. Usu-
ally, dark matter is described as a cold, pressureless cosmic
fluid. Many candidates have been proposed for the dark mat-
ter particle, including weakly interacting massive particles
(WIMPs), axions, neutrinos, gravitinos, and neutralinos (for
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extensive reviews of the dark matter particle candidates see
[48–51]). Dark matter particles interact with normal baryonic
matter very weakly; however, their interaction cross sections
are expected to be nonzero. Thus, their direct experimental
detection in laboratory experiments may be possible.

Therefore, in the present-day view of the cosmological
evolution, the local dynamics and the global expansion of
the universe are dominated by two major components, dark
energy and cold dark matter, respectively, with baryonic
matter playing an insignificant role in late-time cosmolog-
ical evolution. The simplest theoretical model which can
fully explain the late-time accelerating de Sitter expansion
is obtained by reintroducing in the Einstein gravitational
field equations the cosmological constant �. The � exten-
sion of the Einstein gravitational field equations represents
the theoretical foundation of the currently dominant standard
cosmological paradigm, the � cold dark matter (�CDM)
model, with cold dark matter also playing a fundamental
role. Despite its theoretical simplicity, the �CDM model fits
the cosmological observations very well [52–55].

However, apart from its theoretical and fundamental
aspects, the �CDM model is also confronted with some inter-
esting (and as yet unsolved) observational problems. The
most important of these problems is the “Hubble tension,”
which originated from the important differences obtained
between the numerical values of the Hubble constant, H0,
as determined by the Planck satellite from the measurements
of the cosmic microwave background (CMB) [55], and the
values measured directly by using cosmological and astro-
physical observations in the local universe [56–58]. To illus-
trate the differences, the SH0ES determinations of H0 give
the value H0 = 74.03±1.42 km/s/Mpc [56], while the anal-
ysis of the CMB, originating in the early universe, gives, via
the Planck satellite data, H0 = 67.4 ± 0.5 km/s/Mpc [54], a
value differing from the SH0ES result by ∼ 5σ .

Hence, the search for alternative explanations for the cos-
mological dynamics and the nature of the two mysterious
major components of the universe is a critical task for present-
day theoretical physics. One of the attractive possibilities for
solving the gravitational puzzles is to go beyond the frame-
work of the Riemannian geometry on which general relativ-
ity is constructed, and look for more general geometries that
could describe the intricate nature of the gravitational phe-
nomena. In this direction, one very promising candidate is
Finsler geometry.

Horváth [59] and Horváth and Moór [60] were the first
to attempt to formulate a relativistic theory of gravitation
by using Finsler geometry, with their work later extended
in [61] and [62], respectively. The physical and cosmologi-
cal implications of the Finsler geometry have been investi-
gated from different points of view in [63–100]. In particular,
in [100], the cosmological evolution in an osculating point
Barthel–Randers type geometry was considered. In this type

of geometry, each point of the spacetime manifold is asso-
ciated with an arbitrary point vector field. For the Barthel–
Randers geometry, the connection is given by the Levi–Civita
connection of the associated osculating Riemann metric. This
Finsler type geometry is assumed to describe the physical
properties of the gravitational field via the standard Einstein
equations, as well as the cosmological dynamics. The gener-
alized Friedmann equations in the Barthel–Randers geometry
were obtained by considering that the background Rieman-
nian metric in the Randers line element is of Friedmann–
Lemaître–Robertson–Walker type. The matter energy bal-
ance equation was obtained, and it was investigated from
the perspective of the thermodynamics of irreversible pro-
cesses in the presence of particle creation. The cosmological
properties of the Barthel–Randers model were investigated
in detail, and it was shown that the model permits a de Sitter
type solution, and that an effective cosmological constant can
also be generated. Several exact cosmological solutions were
also obtained, and a comparison of three specific models with
the observational data and with the standard �CDM model
was performed by fitting the observed values of the Hubble
parameter. It turns out that the Barthel–Randers models give
a satisfactory description of the observations.

Alternative mathematical formulations within a Finsler
geometric framework are also possible. For example, in [91]
the cosmological implications of scalar–tensor theories that
are effectively obtained from the Lorentz fiber bundle of a
Finsler-like geometry were investigated. In this approach, it
is assumed that in the Finsler space one can define a nonlin-
ear connection with local components N (α)

μ

(
xν, φ(β)

)
, where(

xν, φ(β)
)

are the local coordinates, with xν , ν = 0, . . . 3,
the coordinates on the local manifold, and φ(β), β = 1, 2 the
coordinates on the fiber. The nonlinear connection uniquely
splits the total space T E into a horizontal distribution HE
and a vertical distribution V E , so that T E = HE ⊕ ⊕V E .
The metric tensor can then be constructed as

G = gμν(x)dx
μ ⊗ dxν + v(α)(β)(x)δφ

(α) ⊗ δφ(β), (2)

where for gμν a Lorentzian signature (−,+,+,+) was
adopted, with the fiber variables φ(α) playing the role of inter-
nal variables. The gravitational field equations are obtained
from a variational principle, with the action constructed as
S = (1/16πG)

∫ √|G|LGdx (N ), where dx (N ) = d4x ∧
dφ(1) ∧ dφ(2). For the Lagrangian density, two forms were
considered, the first being LG = R̃ − V (φ)/φ, where
R̃ = R−2�φ/φ+∂μφ∂μφ/2φ2 is the curvature for the case
of a holonomic basis, and V (φ) is the scalar field potential. A
second possible choice considered in [91] is LG = R̄, where
R̄ is the curvature of a non-holonomic basis. Matter can also
be added to the gravitational action, and thus the total action
becomes
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S = 1

16πG

∫ √|det g|φLGdx (N ) +
∫ √|det g|φLMdx (N ),

(3)

where LM is the matter Lagrangian. By using both choices
of action, the cosmological implications of the model were
investigated, and it was shown that an effective dark energy
sector does appear from the geometric structure of the Finsler
model. Moreover, an explicit interaction between the matter
and dark energy sectors is generated. As applied to the cos-
mological evolution of the universe, it was shown that one
can obtain a sequence of successive matter- and dark energy-
dominated epochs, with the parameter of the equation of state
of the dark energy being quintessence-like, phantom-like, or
experiencing the phantom-divide crossing. An exponential
de Sitter solution can also be obtained.

A generalized scalar–tensor theory obtained from vec-
tor bundle constructions was considered in [98], where its
kinematic, dynamical, and cosmological consequences were
studied. The theory is characterized by a mathematical struc-
ture constructed over a pseudo-Riemannian spacetime base
manifold, together with a fiber structure with two scalar
fields. Hence, one obtains a six-dimensional vector bun-
dle endowed with a nonlinear connection as the geomet-
ric arena for the description of the gravitational interaction.
The geodesics and the Raychaudhuri and field equations are
obtained using both the Palatini and the metric approach. For
the cosmological metric, we adopt the expression [98]

G = −dt ⊗ dt + a2(t)

(
dx ⊗ dx + dy ⊗ dy + dz ⊗ dz

)

+φ(t)
(
δφ(1) ⊗ δφ(1) + δφ(2) ⊗ δφ(2)

)
, (4)

and the corresponding Friedmann equations become [98]

3H2 = 8πG
(
ρm + ρe f f

)
, (5)

2Ḣ = −8πG
(
ρm + ρe f f + pm + pef f

)
, (6)

where

ρe f f = 1

8πG

[
φ̇

φ
W+ − φ̇2

4φ2 − 3H

(
φ̇

φ
− W+

)]
, (7)

and

pef f = 1

8πG

[
(W+)2 − Ẇ+ − 2HW+ − φ̇2

4φ2

+ 1

2φ

(
4H φ̇ − 3W+φ̇ + φ̈

)
]
, (8)

respectively, where W+ is the contribution coming from the
non-diagonal components of the field equations. Hence, the
Finsler geometric structure generates extra terms in the mod-
ified Friedmann equations corresponding to an effective dark
energy sector, also leading to an interaction of the dark mat-

ter sector with the metric. The parameter of the dark energy
equation of state can take values in either the quintessence
or the phantom regime, or that indicate the phantom-divide
crossing.

It is the goal of the present paper to extend the investiga-
tions of the cosmological properties of the Finsler spaces, as
initiated in [100], by considering a systematic investigation of
another Finsler type geometry which is based on the Kropina
metric [101,102], a particular class of the general (α, β) met-
rics with F = α2/β. The Randers metric also belongs to
the class of (α, β) metrics. We assume that the true descrip-
tion of the gravitational interaction can be accomplished by
using the mathematical properties of the Kropina spaces in a
mathematical framework introduced by Barthel [103,104], in
which one can consider a Finsler space as an n-dimensional
point space which is locally Minkowskian (a space that is
flat, homogeneous, and anisotropic) but, in general, is not
locally Euclidean. Note that a general Finsler space is both
inhomogeneous and anisotropic.

The starting point of the theory of the gravitational inter-
action based on the point Finsler spaces is the assumption
that the gravitational field can be represented by a Rieman-
nian metric g(x), satisfying the Einstein gravitational field
equations. The next step in the construction of a Finsler type
gravitational theory is the non-localization (anisotropiza-
tion) of the background geometry, by attaching to each point
x = (

x I
)
, I = 0, 1, 2, 3, an internal variable y = (

y J
)
,

J = 0, 1, 2, 3. Under the assumption that y is a vector,
the nonlocal gravitational field can be described by using
a Finsler type geometry F4 or, alternatively, by the geometry
of a general vector bundle. In nonlocal Finslerian geometry,
the metric tensor depends on both the local coordinates x
and the vector y, so that ĝ = ĝ(x, y).

However, for many realistic physical processes, one can
assume that the variable y is a function of the position
y = Y (x). Thus, the Finslerian metric becomes ĝ =
ĝ (x,Y (x))). Hence, in this particular type of physical model,
the Finslerian metric tensor ĝb is a function only of x .
In this way, we define a manifold called the osculating
Finsler manifold. The geometric properties of the osculat-
ing Finsler space are described by using the Barthel con-
nection [103,104]. In the case of the Kropina geometry (as
well as in all (α, β) geometries) we have the remarkable
result that the Barthel connection is the Levi–Civita con-
nection of the Riemannian metric ĝ(x, y(x)). In the present
work we systematically and rigorously investigate the cos-
mological implications of the Barthel–Kropina geometry by
adopting for the background Riemann metric the Friedmann–
Lemaître–Robertson–Walker (FLRW) form. In the Barthel–
Kropina-FLRW geometry we obtain the generalized Fried-
mann equations of the model. The properties of the cos-
mological equations are investigated in detail, and several
evolutionary scenarios are constructed, describing different
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types of dynamics. The model admits a de Sitter type solu-
tion, describing an accelerating universe but in the pres-
ence of nonzero matter density. Different cosmological solu-
tions corresponding to particular choices of the coefficients
of the one-form β are also considered, and their behavior
is compared with the observational data as well as with
the predictions of the standard �CDM model. An effective
dark energy model can also be generated from the gener-
alized Friedmann equations, and its properties are analyzed
in detail. Decelerating solutions can also be obtained, and
they may provide, for example, alternative descriptions to the
radiation-dominated phase of standard cosmology. The over-
all comparison of the considered models with the observa-
tional data indicates that they provide a satisfactory descrip-
tion of the cosmological dynamics, at least on a qualitative
level.

The present paper is organized as follows. In Sect. 2,
we review the necessary elements and definitions of the
Finsler geometry and point and osculating Finsler spaces.
The Barthel connection is also introduced in an intuitive
way. General definitions of the curvature tensors are also pre-
sented, and the specific form of the Einstein gravitational field
equations is postulated. The cosmological framework involv-
ing the definitions of the Riemann metric, the one-form β,
and the thermodynamic parameters is constructed in Sect. 3.
The Finslerian metric tensor coefficients, the Christoffel sym-
bols, and the curvature tensors are obtained for the considered
geometry. Based on this, geometric results are derived for
the generalized Friedmann equations describing the cosmo-
logical evolution in the Barthel–Kropina-FLRW geometry.
Particular cosmological models are considered in Sect. 4.
It is shown that the model admits a de Sitter type solu-
tion, in the presence of a nonzero matter density. Cosmo-
logical models corresponding to two specific choices of the
function η, giving the only nonzero coefficient of the one-
form β, are considered in detail. The predictions of the
model with a specific dependence on the Hubble function
of β are compared with observational data and the stan-
dard �CDM model. The possibility of obtaining an effec-
tive dark energy model equivalent to a time-varying cos-
mological constant is analyzed in Sect. 5. We discuss our
results and presents conclusions in Sect. 6. The calculations
of all the geometric quantities are presented in five appen-
dices. In Appendix A, the details of the computation of the
Finsler metric tensor are explicitly shown. The expressions
of the Christoffel symbols in the Barthel–Kropina-FLRW
geometry are derived in Appendix B. The components of the
Ricci tensors are obtained in Appendix C. The Ricci scalar
is computed in Appendix D. Finally, the explicit compu-
tations leading to the Einstein gravitational field equations
and to the generalized Friedmann equations are presented in
Appendix E.

2 A brief review of the Finsler, (α, β), and
Barthel–Kropina geometries

In the present section we will briefly introduce the basics of
the Finsler geometry, the (α, β)-metrics, the Barthel connec-
tion, and the Barthel–Kropina geometry.

It is important to emphasize that Finsler geometry already
appears in classical Newtonian mechanics when dissipative
effects are present. If the equations of motion of a dynamical
system, defined on an n-dimensional differentiable manifold
M , can be obtained from a regular Lagrangian L via the
Euler–Lagrange equations, given by

d

dt

∂L

∂yi
− ∂L

∂xi
= Fi , i ∈ {1, 2, . . . , n} , (9)

where Fi are the external forces, the above Euler–Lagrange
equations are equivalent to a system of second-order differ-
ential equations of the form

d2xi

dt2 + 2Gi
(
x j , y j , t

)
= 0, i ∈ {1, 2, . . . , n} , (10)

where each function Gi
(
x j , y j , t

)
is C∞ in � in the neigh-

borhood of some initial conditions
(
(x)0 , (y)0 , t0

)
. Equa-

tion (10) can naturally be interpreted as describing geodesic
motion in a Finsler space.

2.1 Finsler geometry and particular Finsler spaces

A basic assumption of the present-day theoretical physics
is that space and time are unified in a single structure (the
spacetime) that can be described mathematically as a four-
dimensional differentiable manifold M , endowed with a
pseudo-Riemannian metric tensor gI J , where I, J, K . . . =
0, 1, 2, 3. On the world line of a standard clock, the space-
time interval between two events x I and x I + dx I is
given, according to the chronological hypothesis, by ds =(
gI Jdx I dx J

)1/2
[105,106]. But from a mathematical point

of view, one can go beyond the Riemannian mathematical
structures of the spacetime manifold. One of the most impor-
tant metric extensions of the Riemann geometry is the geom-
etry introduced by Finsler [1–6].

From a general mathematical point of view, Finsler spaces
are metric spaces in which the interval ds between two nearby
points x = (x I ) and x + dx = (x I + dx I ) is given by

dŝ = F (x, dx) , (11)

where F , the Finsler metric function, is positively homoge-
neous of degree 1 in dx , and thus has the property

F (x, λdx) = λF (x, dx) . (12)

To permit the use of local coordinates in mathematical
computations, the Finsler metric function F is usually written
in terms of the canonical coordinates of the tangent bundle
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(x, y) = (x I , y I ), where y = y I
∂

∂x I
is any tangent vector

y at x . Then the Finsler metric tensor ĝI J is defined as

ĝI J (x, y) = 1

2

∂2F2 (x, y)

∂y I ∂y J
, (13)

thus allowing us to write Eq. (11) as dŝ2 = ĝI J (x, y) y I y J .
Riemann spaces are particular cases of Finsler spaces, cor-
responding to ĝI J (x, y) = gI J (x), y I = dx I , and ds2 =
gI J (x)dx I dx J , respectively.

Another important geometric quantity, the Cartan tensor
Ĉ(x, y), is defined according to

ĈI J K = 1

2

∂ ĝI J (x, y)

∂yK
. (14)

2.1.1 Randers, Kropina and general (α, β) metrics

The Randers space, which has many applications in physics,
is a special kind of Finsler space [9], with the Finsler metric
function given by

F =
[
gI J (x)dx

I dx J
]1/2 + AI (x)dx

I = α + β, (15)

where gI J (x) is the fundamental tensor (metric) of a Rie-
mannian space, and AI (x)dx I is a linear one-form on the
tangent bundle T M . Kropina [101,102] considered Finsler
spaces with metrics given by

F (x, y) = gI J (x)y I y J

AI (x)y I
. (16)

These early results were generalized by Matsumoto [107,
108], who introduced the notion of the (α, β) metrics. A
Finsler metric function F(x, y) is called an (α, β) metric
when F is a positively homogeneous function F(α, β) of the

first degree in two variables α (x, y) = [
gI J (x)dx I dx J

]1/2

and β (x, y) = AI (x)y I , respectively.
In the following we will assume that α is a Riemannian

metric; that is, it has the basic properties of being non-
degenerate (regular) and positive-definite. The Randers and
the Kropina metrics belong to the class of (α, β) metrics,
with F = α + β for the case of the Randers metric and

F = α2

β
for the case of the Kropina metric. Moreover, we

can introduce general (α, β) metrics having the form

F(α, β) = αφ

(
β

α

)
= αφ (s) , (17)

where s = β/α, and φ = φ(s) is a C∞ positive function on
an open interval (−bo, bo).

Denoting L = F2/2, we obtain for the fundamental met-
ric tensor of the (α, β) space the expression

ĝI J (x, y) = Lα

α
hI J + Lαα

α2 yI yJ + Lαβ

α
(yI AJ + yJ AI )

+Lββ AI AJ , (18)

where

hI J = α
∂2α(x, y)

∂y I ∂y J
= gI J − yI yJ

α2 , (19)

and the indices α, β of L indicate partial differentiation with
respect to α and β. Alternatively, one can compute the com-
ponents of the Finslerian metric tensor by using the formula
obtained in [109]. Let α = √

εgI J (x)y I y J , β = AI (x)y I ,
where ε = ±1, and F is given by Eq. (17). Then the Hessian
ĝ can be obtained as

ĝI J = ερgI J + ρ0bI bJ + ρ1 (bIαJ + bJαI ) − sρ1αIαJ , (20)

where αI := αy I and

ρ = φ2 − sφφ′, (21)

ρ0 = φφ′′ + φ′φ′, (22)

ρ1 = −s(φφ′′ + φ′φ′) + φφ′. (23)

2.2 The Barthel connection and the osculating Finsler
spaces

In the following we will briefly review the fundamental math-
ematical concepts on which the gravitational applications of
the Kropina geometries are based, namely, the Barthel con-
nection and the osculation of Finsler spaces.

2.2.1 The Barthel connection

Let us now assume that (M, F) is a Finsler space and Y (x) �=
0 is a vector field defined on M . We can now introduce a
specific structure (Mn, F(x, y),Y (x)) representing a Finsler
space (Mn, F(x, y)) having a tangent vector field Y (x). If
Y is nowhere vanishing, the Finslerian metric ĝ(x, y) gives
rise to the Y -Riemann metric ĝY (x) = ĝ(x,Y ).

An important class of Finsler spaces is the point Finsler
spaces. Based on the definition introduced by Barthel [103,
104], we consider in the following a Finsler space as an n-
dimensional point space, which is locally Minkowskian and,
in general, not locally Euclidean. A general Finsler space
is both inhomogeneous and anisotropic, while a Minkowski
space is flat and homogeneous, but anisotropic. Accordingly,
we shall call the Finsler n-space a Barthel-Finsler space or,
for short, a point Finsler space.

Given a point vector field Y I (x) and a Finsler metric ten-
sor ĝ(x, y), one can construct the absolute differential of Y
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according to the definition [110]

DY I = dY I + Y K bIK H (x,Y )dxH , (24)

where bIK H (x,Y ) are the Barthel connection coefficients.
The Barthel connection coefficients are constructed with the
help of the generalized Christoffel symbols γ̂J I H , defined as

γ̂J I H := 1

2

(
∂ ĝJ I
∂xH

+ ∂ ĝI H
∂x J

− ∂ ĝH J

∂x I

)
, (25)

by writing the expressions in the second term of Eq. (24) as

Y K bIK H = Y K
(
γ̂ I
K H − γ̂ R

K SY
SĈ I

RH

)
, (26)

and defining the Barthel connection as [110]

bIK H = γ̂ I
K H − γ̂ R

K SY
SĈ I

RH . (27)

The Barthel connection depends on the field to which it is
applied, leading to a situation that is very different from the
properties of the connection in Riemannian geometry. For
anisotropic metrics, all properties can depend on the direc-
tion, and in the case of the Barthel connection, the depen-
dence is only on the direction of the field, and not on its
magnitude. The Barthel connection is the simplest one that
preserves themetric function by the parallel transport. More-
over, for Finsler vector fields, depending on both x and y, it
allows a natural passage to the standard Cartan geometry of
Finsler spaces. Therefore, we can consider the Barthel con-
nection as the connection of a point Finsler space.

From the general theory of the Finsler connections [5,6] it
follows that these connections, unlike the usual Levi–Civita
connection of a Riemannian metric, or more general affine
connections, do not live on the base manifold M but on the
total space of the tangent bundle. This essential difference
sometimes induces major dissimilarities in the geometric the-
ory of Riemannian and Finsler manifolds.

To fill in this gap, one of the possibilities is to evaluate the
Finsler connections on a nowhere-vanishing tangent vector
field (x,Y (x)), provided the topology of the base manifold
M allows the existence of such vector fields. By evaluat-
ing the fundamental tensor gi j (x, y) of (M, F) at (x,Y (x)),
one obtains a Riemannian metric gY on M , with its own
Levi–Civita connection. Likewise, by evaluating the Cartan
connection of (M, F) at (x,Y (x)) one obtains an affine con-
nection on M , in general different from the Levi–Civita con-
nection of gY , which is the Barthel connection already intro-
duced above. Barthel himself arrived at this connection when
studying the parallel transport on M .

2.2.2 The osculating Riemannian metric

In this subsection we will introduce the osculating Rieman-
nian metric associated with a Finsler metric (M, F). The con-
cept of osculating Riemannian spaces of Finsler spaces was

introduced by Nazim [111], and it was later studied exten-
sively in [112]. In simple terms, the osculation means that a
rather complicated structure (Finsler geometry, Finsler con-
nection) has an associated simpler structure (a Riemannian
metric, an affine, or linear connection), with the simpler struc-
ture assumed to approximate the former in some sense. Based
on this link, one can obtain results on the more complicated
structure.

If we fix such a local section Y of πM : T M → M , all
geometric objects defined on the manifold T M can be pulled
back to M . Since ĝI J ◦ Y is a function on U , we can define

ĝI J (x) := ĝI J (x, y)|y=Y (x), x ∈ U. (28)

The pair (U, ĝI J ) is a Riemannian manifold, while ĝI J (x)
is called theY -osculating Riemannianmetric associated with
(M, F).

For the osculating Riemannian metric (28), the Christoffel
symbols of the first kind are defined according to

γ̂I J K (x) := 1

2

(
∂

∂x J

[
ĝI K (x, Y (x))

]+ ∂

∂xK
[
ĝI J (x, Y (x))

]

− ∂

∂x I
[
ĝJ K (x, Y (x))

])
.

By using the derivative law of composed functions we
obtain

γ̂I J K (x) = γ̂I J K (x, y)
∣∣
y=Y (x)

+2

(
ĈI J L

∂Y L

∂xK
+ ĈI K L

∂Y L

∂x J
− ĈJ K L

∂Y L

∂x I

)∣∣∣∣
y=Y (x)

.

(29)

In the case of a general (α, β) metric for the Cartan tensor,
we obtain

2ĈI J K = Lαβ

α
(hI J pK + hJK pI + hK I pJ )

+Lβββ pI pJ pK , (30)

respectively, where we have denoted

yI = gI J y
J , pI = AI − β

α2 yI . (31)

Hence, if Y is a nonvanishing global section of T M , so
that Y (x) �= 0, ∀x ∈ M , one can always define the osculating
Riemannian manifold (M, ĝi j ).

In the case of an (α, β) metric, let us consider the vector
field Y = A, where AI = gI J AJ . Since the vector field A
is globally nonvanishing on M , it follows that β has no zero
points. Hence, we can introduce the A-osculating Rieman-
nian manifold (M, ĝI J ), where ĝI J (x) := ĝI J (x, A).

Let ã be the length of A with respect to α. Hence,

ã2 = AI A
I = α2 (x, A) ,YI (x, A) = AI . (32)
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Therefore, the A-osculating Riemannian metric becomes

ĝI J (x) = Lα

ã

∣∣
∣∣
y=A(x)

gI J

+
(
Lαα

ã2 + 2
Lαβ

ã
+ Lββ − Lα

ã3

)∣∣∣∣
y=A(x)

AI AJ .

(33)

Moreover, we have

β (x, A) = ã2, pI (x, A) = 0, (34)

and consequently from Eq. (30) we obtain the important
result that ĈI J K (x, A) = 0. On other hand, for Y = A,
we obtain

γ̂I J K (x) = γ̂I J K (x, y)
∣∣
y=A(x) . (35)

Hence, for a Finsler space with (α, β)-metric the linear
A-connection with AI = (gI J AJ ) (the Barthel connection),
is the Levi–Civita connection of the A-Riemannian metric.

2.3 The curvature tensor and its contractions

The curvature tensor of an affine connection with local coef-
ficients

(
�A
BC (x)

)
is given by

RA
BCD = ∂�A

BD

∂xC
− ∂�A

BC

∂xD
+ �E

BD�A
EC − �E

BC�A
ED, (36)

The Barthel connection with local coefficients
(
bABC (x)

)

is an affine connection, and hence its curvature tensor must
be given by the above formula, with

(
�A
BC (x)

) = (bABC (x)
)
.

As we have already mentioned, in the case of the Kropina
metric F = α2/β, the Barthel connection coincides with the
Levi–Civita connection of the osculating metric ĝAB(x) =
gAB (x, A(x)), where AI (x) are the components of β, and
gAB is the fundamental tensor of F . Hence, since bABC =
γ̂ A
BC , where γ̂ A

BC are the Levi–Civita coefficients, we obtain
for the curvature tensors the expressions

R̂ A
BCD = ∂γ̂ A

BD

∂xC
− ∂γ̂ A

BC

∂xD
+ γ̂ E

BD γ̂ A
EC − γ̂ E

BC γ̂ A
ED, (37)

and

R̂BD =
∑

A

[
∂γ̂ A

BD

∂x A
− ∂γ̂ A

BA

∂xD
+
∑

E

(
γ̂ E
BD γ̂ A

E A − γ̂ E
BAγ̂ A

ED

)]

,

(38)

respectively, where A, B,C, D, E ∈ {0, 1, 2, 3}. For further
details on the definitions of the affine connections and the
curvature tensors, see [100] and references therein.

The contractions of the curvature tensor lead to the gen-
eralized Ricci tensor and Ricci scalar, respectively given by

R̂BD = R̂ A
BAD, R̂B

D = ĝBC R̂CD, (39)

and

R̂ = R̂B
B , (40)

respectively.

3 Cosmological evolution in Barthel–Kropina geometry

In the present section, we will consider the general frame-
work of the cosmological evolution in a Barthel–Kropina
type geometry. We will begin by formulating a theoretical
framework for the geometric and physical quantities of our
model, in which the geometric and physical quantities are
defined. As a next step, we will consider the computation
of the geometric quantities (metric, Christoffel symbols and
curvatures) in the adopted geometry. Finally, the generalized
Friedmann equations describing the cosmological evolution
are obtained.

3.1 Metric and thermodynamic quantities

In order to systematically construct the cosmology of the
Barthel–Kropina geometry, and to facilitate the physical
interpretation of the results, we adopt the following assump-
tions.
The Riemannian metric gI J (x) in α is given by the
Friedmann–Lemaître–Robertson–Walker (FLRW) metric,

ds2 =
(

dx0
)2 − a2

(
x0
) [(

dx1
)2 +

(
dx2
)2 +

(
dx3
)2
]

,

(41)

where we have adopted a coordinate system with (x0 = ct,
x1 = x, x2 = y, x3 = z), and a

(
x0
)

is the cosmological
scale factor. The FLRW metric describes a homogeneous
and isotropic universe, in which the cosmological time t is
flowing uniformly.
The Barthel–Kropina metric components are functions of x0

only. We adopt the cosmological principle, which requires
that the global and large-scale physical and geometric prop-
erties of the universe depend on the cosmological time only.
The cosmological principle requires that the components of
the vector A in the one-form β are functions of the cosmo-
logical time only, AI = AI

(
x0
)
.

The space-like components of A vanish. The cosmological
principle, together with the diagonal nature of the FLRW met-
ric, imposes another mathematical condition on the one-form
β. More exactly, we require that the space-like components
of A vanish so that A1 = A2 = A3 = 0. If this condition
were not satisfied, we could perform a spatial rotation, thus
obtaining a preferred direction, for example, in the x coordi-
nates. But such a cosmological model would contradict the
observationally well-confirmed, large-scale spatial isotropy
of the universe. Therefore, we assume that the vector A has
only one time-like independent component, A0

(
x0
)
. Hence,
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we represent the one-form field β as

(AI ) =
(
a
(
x0
)

η
(
x0
)

, 0, 0, 0
)

=
(
AI
)

, (42)

where η
(
x0
)

is an arbitrary function of time to be determined
from the gravitational field equations.
A frame comoving with matter does exist. Similarly to the
standard general relativistic case and its Riemannian geom-
etry, we assume that in the Barthel–Kropina geometry one
can introduce a comoving frame, in which the motion of all
observers take place with the Hubble flow, defined by the
Riemannian metric gI J (x).
Thermodynamic properties. We assume that the thermody-
namic properties of the cosmological matter can be described
by two physical quantities only, the energy density ρc2 and
the thermodynamic pressure p, respectively, defined in the
standard way. From assumptions c and d it follows that
the only nonvanishing components of the matter energy–
momentum tensor T̂AB are T̂ 0

0 = ρc2, T̂00 = ĝ00T̂ 0
0 and

T̂ k
k = −p, T̂ii = −ĝik T̂ k

i , respectively.
The gravitational field equations We postulate that the Ein-
stein gravitational field equations can be formulated in a
Barthel–Kropina geometry as

R̂BD − 1

2
ĝBD R̂ = κ2T̂BD, (43)

where κ2 = 8πG/c4 is a constant, and G and c are the New-
tonian gravitational constant and the speed of light, respec-
tively. T̂BD is the matter energy–momentum tensor, con-
structed with the help of the usual thermodynamic quanti-
ties as defined in the standard Riemann geometry, and of the
Finslerian metric tensor ĝBD .

In the present investigation, we have adopted for the Ein-
stein equations (43) the simplest possible mathematical form,
guided by the analogy with standard general relativity. More-
over, the adopted field equations have a well-defined Rie-
mannian limit, corresponding to the case ĝ(x, y) → g(x),
when we directly recover standard general relativity, without
the cosmological constant term. There are many extensions
of general relativity, and other forms of the field equations,
inspired by these extensions, are also possible. For example,
in the f (R) modified gravity theory, introduced in [113],
the gravitational Lagrangian is an arbitrary function of the
Ricci scalar R. One could assume in the framework of a
Finsler variational principle that the field equations follow

from a Finsler type Lagrangian of the form f
(
R̂
)

. Alter-

natively, one could construct the field equations in a less
rigorous approach directly by substituting in the standard
general relativistic equations the Riemannian quantities with
their Finslerian counterparts. Modified gravity theories with
curvature–matter coupling [114–116] could also be extended
to a Finslerian geometric framework. Riemannian geometries

with torsion [117,118] or non-metricity [119–121] can also
represent a source of inspiration for obtaining their Finslerian
analogues.

Hence, based on the above assumptions, the metric prop-
erties of Barthel–Kropina-FLRW model are given by

(i) ε = 1;
(ii) (AI ) = (a (x0

)
η
(
x0
)
, 0, 0, 0

) = (AI
)
;

(iii) (gI J ) =

⎛

⎜⎜
⎝

1 0 0 0
0 −a2(x0) 0 0
0 0 −a2(x0) 0
0 0 0 −a2(x0)

⎞

⎟⎟
⎠ ;

(iv) α|y=A(x) = a(x0)η(x0);
(v) β|y=A(x) = [a(x0)η(x0)]2;

3.2 Geometric quantities in Barthel–Kropina-FLRW
geometry

As a first step in constructing a geometric theory in the
Barthel–Kropina geometry, we need to obtain the compo-
nents of the Finslerian metric tensor (the Hessian), which are
given by (for the full computational details see Appendix A)

ĝI J (x, A) = 1

α2

(
2εgI J − AI AJ

α2

)
. (44)

Next, we need to obtain the Barthel–Kropina-FLRW
Finsler metric, using the geometric properties introduced in
the previous section. We immediately obtain

ĝ00 = 1

α2

(

2g00 − A2
0

α2

)

= 1

a2η2

[
2 − (aη)2

(aη)2

]

= 1

a2η2 . (45)

For i, j ∈ {1, 2, 3} we find

ĝi j = 1

α2

(
2gi j − Ai A j

α2

)
= 1

α2

(

2gii − A2
i

α2

)

δi j

= 1

a2η2

[
2(−a2)

]
δi j = − 2

η2 δi j . (46)

Hence, we obtain the nonvanishing components of the
Barthel–Kropina-FLRW metric tensor ĝI J as given by

ĝI J =

⎧
⎪⎪⎨

⎪⎪⎩

ĝ00 = 1

a2(x0)η2(x0)
,

ĝi j = −2

η2(x0)
δi j , i, j = 1, 2, 3.

123



  385 Page 10 of 25 Eur. Phys. J. C           (2022) 82:385 

The inverse components of the Barthel–Kropina-FLRW
metric tensor ĝI J can be obtained as

ĝ I J =

⎛

⎜⎜
⎜⎜⎜⎜⎜
⎝

a2η2 0 0 0

0 −η2

2
0 0

0 0 −η2

2
0

0 0 0 −η2

2

⎞

⎟⎟
⎟⎟⎟⎟⎟
⎠

.

For the Christoffel symbols associated with the Barthel–
Kropina-FLRW metric, we obtain (the detailed calculations
are presented in Appendix B)

γ̂ 0
00 = − (ηH + η′)

η
, γ̂ 0

i j = −−2a2η′

η
δi j , γ̂

i
0 j = −η′

η
δij ,

where H = a′
a .

The nonvanishing components of the Ricci tensor are
given by (see Appendix C for the calculational details)

R̂00 = 3

η2

[
ηη′′ + ηη′H − (η′)2

]
, (47)

and

R̂i j = 2a2

η2

(
3(η′)2 + ηη′′ + ηη′H

)
δi j , (48)

respectively. For the Ricci scalar R̂ = ĝ I J R̂I J we find (see
Appendix D)

R̂ = 6a2(ηη′′ + Hηη′ − 2(η′)2). (49)

Finally, we obtain the Einstein tensor components

Ĝ I J = R̂I J − 1

2
R̂ĝI J ,

as

Ĝ00 = R̂00 − 1

2
R̂ĝ00 = 3(η′)2

η2 , (50)

and

Ĝi j = R̂i j − 1

2
R̂ĝi j

= 2a2

η2

[
−3(η′)2 + 2ηη′′ + 2Hηη′] δi j , (51)

respectively. For the explicit calculations of these compo-
nents see Appendix E.

3.3 The generalized Friedmann equations

Once the geometric quantities in the Barthel–Kropina-FLRW
geometry are known, we can write the full set of Einstein
gravitational field equations relating geometry and matter. By
taking into account our assumptions about the physical nature
of the cosmological quantities, the Einstein field equations

Ĝ00 = (8πG/c4
)
ĝ00ρ and Ĝii = − (8πG/c4

)
ĝi i p lead to

the system of the generalized Friedmann equations, given by

3(η′)2

η2 = 8πG

c2

1

a2η2 ρ, (52)

and

a2
[
−3(η′)2 + 2ηη′′ + 2Hηη′] = 8πG

c4 p, (53)

respectively. By replacing the term −3
(
η′)2 with the help of

Eq. (52), Eq. (53) takes the alternative form

2aη
d

dx0

(
η′a
) = 8πG

c4

(
ρc2 + p

)
. (54)

3.4 General relativistic limit and the energy balance
equation

A first interesting property of the cosmological equations of
the Barthel–Kropina-FLRW model is that in the limit η →
±1/a, β = (1, 0, 0, 0), the generalized Friedmann Eqs. (52)
and (53) do reduce to the standard Friedmann equations of
general relativity,

3(a′)2

a2 = 8πG

c2 ρ, (55)

2
ä

a
+ (a′)2

a2 = −8πG

c4 p, (56)

a result which is easy to check. From the Friedmann equations
of standard general relativistic cosmology, it follows that the
matter energy density ρ satisfies the conservation equation

ρ̇ + 3H
(
ρ + p

c2

)
= 0, (57)

where the dot denotes the derivative with respect to the time,
and H = cH. For p = 0, the conservation equation can be
immediately integrated to give

ρ = ρ0

a3 = ρ0(1 + z)3, (58)

where ρ0 = ρ0b + ρ0DM is the present-day matter density
of the universe, with ρ0b and ρ0DM denoting the present-day
density of the baryonic and dark matter, respectively, and we
have introduced the redshift variable, defined as 1/z = 1+a.
We now introduce the generalized matter density parameter
�m , defined as

�m = ρ

ρ0
= 1

a3 = (1 + z)3. (59)

By considering a three-component universe filled with
ordinary matter, dark matter, and dark energy, respectively,
in the standard �CDM model, the Hubble function is given
by

H = H0

√
�

(cr)
m

a3 + �� = H0

√
�

(cr)
m (1 + z)3 + ��, (60)
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where �
(cr)
m = �

(cr)
b + �

(cr
DM , and �

(cr)
b = ρb/ρcr , �DM =

ρDM/ρcr and �� = �/ρcr denote the density parameters
of the baryonic matter, dark matter, and dark energy, respec-
tively. Here, ρcr denotes the critical density of the universe,
defined as ρcr = 3H2

0 /8πG. An important observational
parameter, the deceleration parameter is defined as

q = d

dt

1

H
− 1. (61)

In the �CDM model, the deceleration parameter is
obtained as

q(z) = 3(1 + z)3�m

2
[
�� + (1 + z)3�m

] − 1. (62)

To compare the predictions of the Barthel–Kropina-
FLRW cosmological model with observations and with the
�CDM model, we adopt for the matter and dark energy den-
sity parameters the values �DM = 0.2589, �b = 0.0486,
and �� = 0.6911, respectively [22]. Then, for the total
matter density parameter �m = �DM + �b, we obtain
�m = 0.3089. The present-day value of the deceleration
parameter has the value q(0) = −0.5381, indicating that at
present the universe is in an accelerating phase.

3.4.1 The Riemannian limit of the Kropina metric

We now consider the limiting case of the Finsler metric. Since
in the case of the considered Kropina metric, F = α2/β, with
α2 = gI J (x)dy I dy j and β = AIdy I , the standard gen-
eral relativistic Riemann geometry is recovered in the limit
β → α, which gives limβ→α F = α = √

gI J (x)y I y J . The
condition α = β gives immediately gI J y I y J = AI AJ y I y J ,
or limα→β ĝI J = AI AJ . This means that the limiting Rie-
mann metric gI J is actually an inner product, and hence
it becomes a degenerate Riemann metric in the sense that
det |gI J | = 0; that is, rankgI J = n − 1.

Equivalently, by taking the limit β → α in Eq. (A1), giv-
ing the metric tensor of the Barthel–Kropina geometry, one
can show that limβ→α ĝI J = gI J = AI AJ . The fact that in
the Riemannian limit the Kropina metric leads to a degener-
ate Riemann metric should not come as a surprise. Indeed,
the original Kropina metric is degenerate at the origin of
TxM , and by taking the limit β → α, we obtain a degenerate
Riemann metric.

This also means that in this limit, the Kropina indicatrix
degenerates into the Riemannian unit circle of the degener-
ate metric gI J . Since limβ→α ĝ(x, y) = gI J (x), under the
same limit the Y -osculating metric ĝ (x,Y (x)) = ĝ(x) tends
to gI J (x), which is degenerate, as already explained. More-
over, let us observe that the condition gI J → AI AJ is incom-
patible with the choice gI J = diag

(
1,−a2,−a2,−a2

)
and

bI = (b0, 0, 0, 0), respectively, except for the case a2 = 0,
which is obviously meaningless in the present context.

3.4.2 The energy balance equation

We now multiply Eq. (52) by a3, and take the derivative of
the resulting relation with respect to x0. Thus, we obtain

8πG

c2

d

dx0

(
ρa3
)

= 15a4a′ (η′)2 + 6a5η′η′′. (63)

After multiplying Eq. (53) by 3a2a′, we obtain

8πG

c4 p
d

dx0 a
3 = −9a4a′ (η′)2 + 6a4a′ηη′′ + 6a4a′Hηη′.

(64)

By adding Eqs. (63) and (64), we obtain the energy balance
equation in the Barthel–Kropina-FLRW cosmological model
as

8πG

c4

[
d

dx0

(
ρc2a3

)
+ p

d

dx0 a
3
]

= 6a5
[
H (η′)2

+ (η′ + Hη
)
η′′ + H2ηη′]. (65)

The energy balance equation can be reformulated, using
the generalized Friedmann equations, as

8πG

c4

[
d

dx0

(
ρc2a3

)
+ p

d

dx0 a
3
]

= 6a5
[

8πG

2c4

(
5

3
ρc2 + p

) H
a2 + η′η′′

]
. (66)

4 Particular cosmological models

In the present section, we will investigate the cosmological
implications of the generalized Friedmann equations (52) and
(53) obtained within the framework of the Barthel–Kropina-
FLRW geometry.

4.1 The de Sitter solution

The de Sitter solution corresponds to an exponential expan-
sion in the Riemann geometric framework, with a

(
x0
) =

eH0x0
, where H0 = H = constant. The system of the gener-

alized Friedmann equations does not admit an explicit vac-
uum solution, sinceρ = p = 0 impliesη′ = 0,η = constant,
and the second Friedmann equation (53) is automatically sat-
isfied. Hence, a de Sitter type exponential expansion can take
place only in the presence of matter. Thus, we assume a
nonzero matter energy density, but a vanishing thermody-
namic pressure for the cosmological matter, with p = 0. In
the case H = H0 = constant, Eq. (53) becomes

− 3(η′)2 + 2ηη′′ + 2H0ηη′ = 0. (67)

By introducing a new variable u, defined as η′ = u, we
immediately obtain η′′ = du/dx0 = (du/dη)

(
dη/dx0

) =
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u(du/dη). Hence, Eq, (67) becomes

du

dη
= 3

2

u

η
− H0, (68)

with the general solution given by

u(η) = C1η
3/2 + 2H0η, (69)

where C1 is an arbitrary constant of integration. Therefore,
from

dη

dx0 = C1η
3/2 + 2H0η, (70)

we obtain the general solution of Eq. (67) as

η
(
x0
)

= 4H2
0e

2H0
(
x0+C2

)

[
1 ± C1eH0(x0+C2)

]2 , (71)

where C2 is an integration constant that can be taken as zero
without any loss of generality by a rescaling of the time coor-
dinate x0. Moreover, in order to obtain a physically consistent
solution, we will adopt the minus sign in the above equation.
Hence, a de Sitter type exponential expansion of the Riemann
metric corresponds to

η
(
x0
)

= 4H2
0e

2H0x0

[
1 − C1eH0x0]2 . (72)

During the de Sitter phase, the matter energy density varies
as

8πG

c2 ρ
(
x0
)

= 192H6
0e

6H0x0

(
1 − C1eH0x0)6 . (73)

At the initial moment x0 = 0, the matter energy density
is

8πG

c2 ρ
(
x0
)∣∣
∣
x0=0

= 192H6
0

(1 − C1)
6 , (74)

while for x0 → ∞, we obtain

8πG

c2 lim
x0→∞

ρ
(

x0
)

= 192H6
0

C6
1

. (75)

In order to obtain a monotonically decreasing matter
energy density during the de Sitter phase satisfying the condi-
tion ρ

(
x0
)∣∣
x0=0 > limx0→∞ ρ

(
x0
)
, the integration constant

C1 must satisfy the condition C1 > 1/2.

4.2 Conservative cosmological evolution

We will now consider conservative Barthel–Kropina-FLRW
models, that is, models in which the matter conservation
equation

d

dx0

(
ρc2a3

)
+ p

d

dx0 a
3 = 0, (76)

is identically satisfied. In this case, the system of general-
ized Friedmann equations reduces to the Friedmann equa-
tions (52) and (53), together with the constraint

H (η′)2 + (η′ + Hη
)
η′′ + H2ηη′ = 0. (77)

4.2.1 Linear barotropic fluid cosmological models

As a first example of a conservative Barthel–Kropina-FLRW
cosmological model, we consider the case of a barotropic
fluid-dominated universe, with p = (γ − 1)ρc2, where γ =
constant and 1 ≤ γ ≤ 2. In this case, Eq. (76) immediately
gives

ρ
(
x0
)

= ρ0

a3γ
(
x0
) , (78)

where ρ0 is an integration constant. Then, Eq. (52) gives

η′ = −
√

8πGρ0

3c2

1

a3γ /2+1 , (79)

η′′ =
(

3γ

2
+ 1

)√
8πGρ0

3c2

a′

a3γ /2+2 , (80)

where we have assumed that η is a monotonically decreasing
function of time.

By taking into account the linear barotropic equation of
state, using Eq. (52), the pressure can be obtained as

p = (γ − 1)ρc2 = 3(γ − 1)
c4

8πG
a2 (η′)2 . (81)

After substituting the above expression of the pressure in
Eq. (53), we obtain the equation

2ηη′′ + 2Hηη′ = 3γ
(
η′)2 , (82)

which can be integrated immediately to obtain the first inte-
gral
∣∣η′∣∣ a = C−3γ /2η3γ /2, (83)

where C is an arbitrary integration constant. Using the
expression (79) for η′, we obtain

η(a) = C

(
8πGρ0

3c2

)1/3γ

a−1. (84)

By taking the derivative of the above expression of η with
respect to x0, and equating it with η′ obtained from the first
Friedmann equation as given by Eq. (79), we obtain for a′
the equation

a′

a2 = 1

C

(
8πGρ0

3c2

)(3γ−2)/6γ 1

a3γ /2+1 , (85)

with the general solution given by a
(
x0
) ∝ (x0

)2/3γ
. Hence,

conservative Barthel–Kropina-FLRW cosmological models
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exactly mimic their general relativistic counterparts, describ-
ing the decelerating evolution of a matter-dominated uni-
verse satisfying a linear barotropic equation of state. For
a dust universe we obtain a

(
x0
) = (

x0
)2/3

, while for
a radiation-dominated universe, the scale factor varies as
a
(
x0
) = (x0

)1/2
.

4.3 Nonconservative Barthel–Kropina-FLRW
cosmological models

In the following we consider cosmological models in which
the matter density and pressure do not satisfy the conserva-
tion Eq. (76), and thus for a linear barotropic equation of state,
the expression of the energy density is different from the one
given by Eq. (78). However, we will consider that matter
still satisfies a linear barotropic equation of state. Hence, by
eliminating the pressure from the second Friedmann equa-
tion (53) with the help of the equation of state and the first
Friedmann equation (52), we obtain

ηη′′ + Hηη′ = 3γ

2

(
η′)2 , (86)

which can be immediately integrated to give the first integral
∣∣η′∣∣ a = Cη3γ /2, (87)

where C is an arbitrary constant of integration, and we have
used the standard mathematical relation

∫ (
f ′(x)/ f (x)

)
dx

= ln | f (x)|+C . For the matter density we find the expression

8πG

c2 ρ = a2 (η′)2 = C2η3γ . (88)

In order to obtain a monotonically decreasing matter density,
η must also be a decreasing function of time. In terms of η,
the Hubble function is obtained as

H = 3γ

2

η′

η
− η′′

η′ . (89)

Eqs. (87) and (88) give the full solution of the Friedmann
equations for the cosmological evolution in the Barthel–
Kropina-FLRW geometry. Once the functional form of η

is specified, the evolution of the scale factor and the other
cosmological parameters can be immediately obtained.

4.3.1 η = η(a)

As a first example of a nonconservative Barthel–Kropina-
FLRW cosmological model, we consider the case in which η

is a function of the scale factor only, η = η(a). Then, Eq. (87)
immediately gives the evolution equation

a
dη(a)

da
a′ = Cη3γ /2(a), (90)

which can be integrated to give

C
(
x0 − x0

0

)
=
∫

a
dη(a)

da
η−3γ /2(a)da, (91)

where x0
0 is an arbitrary integration constant.

In the following we will consider the case of a dust uni-
verse with γ = 1. The simplest possible cosmological model
can be obtained for η(a) = a1a−n , where a1 and n are con-
stants. Then we immediately obtain

a
(
x0
)

=
(

5
√
a1C

2

)2/(2−5n) (
x0 − x0

0

)2/(2−5n)

, (92)

where we assume 5n < 2, n < 0.4. For the Hubble function,
we find

H
(
x0
)

= 2

2 − 5n

1

x0 , (93)

while for the deceleration parameter we obtain the expression
q = −5n/2. The universe is in an accelerated expansionary
state, and the scale factor has a power law dependence on the
time coordinate.

4.3.2 η = η (H)

As another particular class of Barthel–Kropina-FLRW cos-
mological models, we consider the case in which η is a func-
tion of H, the Hubble function, so that η = η(H). Hence,
under this assumption, Eq. (87) takes the form

dη (H)

dH
dH
dx0 a = C−3γ /2η3γ /2 (H) . (94)

At this moment we introduce as the independent variable
the redshift z, defined as 1 + z = 1/a. Hence, we obtain

d

dx0 = dz

dx0

d

dz
= −(1 + z)H(z)

d

dz
. (95)

In the redshift variable, Eq. (94) becomes

−(1 + z)2 dη (H(z))

dH(z)
H(z)

dH(z)

dz

= C−3γ /2η3γ /2 (H(z)) . (96)

In the following we adopt for η(H) the simple form

η(H) = a1Hn + b1, (97)

where a1, b1, and n are constants. We also rescale the Hubble
function according to H = (1/c)H = (1/c)H0h, where H0

is the present-day value of the Hubble function. Moreover,
we rescale the coefficient a1 as a1 → a1/Hn

0 . We consider
the late-time evolution of the universe in its dust phase, with
zero pressure, and therefore we take γ = 1. Hence, Eq. (96)
takes the form

− (1 + z)2hn(z)
dh(z)

dz
= c1

(
a1h

n + b1
)3/2

, (98)
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Fig. 1 Variation in the dimensionless Hubble function h as a function
of the redshift z for η(z) = a1hn(z) + b1 for n = 2/3, b1 = −0.21,
c1 = 3.9, and different values of a1: a1 = 0.348, (short dashed curve),
a1 = 0.350 (dashed curve), a1 = 0.352, (long dashed curve), and
a1 = 0.354, (ultra-long dashed curve), respectively. The red solid line
represents the prediction of the �CDM model. The observational data
are represented together with their error bars

where we have denoted c1 = C−3/2/na1. The matter energy
density can be obtained as

8πG

c2 ρ = C2 (a1Hn + b1
)3

. (99)

For the matter density parameter, we obtain

�m = ρ

ρ0
= C1

(
a1h

n + b1
)3

, (100)

where we have denoted C1 = C2c2ρc/3H2
0 ρ0.

The variation in the normalized Hubble function, the
deceleration parameter, and the matter density parameter
are presented in Figs. 1, 2, and 3 for four values of n
(n = 1, 2, 3, 4) and for different values of a1, b1, and c1. In
the figures we have also included the observational data for
the Hubble function, together with their error bars [124,125],
as well as the predictions of the �CDM model.

As one can see from Fig. 1, for the adopted functional form
of η, the Barthel–Kropina-FLRW model gives an acceptable
description of the observational data for h(z), up to a redshift
of around z ≈ 3, and it can also reproduce, at least qualita-
tively, the predictions of the �CDM model. However, with
increasing z, at redshifts higher than 3, important deviations
from the predictions of the �CDM model do appear, with
the dimensionless Hubble functions of the �CDM model
increasing much faster than in Barthel–Kropina-FLRW cos-
mology.

For the adopted set of the model parameters, the compari-
son of the deceleration parameter curves, presented in Fig. 2,
as predicted by the Barthel–Kropina-FLRW model and by
the �CDM model indicate the existence of significant differ-
ences between the two models, especially at higher redshifts.
Both models predict a late-time accelerating behavior, with

Fig. 2 Variation in the deceleration parameter q as a function of the
redshift z for η(z) = a1hn(z)+ b1 for n = 2/3, b1 = −0.21, c1 = 3.9,
and different values of a1: a1 = 0.348, (short dashed curve), a1 = 0.350
(dashed curve), a1 = 0.352, (long dashed curve), and a1 = 0.354,
(ultra-long dashed curve), respectively. The red solid line represents
the prediction of the �CDM model

Fig. 3 Variation in the total matter density parameter �m as a function
of the redshift z for η(z) = a1hn(z) + b1 for n = 2/3, b1 = −0.21,
c1 = 3.9, and different values of a1: a1 = 0.348, (short dashed curve),
a1 = 0.350 (dashed curve), a1 = 0.352, (long dashed curve), and
a1 = 0.354, (ultra-long dashed curve), respectively. The red solid line
represents the prediction of the �CDM model

q < 0 at the present time, but the numerical values for q(0)

differ considerably in the two models at redshifts z > 0.5.
However, the present-day values ofq in the Barthel–Kropina-
FLRW cosmology are consistent with the predictions of the
�CDM model. At larger redshifts, the behavior of the decel-
eration parameter q in the present Finsler type model strongly
depends on the numerical values of the model parameters,
and at redshifts higher than 3, significant deviations from the
predictions of the �CDM model do occur.

At a qualitative level, the Barthel–Kropina-FLRW cos-
mology can also reproduce the behavior of the total matter
density parameter �m in the �CDM model. At low redshifts
0 ≤ z < 1, the predictions of the two models basically agree.
However, the quantitative differences, already observed in
the case of the deceleration parameter, do also exist for this
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physical parameter. In the range 1 ≤ z ≤ 3, the behavior of
the matter density parameter strongly depends on the model
parameters, �CDM, and at higher redshifts, both lower and
higher matter density parameters can be obtained, thus lead-
ing to matter densities that are different from the predictions
of the �CDM model.

5 Dark energy in the Barthel–Kropina-FLRW
cosmology

We will now consider that the function η can be represented
in a general form as

η = 1

a
(
x0
)
[
1 + f

(
x0
)]

, (101)

where f is an arbitrary function to be determined from the
field equations. In the limit f → 0, η → 1/a, and as we
have already seen, we recover the standard Friedmann equa-
tions of general relativity. With this representation of η, the
generalized Friedmann equations take the form

3

(
a′)2

a2 = 8πG

c2 ρ + 6(1 + f )H f ′ − 3
(
f ′)2 − 3H2(2 + f ) f

= 8πG

c2 ρ + ρDE , (102)

and

2a′′

a
+
(
a′)2

a2 = −8πG

c4

p

(1 + f )2 + 4H f ′

1 + f
− 3

(
f ′)2

(1 + f )2

+2
f ′′

1 + f
, (103)

where

ρDE = 6(1 + f )H f ′ − 3
(
f ′)2 − 3H2(2 + f ) f, (104)

and

pDE = 4H f ′

1 + f
− 3

(
f ′)2

(1 + f )2 + 2
f ′′

1 + f
, (105)

respectively. An effective dark energy term, satisfying the
condition pDE = wρDE , w = constant can be obtained if
the function f satisfies the equation

2 f ′′

1 + f
+ 2H

[
−3w(1 + f ) + 2

1 + f

]
f ′

+3

[
w − 1

(1 + f )2

] (
f ′)2 + 3w f (2 + f )H2 = 0.

(106)

The dynamical cosmological dark energy is thus depen-
dent on the scale factor and on the properties of η. In the
following we will consider only the late-time evolution of
the universe, and hence we take p = 0. To simplify the
mathematical formalism, we introduce the dimensional time

parameter τ = H0x0 and the normalized Hubble function
h, defined as H = H0h, where H0 = H0/c, and H0 is
the present-day value of the Hubble function. Moreover, we
denote u = d f/dτ . Then the equations describing the cos-
mological dynamics of the Barthel–Kropina-FLRW cosmo-
logical model take the form

d f

dτ
= u, (107)

2
dh

dτ
+ 3h2 = 4h

u

1 + f
− 3

u2

(1 + f )2 + 2

1 + f

du

dτ
, (108)

2

1 + f

du

dτ
+ 2h

[
2

1 + f
− 3w(1 + f )

]
u

+3

[
w − 1

(1 + f )2

]
u2 + 3w f (2 + f )h2 = 0. (109)

By introducing the critical density ρc = 3H2
0 /8πG, and

by defining the matter density parameter as �m = ρ/ρc,
from the first Friedmann equation we obtain

�m = h2 +
(

d f

dτ

)2

+ (2 + f ) f h2 − 2(1 + f )h
d f

dτ
.

(110)

In terms of the redshift variable 1 + z = 1/a, the system
of equations (107)–(109) become

−(1 + z)h
d f

dz
= u, (111)

−2(1 + z)h
dh

dz
+ 3h2 = 4h

u

1 + f
− 3

u2

(1 + f )2

−2(1 + z)
h

1 + f

du

dz
, (112)

−2(1 + z)
h

1 + f

du

dz
+ 2h

[
2

1 + f
− 3w(1 + f )

]
u

+3

[
w − 1

(1 + f )2

]
u2 + 3w f (2 + f )h2 = 0. (113)

For the redshift dependence of the matter density param-
eter, we find

�m = h2
[

1 + (1 + z)2
(

d f

dz

)2

+ (2 + f ) f

+2(1 + z)(1 + f )
d f

dz

]
. (114)

For the deceleration parameter, we obtain

q = 1

2
+ 3

2

8πG
c4

p
(1+ f )2 − pDE

8πG
c2 ρ + ρDE

. (115)

The variation in the Hubble function, obtained by numeri-
cally solving the system of differential equations Eqs. (111)–
(113), is represented for different values of the parameter w

of the dark energy equation of state in Fig. 4.
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Fig. 4 Variation in the normalized function h as a function of the red-
shift z in the Barthel–Kropina-FLRW dark energy model for differ-
ent values of the parameter w of the dark energy equation of state:
w = 1.45 (short dashed curve), w = 1.85 (dashed curve), w = 2.05
(long dashed curve), w = 2.55 (ultra-long dashed curve), and w = 3.05
(ultra-ultra-long dashed curve), respectively. The red solid line repre-
sents the prediction of the �CDM model. The observational data are
represented together with their error bars. The initial conditions used to
numerically integrate the system of cosmological evolution equations
are f (0) = 0.33, u(0) = 0.51, and h(0) = 1, respectively

As one can see from Fig. 4, the model gives a good descrip-
tion of the observational data, as well as of the �CDM model
up to a redshift of at least z = 5. For higher redshifts, some
differences with respect to the standard cosmology do appear.
The numerical results do not show a significant influence of
the variation in the parameter of the dark energy equation of
state w, with w = 1.85 predicting almost the same evolution
as w = 3.05, but depend strongly on the initial conditions for
f and u = d f/dτ . The variation in the deceleration param-
eter as a function of redshift as predicted by the Barthel–
Kropina-FLRW dark energy model is presented in Fig. 5.

Even though on a qualitative level the behavior of
the deceleration parameter of the Barthel–Kropina-FLRW
model can reproduce the predictions of the �CDM model,
significant quantitative differences still appear. In the Fins-
lerian approach, the evolution of the deceleration parameter
is strongly dependent on the parameter w of the dark energy
equation of state. At higher redshifts, the numerical values
of the Barthel–Kropina-FLRW are slightly lower than those
obtained from �CDM, and almost independent of w, while
at low redshifts the behavior of q essentially depends on
the numerical value of w. The critical redshift zcr indicat-
ing the transition from deceleration to acceleration, given
by q (zcr ) = 0, also takes numerical values that are differ-
ent from the �CDM predictions. The critical redshift is also
strongly dependent on the initial conditions at the present
time for f and its derivative.

The density parameter of the total energy matter content
of the universe is represented as a function of the redshift in
Fig. 6. In this case there are significant differences, especially

Fig. 5 Variation in the deceleration parameter q as a function of the
redshift z in the Barthel–Kropina-FLRW dark energy model for dif-
ferent values of the parameter w of the dark energy equation of state:
w = 1.45 (short dashed curve), w = 1.85 (dashed curve), w = 2.05
(long dashed curve), w = 2.55 (ultra-long dashed curve), and w = 3.05
(ultra-ultra-long dashed curve), respectively. The red solid line repre-
sents the prediction of the �CDM model. The initial conditions used to
numerically integrate the system of cosmological evolution equations
are f (0) = 0.33, u(0) = 0.51, and h(0) = 1, respectively

Fig. 6 Variation in the density parameter of the matter �m as a function
of the redshift z in the Barthel–Kropina-FLRW dark energy model for
different values of the parameter w of the dark energy equation of state:
w = 1.45 (short dashed curve), w = 1.85 (dashed curve), w = 2.05
(long dashed curve), w = 2.55 (ultra-long dashed curve), and w = 3.05
(ultra-ultra-long dashed curve), respectively. The red solid line repre-
sents the prediction of the �CDM model. The initial conditions used to
numerically integrate the system of cosmological evolution equations
are f (0) = 0.33, u(0) = 0.51, and h(0) = 1, respectively

at high redshifts, between the predictions of the Barthel–
Kropina-FLRW and the �CDM model, with the Finsler type
cosmological model predicting much higher matter densities
at higher redshifts. In the present model, the matter energy
density not only depends on the Hubble function, as in stan-
dard general relativity, but also includes the contribution from
the one-form field β. Since there is no independent conser-
vation of the matter energy–momentum tensor, the increase
in the total matter density at high redshifts can also be inter-
preted as describing a particle creation process via transfer
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Fig. 7 Variation in the function η(z) = (1+ z)(1+ f (z)) as a function
of the redshift z in the Barthel–Kropina-FLRW dark energy model for
different values of the parameter w of the dark energy equation of state:
w = 1.45 (short dashed curve), w = 1.85 (dashed curve), w = 2.05
(long dashed curve), w = 2.55 (ultra-long dashed curve), and w = 3.05
(ultra-ultra-long dashed curve), respectively. The initial conditions used
to numerically integrate the system of cosmological evolution equations
are f (0) = 0.33, u(0) = 0.51, and h(0) = 1, respectively

of energy from the η field to ordinary matter, or equivalently,
to the increase in the contribution of the dark energy. On
the other hand, in the present model we cannot distinguish
between baryonic matter, dark matter, and dark energy, and
our definition of the density contains all three components.
Hence, �m includes the contributions of all matter and energy
forms of the universe.

The variation as a function of the redshift of the function
η is represented in Fig. 7. The coefficient of the one-form β

of the Finsler metric is a monotonically increasing function
of z (a monotonically decreasing function of time), and it
is a linear function of the redshift. At small redshifts, the
evolution of η is almost independent of the numerical values
of w, but some small differences do appear at higher redshifts.

6 Discussion and final remarks

In this paper we have investigated the cosmological implica-
tions of a particular Finsler type geometry in which the funda-
mental function is obtained as the ratio of a Riemannian met-
ric α and a one-form β, so that F = α2/β. The corresponding
geometry is called Kropina geometry, and its properties have
been intensively investigated from a mathematical point of
view. We have assumed that the physical cosmological met-
ric of the universe is the FLRW metric, from which the metric
α2 is constructed. From a geometric point of view, we have
adopted the mathematical formalism of the osculating Finsler
spaces, in which the Finsler metric ĝ(x, y) is localized via the
functional relation y = y(x), and thus a Riemann type metric
g(x, y(x)) is generated. In our study we have considered A-
osculating Riemannian manifolds ĝ(x, A), where AI are the

components of the one-form β. Moreover, we assume that the
Finsler space is an n-dimensional point Finsler space (locally
Minkowskian but generally non-Euclidean). The connection
of a point Finsler space is the Barthel connection, a connec-
tion that depends on the field to which it is applied. For an
(α, β) metric, the Barthel connection is the Levi–Civita con-
nection of the A-Riemannian metric ĝ(x, A). From a physical
point of view, we have postulated that the gravitational phe-
nomena can be described by the A-Riemannian metric via the
standard Einstein gravitational field equations, in which the
Riemannian metric g(x) is substituted by ĝ(x, A). Hence, the
present approach is based on an extended (but still Rieman-
nian) metric, with the connection and curvature constructed
in the standard way.

By adopting as the α metric the standard FLRW form,
the generalized Friedmann equations can be obtained by a
number of straightforward calculations. Despite the appar-
ent complexity of the mathematical model, the generalized
Friedmann equations have a very simple mathematical form,
and they are obtained in terms of two geometric quantities, the
scale factor a and the component A0 = aη of the one-form
β. The generalized Friedmann equations have the remark-
able property of giving, in the limit η → 1/a, the standard
Friedmann equations of general relativity. Thus, the Barthel–
Kropina-FLRW model represents a nontrivial deformation
of the standard general relativistic cosmology. In the present
work we have performed a systematic study of the cosmolog-
ical properties of the Finslerian type model, which, despite its
close relation to standard general relativistic cosmology, also
has some very different properties. The generalized Fried-
mann equations of the Barthel–Kropina-FLRW model do
not admit a vacuum solution for ρ = p = 0, since the first
Friedmann equation gives η′ = 0, η = constant, with the
second field equation identically satisfied. This situation has
some similarities with standard general relativity, in which
the vacuum Friedmann equations 3H2 = (

8πG/c2
)
ρ and

2Ḣ+3H2 = − (8πG/c4
)
p give for ρ = p = 0 the solution

H = 0, a = constant. Thus, the cosmological background
solution of the vacuum gives the Minkowski geometry. On
the other hand, in the Brathel–Kropina-FLRW model, the
vacuum solution requires η′ = 0, η = constant, a condition
that does not fix any background spacetime geometry, which
remains of the FLRW type, but with arbitrary scale factor a.

However, the model admits a de Sitter type solution for
the case of a pressureless cosmological fluid in the presence
of a nonzero matter density. The behavior of ρ in this case
depends, as one can see from Eq. (73), on an arbitrary inte-
gration constant C1. If this constant is taken as C1 = 1,
limx0→0 ρ = ∞, and therefore the de Sitter evolution begins
from a singular state. Finite initial density states are also pos-
sible, and in the large time limit, both the matter density and
η tend towards some constant values.
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In the Barthel–Kropina-FLRW model, the matter energy
density is generally not conserved, and the energy density
and pressure satisfy the balance equation (65). Conservative
cosmological models, obtained by imposing the condition
of the energy conservation ρ′ + 3H (ρc2 + p

) = 0, lead to
the standard general relativistic evolution for the scale fac-
tor in the presence of matter satisfying a linear barotropic
equation of state, a = (

x0
)2/3γ

. Thus, the cosmology of
the conservative Barthel–Kropina-FLRW model is identical
to the standard general relativistic one. Hence, accelerated
expansion is not possible in the presence of matter satisfy-
ing the ordinary matter conservation equations. On the other
hand, a large number of accelerating cosmological models
can be obtained using the general energy balance equation
(65), once the functional form of η is fixed. For the sake of
the illustration of the qualitative properties of the model, we
have considered two particular cosmological scenarios, with
η(a) ∝ a−n and η = η(H). The first choice of η leads to
an eternally accelerating universe, with q = constant < 0,
while the second choice leads to a plethora of cosmological
models whose properties depend on the choice of the function
η(h). We have considered and analyzed in detail a particular
class of models obtained by choosing η(H) = a1Hn + b1.
The cosmological parameters of this model have been com-
pared with both the observational data and the predictions
of the �CDM model. Even without the use of a proper fit-
ting procedure for the analysis of the observational data, the
Barthel–Kropina-FLRW model can give at least an accept-
able qualitative description of the observations of the Hubble
function and reproduce the standard �CDM model predic-
tions for H . However, significant differences between the
Barthel–Kropina-FLRW and the �CDM model do appear in
the evolution of the deceleration and matter density param-
eters. In order to test the validity of the present model, a
detailed statistical analysis of its predictions with several
classes of observational data is necessary.

An effective dark energy model can also be constructed
within the framework of the Barthel–Kropina-FLRW geo-
metric theory. Since in the limit η → 1/a one fully recov-
ers the standard Friedmann equations, one can consider
small deviations from the standard Friedmann cosmology by
adding a correction term f to 1/a in the expression of η. This
procedure allows the reformulation of the generalized Fried-
mann equations as the standard ones plus some new terms,
which are essentially geometric. They can be interpreted as a
geometric dark energy, and they contribute effective energy
density ρDE and pressure pDE terms to the standard baryonic
thermodynamic quantities. By imposing a linear equation of
state for the dark energy terms, pDE = wρDE , the system
of the cosmological equations can be closed and reformu-
lated as a first-order dynamical system in the redshift space.
The solutions of the system can be obtained numerically for

different numerical values of the parameter w of the dark
energy equation of state and for different initial conditions
of the function f and its derivative f ′. We have performed a
detailed comparison of the solutions of the system with the
observational data, and the predictions of the �CDM model.
The Barthel–Kropina-FLRW model gives a good description
of the observational data, and of the �CDM model up to at
least a redshift of z = 5. From the numerical simulations it
follows that the numerical values of w have a relatively small
influence on the cosmological behavior, which is strongly
influenced by the present-day values of f and f ′.

Bouncing cosmological models represent an attractive
alternative view of the early universe, and many such types of
models have been proposed to explain the origin of the uni-
verse (see [126] for a review). Bouncing cosmologies have
the attractive feature of providing a solution of the singular-
ity problem that generally appears in the standard cosmo-
logical models. In the framework of the Finsler and Finsler-
like geometries, the problem of the bouncing cosmologies
was investigated in [127]. As a first general result, it was
shown that in general very special relativity and in Finsler-
like gravity on the tangent bundle, the bounce cannot be easily
obtained. But in the Finsler–Randers geometry, by adopting
for the scale factor the expression a(t) = ab

(
1 + Bt2

)1/3
,

the scalar anisotropy induced by the geometry can satisfy the
bounce conditions. Thus, bouncing solutions can be obtained
in this class of gravitational theory. In theories constructed
by using a nonlinear connection in which a scalar field does
appear with an induced scalar–tensor structure, bouncing
solutions can also be obtained. Interestingly enough, in the
case of the non-holonomic basis, if one imposes to the quan-
tity N0(t), where Nμ ≡ ∂φ(α)N (α)

μ , a specific expression in
terms of the scalar field and the Hubble function, then this
N0 can generate the bouncing scale factor.

Bouncing solutions can also be obtained, at least in prin-
ciple, in the Barthel–Kropina cosmological model. By fix-
ing in advance the form of the scale factor so that it has
the required bouncing properties, the generalized Friedmann
equations (52) and (53) can be reduced to a (strongly non-
linear) system of differential equations for η, in which the
matter energy density and pressure terms are also present.
The investigation of this system can be done only by using
numerical (or perturbative) methods. However, in order to
obtain bouncing solutions, a nonzero matter energy density
must be present in the very early universe.

There are at least three possibilities for a possible theoret-
ical understanding of the vast amount of cosmological data
that have radically changed our view of the universe. The first
approach is called the dark components model, and it gen-
eralizes the Einstein gravitational field equations by adding
two new terms in the total cosmological energy momentum
tensor which correspond to dark energy and dark matter,
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respectively. In this pathway, the gravitational dynamics are
described by the generalized Einstein equation [128]

Gμν = κ2T bar
μν + κ2TDM

μν (φ,ψμ, . . .) + κ2TDE
μν (φ, ψμ, . . .),

(116)

where T bar
μν , TDM

μν (φ,ψμ, . . .), and TDE
μν (φ,ψμ, . . .) repre-

sent the energy–momentum tensors of baryonic matter, dark
matter, and dark energy, respectively. Hence, in this exten-
sion of general relativity, dark energy is a form of matter,
an interpretation suggested by the equivalence principle of
the theory of relativity that states the equivalence of mass
and energy. The energy–momentum tensors of dark energy
and dark matter can be realized by using scalar or vector
fields. The simplest dark constituent model can be obtained
by assuming that dark energy is a scalar field φ with a self-
interaction potential V (φ). For reviews and extensive discus-
sions of the dark component models see [30–35]).

A second approach to the geometric description of the
gravitational interaction is the dark gravity approach. The
dark gravity formalism assumes a purely geometric descrip-
tion of the gravitational phenomena, and it is based on a
modification of the geometric structure of the Einstein field
equations, still formulated in a Riemannian geometry. In the
dark gravity approach, one can formulate the Einstein grav-
itational field equations generally as

Gμν = κ2T (mat)
μν + κ2T (geom)

μν

(
gμν, R,�R, . . .

)
, (117)

where T (geom)
μν

(
gμν, R,�R, . . .

)
is a term generating a geo-

metrically effective energy–momentum tensor, constructed
from the Riemannian metric. The geometric term T (geom)

μν(
gμν, R,�R, . . .

)
can describe dark matter, dark energy, or

even both. An interesting example of dark gravity is the f (R)

theory [113], in which the standard Hilbert–Einstein action
S = ∫ (

R/κ2 + Lm
)√−gd4x is generalized to an action

given by S = ∫ [
f (R)/κ2 + Lm

]√−gd4x , where f (R) is
an arbitrary analytical function of the Ricci scalar R. For
reviews of dark gravity theories and their applications, see
[117,129–132].

There is a third avenue for the understanding of the
present-day cosmological data, called the dark coupling
theory. In this approach, the standard Hilbert–Einstein
Lagrangian density, having a simple additive structure in
the geometric and matter Lagrangian, is replaced by a
Lagrangian with a more general algebraic system. In the dark
coupling theory, one looks for the maximal extension of the
standard Hilbert–Einstein gravitational Lagrangian, and this
extension can be obtained by assuming that the gravitational
Lagrangian density is an arbitrary analytical function of the
curvature scalar R describing the geometric properties of the
spacetime and the matter Lagrangian Lm . Other thermody-
namic or geometric parameters can also be naturally included
in specific models. The dark coupling approach leads natu-

rally to the existence of a non-minimal coupling between
curvature and matter.

In the dark coupling approach, the Einstein gravitational
field equations can be formulated as

Gμν = κ2T (mat)
μν + κ2T (coup)

μν

(
gμν, R, Lm , T,�R, �T, . . .

)
,

(118)

with the effective energy–momentum tensor of the the-
ory T (coup)

μν

(
gμν, R, Lm, T,�R,�T, . . .

)
obtained by con-

sidering the maximal extension of the Hilbert–Einstein
Lagrangian. Moreover, a non-additive curvature–matter
algebraic structure is introduced, describing the couplings
between matter and spacetime geometry. The dark coupling
theories were considered in [133], where a gravitational
action of the form S= ∫ [ f1(R)+(1+λ f2(R))Lm]√−gd4x
was proposed. This action was generalized in [134] and
[134], leading finally to the f (R, Lm) gravity theory [135],
in which the gravitational Lagrangian density is given by
an arbitrary function of the Ricci scalar and of the matter
Lagrangian, S = ∫

f (R, Lm)
√−gd4x . One can also cou-

ple curvature and matter via the trace of the matter energy–
momentum tensor, as in the f (R, T ) theory, with action given
by S = ∫

[ f (R, T ) + Lm]
√−gd4x [136]. For a detailed

presentation of the theories with curvature–matter coupling
see [114].

However, a fourth possibility for the description of the
gravitational dynamics and evolution, including the acceler-
ating expansion, is also possibly in the framework of the dark
geometry approach, in which one assumes that the true geom-
etry of the nature is beyond the Riemann one and that the extra
terms generated by the non-Riemannian mathematical struc-
tures may be responsible for the existence of dark matter and
dark energy. One possible dark geometry candidate is Weyl
geometry, with conformally invariant gravitational models
explaining the present and early dynamics of the universe
[137]. In the present work, we have presented another exam-
ple of a dark geometry, the Finsler type Barthel–Kropina-
FLRW geometry, in which an effective dark energy can be
generated from the mathematical structures underlying the
geometry. The gravitational field equations are postulated as
having a similar form as the Einstein equations in Riemann
geometry, but with the curvature tensors replaced by their
Finslerian counterparts. There is a close relation between the
Riemannian cosmological evolution equations and the Fins-
lerian ones, and this relation allows the natural introduction
of a geometric dark energy term in the gravitational formal-
ism.

Hence, the Barthel–Kropina-FLRW model not only may
represent an attractive alternative to the standard �CDM
model, but could also open new avenues for the understand-
ing of the complex relation between mathematics and phys-
ical reality.
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Appendix A: Computation of the Barthel–Kropina met-
ric

1 Method 1

We recall the formula for the fundamental tensor of this
Kropina metric in [138]

ĝI J (x, y) = 2α2

β2 εgI J (x) + 3α4

β4 bI bJ

−4α2

β3 (g̃0I bJ + g̃0J bI ) + 4

β2 g̃0I g̃0J , (A1)

where g̃0I := εgI J y J (see [138]). Note that the index zero
in the g̃ terms means contraction by yI .

Using the above formula, we will compute the components
of the metric tensor under the conditions specified below.

Step 1. Assume

(i) ε = 1;

(ii) (gI J (x)) =

⎛

⎜⎜
⎝

1 0 0 0
0 −a2(x0) 0 0
0 0 −a2(x0) 0
0 0 0 −a2(x0)

⎞

⎟⎟
⎠ ;

(iii) (AI (x)) =

⎛

⎜⎜
⎝

A0

0
0
0

⎞

⎟⎟
⎠ =

⎛

⎜⎜
⎝

a(x0)η(x0)

0
0
0

⎞

⎟⎟
⎠ .

Under these assumptions, formula (A1) gives

(
ĝI J (x, y)

) =
(
ĝ00(x, y) ĝ0i (x, y)
ĝ0i (x, y) ĝi j (x, y)

)
, (A2)

with the components

ĝ00(x, y) = 2α2

β2 + 3α4

β4 a2η2 − 8α2

β3 aηy0 + 4

β2 (y0)2,

ĝ0i (x, y) = 4a2yi

β3

(
α2b0 − βy0

)
,

ĝi j (x, y) = −2a2

β2

[
δi jα

2 − 2a2yi y j
]
.

Observe that on the right-hand side, the indices do not
strictly obey the covariant writing form. However, this is not
a problem now, since they are more indicative of the position
than the summation.

Step 2. We evaluate this matrix for arbitrary x and the
specific direction

y = (y I ) = A =

⎛

⎜⎜
⎝

A0

0
0
0

⎞

⎟⎟
⎠ =

⎛

⎜⎜
⎝

a(x0)η(x0)

0
0
0

⎞

⎟⎟
⎠ . (A3)

Then the Kropina fundamental tensor reads

(
ĝI J (x, y)|y=A

)

=

⎛

⎜⎜
⎜⎜⎜⎜⎜⎜
⎜
⎝

1

a2(x0)η2(x0)
0 0 0

0
−2

η2(x0)
0 0

0 0
−2

η2(x0)
0

0 0 0
−2

η2(x0)

⎞

⎟⎟
⎟⎟⎟⎟⎟⎟
⎟
⎠

.

(A4)

2 Method 2

Let α = √εgI J (x)y I y J and β = AI (x)y I , and

F = αφ(s), s = β

α
, (A5)

The Hessian ĝ

ĝI J = ερgI J + ρ0bI bJ + ρ1 (bIαJ + bJαI ) − sρ1αIαJ ,

(A6)

where αI := αy I and

ρ = φ2 − sφφ′, ρ0 = φφ′′ + φ′φ′,
ρ1 = −s(φφ′′ + φ′φ′) + φφ′.
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We obtain first

αI = αy I = ∂α

∂y I
= ∂

∂y I

√
εgMN yM yN

= 1

2α
εgMN y

MδNI + 1

2α
εgMN y

N δMI

= 1

2α
εgMI y

M + 1

2α
εgI N y

N

= 1

2α
εyI + 1

2α
εyI = ε

yI
α

.

We now consider yi = Ai , then

α =
√

εgI J (x)AI AJ =
√

εAI AJ =
√

εA2

β = AI A
I = A2 = εα2,

s = β

α
= εα2

α
= εα, αI = ε

AI

α
.

Therefore,

ĝI J (x, A) = ερgI J + ρ0AI AJ + ρ1

(
AI ε

AJ

α
+ AJ ε

AI

α

)

− εαρ1ε
AI

α
ε
AJ

α

= ερgI J + ρ0AI AJ + 2ερ1
AI AJ

α
− ερ1

AI AJ

α

= ερgI J + (αρ0 + ερ1)
AI AJ

α
.

For the Kropina metric, we let φ(s) = 1

s
. It follows that

φ′(s) = −1

s2 , φ′′(s) = 2

s3 .

Therefore,

ρ = 2

s2 , ρ0 = 3

s4 , ρ1 = − 4

s3 .

Substituting s = εα, we obtain

ρ = 2

α2 , ρ0 = 3

α4 , ρ1 = −4

εα3 = −4ε

α3 .

Next, we substitute to ĝ(x, A), thus obtaining

ĝ(x, A) = ερgI J + (αρ0 + ερ1)
AI AJ

α

= 2ε

α2 gI J +
(

3

α3 − 4

α3

)
AI AJ

α

= 2ε

α2 gI J − 1

α3

AI AJ

α

= 1

α2

(
2εgI J − AI AJ

α2

)
. (A7)

a Computation of ĝ(x, A)

Let us now consider the formula (A7) of ĝ(x, A) together
with the assumptions

(i) ε = 1;
(ii) (AI ) = (a (x0

)
η
(
x0
)
, 0, 0, 0

) = (AI
)
;

(iii) (gI J ) =

⎛

⎜
⎜
⎝

1 0 0 0
0 −a2(x0) 0 0
0 0 −a2(x0) 0
0 0 0 −a2(x0)

⎞

⎟
⎟
⎠ ;

(iv) α|y=A(x) = a(x0)η(x0);
(v) β|y=A(x) = [a(x0)η(x0)]2.

Then we immediately obtain

ĝ00 = 1

α2

(

2g00 − A2
0

α2

)

= 1

a2η2

(
2 − (aη)2

(aη)2

)

= 1

a2η2 ,

ĝi j = 1

α2

(
2gi j − Ai A j

α2

)
= 1

α2

(

2gii − A2
i

α2

)

δi j

= 1

a2η2

(
2(−a2)

)
δi j = − 2

η2 δi j .

Hence, the nonvanishing components of ĝI J are

ĝI J =

⎧
⎪⎨

⎪⎩

ĝ00 = 1

a2(x0)η2(x0)
,

ĝi j = −2

η2(x0)
δi j .

Appendix B: Computation of the Christoffel symbols

Recall the formula of Christoffel symbols

γ̂ A
BC = 1

2
gAD

(
∂gBD

∂xC
+ ∂gCD

∂x B
− ∂gBC

∂xD

)
, (B1)

where

ĝ I J =

⎛

⎜⎜⎜⎜
⎜⎜⎜
⎝

a2η2 0 0 0

0
−η2

2
0 0

0 0
−η2

2
0

0 0 0
−η2

2

⎞

⎟⎟⎟⎟
⎟⎟⎟
⎠

.

We begin by computing the derivatives of ĝI J , that is

∂ ĝ00

∂x0 = ∂

∂x0

(
1

a2(x0)η2(x0)

)

= −1

a4η4 (a2(2ηη′) + η2(2aa′))

= −2(aη′ + a′η)

a3η3 ,

∂ ĝi j
∂x0 = ∂

∂x0

−2

η2(x0)
δi j = 4η′

η3 δi j .
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Next, we compute the Christoffel symbols

γ̂ 0
00 = 1

2
g00
(

∂g00

∂x0 + ∂g00

∂x0 − ∂g00

∂x0

)

= 1

2
g00
(

∂g00

∂x0

)
= 1

2
a2η2

[
−2(aη′ + a′η)

a3η3

]

= − (aη′ + a′η)

aη
= − (ηH + η′)

η
,

γ̂ 0
i j = 1

2
g0D

(
∂giD
∂x j

+ ∂g jD

∂xi
− ∂gi j

∂xD

)

= 1

2
g00
(

∂gi0
∂x j

+ ∂g j0

∂xi
− ∂gi j

∂x0

)

= 1

2
g00
(

−∂gi j
∂x0

)
= 1

2
a2η2

(
−4η′

η3

)
δi j = −2a2η′

η
δi j ,

γ̂ i
0 j = 1

2
giD

(
∂g0D

∂x j
+ ∂g jD

∂x0 − ∂g0 j

∂xD

)

= 1

2
gis
(

∂g js

∂x0

)
= 1

2
gi j
(

∂g ji

∂x0

)

= 1

2

(−η2

2

)(
4η′

η3

)
δij = −η′

η
δij ,

where H = a′
a .

Appendix C: Computation of the Ricci tensor

We start by computing the derivatives of the nonvanishing
Christoffel symbols,

∂

∂x0 γ̂ 0
00 = ∂

∂x0

(−(aη′ + a′η)

aη

)

= −
aη(aη′′ + a′η′ + a′η′ + a′′η) − (aη′ + a′η)

(aη′ + a′η)

a2η2

= −
a2ηη′′ + 2aa′ηη′ + aa′′η2 − a2(η′)2

−2aa′ηη′ − (a′)2η2

a2η2

= a2(η′)2 + (a′)2η2 − a2ηη′′ − aa′′η2

a2η2 ,

∂

∂x0 γ̂ 0
i j = ∂

∂x0

(−2a2η′

η
δij

)

= −2
η(a2η′′ + 2aa′η′) − a2(η′)2

η2 δij

= 2a2(η′)2 − 2a2ηη′′ − 4aa′ηη′

η2 δij ,

∂

∂x0 γ̂ i
0 j =

(−η′

η
δij

)
= −ηη′′ − (η′)2

η2 δij

= (η′)2 − ηη′′

η2 δij .

Next, we compute the Ricci tensor. Recall the formula for
the Ricci tensor, that is,

R̂BD =
∑

A

[
∂γ̂ A

BD

∂x A
− ∂γ̂ A

BA

∂xD
+
∑

E

(
γ̂ E
BD γ̂ A

E A − γ̂ E
BAγ̂ A

ED

)]

.

(C1)

Thus we obtain

R̂00 =
∑

A

[
∂γ̂ A

00

∂x A
− ∂γ̂ A

0A

∂x0 +
∑

E

(
γ̂ E

00γ̂
A
E A − γ̂ E

0Aγ̂ A
E0

)
]

=
∑

A

[∂γ̂ A
00

∂x A
− ∂γ̂ A

0A

∂x0 + γ̂ 0
00γ̂

A
0A − γ̂ 0

0Aγ̂ A
00

+ 3(γ̂ s
00γ̂

A
sA − γ̂ s

0Aγ̂ A
s0)
]

=
∑

A

[
∂γ̂ A

00

∂x A
− ∂γ̂ A

0A

∂x0 + γ̂ 0
00γ̂

A
0A − γ̂ 0

0Aγ̂ A
00 − 3γ̂ s

0Aγ̂ A
s0

]

= ∂γ̂ 0
00

∂x0 − ∂γ̂ 0
00

∂x0 + γ̂ 0
00γ̂

0
00 − γ̂ 0

00γ̂
0
00 − 3γ̂ s

00γ̂
0
s0

+ 3

[
∂γ̂ k

00

∂xk
− ∂γ̂ k

0k

∂x0 + γ̂ 0
00γ̂

k
0k − γ̂ 0

0k γ̂
k
00

]

− 3γ̂ s
0k γ̂

k
s0

= 3

[

−∂γ̂ k
0k

∂x0 + γ̂ 0
00γ̂

k
0k

]

− 3γ̂ s
0k γ̂

k
s0

= 3

[
− (η′)2 − ηη′′

η2 +
(

(aη′ + a′η)

aη

)(
η′

η

)
−
(−η′

η

)2 ]

= 3

η2

[
−(η′)2 + ηη′′ + (η′)2 + a′ηη′

a
− (η′)2

]

= 3

aη2

[
aηη′′ + a′ηη′ − a(η′)2]

= 3

η2

[
ηη′′ + ηη′H − (η′)2] ,

and

R̂i j =
∑

A

[
∂γ̂ A

i j

∂x A
− ∂γ̂ A

i A

∂x j
+
∑

E

(
γ̂ E
i j γ̂

A
E A − γ̂ E

i Aγ̂ A
E j

)]

=
∑

A

[
∂γ̂ A

i j

∂x A
+ γ̂ 0

i j γ̂
A

0A − γ̂ 0
i Aγ̂ A

0 j + 3
(
γ̂ s
i j γ̂

A
sA − γ̂ s

i Aγ̂ A
s j

)
]

=
∑

A

[
∂γ̂ A

i j

∂x A
+ γ̂ 0

i j γ̂
A

0A − γ̂ 0
i Aγ̂ A

0 j − γ̂ s
i Aγ̂ A

s j

]

= ∂γ̂ 0
i j

∂x0 + γ̂ 0
i j γ̂

0
00 − γ̂ 0

i0γ̂
0
0 j − γ̂ s

i0γ̂
0
s j

+ 3

[
∂γ̂ k

i j

∂xk
+ γ̂ 0

i j γ̂
k
0k − γ̂ 0

ik γ̂
k
0 j − γ̂ s

ik γ̂
k
s j

]

= ∂γ̂ 0
i j

∂x0 + γ̂ 0
i j γ̂

0
00 + γ̂ s

i0γ̂
0
s j

= 2a2(η′)2 − 2a2ηη′′ − 4aa′ηη′

η2
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+
(−2a2η′

η

)(−(aη′ + a′η)

aη

)
+
(−η′

η

)(−2a2η′

η

)

= 2a

η2

(
3a(η′)2 − aηη′′ − a′ηη′) δi j

= 2a2

η2

(
3(η′)2 − ηη′′ − ηη′H) δi j .

Appendix D: Ricci scalar

In this appendix, we will compute the Ricci scalar,

R̂ = ĝ I J R̂I J . (D1)

We obtain

R̂ = ĝ00 R̂00 + 3ĝi i R̂i i

= a2η2
(

3

aη2

[
aηη′′ + a′ηη′ − a(η′)2

])

+ 3

(−η2

2

)[−2a

η2

(
−3a(η′)2 + aηη′′ + a′ηη′)

]

= 3a2ηη′′ + 3aa′ηη′ − 3a2(η′)2

− 9a2(η′)2 + 3a2ηη′′ + 3aa′ηη′

= 6a2ηη′′ + 6aa′ηη′ − 12a2(η′)2

= 6a(aηη′′ + a′ηη′ − 2a(η′)2)

= 6a2
[
ηη′′ + Hηη′ − 2(η′)2

]
.

Appendix E: The generalized Friedmann equations

Recall the formula of the Einstein tensor,

Ĝ I J = R̂I J − 1

2
R̂ĝI J . (E1)

It follows that

Ĝ00 = R̂00 − 1

2
R̂ĝ00 = 3

aη2

[
aηη′′ + a′ηη′ − a(η′)2]

− 1

2

(
6a(aηη′′ + a′ηη′ − 2a(η′)2)

) 1

a2η2

= 3

aη2

[
aηη′′ + a′ηη′ − a(η′)2 − aηη′′ − a′ηη′ + 2a(η′)2]

= 3(η′)2

η2 ,

and

Ĝii = R̂ii − 1

2
R̂ĝii = 2a

η2

(
3a(η′)2 − aηη′′ − a′ηη′)

−1

2

(
6a(aηη′′ + a′ηη′ − 2a(η′)2)

) (−2

η2

)

= 2a

η2

[
3a(η′)2 − aηη′′ − a′ηη′ + 3aηη′′ + 3a′ηη′ − 6a(η′)2]

= 2a

η2

[
− 3a(η′)2 + 2aηη′′ + 2a′ηη′

]

= 2a2

η2

[−3(η′)2 + 2ηη′′ + 2Hηη′] .

The rest of the components of the Einstein tensor vanish.
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