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Most often, noise is encountered in a negative context and is considered something that

needs to be minimized. However, there are multiple examples where noise is used as a

non-invasive probe into the parameters of a certain system, and even to measure funda-
mental constants. In this paper we describe two experiments, which were carried out to

study the statistical properties of undulator radiation in the Integrable Optics Test Ac-

celerator (IOTA) storage ring at Fermilab. The first experiment studied the turn-to-turn
fluctuations in the power of the radiation generated by an electron bunch. The magni-

tude of these fluctuations depends on the 6D phase-space distribution of the electron

bunch. In IOTA, we demonstrated that this effect can be used to measure some electron
bunch parameters, small transverse emittances in particular. In the second experiment,

a single electron was stored in the ring, emitting a photon only once per several hundred
turns. In this regime, any classical interference-related collective effects were eliminated,

and the quantum fluctuations could be studied in detail to search for possible deviations

from the expected Poissonian photon statistics. In addition, the photocount arrival times
were used to track the longitudinal motion of a single electron and to compare it with

simulations. This allowed us to determine several dynamical parameters of the storage

ring such as the rf cavity phase jitter and the dependence of the synchrotron motion
period on amplitude.
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1. Introduction

There exist multiple examples where fluctuations and noise are used as a non-

invasive probe into the parameters of a certain system, and even to measure funda-

mental constants. Examples include the determination of the Boltzmann constant

kB by the thermal noise in an electrical conductor1 and the measurement of the

elementary charge e by the shot noise of the electric current in a vacuum tube.2

In fact, the latter effect is also relevant to accelerators and storage rings, where

it is known as Schottky noise3 due to the finite number of charge carriers in the

beam, as described by Schottky.4 Many beam parameters, such as the momentum

spread, the number of particles and even transverse rms emittances, are imprinted

into the power spectrum of Schottky noise. It is often used in beam diagnostics5–7

and beam cooling.3 Swapan Chattopadhyay has described8,9 many fundamental as-

pects of fluctuations and coherence in charged-particle beams in storage rings. In

this paper we extend his description to spontaneous synchrotron radiation, emitted

by charged particles in a ring.

In our experiments10–13 with an electron bunch we showed that turn-to-turn fluc-

tuations var(N ) of the number of detected undulator radiation photons per turn

N have two contributions: (1) a Poissonian contribution equal to ⟨N⟩, due to the

discrete quantum nature of light, and (2) a collective contribution ∝ ⟨N⟩2, related
to the interference between the fields generated by the electrons in the bunch. We

also eliminated the collective contribution by studying a single electron, circulating

in the Integrable Optics Test Accelerator (IOTA) storage ring at Fermilab in order

to thoroughly study the quantum fluctuations and verify that they follow the Pois-

sonian photostatistics var(N ) = ⟨N⟩, predicted by.14–17 This research is motivated

by the surprising observation of sub-Poissonian photostatistics (var(N ) < ⟨N⟩) in

synchrotron radiation reported in Ref.18 in a similar experiment setting. In addi-

tion, we use the recorded detection times to study the synchrotron motion of a

single electron in IOTA,19 similar to previous experiments in Novosibirsk.20,21

2. Radiation fluctuations

Synchrotron radiation is generated by individual electrons in the beam. Hence,

Schottky noise in the beam current must pass on to the synchrotron radiation power

in some way. Therefore, one could assume that the synchrotron radiation power noise

may carry information about beam parameters as well. This assumption is, in fact,

correct. Three decades ago, Ref.22 reported the results of an experimental study

into statistical properties of wiggler radiation in a storage ring. It was noted that

the magnitude of turn-to-turn intensity fluctuations depends on the dimensions of

the electron bunch. The potential in beam instrumentation was soon realized23 and

a number of papers followed. However, to this day, mostly measurements of a bunch

length via these fluctuations were discussed.24–26 Only Ref.27 reported an order-of-

magnitude measurement of a transverse emittance. In our previous publications,10

we described a new fluctuations-based technique for an absolute measurement of



October 3, 2022 15:1 WSPC/INSTRUCTION FILE output

Instructions for typing manuscripts (paper’s title) 3

a transverse emittance. There are no free parameters in our equations, nor is a

calibration required. However, the transverse and longitudinal focusing functions of

the storage ring are assumed to be known. This technique was successfully tested

at the Integrable Optics Test Accelerator (IOTA) storage ring at Fermilab.28 For a

beam with approximately equal and relatively large transverse rms emittances, the

results agreed with conventional visible synchrotron light monitors (SLMs).29 Then,

in a different regime, we measured a much smaller vertical emittance of a flat beam,

unresolvable by our SLMs. These emittance measurements agreed with estimates,

based on the beam lifetime. The fluctuations var(N ) are shown in Figs. 1(a),(b)

with a statistical error of 2.7 × 106 (at all beam currents), which was determined

with an independent test light source.11 The numerical solution of Eq. (1) for the

unknown emittance, with M from Eq. (2) of Ref.,11 was performed on the Midway2

cluster at the University of Chicago Research Computing Center. The results for

the measured emittances are shown in Figs. 1(c),(d) (red points). The error bars

correspond to the statistical error of the fluctuations measurement. Apart from this

statistical error there is also a systematic error due to the 1 MeV uncertainty on

the beam energy (from 10 nm at lower beam currents to 14 nm at higher currents).

Fig. 1. Panels (a) and (b) show the measured fluctuations for the round and flat beams, re-

spectively. The statistical error of each point is 2.7× 106 (not shown). (c) The round-beam mode
emittance ϵ, determined via SLMs, via undulator radiation fluctuations, and via Touschek lifetime,

assuming the effective momentum acceptance 2.0× 10−3. (d) The flat-beam horizontal emittance

measurement via SLMs (left scale), the vertical emittance measurement via fluctuations and via
Touschek lifetime (right scale). The SLMs had a monitor-to-monitor spread of ±8 nm (round beam)

and ±50 nm (horizontal emittance of flat beam); these error bars are not shown. All emittances
are rms, unnormalized.

To understand the nature of these fluctuations, let us assume that we have a

detector that can measure the number of detected synchrotron radiation photons

N at each revolution in a storage ring. Then, according to,12,17,22,30 the variance

of this number is

var(N ) =
〈(

N − ⟨N⟩
)2〉

= ⟨N⟩+ 1

M
⟨N⟩2 , (1)

where the linear term represents the photon shot noise, related to the quantum

discrete nature of light. This effect would exist even if there was only one electron,
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circulating in the ring. Indeed, the electron would radiate photons with a Poisson

distribution.14–16 The quadratic term in Eq. (1) corresponds to the interference of

fields, radiated by different electrons. Changes in relative electron positions and

velocities, inside the bunch, result in fluctuations of the radiation power and, con-

sequently, of the number of detected photons. In a storage ring, the effect arises

from betatron and synchrotron motion, from radiation induced diffusion, etc. The

dependence of var(N ) on the 6D phase-space distribution of the electron bunch is

introduced through the parameter M , which is conventionally called the number of

coherent modes.12,22,30 In addition to bunch parameters, M depends on the spe-

cific spectral-angular distribution of the radiation, on the angular aperture, and

on the detection efficiency (as a function of wavelength). We derived an equation

for M [Eq. (2) of Ref.11] for a Gaussian transverse beam profile and an arbitrary

longitudinal bunch density distribution ρ(z) (normalized), assuming an rms bunch

length much longer than the radiation wavelength. In our analysis, M is calculated

by this equation numerically, using our computer code,31 as a function of trans-

verse emittances ϵx and ϵy, the rms momentum spread σp, and the effective bunch

length, σeff
z = 1/(2

√
π
∫
ρ2(z) dz), equal to the rms bunch length, σz, for a Gaussian

distribution.

For illustration purposes, let us assume a Gaussian spectral-angular distribution

for the number of detected photons N , namely,

d3N
dkdθxdθy

= C exp
[
− (k − k0)

2

2σ2
k

− θ2x
2σ2

θx

−
θ2y
2σ2

θy

]
, (2)

where k is the magnitude of the wave vector, θx and θy represent the horizontal

and vertical angles of the direction of the radiation in the paraxial approximation,

k0 refers to the center of the radiation spectrum, σk is the spectral rms width, σθx

and σθy are the angular rms radiation sizes, C is a constant. Then11,24

M =
√
1 + 4σ2

kσ
2
z

√
1 + 4k20σ

2
θx
σ2
x

√
1 + 4k20σ

2
θy
σ2
y, (3)

where σx, σy, σz are the rms sizes (determined by beam emittances) of a Gaussian

electron bunch. In addition, it is assumed that the radiation is longitudinally inco-

herent k0σz ≫ 1 and that the radiation bandwidth is very narrow σk ≪ 1/(σxσθx),

σk ≪ 1/(σyσθy ). In general, the distribution parameters k0, σk, σθx , σθy are deter-

mined by both the properties of the emitted synchrotron radiation and by the prop-

erties of the detecting system (angular aperture, detection efficiency). In Eq. (3),

the beam divergence is neglected and M depends on σx and σy, as opposed to a

more general result [Eq. (2) of Ref.11], where it depends on ϵx and ϵy.

3. Photostatistics for a single electron

To eliminate the collective contribution to the fluctuations, var(N ), experiments

were performed with a single electron, circulating in IOTA with a revolution period

of 133 ns and an energy of 96.4MeV. The undulator parameter is Ku = 1.0 with the
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Fig. 2. (a) Layout of IOTA, electrons circulate clockwise. (b) Light path from the undulator to

the detector (not to scale). (c) Block diagram of the data acquisition system.

number of periods Nu = 10.5 and the period length λu = 5.5 cm. The wavelength of

the fundamental was λ1 = λu(1 +K2
u/2)/(2γ

2) = 1.16 µm, where γ = 188.6 is the

Lorentz factor. The second harmonic was in the visible wavelength range. We used a

Single Photon Avalanche Diode (SPAD)32 as a detector, which was mostly sensitive

to the visible light with detection efficiency of up to 65%. Two edge-pass filters

were used to only collect the radiation between 550 nm and 800 nm. The radiation

was focused on the sensitive area of the detector (�180 µm) by a single focusing

lens with a focal distance of 180mm, see Figs. 2(a),(b). The radiation was collected

in a large angle > 1/γ. The SPAD detector produced a 10-ns-long TTL pulse at

each detection event. Its dead time (20 ns) was shorter than the IOTA revolution

period (133 ns). Our data acquisition system [Fig. 2(c)] allowed us to record the

revolution number and the arrival time relative to the IOTA revolution marker for

each detection event for as long as 1 minute at a time.

Fig. 3. (a) The measured distribution of interarrival times between the photocounts and a fit by

a geometric distribution. (b) The measured distribution of the number of photocounts in a time
window equal to n = 1000 IOTA revolutions and a fit by a binomial distribution.

In the optimal focusing, the measured photocount rate was 24.7 kHz, or one

photocount per 304 revolutions in IOTA (on average). The dark count rate of the

SPAD detector was 108Hz. In addition, we used a 5-ns-long gate around the ex-

pected detection arrival time, which allowed us to reduce the effective dark count

rate to 4.0Hz.

Before any analysis of the photostatistics, it was important to realize that the

SPAD detector is binary. It produces the same type of pulses (TTL, 10-ns-long)

no matter how many photons are detected per one pass. The collected turn-by-

turn data can be represented as a sequence of zeros and ones only. Therefore, we

had to alter our original expectation of Poissonian photostatistics to a sequence of
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Bernoulli trials, i.e., there is a probability p of a detection at every revolution, and

a probability (1− p) of no detection. In our case, p = (3.29± 0.02)× 10−3. Figure 3

illustrates the comparison between the expectation (for a sequence of Bernoulli

trials) and the measurement for (a) the distribution of interarrival times and for (b)

the distribution of the number of photocounts in a certain time window. In both

cases, the χ2 goodness-of-fit test [33, p. 637] results in a P-value [33, p. 140] above

the conventional 0.05 threshold. This means that the null hypothesis (exponential

or binomial distribution, respectively) cannot be rejected.

Some measurements were carried out with an upgraded setup consisting of two

SPAD detectors separated by a beam splitter.34 In this case, the photon number

resolution was improved, since there were three possible outcomes for each pass: 0,

1, or 2 detection events. Still, so far we have not observed anything unusual. There

was no statistically significant correlation or anticorrelation in the two detectors.

4. Synchrotron motion

Fig. 4. Illustration of the fitting procedure for determination of the synchrotron motion period

and amplitude.

Figure 4 illustrates the detection time relative to the IOTA revolution marker

as a function of the IOTA revolution number. The observed sinusoidal motion is, in

fact, the synchrotron motion of a single electron. The deviations from the sinusoidal

fit are due to the time resolution of the SPAD detector (about 0.4 ns rms). On a

larger time scale, the amplitude of the synchrotron motion grows and decreases

randomly due to the quantum excitation and radiation damping.

We decided to compare the measured arrival times with a simulation of the

synchrotron motion. In our simulation35 we use the following transformation of the

relative energy deviation δi and the rf phase ϕi of a single electron from turn i to
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Fig. 5. Amplitude of the synchrotron motion of a single electron as a function of time. In the

simulation, the rms rf phase jitter is σξ = 6.0× 10−5 rad.

Fig. 6. Panel (a) shows the comparison of the measured and simulated distributions of the
synchrotron motion amplitude. The best agreement is achieved at the rms rf phase jitter σξ =

6.0 × 10−5 rad. Panel (b) shows the synchrotron motion period as a function of the synchrotron

motion amplitude.

turn i+ 1,

δi+1 = δi +
eV0

E0
(sinϕi − sinϕs)−

⟨U⟩ JE

E0
δi −

Ui − ⟨U⟩
β2E0

, (4)

ϕi+1 = ϕi − 2πqηsδi+1 + ξi, (5)

where e is the electron charge, E0 = γmec
2 = 96.4MeV, me is the electron mass, c is

the speed of light, β =
√
1− 1/γ2 is the relativistic velocity parameter, V0 = 380V

is the rf voltage amplitude, q = 4 is the rf harmonic number, ηs = αc − 1/γ2 =

0.070 83 is the phase slip factor (variation of η due to variation of γ is negligible),

αc = 0.070 86 is the momentum compaction factor, JE = 2.64 is the longitudinal

damping partition number [36, p. 445], Ui is the radiation energy loss at ith turn,

ξi is the rf cavity phase jitter at the ith turn. We model ξi as a random variable

following a normal distribution with a standard deviation σξ . We refer the reader

to [36, Eq. (3.28)] for the symplectic part of the transformation. The derivation of

the synchrotron damping term, −⟨U⟩ JEδi/E0, is described in [36, pp. 438–445].

The quantum excitation term, −(Ui − ⟨U⟩)/(β2E0), is considered in.37 The energy

kick at the synchronous phase ϕs compensates for the average energy loss due to

the synchrotron radiation, i.e., eV0 sinϕs = ⟨U⟩. The average emitted energy per
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turn in an isomagnetic ring is [36, pp. 434–435] ⟨U⟩ = 8παγuc/9 = 10.9 eV, where

α is the fine-structure constant, uc = 3ℏcγ3/(2ρ) = 2.8 eV is the critical energy

[37, Eq. (11)], ρ = 70 cm is the electron trajectory radius in the dipole magnets,

ℏ is the reduced Plank constant. The isomagnetic ring approximation works well

in IOTA, the radiation in the undulator is negligible compared to the bending

magnets. The average number of photons emitted per turn in an isomagnetic ring

is37 ⟨N⟩ = 5παγ/
√
3 = 12.5. To simulate the number of emitted photons at ith

revolution, we use a Poisson random number generator with the expectation value

⟨N⟩ = 12.5 . To simulate the energies of these photons, we use the Monte Carlo

generator described in Ref.37 The sum of these energies gives Ui.

Using our computer code we can generate the data points as in Fig. 4 for a long

interval of time, e.g., 1 minute. By fitting the data with short pieces of sinusoidal

curves (as in Fig. 4) one can plot the synchrotron motion amplitude as a function

of time, see Fig. 5. We cannot compare the measurement and the simulation in

this way directly, because it is a stochastic process. However, we can compare the

distributions of the synchrotron motion amplitudes. Figure 6(a) illustrates such a

comparison, where the simulation results are presented at three different values of

the rms rf phase jitter σξ . We can conclude that in IOTA σξ ≈ 6.0× 10−5 rad. We

considered more values of σξ than illustrated in Fig. 6(a). Further, using the same

piecewise sinusoidal fit we can plot the synchrotron motion period as a function

of the synchrotron motion amplitude, see Fig. 6(b). Every point in Fig. 6(b) is

calculated from a 25-ms-long interval of time. The measured and the simulated

synchrotron motion periods agree rather well, which shows that we understand the

parameters of the IOTA ring well.

5. Summary

Synchrotron light sources and free-electron lasers, thanks to their brightness, spec-

tral content, and temporal structure, are some of the best laboratory-based sources

of X-ray radiation for the study of physical processes, chemical reactions, biological

structures, and the properties of materials.

The role and relevance of the statistical and coherence properties of synchrotron

radiation is well recognized. It is common to separate the description into quantum

and classical regimes. For example, in the past few decades, substantial progress has

been made in understanding the classical properties of spontaneous radiation in var-

ious magnetic insertion devices, such as bending magnets, wigglers and undulators.

In fact, the predictions of classical electrodynamics for the average characteristics

of synchrotron radiation are supported by countless observations at synchrotron

radiation facilities around the world. On the other hand, the statistical properties

of synchrotron radiation have not been studied to the same level of detail yet.

Our studies tackle several questions in our understanding of the turn-to-turn

fluctuations in synchrotron radiation in a storage ring, both theoretically and ex-

perimentally. We proposed how to close the gap between the descriptions of classical
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and quantum fluctuations, carried out a series of thorough experimental measure-

ments, and developed new applications, based on the improved understanding.
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