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Abstract
The method of minimizing oscillation amplitude gener-

ated by varying the strength of a corrector magnet located
upstream is commonly used for beam-based alignment of
a single-pass machine. It minimises the amplitude of the
centre of mass of the beams in beam diagnostics located
downstream while the beam offset at the magnet is scanned
by a corrector magnet upstream. The method is easily ap-
plied for a magnet capable of variable separation between
horizontal and vertical planes such as a quadrupole magnet.
However, in the case of a solenoid magnet, it is not suit-
able to apply the method since it has an azimuth magnetic
component that produces mainly beam rotation. In this pre-
sentation, we propose an analytical method for identifying
the centre of a solenoid magnet and present results validated
by numerical simulations.

INTRODUCTION
In a practical situation, owing to the technical limits for

the alignments and manufacturing imperfections, the cen-
tre of a magnet and the beam trajectory can not be aligned
perfectly and the discrepancy originates a steering effect, ad-
ditional focusing as well as nonlinear distribution. Therefore,
during the machine operation, the offset is minimized using
correctors installed in the beamline by adjusting the angle
of the beam [1]. This procedure is so-called beam-based
alignment (BBA). Particularly, in a linear machine, the BBA
can be performed by minimizing the oscillation amplitude
at a screen monitor downstream using a corrector upstream
while the strength of the magnet is scanned [2]. It can be con-
ducted based on the property of the separation of variables
between two perpendicular axes in the motion of equations.
However, the solenoid field, which is aligned with the beam
axis introduces complexity in the beam dynamics, as the
transverse motions in the x and y directions are coupled due
to the solenoid field’s nature. This coupling effect is the key
difference from the uncoupled transverse dynamics observed
in quadrupole magnets, where the x and y directions can
be treated independently. This is not the case for solenoid
magnets since they not only generate a strong x-y coupling
but provide axisymmetric focusing properties due to the
rotational symmetry of the magnetic field. The solenoids
are widely used for low-energy electrons [3] and heavy ions
because the focusing force is proportional to the beam radius
and the structure can be easily enlarged to a large radius. In
addition, providing the focus of both directions simultane-
ously is particularly advantageous in situations involving
either the compact machine or low-energy injectors in which
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all elements are tightly installed in a narrow space. It was
attempted to align the solenoid magnet with offline field mea-
surement [4–6]. However, the offset between the magnet and
the beam is inevitable during a machine operation driving
the device. In this paper, we describe a theoretical approach
to the alignment of the solenoid magnet. This presents a way
to minimize the offset between the beam and the solenoid
during the operation. This methodology has been proven by
particle tracking simulations using the IMPACT-Z code [7].

A SOLENOID MAGNET
The understanding of the motion of charged particles in

auxiliary fields, which is the core of accelerator physics,
paves the way for controlling and manipulating particle
beams precisely. Therefore, the basic equations for the
solenoid magnet are revisited in the first part of this paper.
With a hard-edge model, the solenoid field provokes a spiral
motion, resulting in rotation in x-y space while propagating
with a constant speed in the s-direction [8]. The magnetic
field of the solenoid with steady currents can be derived by
Ampère’s law and can be expressed as follows∮

B · 𝑑l = 𝜇0𝐼enclosed, (1)

where 𝐼𝑒𝑛𝑐𝑙𝑜𝑠𝑒𝑑 represents the current enclosed by the am-
perian loop and 𝜇0 is the permeability of free space. In the
case of an ideal solenoid, the magnetic field inside a solenoid
is aligned along the axis of the solenoid, creating a uniform
field within the central region. However, at the edges of the
solenoid, the magnetic field begins to vary, forming what is
known as the fringe field. Therefore, the magnetic field of
the solenoid can be expressed as B = 𝐵𝑟 (𝑟, 𝑧)𝑟 + 𝐵𝑧 (𝑟, 𝑧)𝑧.
This fringe field component 𝐵𝑟 can have a significant impact
on the motion of particles as they enter or exit the solenoid.
In a solenoid, the magnetic field B can be represented by a
vector potential A which can be calculated by∮

A · 𝑑l =
∫

B · 𝑑a. (2)

The vector potential of the solenoid is given by A = 1
2𝑟𝐵𝑧𝜃 =

− 𝐵𝑧

2 𝑦𝑥 + 𝐵𝑧

2 𝑥𝑦̂. From the Maxwell Equation B = ∇ × A,
the radial magnetic field 𝐵𝑟 which raises the focusing effect
can be presented as

𝐵𝑟 = −𝜕A𝜃

𝜕𝑧
= −1

2
𝐵′
𝑧𝑟, (3)

In Eq. (3), there are two key points: (1) the radial magnetic
field is proportional to the gradient of the axial magnetic field
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𝐵𝑧 (2) the negative sign implies that 𝐵𝑟 is directed inward
as the axial magnetic field 𝐵𝑧 decreases near the edge of the
solenoid. To confirm the fringe field of the solenoid, the
magnetic field of a solenoid with a length of 16 cm and a
radius of 2.6 cm was computed using the Poisson Superfish
code [9]. The result is shown in Fig. 1.

Figure 1: Schematic layout for identifying the centre of a
solenoid magnet with a length of 𝐿. The beam arrives at
the magnet with an offset of 𝑟 and the screen monitor is
distanced by 𝑙𝑑 .

The equations of motion can be obtained by solving Hamil-
ton’s equations. Using this vector potential, the Hamiltonian
H in (𝑥, 𝑝𝑥 , 𝑦, 𝑝𝑦 , 𝑧, 𝛿) coordinate for a relativistic charged
particle with a mass of 𝑚 and a charge of 𝑞 moving in this
magnetic field is given by [10–12]

𝐻 =
𝛿

𝛽0
−

√√√
𝐹2 −

∑︁
𝑖=𝑥,𝑦

(
𝑝𝑖 −

𝑞𝐴𝑖

𝑃0

)2
− 1

𝛽2
0𝛾

2
0
− 𝑞𝐴𝑧

𝑃0
, (4)

where 𝐹 =

(
𝛿 + 1

𝛽0
− 𝑞𝜙

𝑐𝑃0

)
, 𝛿 = 𝐸

𝑐𝑃0
− 1

𝛽0
, 𝐸 is the total en-

ergy, 𝑃0 is the total momentum, 𝛽0 = 𝑣/𝑐, 𝛾 is the Lorentz
factor, 𝜙 represents the electrical potential, px and py denote
the horizontal and vertical canonical momenta. The Hamil-
tonian includes both the kinetic energy of the particle and the
interaction with the magnetic field via the vector potential.
Using Hamilton’s equations, the equations of motion for the
particle in the solenoid (𝜙 = 0 and 𝐴𝑧 = 0) can be derived
as

𝜕𝑞

𝜕𝑠
=

𝜕𝐻

𝜕𝑝𝑞
,

𝜕𝑝𝑞

𝜕𝑠
= −𝜕𝐻

𝜕𝑞
, (5)

where the subscript 𝑞 stands for 𝑥, 𝑦. Since the magnetic
field in a solenoid is static, the equation of the motion can be
solved for three regions at the entrance (field increases), body
(constant), and exit (field decreases) of the magnet [13].

Mexit =
©­­­«

1 0 0 0
0 1 −𝑘𝐿 0
0 0 1 0
𝑘𝐿 0 0 1

ª®®®¬ ,

Mentry =

©­­­«
1 0 0 0
0 1 𝑘𝐿 0
0 0 1 0

−𝑘𝐿 0 0 1

ª®®®¬ ,

Mbody =

©­­­­«
1 sin(𝑘𝐿)

2𝑘 0 sin2 (2𝑘𝐿)
𝑘

0 cos(2𝑘𝐿) 0 sin(2𝑘𝐿)
0 sin2 (𝑘𝐿)

𝑘
1 sin (2𝑘𝐿)

2𝑘
0 − sin(2𝑘𝐿) 0 cos(2𝑘𝐿)

ª®®®®¬
,

with 𝑘 = 𝐵𝑧/(2𝐵𝜌), the magnetic rigidity of 𝐵𝜌, and the
effective length of the magnet 𝐿. The overall transfer matrix
M is obtained by multiplying three distinct matrices M =

Mexit · Mbody · Mentry [14];

M =

©­­­­«
cos2 Φ sin 2Φ

2𝑘
sin 2Φ

2
sin2 Φ

𝑘

−𝑘 sin 2Φ
2 cos2 Φ −𝑘 sin2 Φ sin 2Φ

2
− sin 2Φ

2 − sin2 Φ
𝑘

cos2 Φ sin 2Φ
2𝑘

𝑘 sin2 Φ − sin 2Φ
2 −𝑘 sin 2Φ

2 cos2 Φ

ª®®®®¬
, (6)

where Φ = 𝑘𝐿.

ANALYTICAL MODEL FOR IDENTIFYING
THE CENTRE OF A SOLENOID

The basic layout for finding the magnetic field centre
of a solenoid magnet consists of a screen monitor located
downstream, as shown in Fig. 2. Then, with different beam
offsets or angles, it is necessary to model the beam motion at
the profile monitor while the strength of the magnet varies.
With the centre of the incident beam of 𝑥0 and 𝑦0 as well

Figure 2: Schematic layout for identifying the centre of a
solenoid magnet with a length of 𝐿. The beam arrives at
the magnet with an offset of 𝑟 and the screen monitor is
distanced by 𝑙𝑑 .

as without angles 𝑥′ = 𝑦′ = 0, the beam offset at the screen
monitor can be derived from Eq. 6 for a solenoid strength
of Φ and a travelling distance 𝑙𝑑 from the solenoid to the
screen monitor. The beam position 𝑥𝑠 and 𝑥𝑠 at the screen
are given by

𝑥𝑠 =

(
cos2 Φ − 𝑘𝑙𝑑 sinΦ cosΦ

)
𝑥0

+(sinΦ cosΦ − 𝑘𝑙𝑑 sin2 Φ)𝑦0 (7)

𝑦𝑠 =

(
− sinΦ cosΦ + 𝑘𝑙𝑑 sin2 Φ

)
𝑥0

+(cos2 Φ − 𝑘𝑙𝑑 sinΦ cosΦ)𝑦0.

To demonstrate the equation, this result is compared with
the macro-particle tracking simulation performed using the
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Figure 3: The motion of the beam centroid as a function of
beam offset at the entrance of the solenoid. The solenoid
has a strength of 𝐵𝑧 + Δ𝐵𝑧 = 0.4 ± 0.1 T with a length of
0.25 m and a distance to the screen monitor of 0.25 m.

IMPACT-Z code, which utilizes the nonlinear Lorentz inte-
grator for the propagation of beams in magnetic elements.

As shown in Fig. 3, the centroid mainly moves around the
circle in the real (𝑥− 𝑦) space. There is a slight difference be-
tween the formula and numerical simulations in terms of the
radius changes since it involves the effect of the fringe field
in the IMPACT-Z code. The solenoid in the Impact-Z code
assumes that the fringe field region extended to twice the
radius and, in addition, the magnetic field does not change
linearly in this region, which increases the focusing strength.
It also evidences that the radius of the circle at the screen
monitor is proportional to the initial offset of the beam at
the solenoid. In order to represent the radius change to a
physical quantity, the path length at the screen monitor 𝐶 is
calculated by integrating the central travel path of the beam
as a function of the strength. For a small strength variation
Δ𝑘 , i.e., Δ𝐵𝑧 << 𝐵𝑧 , it can be approximated as

𝐶 =

∫ 𝑘0+Δ𝑘

𝑘0

𝑑𝑘

√︄(
𝜕𝑥 𝑓

𝜕𝑘

)2
+
(
𝜕𝑦 𝑓

𝜕𝑘

)2
,

= 𝑟0

∫ 𝑘0+Δ𝑘

𝑘0

𝑑𝑘𝐿

√︃
1 + 𝑘2𝑙2

𝑑
,

≈ 𝑟0
𝐿

2𝑙𝑑
ln
©­­«
(𝑘0 + Δ𝑘)𝑙𝑑 +

√︃
1 + (𝑘 + Δ𝑘)2𝑙2

𝑑

𝑘0𝑙𝑑 +
√︃

1 + 𝑘2
0𝑙

2
𝑑

ª®®¬,(8)

where 𝑟0 =

√︃
𝑥2

0 + 𝑦2
0 denotes the initial offset. In Eq. (8),

the path length is linearly proportional to the initial offset
because the other terms are predefined in the beamline. In or-
der to verify this fact, the path length for the circular motion
is calculated based on the analytical model in Eq. (8) and
numerical simulations shown in Fig. 3 and the numerical
simulation, respectively, and the results are shown in Fig. 4.
In both cases, the analytical model and the numerical simu-
lation represent that the path length is linearly proportional
to the initial beam offset. Therefore, the scanning of the
path length with three offsets enables the identification of
the beam offset close to the magnetic centre of the solenoid.
This result also confirms that the slope of the numerical sim-

Figure 4: The path length of the circular motion at the screen
monitor based on the analytical model in Eq. (8) and numer-
ical simulations shown in Fig. 3.

ulation with the IMPACT-Z code was slightly smaller than
the analytical model. As shown in Fig. 3, the strong fringe
field in the numerical simulation resulting in the great radius
changes reduces the slope of the path length as a function of
the initial offset.

CONCLUSIONS
The solenoid magnet, which is commonly used to focus

the beam in low-energy injectors and heavy-ion machines,
features the magnetic field component in the beam axis that
triggers strong coupling between the x-y axes, making it
difficult to apply the separation of variables in the beam-
based alignment. In this study, we proposed the quantity of
the path change of the central position at the screen monitor
𝐶 in Eq. (8) that is only dependent on the initial offset while
the strength of the solenoid is varying. It was also proved
through theory and simulation that the path length increases
monotonically on the initial offset. Therefore, measuring the
𝐶 value at two or more corrector settings and extrapolating
by a linear line will provide the strength for aligning the
beam to the centre of the solenoid.
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