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Understanding the collective quantum dynamics of non-equilibrium many-body
systems is an outstanding challenge in quantum science. In particular, dynamics driven

by quantum fluctuations areimportant for the formation of exotic quantum phases
of matter’, fundamental high-energy processes?, quantum metrology>* and quantum
algorithms®. Here we use a programmable quantum simulator based on Rydberg atom
arrays to experimentally study collective dynamics across a (2+1)-dimensional Ising
quantum phase transition. After crossing the quantum critical point, we observea
gradual growth of correlations through coarsening of antiferromagnetically ordered
domains®. By deterministically preparing and following the evolution of ordered
domains, we show that the coarsening is driven by the curvature of domain boundaries,
and find that the dynamics accelerate with proximity to the quantum critical point. We
quantitatively explore these phenomena and further observe long-lived oscillations
of the order parameter, corresponding to an amplitude (‘Higgs’) mode’. These
observations offer a viewpoint into emergent collective dynamics in strongly
correlated quantum systems and non-equilibrium quantum processes.

Quantum phase transitions (QPTs) are transformations between states
of matter that are driven by quantum fluctuations®. Analogously to
thermal fluctuations in classical phase transitions, quantum fluc-
tuations have adominantrole in the emergence of order in quantum
systems. Although classical dynamics near thermal critical points
have been studied extensively over the past several decades, only
recently have quantum dynamics across QPTs become experimen-
tally accessible, owing to the advent of quantum simulators®*?and
ultrafast spectroscopic methods in solid-state systems™>™, Their
universal properties have been studied in systems of varied dimen-
sionality using the quantum Kibble-Zurek mechanism (KZM)™©116,
The KZM stipulates that a quantum system’s dynamics and correla-
tions ‘freeze’ in the vicinity of a QPT when the system can no longer
respond adiabatically to dynamical changes. However, in many
instances, other mechanisms of correlation growth beyond KZM
can dominate ordering"” 2. In particular, when an unordered system
passes through a continuous phase transitioninto asymmetry-broken
phase, a progressive growth of long-range order, known as coarsening,
is expected. These ordering dynamics are predicted to show univer-
sality, manifested as self-similarity in the growth of correlations®2*.
Such phenomenaare well understood in classical systems?, and have
been experimentally explored in Bose gases in the mean-field regime
over the past two decades® . However, the effects of quantum fluc-
tuations in coarsening dynamics, particularly near QPTs, have only
recently emerged as a subject of theoretical®*** and experimental®
investigation.

We use a programmable quantum simulator based on Rydberg atom
arrays toinvestigate the collective out-of-equilibrium dynamics asso-
ciated with the growth of order following an Ising QPT. We observe
key features of beyond-mean-field quantum-coarsening processes
arising from quantum fluctuations: the curvature-driven dynamics
of domain walls and their acceleration when approaching the critical
point. We further explore self-similarity and universality in the order-
ing process. In addition, we observe long-lived coherent oscillations
of the correlation length and the order parameter on both sides of
the QPT. In the ordered phase, these oscillations are the analogue of
a‘Higgs’ mode™>*. Our observations are consistent with theoretical
predictions®, extending these studies in a regime that is difficult to
simulate classically.

Our experiments are performed using a two-dimensional program-
mable atom array, previously described in ref. 11. The measurements
are conducted on a16 x 16 square lattice of ’Rb atoms trapped in an
array of optical tweezers generated by aspatial light modulator. Atoms
areinitialized in the electronic ground state |g) and are coupled to the
high-lying electronic Rydbergstate |r) through a two-photon excitation
withtime-dependent Rabi frequency Q(t) and global detuning A(¢). As
akeyupgrade, weintroduce asecond spatial light modulator for gen-
erating locally controlled light shifts, allowing for programmable
site-dependent detunings 6,(¢) = a;6(t), where a;isatime-independent
weight at site i (Methods and Extended Data Fig. 1). The atoms in the
|r)state interact strongly through avan der Waals potential, giving rise
to the following Hamiltonian governing the system’s dynamics:
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Fig.1|Ordering viacoarsening.a, Atomsarrangedinasquarelatticeare
prepared inthe ground state |g) and driven from the disordered phase, shown
hereasafluorescenceimage (atomsin |ryare detected asloss and are indicated
withred circles), into anantiferromagnetic ordered phase, acrossaQPT.The
subsequent coarsening dynamics, under the many-body unitary U(t), lead to the
progressive development of long-range order (shown here using the real-space
correlation function G(x, y) and experimental snapshots). The snapshots show
thelocalsingle-spin-flip-corrected staggered magnetization, with white (grey)
shadingindicating AF, (AF,) orders (Methods). b, The detuning A(¢) is swept
linearly, with afixed Rabifrequency Q, to afinal value A in the ordered phase,

_00 Y X.= 2 n(A0)+ () + ). Vynim;. (1)

2 i i i<j

>z

Heren; = |r){r|denotes the Rydberg occupation atsite, X; = |g){r| +
I g| describes the laser-induced coupling between the states
atthatsite, and V;;= V/|r; - 1| is the van der Waals interaction bet-
ween i andj. The Rydberg interactions prevent simultaneous exci-
tation of two atoms if they lie within a blockade radius (R, = (V,/Q)")
of each other. We maintain a lattice spacing a such that R,/a=1.1,
and only nearest-neighbouring sites fall within the blockade radius.
For large positive values of 4/Q, this configuration leads to a Z,-
symmetry-broken checkerboard phase with two antiferromagnetically
ordered ground states®®, labelled|AF,) and |AF,). The disordered and
ordered phases are separated by a QPT belonging to the (2+1)-
dimensional Ising universality class, which occurs at 4/Q=1.1
(refs.11,38,39). The order parameter diagnosing this transition is
the staggered magnetization:m,=3 7 =% (-1)*"Z,, where
(x,y) denotes the two-dimensional coordinates of an atom, and

Zx,y = |rx,y><rx,y| - |gx,y><gx,y|'

Ordering dynamics

We first study the non-equilibrium dynamics of the atom array after
crossing the QPTinto the ordered phase. Our protocolisillustratedin
Fig.1a,b. The state-preparation stage is similar to that used inrefs. 11,40.
First, allatoms areinitializedin|g), whichis the ground state for 4/Q « 0.
While keeping 4 negative, Qis ramped up toits final value, remaining
constant until the end of the protocol (6;is held at O for this measure-
ment). Then, A(¢) is swept from negative to positive values, through
the quantum critical point (4/Q = 1.1 (ref. 11)) and into the ordered
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whereitis held constant for the duration of the hold time. ¢, The correlation
length £grows over the course of the hold time. The solid line is afit to
(co+cyt)* +ccos(wt + @), representing sinusoidal oscillations on top of a
power-law growth. Error bars are smaller than markers. d, The early-time
growth of thesquared correlation lengthis consistent withalinearincrease
with time, as expected for coarsening dynamics withanon-conserved order
parameter. The dynamics are faster at lower 4/Q, closer to the critical point
(seealso Extended DataFig. 2¢,d). For the datashown here, Q/2m=3.8 MHz.
Errorsbarsaregiven as the standard deviation, unless noted otherwise.

phase. The non-adiabatic sweep realizes a quench thatinjects energy
into the system and seeds the ensuing non-equilibrium evolution. We
usealinear sweep profile for allmeasurements; for adiscussion of the
sweep rate, see Methods. The sweep is halted at various endpoints
within the ordered phase. Subsequently, 4 and Q are held constant for
agivenholdtime, and finally Qis ramped down followed by a projective
readout of the atomic states.

During the hold time, we probe the dynamics of the correlation
length, as shown in Fig. 1c. To quantify the growth of correlations, we
evaluate the two-point correlation function G(r, t) and theradially aver-
agedstructure factor S(k, t), fromwhich we extractacorrelation length
(&) (Methods and Extended Data Fig. 2a,b). In contrast to the Kibble-
Zurek prediction, the correlation length grows significantly with hold
time (Fig. 1c), indicating the gradual establishment of long-range order.
Up to a hold time of about 0.4-0.5 ps, we observe that the dynamics
are consistent with alinear growth of & with time (Fig. 1d), as expected
for coarsening®**. Importantly, the rate of growth increases with prox-
imity to the QPT, an observation further explored in Extended Data
Fig. 2c,d. Motivated by the theoretical expectation of universality of
these dynamics in the thermodynamic limit>*°*, we also study the
structure factor as afunction of a scaling variable k(¢). We find that the
data collapse onto asingle functional form S(k, t) = b(§(£))EX(t)f(k &(¢))
for some scaling function fand an amplitude b(§), whichis suggestive
of self-similarity (Extended Data Fig. 3 and Methods). In addition to
the ordering, we also observe long-lived oscillations of the correlation
length (Fig.1c). Inwhat follows, the universal aspects and origin of these
oscillations are explored in detail.

To gain further insight into the system’s dynamics, we use single-
site-resolved detection to identify the domains in each individual
snapshot. We measure the probability that a given atom will appear
as part of adomain of area A, and find that over time, increasingly
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Fig.2|Domains and energy transfer. a, Probability distribution of an atom
belonging toanordered domain of acertainsize. Atlate hold times, atoms are
morelikely to participate inlarge domains and very small domains. b, The area
ofthelargest domain (givenin number of atoms) grows, whereas that of the
second-largest domain decreases as the systemisheldin the ordered phase.

¢, Classical energy of each snapshot during the hold time, calculated using
equation (2). The total classical energy of the system is conserved whereas
thebulk (domainwall) energy increases (decreases). Inset: the separation of
domainsinto bulk and domain walls for a single snapshot. The domain walls are
identified asregions of the array where neither antiferromagnetic ordering is
observed (lightand dark blue). White and grey indicate AF,and AF, orderings,
respectively. The data presented here are for 4/Q = 3.0, with Q/2n=3.8 MHz for
aandband Q/2rn=6.0 MHzforc.

larger domains are formed at the expense of their smaller counterparts
(Fig.2a). Thisis manifested in the growth of the mean area of the larg-
est domain, concurrent with the shrinking of the second-largest one
(Fig. 2b). Owing to energy conservation, the appearance of progres-
sively larger domains has to be offset by the proliferation of very small
domains and single-site spin flips, as apparent in Fig. 2a. We quantify
this flow of energy by measuring the spatial distribution of the classi-
cal energy, as defined by the diagonal contribution to equation (1) up
to a constant shift:

Hc| =-A z (ni - 1) + z l/,jn,-nj. (2)
i i<j

For every snapshot, we identify the domain walls and the bulk, and

accordingly determine the contribution of each towards (H,) (Methods
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and Extended Data Fig. 4a,b). Although the classical energy is indeed
conserved over time, it is redistributed from the domain walls into
the bulk (Fig. 2c). This is consistent with a picture of coarsening that
is driven by the surface tension, and elimination of domain walls®.

Domain-wall dynamics

To study the real-time dynamics of domains and domain walls, we
deterministically prepare specific configurations of domain walls using
programmable, locally controlled light shifts. Our protocolis described
inFig.3a: we apply site-dependent negative local detunings §; < 0, with
amplitudes |§] = 42 (Methods), on the chosen atoms before ramping
up 2, and then continue the state-preparation protocol as previously
described. Thelocal detuning strongly biases the chosenatomsto|g),
and consequently, locally favours either an|AF,) or an |AF,) configura-
tion. After the sweep is completed, and before the hold time begins,
the local detuning is quenched off and the state is allowed to evolve
freely.

We start by preparing a small square domain of one antiferromag-
netic order within the bulk of the other* (Fig. 3b). Upon removal of
the local detunings, we observe that the area of the injected domain
shrinks linearly with time (Fig. 3c and Supplementary Video 1). This
observation is in agreement with coarsening dynamics for non-
conserved fields, where surface tension owing to the energy cost of
domain walls generates curvature-driven dynamics*?. Insuch asce-
nario, the local velocity of adomain wall is proportional to its local
curvaturel/R (where Ris thelocal radius of curvature): 0,R =< -1/R, and
therefore, d,R* = -v,, where v, is some positive time-independent con-
stant. Strikingly, we find that v, increases as one approaches the quan-
tum critical point. This behaviour is unique for coarsening in the
vicinity of a quantum critical point®; in contrast, for a classical Ising
transition, the dynamics should be slower near the thermal phase
boundary than when deep in the ordered phase*’; we also observe
indications of this speed-up in the global sweeps (Fig.1d and Methods).
We examine the dependence of v, on the distance to the quantum
critical point, 4 — 4. (Fig. 3d), where A. is the global detuning at the
critical point. Near the QPT, we find that v, is approximately consistent
with ascaling «<(4-4.)"" (where v=0.629 is the correlation length
exponent of the (2+1)-dimensional Ising QPT?®). We note that the
speed-up observed here is not caused by the KZM, as it depends on
only proximity to the QPT, consistent with theoretical predictions®.
In Fig. 3e, we also analyse the evolution of several concentric spatial
layers of the system, and observe the outer layers of the central domain
morphing earlier with the dynamics moving progressively inwards.
This supports a picture of coarsening in which the dynamics areindeed
drivenby the shrinking of domain walls, as opposed to being generated
within the bulk of the domains.

To further explore the curvature-driven nature of the coarsening
dynamics, we prepare an initial state with a zigzag domain wall. Over
time, the domain wall straightensinto a vertical line separating the two
orders (Fig.4aand Supplementary Video 2), whereas the motion of the
domainwallis related toits local curvature®, as shown in Fig. 4b,c and
Extended Data Fig. 5 (Methods).

Order parameter and ‘Higgs’ oscillations

In addition to the curvature-driven coarsening dynamics, our experi-
ments clearly reveal persistent long-lived oscillations of the correlation
length and the order parameter across a range of experimental param-
eters, as shown in Fig. 1c and Methods. We explore the origin of these
oscillations in Fig. 5. First, we apply local detunings to one of the two
sublattices, which biases the order parameter. We then repeat the pro-
tocol describedinFig. 3a, ramping to various values of A on both sides
of the QPT. Directly after the ramp, we quench the pinning field off
and follow the dynamics. We observe large-amplitude, long-lived
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Fig.3|Dynamics of seeded domains. a, Acentred domain of AF,order
surrounded by abackdrop of AF, order is created by ‘pinning’ each ground-
state atominthe target ordering using alocal light shift §,, while sweeping
A(t) (bottom). Top left: target amplitude of the local detuning pattern; |5,
isinversely proportional to the number of neighbouring Rydberg atoms
surrounding each ground-state atom. Top centre: Rydberg population of a
single shotimmediately after the local detuning is quenched off. Top right:
local staggered magnetization, demarcating the prepared domains.

b, Evolution of the average local staggered magnetization with time, as the
prepared state evolves under different values of A/Q. ¢, The squared radius
of the centraldomain, r?, decreases linearly with time (see also Extended Data

oscillations of the order parameter, well modelled as a damped har-
monic oscillator, my(t) = ¢, + Acos(wt + 0,)e", withamplitude A, fre-
quency w, dampingy, and offset ¢, that strongly depend on 4. We find
that upon approaching the phase transition from both sides, w
decreases whereas y and A increase; ¢, changes from zero in the dis-
ordered phase to anon-zero value in the ordered phase.

Tounderstand the origin of these observations, we perform numer-
ical simulations using matrix-product-state methods. Through
density-matrix renormalization group calculations on up to 10 x 10
sites with periodic boundary conditions, we find that the pinned initial
state corresponds to alow-energy state of the post-quench Hamiltonian
evenonthedisorderedside of the transition (Fig. 5b). Thisisin contrast
to the high-energy Z, states typically associated with oscillations
owing to quantum many-body scars***°. We then attempt to simulate
the dynamics of the pinned initial state using the time-dependent
variational principle*® at arelatively small bond dimension y =256 and
find good qualitative agreement with the experimentally extracted
frequencies (Fig. 5d). Moreover, the oscillation frequencies closely
match the numerically determined ground-state gap, and are relatively
robust to variations in the system size away from the critical point
(Methods and Extended Data Fig. 6).

Inthe ordered phase, these observed oscillations canbe understood
as an amplitude (‘Higgs’) mode’, which is a collective excitation of

Fig.4c).d, Therate of change of the area, %, increases with proximity to the
critical point, (4 -4,)/Q. Thedashed lineis aguide to the eye for the theoretically
expectedscalingrelationship. e, Change inthe radially averaged local staggered
magnetization with Manhattan distancesd,,=0,d,,=2andd,, =8 fromthe
centreof theinjected square domain. Sites averaged atd,,=0andd,,=2are
markedinyellow andred, respectively, inthe inset. The order initially changes
near the domainwalland begins to change in the centre of the domain only at
later times. Atomsin the bulk of the dominant ordering far from the domain
wall,ingrey, remain close to their initially prepared states. The dynamics are
plotted for4/Q=2.5and Q/2n=6.0 MHz.

the magnitude but not the sign of the order parameter. Qualitatively,
the ‘Higgs’ mode can be viewed through the lens of Landau theory.
In this framework, order-parameter dynamics are determined by
an effective potential describing a quartic anharmonic oscillator:
V()= %(pz + %(p“ + O(¢%), as shown in Fig. 5¢ (we continue to identify
the oscillation on the disordered side as a ‘Higgs’ mode for conveni-
ence). The ordered phase (g = 4. - A < 0) is differentiated from the
disordered phase (g > 0) by afinite value ¢, # 0 of the potential minima,
which determines the offset of the oscillation. In the disordered phase,
theseare oscillations of the sign of the order parameter, hence they do
not have the symmetry of a ‘Higgs’ mode. Beyond the changing offset
¢,, this simplified picture reproduces the increase of the oscillation
amplitude A and the decrease of the frequency @ when approaching
the phase transition. To further investigate this amplitude mode, we
prepare lower-energy biased states by softening the pinning field
(smaller|6|). We find a corresponding decrease in the oscillation ampli-
tude A and the frequency w with a sharper dependence near the QPT
(Fig. 5d and Extended Data Fig. 7), in agreement with Landau theory.
The oscillation frequency of these lower-energy states shifts close to
the many-body gap. To explore the ‘Higgs’ mode deep in the ordered
phase, where our state-preparation scheme generates low-amplitude
oscillations, we use an alternative experimental protocol, as detailed
inMethods and shown in Extended Data Fig. 9.
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Fig.4|Curvature-driven dynamics. a, We create two separate
antiferromagnetic orderings with azigzag domain wall between them. During
thehold time, the domainwall straightensinto avertical line. b, Horizontal
cuts of the staggered magnetization at points where the domain wallis locally
curved (red and blue) versus straight (green and yellow). At points of high local
curvature (red and blue), the domain wall moves towards the centre of the
domain, whereas at points of low local curvature (green and yellow), the
domain wall remains stationary. ¢, The domain wall’s horizontal position for
eachrow (asindicated by the colour ofeachrowin theinset) as afunction of the
hold time.Inrows where the domainislocally curved, the domain wall moves
towards the centre. Alldatashown are with Q/2m = 6.0 MHz; bis measured at
A/Q=3.0andaandcat4/Q=2.5.

These order -parameter oscillations present a unique probe of the
quantum critical point. In particular, the ratio of the oscillation freque-
ncies onthe twosides of the QPTis universalin equilibrium, and pre-
dicted tobe w(-|q|)/w(|q]) = /2 (ref.47) by Landau mean-field theory.
However, our experimental results, in which w(-|g])/w(|g|) > 2
(Extended Data Fig. 10), indicate a significant deviation from this
simplistic prediction, broadly consistent with more advanced calcu-
lations predicting w(-|q|)/w(|q]) = 1.9 (see discussion in Methods).
The discrepancy with mean-field results emphasizes the central role
of quantum fluctuations, and in particular, finite-momentum
order-parameter fluctuations, in the vicinity of the QPT. The dynam-
icsofthese fluctuations are also expressed in the progressively larger
oscillations of the correlation length (Fig. 5e) and asharpincreasein
the damping term y (Fig. 5d) observed upon approaching the critical
point.
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Discussion and outlook

Our observations shed light on paradigmatic collective processes
in closed non-equilibrium quantum many-body systems, highlight-
ing the important role of coarsening dynamics and revealing their
curvature-driven character in systems with a non-conserved order
parameter®?. Crucially, we measure an acceleration of the ordering
processes when approaching the phase transition, a signature of the
intrinsically quantum nature of the dynamics®. Although we observe a
scaling collapse of the structure factor suggestive of self-similarity®,
the dynamically varying amplitude b(¢) deviates from the expected
universal behaviour. As discussed in Methods, this deviation could
originate from finite-size effects (as well as, potentially, residual
disorder or decoherence), and its detailed understanding consti-
tutes an interesting theoretical problem*. Similar mechanisms may
account for the slowdown of coarsening at late times observed in
Fig. 1c,d. Further evidence for the role of finite-size effects is pro-
vided by measurements involving local control: we find that the
dynamics of domains seeded away from the system’s boundaries
(Fig. 3) are in much closer agreement with universal theoretical
predictions.

Inaddition, we observe the concurrent excitation of the ‘Higgs’ mode
upon crossing the phase transition. Investigation of this mode yields
detailed information onimportant observables—such as the damping
rate of the order parameter/‘Higgs’ mode in the vicinity of the phase
transition—whichare difficult to access classically*s. For the numerically
accessible systemsizes and bond dimensions, our simulations cannot
capture the dampingratey, and generally break down near the critical
point (Methods). More generally, the possible interplay of coarsening
with the ‘Higgs’ mode presents an intriguing question that warrants
further theoretical investigation.

These studies can be extended along several directions. Several
recent experiments demonstrated universal dynamics far from equi-
librium, often interpreted through the framework of non-thermal
fixed points*, including observations of simultaneous infrared and
ultraviolet scaling laws>**° and classification of universality classes™.
Similar phenomena can be explored in non-mean-field systems near
the QPT using programmable simulators. Conversely, manifestations
of quantum criticality and ‘Higgs’ modes in non-equilibrium Bose
gases may also be intriguing to explore. In contrast to traditional
condensed-matter systems, programmable quantum simulators can
directly access correlation functions of any order*® as well as other
important observables, such as the entanglement entropy**, using,
for example, hybrid digital-analogue approaches®**, These could
provide further insights into complex dynamics, particularly near
the quantum critical point, where numerical calculations are pro-
hibitively challenging. Besides the symmetry-broken ordered states
probed in this work, it would also be interesting to extend our study
of coarsening dynamics to the formation of topologically ordered
states of matter*®**¢, which cannot be characterized by local order
parameters. In addition, local programmability may be used to
explore the tunnelling of metastable states, known as false vacuum
decay”.

Note added in proof: During the completion of this work, we
became aware of related work demonstrating coarsening phenom-
enadriven by quantum fluctuations on asuperconducting quantum
processor®.

Online content

Anymethods, additional references, Nature Portfolio reporting summa-
ries, source data, extended data, supplementary information, acknowl-
edgements, peer review information; details of author contributions
and competinginterests; and statements of data and code availability
are available at https://doi.org/10.1038/s41586-024-08353-5.
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with periodicboundary conditions, of theinitial pinned state (blue) and the Z,
state (green) relative to the ground state, as well as the gap to the first excited
state (red). The pinned state ismuch lower inenergy than the Z, state at finite
detuning. ¢, Schematic of the effective potential for the amplitude mode.

d, Oscillation parameters extracted from fitting ¢ (¢) = ¢, + Acos(wt + Oy)e"
todatashownina. Left: measured oscillation frequencies (red points), plotted
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gaps (bothforal0 x 10 lattice). A lower local detuning | §] leads to oscillations
oflower amplitude and frequency (orange). Oscillation frequencies of the
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Methods

Experimental platform

A detailed description of our experimental platform is given in
refs. 11,60. All measurements are realized using a two-dimensional
programmable quantum simulator based on Rydberg atom arrays.
Single ¥Rb atoms are stochastically loaded into optical tweezers
shaped by a spatial light modulator (SLM), and then rearranged into
defect-free patterns using a pair of crossed acousto-optic deflectors.
Both sets of tweezers use 852-nm-wavelength light. The atoms are
thenlaser-cooled and optically pumped to the |5S, ,, F=2, m =-2)
state, which we denote as|g) in the main text. A pair of counterpropa-
gating lasers at 420-nm and 1,013-nm wavelengths couple|g) to the
highly excited Rydberg state |r)=|70S,,,,/= % m;=- %} through a
two-photon transition through the 6P, , orbital, blue-detuned by
approximately 2m x 2.4 GHz withrespect to the 5S, , > 6P, , transition.

We use 16 x 16 lattices of atoms, and maintainan R,/a ratio of 1.12-1.15,
such that only nearest neighbours lie within the blockade radius.
Owing to the rapid fall-off of the van der Waals term, only nearest-
and next-nearest-neighbour interactions meaningfully contribute
to our observations. The data shown in the main text are taken with
two-photon Rabi frequencies of either Q/2m=3.8 MHz, Q/21t = 6.0 MHz
or /21 =3.1 MHz, with corresponding lattice spacings a = 6.8 um,
a=645umora=715pmandR,/a=1.15R,/a=1120orR,/a=1.13. The
1,013-nm and 420-nm single-photon Rabi frequencies are approxi-
mately balanced (Q, o3 = Q,,). The experiment time T, sweep param-
etersand lattice spacings are all rescaled for different Q, such that Q/4,
R./aandthetotal phase accumulated QT are constant when comparing
different experimental configurations.

To observe coarsening, the sweep rate through the critical point
must fall within a certain range. A sweep rate that is too slow would
create alow-energy state, and consequently, the coarsening dynam-
ics may be too slow to measure. In contrast, a very fast sweep or an
instantaneous quench could inject too much energy and bring the
system out of the ordered phase (which persists up to afinite energy
density). Here, all measurements use linear sweeps with sweep rates

f% = ﬁ x 3.0, which, we find, falls within the desired range.

For the global sweeps, we apply post-selection based on the success
of the rearrangement protocol, selecting shots with <4 defects. This
threshold retains anaverage of 93% of shots over all end-detuning values
presented inFigs.1and 2a,b. In addition, we post-select on measurement
results to discard runs in which we suspect large-scale errors have
occurred. Owing to the high energy of the Rydberg blockade, a large
number of blockade violations are extremely unlikely to be naturally
generated by the coherent dynamics of equation (1). Furthermore, as our
projective measurement cannot differentiate |r) occupation from loss
induced by other mechanisms, we attribute the presence of alarge num-
ber of apparent blockade violations to manifestations of unwanted noise
processes, such as blackbody-induced avalanche decays®'. We therefore
discard runswhere the longest chain of consecutive atomsinasingle row
orcolumndetected instate|r)has alength of more than four sites. Small-
scale exactdiagonalization (ED) numerical simulations supportthatthe
probability of reaching such states from purely unitary dynamicsis neg-
ligibly small. Imposing this post-selection threshold retains 92% of the
data. Imposing both rearrangement and avalanche post-selection, we
retain 86% of the global-sweep shots across all end-detunings presented.
We note that the post-selection is most significant for the longest times
and largest detunings presented (¢ =1.16 pus, 4/Q =4 in Extended Data
Fig. 2d), as larger number of shots are corrupted through avalanche
decays and we only retain 63% of the shots at the longest time step.

Local control

To enable individual single-site addressing of atoms with a local light
shift, we use an SLM (Hamamatsu LCOS-SLM X15213-02) to generate
optical tweezersinarbitrary spatial patterns withabeamwaist of 1 um,

ensuring robustness to atomic position fluctuations (Extended Data
Fig.1). The wavelength we choose to operate at, 784 nm, achieves a
measured differential a.c. Stark shift between the 5S,, and 5P, , states
0f12.2(3) MHz with about 160 pW per spot, but a negligible scattering
rate (about 35 Hz) (the scaling of the light shift with laser amplitude is
shownin Extended Data Fig. 1c). The light is linearly polarized to min-
imize vector light shifts on the ground-state hyperfine manifold. We
further measure the shift on the|g) - |r) transition and find that the
light shiftis well approximated by the differential 5S,/, > 5P, light shift
as 6, =—2m x 12(2) MHz at the same power per spot.

The phase holograms for the SLM are generated using the phase-fixed
weighted Gerchberg-Saxton algorithm, takinginto account the desired
positionand relative intensity of the local light-shift pattern®. We first
generatealocal addressing pattern that closely matches the positioning
ofthe atomic tweezer array; however, perfect matching of the two arrays
iscomputationally expensive asit requires an extremely high sampling
rate of theimage plane of the local addressing pattern. To overcome this
computational barrier, after creating aninitial local addressing pattern,
wealignitto the atom positions by transforming the phase hologram.
By stretching, rotating and applying tilts and defocus, we can match the
two patterns with feedback on the atom signal. The latter three can be
easily controlled using Zernike polynomials, whereas the stretching and
rotation require more care to preserve the intensity homogeneity of the
desired pattern. We find that naive rescaling or rotating of the hologram
results in unwanted distortion of the intensity pattern, attributed to
software interpolation when working with a pixelated hologram. This is
mitigated by applying the computational corrections inthe image plane.
Wetake the Fourier transform of the hologram, convolve the intensity
profile with a two-dimensional Gaussian to broaden each spot over
several pixels (to minimize effects of interpolation), and then apply the
rotation and stretching. Lastly, we apply an inverse Fourier transform
backtothe Fourier plane and use the resultant phase hologram for the
SLM. Using this procedure, we first coarsely align the individual address-
ing pattern to the tweezers on a camera, and then precisely align the
two using a spin-echo measurement of the light shift (Extended Data
Fig.1b) to optimize the alignment parameters such that the intensity is
maximized at the atom sites. Good alignment is also crucial to prevent
atomloss from turning onamisaligned potential. Finally, we correct the
tweezer intensities as required using the fitted light shifts to feedback
onthe target weights in the hologram generation.

Examples of states prepared using such tweezer profiles, where the
detuning is used to strongly pin atoms to the ground state, are shown
in Extended Data Fig. 1d. At the boundary between different antifer-
romagneticorders and the edges of the array, the mean-field repulsive
interaction strength decreases for sites with fewer Rydberg neighbours;
wetherefore weight the local detuning strength inverse-proportionally
to the number of neighbours. It is noted that when arbitrary weight-
ing is used, the total power remains constant (number of addressed
sites x 21t x 12 MHz), but the power is redistributed in the tweezers
accordingly. Nevertheless, particularly at large 4/Q, neighbouring
Rydbergexcitationsstart to be energetically favoured (antiblockaded)
along the domain boundaries. Excluding such edge effects, the prepa-
ration probability of preparing the single-atom ground state on the
pinned sites is 93-95% (Extended Data Fig. 1e).

For other realizations of single-site addressing using light shifts in
atom arrays, see, for example, refs. 63,64.

Theoretical background of coarsening dynamics

In this section, we summarize the theoretical details of the different
kinds of coarsening processes that govern the dynamics of the sys-
tem as long-range order is formed. Although our focus will be on the
Rydberg atom array, to begin, let us consider the generic situation of
asystemdriventhrougha continuous QPT by tuning some parameter
of the Hamiltonian, g, linearly with time. Without loss of generality,
we assume that the quantum critical pointis located at g= 0 and the
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zero of time is set such that g(¢) = ¢/7; hence, the system crosses the
quantum critical pointat¢= 0. For the specific case of the neutral atom
array considered in this work, the time-dependent parameter g can be
defined as g(¢t) = (A(¢t) - 4.)/Q.

Asthe system approaches the quantum critical point, its relaxation
time diverges and it necessarily falls out of equilibrium. However,
when it does so depends on the velocity of the linear ramp, g(¢t) =1/7.
The quantum KZM posits that the time at which the system’s evolu-
tion ceases to be adiabatic is £ = —ty, with ty; = t(T/t,)"*/***?, where v
isthe correlationlength exponent, zis the dynamical critical exponent
and ¢, is some microscopic timescale. Thereafter, as the system can-
not dynamically respond fast enough to the changing parameter
of the Hamiltonian, it remains ‘frozen’ through a so-called impulse
regime until alater time ¢ = +¢,,, whenit unfreezes on the other side of
the QPT. During this impulse regime, the KZM presumes that the sys-
tem’s correlation length remains the same as when it initially froze:
&, = lo(T/te)""***?, where , is some microscopic length scale. As a con-
sequence, in this picture, the correlation length in the ordered phase
isalso set by &, with no subsequent dynamics.

However, the non-equilibrium correlation length of the system, £(¢),
can and does grow in both the impulse regime and the ordered phase
asthelong-range correlations take time to develop. In the experiments
described in the main text, this occurs via a two-step process. First,
as the system passes through the quantum critical regime, it under-
goes quantum critical coarsening, which is governed by the dynami-
cal critical exponent z of the particular quantum critical point; for
the (2+1)-dimensional Ising transition, z=1. Then, as time progresses
and the ramp continues, the system eventually enters the ordered
phase. Here, once the growing non-equilibrium correlation length £(¢)
exceeds the equilibrium correlation length of the quantum ground
state (which, recall, scales as §, ~ |g|™), the dynamics cross over to a
regime of non-critical coarsening, for which

ato  &°c ©)
de " €

where gisthe many-body gap between the ground and the first excited
states. The dynamical exponent zyis dependent on the dimensionality
and conservation laws of the system. For curvature-driven coarsening
dynamics withanon-conservedscalar order parameter—asisindeed the
case experimentally—z, =2 > z. A particular feature of non-critical coars-
ening worth emphasizing is the dependence of the dynamics on the
distance to the quantum critical point encoded in equation (3). Specifi-
cally, the ground-state equilibrium correlationlengthscalesas {, = |g|™
andthe gap € = |g|"*. Plugging in the exponents of the (2+1)-dimensional
Ising QPT,v=0.629 and z=1, along with z, = 2, in equation (3), we find
the growth law

d&@) _(4-4)°
d &0

Thisrelation canbe observed inFig. 3, which studies the rate at which
alocallyintroduced domainin the centre of the array shrinks. The area
of such a domain decreases at arate dr’/d¢ = —£d€&/d¢, which scales as
(4-4.)9%, consistent with the behaviour observed in Fig. 3d.

For aramp that continues indefinitely without stopping, the entire
dynamical evolution of the correlation length can be described by a
single universal scaling function encompassing the adiabatic, quantum
critical coarsening and non-critical coarsening regimes®”*%

“)

f(r)szzf[é] =E,f (0), )

where f(x) is some universal function, and §; and ¢, depend on the
ramp rate 7 as specified earlier. The scaling variable x delineates the
three regimes discussed above as

x<-1: adiabatic,
|x| < O@1): quantum critical coarsening, (6)
x> 1: non-critical coarsening.

More generally, if the ramp is stopped at a time ¢, the dynamical
scaling formis altered to

€0 =&, f(i lfK—Zj =&, FOox); %)

forx < x,, onerecovers the earlier scaling as F(x, x,) = f(x). If the ramp
is stopped at x, = t,/t,; > 1 in the non-critical coarsening regime, the
behaviour of the universal scaling function for x > x, describes the phys-
ics during the hold time and is given by

Fox,xg) = x. V20— C ) V24, (8)

forsome O(1) constants C> C,. Itis noted that because z < z, the coars-
ening speeds up as we stop earlier in the ordered phase, closer to the
quantum critical point (whichresultsinalowerx;). Thisisindeed what
we observe experimentally during the hold time following global
sweeps across the phase transition, as shown in the inset of Fig. 1c.
Intuitively, thisis because asmaller 4/Q corresponds to agreater rela-
tive influence of critical coarsening, which is faster than non-critical
coarsening.

In contrast, near the thermal phase boundary, the system can
undergo aninterval of classical critical coarsening, whichis described
by agrowth law £(¢) = t¥Z with a distinct dynamical exponent. For the
two-dimensional classical Ising phase transition, zZ = 2.16 > z4 (ref.43),
so the growth of correlations through classical critical coarsening is
slower than for non-critical coarsening. Correspondingly, the dynam-
icsshould decelerate as one approaches the classical critical point, in
sharp contrast to the speed-up outlined abovein the vicinity of aquan-
tum critical point.

Structure factor and correlation length

To extract the structure factor and the correlation length®, we first
calculate the two-point connected correlation function G(r, r,) =
(Z,Z,)-{Z, %Z,,y and then average over all pairs of points with iden-
tical displacementsr:

Zl‘prz G(rlr l‘2) 6r1—r2,r
Zrl,rz 6"1"’2’1‘

We first derive the standard structure factor by computing the
Fourier transform of G(r)

G(r)= 9)

S(k)=AIGr)]=Y e ™**G(r), 10)

and then calculate the radially averaged structure factor

Zk S(k) 6|k|’k
2e bk

To extract a correlation length, we fit S(k) to:

S(k) = (11)

So

Shy=—>0
1+ €47

(12)

and we factorize S, as S, = b€*/m. This form of equation (12) is equiva-
lent to assuming that the position-space correlations follow an expo-
nential decay, G(r) :Aexp(—g) (ref. 11), up to finite-size corrections.
Although equilibrium considerations for aninfinite-size system suggest



that for small k, S(k) should obey the Ornstein-Zernike form S(k) =

Sg 5 (ref. 66), we empirically find that equation (12) better captures
gugr I(()bserved non-equilibrium distributions.

For universal coarsening dynamics, we theoretically expect b to
be constant. Although our data indeed show scaling collapse as in
equation (12), we find that b varies during the dynamics, indicating
the presence of anadditional length scale(s). We observe that bis cor-
related with {and depends on 4/Q, as shown in Extended Data Fig. 3c.
Additional length scales that may affect the dynamics include the finite
system size, the finite width of the domain walls (which depends on
4/0Q), spatialinhomogeneity in4 and/or Q,and length scales introduced
by decoherence effects such as decay owing to the finite lifetime of
the Rydberg state.

Specifically, the expected universal scaling regime is expected to
hold for distances r and correlation lengths {such that [« rand § < L,
where lis the width of adomain walland L is the system size?, indicating
that finite-size effects probably have animportant role in the present
experiments. Hence, observing the theoretically expected univer-
sal coarsening behaviour in global quenches would probably require
access to larger system sizes and correspondingly longer experiment
times. Although recent experimental advances in neutral atom array
platforms suggest that lattices more than an order of magnitude larger
than the one presented in this paper are within reach?, elsewhere we
describe the use of local control to deterministically nucleate and study
domain dynamics away from the system’s boundaries, allowing us to
study universal properties of coarsening under present experimental
conditions.

Analysis of domains inglobal sweeps

Using single-site-resolved detection, we can map out the domains
in each snapshot. First, we calculate the local staggered magnetiza-
tion. Each domainis thenidentified as aregion of the array where the
same ordering AF, or AF, is connected by nearest neighbours. We do
not consider single spins of opposite order as a separate domain. For
Fig.2a,b, we therefore first identify and correct individual spin flips.
These are identified as single atoms that are of the opposite order
compared with all of their nearest and next-nearest neighbours. Only
after we have identified single spin flips and corrected them to match
their surrounding bulk order do we identify the domain boundaries.
A domain’s areais defined as the total number of atoms comprising
the domain. For the probability distribution of domain occupations
presented in Fig. 2a, the frequency of each domain area is weighted
by the area of that domain. We normalize the distribution by the sum
of all area-weighted frequencies at each time step.

Classical energy analysis

To calculate the classical energy per single shot of the experiment, we
first perform the single-spin-flip correction as described above. We
thenidentify regions of the array that do not belong to either antifer-
romagnetic ordering by calculating a coarse-grained local staggered
magnetization with a similar approach to previous studies". In this
work, specifically, we calculate the convolution C,, of the Rydberg

010
occupation n,, with thekernelW=|1 0 1 | for eachsnapshot. The
010

output values of C, ,range from O to 4, where the extremal values cor-
respond to atoms surrounded by nearest and next-nearest neighbours
that all belong to the same AF orderings, as shown in Extended Data
Fig. 4a. We consider an atom to be at aboundary if n(x, y) =1(0) and
C,,*0(4) (Extended DataFig. 4b).In the raw array (not single-spin-flip
corrected), we then compute the classical energy using equation (2)
for each snapshot. The value of the interaction energy of nearest-
neighbour sites (V,,)) is calculated from the lattice spacing (a) and V,,
as V,, = V,/a’.Forthe dataset presentedin Fig. 2c, V; = V,,/2m =11.69 MHz
for Q/2m =6 MHz. We also account for next-nearest-neighbour

contributions. For each next-nearest-neighbour Rydberg atom per
snapshot, an additional V,,,/21t =1.46 MHz is considered in the classi-
cal energy. The effects of longer-range interactions are negligible. By
using the spin-flip-corrected lattice for domainidentification and the
uncorrected one for the subsequent energy calculation, single spin
flips that occur contribute to the classical energy inidentified domain
walls and bulk orderings but not as separate domains. We exclude the
layer of atoms closest to the edge of the array for all contributions to
the classical energy. Itis noted that for the classical energy calculation
in Fig. 2c, we post-select such that the maximum number of directly
adjacent Rydberg atoms can be no more than three (compared with
four used throughout this work). Owing to the sensitivity of the bound-
ary identification procedure used here to correlated decays, this
post-selectionis slightly stricter. Inthe data presented in Fig. 2c, as the
data are at high end-detuning, we retain 69% of data owing to the ava-
lanche post-selection and 84% owing to rearrangement post-selection.
Overall, we retain 58% of data.

Analysis of locally prepared domains

We estimate the local radius of curvature R given in the equation
0,R? =-v,as theradius, r, of the central domainin Fig. 3. The radius ris
defined as the Manhattan distance, d,,,, at which the radially averaged
local staggered magnetization, m,, crosses zero (Extended Data Fig. 4c).
We consider Manhattan distances instead of Euclidian distances from
the centre of theinjected domains as the former is more representative
of the nearest-neighbour interactions dominating the dynamics for
very short times (on the order of one Rabi cycle). For long times, both
measurements of distances inour lattice reveal a collapse to the linear
formshowninFig.3c. For this analysis, we consider only the unpinned
sublattice. Thelocal state-preparation protocol prepares states where
atoms that are locally detuned are prepared in |g) with high probabil-
ity for all values of A/Q (Extended Data Fig.1d). We observe that for 4/Q
closetothe QPT, thereis alarger discrepancy of the local order param-
eter mibetween the pinned and unpinned sublattices. Therefore, when
considering both sublattices, the radius is less clearly defined by a
single point at which the order parameter crosses zero. We fit a linear
relationship to extract dr’/dtat each 4/Q.

A similar procedure is followed for the analysis of the coarsening
dynamicsinthezigzag domain wallin Fig. 4. Here too, the mean value
of the local order parameter m, is calculated at each lattice site per
time step. For Fig. 4c, the domain wall’s horizontal position is cal-
culated as the point at which the linearly interpolated line between
points crosses m, = 0. In Extended Data Fig. 4d, we show the variation
of the domain-wall position with hold time for two additional values
of A/Q. These data points reinforce the strong 4/Q dependence of the
domain-wall velocity already seen in Fig. 3¢,d. It is noted that for this
analysis, weinclude atoms that wereinitially locally detuned aswe are
considering each row separately. We therefore see larger uncertainty
in the domain walls’ positions for low 4/Q (Extended Data Fig. 4d).

Errorsin Figs. 3c and 4c, and Extended Data Fig. 4d are calculated
using bootstrapping. Fromthe full set of experimental single snapshots
of size N= 600 shots, we sample N times with replacement and calcu-
late the value of interest (r? or the horizontal domain-wall position x)
on each sample. The plotted error bar is the standard deviation of
the value of interest, calculated from 1,000 repetitions of the above
procedure.

Numerical simulations of local domains

We simulate the dynamics of locally prepared domains using the
time-dependent variational principle (TDVP)**®%, We use a two-site
variant of this algorithm, which allows the bond dimensionto grow with
the evolution time at the expense of forgoing strict energy conservation
owing tothe truncationstepinvolved. In our calculations, we find that
the energy is conserved to within 0.004% of that of the initial state up
to the longest times simulated.
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The initial states for the numerics are chosen to be a mean-field
approximation of the experimentally prepared state. Specifically, we
pincertainlattice sites to|g), as specified by the target configuration,
and the remaining ones are set to the vector on the Bloch sphere that
minimizes the system’s mean-field energy for a given 4/Q (instead of
the fully polarized|r) state). The many-body evolution is simulated
using a maximum bond dimension of x=1,200 with a time step At of
0.2 07! (the dynamics are also consistent with those for a smaller
At=0.10Q7").Theresults thus obtained are showcased in Extended Data
Fig.5and are found tobe in good agreement with the experiments.

Amplitude/‘Higgs’ mode

Background and theory. To describe the observed amplitude mode, we
consider the low-energy effective action that describes the transition
between the disordered and antiferromagnetic phases. Its Lagrangian
isthe ¢* theory

CIp1= S0P + (V- g0~ 20", 1)
where ¢ corresponds to the coarse-grained order parameter of the anti-
ferromagnetic phase. Although the phase transitionis described viathe
Wilson-Fisher fixed point, here we perform a simple mean-field treat-
ment of equation (13) to capture the physics away from theimmediate
vicinity of the transition. In particular, the classical mean-field equa-
tion of motion for the order parameter’s expectation valueis given by

0P =-(a+19)p, (14)
which correspondsto a classical anharmonic oscillator. The stationary
value of the order parameter is given by ¢, = O in the disordered phase
(g>0)and Py=2+ {—q/A onthe ordered side of the transition (g < 0).
Expanding equation (14) for small amplitudes, ¢ = ¢, + 6¢, around the
potential minima leads to harmonic oscillations of the order param-
eter with frequencies w(g>0) = /g and w(g< 0) = .[2|q|.

Numerical simulations. We first investigate the low-energy spectrum
of the two-dimensional Rydberg Hamiltonian at different values of
A/Q using the excited-state density-matrix renormalization group
method, which iteratively finds the lowest-energy eigenstate that is
orthogonal to previous lower-energy eigenstates. Our simulations
takeintoaccount van der Waals interactions up to third-nearest neigh-
boursonthesquarelattice. We identify the gapped paramagnetic and
spontaneous-symmetry-breaking phases, and obtain the ground-state
energy as well as the energy gaps AE, and AE, of the first two excited
states above the ground state (in the spontaneous-symmetry-breaking
phase, the first excited state that we identify is the symmetry-related
ground state). In Extended Data Fig. 6a, we perform bond-dimension
scaling for AE;and AE,onal0 x 10 lattice with openand periodic bound-
ary conditions up tobond dimensions y = 512 and xy = 256, respectively.
We note that although the energy gap in the paramagnetic (disordered)
phase is robust to boundary conditions, in the spontaneous-symme-
try-breaking (ordered) phase, we identify a distinct boundary energy
gap (Extended Data Fig. 6a(i)) thatis smaller than the bulk energy gap
(Extended Data Fig. 6a(ii)). In the dynamics, the coupling of the order
parameter to the boundary mode vanishes with increasing systemsize,
and we thus consider the bulk gap extracted from periodic boundary
conditions as the relevant frequency of the amplitude (Higgs) mode.

Furthermore, we perform density-matrix renormalization group
calculations to obtain the initial state of the quench dynamics shown
inFig. 5, which is the ground state of the Hamiltonian with additional
local detunings |6|/Q = 0.7 that pin one sublattice of the chequerboard
to the ground state. We evaluate the energy expectation value of this
initial state with respect to the unpinned two-dimensional Rydberg
Hamiltonian, and compare this with the energy of a Z, product state,
confirming thatthe pinned stateisindeed alow-energy state (Fig. 5b).

Dynamics from the low-energy pinned initial state lead to amplitude
oscillations at frequencies matching the ground-state gap, which we
simulate using TDVP***®ona10 x 10 lattice at abond dimension y = 256.
We use time steps of 0.25 O and have verified that the resulting dynam-
ics agrees with smaller time steps of 0.1Q". As seen in Extended Data
Fig. 6b, for small systems with open boundary conditions, the dynam-
icsinthe ordered phase (here, 4/Q = 2) are dominated by a slow mode
with frequency matching the boundary gap shown in Extended Data
Fig. 6a(i). On top of this slow mode, we see the presence of amode
with higher frequency matching the bulk gap shownin Extended Data
Fig. 6a(ii). Therefore, in the following, we consider dynamics with peri-
odic boundary conditions, which allow us to isolate the bulk mode.

In Extended Data Fig. 6¢, we observe clear oscillations of the order
parameter deep in either phase, which we fit to a damped harmonic
oscillator ¢(t) = ¢, + Acos(wt + 6o)e " with frequency w, damping y,
offset ¢, and amplitude A. We show the dependence of these param-
eters on theratio 4/Qin Extended Data Fig. 6d. Away from the phase
transition, the oscillation frequencies overlap with the previously
obtained ground-state energy gaps and are robust to system size. We
further see that the damping and amplitude become larger towards
thetransition, where the offset acquires anon-zero value. Close to the
transition, the TDVP dynamics fails to converge inbond dimension and
fit to the damped harmonic oscillator’s functional form, as apparent
in Extended Data Fig. 6¢(ii). Moreover, even away from the critical point,
the limited bond dimension does not capture a finite damping rate of
the oscillations.

Dependence on local detuning strength. We experimentally inves-
tigate the dependence of the amplitude mode on the strength of the
appliedlocal detunings at two points,4/Q=0and 4/Q=1.1.These data
are obtained by performing the state-preparation sequenceillustrated
inFig.3afor varying strengths of the applied local Stark shift 6. For all
other uses of thelocal detunings in this work, the pinningis applied at
a constant magnitude, §, = —21 x 12(2) MHz, and the corresponding
state preparation for various 4/Q is documented in Extended Data
Fig.1c,d. Here, this strength is varied to much lower values than for
the saturated pinning of the ground state (0.04-0.16,) in the rest of
the work (as indicated in Extended Data Fig. 9a,b) before significant
differencesin the resultant oscillations are observed.

We find that at both values of 4/Q considered, the amplitude of the
oscillationsis progressively reduced as |6| is decreased. The frequency
ofthe oscillations also decreases with |§]. The change in the oscillation
frequency is more pronounced for oscillations near the critical point
thaninthe disordered phase. The § dependence of the oscillation fre-
quency, as well as the increased sensitivity near the phase transition,
are qualitatively consistent with the behaviour of an anharmonic oscil-
lator, as predicted by the mean-field equation (14).

Amplitude mode in global sweeps. The ‘Higgs’-mode dynamics
are also apparent in parallel to coarsening, as manifested in the oscil-
lations of the magnetization n; (Extended Data Fig. 8a). In addition,
they can be clearly discerned by observing the dynamics of the total
magnetization of the two-point correlation functionin position space
C(r), as shown in Extended Data Fig. 8b-d. The frequency of the os-
cillations of the correlation length closely support those extracted
fromthe quench protocol described below (Extended DataFig.9) and
the calculated ground-state energy gap (the global-sweep data are
plotted in purple in Fig. 5). As mentioned earlier, the interplay of the
amplitude mode with coarsening dynamics is generally unexplored
theoretically. Therefore, we note further exploration of the two pro-
cesses occurring in parallel, as a possible future extension of this
work.

Quenches in the ordered phase. Although ‘Higgs’ oscillationsin the
ordered phase can be extracted by the state-preparation sequence



through deterministic preparation withlocal detunings, as describedin
Fig.3a, theamplitude of the oscillationsis substantially reduced when
compared with thatinside the disordered phase (see 4/Q=1.5inFig.5).
We therefore perform an alternative state-preparation sequence to
extract the amplitude-mode frequencies deep in the ordered phase,
asshownin Extended Data Fig. 9a. First, local detunings are applied in
achequerboard pattern as the global detuning 4 is swept from nega-
tive values to 4/Q =3.3, a point far inside the ordered phase. We hold
the global detuning constant while quenching off the site-dependent
6. At this point, we quench 4 toits final detuning value in the ordered
phase, but closer to the phase transition. By way of this protocol, we
observe, as withall other sweep protocols presented thus far, long-lived
oscillations of the order parameter and correlation lengths as shownin
Extended DataFig. 9b,c. The extracted oscillation frequencies w arein
close agreement with the ground-state energy gapinthe ordered phase.
Itisnoted thatinFig. 5d, the pointsinredat4/Q=2.0andA/Q=2.5are
measured through this quench protocol.

Frequency doubling. From the above-mentioned quenches to the
ordered phase aswell asindatafrom the local protocol, we extract the
oscillations in both the order parameter and the correlation lengths.
We find, as shownin Extended Data Fig. 9d, thatin the ordered phase,
these two frequencies are approximately equal, whereas in the dis-
ordered phase they vary by We/ W =2. The changing relationship bet-
ween the two observables can be understood by the following symme-
try argument.

We begin by taking into account the dynamics of order-parameter
fluctuations within a Gaussian approximation. Neglecting corrections
to the effective mass due to fluctuations, the relevant equations of
motion are®*’;

0,Dp%=2Dg%, (15)
0.t =D% - (k*+q+319*)DYY, (16)
Dy =-2(k>+q+31p*)D{Y, a7

where m,(¢) = 0,¢,(t) and D% = (@ (-k, t)p(K, t)).. From the correlation
function D%, which corresponds to the structure factor discussed in
the main text, one can extract the evolution of the correlation length.

Expanding ¢ = ¢, + 6¢ and D% =D + 6DP%, in the disordered
phase, an eigenmode analysis of equations (15)-(17) yields afrequency
spectrum 2./k”+ q. The smallest frequency, which is expected to set
the correlation-length oscillations®, is thus 2. /g, that is, twice that of
the order parameter. In contrast, in the ordered phase, equation (16)
containsaterm 6/1¢0D$¢6¢(t), and the oscillation of the order param-
eterthusactsasalinear drive on the dynamics of two-point correlation
functions. As such, the correlation length will oscillate at the corre-
sponding frequency \/qu of the order parameter.

Frequency ratio of oscillations. In Extended DataFig.10, we present
the full dataset of amplitude-mode oscillations (also shown also in
Fig.5) asafunction of the distance from the phase transition. As des-
cribed above, Landau mean-field theory predicts the relationship
between oscillation frequencies to bew(-|q|)/w(|q|) = /2 (refs.13,47).
However, beyond mean-field theory, the phase transitionis described
by the Wilson-Fisher fixed point, and the universal frequencyratiois
shifted accordingly. Theoretical estimates based on both analytical
and numerical methodsyield afrequency ratio around w(-|q|)/w(|q|) =
1.9 (refs. 48,70-72). We find that both the experimental data and
matrix-product-state simulations deviate from the mean-field predic-
tionand are suggestive of asimilarly higher ratio. However, very close

to thecritical point, |(4 - 4.)/Q| 5 0.3, we observe deviations from this
theoretical ratio. Possible explanations (besides the limited bond
dimension for the matrix-product-state data) include finite-size effects
(resulting, for example, in anon-vanishing gap at the QPT point), pos-
sible errors in the QPT location, and the possibility that sufficiently
close to the transition, the overdamped oscillations may no longer
track the ground-state excitation gap. In future work, a detailed explo-
ration of the region near the critical point through the amplitude mode
could allow for higher precision tests of this universal ratio.

Data availability

The datathat support the findings of this study are available from the
corresponding author onreasonable request.
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Extended DataFig.1|Application oflocal detunings. a, Inadditionto the
SLMused foratom trapping, asecond SLM generates aset of superimposed
tweezersthat canapply arbitrary detuning profiles to the atoms. The pair

of crossed AODs for local hyperfine control®® are not used in thiswork. b, A
spin-echosequenceisused to measure and calibrate the differential AC Stark
shift of the local detuning beams on the ground-state clock transition. Darker
curvesindicate ahigher target detuning, weighted between1land 4, and the
grey curves for unaddressed sites demonstrate negligible crosstalk between
sites. The pattern here corresponds to arotated version of the domainsin the
maintext. ¢, Measured differential AC Stark shift of the 5S,, > 5P, transition.
Unlessstated otherwise (e.g., in Extended DataFig. 7), the laser amplitude used
is1, correspondingto =160 uW persite and imparting an approximate light
shift on the differentiallg) - |r) transition of 6,=-12(2) MHz. The amplitude

isthesquareroot of power relative to 160 uW. Whenssites are weighted, the
total powerimparted on the array remains constantbutis proportionally
redistributed. d, Thelocal detunings are used to prepare deterministic
checkerboard orderings, both for asingle global order (left) or for domains with
differentorders (right). A site polarization of unity, measured at the start of the
hold time for varying 4/Q, corresponds to|g) (|r)) for addressed (unaddressed)
sites, while -1 correspondsto the flipped state. Note that at finite 4/Q, the
polarization of |r) sites #1; atlarge 4/Q, mean-field shifts reduce the spin
polarizationofboth|g)and |r)along the domainwall. e, Dependence of the site
polarization on4/Qinthe bulk of the domain. As the local light shift becomes
weaker relative to the global detuning, the probability of preparing |g) sites
decreasesslightly.
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phase transition. The departure from the theoretically expected scaling
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staggered magnetization, for different hold times, at 4/Q=2.0.Inset: the
structure factors collapse onto asingle curve when the time axis is rescaled
by the correlationlength £(t) and the magnitude of the structure factor is

rescaled by atime-dependent amplitude £X(t)b(t). b, At various values of
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A/Q, thestructure factors at different time (left) collapse onto asingle curve
(right). Inthis case, we show data for 4/Q=3.0.c, Wefind aclear dependence of
amplitude b on the nonequilibrium correlation length £, and that their relation
isA-dependent.d, We further plot the dependence of amplitude b on hold time.
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c,Staggered magnetization radially averaged at each Manhattan distance from
thecenterofthe prepared square presented in Fig. 3. Theradius s extracted
asthed, at whichthelinearly interpolated m crosses O (red lines).d, Sweeps
tovarious end detunings for the motion of the zigzag domain wall shown in
Fig.4c.Theacceleration of the dynamics near the QPTis also clearly supported
for this shape of the domain wall. For both cand d, the left and right plots show
dataforA/Q=2.0and 4/Q=3.5, respectively. Alldatashownis for Q/2m=6 MHz.



Article

t=0.0ps t=0.05ps

t=01ps t=014ps t=0.19pus

b

Ma=15 °

=2.0

AIQ

d t=00ps t=0.05pus t=0.1pus t=014pus t=0.19pus e

0

- >

<

1] N

c .

B g

IS

o

I

Q

o o}

© 2

n ]

c ®

3 . g

-

o

0 0.2

. 0.4 0 0.2
Hold time (us)

. 0.4
Hold time (us)

Local order parameter Z,

Extended DataFig. 5| Numerical simulations oflocally prepared domains.
a, TDVP simulations of coarsening dynamics observed when the system s
initialized with asingle square domaininthe center (performedonal5x15
lattice). Theinitial state approximates the experimental state preparationin
Fig.3.b,c, Thechangein the radially averaged local staggered magnetization at
Manhattan distancesd, =0, 2, 8 fromthe center of the injected square.
AsobservedinFig.3e, thelayeratd, =2, closer tothe domainboundary,

10 1"

Distance

changes order before d,,= 0. We also find that similarly, the atoms in the bulk
(d,,=8) remainintheirinitially prepared order. In these simulations, aslight
accelerationinthe dynamicsisalso observed ongoing closer to the phase
transition. d, Simulation of the zigzag initial state described in Fig.4 onal6 x 15
lattice. e, Asinthe experimental results, the locally curved points of the domain
wall move towards the center of the domain while points with no domain-wall
curvature remain stable. Colors follow those also shownin the inset of Fig. 4.
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Extended DataFig. 6 | Numerical simulations of the amplitude mode.
a,Bond-dimensionscaling of the energy gaps AE,, AE, of the first two excited
states above the ground state asafunction of 4/Q, obtained viaDMRG on
al0x10lattice with (i) open boundary conditions (OBC), and (ii) periodic
boundary conditions (PBC). b, Order-parameter dynamics at4/Q=2,of an
initial state prepared with pinning fields 6,/Q=-0.7,ona10 x 10 lattice with
OBC, simulated viaTDVP withy=64,128. ¢, Order-parameter dynamics at (i)
A/Q=0, (ii) 4/Q=1.15, (iii) A/Q =2, of aninitial state prepared with pinning fields

6,/Q=-0.7,ona10 x10lattice with PBC, simulated via TDVP with y= 64,128 256.
The order-parameter dynamics are wellmodeled as adamped harmonic
oscillator, as shown by the fitting. d, Oscillation parameters (blue):

(i) frequencies, (ii) damping rates, (iii) offsets, and (iv) amplitudes as a

function of A/Q, obtained from functional fits to the numerical simulations
onalOx10PBClattice withy=128showninc.The frequenciesagree with the
bulk (PBC) energy gaps fora10 x 10 PBC lattice obtained in panel a(ii), and with
the oscillation frequencies for a8 x 8 PBC lattice, for comparison.
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Extended DataFig.7|Effect ofapplied local detunings on the Amplitude
mode. a, Amplitude mode oscillationsin the disordered phase at4/Q=0.

The magnitude of the applied local detuningsis varied asa fraction of §,=
-2mx12(2)MHz = - 40 (see Extended DataFig. 1c). b, “Higgs”-mode oscillations
for varying magnitudes of the local detunings at4/Q=1.1. Note that foraandb,
the frequency extracted here for §=0.068,=-Q/4 is plotted in yellow for
comparisoninFig.5.c-d, With decreasing magnitude of §, we observea
decreaseinthe oscillation amplitude (c) and frequency (d). The dependence
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ismore pronounced closer to the phase transition. This behaviour canbe
qualitatively captured by considering the anharmonicity of the Landau mean-
field potentialin Eq. (13) as the phase transitionis approached. e, Asalso seen
inFig.5, the dampingis stronger near the phase transition for both detunings.
f, The oscillationsat4/Q=1.1arecentered around finite ¢, suggesting a
transitioninto the ordered phase at this value. The datashown here is taken
forthesame Qasall other “Higgs”-mode oscillations, Q/2m=3.1MHz.
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Extended DataFig. 8| Amplitude mode after asweep through the QPT.
“Higgs”-mode oscillations are apparent in parallel to coarsening in multiple
observables. The oscillations presented here are observed following the
protocoldescribedinFig.1, with Q/2m=3.8 MHz. Note that we fit the the
oscillation after aninitial decay on the time-scales less than a Rabi-cycle.
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Extracted frequencies are consistentacross observables. a, Oscillations
of the magnetization(n;).b, ¢, d, Dynamics of the two-point correlation
functionin positionspace for various end detunings. We find that the
two-point correlators exhibit oscillations at frequencies for various values
of A/Qthatare consistent with the ground-state energy gap shownin Fig. 5.
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Extended DataFig.9|Ordered-phase quenches and frequency doubling.

a, Sweep profile for quenchesinto the ordered phase. Under a constant Rabi dive
atQ/2m=6MHz, the global detuning 4 is ramped from large negative values to
large positive values deepinto the ordered phase (4/Q2=3.3). The local detuning
Sisquenched off quickly over 50 ns. The global A is thenalso quenched down to
varyingfinal detuning values closer to the QPT. b, Oscillations of the staggered
magnetizationinthe ordered phase following this preparation sequence.

Inagreement with the Landau mean-field picture, these oscillations occur
around anonzero value of the order parameter m,. Note that we fit the the
oscillation after aninitial decay on the time-scale less than aRabi-cycle.

¢, Oscillationsin the correlationlength on top of agrowing background. d, Ratio
between oscillation frequencies extracted from the staggered magnetization
(@) and the correlation length (). In the disordered phase, wg/w , ~ 2 while
inthe ordered phase, this changestowg/w,, ~1.
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Extended DataFig.10 |Ratio between oscillation frequencies. factors closeto the phase transitionare apparent. b, Numerical simulations
a, Experimentally extracted oscillation frequency of the amplitude mode for using MPS methods on10 x 10 sites with periodic boundary conditions

the full dataset shownin Fig. 5aof the main text. The frequency s plotted with describedin Extended DataFig. 6. We again see approximate agreement with
respecttothe distance from the critical point, 4.=1.12 measured in".. We see theexpectedratio, as well asdeviations near the numerically determined
closer agreement with the theoretically predicted factor, w(-|qg|)/w(]q]) =1.9°7*  critical point4.=1.0.

than with the Landau mean-field ratio of /2. However, deviations from both
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