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Quantum coarsening and collective 
dynamics on a programmable simulator

Tom Manovitz1,8, Sophie H. Li1,8, Sepehr Ebadi1,7,8, Rhine Samajdar2,3, Alexandra A. Geim1, 
Simon J. Evered1, Dolev Bluvstein1, Hengyun Zhou1,4, Nazli Ugur Koyluoglu1,5, 
Johannes Feldmeier1, Pavel E. Dolgirev1, Nishad Maskara1, Marcin Kalinowski1, 
Subir Sachdev1, David A. Huse2, Markus Greiner1, Vladan Vuletić6 & Mikhail D. Lukin1 ✉

Understanding the collective quantum dynamics of non-equilibrium many-body 
systems is an outstanding challenge in quantum science. In particular, dynamics driven 
by quantum fluctuations are important for the formation of exotic quantum phases  
of matter1, fundamental high-energy processes2, quantum metrology3,4 and quantum 
algorithms5. Here we use a programmable quantum simulator based on Rydberg atom 
arrays to experimentally study collective dynamics across a (2+1)-dimensional Ising 
quantum phase transition. After crossing the quantum critical point, we observe a 
gradual growth of correlations through coarsening of antiferromagnetically ordered 
domains6. By deterministically preparing and following the evolution of ordered 
domains, we show that the coarsening is driven by the curvature of domain boundaries, 
and find that the dynamics accelerate with proximity to the quantum critical point. We 
quantitatively explore these phenomena and further observe long-lived oscillations  
of the order parameter, corresponding to an amplitude (‘Higgs’) mode7. These 
observations offer a viewpoint into emergent collective dynamics in strongly 
correlated quantum systems and non-equilibrium quantum processes.

Quantum phase transitions (QPTs) are transformations between states 
of matter that are driven by quantum fluctuations8. Analogously to 
thermal fluctuations in classical phase transitions, quantum fluc-
tuations have a dominant role in the emergence of order in quantum 
systems. Although classical dynamics near thermal critical points 
have been studied extensively over the past several decades, only 
recently have quantum dynamics across QPTs become experimen-
tally accessible, owing to the advent of quantum simulators9–12 and 
ultrafast spectroscopic methods in solid-state systems7,13–15. Their 
universal properties have been studied in systems of varied dimen-
sionality using the quantum Kibble–Zurek mechanism (KZM)10,11,16. 
The KZM stipulates that a quantum system’s dynamics and correla-
tions ‘freeze’ in the vicinity of a QPT when the system can no longer 
respond adiabatically to dynamical changes. However, in many 
instances, other mechanisms of correlation growth beyond KZM 
can dominate ordering17–21. In particular, when an unordered system 
passes through a continuous phase transition into a symmetry-broken 
phase, a progressive growth of long-range order, known as coarsening, 
is expected. These ordering dynamics are predicted to show univer-
sality, manifested as self-similarity in the growth of correlations22–24. 
Such phenomena are well understood in classical systems24, and have 
been experimentally explored in Bose gases in the mean-field regime 
over the past two decades25–31. However, the effects of quantum fluc-
tuations in coarsening dynamics, particularly near QPTs, have only 
recently emerged as a subject of theoretical6,32–35 and experimental36  
investigation.

We use a programmable quantum simulator based on Rydberg atom 
arrays to investigate the collective out-of-equilibrium dynamics asso-
ciated with the growth of order following an Ising QPT. We observe 
key features of beyond-mean-field quantum-coarsening processes 
arising from quantum fluctuations: the curvature-driven dynamics 
of domain walls and their acceleration when approaching the critical 
point. We further explore self-similarity and universality in the order-
ing process. In addition, we observe long-lived coherent oscillations 
of the correlation length and the order parameter on both sides of 
the QPT. In the ordered phase, these oscillations are the analogue of 
a ‘Higgs’ mode13,15,37. Our observations are consistent with theoretical 
predictions8, extending these studies in a regime that is difficult to 
simulate classically.

Our experiments are performed using a two-dimensional program-
mable atom array, previously described in ref. 11. The measurements 
are conducted on a 16 × 16 square lattice of 87Rb atoms trapped in an 
array of optical tweezers generated by a spatial light modulator. Atoms 
are initialized in the electronic ground state g⟩∣  and are coupled to the 
high-lying electronic Rydberg state r⟩∣  through a two-photon excitation 
with time-dependent Rabi frequency Ω(t) and global detuning Δ(t). As 
a key upgrade, we introduce a second spatial light modulator for gen-
erating locally controlled light shifts, allowing for programmable 
site-dependent detunings δi(t) = αiδ(t), where αi is a time-independent 
weight at site i (Methods and Extended Data Fig. 1). The atoms in the 
r| ⟩ state interact strongly through a van der Waals potential, giving rise 
to the following Hamiltonian governing the system’s dynamics:
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Here n r r≡ ⟩⟨i i i∣ ∣ denotes the Rydberg occupation at site i, X g r≡ ⟩⟨ +i i i∣ ∣  
r g⟩⟨i i∣ ∣ describes the laser-induced coupling between the states  
at that site, and Vij ≡ V0/∣ri − rj∣6 is the van der Waals interaction bet
ween i and j. The Rydberg interactions prevent simultaneous exci
tation of two atoms if they lie within a blockade radius (R V Ω≡ ( / )b 0

1/6) 
of each other. We maintain a lattice spacing a such that Rb/a ≈ 1.1,  
and only nearest-neighbouring sites fall within the blockade radius. 
For large positive values of Δ/Ω, this configuration leads to a 2Z - 
symmetry-broken checkerboard phase with two antiferromagnetically 
ordered ground states38, labelled ∣AF ⟩1  and ∣AF ⟩2 . The disordered and 
ordered phases are separated by a QPT belonging to the (2+1)- 
dimensional Ising universality class, which occurs at Δ/Ω ≈ 1.1 
(refs. 11,38,39). The order parameter diagnosing this transition is  
the staggered magnetization: ∑ ∑m Z Z= = (−1)x y x y x y

x y
x ys , , ,

+
,

͠ , where  
(x, y) denotes the two-dimensional coordinates of an atom, and 
Z r r g g≡ ⟩⟨ − ⟩⟨x y x y x y x y x y, , , , ,∣ ∣ ∣ ∣.

Ordering dynamics
We first study the non-equilibrium dynamics of the atom array after 
crossing the QPT into the ordered phase. Our protocol is illustrated in 
Fig. 1a,b. The state-preparation stage is similar to that used in refs. 11,40. 
First, all atoms are initialized in g⟩, which is the ground state for Δ/Ω ≪ 0. 
While keeping Δ negative, Ω is ramped up to its final value, remaining 
constant until the end of the protocol (δi is held at 0 for this measure-
ment). Then, Δ(t) is swept from negative to positive values, through 
the quantum critical point (Δ/Ω ≈ 1.1 (ref. 11)) and into the ordered 

phase. The non-adiabatic sweep realizes a quench that injects energy 
into the system and seeds the ensuing non-equilibrium evolution. We 
use a linear sweep profile for all measurements; for a discussion of the 
sweep rate, see Methods. The sweep is halted at various endpoints 
within the ordered phase. Subsequently, Δ and Ω are held constant for 
a given hold time, and finally Ω is ramped down followed by a projective 
readout of the atomic states.

During the hold time, we probe the dynamics of the correlation 
length, as shown in Fig. 1c. To quantify the growth of correlations, we 
evaluate the two-point correlation function G(r, t) and the radially aver-
aged structure factor S(k, t), from which we extract a correlation length 
(ξ) (Methods and Extended Data Fig. 2a,b). In contrast to the Kibble–
Zurek prediction, the correlation length grows significantly with hold 
time (Fig. 1c), indicating the gradual establishment of long-range order. 
Up to a hold time of about  0.4–0.5 μs, we observe that the dynamics 
are consistent with a linear growth of ξ2 with time (Fig. 1d), as expected 
for coarsening6,24. Importantly, the rate of growth increases with prox-
imity to the QPT, an observation further explored in Extended Data 
Fig. 2c,d. Motivated by the theoretical expectation of universality of 
these dynamics in the thermodynamic limit24,30,41, we also study the 
structure factor as a function of a scaling variable kξ(t). We find that the 
data collapse onto a single functional form S(k, t) ≈ b(ξ(t))ξ2(t)f(k ξ(t)) 
for some scaling function f and an amplitude b(ξ), which is suggestive 
of self-similarity (Extended Data Fig. 3 and Methods). In addition to 
the ordering, we also observe long-lived oscillations of the correlation 
length (Fig. 1c). In what follows, the universal aspects and origin of these 
oscillations are explored in detail.

To gain further insight into the system’s dynamics, we use single- 
site-resolved detection to identify the domains in each individual 
snapshot. We measure the probability that a given atom will appear 
as part of a domain of area Ad, and find that over time, increasingly 

a

0 0.5 1.0 1.5
Time (μs)

0

5

/2
π 

(M
H

z)

–8

0

8

/2
π 

(M
H

z)

HoldRamp

QPT

0 0.5 1.0

Hold time (μs)

2

3

C
or

re
la

tio
n 

le
ng

th
, 

0 0.25 0.50 0.75

Hold time (μs)

4

6

8

10

2

/    = 2
/    = 4

b

c d

QPT Ordered phase

Time

Hold

0 0.4G(x, y) 0 0.4G(x, y)

Linear ramp Δ(t)

AF1 AF2

VijU(t):
|r〉

|g〉

|g〉 |r〉

Ω
Δ

Ω Δ

Δ
Δ

Ω
Ω

Disordered phase

Fig. 1 | Ordering via coarsening. a, Atoms arranged in a square lattice are 
prepared in the ground state g ⟩ and driven from the disordered phase, shown 
here as a fluorescence image (atoms in r⟩ are detected as loss and are indicated 
with red circles), into an antiferromagnetic ordered phase, across a QPT. The 
subsequent coarsening dynamics, under the many-body unitary U(t), lead to the 
progressive development of long-range order (shown here using the real-space 
correlation function G(x, y) and experimental snapshots). The snapshots show 
the local single-spin-flip-corrected staggered magnetization, with white (grey) 
shading indicating AF1 (AF2) orders (Methods). b, The detuning Δ(t) is swept 
linearly, with a fixed Rabi frequency Ω, to a final value Δ in the ordered phase, 

where it is held constant for the duration of the hold time. c, The correlation 
length ξ grows over the course of the hold time. The solid line is a fit to 

c c t c ωt ϕ( + ) + cos( + )α
0 1 , representing sinusoidal oscillations on top of a 

power-law growth. Error bars are smaller than markers. d, The early-time  
growth of the squared correlation length is consistent with a linear increase  
with time, as expected for coarsening dynamics with a non-conserved order 
parameter. The dynamics are faster at lower Δ/Ω, closer to the critical point  
(see also Extended Data Fig. 2c,d). For the data shown here, Ω/2π = 3.8 MHz. 
Errors bars are given as the standard deviation, unless noted otherwise.
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larger domains are formed at the expense of their smaller counterparts 
(Fig. 2a). This is manifested in the growth of the mean area of the larg-
est domain, concurrent with the shrinking of the second-largest one 
(Fig. 2b). Owing to energy conservation, the appearance of progres-
sively larger domains has to be offset by the proliferation of very small 
domains and single-site spin flips, as apparent in Fig. 2a. We quantify 
this flow of energy by measuring the spatial distribution of the classi-
cal energy, as defined by the diagonal contribution to equation (1) up 
to a constant shift:

∑ ∑H Δ n V n n= − ( − 1) + . (2)
i

i
i j

ij i jcl
<

For every snapshot, we identify the domain walls and the bulk, and 
accordingly determine the contribution of each towards ⟨Hcl⟩ (Methods 

and Extended Data Fig. 4a,b). Although the classical energy is indeed 
conserved over time, it is redistributed from the domain walls into 
the bulk (Fig. 2c). This is consistent with a picture of coarsening that 
is driven by the surface tension, and elimination of domain walls24.

Domain-wall dynamics
To study the real-time dynamics of domains and domain walls, we 
deterministically prepare specific configurations of domain walls using 
programmable, locally controlled light shifts. Our protocol is described 
in Fig. 3a: we apply site-dependent negative local detunings δi < 0, with 
amplitudes ∣δ∣ ≈ 4Ω (Methods), on the chosen atoms before ramping 
up Ω, and then continue the state-preparation protocol as previously 
described. The local detuning strongly biases the chosen atoms to g⟩, 
and consequently, locally favours either an AF ⟩1  or an AF ⟩2  configura-
tion. After the sweep is completed, and before the hold time begins, 
the local detuning is quenched off and the state is allowed to evolve 
freely.

We start by preparing a small square domain of one antiferromag-
netic order within the bulk of the other42 (Fig. 3b). Upon removal of 
the local detunings, we observe that the area of the injected domain 
shrinks linearly with time (Fig. 3c and Supplementary Video 1). This 
observation is in agreement with coarsening dynamics for non- 
conserved fields, where surface tension owing to the energy cost of 
domain walls generates curvature-driven dynamics22,24. In such a sce-
nario, the local velocity of a domain wall is proportional to its local 
curvature 1/R (where R is the local radius of curvature): ∂tR ∝ −1/R, and 
therefore, ∂tR

2 = −va, where va is some positive time-independent con-
stant. Strikingly, we find that va increases as one approaches the quan-
tum critical point. This behaviour is unique for coarsening in the 
vicinity of a quantum critical point6; in contrast, for a classical Ising 
transition, the dynamics should be slower near the thermal phase 
boundary than when deep in the ordered phase43; we also observe 
indications of this speed-up in the global sweeps (Fig. 1d and Methods). 
We examine the dependence of va on the distance to the quantum 
critical point, Δ − Δc (Fig. 3d), where Δc is the global detuning at the 
critical point. Near the QPT, we find that va is approximately consistent 
with a scaling Δ Δ∝( − ) ν

c
−  (where ν ≈ 0.629 is the correlation length 

exponent of the (2+1)-dimensional Ising QPT38). We note that the 
speed-up observed here is not caused by the KZM, as it depends on 
only proximity to the QPT, consistent with theoretical predictions6. 
In Fig. 3e, we also analyse the evolution of several concentric spatial 
layers of the system, and observe the outer layers of the central domain 
morphing earlier with the dynamics moving progressively inwards. 
This supports a picture of coarsening in which the dynamics are indeed 
driven by the shrinking of domain walls, as opposed to being generated 
within the bulk of the domains.

To further explore the curvature-driven nature of the coarsening 
dynamics, we prepare an initial state with a zigzag domain wall. Over 
time, the domain wall straightens into a vertical line separating the two 
orders (Fig. 4a and Supplementary Video 2), whereas the motion of the 
domain wall is related to its local curvature6, as shown in Fig. 4b,c and 
Extended Data Fig. 5 (Methods).

Order parameter and ‘Higgs’ oscillations
In addition to the curvature-driven coarsening dynamics, our experi-
ments clearly reveal persistent long-lived oscillations of the correlation 
length and the order parameter across a range of experimental param-
eters, as shown in Fig. 1c and Methods. We explore the origin of these 
oscillations in Fig. 5. First, we apply local detunings to one of the two 
sublattices, which biases the order parameter. We then repeat the pro-
tocol described in Fig. 3a, ramping to various values of Δ on both sides 
of the QPT. Directly after the ramp, we quench the pinning field off  
and follow the dynamics. We observe large-amplitude, long-lived 
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Fig. 2 | Domains and energy transfer. a, Probability distribution of an atom 
belonging to an ordered domain of a certain size. At late hold times, atoms are 
more likely to participate in large domains and very small domains. b, The area 
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second-largest domain decreases as the system is held in the ordered phase.  
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oscillations of the order parameter, well modelled as a damped har-
monic oscillator, m t ϕ A ωt θ( ) ≈ + cos( + )e γt

s 0 0
− , with amplitude A, fre-

quency ω, damping γ, and offset ϕ0 that strongly depend on Δ. We find 
that upon approaching the phase transition from both sides, ω 
decreases whereas γ and A increase; ϕ0 changes from zero in the dis-
ordered phase to a non-zero value in the ordered phase.

To understand the origin of these observations, we perform numer-
ical simulations using matrix-product-state methods. Through 
density-matrix renormalization group calculations on up to 10 × 10 
sites with periodic boundary conditions, we find that the pinned initial 
state corresponds to a low-energy state of the post-quench Hamiltonian 
even on the disordered side of the transition (Fig. 5b). This is in contrast 
to the high-energy 2Z  states typically associated with oscillations 
owing to quantum many-body scars44,45. We then attempt to simulate 
the dynamics of the pinned initial state using the time-dependent 
variational principle46 at a relatively small bond dimension χ = 256 and 
find good qualitative agreement with the experimentally extracted 
frequencies (Fig. 5d). Moreover, the oscillation frequencies closely 
match the numerically determined ground-state gap, and are relatively 
robust to variations in the system size away from the critical point 
(Methods and Extended Data Fig. 6).

In the ordered phase, these observed oscillations can be understood 
as an amplitude (‘Higgs’) mode7, which is a collective excitation of  

the magnitude but not the sign of the order parameter. Qualitatively, 
the ‘Higgs’ mode can be viewed through the lens of Landau theory.  
In this framework, order-parameter dynamics are determined by  
an effective potential describing a quartic anharmonic oscillator: 

OV ϕ ϕ ϕ ϕ( ) = + + ( )
q λ
2

2
4

4 6 , as shown in Fig. 5c (we continue to identify 
the oscillation on the disordered side as a ‘Higgs’ mode for conveni-
ence). The ordered phase (q ≈ Δc − Δ < 0) is differentiated from the 
disordered phase (q > 0) by a finite value ϕ0 ≠ 0 of the potential minima, 
which determines the offset of the oscillation. In the disordered phase, 
these are oscillations of the sign of the order parameter, hence they do 
not have the symmetry of a ‘Higgs’ mode. Beyond the changing offset 
ϕ0, this simplified picture reproduces the increase of the oscillation 
amplitude A and the decrease of the frequency ω when approaching 
the phase transition. To further investigate this amplitude mode, we 
prepare lower-energy biased states by softening the pinning field 
(smaller ∣δi∣). We find a corresponding decrease in the oscillation ampli-
tude A and the frequency ω with a sharper dependence near the QPT 
(Fig. 5d and Extended Data Fig. 7), in agreement with Landau theory. 
The oscillation frequency of these lower-energy states shifts close to 
the many-body gap. To explore the ‘Higgs’ mode deep in the ordered 
phase, where our state-preparation scheme generates low-amplitude 
oscillations, we use an alternative experimental protocol, as detailed 
in Methods and shown in Extended Data Fig. 9.
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These order -parameter oscillations present a unique probe of the 
quantum critical point. In particular, the ratio of the oscillation freque
ncies on the two sides of the QPT is universal in equilibrium, and pre
dicted to be ω q ω q(− )/ ( ) = 2 (ref. 47) by Landau mean-field theory. 
However, our experimental results, in which ω q ω q(− )/ ( ) > 2  
(Extended Data Fig. 10), indicate a significant deviation from this 
simplistic prediction, broadly consistent with more advanced calcu-
lations predicting ω(−∣q∣)/ω(∣q∣) ≈ 1.9 (see discussion in Methods). 
The discrepancy with mean-field results emphasizes the central role 
of quantum fluctuations, and in particular, finite-momentum 
order-parameter fluctuations, in the vicinity of the QPT. The dynam-
ics of these fluctuations are also expressed in the progressively larger 
oscillations of the correlation length (Fig. 5e) and a sharp increase in 
the damping term γ (Fig. 5d) observed upon approaching the critical 
point.

Discussion and outlook
Our observations shed light on paradigmatic collective processes 
in closed non-equilibrium quantum many-body systems, highlight-
ing the important role of coarsening dynamics and revealing their 
curvature-driven character in systems with a non-conserved order 
parameter6,24. Crucially, we measure an acceleration of the ordering 
processes when approaching the phase transition, a signature of the 
intrinsically quantum nature of the dynamics6. Although we observe a 
scaling collapse of the structure factor suggestive of self-similarity24, 
the dynamically varying amplitude b(t) deviates from the expected 
universal behaviour. As discussed in Methods, this deviation could 
originate from finite-size effects (as well as, potentially, residual 
disorder or decoherence), and its detailed understanding consti-
tutes an interesting theoretical problem41. Similar mechanisms may 
account for the slowdown of coarsening at late times observed in 
Fig. 1c,d. Further evidence for the role of finite-size effects is pro-
vided by measurements involving local control: we find that the 
dynamics of domains seeded away from the system’s boundaries 
(Fig. 3) are in much closer agreement with universal theoretical  
predictions.

In addition, we observe the concurrent excitation of the ‘Higgs’ mode 
upon crossing the phase transition. Investigation of this mode yields 
detailed information on important observables—such as the damping 
rate of the order parameter/‘Higgs’ mode in the vicinity of the phase 
transition—which are difficult to access classically48. For the numerically 
accessible system sizes and bond dimensions, our simulations cannot 
capture the damping rate γ, and generally break down near the critical 
point (Methods). More generally, the possible interplay of coarsening 
with the ‘Higgs’ mode presents an intriguing question that warrants 
further theoretical investigation.

These studies can be extended along several directions. Several 
recent experiments demonstrated universal dynamics far from equi-
librium, often interpreted through the framework of non-thermal 
fixed points49, including observations of simultaneous infrared and 
ultraviolet scaling laws30,50 and classification of universality classes31. 
Similar phenomena can be explored in non-mean-field systems near 
the QPT using programmable simulators. Conversely, manifestations 
of quantum criticality and ‘Higgs’ modes in non-equilibrium Bose 
gases may also be intriguing to explore. In contrast to traditional 
condensed-matter systems, programmable quantum simulators can 
directly access correlation functions of any order40 as well as other 
important observables, such as the entanglement entropy51,52, using, 
for example, hybrid digital–analogue approaches36,53. These could 
provide further insights into complex dynamics, particularly near 
the quantum critical point, where numerical calculations are pro-
hibitively challenging. Besides the symmetry-broken ordered states 
probed in this work, it would also be interesting to extend our study 
of coarsening dynamics to the formation of topologically ordered 
states of matter40,54–56, which cannot be characterized by local order 
parameters. In addition, local programmability may be used to 
explore the tunnelling of metastable states, known as false vacuum  
decay57–59.

Note added in proof: During the completion of this work, we 
became aware of related work demonstrating coarsening phenom-
ena driven by quantum fluctuations on a superconducting quantum  
processor36.
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to data shown in a. Left: measured oscillation frequencies (red points), plotted 
along with numerically determined values and calculated ground-state energy 
gaps (both for a 10 × 10 lattice). A lower local detuning ∣δ∣ leads to oscillations  
of lower amplitude and frequency (orange). Oscillation frequencies of the 

magnetization in the global sweeps, as shown in Extended Data Fig. 8a, are 
indicated in purple. PBC, periodic boundary conditions; MPS, matrix product 
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Methods

Experimental platform
A detailed description of our experimental platform is given in 
refs. 11,60. All measurements are realized using a two-dimensional 
programmable quantum simulator based on Rydberg atom arrays. 
Single 87Rb atoms are stochastically loaded into optical tweezers 
shaped by a spatial light modulator (SLM), and then rearranged into 
defect-free patterns using a pair of crossed acousto-optic deflectors. 
Both sets of tweezers use 852-nm-wavelength light. The atoms are 
then laser-cooled and optically pumped to the ∣ F m5S , = 2, = −2⟩F1/2  
state, which we denote as g⟩∣  in the main text. A pair of counterpropa-
gating lasers at 420-nm and 1,013-nm wavelengths couple g⟩∣  to the 
highly excited Rydberg state ∣ ∣r J m⟩ = 70S , = , = − ⟩J1/2

1
2

1
2  through a  

two-photon transition through the 6P3/2  orbital, blue-detuned by 
approximately 2π × 2.4 GHz with respect to the 5S → 6P1/2 3/2 transition.

We use 16 × 16 lattices of atoms, and maintain an Rb/a ratio of 1.12–1.15, 
such that only nearest neighbours lie within the blockade radius. 
Owing to the rapid fall-off of the van der Waals term, only nearest- 
and next-nearest-neighbour interactions meaningfully contribute 
to our observations. The data shown in the main text are taken with 
two-photon Rabi frequencies of either Ω/2π = 3.8 MHz, Ω/2π = 6.0 MHz 
or Ω/2π = 3.1 MHz, with corresponding lattice spacings a = 6.8 μm, 
a = 6.45 μm or a = 7.15 μm and Rb/a = 1.15, Rb/a = 1.12 or Rb/a = 1.13. The 
1,013-nm and 420-nm single-photon Rabi frequencies are approxi-
mately balanced (Ω1,013 ≈ Ω420). The experiment time T, sweep param-
eters and lattice spacings are all rescaled for different Ω, such that Ω/Δ, 
Rb/a and the total phase accumulated ΩT are constant when comparing 
different experimental configurations.

To observe coarsening, the sweep rate through the critical point 
must fall within a certain range. A sweep rate that is too slow would 
create a low-energy state, and consequently, the coarsening dynam-
ics may be too slow to measure. In contrast, a very fast sweep or an 
instantaneous quench could inject too much energy and bring the 
system out of the ordered phase (which persists up to a finite energy 
density). Here, all measurements use linear sweeps with sweep rates 
of ≈ × 3.0Δ Ω

ΩT
/ 1

2π , which, we find, falls within the desired range.
For the global sweeps, we apply post-selection based on the success 

of the rearrangement protocol, selecting shots with ≤4 defects. This 
threshold retains an average of 93% of shots over all end-detuning values 
presented in Figs. 1 and 2a,b. In addition, we post-select on measurement 
results to discard runs in which we suspect large-scale errors have 
occurred. Owing to the high energy of the Rydberg blockade, a large 
number of blockade violations are extremely unlikely to be naturally 
generated by the coherent dynamics of equation (1). Furthermore, as our 
projective measurement cannot differentiate r⟩∣  occupation from loss 
induced by other mechanisms, we attribute the presence of a large num-
ber of apparent blockade violations to manifestations of unwanted noise 
processes, such as blackbody-induced avalanche decays61. We therefore 
discard runs where the longest chain of consecutive atoms in a single row 
or column detected in state ∣r⟩ has a length of more than four sites. Small-
scale exact diagonalization (ED) numerical simulations support that the 
probability of reaching such states from purely unitary dynamics is neg-
ligibly small. Imposing this post-selection threshold retains 92% of the 
data. Imposing both rearrangement and avalanche post-selection, we 
retain 86% of the global-sweep shots across all end-detunings presented. 
We note that the post-selection is most significant for the longest times 
and largest detunings presented (t = 1.16 μs, Δ/Ω = 4 in Extended Data 
Fig. 2d), as larger number of shots are corrupted through avalanche 
decays and we only retain 63% of the shots at the longest time step.

Local control
To enable individual single-site addressing of atoms with a local light 
shift, we use an SLM (Hamamatsu LCOS-SLM X15213-02) to generate 
optical tweezers in arbitrary spatial patterns with a beam waist of 1 μm, 

ensuring robustness to atomic position fluctuations (Extended Data 
Fig. 1). The wavelength we choose to operate at, 784 nm, achieves a 
measured differential a.c. Stark shift between the 5S1/2 and 5P3/2 states 
of 12.2(3) MHz with about  160 μW per spot, but a negligible scattering 
rate (about 35 Hz) (the scaling of the light shift with laser amplitude is 
shown in Extended Data Fig. 1c). The light is linearly polarized to min-
imize vector light shifts on the ground-state hyperfine manifold. We 
further measure the shift on the ∣ ∣g r⟩ → ⟩ transition and find that the 
light shift is well approximated by the differential 5S1/2 → 5P3/2 light shift 
as δ0 = −2π × 12(2) MHz at the same power per spot.

The phase holograms for the SLM are generated using the phase-fixed 
weighted Gerchberg–Saxton algorithm, taking into account the desired 
position and relative intensity of the local light-shift pattern62. We first 
generate a local addressing pattern that closely matches the positioning 
of the atomic tweezer array; however, perfect matching of the two arrays 
is computationally expensive as it requires an extremely high sampling 
rate of the image plane of the local addressing pattern. To overcome this 
computational barrier, after creating an initial local addressing pattern, 
we align it to the atom positions by transforming the phase hologram. 
By stretching, rotating and applying tilts and defocus, we can match the 
two patterns with feedback on the atom signal. The latter three can be 
easily controlled using Zernike polynomials, whereas the stretching and 
rotation require more care to preserve the intensity homogeneity of the 
desired pattern. We find that naive rescaling or rotating of the hologram 
results in unwanted distortion of the intensity pattern, attributed to 
software interpolation when working with a pixelated hologram. This is 
mitigated by applying the computational corrections in the image plane. 
We take the Fourier transform of the hologram, convolve the intensity 
profile with a two-dimensional Gaussian to broaden each spot over 
several pixels (to minimize effects of interpolation), and then apply the 
rotation and stretching. Lastly, we apply an inverse Fourier transform 
back to the Fourier plane and use the resultant phase hologram for the 
SLM. Using this procedure, we first coarsely align the individual address-
ing pattern to the tweezers on a camera, and then precisely align the 
two using a spin-echo measurement of the light shift (Extended Data 
Fig. 1b) to optimize the alignment parameters such that the intensity is 
maximized at the atom sites. Good alignment is also crucial to prevent 
atom loss from turning on a misaligned potential. Finally, we correct the 
tweezer intensities as required using the fitted light shifts to feedback 
on the target weights in the hologram generation.

Examples of states prepared using such tweezer profiles, where the 
detuning is used to strongly pin atoms to the ground state, are shown 
in Extended Data Fig. 1d. At the boundary between different antifer-
romagnetic orders and the edges of the array, the mean-field repulsive 
interaction strength decreases for sites with fewer Rydberg neighbours; 
we therefore weight the local detuning strength inverse-proportionally 
to the number of neighbours. It is noted that when arbitrary weight-
ing is used, the total power remains constant (number of addressed 
sites × 2π × 12 MHz), but the power is redistributed in the tweezers 
accordingly. Nevertheless, particularly at large Δ/Ω, neighbouring 
Rydberg excitations start to be energetically favoured (antiblockaded) 
along the domain boundaries. Excluding such edge effects, the prepa-
ration probability of preparing the single-atom ground state on the 
pinned sites is 93–95% (Extended Data Fig. 1e).

For other realizations of single-site addressing using light shifts in 
atom arrays, see, for example, refs. 63,64.

Theoretical background of coarsening dynamics
In this section, we summarize the theoretical details of the different 
kinds of coarsening processes that govern the dynamics of the sys-
tem as long-range order is formed. Although our focus will be on the 
Rydberg atom array, to begin, let us consider the generic situation of 
a system driven through a continuous QPT by tuning some parameter 
of the Hamiltonian, g, linearly with time. Without loss of generality, 
we assume that the quantum critical point is located at g = 0 and the 
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zero of time is set such that g(t) = t/τ; hence, the system crosses the 
quantum critical point at t = 0. For the specific case of the neutral atom 
array considered in this work, the time-dependent parameter g can be 
defined as g(t) = (Δ(t) − Δc)/Ω.

As the system approaches the quantum critical point, its relaxation 
time diverges and it necessarily falls out of equilibrium. However,  
when it does so depends on the velocity of the linear ramp, g t τ

.
( ) = 1/ .  

The quantum KZM posits that the time at which the system’s evolu-
tion ceases to be adiabatic is t = −tKZ with t t τ t≈ ( / )νz νz

KZ 0 0
/( +1), where ν 

is the correlation length exponent, z is the dynamical critical exponent 
and t0 is some microscopic timescale. Thereafter, as the system can-
not dynamically respond fast enough to the changing parameter  
of the Hamiltonian, it remains ‘frozen’ through a so-called impulse 
regime until a later time t = +tKZ, when it unfreezes on the other side of 
the QPT. During this impulse regime, the KZM presumes that the sys-
tem’s correlation length remains the same as when it initially froze: 
ξ l τ t≈ ( / )ν νz

KZ 0 0
/( +1), where l0 is some microscopic length scale. As a con-

sequence, in this picture, the correlation length in the ordered phase 
is also set by ξKZ with no subsequent dynamics.

However, the non-equilibrium correlation length of the system, ξ(t), 
can and does grow in both the impulse regime and the ordered phase 
as the long-range correlations take time to develop. In the experiments 
described in the main text, this occurs via a two-step process. First, 
as the system passes through the quantum critical regime, it under-
goes quantum critical coarsening, which is governed by the dynami-
cal critical exponent z of the particular quantum critical point; for 
the (2+1)-dimensional Ising transition, z = 1. Then, as time progresses 
and the ramp continues, the system eventually enters the ordered 
phase. Here, once the growing non-equilibrium correlation length ξ(t) 
exceeds the equilibrium correlation length of the quantum ground 
state (which, recall, scales as ξq ≈ ∣g∣−ν), the dynamics cross over to a 
regime of non-critical coarsening, for which

ξ t
t

ξ ε

ξ t
d ( )

d
≈

( ( ))
, (3)q

z

z −1

d

d

where ε is the many-body gap between the ground and the first excited 
states. The dynamical exponent zd is dependent on the dimensionality 
and conservation laws of the system. For curvature-driven coarsening 
dynamics with a non-conserved scalar order parameter—as is indeed the 
case experimentally—zd = 2 > z. A particular feature of non-critical coars-
ening worth emphasizing is the dependence of the dynamics on the 
distance to the quantum critical point encoded in equation (3). Specifi-
cally, the ground-state equilibrium correlation length scales as ξq ≈ ∣g∣−ν 
and the gap ε ≈ ∣g∣νz. Plugging in the exponents of the (2+1)-dimensional 
Ising QPT, ν = 0.629 and z = 1, along with zd = 2, in equation (3), we find 
the growth law

ξ t
t

Δ Δ
ξ t

d ( )
d

≈
( − )

( )
, (4)c

−0.629

This relation can be observed in Fig. 3, which studies the rate at which 
a locally introduced domain in the centre of the array shrinks. The area 
of such a domain decreases at a rate dr2/dt ≈ −ξdξ/dt, which scales as 
Δ Δ( − )c

−0.629, consistent with the behaviour observed in Fig. 3d.
For a ramp that continues indefinitely without stopping, the entire 

dynamical evolution of the correlation length can be described by a 
single universal scaling function encompassing the adiabatic, quantum 
critical coarsening and non-critical coarsening regimes6,17,32:









ξ t ξ f

t
t

ξ f x( ) ≈ ≡ ( ), (5)KZ
KZ

KZ

where f(x) is some universal function, and ξKZ and tKZ depend on the 
ramp rate τ as specified earlier. The scaling variable x delineates the 
three regimes discussed above as

O

x
x

x

− 1: adiabatic,
(1): quantum critical coarsening,

1: non-critical coarsening .
(6)

≪
≲

≫

More generally, if the ramp is stopped at a time ts, the dynamical 
scaling form is altered to

F F








ξ t ξ

t
t

t
t

ξ x x( ) ≈ , ≡ ( , ); (7)s
KZ

KZ KZ
KZ s

for x ≤ xs, one recovers the earlier scaling as F x x f x( , ) = ( )s . If the ramp 
is stopped at xs = ts/tKZ ≫ 1 in the non-critical coarsening regime, the 
behaviour of the universal scaling function for x > xs describes the phys-
ics during the hold time and is given by

F C Cx x x x x( , ) ≈ ( − ) , (8)ν νz z z
s s

− +( / )
s s

1/d d

for some (1)O  constants C C> s. It is noted that because z < zd, the coars-
ening speeds up as we stop earlier in the ordered phase, closer to the 
quantum critical point (which results in a lower xs). This is indeed what 
we observe experimentally during the hold time following global 
sweeps across the phase transition, as shown in the inset of Fig. 1c. 
Intuitively, this is because a smaller Δ/Ω corresponds to a greater rela-
tive influence of critical coarsening, which is faster than non-critical 
coarsening.

In contrast, near the thermal phase boundary, the system can 
undergo an interval of classical critical coarsening, which is described 
by a growth law ξ t t( ) ≈ z1/  with a distinct dynamical exponent. For the 
two-dimensional classical Ising phase transition, z z≈ 2.16 > d  (ref. 43), 
so the growth of correlations through classical critical coarsening is 
slower than for non-critical coarsening. Correspondingly, the dynam-
ics should decelerate as one approaches the classical critical point, in 
sharp contrast to the speed-up outlined above in the vicinity of a quan-
tum critical point.

Structure factor and correlation length
To extract the structure factor and the correlation length65, we first 
calculate the two-point connected correlation function r rG( , ) =1 2

Z Z Z Z⟨ ⟩ − ⟨ ⟩⟨ ⟩
1 2 1 2

͠ ͠ ͠ ͠
r r r r  and then average over all pairs of points with iden-

tical displacements r:

r
r rr r r r r

r r r r r

∑
∑

G
G δ

δ
( ) =

( , )
. (9)

, 1 2 − ,

, − ,

1 2 1 2

1 2 1 2

We first derive the standard structure factor by computing the  
Fourier transform of G(r)

F ∑S G G( ) ≡ [ ( )] = e ( ), (10)k
−i ⋅k r r

r

k r

and then calculate the radially averaged structure factor

∑
∑

S k
S δ

δ
( ) =
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To extract a correlation length, we fit S(k) to:

S k
S

ξ k
( ) ≈

(1 + )
, (12)

0

2 2 3
2

and we factorize S0 as S0 = bξ2/π. This form of equation (12) is equiva-
lent to assuming that the position–space correlations follow an expo-
nential decay, ( )G r A( ) ≈ exp − r

ξ
 (ref. 11), up to finite-size corrections. 

Although equilibrium considerations for an infinite-size system suggest 



that for small k, S(k) should obey the Ornstein–Zernike form S k( ) ≈
S

ξ k1 +

0
2 2

 (ref. 66), we empirically find that equation (12) better captures 

our observed non-equilibrium distributions.
For universal coarsening dynamics, we theoretically expect b to 

be constant. Although our data indeed show scaling collapse as in 
equation (12), we find that b varies during the dynamics, indicating 
the presence of an additional length scale(s). We observe that b is cor-
related with ξ and depends on Δ/Ω, as shown in Extended Data Fig. 3c. 
Additional length scales that may affect the dynamics include the finite 
system size, the finite width of the domain walls (which depends on 
Δ/Ω), spatial inhomogeneity in Δ and/or Ω, and length scales introduced 
by decoherence effects such as decay owing to the finite lifetime of 
the Rydberg state.

Specifically, the expected universal scaling regime is expected to 
hold for distances r and correlation lengths ξ such that l ≪ r and ξ ≪ L, 
where l is the width of a domain wall and L is the system size24, indicating 
that finite-size effects probably have an important role in the present 
experiments. Hence, observing the theoretically expected univer-
sal coarsening behaviour in global quenches would probably require 
access to larger system sizes and correspondingly longer experiment 
times. Although recent experimental advances in neutral atom array 
platforms suggest that lattices more than an order of magnitude larger 
than the one presented in this paper are within reach67, elsewhere we 
describe the use of local control to deterministically nucleate and study 
domain dynamics away from the system’s boundaries, allowing us to 
study universal properties of coarsening under present experimental 
conditions.

Analysis of domains in global sweeps
Using single-site-resolved detection, we can map out the domains 
in each snapshot. First, we calculate the local staggered magnetiza-
tion. Each domain is then identified as a region of the array where the 
same ordering AF1 or AF2 is connected by nearest neighbours. We do 
not consider single spins of opposite order as a separate domain. For 
Fig. 2a,b, we therefore first identify and correct individual spin flips. 
These are identified as single atoms that are of the opposite order 
compared with all of their nearest and next-nearest neighbours. Only 
after we have identified single spin flips and corrected them to match 
their surrounding bulk order do we identify the domain boundaries. 
A domain’s area is defined as the total number of atoms comprising 
the domain. For the probability distribution of domain occupations 
presented in Fig. 2a, the frequency of each domain area is weighted 
by the area of that domain. We normalize the distribution by the sum 
of all area-weighted frequencies at each time step.

Classical energy analysis
To calculate the classical energy per single shot of the experiment, we 
first perform the single-spin-flip correction as described above. We 
then identify regions of the array that do not belong to either antifer-
romagnetic ordering by calculating a coarse-grained local staggered 
magnetization with a similar approach to previous studies11. In this 
work, specifically, we calculate the convolution Cx,y of the Rydberg 

occupation nx,y with the kernel 

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



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 for each snapshot. The 

output values of Cx,y range from 0 to 4, where the extremal values cor-
respond to atoms surrounded by nearest and next-nearest neighbours 
that all belong to the same AF orderings, as shown in Extended Data 
Fig. 4a. We consider an atom to be at a boundary if n(x, y) = 1(0) and 
Cx,y ≠ 0(4) (Extended Data Fig. 4b). In the raw array (not single-spin-flip 
corrected), we then compute the classical energy using equation (2) 
for each snapshot. The value of the interaction energy of nearest- 
neighbour sites (Vnn) is calculated from the lattice spacing (a) and V0 
as Vnn = V0/a6. For the dataset presented in Fig. 2c, Vij = Vnn/2π = 11.69 MHz 
for Ω/2π = 6 MHz. We also account for next-nearest-neighbour 

contributions. For each next-nearest-neighbour Rydberg atom per 
snapshot, an additional Vnnn/2π = 1.46 MHz is considered in the classi-
cal energy. The effects of longer-range interactions are negligible. By 
using the spin-flip-corrected lattice for domain identification and the 
uncorrected one for the subsequent energy calculation, single spin 
flips that occur contribute to the classical energy in identified domain 
walls and bulk orderings but not as separate domains. We exclude the 
layer of atoms closest to the edge of the array for all contributions to 
the classical energy. It is noted that for the classical energy calculation 
in Fig. 2c, we post-select such that the maximum number of directly 
adjacent Rydberg atoms can be no more than three (compared with 
four used throughout this work). Owing to the sensitivity of the bound-
ary identification procedure used here to correlated decays, this 
post-selection is slightly stricter. In the data presented in Fig. 2c, as the 
data are at high end-detuning, we retain 69% of data owing to the ava-
lanche post-selection and 84% owing to rearrangement post-selection. 
Overall, we retain 58% of data.

Analysis of locally prepared domains
We estimate the local radius of curvature R given in the equation 
∂tR

2 = −va as the radius, r, of the central domain in Fig. 3. The radius r is 
defined as the Manhattan distance, dm, at which the radially averaged 
local staggered magnetization, ms, crosses zero (Extended Data Fig. 4c). 
We consider Manhattan distances instead of Euclidian distances from 
the centre of the injected domains as the former is more representative 
of the nearest-neighbour interactions dominating the dynamics for 
very short times (on the order of one Rabi cycle). For long times, both 
measurements of distances in our lattice reveal a collapse to the linear 
form shown in Fig. 3c. For this analysis, we consider only the unpinned 
sublattice. The local state-preparation protocol prepares states where 
atoms that are locally detuned are prepared in g⟩ with high probabil-
ity for all values of Δ/Ω (Extended Data Fig. 1d). We observe that for Δ/Ω 
close to the QPT, there is a larger discrepancy of the local order param-
eter ms between the pinned and unpinned sublattices. Therefore, when 
considering both sublattices, the radius is less clearly defined by a 
single point at which the order parameter crosses zero. We fit a linear 
relationship to extract dr2/dt at each Δ/Ω.

A similar procedure is followed for the analysis of the coarsening 
dynamics in the zigzag domain wall in Fig. 4. Here too, the mean value 
of the local order parameter mx,y is calculated at each lattice site per 
time step. For Fig. 4c, the domain wall’s horizontal position is cal-
culated as the point at which the linearly interpolated line between 
points crosses ms = 0. In Extended Data Fig. 4d, we show the variation 
of the domain-wall position with hold time for two additional values 
of Δ/Ω. These data points reinforce the strong Δ/Ω dependence of the 
domain-wall velocity already seen in Fig. 3c,d. It is noted that for this 
analysis, we include atoms that were initially locally detuned as we are 
considering each row separately. We therefore see larger uncertainty 
in the domain walls’ positions for low Δ/Ω (Extended Data Fig. 4d).

Errors in Figs. 3c and 4c, and Extended Data Fig. 4d are calculated 
using bootstrapping. From the full set of experimental single snapshots 
of size N ≈ 600 shots, we sample N times with replacement and calcu-
late the value of interest (r2 or the horizontal domain-wall position x)  
on each sample. The plotted error bar is the standard deviation of 
the value of interest, calculated from 1,000 repetitions of the above  
procedure.

Numerical simulations of local domains
We simulate the dynamics of locally prepared domains using the 
time-dependent variational principle (TDVP)46,68. We use a two-site 
variant of this algorithm, which allows the bond dimension to grow with 
the evolution time at the expense of forgoing strict energy conservation 
owing to the truncation step involved. In our calculations, we find that 
the energy is conserved to within 0.004% of that of the initial state up 
to the longest times simulated.
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The initial states for the numerics are chosen to be a mean-field 

approximation of the experimentally prepared state. Specifically, we 
pin certain lattice sites to g⟩, as specified by the target configuration, 
and the remaining ones are set to the vector on the Bloch sphere that 
minimizes the system’s mean-field energy for a given Δ/Ω (instead of 
the fully polarized r⟩ state). The many-body evolution is simulated 
using a maximum bond dimension of χ = 1,200 with a time step Δt of 
0.2 Ω−1 (the dynamics are also consistent with those for a smaller 
Δt = 0.1 Ω−1). The results thus obtained are showcased in Extended Data 
Fig. 5 and are found to be in good agreement with the experiments.

Amplitude/‘Higgs’ mode
Background and theory. To describe the observed amplitude mode, we 
consider the low-energy effective action that describes the transition 
between the disordered and antiferromagnetic phases. Its Lagrangian 
is the ϕ4 theory

ϕ ϕ ϕ qϕ
λ

ϕ[ ] =
1
2

[(∂ ) + (∇ ) − ] −
4

, (13)t
2 2 2 4L

where ϕ corresponds to the coarse-grained order parameter of the anti-
ferromagnetic phase. Although the phase transition is described via the 
Wilson–Fisher fixed point, here we perform a simple mean-field treat-
ment of equation (13) to capture the physics away from the immediate 
vicinity of the transition. In particular, the classical mean-field equa-
tion of motion for the order parameter’s expectation value is given by

ϕ q λϕ ϕ∂ = − ( + ) , (14)t
2 2

which corresponds to a classical anharmonic oscillator. The stationary 
value of the order parameter is given by ϕ0 = 0 in the disordered phase 
(q > 0) and ϕ q λ= ± − /0  on the ordered side of the transition (q < 0). 
Expanding equation (14) for small amplitudes, ϕ = ϕ0 + δϕ, around the 
potential minima leads to harmonic oscillations of the order param-
eter with frequencies ω q q( > 0) =  and ∣ ∣ω q q( < 0) = 2 .

Numerical simulations. We first investigate the low-energy spectrum 
of the two-dimensional Rydberg Hamiltonian at different values of 
Δ/Ω using the excited-state density-matrix renormalization group 
method, which iteratively finds the lowest-energy eigenstate that is 
orthogonal to previous lower-energy eigenstates. Our simulations 
take into account van der Waals interactions up to third-nearest neigh-
bours on the square lattice. We identify the gapped paramagnetic and 
spontaneous-symmetry-breaking phases, and obtain the ground-state 
energy as well as the energy gaps ΔE1 and ΔE2 of the first two excited 
states above the ground state (in the spontaneous-symmetry-breaking 
phase, the first excited state that we identify is the symmetry-related 
ground state). In Extended Data Fig. 6a, we perform bond-dimension 
scaling for ΔE1 and ΔE2 on a 10 × 10 lattice with open and periodic bound-
ary conditions up to bond dimensions χ = 512 and χ = 256, respectively. 
We note that although the energy gap in the paramagnetic (disordered) 
phase is robust to boundary conditions, in the spontaneous-symme-
try-breaking (ordered) phase, we identify a distinct boundary energy 
gap (Extended Data Fig. 6a(i)) that is smaller than the bulk energy gap 
(Extended Data Fig. 6a(ii)). In the dynamics, the coupling of the order 
parameter to the boundary mode vanishes with increasing system size, 
and we thus consider the bulk gap extracted from periodic boundary 
conditions as the relevant frequency of the amplitude (Higgs) mode.

Furthermore, we perform density-matrix renormalization group 
calculations to obtain the initial state of the quench dynamics shown 
in Fig. 5, which is the ground state of the Hamiltonian with additional 
local detunings ∣δl∣/Ω = 0.7 that pin one sublattice of the chequerboard 
to the ground state. We evaluate the energy expectation value of this 
initial state with respect to the unpinned two-dimensional Rydberg 
Hamiltonian, and compare this with the energy of a 2Z  product state, 
confirming that the pinned state is indeed a low-energy state (Fig. 5b).

Dynamics from the low-energy pinned initial state lead to amplitude 
oscillations at frequencies matching the ground-state gap, which we 
simulate using TDVP46,68 on a 10 × 10 lattice at a bond dimension χ = 256. 
We use time steps of 0.25 Ω−1 and have verified that the resulting dynam-
ics agrees with smaller time steps of 0.1 Ω−1. As seen in Extended Data 
Fig. 6b, for small systems with open boundary conditions, the dynam-
ics in the ordered phase (here, Δ/Ω = 2) are dominated by a slow mode 
with frequency matching the boundary gap shown in Extended Data 
Fig. 6a(i). On top of this slow mode, we see the presence of a mode 
with higher frequency matching the bulk gap shown in Extended Data 
Fig. 6a(ii). Therefore, in the following, we consider dynamics with peri-
odic boundary conditions, which allow us to isolate the bulk mode.

In Extended Data Fig. 6c, we observe clear oscillations of the order 
parameter deep in either phase, which we fit to a damped harmonic 
oscillator ϕ t ϕ A ωt θ( ) ≈ + cos( + )e γt

0 0
−  with frequency ω, damping γ, 

offset ϕ0 and amplitude A. We show the dependence of these param-
eters on the ratio Δ/Ω in Extended Data Fig. 6d. Away from the phase 
transition, the oscillation frequencies overlap with the previously 
obtained ground-state energy gaps and are robust to system size. We 
further see that the damping and amplitude become larger towards 
the transition, where the offset acquires a non-zero value. Close to the 
transition, the TDVP dynamics fails to converge in bond dimension and 
fit to the damped harmonic oscillator’s functional form, as apparent 
in Extended Data Fig. 6c(ii). Moreover, even away from the critical point, 
the limited bond dimension does not capture a finite damping rate of 
the oscillations.

Dependence on local detuning strength. We experimentally inves-
tigate the dependence of the amplitude mode on the strength of the 
applied local detunings at two points, Δ/Ω = 0 and Δ/Ω = 1.1. These data 
are obtained by performing the state-preparation sequence illustrated 
in Fig. 3a for varying strengths of the applied local Stark shift δ. For all 
other uses of the local detunings in this work, the pinning is applied at 
a constant magnitude, δ0 = −2π × 12(2) MHz, and the corresponding 
state preparation for various Δ/Ω is documented in Extended Data 
Fig. 1c,d. Here, this strength is varied to much lower values than for 
the saturated pinning of the ground state (0.04–0.1 δ0) in the rest of 
the work (as indicated in Extended Data Fig. 9a,b) before significant 
differences in the resultant oscillations are observed.

We find that at both values of Δ/Ω considered, the amplitude of the 
oscillations is progressively reduced as ∣δ∣ is decreased. The frequency 
of the oscillations also decreases with ∣δ∣. The change in the oscillation 
frequency is more pronounced for oscillations near the critical point 
than in the disordered phase. The δ dependence of the oscillation fre-
quency, as well as the increased sensitivity near the phase transition, 
are qualitatively consistent with the behaviour of an anharmonic oscil-
lator, as predicted by the mean-field equation (14).

Amplitude mode in global sweeps. The ‘Higgs’-mode dynamics 
are also apparent in parallel to coarsening, as manifested in the oscil-
lations of the magnetization ni (Extended Data Fig. 8a). In addition, 
they can be clearly discerned by observing the dynamics of the total 
magnetization of the two-point correlation function in position space 
C(r), as shown in Extended Data Fig. 8b–d. The frequency of the os-
cillations of the correlation length closely support those extracted 
from the quench protocol described below (Extended Data Fig. 9) and 
the calculated ground-state energy gap (the global-sweep data are 
plotted in purple in Fig. 5). As mentioned earlier, the interplay of the 
amplitude mode with coarsening dynamics is generally unexplored 
theoretically. Therefore, we note further exploration of the two pro-
cesses occurring in parallel, as a possible future extension of this  
work.

Quenches in the ordered phase. Although ‘Higgs’ oscillations in the 
ordered phase can be extracted by the state-preparation sequence 



through deterministic preparation with local detunings, as described in 
Fig. 3a, the amplitude of the oscillations is substantially reduced when 
compared with that inside the disordered phase (see Δ/Ω = 1.5 in Fig. 5). 
We therefore perform an alternative state-preparation sequence to 
extract the amplitude-mode frequencies deep in the ordered phase, 
as shown in Extended Data Fig. 9a. First, local detunings are applied in 
a chequerboard pattern as the global detuning Δ is swept from nega-
tive values to Δ/Ω = 3.3, a point far inside the ordered phase. We hold 
the global detuning constant while quenching off the site-dependent 
δ. At this point, we quench Δ to its final detuning value in the ordered 
phase, but closer to the phase transition. By way of this protocol, we 
observe, as with all other sweep protocols presented thus far, long-lived 
oscillations of the order parameter and correlation lengths as shown in 
Extended Data Fig. 9b,c. The extracted oscillation frequencies ω are in 
close agreement with the ground-state energy gap in the ordered phase. 
It is noted that in Fig. 5d, the points in red at Δ/Ω = 2.0 and Δ/Ω = 2.5 are 
measured through this quench protocol.

Frequency doubling. From the above-mentioned quenches to the 
ordered phase as well as in data from the local protocol, we extract the 
oscillations in both the order parameter and the correlation lengths. 
We find, as shown in Extended Data Fig. 9d, that in the ordered phase, 
these two frequencies are approximately equal, whereas in the dis
ordered phase they vary by ω ω/ ≈ 2ξ m s

. The changing relationship bet
ween the two observables can be understood by the following symme-
try argument.

We begin by taking into account the dynamics of order-parameter 
fluctuations within a Gaussian approximation. Neglecting corrections 
to the effective mass due to fluctuations, the relevant equations of 
motion are33,69:

k t k tD D∂ = 2 , (15)t
ϕϕ ϕ

, ,
π

D D Dk t k t k tk q λϕ∂ = − ( + + 3 ) , (16)t
ϕ ϕϕ

,
π

,
ππ 2 2

,

k t k tD Dk q λϕ∂ = − 2( + + 3 ) , (17)t
ϕ

,
ππ 2 2

,
π

where πk(t) ≡ ∂tϕk(t) and ϕ ϕ≡ ⟨ (− , ) ( , )⟩ϕϕ
c,D k t k tk t . From the correlation 

function Dk t
ϕϕ

, , which corresponds to the structure factor discussed in 
the main text, one can extract the evolution of the correlation length.

Expanding ϕ = ϕ0 + δϕ and δ= +ϕϕ ϕϕ ϕϕ
, ,k t k k tD D D , in the disordered 

phase, an eigenmode analysis of equations (15)–(17) yields a frequency 
spectrum k q2 +2 . The smallest frequency, which is expected to set 
the correlation-length oscillations69, is thus q2 , that is, twice that of 
the order parameter. In contrast, in the ordered phase, equation (16) 
contains a term λϕ δϕ t6 ( )ϕϕ

0 kD , and the oscillation of the order param-
eter thus acts as a linear drive on the dynamics of two-point correlation 
functions. As such, the correlation length will oscillate at the corre-
sponding frequency q2  of the order parameter.

Frequency ratio of oscillations. In Extended Data Fig. 10, we present 
the full dataset of amplitude-mode oscillations (also shown also in 
Fig. 5) as a function of the distance from the phase transition. As des
cribed above, Landau mean-field theory predicts the relationship 
between oscillation frequencies to be ω q ω q(− )/ ( ) = 2∣ ∣ ∣ ∣  (refs. 13,47). 
However, beyond mean-field theory, the phase transition is described 
by the Wilson–Fisher fixed point, and the universal frequency ratio is 
shifted accordingly. Theoretical estimates based on both analytical 
and numerical methods yield a frequency ratio around ω(−∣q∣)/ω(∣q∣) ≈  
1.9 (refs. 48,70–72). We find that both the experimental data and 
matrix-product-state simulations deviate from the mean-field predic-
tion and are suggestive of a similarly higher ratio. However, very close 

to the critical point, ∣(Δ − Δc)/Ω∣ ≲ 0.3, we observe deviations from this 
theoretical ratio. Possible explanations (besides the limited bond  
dimension for the matrix-product-state data) include finite-size effects 
(resulting, for example, in a non-vanishing gap at the QPT point), pos-
sible errors in the QPT location, and the possibility that sufficiently 
close to the transition, the overdamped oscillations may no longer 
track the ground-state excitation gap. In future work, a detailed explo-
ration of the region near the critical point through the amplitude mode 
could allow for higher precision tests of this universal ratio.

Data availability
The data that support the findings of this study are available from the 
corresponding author on reasonable request.
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Extended Data Fig. 1 | Application of local detunings. a, In addition to the 
SLM used for atom trapping, a second SLM generates a set of superimposed 
tweezers that can apply arbitrary detuning profiles to the atoms. The pair  
of crossed AODs for local hyperfine control60 are not used in this work. b, A 
spin-echo sequence is used to measure and calibrate the differential AC Stark 
shift of the local detuning beams on the ground-state clock transition. Darker 
curves indicate a higher target detuning, weighted between 1 and 4, and the 
grey curves for unaddressed sites demonstrate negligible crosstalk between 
sites. The pattern here corresponds to a rotated version of the domains in the 
main text. c, Measured differential AC Stark shift of the 5S1/2 → 5P3/2 transition. 
Unless stated otherwise (e.g., in Extended Data Fig. 7), the laser amplitude used 
is 1, corresponding to  ≈ 160 μW per site and imparting an approximate light 
shift on the differential g r⟩ → ⟩∣ ∣  transition of δ0 = − 12(2) MHz. The amplitude  

is the square root of power relative to 160 μW. When sites are weighted, the  
total power imparted on the array remains constant but is proportionally 
redistributed. d, The local detunings are used to prepare deterministic 
checkerboard orderings, both for a single global order (left) or for domains with 
different orders (right). A site polarization of unity, measured at the start of the 
hold time for varying Δ/Ω, corresponds to ∣g ⟩ (∣r⟩) for addressed (unaddressed) 
sites, while  −1 corresponds to the flipped state. Note that at finite Δ/Ω, the 
polarization of ∣r⟩ sites  ≠ 1; at large Δ/Ω, mean-field shifts reduce the spin 
polarization of both ∣g ⟩ and r⟩∣  along the domain wall. e, Dependence of the site 
polarization on Δ/Ω in the bulk of the domain. As the local light shift becomes 
weaker relative to the global detuning, the probability of preparing g ⟩∣  sites 
decreases slightly.
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Extended Data Fig. 2 | Correlation lengths and structure factor. a, Structure 
factor S(k) calculated at early (left) and late (right) times. b, Radially averaged 
structure factor S(k) at early (left) and late (right) times for Δ/Ω = 2.0. The 
correlation length ξ is extracted by fitting S(k) to bξ π k ξ/ ( + 1)2 2 2 3/2. c, For early 
times, the squared correlation length ξ2 evolves linearly with time for all values 
of Δ/Ω tested. d, Dependence of ∂tξ2 on the distance from the quantum critical 
point. We find that the dynamics accelerate as the system is held closer to the 
phase transition. The departure from the theoretically expected scaling 

(dashed line) stands in contrast to the case with locally seeded domains in 
Fig. 3d and points to the possible role of finite-size effects due to boundaries for 
these global sweeps. e, Summary of the relationship between main observables 
used throughout the manuscript. By imaging the atoms, we obtain the local 
magnetization of the system, from which the local staggered magnetization is 
calculated. Other key observables are then derived from the local staggered 
magnetization.
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Extended Data Fig. 3 | Data collapse. a, The structure factor S(k, t) of the 
staggered magnetization, for different hold times, at Δ/Ω = 2.0. Inset: the 
structure factors collapse onto a single curve when the time axis is rescaled  
by the correlation length ξ(t) and the magnitude of the structure factor is 
rescaled by a time-dependent amplitude ξ2(t)b(t). b, At various values of  

Δ/Ω, the structure factors at different time (left) collapse onto a single curve  
(right). In this case, we show data for Δ/Ω = 3.0. c, We find a clear dependence of 
amplitude b on the nonequilibrium correlation length ξ, and that their relation 
is Δ-dependent. d, We further plot the dependence of amplitude b on hold time.



Extended Data Fig. 4 | Analysis details on domain wall dynamics.  
a, Convolution to calculate the coarse-grained-local staggered magnetization 
for each single shot. This is used to distinguish the bulk checkerboard orderings 
from the domain walls. Extremal values of 0 and 4 indicate the ideal coarse-
grained local staggered magnetization of either order while values of 1–3 
indicate deviations. b, Demarcation of domain wall boundaries and the bulk  
for the same shot as shown in a. Red (white) indicates the domain walls (bulk).  

c, Staggered magnetization radially averaged at each Manhattan distance from 
the center of the prepared square presented in Fig. 3. The radius is extracted  
as the dm at which the linearly interpolated ms crosses 0 (red lines). d, Sweeps  
to various end detunings for the motion of the zigzag domain wall shown in 
Fig. 4c. The acceleration of the dynamics near the QPT is also clearly supported 
for this shape of the domain wall. For both c and d, the left and right plots show 
data for Δ/Ω = 2.0 and Δ/Ω = 3.5, respectively. All data shown is for Ω/2π = 6 MHz.
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Extended Data Fig. 5 | Numerical simulations of locally prepared domains. 
a, TDVP simulations of coarsening dynamics observed when the system is 
initialized with a single square domain in the center (performed on a 15 × 15 
lattice). The initial state approximates the experimental state preparation in 
Fig. 3. b,c, The change in the radially averaged local staggered magnetization at 
Manhattan distances dm = 0, 2, 8 from the center of the injected square.  
As observed in Fig. 3e, the layer at dm = 2, closer to the domain boundary, 

changes order before dm = 0. We also find that similarly, the atoms in the bulk  
(dm = 8) remain in their initially prepared order. In these simulations, a slight 
acceleration in the dynamics is also observed on going closer to the phase 
transition. d, Simulation of the zigzag initial state described in Fig. 4 on a 16 × 15 
lattice. e, As in the experimental results, the locally curved points of the domain 
wall move towards the center of the domain while points with no domain-wall 
curvature remain stable. Colors follow those also shown in the inset of Fig. 4.



Extended Data Fig. 6 | Numerical simulations of the amplitude mode.  
a, Bond-dimension scaling of the energy gaps ΔE1, ΔE2 of the first two excited 
states above the ground state as a function of Δ/Ω, obtained via DMRG on  
a 10 × 10 lattice with (i) open boundary conditions (OBC), and (ii) periodic 
boundary conditions (PBC). b, Order-parameter dynamics at Δ/Ω = 2, of an 
initial state prepared with pinning fields δl/Ω = − 0.7, on a 10 × 10 lattice with 
OBC, simulated via TDVP with χ = 64, 128. c, Order-parameter dynamics at (i) 
Δ/Ω = 0, (ii) Δ/Ω = 1.15, (iii) Δ/Ω = 2, of an initial state prepared with pinning fields 

δl/Ω = − 0.7, on a 10 × 10 lattice with PBC, simulated via TDVP with χ = 64, 128 256. 
The order-parameter dynamics are well modeled as a damped harmonic 
oscillator, as shown by the fitting. d, Oscillation parameters (blue):  
(i) frequencies, (ii) damping rates, (iii) offsets, and (iv) amplitudes as a  
function of Δ/Ω, obtained from functional fits to the numerical simulations  
on a 10 × 10 PBC lattice with χ = 128 shown in c. The frequencies agree with the 
bulk (PBC) energy gaps for a 10 × 10 PBC lattice obtained in panel a(ii), and with 
the oscillation frequencies for a 8 × 8 PBC lattice, for comparison.
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Extended Data Fig. 7 | Effect of applied local detunings on the Amplitude 
mode. a, Amplitude mode oscillations in the disordered phase at Δ/Ω = 0.  
The magnitude of the applied local detunings is varied as a fraction of δ0 =  
− 2π × 12(2)MHz ≈ − 4Ω (see Extended Data Fig. 1c). b, “Higgs”-mode oscillations 
for varying magnitudes of the local detunings at Δ/Ω = 1.1. Note that for a and b,  
the frequency extracted here for δ = 0.06δ0 ≈ − Ω/4 is plotted in yellow for 
comparison in Fig. 5. c-d, With decreasing magnitude of δ, we observe a 
decrease in the oscillation amplitude (c) and frequency (d). The dependence  

is more pronounced closer to the phase transition. This behaviour can be 
qualitatively captured by considering the anharmonicity of the Landau mean- 
field potential in Eq. (13) as the phase transition is approached. e, As also seen  
in Fig. 5, the damping is stronger near the phase transition for both detunings.  
f, The oscillations at Δ/Ω = 1.1 are centered around finite ϕ0 suggesting a 
transition into the ordered phase at this value. The data shown here is taken  
for the same Ω as all other “Higgs”-mode oscillations, Ω/2π = 3.1 MHz.



Extended Data Fig. 8 | Amplitude mode after a sweep through the QPT. 
“Higgs”-mode oscillations are apparent in parallel to coarsening in multiple 
observables. The oscillations presented here are observed following the 
protocol described in Fig. 1, with Ω/2π = 3.8 MHz. Note that we fit the the 
oscillation after an initial decay on the time-scales less than a Rabi-cycle. 

Extracted frequencies are consistent across observables. a, Oscillations  
of the magnetization ⟨ni⟩. b, c, d, Dynamics of the two-point correlation 
function in position space for various end detunings. We find that the 
two-point correlators exhibit oscillations at frequencies for various values  
of Δ/Ω that are consistent with the ground-state energy gap shown in Fig. 5.
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Extended Data Fig. 9 | Ordered-phase quenches and frequency doubling.  
a, Sweep profile for quenches into the ordered phase. Under a constant Rabi dive 
at Ω/2π = 6 MHz, the global detuning Δ is ramped from large negative values to 
large positive values deep into the ordered phase (Δ/Ω = 3.3). The local detuning 
δ is quenched off quickly over 50 ns. The global Δ is then also quenched down to 
varying final detuning values closer to the QPT. b, Oscillations of the staggered 
magnetization in the ordered phase following this preparation sequence.  

In agreement with the Landau mean-field picture, these oscillations occur 
around a nonzero value of the order parameter ms. Note that we fit the the 
oscillation after an initial decay on the time-scale less than a Rabi-cycle.  
c, Oscillations in the correlation length on top of a growing background. d, Ratio 
between oscillation frequencies extracted from the staggered magnetization 
(ω ms

) and the correlation length (ωξ). In the disordered phase, ω ω/ ≈ 2ξ ms
 while 

in the ordered phase, this changes to ω ω/ ≈ 1ξ ms
.



Extended Data Fig. 10 | Ratio between oscillation frequencies.  
a, Experimentally extracted oscillation frequency of the amplitude mode for 
the full data set shown in Fig. 5a of the main text. The frequency is plotted with 
respect to the distance from the critical point, Δc = 1.12 measured in11. We see 
closer agreement with the theoretically predicted factor, ω(−∣q∣)/ω(∣q∣) = 1.970–72  
than with the Landau mean-field ratio of 2 . However, deviations from both 

factors close to the phase transition are apparent. b, Numerical simulations 
using MPS methods on 10 × 10 sites with periodic boundary conditions 
described in Extended Data Fig. 6. We again see approximate agreement with 
the expected ratio, as well as deviations near the numerically determined 
critical point Δc = 1.0.
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