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Abstract. The discovery of supernova projects at the end of the 20th century altered the
theory of current cosmology and sparked the hunt for dark energy and dark matter. The
time evolution of the density parameter is examined here by considering a test function.
Using the Brans-Dicke frame work, the calculations are advanced. The density parameter of
dark energy (ΩD) and matter (Ωm) are connected by mathematical descriptions and found
to produce a unit value when ΩD and Ωm are in fraction. As the calculations are built on
the structure of the scale factor, this present article is attempt to describe the framework in
terms of scale factor (a) as well. The results coming from the test function model show nice
resemblance with known observations. The use of Brans-Dicke theory makes provision for in
detail study of ΩD and Ωm.
Keywords: Cosmological constant, density parameter, time evolution, dark energy.

1 Introduction
Discovery of the accelerated expansion of the universe and dark energy unveils the possible options to
express the cosmological models of the universe. Those models or the endeavours involve the density
parameters of the dark energy for the description of the necessary constructions [1, 2, 3].
To start working with the Friedmann–Robertson–Walker (FRW) cosmology, Einsteins’ field equations
are the primary steps [1, 2, 3]. Cosmological constant (ΛCDM) model is basically one of such
model [1, 2, 3]. But due to several constraints (e.g. fine-tuning, etc.), the candidate of Λ becomes
weaker [2, 3]. In such cases scalar field models are the next immediate choices. Quintessence models are
also scalar field models and differnt potentials based v(ϕ) such models are there among the speculated
dark energy models [3, 4, 5]. In this article we have chosen a scalar field (ϕ) to form dark energy model
using an alternative approach of the Brans-Dicke theory.
According to Mach’s principle the inertial forces observed locally in an accelerated laboratory may be
interpreted as gravitational effects having their origin in distant matter accelerated relative to the
laboratory [6, 7, 8]. The role and relevance of Mach’s principle is associated with the equivalence
principle of General theory of relativity. In other words, the concept of inertia must be rooted in
acceleration with respect to the general mass distribution of the universe. One must not consider
inertial masses of various elementary particles as fundamental constants. However, it can be considered
to represent the particle’s interaction with the cosmic field.
Thus to offer an alternate approach, Brans-Dicke theory depicts a scalar field (say ϕ) when describing
the gravitation G. According to Brans-Dicke (BD) theory one may obtain the perfect field equations by

replacing G by
1

ϕ
as the field ⟨ϕ⟩ ≃ 1

G
[9].
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Einstein field equation is expressed as

Rµν − 1

2
gµνR = −8πGTµν (1)

With the Brans-Dicke consideration the field equation takes the form as

Rµν − 1

2
gµνR = −8π

ϕ
(TM

µν + Tϕ
µν) (2)

In the present article this scalar field is used with special form to test a defined model [10], [11] with
new function.

2 Metric and field equations
In generalized Brans-Dicke’s theory the action parameter is given by -

A =
1

16π

∫
d4x

√
−g

(
ϕR+

ω(ϕ)

ϕ
gµν∂µϕ∂νϕ+ Lm

)
(3)

In the given expression, g represents the determinant of the metric tensor gµν , Lm is the Lagrangian for
matter, R is the Ricci scalar, ϕ is the Brans-Dicke’s scalar field, and ω is a dimensionless parameter
that depends on the scalar field (ϕ) in the generalized Brans-Dicke’s theory. In a uniform and isotropic
universe, the line element appears as follows:

ds2 = −dt2 + a2(t)

[
dr2

1− kr2
+ r2dθ2 + r2sin2θdξ2

]
(4)

In this context, a(t) represents the scale factor, k denotes the spatial curvature parameter, and t is
cosmic time. The value of k determines whether the universe is closed (k = 1), flat (k = 0), or open
(k = −1). For the purposes of this work, all calculations has been done considering the spatial
curvature parameter (k = 0).
In a uniform and isotropic space-time, as described by equation (4), the BD theory’s field equations for
a cosmos containing a perfect fluid are represented by the following three equations.

3
ȧ2 + k

a2
+ 3

ȧ

a

ϕ̇

ϕ
− ω(ϕ)

2

ϕ̇2

ϕ2
=

ρ

ϕ
(5)

2
ä

a
+

ȧ2 + k

a2
+

ω(ϕ)

2

ϕ̇2

ϕ2
+ 2

ȧ

a

ϕ̇

ϕ
+

ϕ̈

ϕ
= −γρ

ϕ
(6)

ϕ̈

ϕ
+ 3

ȧϕ̇

aϕ
=

ρ

ϕ

(1− 3γ)

2ω + 3
− ϕ̇

ϕ

ω̇

2ω + 3
(7)

The value of the parameter for EOS of the cosmic fluid can be expressed by γ (≡ p
ρ ) in these field

equations.The dimension of p
ρ is known as Equation Of State. Hence γ behaves like and EOS. So

progressive with the article we can mention γ as EOS. In this work, we investigate this parameter as a
function of time.

3 Theoretical framework
3.1 Theoretical model
On combining the equations (5), (6) and (7), we obtained an expression for K=0 as,

ω̇ +

(
2
ϕ̈

ϕ̇
+ 6

ȧ

a
− ϕ̇

ϕ

)
ω − 6

(
ȧ2

a2
+

ä

a

)
ϕ

ϕ̇
= 0 (8)

The following assumptions about ϕ and ω are made in this investigation. We have suggested that these
parameters exhibit power-law behavior with respect to ϕ and a.

ϕ = ϕ0

(
a

a0

)n

ω = ω0

(
ϕ

ϕ0

)m

(9)
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Now, on using the equations (9) in equation (8), We obtain the equation

mωn+ (n+ 4− 2q)ω − 6

n
(1− q) = 0 (10)

Here, is the deceleration parameter (q≡ − äa
ȧ2 ). At t = t0 writing ω = ω0 and q=q0, we acquire,

m =
6(1− q0)

n2ω0
− n+ 4− 2q0

n
(11)

Now, on combining equations (5) and equation (9) for zero spatial curvature, one obtain,

ρ = ϕH2
(
3 + 3n− ω

2
n2
)

(12)

In this context, the Hubble parameter is H ≡ ȧ
a . Once we replace all of the parameters in equation (12),

utilizing their values at t = t0, we derive:

ω0 =
2

n2H2
0

(
3H2

0 + 3nH2
0 − ρ0

ϕ0

)
(13)

On using equation (13) in equation (11) one gets,

m =
3(1− q0)H

2
0

3H2
0 + 3nH2

0 − ρ0

ϕ0

− n+ 4− 2q0
n

(14)

For zero spatial curvature, we derive the following by stating ä
a = −qH2 and replacing the equation (9)

and (12) into equation (6).

γ =
2q − 1− 0.5ωn2 − n− n2 + nq

3 + 3n− 0.5ωn2
(15)

As a result, the current EOS value has been given by:

γ0 =
2q0 − 1− 0.5ω0n

2 − n− n2 + nq0
3 + 3n− 0.5ω0n2

(16)

The values of m and ω0 from equations (13) and (14) respectively must be extracted before using the
notation ω given in equation (9).
In this model, the time evolution of various cosmological parameters (ϕ, ω, ρ, γ) has been investigated
by employing an empirical expression for the scale factor.

a = a0Exp

[
α

{(
t

t0

)β

− 1

}]
(17)

In order to produce a deceleration parameter that gradually shifts from positive to negative, the scale
factor was deliberately set. This transition marks a shift in the cosmos from a phase of decelerating
expansion to one of accelerating expansion, consistent with findings from numerous recent astrophysical
observations [12, 13]. For our present study, we have selected a0 = 1 for all calculations. Here, it is
crucial for both parameters α and β to have the same sign, ensuring that the scale factor increases with
time. Equation (17) could potentially be leveraged for determining the deceleration parameter (q) and
the Hubble parameter (H):

H =
ȧ

a
=

αβ

t0

(
t

t0

)β−1

q = − äa

ȧ2
=

1− β

αβ

(
t

t0

)−β

− 1 (18)

For 1 > β > 0 and α > 0, we observe that q → +∞ as t → 0 and q → −1 as t → ∞, indicating a clear
change in the sign of the parameter (q) over time. At t = t0. The values of α and β may be found as
follows when H = H0 and q = q0 are known:

α =
H0t0

1−H0t0(1 + q0)
β = 1−H0t0(1 + q0) (19)
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Finding the progression of a cosmological characteristic in relation to the redshift parameter (z) is
frequently required where z = a0

a -1. Now, by utilizing equation (17), one can derive the relationship
between the redshift parameter and time as:

Z =
a0
a

− 1 = Exp

[
−α{

(
t

t0

)β

− 1}

]
− 1 (20)

We adopted the aforementioned value for different cosmological parameters throughout our present
study:

H0 =
72Km

s

Mpc
= 2.33× 10−18sec−1. q0 = −0.55, ΩD0 = 0.7, ρ0 = 9.9× 10−27Kgm−3.

ϕ0 =
1

G0
= 1.498× 1010Kgs2m−3, t0 = 1.4× 1010Y ears = 4.42× 1017s

3.2 The density parameter evoluation methodology
Since the matter component, which includes both dark matter and baryonic matter, is recognized as
pressureless dust according to [14, 15], dark energy is primarily responsible for the universe’s cumulative
pressureP . Thus, a hypothetical illustration of the relationship may attainable:

p = γρ = γDρD (21)

Here,ρD is the density of dark energy and γD is the equation of state of the dark energy. Using equation
(21), ΩD can be expressed as

ΩD =
ρD
ρ

=
γ

γD
(22)

Then the subsequent empirical formulation for the EOS parameter of dark energy, can take the form,

γD = γf(t) (23)

Where, f(t) is a time-varying function, and we have chosen two empirical expressions for this. This
choice was influenced by the observed parallelism within the cosmos total matter-energy content [16]
and the chronological progression of the EOS parameters for dark energy [17, 18, 19]. Thus, f(t) is
presented as an analogy between γD and γ.

3.3 Test function
Regarding the test function, we suggest employing this form of f(t) to determine the value of the
density parameter.

f(t) =
A

2

(
t

t0

)2µ

(24)

Here, A and µ are dimensionless constants. Now, by using equation (22), (23) and (24) we obtained,

ΩD =
ρD
ρ

=
γ

γD
= 2A−1

(
t

t0

)−2µ

(25)

Substituting ΩD = ΩD0 at the current time, i.e., t = 0, into equation (25), we obtained:

A =
2

ΩD0
(26)

Now, by using equation (25) and (26) we obtained,

ΩD = ΩD0

(
t

t0

)−2µ

(27)
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By using equation (27), Ωm is given by,

Ωm =
ρm
ρ

=
ρ− ρD

ρ
= 1− ΩD0

(
t

t0

)−2µ

(28)

Utilizing equations (27) and (28), we can express ρD and ρm respectively:

ρD = ρΩD = ρΩD0

(
t

t0

)−2µ

(29)

ρm = ρΩm = ρ

[
1− ΩD0

(
t

t0

)−2µ
]

(30)

On using equations (24) and (26) in (23), γD becomes,

γD =
γ

ΩD
=

γ

ΩD0

(
t

t0

)2µ

(31)

Using equation (20) in (27) and (28), the formulas for ΩD and Ωm can be expressed using the z as
follows,

ΩD = ΩD0

(
1 +

1

α
ln

1

z + 1

)− 2µ
β

(32)

Ωm = 1− ΩD0

(
1 +

1

α
ln

1

z + 1

)− 2µ
β

(33)

According to various astrophysical observations [20, 21], the current value of ΩD0 is approximately 0.7.
During the evolution of the universe’s density parameters, there was a recent period when ΩD and Ωm

approached a specific value of 0.5, with the corresponding z falling within a certain range of 0 < z < 1,
based on results by current studies [22, 23].
Recent observations reveal that the universe transformed trajectory at z = 0.9818, or around
7.2371× 109 years ago, evolving from an era of slower expansion towards its present faster growth [21].
We acquire the subsequent formula for µ based on the formulations (32) and (33), in which zc indicates
the redshift parameter that existed when the entire cosmos reached Ωm = ΩD.

µ =
βln(2ΩD0)

2ln
[
1 + 1

α ln
(

1
zc+1

)] (34)

Now, utilizing mathematical equations (9), (17), (27), and (28), ΩD and Ωm could potentially be
interpreted as functions corresponding to ϕ.

ΩD = ΩD0

(
1 +

1

nα
ln

ϕ

ϕ0

)− 2µ
β

(35)

Ωm = 1− ΩD0

(
1 +

1

nα
ln

ϕ

ϕ0

)− 2µ
β

(36)
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Figure 1: Illustration showing ΩD vs time for
ten distinguished redshift parameter (zc) values

Figure 2: Illustration showing Ωm vs time for
ten distinguished redshift parameter (zc) values

Figure 3: Illustration ΩD and Ωm denoted by
solid line and dashed line respectively for three
different values of the parameters (zc) as a func-
tion over time.

Figure 4: Brans-Dicke parameter against time
plots for three different values of parameters n.

4 Selection of values for the parameter n
The temporal variations of ϕ are controlled by the quantity n. Given that both m and ω0 rely on n,
variations in ω, ρ, and γ are affected by n. The G can be expressed using ϕ [14, 19]. Therefore,
employing equations (9) and (17), we acquire:

G =
1

ϕ
=

1

ϕ0

(
a

a0

)−n

=
1

ϕ0
Exp

[
−nα

{(
t

t0

)β

− 1

}]
(37)

According to certain research findings, the gravitational constant experiences a rise over time
[24, 25, 26]. Therefore, G would result in a function that rises with time for negative values of the
parameter n. Now, using equation (2) in equation (37), we obtained,

Ġ

G
= −n

ȧ

a
= −nH = −n

αβ

t0

(
t

t0

)β−1

(38)

For present time i.e., t=t0 the expression for the equation (38) can be expressed as,

n = − t0
αβ

(
Ġ

G

)
t=t0

(39)
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Using equation (39), it becomes feasible to deduce the parameter n from experimental data regarding(
Ġ
G

)
t=t0

. As indicated in a study, the maximum achievable value of
∣∣∣ ĠG ∣∣∣

t=t0
is 4× 10−10 per year[9].

Now, using equation (39) one gets the value of n ∼ -5.43 for this upper limit.

• Table -1

n ω0 m γ0 γD0(zc = 0.1) ( ĠG )t=t0(Y r−1)
−1.66 -1.525 -0.140 -1.486 -2.122 1.221× 10−10

−1.68 -1.532 -0.115 -1.287 -1.839 1.235× 10−10

−1.70 -1.538 -0.093 -1.095 -1.564 1.250× 10−10

−1.72 -1.543 -0.073 -0.909 -1.299 1.265× 10−10

−1.74 -1.547 -0.055 -0.730 -1.043 1.279× 10−10

−1.76 -1.551 -0.038 -0.557 -0.796 1.294× 10−10

−1.78 -1.554 -0.024 -0.392 -0.559 1.309× 10−10

−1.80 -1.557 -0.011 -0.232 -0.332 1.324× 10−10

5 Conclusion
Using the concept of Brans-Dicke theory with a chosen function, corresponding coupling parameter ΩD

and Ωm are derived.
ΩD increases with t for increasing restshift and Ωm decreases with t for increasing redshift that are
presented in figure(1) and figure(2). And figure(3) provides a combine result from figure(1) and
figure(2).

Treating Ġ
G using the Weinberg’s prescription, the upper limit of parameter n is moderated by this work

from -5.5 [10] to -5.43. This n properly provides the result of Ġ
G .

The fluctuation of the BD parameter ω over time, taking into account various values of the parameter n
is shown in the graphical representation (Figure:4). Only negative n values are under consideration
here during the plot. And for the larger negative n values there is a slower rate of decrease. The trend
of negative ω with respect to time is consistent with findings from the BD theory [27, 28].
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