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Abstract

In this note a search for supersymmetry (SUSY) is presented in events with two oppo-
site sign isolated leptons in the final state, accompanied by hadronic jets and missing
transverse energy. Advanced multivariate techniques, and in particular Artifical Neu-
ral Networks, are deployed in order to discriminate between possible SUSY signals
from the Standard Model backgrounds. The analysis uses a data sample collected
with the CMS detector during the 2011 LHC run and corresponding to an integrated
luminosity of 2.2 fb~!
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1 Introduction

With the very successful 2011 LHC run over 2.2 fb~! in pp collisions have been collected with
the CMS experiment. This dataset is used to search for the presence of Supersymmetry (SUSY)
in events with two opposite-sign leptons (electrons and /or muons) in the final state utilizing an
Artificial Neural Network. The 2.2 fb~! data sample, out of the 5 fb~1 collected in total, exhibits
lower event pile-up and hence has potentially lower, and different, systematic uncertainties
than then remaining 2.8 fb~! data set. There are many possible ways to produce two leptons in
Supersymmetric events. For example, squarks or gluinos can be pair produced in pp collisions,
leading either to dileptons in the cascade decay chain of one of the supersymmetric particle
(sparticle) or one or more leptons in the cascade decay chains of both sparticles. We assume
that an additional R-parity symmetry is conserved, leading to a stable lightest sparticle (LSP)
and hence to a significant missing energy signature. Depending on the mass splitting between
the gluinos or squarks and the LSP, the missing energy signature can be large or small. Up
to now, the criteria used in CMS to discriminate SUSY signals from the very large Standard
Model (SM) backgrounds has tended to require several high transverse momentum jets and
large missing energy. Compared with previous CMS searches [1, 2], relaxed criteria on missing
transverse energy (MET) is achieved which enables this analysis to probe additional regions of
phase-space not previously investigated.

This summary is organized as follows : In section 2 the event samples, triggers, and event
selection criteria are presented. In section 3 the main idea and properties of Artificial Neu-
ral Networks (ANN) is discussed. In addition, the ANN construction, optimization and ex-
pected performance on simulated events is presented. In Section 4, the method used to obtain
the ANN prediction for SM processes is shown and in Section 5 the systematic uncertainties
along with their estimation is discussed. In Section 6, detailed comparisons of the ANN in-
put variables and the ANN output between data and simulated events are presented in both
signal-enriched and background-enriched regions. Finally the results in the context of the Min-
imal Supersymmetric extension of the Standard Model (MSSM), and the Constrained MSSM
(CMSSM) [6] are shown.

2 Event Samples, Trigger and Event Selection

The CMS experiment collects data using a two-level trigger system, the first-level hardware
trigger (L1) [7] and a high-level software trigger (HLT) [8]. Data events are selected using a
set of dilepton triggers which require the presence of at least two leptons, either two electrons
or two muons or an electron-muon pair.

Muon candidates are reconstructed [9] by combining the information from the inner tracking
system, the calorimeters, and the muon system. Electron candidates are reconstructed [10]
by combining the information from the Electromagnetic Calorimeter (ECAL) with the silicon
tracker, using shower shape and track-ECAL cluster matching variables in order to increase
the sample purity. Jets are reconstructed using the anti-kt clustering algorithm [11] with a size
parameter R = 0.5. Calorimeter (CALO) jets are reconstructed by clustering four-momentum
vectors, formed from the energy deposits in calorimeter towers. A calorimeter tower consists
of one or more Hadronic Calorimeter (HCAL) cells and the geometrically corresponding ECAL
crystals. Jets are corrected using factors derived from simulation; to correct for any differences
in the energy response between simulation and data, a residual correction factor derived from
data is applied to jets in data [12].

In general, missing transverse energy (MET), is the negative vector sum of the transverse mo-
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menta of all final-state particles reconstructed in the CMS detector. The calorimetric missing
transverse energy is calculated using the energies contained in calorimeter towers along with
their directions. The MET is corrected for the presence of muons. The total transverse energy of
the event is calculated as the scalar sum of the transverse energies over all calorimeter towers
and muons. The total hadronic transverse energy, (HT), is computed as the scalar sum of the
transverse energies of all reconstructed jets in the event satisfying the jet selection criteria.

Simulated pp collision events are produced with the PYTHIA 6.4.22 [13] (using underlying
event tune Z2) and MADGRAPH 4.4.24 [14] generators , and processed with a simulation
of the CMS detector response based on GEANT4 [15]. Simulated events are reconstructed
and analyzed in the same way as data events. Simulated event samples are also used to train
the ANN and for extrapolating data-driven background estimates from a background-enriched
control region to the expected signal-enriched region. Finally, the simulation is used to perform
extensive quality control checks of the data samples collected the “signal” and “background”
enriched regions, and for estimating systematic uncertainties.

Non-collision backgrounds are removed by applying quality cuts ensuring the presence of a
well-reconstructed primary vertex [16]. Events are required to have at least two leptons with
pr > 20 GeV and |y| < 2.4, and at least two jets with pr > 30 GeV and || < 2.4. All data
results, and data vs MC comparisons, have a lepton pr cut at 20 GeV in order to be above
the trigger efficiency plateau (> 99% efficiency). Jets are required to satisfy the quality criteria
described in [17]. Leptons are required to be isolated from significant energy deposits and
tracks in a cone of radius AR = 0.3 around the direction of the lepton. The relative combined
isolation, defined as I¢)"" = (Lyueks Pr + Yecar ET + Lucar Et)/ Pr, is required to be < 0.15
for muons and < 0.08 for electrons.

3 Methodology for event selection

3.1 Artificial Neural Networks

When one wishes to discriminate “signal” in a sample that consists of both “signal” and “back-
ground”, one common technique is the application of several sequential selection cuts in vari-
ables that characterize those events. In the simple case of discriminating and uncorrelated
variables describing the two populations, placing a set of “cuts” on these variables to charac-
terize an event as “signal” or “background” is straightforward. However, when the events of
interest are characterized by a set of correlated variables, which is a very common case, then
the selection optimization using linear cuts can be both non-trivial and inefficient. A powerful,
well-known technique alleviating this problem, is that of Artificial Neural Networks (ANN),
which can be used to discriminate between the signal and background populations [18, 21].
The main interest for this work is the case of feed-forward back-propagation networks, which
are able to induce sophisticated cuts that physicists cannot easily deduce by hand. This work
uses a software package known as TMVA [22] to implement the ANN.

3.2 ANN training

Due to the natural presence of isolated leptons, the main SM background contributions to this
analysis involve the production of tf, and Z+jets. QCD multijet processes with two fake leptons
and W-jets events with one fake lepton can also be part of the background, but are significantly
reduced by the preselection criteria described below. Finally, two leptons in the final state are
produced by WW, WZ, ZZ events but their contributions are found to be negligible compared
to the above main ones.
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The loose preselection criteria are listed in Table 1 and are imposed before the ANN training,
so as to reject the vast majority of the background, whilst retaining most of the signal.

Missing transverse energy, MET > 30 GeV
Number of jets, Njots > 1

Tepton
Fraction of lepton to total transverse energy, v~ <03

AR = \/A¢? + Ay? between lepton and closest jet ,ARystjepton—jer > 02 and ARopstjepton—jet > 0-2
Invariant mass of two leptons, M;; > 10 GeV

Table 1: Preselection criteria, applied prior to ANN training

The preselection cuts on the missing transverse energy, the fraction of the transverse energy
carried by the leptons, and the number of jets, significantly reduce the Z+jets, tf and W-+jets
backgrounds. The cuts on the di-lepton invariant mass and the AR between the leptons and
the closest jet reduce significantly the QCD background. In Table 2, we present the reduction
that the preselection variables impose on the SM backgrounds and for three characteristics
CMSSM benchmark points: LMO ((mg = 200GeV /c?,my,, = 160GeV /c?,tan B = 10, A0 =
—400GeV /c?)), LM1 ((mg = 60GeV /c?,my 5 = 250GeV /c?,tan B = 10, A0 = 0GeV /c?)) and
LM6 ((mg = 85GeV /c2,my 5 = 400GeV /%, tan B = 10, A0 = 0GeV /c?)).

Sample After Event Selection | After Preselection | Efficiency
tt 7455 1541 0.21
Z+]ets 32336 1737 0.05
W]Jets 1584 50 0.03
WW 532 6.5 0.01
WZ 773 8.8 0.01
4 541 59 0.01

QCD 41490 0.003 5x10~8

Total SM Bkg. 84711 3349 0.04
LMO 2703 1263 047
LM1 356 190 0.55
LM6 33 18 0.56

Table 2: Expected number of events for 2.2 b1 for signal and background after the preselection
criteria are applied. For the CMSSM benchmark points the NLO cross sections have been used.

The ANN training samples are based on simulated events; the network architecture and an
“early stopping” strategy are used to avoid overtraining as described in Appendix A. A mix-
ture of tf, Z+jets, W-jets, and QCD simulated samples, weighted according to the expected
number of events passing the preselection cuts, are used as the SM background samples to train
the ANN. The CMSSM benchmark point LMO (mg = 200GeV / 2, my /2 = 160GeV / 2, tan B =
10, A0 = —400GeV /c?) is used as the signal sample to train the ANN, since it has kinematical
properties typical of several low MET SUSY models. While this low mass point has already
been excluded by previous CMS searches [1, 2], the training only utilizes the generic kinematic
features of the sample. The ANN performance is tested on a variety of different new physics
models and reasonable sensitivity is obtained, as shown in Appendix A.

Several topological and kinematical variables were considered according to their potential to
discriminate SM backgrounds versus possible SUSY signals, including the correlations between
the variables. The kinematical variables studied are generic and based on the general properties
of Supersymmetric processes in many SUSY models. The decays of the produced sparticles
result in final states with two neutralino LSPs, which escape the detector thus creating large
missing transverse energy. Also the cascade decays of SUSY particles typically yield leptons
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of lower momenta that carry a relatively small fraction of the total event energy, compared to
leptons produced in SM processes. On the other hand, due to the possible long cascade decay
chains, the number of jets in SUSY events can be much higher compared to those from SM
events. The complete list of the variables considered, along with a brief explanation for each
one is shown in Appendix A.

Using different sets of input variables, taking into account their discriminating power, their cor-
relations, and possible systematic uncertainties, several ANNs were constructed and compared
and an optimum ANN chosen. The differences in performance were studied and quantified in
terms of the efficiency as a function of background rejection and as a figure of merit (FOM),
defined as %. A network having seven input variables, those which had the smallest degree

of correlation amongst themselves and which also possessed the highest discriminating power,

showed the best performance. Table 3 lists the seven input ANN variables along with their
description and their relative importance to the ANN after training.

Variable Description ANN Importance (%)
MET Missing transverse energy 17
Niets Number of jets 19
Tepton
EZT% Ratio of energy of the dilepton system to the total transverse energy 1
Jet pr Primary and secondary jet prs 13-23
My Dilepton mass 12
Invariant Mass Mt Invariant event mass 15

Table 3: Seven event, lepton and jet related variables used for the ANN construction.

The relative ANN importance is defined as the sum of the weights-squared of the connections
between the variable’s neuron in the input layer and the first hidden layer. The chosen seven
input variables are also shown in Figures 1-2 for simulated and data events, and after the pre-
selection cuts are applied. Data and simulation are consistent and agree with each other given
the statistical and systematic uncertainties. The final ANN output function after training is
given in Appendix C.

4 ANN Output for SM Background

The most important step of the analysis is to robustly estimate the ANN output distribution
for the SM background expectation, along with its systematic uncertainty. Once this is ac-
complished, one can quantify the level of agreement (or the significance of a possible excess)
between the ANN output from data and the SM prediction in the expected signal region. The
approach used to estimate the ANN prediction for the SM-only hypothesis from data is the
following:

e A control region (CR) is defined by inverting two of the preselection cuts, the to-
tal missing transverse energy and the fraction of transverse energy carried by the
dilepton system. This region is chosen so that it is dominated by SM processes, and
indeed the contamination from the CMSSM benchmark point LMO is estimated to
be < 2%, and < 0.02% for LM6. The ANN output distribution in the control region
is then determined using data, ANN(SM )24

ANN(SM)ME

ANN(SM)ME

fined for each bin in the ANN output distribution as the ANN output for the SM-

only hypothesis in the signal region (SR) divided by the ANN output for the SM-only

e An extrapolation ratio, Rgy = obtained from simulated events, is de-
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Figure 1: The first four out of the seven input ANN variables for simulated SM backgrounds
(red), CMSSM LM6 benchmark point (blue), and data (black points) normalized to the same
number of events. Statistical and systematic errors on the data and simulated events are shown.
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e The ANN output from data in the control region, where only SM physics is assumed
to be present, is multiplied by the extrapolation facth{ RExt., in order to predict the
ANN output SM in the signal region, ANN (SM ) Erediction,

ANN(SM)Eghetion — ANN(SM)ER* x

ANN(SM)¥¢
ANN(SM)M¥¢

The extrapolation factor, Rg,;., as extracted from simulated events is shown in Figure 3.

The control region is further subdivided in a tf enriched one with MET > 30 GeV and M;; >
105 GeV OR Mj; < 75 GeV, denoted as “Control Region A”, and a Z+jets enriched one with
MET< 30 GeV OR 75 GeV < M) < 105 GeV, denoted as “Control Region B”. These are not

used in the analysis, however they provide additional sanity tests.

5 Systematic Uncertainties

Systematic uncertainties of the ANN output prediction for the SM-only hypothesis, obtained

as described in section 4, are estimated with simulated data using the following procedure:

o A systematic effect is introduced into the simulated data for all events in the sample

before any preselection is applied.

e The nominal SM extrapolation factor Ry is used to obtain a new ANN output
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Figure 2: The remaining three out of the seven input ANN variables for simulated SM back-
grounds (red), CMSSM LM6 benchmark point (blue), and data (black points) normalized to the
same number of events. Statistical and systematic errors on the data and simulated events are

shown.

prediction for the signal region corresponding to the systematic effect under study.

e The ANN output prediction, corresponding to the systematic alteration, is compared
against the ANN output for the original sample, without any systematic effects in-
troduced. The relative difference in ANN outputs for each bin, is assigned as a
bin-by-bin systematic uncertainty.

e For each bin, the relative differences for all systematic effects studied are added in
quadrature. This results in a total systematic uncertainty for each bin in the ANN
output prediction.

The overall systematic uncertainties, corresponding to the seven input variables used for the
ANN construction as well as the cross sections of the SM backgrounds, are shown in Table 4.

The magnitude of the systematic alterations for the jet and MET (and Mr) scales are taken from
dedicated CMS measurements [24, 25]. The migration of events from the one-jet to the two-jet
bin (0.5%) is an estimate of the difference (0.5%) between data and simulated events. The ratio
of the lepton to the total transverse energy (4%) is a conservative estimate of the difference
(~ 3%) between data and simulated events in the control region. The dilepton mass scale
uncertainty (1%) is taken from the CMS measurements of the Z peak [29].

Finally, the relative fraction of tf and Z+jets backgrounds are observed to vary both as a func-
tion of the ANN cut, as well as across the signal and control regions. However, the shape dif-
ferences between the two regions are small. In order to account for any remaining differences ,
not already accounted for in the extrapolation factor Ry, the cross sections of all background
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Figure 3: Extrapolation factor Rgy;, as obtained from simulated events.

Systematic Magnitude | % of Total for ANN > 0.8
Missing Transverse Energy MET +10% 17
Number of Jets Njes +0.5% <1
Flepton

YE +4% 10

Primary and Secondary jet pr +5% 11
tf cross section +10% 4
Dilepton Mass Mj; +1% 3
Invariant Mass M +10% 9

QCD cross section +20% 2

Table 4: Systematic uncertainties considered in the predicted background, along with their
magnitude, and the impact they have on the final ANN output prediction when the signal
selection cut at 0.8 is applied.

components are left to vary within their uncertainties, taken from the recent CMS measure-
ments for the tf [27], and QCD [26] events. The Z+jet cross section uncertainty (< 3%) [28],
and the Wjet cross section uncertainty (< 3%) [28] produce a negligible effect and hence are
neglected.

6 Performance of the ANN

The ANN output after the training is shown in Figure 4 for the signal (blue) and SM back-
ground (red) populations; the efficiency and purity of the selected samples is also shown as a
function of the ANN output cut.

When statistical and systematic uncertainties are taken into account, the ANN output cut that
yields the maximum FOM is P > 0.8. The expected number of events after imposing the ANN
output cut are presented in Table 5.

As noted previously, the ANN has been trained with a new physics (NP) hypothesis that is
definitively not what nature has chosen. Hence, it is of great interest to examine the power that
this ANN has in discriminating signal hypotheses for which it has not been trained. Examples
of the ANN performance for different NP hypotheses are shown and discussed in Appendix
A. Those results demonstrate that the ANN is able to discriminate a variety of different SUSY
models from the SM-only hypothesis. Since this is a preliminary study, the choice of a single
signal training sample is sufficient to demonstrate the proof-of-principle of this method.

For illustration purposes, Figure 5 shows a comparison between data and simulated events
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Sample ANN > 0.8
tt 50
Z+]Jets 39
W+Jets 1.5
WW 0.27
WZ 0.08
77 0.10
QCD 0.001
Total SM Bkg. 91
LMO 367
LM1 115
LM6 12.2

Table 5: Expected number of events for 2.2 fb~! for signal and SM backgrounds for the ANN
probability cut at P > 0.8 which yields maximum Figure of Merit. The NLO cross sections are
used for LMO0, LM1 and LM6.

of the ANN output distributions in the control regions. Good agreement between data and
simulation is observed.

Good agreement between data and simulation for the ANN input variables is demonstrated
in Appendix B. Comparisons between data and simulation for the seven different ANN input
variables in the control region, help validate that the simulation is sufficiently good with which
to train the ANN, and adequate to be used for the estimation of systematic uncertainties. It is
important to note that, within the signal region, this analysis does not actually use the SM-only
ANN output from simulation to search for a possible signal in the data. Rather as previously
described, this work uses the ANN output distribution obtained from data in the control re-
gion, and extrapolates that distribution, using the bin-by-bin factors Ry from the simulation,
into the signal region to obtain an ANN output prediction for the SM-only hypothesis.

7 Resulis

In this section the results of the analysis on the 2.2 fb~! of data collected during the 2011 LHC
Run with the CMS detector are presented. First, the ANN output prediction for the SM-only
hypothesis, with statistical and systematic uncertainties taken into account, is presented along
with its comparison with observations. Then, in the absence of any significant excess of events
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in the various control regions. Top : The ANN output in the control region used in order to
perform the extrapolation with 20% systematic uncertainties included (left), and the ratio be-
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(red bands) uncertainties shown. Bottom : Two additional control regions not used in the anal-
ysis, but used for sanity checks : tf enriched (left), Z+jet enriched (right) with 20% systematic
uncertainties included. The 20% systematic uncertainty is the smallest bin-by-bin systematic
error used for illustration purposes.
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observed in data with respect to the SM expectation, exclusion limits are set for a simplified
model involving gluino pair production.

7.1 Standard Model ANN output Prediction

Figure 6 shows the comparison between the SM ANN prediction (obtained as described in
Sections 4 and 5), with statistical and systematic uncertainties computed, with the data in the
signal region. The agreement between expectation and observation is good and no significant
hint of new physics is present.
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Figure 6: ANN output for the data (black points) and the SM data-driven prediction (red lines)
in the signal region.

Table 6 presents the number of observed and predicted events above a certain ANN cut. The
error on the expectation includes both statistical and systematic uncertainties. The systematic
uncertainties for the cumulative distribution are computed as follows : for each systematic
effect pseudo-experiments are generated, and the cumulative number of events above a cer-
tain ANN cut is calculated and compared with the expectation under the hypothesis that no
systematic effect is present. Then, considering the systematics as uncorrelated, the individual
integral differences are added in quadrature in order to compute the total systematic error.

With the optimal ANN cut at 0.8, agreement between the observed number of events and the
expected number of events is seen to be compatible at the 68% confidence level.

7.2 Interpretation of the results

The observed and expected number of events are translated into limits on a Simplified Model
(SMS) [30],[31] (mg vs mysp) plane. The dilepton model used is constructed as follows : one
gluino undergoes a direct decay, while the other decays to an intermediate heavy neutralino
which decays to a pair of leptons. The leptons are chosen with equal probability as either e,m,
or tau. This topology is characterized by the opposite sign lepton edge.

The signal selection efficiency systematic uncertainty is taken into account. The systematics
associated with the signal selection efficiency, along with their magnitude, are summarized in



7.2 Interpretation of the results 11

ANN output cut | Data | Expectation
0.00 2413 | 2605.1+ 344.0
0.10 1123 | 1209.0+ 150.2
0.20 611 655.4+ 94.3
0.30 381 417 4% 69.7
0.40 270 287.1+ 51.4
0.50 196 209.5+ 38.7
0.60 144 1571+ 31.9
0.70 92 110.8+ 25.6
0.80 61 75.6+ 18.8
0.90 35 51.1+15.9
1.00 19 22.6+ 8.4

Table 6: Number of events for the SM Template expectation and data in the signal region, as a
function of the ANN output cut for the entire 2.2 fb~! dataset.

Table 7.
Systematic Magnitude
Lepton Triggers (pr > 20 GeV) 3%
Lepton Isolation 5%
Luminosity 4.5%
ANN selection 4-15%
Total 8-17%

Table 7: Signal selection efficiency systematic uncertainties

The uncertainty on the lepton triggers and the lepton isolation are the same as the ones esti-
mated in the same-sign di-lepton analysis [3]. The uncertainty of the ANN selection results
from the systematics considered in Section 5 and for CMSSM benchmark point LM6. The rela-
tive ANN selection uncertainty for the signal is lower than the corresponding uncertainty for
the background, due mainly to the different ANN shapes for these two populations (signal and
background). Results are obtained and presented for the ANN > 0.8 inclusive selection.

Selection Expected Observed | 95% C.L. Upper Limit
ANN > 0.8 | 75.6 + 18.8 61 17

Table 8: Number of predicted and observed events for 2.2 fb~! for the ANN analysis

The 95% C.L. expected exclusion limit for the ANN inclusive analysis in the Simplified Model
plane is shown in Fig. 7. For events close to the diagonal, which exhibit low MET and HT char-
acteristics, the ANN analysis yields higher acceptance than the cut-based analysis by factors of
~ ten and better upper cross section limits by factors of ~ two.

The 95% C.L. upper limits are computed using a frequentist CL; method with profile likelihood
test statistics, and truncated Gaussian distribution for the background expectation [34], [35].
The uncertainties in the NLO cross sections from the parton distribution functions, the choice
of the factorization and renormalization scale, and a5 are taken into account for each point, and
are evaluated according to the PDFALHC recommendation [36].

The signal contamination on the background prediction is negligible (< 2% for LMO, < 0.02%
for LM6), and a uniform acceptance systematic is assumed for each point.
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Figure 7: 95% C.L. exclusion limits on Simplified Models of the inclusive ANN analysis (ANN>
0.8).

8 Conclusions

A search for supersymmetry in events with two opposite sign leptons in the final state and
with the use of Artificial Neural Networks has been presented, using the 2011 dataset collected
with the CMS experiment, corresponding to an integrated luminosity of 2.2 fb~!. This search
is independent and complementary to the ones already published [1], [2]. Good agreement
is observed between expectation and observation. No significant excess between the SM. ANN
output prediction in the signal region and the data is observed.



13

9 Appendix A

ANN candidate input variables : In Table 9 we present a complete list of candidate ANN input
variables along with a brief explanation for each one.

Input Variable Definition
Et primary lepton Primary Lepton Transverse Energy
Et secondary lepton Secondary Lepton Transverse Energy
My Dilepton Invariant Mass
Tepfon
E):TLET Fraction of Event Transverse Energy carried by the Dilepton system
APrepton ¢ difference between the two leading leptons
AR st1epton—jet AR between leading lepton and closest jet
ARt jepton—jet AR between secondary lepton and closest jet
Mastiepton—jet Invariant Mass between leading lepton and closest jet
2 lepton—jet Invariant Mass between secondary lepton and closest jet
Typeiepton Dilepton pair type, 1 = up,2=epu, 3=ce
Niets Number of jets
Er primary jet Primary Jet Transverse Energy
Et secondary jet Secondary Jet Transverse Energy
Agjet ¢ difference between the two leading jets
ar ar variable Defined with all event objects (jets and leptons )
M Invariant Mass of event
Mt Transverse Invariant Mass of the event
Hr Hadronic Transverse Energy
MHr Missing Hadronic Transverse Energy
MET Missing Total Transverse Energy
MinA¢ Minimum A¢ between the recoil vector sum of

all objects (jets and leptons) and the closest object.

Table 9: List of candidate input ANN variables

ANN Training : The network architecture in terms of hidden layers and hidden neurons is
shown in Figure 8. In Figure 8 the evolution of the error on the training (red line) and test
(blue line) samples is also shown. Training of an ANN is the procedure of finding the global
minimum on the “cost” (error) . The error function, E , of an artificial neural network (ANN),
is the sum over the networks output neurons and the network training set of events, of the
difference between the desired and obtained output:

E=} E(p)=)_(d(p,j) —t(p,)) )
P JP

where p runs over the events of the training set, j is the index of an output neuron, d(p, j) is
the desired output of neuron j in event p and #(p, j) is the actual networks output. While train-
ing the error on the two statistically independent samples (training and test) is monitored in
order to avoid overtraining. Overtraining occurs when the ANN learns the training examples
perfectly (error on training sample decreasing) while loses the ability to generalize (error on
test sample increasing) . As shown in 8 overtraining occurs at around epoch 200 after which
the error on the cost function of the training sample decreases while the one on the test sample
starts increasing. The “early-stopping” approach is adopted which stops ANN training when
such a trend starts to develop.
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Figure 8: Left : ANN with seven input variables architecture. Right: Error evolution in the cost
function minimization procedure for the training (red) and test (blue) populations.

ANN Generalization Ability : The ANN has been trained on a simulated event sample for a
specific new physics (NP) model. Since nature might have chosen differently it is of great in-
terest to examine the discriminating power this ANN has on hypothesis it has not been trained
with. If the new physics has similar characteristics (high missing transverse energy, large num-
ber of energetic jets, large event invariant mass) as the ones we used to train the ANN, then the
ANN estimator should be able to discriminate it from the SM background. In general any new
physics (NP) should appear as an “excess” above the ANN output distribution obtained when
assuming SM physics only. Depending on the characteristics of the NP the excess will appear
closer to unity if NP is more CMSSM-like, or closer to zero if it is more SM-like. The fact that
if NP is present a deviation from expectation (in the presence only of SM physics) will appear
somewhere in the ANN output distribution can be considered as a great advantage with re-
spect to cut-based analysis, which will not see any hint of NP if its characteristics are SM-like,
and hence will not survive the cuts.

For this reason the performance of the ANN estimator is tested on different CMSSM points,
LM6 (4) LM1 and LM9 and on Gauge Mediated (GGM) SUSY [32],[33] event samples with dif-
ferent parameter settings. As seen in Figures 9, 10 the shapes of the ANN output distributions
for these different models are very similar to the one obtained with the sample used to train the
ANN with. Namely, NP is peaking away from zero and close to unity, and in general shows a
very different shape than the SM ANN output expectation in the absence of any new physics.
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Figure 9: ANN output for the SM background (red) and Top left: CMSSM LMO benchmark
point(blue). Top Right: CMSSM LM1 benchmark point (blue)
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Finally, the 95%C.L. expected and observed exclusion limit for the inclusive ANN analysis in
the CMSSM plane is shown in Fig. 11. The contamination of the signal in the control region is
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Figure 10: ANN output for the SM background (red) and Top left : CMSSM LM9 benchmark
point (blue) Top Right: GGM tanbeta=10 sample (blue) Bottom Left : GGM tanbeta=20 sample
(blue) Bottom Right : GMSM sample (blue)

negligible (< 2% for LMO, < 0.02% for LM6), and a uniform acceptance systematic is assumed
for each point.
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Figure 11: Expected (blue) and observed (red) 95% C.L. exclusion limit for the ANN inclusive

analysis (ANN> 0.8)
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Data vs Simulated event comparisons of ANN input variables in the control region : In
Figures 12-13 the comparisons of the ANN input variables between data and simulated events
are shown for the CR. Statistical and systematics uncertainties are included. The simulated
events are normalized to the total number of the data events. The agreement between data and
simulated events of all seven input variables is good, no pathologies or problematic behavior
is observed. The di-lepton pair flavours are also in agreement with expectations.
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Figure 12: Data (black points) vs MC (red lines) comparisons of all seven ANN input variables
and for the events in the CR. Top left : Primary jet pr (GeV), Top right : Secondary jet pr (GeV).
Bottom left : MET (GeV), Bottom right : Invariant Transverse Mass (GeV).
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Figure 13: Data (black points) vs MC (red lines) comparisons of all seven ANN input variables
and for the events in the CR. Top left : Number of Jets, Top right: Dilepton invariant mass
(GeV). Bottom left : Fraction of transverse energy carried by the dilepton system, Bottom right
: Dilepton pair type 1 = pp, 2= ey, 3 = ee.
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Data vs Simulated event comparisons of ANN input variables in the signal region : In Fig-
ures 14-15 the comparisons of the ANN input variables between the data and simulated events
in the signal region are shown. Statistical and systematics uncertainties are included. Simulated
events are normalized to the total number of the data events. No pathologies are observed.
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Figure 14: Data (black points) vs MC (red lines) comparisons of all seven ANN input variables
and for the events in the SR. Top left : Primary jet pr (GeV), Top right : Secondary jet pr (GeV).
Bottom left : MET (GeV), Bottom right : Invariant Transverse Mass (GeV).
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Figure 15: Data (black points) vs MC (red lines) comparisons of all seven ANN input variables
and for the events in the SR. Top left : Number of Jets, Top right: Dilepton invariant mass
(GeV). Bottom left : Fraction of transverse energy carried by the dilepton system, Bottom right
: Dilepton pair type 1 = pp, 2= ey, 3 = ee.
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ANN output function :

/%

#VAR —*—%—%—k—k—k—k—k—x—x—x—x variables s—x—s—k—k—k—k—k—k—k—k—k—

NvVar 7

jet2_et

jetl_et
(sumet_lep/SumEt)
CaloMETPT

cNijets
mass_leplep

MT

*/

#include <vector>
#include <cmath>
#include <string>
#include <iostream>

#ifndef IClassifierReader__def
#define IClassifierReader__def

class IClassifierReader {
public:

// constructor
IClassifierReader () : fStatusIsClean( true ) {}
virtual "IClassifierReader () {}

// return classifier response
virtual double GetMvaValue( const std::vector<double>& inputValues ) const = 0;

// returns classifier status
Bool_t IsStatusClean() const { return fStatusIsClean; }

protected:

Bool_t fStatusIsClean;
i

#endif
class ReadMLP : public IClassifierReader {
public:

// constructor
ReadMLP ( std::vector<std::string>& thelnputVars )
IClassifierReader (),
fClassName ( "ReadMLP" ),
fNvars( 7 ),
fIsNormalised( false

// the training input variables
const char* inputVars[] = { "jet2_et", "jetl_et", " (sumet_lep/SumEt)", "CaloMETPT", "cNjets", "mass_leplep", "MT"

// sanity checks

if (theInputVars.size() <= 0) {
std::cout << "Problem in class \"" << fClassName << "\": empty input vector" << std::endl;
fstatusIsClean = false;

if (theInputVars.size() != fNvars) ({
std::cout << "Problem in class \"" << fClassName << "\": mismatch in number of input values: "
<< theInputVars.size() << " != " << fNvars << std::endl;

fStatusIsClean = false;
}

// validate input variables

for (size_t ivar = 0; ivar < thelInputVars.size(); ivar++) {
if (theInputVars([ivar] != inputVars[ivar]) {
std::cout << "Problem in class \"" << fClassName << "\": mismatch in input variable names" << std::endl
<< " for variable [" << ivar << "]: " << thelInputVars[ivar].c_str() << " != " << inputVars[ivar]

fStatusIsClean = false;

}

// initialize min and max vectors (for normalisation)

fvmin([0] = -1;
fvmax[0] = 0.999999940395355;
fVmin([1l] = -1;
fvmax[1] = 1;
fvmin([2] = -1;
fvmax[2] = 1;
fvmin([3] = -1;
fVvmax[3] = 1;
fvmin([4] = -1;
fvmax[4] = 1;
fvmin[5] = -1;
]

fVmax[5] = 1.00000011920929;

bi

<< std

::rendl;
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fVmin[6] = -1;
fvmax[6] = 1;

// initialize input variable types

fType[0] = 'D’;
fType[l] = 'D’;
fType[2] = 'D’;
fType[3] = 'D’;
fType[4] = 'D’;
fType[5] = ’'D’;
fType[6] = 'D’;

// initialize constants
Initialize();

// initialize transformation
InitTransform();

}

// destructor
virtual “ReadMLP () {

Clear(); // method-specific
}

// the classifier response

// "inputValues" is a vector of input values in the same order as the

// variables given to the constructor

double GetMvaValue( const std::vector<double>& inputValues )

private:

i

// method-specific destructor
void Clear();

// input variable transformation
double fMin_1[3][7];

double fMax_1[3][7];
void InitTransform_1 ()

void Transform_1( std::vector<double> & iv, int sigOrBgd )

void InitTransform();

void Transform( std::vector<double> & iv, int sigOrBgd )

// common member variables
const charx fClassName;

const size_t fNvars;

size_t GetNvar () const { return fNvars;

char GetType ( int ivar ) const { return fTypelivar];

// normalisation of input variables
const Bool_t fIsNormalised;

Bool_t IsNormalised() const { return fIsNormalised;

double fVmin[7];
double fVmax[7];

double NormVariable( double x, double xmin, double xmax )

// normalise to output range: [-1, 1]
return 2x(x - xmin)/(xmax - xmin) - 1.0;

}

// type of input variable: 'F’ or '1I’
char fTypel7];

// initialize internal variables
void Initialize();

double GetMvaValue__ ( const std::vector<double>& inputValues )

// private members (method specific)
double ActivationFnc (double x) const;

int fLayers;
int fLayerSizel[4];

double fWeightMatrix0tol[13]([8]; // weight matrix from layer 0 to 1
double fWeightMatrixlto2[8][13]; // weight matrix from layer 1 to 2
double fWeightMatrix2to3[1][8]; // weight matrix from layer 2 to 3

double x fWeights[4];

inline void ReadMLP::Initialize()

{

// build network structure

fLayers = 4;

fLayerSize[0] = 8; fWeights[0] = new double[8];
fLayerSize[l] = 13; fWeights[1l] = new double[13];
fLayerSize[2] = 8; fWeights[2] = new double[8];
flayerSize[3] = 1; fWeights[3] = new double[l];
// weight matrix from layer 0 to 1
fWeightMatrix0tol [0] [0] = 3.29177399882218;
fWeightMatrixO0tol[1][0] = -0.245365609699165;
fWeightMatrix0tol[2][0] = -1.90986652497691;
fWeightMatrix0Otol [3][0] = 2.17021048269155;
fWeightMatrixOtol[4] [0] = 2.44050380027347;

[511

2
3
4
fWeightMatrix0tol[5] [0] = -2.4984497685281;

const;

const;

const;

const {

const;
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fWeightMatrixOtol[6] [0] =
fWeightMatrix0tol[7][0] =
fWeightMatrixOtol[8] [0] =
fWeightMatrixOtol[9] [0] =
fWeightMatrix0tol[10][0]

fWeightMatrixOtol[11][0]

fWeightMatrixOtol [0] [1] =
fWeightMatrixOtol[1] [1] =
fWeightMatrixOtol[2] [1] =
fWeightMatrix0Otol[3][1] =
fWeightMatrixOtol[4] [1] =
fWeightMatrixOtol[5] [1] =
fWleightMatrixOtol[6] [1] =
fWeightMatrixOtol[7] [1] =
fWeightMatrix0Otol[8][1] =
fWeightMatrixOtol[9] [1] =
fWeightMatrixO0tol [10] [1]

fWeightMatrixOtol[11][1]

fWeightMatrix0tol[0] [2] =
fWeightMatrixOtol[1] [2] =
fWeightMatrixOtol[2] [2] =
fWeightMatrixOtol[3][2] =
fWeightMatrixOtol[4] [2] =
fWeightMatrixOtol[5] [2] =
fWeightMatrixOtol[6] [2] =
fWeightMatrixOtol[7] [2] =
fWeightMatrix0Otol[8] [2] =
fWeightMatrix0Otol[9][2] =
fWeightMatrix0tol[10] [2]

fWeightMatrixOtol [11] [2]

fWeightMatrixO0tol[0] [3] =
fWeightMatrix0Otol[1][3] =
fWeightMatrix0Otol [2] [3] =
fWeightMatrixOtol[3] [3] =
fWeightMatrixOtol[4] [3] =
fWeightMatrix0Otol [5] [3] =
fWeightMatrix0Otol[6] [3] =
fWeightMatrixOtol[7] [3] =
fWeightMatrixOtol[8] [3] =
fWeightMatrix0tol[9] [3] =
fWeightMatrix0Otol[10] [3]

fWeightMatrixOtol [11] [3]

fWeightMatrixOtol[0] [4] =
fWeightMatrixOtol[1] [4] =
fWeightMatrixOtol[2] [4] =
fWeightMatrixOtol[3] [4] =
fWeightMatrixOtol[4] [4] =
fWeightMatrixOtol[5] [4] =
fWeightMatrixOtol[6] [4] =
fWeightMatrixOtol[7] [4] =
fWeightMatrixOtol [8] [4] =
fWeightMatrix0tol[9] [4] =
fWeightMatrix0Otol[10] [4]

fWeightMatrixOtol [11] [4]

fWeightMatrixO0tol[0] [5] =
fWeightMatrixOtol[1] [5] =
fWeightMatrix0Otol[2] [5] =
fWeightMatrix0tol[3][5] =
fWeightMatrixOtol[4] [5] =
fWeightMatrixOtol[5] [5] =
fWeightMatrixOtol[6] [5] =
fWeightMatrix0tol[7][5] =
fWeightMatrix0Otol[8] [5] =
fWeightMatrixOtol[9] [5] =
fWeightMatrix0tol [10] [5]

fWeightMatrixOtol[11][5]

fWeightMatrix0Otol [0] [6] =
fWeightMatrixOtol[1] [6] =
fWeightMatrixOtol[2] [6] =
fWeightMatrix0Otol [3][6] =
fWeightMatrixOtol[4][6] =
fWeightMatrixOtol[5] [6] =
fWeightMatrixOtol[6] [6] =
fWeightMatrix0Otol[7] [6] =
fWeightMatrixOtol[8][6] =
fWeightMatrixO0tol[9] [6] =
fWeightMatrix0tol [10] [6]

fWeightMatrixOtol [11][6]

fWeightMatrix0tol[0] [7] =
fWeightMatrixOtol[1][7] =
fWeightMatrixOtol[2] [7] =
fWeightMatrixO0tol[3] [7] =
fWeightMatrix0Otol[4][7] =
fWeightMatrix0Otol [5][7] =
fWeightMatrixOtol[6] [7] =
fWeightMatrixOtol [7] [7] =
fWeightMatrixOtol([8] [7] =
fWeightMatrix0tol[9][7] =
fWeightMatrix0tol [10] [7]

fWeightMatrixOtol [11] [7]

// weight matrix from lay
fWeightMatrixlto2[0] [0] =
fWeightMatrixlto2[1] [0] =
fWeightMatrixlto2([2] [0] =
fWeightMatrixlto2[3][0] =

-2.51054938801178;
0.380597192071282;
-0.363076321730308;
-1.10527585645504;
= -1.47503566028071;
= -3.94849308431189;
0.393030569210624;
2.90248610236407;
1.47918546989089;
1.31183499026862;
-0.329085780734975;
2.60503442953516;
0.751506795083867;
-1.98569832597909;
-2.49079569466835;
0.573608601513552;
= -2.30105253606289;
= -1.2260783733781;
-1.09190490604195;
-2.9033712794073;
-4.06246215158626;
-0.024398341463822;
2.82043321688032;
1.0540797283071;
0.371572530080945;
-1.68327885075904;
-1.6303277707654;

= -2.94588917795664;

= -0.946941704084185
= -0.713428413263343;

= 1.35992130500694;

0.679007014181195;
-1.7953985147428;
6.14732785242734;
0.545902070820528;
2.60026955342781;
0.242854195929274;
-0.799971200382343;
-1.00233992911731;
1.2133576656284;
= -0.737803062849777;
= 1.75986436854496;
-1.53478921028282;
-0.480026875078978;
1.26838042679403;
1.93795328851792;
2.85833180977158;
-0.276474170805862;
0.933706066262378;
3.71445502354918;
0.754969676533977;
0.256773103990782;
= -2.46883486977909;
= -1.73993534282581;
-0.333538863827411;
1.82145064697017;
2.89344454232447;
-2.82510461346494;
0.966521208158374;
-1.52963439237833;
-1.55067193227353;
0.753144143332884;
-1.46708063731015;
0.633458208999106;
= 4.51743986613654;
= 3.1451026831006;
-2.32823327225954;
—2.83347005319015;
—0.285451895931534;
1.36124601501126;
-0.151514287319446;
2.01176321407178;
-0.641968911823231;
-1.28366919896421;
-0.801376886691149;
3.47622438703557;
= -1.28398868579992;
= 1.82307629644828;
1.81368187720653;
-1.17384929722833;
-0.502005559525891;
6.49571042869284;
-0.0496633594651782;
0.194276860592616;
2.64986502839053;
—0.418782423114577;
-1.40801293877951;
3.26272875101289;
= -2.60303605388398;
= 0.458975552858688;
er 1 to 2
-1.29881483730398;
-3.33676580551283;
0.693804071425345;
-1.79747751008843;
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Appendix C

fWleightMatrixlto2[4] [0]
fWeightMatrixlto2([5][0]
fWeightMatrixlto2[6][0]
fWeightMatrixlto2[0] [1]
fWeightMatrixlto2[1][1]
fWeightMatrixlto2[2][1]
fWeightMatrixlto2[3][1]
fiWeightMatrixlto2[4] [1]
fWeightMatrixlto2[5] [1]
fWeightMatrixlto2[6] [1]
fWeightMatrixlto2[0] [2]
fWeightMatrixlto2[1][2]
fWeightMatrixlto2([2] [2]
fWeightMatrixlto2[3][2]
fWeightMatrixlto2[4][2]
fWeightMatrixlto2[5][2]
fWeightMatrixlto2([6] [2]
fWeightMatrixlto2[0] [3]
fWeightMatrixlto2[1][3]
fWeightMatrixlto2[2] [3]
fWeightMatrixlto2[3] [3]
fWeightMatrixlto2[4] [3]
fWeightMatrixlto2([5][3]
fWeightMatrixlto2[6] [3]
fiWeightMatrixlto2[0] [4]
fWeightMatrixlto2[1] [4]
fWeightMatrixlto2[2] [4]
fWeightMatrixlto2[3] [4]
fWleightMatrixlto2[4] [4]
fWeightMatrixlto2[5] [4]
fiWeightMatrixlto2[6] [4]
fWeightMatrixlto2[0][5]
fWeightMatrixlto2[1][5]
fWeightMatrixlto2([2] [5]
fWeightMatrixlto2[3][5]
fWeightMatrixlto2([4][5]
fWeightMatrixlto2[5] [5]
fWeightMatrixlto2[6] [5]
fWeightMatrixlto2[0] [6]
fWeightMatrixlto2[1][6]
fWeightMatrixlto2[2] [6]
fWeightMatrixlto2[3][6]
fWeightMatrixlto2[4] [6]
fWeightMatrixlto2([5] [6]
fWeightMatrixlto2[6] [6]
fWeightMatrixlto2[0] [7]
fWeightMatrixlto2([1] [7]
fWeightMatrixlto2[2][7]
fWeightMatrixlto2[3][7]
fWeightMatrixlto2[4][7]
fWeightMatrixlto2[5] [7]
fWeightMatrixlto2[6] [7]
fWeightMatrixlto2[0][8]
fWeightMatrixlto2[1] [8]
fWeightMatrixlto2[2] [8]
fWeightMatrixlto2[3] [8]
fWeightMatrixlto2[4] [8]
fWeightMatrixlto2[5] [8]
fWeightMatrixlto2[6] [8]
fWeightMatrixlto2[0] [9]
fWeightMatrixlto2[1] [9]
fWeightMatrixlto2([2][9]
fWeightMatrixlto2[3][9]
fWeightMatrixlto2[4] [9]
fWeightMatrixlto2[5] [9]
fWeightMatrixlto2([6][9]
fWeightMatrixlto2[0][10]
fWeightMatrixlto2([1][10]
fWleightMatrixlto2([2][10]
fWeightMatrixlto2[3][10]
fWeightMatrixlto2[4][10]
fWeightMatrixlto2[5] [10]
fWeightMatrixlto2([6][10]
fWeightMatrixlto2[0] [11]
fWeightMatrixlto2[1][11]
fWeightMatrixlto2[2] [11]
fWeightMatrixlto2[3][11]
fWeightMatrixlto2[4] [11]
fWeightMatrixlto2[5][11]
fWeightMatrixlto2[6] [11]
fWeightMatrixlto2([0] [12]
fWeightMatrixlto2([1][12]
fWeightMatrixlto2[2][12]
fWeightMatrixlto2[3][12]
fWeightMatrixlto2[4] [12]
fWeightMatrixlto2([5][12]
fWeightMatrixlto2[6] [12]
// weight matrix fro
fWeightMatrix2to3[0] [0]
fWeightMatrix2to3[0] [1]
fWeightMatrix2to3[0] [2]
fWeightMatrix2to3[0] [3]
fWeightMatrix2to3[0] [4]
fWeightMatrix2to3[0] [5]
fWeightMatrix2to3[0] [6]

0.992064774582075;
-0.394525814899103;
1.86135187177854;
-0.021938333806063;
0.743404847752841;
-0.488646169188674;
1.22052125738976;
-2.7143892045582;
0.803501676129198;
-1.30709206388702;
-3.00462397235305;
-0.601593274226534;
0.0354555287823965;
1.44115968597597;
1.35642430900783;
-1.41819194351702;
-1.11199680675758;
3.41734127422267;
0.871052549534217;
5.01122228407157;
—2.487366566567;
-4.51515265911672;
1.32903016787925;
-0.0633471160920286;
0.711258863848139;
-0.999512779730261;
-1.5476570745643;
2.4495806628519;
-0.129458929494108;
0.766527444137211;
-1.05749684556702;
0.626204505224997;
1.30765086371382;
0.907074019624411;
1.18570820034202;
-2.43428181181909;
3.14474070710698;
1.00041121885284;
-0.360883325844199;
0.405168410525592;
-0.875806251522382;
-1.46702257731654;
1.7727693341659;
0.290951223827034;
1.16263948862155;
2.35161184442327;
0.423760373224611;
-0.480295352879765;
0.949931271448839;
1.99215446893573;
1.85881113723229;
-1.57008934961835;
2.07039659572103;
0.303773763459137;
-1.02838086803614;
-1.15019505545014;
-3.94325303988912;
-1.76891179710471;
-0.112714083435699;
1.48861482817314;
-1.39156034637507;
1.39035086798425;
0.320007483525375;
-1.74339780204004;
1.66980400983611;

= -2.81349317384946;

-0.318418835815594;
0.285473841942531;
-0.79485852294838;
1.09730565320922;
-0.869041327837684;
2.1583602437071;
2.2874376091498;

= -3.09224991804797;

0.126941445542673;
0.799935933607764;
1.588677433542;
2.48296250681092;
-0.154657901517641;
-1.2772795014775;
0.012977118381234;
-0.17845241360871;
-1.69955780029875;
0.358046017597222;
1.51641959929158;
-0.733148690723457;
-1.92068044597187;

1.98924830620368;
-1.7028953677013;
-2.64069686558915;
2.21803520200088;
-3.18889698009599;
2.0719072060496;
1.53175931560578;
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fWeightMatrix2to3[0][7] = -0.103438903491271;
}
inline double ReadMLP::GetMvaValue__ ( const std::vector<double>& inputValues ) const
{
if (inputValues.size() != (unsigned int)fLayerSize[0]-1) {
std::cout << "Input vector needs to be of size " << fLayerSize[0]-1 << std::endl;

return 0;

for (int 1=0; 1<fLayers; 1l++)
for (int i=0; i<fLayerSize[l]; i++) fWeights[1l][i]=0;

for (int 1=0; l<flLayers-1; 1++)
fWeights[1l] [fLayerSize[l]-1]=1;

for (int i=0; i<fLayerSize[0]-1; i++)
fWeights[0] [1]=inputValues[i];

// layer 0 to 1
for (int o=0; o<fLayerSize[l]-1; o++) {
for (int i=0; i<fLayerSize[0]; i++) {
double inputVal = fWeightMatrixOtol[o][i] * fWeights[0][i];
fWeights[1] [o] += inputVal;
}
fWleights[1] [o] = ActivationFnc (fWeights[1] [o]);
}
// layer 1 to 2
for (int o=0; o<flLayerSize[2]-1; o++) {
for (int i=0; i<fLayerSize[l]; i++) {
double inputVal = fWeightMatrixlto2[o][i] * fWeights[1][i];
fWeights([2] [o] += inputVal;
}
fWleights[2] [o] = ActivationFnc (fWeights[2] [o]);
}
// layer 2 to 3
for (int o0=0; o<fLayerSize[3]; o++) {
for (int i=0; i<fLayerSize[2]; i++) {
double inputVal = fWeightMatrix2to3[o][i] x fWeights[2][i];
fWeights[3] [o] += inputVal;

return fWeights[3][0];

double ReadMLP::ActivationFnc (double x) const {
// sigmoid
return 1.0/ (1.0+exp(-x));

}

// Clean up
inline void ReadMLP::Clear ()
{

// nothing to clear

inline double ReadMLP::GetMvaValue( const std::vector<double>& inputValues ) const
{

// classifier response value

double retval = 0;

// classifier response, sanity check first
if (!IsStatusClean()) {
std::cout << "Problem in class \"" << fClassName << "\": cannot return classifier response"
<< " because status is dirty" << std::endl;
retval = 0;
}
else {
if (IsNormalised()) {
// normalise variables
std::vector<double> 1iV;

int ivar = 0;
for (std::vector<double>::const_iterator varIt = inputValues.begin();
varIt != inputValues.end(); varIt++, ivar++) {

iV.push_back (NormVariable ( xvarIt, fVmin[ivar], fVmax[ivar] ));
}

Transform( iv, -1 );

retval = GetMvaValue__ ( iV );
}
else {
std::vector<double> iV;
int ivar = 0;
for (std::vector<double>::const_iterator varIt = inputValues.begin();
varIt != inputValues.end(); varIt++, ivar++) {

iV.push_back (xvarIt);
}
Transform( iV, -1 );
retval = GetMvavValue_ ( iV );

return retval;

//
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inline void ReadMLP::InitTransform_1 ()
{

fMin_1[0][0] = 30.2489337921;
fMax_1[0] [0] = 807.876464844;
fMin_1[1][0] = 30.0433063507;
fMax_1[1]1[0] = 807.876464844;
fMin_1[2]1[0] = 30.0433063507;
fMax_1[2][0] = 807.876464844;
fMin_1[0][1] = 43.8707351685;
fMax_1[0][1] = 1197.57739258;
fMin_1[1]1[1] = 36.0710601807;
fMax_1[1][1] = 1197.57739258;
fMin_1[2][1] = 36.0710601807;
fMax_1[2]1[1] = 1197.57739258;
£Min_1[0]1[2] = 0.0169088207185;
fMax_1[0][2] = 0.299650639296
fMin_1[1][2] = 0.0169088207185;
fMax_1[1]1[2] = 0.299917250872;
fMin_1[2][2] = 0.0169088207185;
fMax_1[2][2] = 0.299917250872;
fMin_1[0][3] = 30.0934524536
fMax_1[0][3] = 719.838317871;
fMin_1[1]1[3] = 30.0305995941;
fMax_1[1]1[3] = 719.838317871;
fMin_1[2][3] = 30.0305995941;
fMax_1[2][3] = 719.838317871;
fMin_1[0][4] = 2;

fMax_1[0]1[4] = 14;
fMin_1[1]([4] = 2;

fMax_1[1][4] = 14;
fMin_1([2][4] = 2;

fMax_1[2]1[4] = 14;
fMin_1[0][5] = 0.305924624205;
fMax_1[0][5] = 410.979614258;
fMin_1[1]([5] = 0.250672847033;
fMax_1[1]1[5] = 410.979614258;
fMin_1[2]1[5] = 0.250672847033;
fMax_1[2][5] = 410.979614258;
fMin_1[0][6] = 71.7072067261;
fMax_1[0]1[6] = 2849.3972168;
fMin_1[1]1[6] = 69.3445739746
fMax_1[1][6] = 2849.3972168;
fMin_1[2][6] = 69.3445739746
fMax_1[2]1[6] = 2849.3972168;

}

//
inline void ReadMLP::Transform_1( std::vector<double>& iv, int cls) const
{
if (cls < 0 || cls > 2) {
if (2 > 1) cls = 2;
else cls = 2;

for (int ivar=0;ivar<7;ivar++) {

double offset = fMin_1([cls] [ivar];
double scale = 1.0/(fMax_1[cls][ivar]-fMin_1[cls] [ivar]);
iv[ivar] = (iv[ivar]-offset)xscale » 2 - 1;

}

//
inline void ReadMLP::InitTransform()
{

InitTransform_1();

}
//

inline void ReadMLP::Transform( std::vector<double>& iv, int sigOrBgd ) const

{

Transform_1( iv, sigOrBgd );
}
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