WHIZARD 1.0

A generic
Monte-Carlo integration and event generation package
for multi-particle processes

MANUAL

W. KILIAN!

Institut fiir Theoretische Teilchenphysik, Universitat Karlsruhe, D-76128 Karlsruhe, Germany

ABSTRACT

WHIZARD is a program system designed for the efficient calculation of
multi-particle scattering cross sections and simulated event samples. The
events can be written to file in STDHEP or ASCII format. Tree-level
matrix elements are generated automatically for arbitrary partonic processes
by calling external programs (0’Mega, MadGraph and CompHEP). Matrix
elements obtained by alternative methods (e.g., including loop corrections)
may be interfaced as well. The program is able to calculate numerically
stable signal and background cross sections and generate unweighted
event samples with reasonable efficiency for processes with up to six
final-state particles. Polarization is treated exactly for both the initial
and final states. Final-state quark or lepton flavors can be summed over
automatically where needed. For Linear Collider physics, beamstrahlung
(CIRCE) and ISR spectra are included for electrons and photons. Cur-
rently, WHIZARD supports the Standard Model, optionally with anomalous
couplings, but model extensions or completely different models can be added.

'kilian@particle.uni-karlsruhe.de

Contents
1 General remarks

2 Installation

2.1 SOUTCES . . . v v v o e e e e e
2.2 Prerequisites
2.2.1 Necessary o e
222 Optional e
223 Included
2.3 Configuration L
2.3.1 Configure options Lo
Running WHIZARD
3.1 Process selection L
3.1.1 Model selection
3.1.2 Process list
3.2 Compilation and installation00
3.3 Inputdata L
3.3.1 The process_input block
3.3.2 The integration_input blocko o000
3.3.3 The simulation_input block
3.3.4 The diagnostics_input blocko 0000
3.3.50 The parameter_input blocko
3.3.6 The beam_input blocks oL
3.4 Cuts . ..o e
3.5 Integration L
3.5.1 Running WHIZARD
3.5.2 The phase space configuration L.
3.5.3 What if it does not converge? L.
3.5.4 Outputfiles
3.6 Event generation Lo
3.6.1 Built-in analysis
Examples
4.1 Higgs production at LEP o oo oo
4.1.1 The on-shell process
4.1.2 The missing-energy channel
4.1.3 The four-jet channelo Lo
4.1.4 The lepton channels o
4.1.5 QCD contribution
4.2 6-fermion production: Higgs pairs oL
4.3 Vector boson scattering: polarization and beamstrahlung

1 General remarks

The increase of complexity in the scattering processes that are of interest at the next generation
of colliders calls for new tools for automatic computation and event generation. Many different
problems have to be tackled simultaneously: The program has to be versatile and necessarily
involves a large degree of automatization since the list of multi-particle processes to be consid-
ered is much longer than can be included in a hard-coded process library like PYTHIA [1]. The
precision required for the predictions makes the traditional distinction between signal and back-
ground processes obsolete, since interference effects often cannot be neglected. Thus, massive
multi-particle phase space has to be handled in the presence of many resonances and nearby
singularities. Since detector effects need to be studied, the program has to have a convenient
user interface, and it must be able to generate unweighted events with reasonable efficiency.

During the workshops of the ECFA/DESY study for a future Linear Collider it became
obvious that no single existing package was able to meet all these needs. Therefore, the initial
idea of WHIZARD was to combine known packages for generating matrix elements with a program
which is able to treat generic phase space, integrate and generate events. The matrix element
packages included are CompHEP [2], MadGraph [3], and 0’Mega [4], which together cover the
whole set of processes that currently can be handled automatically (at tree level). The latter
problem could be solved with the help of the new VAMP [5] integration program, which extends
the VEGAS algorithm to multi-channel parameterizations and thus makes it possible to handle
the complex singularity patterns of multi-particle phase space in a uniform way.

The problem for WHIZARD was to provide the actual phase space parameterizations, Jaco-
bians and transformations, provide a consistent environment and to make the programs com-
municate with each other by common interfaces. The user had to be given a simple setup with
common configuration and parameter definition files, commands to run all programs consis-
tently without the need for manual intervention (a simple make should suffice), and an analysis
system which allows for rapid inspection of the results as well as for interfacing hadronization
and detector simulation programs. The program had to keep full track of beam polarization
and include beamstrahlung and initial-state radiation. Finally, it should allow for flavor sum-
mation in the final state: usually, many different processes contribute to a single final state
that cannot be distinguished experimentally, and thus should be covered in a single run.

These goals have to a large extent been achieved by the current release. However, there
is still room for improvement. Most prominent, quark structure functions are still missing
and the treatment of QCD effects is incomplete. Once this has been added, WHIZARD will be
usable for processes at hadron colliders as well. Furthermore, the program is best suited for
genuine electroweak processes, which typically have resonant signals (cascade decays) and a
non-resonant background which is of the same order of magnitude. It is not tested as well for
processes which involve the emission of many soft particles without a dominating resonant part,
which may require improvements in the phase space parameterization. Another restriction is
due to the matrix element programs involved and their interfaces, which currently limit WHIZARD
to the Standard Model. Future versions will likely permit the user to define arbitrary models,
and the model library will include SM extensions such as the minimal supersymmetric Standard
Model (MSSM).

2 Installation

2.1 Sources

WHIZARD is Free Software and the sources can be obtained from
http://www-ttp.physik.uni-karlsruhe.de/Progdata/whizard/
The command
gzip -cd whizard.tgz | tar xf -

will unpack the sources in the current working directory. After unpacking, the following sub-
directories will exist:

doc contains the manual
conf contains the configuration file and default input files
kinds-src contains the definition of the Fortran REAL kinds

chep-src contains the CompHEP sources and, in the subdirectory modellib, the model defini-
tions

mad-src contains the MadGraph sources
helas-src contains the HELAS library which is used by MadGraph

omega-src contains files needed for running 0’Mega together with WHIZARD; the actual 0’Mega
distribution is kept separate

circe-src contains the CIRCE beamstrahlung library

vamp-src contains the VAMP integration library

gml-src contains the gamelan sources which allow a graphical representation of WHIZARD results
whizard-src contains the actual WHIZARD sources

bin contains the scripts needed for running WHIZARD and, after compilation, the WHIZARD exe-
cutable

processes is created during compilation and holds the source code for the generated matrix
elements and corresponding Feynman graph pictures

results contains the WHIZARD executable and input files after installation

2.2 Prerequisites
2.2.1 Necessary

The following programs must be available on the host system in order to successfully compile
and run WHIZARD:

e GNU Make

e Perl 5

e Fortran 90/95

e C: The C compiler is needed by CompHEP.!

e 0’Mega: This program for automatic matrix element generation is available from
http://heplix.ikp.physik.tu-darmstadt.de/~ohl/omega/

or from

ftp://heplix.ikp.physik.tu-darmstadt.de/pub/ohl/omega

For the compilation of 0°Mega you need Objective Caml (a.k.a. 0’Caml), version 3.00 or
higher. You can get it from

http://pauillac.inria.fr/ocaml/

When installing 0°Mega, you have to make either one (or both) of
make bin or make opt

for the executables, and
make f95

for the run-time library.

2.2.2 Optional

The following programs are not needed for compiling and running WHIZARD, but only for some
additional features:

e The STDHEP library for writing events in STDHEP format. This library is contained in
the CERN library in pre-compiled version only. Using it may require the corresponding
Fortran77 runtime library, which is determined by configure by envoking the Fortran
77 compiler.

!The compiler and compiler flags are set in chep-src/unix_com/CC.

e IXTEX for typesetting the documentation (including this manual)
e HEVEA for making the HTML version of the manual
e MetaPost for on-line generation of histogram and data plots

e noweb for weaving the program sources. This is also needed for generating the MetaPost
macro set for plotting.

e autoconf for creating a configure script in the restricted bundle.

2.2.3 Included

The following programs are included in the WHIZARD distribution and need not be obtained
separately. The URLs below should be inspected for the documentation, references, and license
conditions:

e CompHEP:
http://theory.npi.msu.su/~pukhov/comphep_html/comphep.html
which is mirrored at
http://www.ifh.de/~pukhov/

The included version is somewhat out-of-date (version 3.2.18), but has an additional
Fortran 90 interface.

e MadGraph:
http://www-pheno.physics.wisc.edu/Software/MadGraph
with a modified Fortran 90 interface.
e CIRCE:
http://heplix.ikp.physik.tu-darmstadt.de/lc/beam.html
with an additional WHIZARD interface.

e VAMP by Thorsten Ohl

2.3 Configuration
Running the configure script
./configure

will check the availability of programs and utilities and generate the Makefiles appropriate for
the host system.

2.3.1 Configure options

The following environment variables are recognized by configure. They need to be set only
if configure cannot find a program or library, or if a choice different from the default one
is desired. Path and program names should be specified absolute, not relative to the working
directory.

GMAKE: GNU Make.

F90: The Fortran 90 compiler.

F90FLAGS: Flags to be passed to the Fortran 90 compiler.

PERL: The PERL executable.

OMEGADIR: The 0’Mega directory.

TMPDIR: Directory where temporary files are stored. By default, /var/tmp is used.

LD _LIBRARY _PATH: Default path to search for libraries.

STDHEPDIR: The directory where the precompiled STDHEP library resides (optional).
NOWEBDIR: Directory where the notangle, noweave, cpif executables reside (optional).
GTAR: GNU tar (optional).

MPOST: Metapost (optional).

LATEX: KTEX (optional).

DVIPS: dvips (optional).

PRECISION: (temporarily not supported, will be re-enabled in a future release:) Set this to
quadruple if quadruple precision code is desired. This will be applied to all parts of the
program and may result in a considerable increase in execution time. If no quadruple
complex type is allowed by the processor, it will be emulated

F90_ MAXDIAG: Maximum number of diagrams contained in one CompHEP-generated file.
If there are more diagrams, files will be split. A value too large may lead to memory
overflow for particular compilers. Default value: 100.

3 Running WHIZARD

3.1 Process selection

Before compilation, a file whizard.prc has to be put in the subdirectory conf which contains
the list of processes to be considered. In principle, any process allowed by the physics model
can be included there. If no file is provided by the user, the file whizard.prc.default (Fig. 1)
will be used. The user may take this file as a template, insert or delete processes as desired,
and save the new version as whizard.prc.

3.1.1 Model selection

WHIZARD is not restricted to the Standard Model. The physics models for CompHEP and 0’Mega
are selected in two lines in the header of whizard.prc, respectively.

However, a generic interface for defining models is still under development. For this reason,
only certain combinations of models can presently be used without modifications of the program
source code.

The following combinations should work as expected:

e QED with three lepton generations (doesn’t work with MadGraph):

model sm 1
model QED

e The Standard Model in unitarity gauge, with e, sin #y and M as independent parameters
in the electroweak sector:

model sm 3
model SM

e The Standard Model as before, CompHEP using Feynman gauge for evaluation:

model sm 4
model SM

e The Standard Model in unitarity gauge, with G, My and M as independent parameters
in the electroweak sector:

model sm-GF 3
model SM

e Recommended: The Standard Model as before, CompHEP using Feynman gauge for
evaluation:

WHIZARD configuration file

The selected model (CompHEP)
model sm-GF 4

The selected model (0’Mega)

model SM

Processes

(Methods: chep=CompHEP, mad=MadGraph, omega=0’Mega)
(Options: s=selected diagrams, number=QCD order [Madgraphl)
f=fudged width [0’Megal

#

Tag In Out Method Option
f=================-=---------------o-----=------—=—=—=======
ee el ,El el ,El chep

ee_m el ,El el ,El mad

ee_o el ,El el ,El omega

wW el ,El W+,W- chep

WW_m el ,El W+,W- mad

WW_O el ,El W+, W- omega

zh el ,El Z,H chep

zh_m el ,El Z,H mad

zh_o el ,El Z,H omega

nnh el,E1 nl,N1,H chep

nnh_m el,El1 nl,N1,H mad

nnh_o el ,El nl,N1,H omega

nnbb el,E1l nl,N1,b,B mad

nnbb_o el ,El nl,N1,b,B omega

Figure 1: Default process configuration file

model sm-GF 4
model SM

e The Standard Model with anomalous couplings. In this combination CompHEP defines the
Standard Model in Feynman gauge in the limit of infinite Higgs mass and includes the
quartic anomalous couplings u56,7,10, While 0°’Mega defines the usual Standard Model
(so My must be set to a large value if desired) and includes the anomalous triple gauge
couplings gi-,z, K4,z, Ay,z as well as the anomalous quartic couplings au56.7.10-

model sm-GF 5
model SM_ac

In future versions of WHIZARD, this will be made more consistent, more models will be added
(in particular, the MSSM), and the possibility for the user to define arbitrary models will be
supported.

3.1.2 Process list

Each process is defined by a single line in whizard.prc (see Fig. 1). The meaning of the entries
within a line is as follows:

The first entry is a unique alphanumeric tag which will be used to identify the process. It
can be arbitrarily chosen, but should be a valid Fortran 90 token, lower case only.

The second entry defines the initial state. It consists of two particle names, separated
by a comma, with no space in between. The particle names are those used by CompHEP (by
convention) and are found in the appropriate model definition file, e.g.

chep-src/modellib/sm-GF/prtcls4.mdl

(see Fig. 2).

The third entry defines the final state. It consists of from two to six particle names?,
separated by a comma, with no space in between. Flavor sums are defined by particle names
separated by colons. For instance, the line

eeqq el,El u:d:s,U:D:S omega

will create a sum of all processes e”et — ¢, with ¢ being any of the light quarks. (Flavor
sums are available only for 0°Mega matrix elements.)

The particles to be summed over must have identical spin and color representation; otherwise
the summation will not work.

The fourth entry selects one of the three programs CompHEP, MadGraph, or 0’Mega for matrix
element generation. Many processes can be treated by more than one package, allowing for
cross-checks, but there are limitations:

2More are possible, but WHIZARD has not been well tested for more than six final-state particles.

St .Model (Feyn.gauge)

Particles

Full name | P | aP|2*spin| mass |width |color|aux|
photon A A |2 [0 |0 [1 |G
gluon IG G |2 |0 |0 18 |G
electron let |E1 |1 |0 |0 |1 |
e-neutrino In1l |N1 |1 [0 10 [1 IL
muon le2 |E2 |1 | Mm |0 [1 |
m-neutrino In2 |N2 |1 |0 [0 I1 |L
tau-lepton |e3 |E3 |1 |Mt |0 |1 |
t-neutrino In3 [N3 |1 |0 [0 I1 |L
u-quark lu U |1 10 10 I3 |
d-quark ld D |1 [0 10 13 |
c-quark lc IC |1 [Mc 10 I3 |
s-quark Is IS |1 |Ms |0 |3 |
t-quark It IT |1 [Mtop Iwtop |3 |
b-quark b IB I1 | Mb 10 13 |
Higgs IH |H 10 | MH | wH |1 I
W-boson W+ |W- |2 | MW [wi [1 |G
Z-boson 1z 1Z |2 |MZ |wZ [1 |G

Figure 2: Particle names and parameters as defined by CompHEP.

10

e CompHEP can only generate matrix elements for up to four particles in the final state. No
polarization or flavor summation is possible?.

e MadGraph has the Standard Model implemented with the exception of the trilinear or
quartic Higgs couplings. Color is treated exactly. The CKM matrix is set to unity.
The implementation included in WHIZARD can generate matrix elements with up to six
final-state particles. No flavor summation is possible.

e 0’Mega has the Standard Model implemented, optionally with anomalous couplings. The
color treatment is still incomplete, such that for a given process with colored particles
only the leading electroweak contribution is taken into account. The CKM matrix is
set to unity. It can generate matrix elements with an arbitrary number of final-state
particles, limited only by the host resources. (WHIZARD has extensively been tested only
for processes up to 2 — 6.)

At least one process must be calculated by CompHEP; otherwise the parameter definition
code will not be written®. One may use a simple dummy process like ee™ — ete™ for this
purpose.

3.2 Compilation and installation

After the processes have been selected, the matrix elements and executable code are compiled
and linked by the simple command

make prg

This will generate an executable named whizard in the bin subdirectory.
An alternative is

make bundle

which will create a restricted bundle containing the f90 source code of the selected matrix
elements and all necessary libraries. This bundle will be put as a gzipped tar file in the main
directory under the name whizard-bundle-XXX.tgz, where XXX specifies the current date and
time. The bundle can be unpacked on a different platform. There, it can be configured,
compiled and run without the need for a working 0’Mega installation. The restricted bundle
has all capabilities of the WHIZARD system except for the possibility to re-generate the matrix
elements.

A run of the Monte Carlo generator requires, apart from the executable, the following input
and configuration files. In their initial form they are found in the conf subdirectory:

e whizard.in containing all input data and parameters.

3The current official CompHEP version allows for polarization and has an interface for flavor sums. These
features are not yet supported by the WHIZARD—CompHEP interface.
4This restriction will be removed in a future version.

11

e whizard.cutl containing a-priori cut definitions. This file may be empty.

e whizard.cutb containing cut and histogram definitions for the data analysis step (the
5th pass of the program). This file may be empty.

When the command
make install

is issued, all necessary configuration files, together with the whizard executable, are copied
into the results subdirectory. If no user-defined files are found, default ones will be used. The
contents of the results directory may be copied anywhere without affecting the functionality
of the whizard executable within, leaving room for the simultaneous use of multiple WHIZARD
copies with different process content.

3.3 Input data

When the whizard executable is started, it will use the parameters from the copy of the file
whizard.in in the working directory. In this file, the physical input parameters and runtime
switches are set. There are very many parameters; however, the only mandatory entry is the
process tag which determines the process to be considered. For all the rest, WHIZARD will try
to insert sensible default values.

The file whizard.in is written using the Fortran 90 NAMELIST conventions. It consists of
several blocks marked by a keyword beginning with the & character and closed by a slash /. Each
block contains a list of assignments of the form variable = value. Variables left out are assigned
their default value. The assignments are separated by commas or newlines. Whitespace can
be inserted anywhere. Comments beginning with ! are allowed if the compiler supports the
Fortran 95 standard.

An example for the input file is shown in Fig. 3. In many cases, it suffices to fill the
process_input block and leave all others empty. If polarization, beamstrahlung etc. are in-
tended, the beam_input blocks must also be considered.

3.3.1 The process_input block

These parameters should always be inspected.

Parameter Value Default Description

process_id string Process tag as defined in
whizard.prc. Mandatory.

sqrts number 1000 C.M. energy of the initial state in
GeV.

luminosity number 0 Integrated luminosity in fb=!. A
nonzero value will activate event
generation.

12

&process_input
process_id = '"nnh"
sqrts = 500
luminosity = 100

/

&integration_input
calls =

1 10000

5 10000

2 20000

&simulation_input
write_events =T
/

&diagnostics_input /

¶meter_input

Me = 0

Ms =0

Mc =0

MH = 115

wH = 0.3228E-02
/

&beam_input

/

&beam_input

/

Figure 3: Sample input file.

13

Parameter Value Default Description

polarized_beams T/F F If true, the helicity content of the
beams must be defined below in the
blocks beam_input.

3.3.2 The integration_input block

These parameters will not affect the cross section value (up to statistical fluctuations, and
except for the default cuts) but can improve or disprove the running time, the stability and
accuracy of the result, and the efficiency of event generation.

Parameter Value Default Description

calls 6 numbers (yes) Array describing the number of iter-
ations and number of calls per inte-
gration pass. Default values depend
on the selected process. See below
in subsection 3.5 for details.

seed integer undefined Random number generator seed (in-
teger). When omitted, the time
counter will be used, resulting in a
different value each run.

stratified T/F T Use stratified (T) / importance (F)
sampling.
use_efficiency T/F F Use efficiency (T) / accuracy (F) as

the criterion for adapting the chan-
nel weights.

weights_power number 0.25 Power used for adapting the chan-
nel weights. Lower value means
slower adaptation (to suppress fluc-
tuations).

write_grids T/F T Write grids to files whizard.grb
(best grid) and whizard.grc (cur-
rent grid), to be reused later.

write_all_grids T/F F Write all grids to files
whizard.grXXX, where XXX is
the iteration number.

read_grids T/F F Read existing grids whizard.grb
and whizard.grc if they have been
written by a previous run. This
avoids the time-consuming adapta-

tion step. Makes sense only if
no physical parameters have been
changed.

14

Parameter

Value

Default

Description

read_grids_force

initial_weights

generate_phase_space

read_phase_space
overwrite_phase_space
phase_space_only

off_shell_lines

exchange_lines

extra_off_shell_lines

S_channel_resonance

single_off_shell_decays

double_off_shell_decays

T/F

numbers

T/F

T/F
T/F
T/F

integer

integer

integer

T/F

T/F

T/F

F

equal

T

15

Set this to T if you want to read the
grids from file even if some param-
eters have changed. Use with care!
This may result in a program crash if
the grid structures are incompatible.
Initial weights of the integration
channels.

Generate a phase space configura-
tion appropriate for the current pro-
cess and write it to whizard.phs.
Read phase space configuration from
whizard.phs if possible.
Overwrite an existing
whizard.phs.

Stop the program after phase space
generation.

Maximum number of off-shell-lines
in Feynman graphs relevant for the
phase space configuration.

This number n, specifies additional
Feynman graphs as relevant for the
phase space configuration. They
may have one off-shell line in addi-
tion, and at most n. less exchange
lines than the maximum.

Write extra configurations to file but
don’t use them.

If the total energy is variable (struc-
ture functions) and an s-channel
resonance is within the kinematical
range, setting this to true may im-
prove the phase space configuration.
Whether single-off-shell decays are
relevant for the phase space configu-
ration.

Whether double-off-shell decays are
relevant for the phase space configu-
ration.

file

Parameter

Value

Default

Description

single_off_shell_branchings

double_off_shell_branchings

massive_fsr

default_jet_cut

default_mass_cut

default_energy_cut

default_qg_cut

T/F

T/F

T/F

number

number

number

number

T

10

10

10

10

Whether single-off-shell branchings
are relevant for the phase space con-
figuration.

Whether double-off-shell branchings
are relevant for the phase space con-
figuration.

Whether the radiation of a massive
particle in the final state is relevant
for the phase space configuration.
The default invariant mass cut in
GeV applied to pairs of massless col-
ored particles.

The default invariant mass cut in
GeV applied to pair production of
massless colorless charged particles
and to photon emission.

The default energy cut in GeV ap-
plied to photon and gluon emission.
The default @ cut in GeV applied to
photon and gluon exchange.

3.3.3 The simulation input blo

ck

These parameters control event generation and output. If the luminosity (above) is left unde-
fined or zero, one may still generate a fixed number of events by setting n_events nonzero. By
default, the events are written to file in raw format and can be reused in that way. Writing
events in another format (which uses up more disk space) must be requested explicitly. How-
ever, if this has not been done, one may use WHIZARD afterwards as a translator to any file
format by reading pre-generated events and immediately writing them in another format:

&integration_input

read_grids = T /

&simulation_input read_events_raw = T write_events =T /

Parameter Value Default Description

n_events integer 0 Number of events to generate at
least, independent of the luminosity.

n_events_warmup integer 0 Number of extra warmup events (see
below, Sec. 3.6).

unweighted T/F T Reweight events to generate an un-
weighted event sample.

write_events T/F F Write generated events to file

16

whizard.evt to be used by an ex-
ternal analysis package.

Parameter Value Default Description

write_events_format integer 1 The format to be used for writing
whizard.evt (see Sec. 3.6).
write_events_raw T/F T Write generated events to file

whizard.evx (raw format) to be
reused in a later run.

read_events_raw T/F F Read events from file whizard.evx
(raw format) instead of generating
them.

read_events_force T/F F Read events from file even if some
parameters have changed. Use with
care!

3.3.4 The diagnostics_input block

These parameters do not affect the result, but the information displayed on screen and stored
in files.

Parameter Value Default Description

screen_results T/F T Whether to show results online on
screen.

screen_histograms T/F F Whether to show histograms on
screen.

screen_diagnostics T/F F Whether to repeat the input param-
eters on screen.

write_logfile T/F T Whether to write the output file
whizard.out.

show_input T/F T Whether to repeat the input param-
eters in the logfile.

show_phase_space T/F F Whether to show the phase space
configuration in the logfile.

show_cuts T/F T Whether to show the cut configura-
tion in the logfile.

show_histories T/F T Whether to show the individual
VAMP channel histories in the logfile.

show_history T/F T Whether to show the overall VAMP
history in the logfile.

show_weights T/F T Whether to show the weight adapta-
tion in the logfile.

show_event T/F F Whether to show the last event in
the logfile.

show_histograms T/F F Whether to show histograms in the
logfile.

17

Parameter Value Default Description

show_overflow T/F F Whether to show events beyond the
first or last bin in histogram listings.

show_excess T/F T Whether to show a summary of
events with weight exceeding one.

plot_width number 130 The width in mm of the plots if on-

line analysis is enabled.
plot_height number 90 The height in mm of the plots if on-
line analysis is enabled.

3.3.5 The parameter_input block

These are the physical constants used in evaluating the matrix elements. If this block is left
empty, default values (see below) will be inserted.

Which constants are actually present, and which ones are dependent or derived, depends
on the physical model (see the files in the corresponding subdirectory of chep-src/modellib).
The constants relevant for the Standard Model in the G parameterization are shown below:

Parameter Value Default Description

GF number 1.16639 x 10~> Fermi constant

MZ number 91.187 Z-boson mass

MW number 80.41 W-boson mass

MH number 130 Higgs mass

GG number 1.12 Strong coupling constant o (M)
s12 number 0.221 CKM matrix parameter (PDGQG)
s23 number 0.040 CKM matrix parameter (PDG)
s13 number 0.0035 CKM matrix parameter (PDG)
Me number 0.000511 electron mass

Mm number 0.1057 muon mass

Mt number 1.777 T-lepton mass

Mc number 1.300 c-quark mass

Ms number 0.200 s-quark mass

Mb number 4.300 b-quark mass

Mtop number 170 t-quark mass

wtop number 1.442 t-quark width

wZ number 2.502 Z-boson width

wiW number 2.094 W-boson width

wH number 1.461 Higgs width

The dependent parameters (such as e, sinfy, Vg etc.) will be shown in the output file
whizard.out, but one should not try to reset them in the input file.

Setting fermion masses to zero will considerably speed up the matrix element evaluation
since certain helicity combinations vanish identically (with MadGraph and 0’Mega). In that
case, cuts may be needed for a finite answer. However, if necessary, finite masses can be kept
everywhere.

18

Concerning quark masses in particular, they depend in fact on the chosen scale. The default
values for the parameters include the strong coupling constant defined at the scale p = M,
but the quark masses evaluated at the low scale p = 2 GeV. These default values are taken
from the PDG 2000 compilation. For a consistent scheme, running quark masses should be
inserted instead wherever this is of importance. For instance, the b mass is only about 2.9 GeV
at = My, thus affecting the Higgs coupling to b quarks.

The default values for the particle widths are given by the sum of the tree-level 1 — 2 decay
channels, using the default masses and couplings as input. This choice is questionable as well.
Since 0’Mega, MadGraph and CompHEP can only calculate cross sections at tree level, this is at
least consistent; however, for each particular problem one should re-investigate the underlying
assumption that 2-particle decays are dominant, and recalculate the widths accordingly. This
cannot (yet) be done by WHIZARD.

Finally, even if a parameter is defined and appears in the output, this does not necessarily
mean that its value is used by all three programs CompHEP, MadGraph and 0’Mega. For instance,
the chpt-GF class of models defines the Higgs mass in order to be compatible with 0’Mega’s
SM_ac model, but the matrix elements are calculated by CompHEP effectively using an infinite
Higgs mass. However, if a matrix element does depend on a particular parameter, a value
specified in the input file will be taken.

There are two switches within the parameter_input block:

Parameter Value Default Description

gwidth T/F F Use the gauge-invariant width pre-
scription for unstable particles in
CompHEP matrix elements.

rwidth T/F F Use a running-width prescription for
unstable particles in CompHEP matrix
elements.

In 0°Mega matrix elements, the gauge-invariant width prescription (“fudge-factor” or “overall”
scheme) is implemented by setting the f option in the last column of the process definition (in
whizard.prc).

3.3.6 The beam_input blocks

The input file is finished by two blocks which describe the properties of the first and second
incoming particle beam, respectively. These blocks may be left empty, in which case unpolarized
beams with fixed energy will be assumed.

Parameter Value Default Description

polarization two (three) numbers 000 Fraction of left/right polarization
(fermions, photons, gluons), resp.
left /longitudinal /right polarization
(massive vector bosons).

19

Parameter Value Default Description
fixed_energy T/F T If false, look for a structure function
to apply to this beam.

The polarization is applied only if polarized_beams is true in the process_input block above.
The remainder is filled with unpolarized particles, so .5 0 and .75 .25 would both stand for 50 %
left-handed polarized electrons.

If fixed_energy is false, WHIZARD will check if any of the structure functions defined below
is applicable for this beam. In case of beamstrahlung and ISR, two structure functions may be
applied consecutively.

For beamstrahlung, the accelerator type should always be defined, and it is not recom-
mended to use an energy different from the values for which valid CIRCE [6] parameterizations
exist.

Parameter Value Default Description

CIRCE_on T/F F Whether to apply beamstrahlung
(electron, positron or photon beam).

CIRCE_map T/F T Whether to apply a mapping to im-

prove convergence.

CIRCE_sqrts number NG The reference energy. Note that
CIRCE spectra are defined only for
discrete energy values.

CIRCE_ver integer 0 The CIRCE version number required.

CIRCE_rev integer 0 The CIRCE revision number re-
quired.

CIRCE_acc integer 0 The accelerator type as needed by
CIRCE.

CIRCE_chat integer 0 The level of CIRCE diagnostics.

The ISR spectrum for electrons or positrons accounts for the leading-logarithmic effect of

multiple photon emission. Since aqgp is usually calculated from G as far as the hard scattering
is concerned, it makes sense to reset it to é here. The incoming mass needs only be defined

here if m, has been set to zero in the parameter input block (which speeds up the calculation).

Parameter ~ Value Default Description

ISR_on T/F F Whether to apply ISR (electron or
positron beam).

ISR_alpha number e?/4r The value of aqep to be used for the

spectrum.
ISR_m_in number m The mass of the incoming particle.
ISR_sqrts number NG The hard scale which cuts off photon
radiation.

The EPA spectrum is the Weizsdcker-Williams approximation for a real photon radiated
off the incoming beam. Here WHIZARD does not know the nature of the incoming particle, so

20

' e- e+ -> e- e+ gamma
16 8 1 2 4
process eeg
cut Q of 10 within -99999 -1
cut Q of 17 within -99999 -1
cut M of 3 within 10 99999
cut E of 4 within 5 99999
cut PT of 4 within 19 99999
cut THETA(DEG) of 4 1 within 5 180
cut THETA(DEG) of 4 2 within 5 180

Figure 4: Cut configuration file

its PDG code must be specified here. In addition, Qmnax and myx must be supplied. (If the
produced system is massive, my should be set equal or less to the mass sum of all produced
particles.)

Parameter Value Default Description

EPA_on T/F F Whether to use the EPA spectrum
(photon beam).

EPA_map T/F T Whether to apply a mapping to im-
prove convergence.

EPA_in_prt integer 0 PDG code of the particle emitting
the photon.

EPA_alpha number e?>/4w The value of aqep to be used for the
spectrum.

EPA_mX number 0 The lower cutoff for the produced in-
variant mass.

EPA_Q_max number 0 The upper cutoff on the virtuality of
the photon (Qmax > 0).

EPA_x0 number 0 The lower cutoff on the energy frac-
tion of the incoming photon

EPA_x1 number 1 The upper cutoff on the energy frac-

tion of the incoming photon

3.4 Cuts

WHIZARD allows for cuts in some standard kinematical variables. Cuts may be necessary in
case the matrix element is infinite without them (which happens if massless particles are either
exchanged or produced). In this case, WHIZARD will apply default cuts on the invariant mass
of colored or charged particle pairs, on the energy of emitted photons or gluons, and on the
momentum transfer to exchanged photons or gluons. The values of those cuts are controlled
by parameters in the input file (see above).

21

Code | Alternative code Args | Description
- 0 —2 | No cut
M Q 1 | (Signed) invariant mass M = sgn(p?)+/|p?|
LM LQ 1 | logy, |M]
MSQ |[QSQ STU 1 Squared invariant mass M? = p?
E 1 Energy in the lab frame
LE 1 log,o E
PT 1 Transverse momentum p
PL 1 Longitudinal momentum py,
P 1 | Absolute value of momentum |p]
Y RAP RAPIDITY 1 | Rapidity y
ETA 1 Pseudorapidity n
DETA | DELTA-ETA 2 Pseudorapidity distance An
A ANGLE TH THETA 2 | Polar angle 6 (lab frame) in radians
AD ANGLE (DEG)
TH(DEG) THETA (DEG) 2 | Polar angle 6 (lab frame) in degrees
CT COS(TH) COS(THETA) 2 cosf
PH PHI 2 Azimuthal distance A¢ in radians
PHD | PHID PHI(DEG) 2 Azimuthal distance A¢ in degrees

Table 1: Cut and histogram code letters. Masses, energies and momenta are measured in GeV.

Alternatively, the user may specify his own set of cuts by supplying an entry in the file
whizard.cutl. If such an entry exists, the program will ignore the default cuts, and the user
is responsible for setting up his cuts in such a way that the cross section is still finite. The
format of such an entry for the process e et — e e®~ is shown in Fig. 4. The contents
of whizard.cutO, where the default cuts are logged by WHIZARD (if any), may be used as a
template.

The entry is begun by the keyword process followed by the process tag (eeg in this case).
If the same set of cuts should be applied to several processes, one may specify more than one
tag per entry, e.g.

process uudd uuss uucc
cut

The cut configuration file may contain any number of process entries. Comments are marked
by the letter ! or #.

For a given process, each cut is indicated by the keyword cut, followed by a code letter,
the keyword of, one or two binary codes, and cut window specifications. The code letters are
listed in Table 1. The binary codes indicate the combination of particle momenta to which
the cut should be applied. As the comment lines in Fig. 4 suggest, the outgoing particles are
given codes 1,2,4,.... Two additional codes are assigned to the incoming particles, where
the first incoming particle has the highest number. Momentum sums (particle combinations)

22

are defined by adding binary codes, such that the code 5, for instance, stands for the sum of
momenta of particles 1 and 4. The initial momenta are always counted negative, such that (in
Fig. 4) the number 17 stands for the difference of the momenta of particle 1 (outgoing) and 16
(incoming). The same applies to angles: The polar angle between 1 and 16 is not A of 1 16
but A of 1 8 since the initial particle 16 goes into the direction of —p(8).

Cut window specifications consist of the keyword within and two real numbers, optionally
followed by additional specifications like

cut PT of 4 within 0 150
cut M of 3 within 80 100 or 180 200 or 500 99999

The absence of an upper bound should be marked by a number outside the kinematical range.

3.5 Integration
3.5.1 Running WHIZARD

After the input parameters and cuts have been specified, the integration can be started by
make run

or, if we are in the working directory (results),
./whizard

After each iteration, the result will be displayed on screen and logged in the file whizard.out.
An example is shown in Fig. 5. Clearly, the integration converges towards a stable result, and
at the same time the estimated reweighting efficiency increases (allowing for some fluctuations).

The number of iterations and the number of calls per iterations are as given in the input
file whizard.in (see Fig. 3). Adaptation proceeds in three levels which are separated by a
horizontal line in the output:

In the first integration level, the grids are adapted after each iteration, but the relative
weight of the integration channels is kept fixed. In the example of Fig. 5, this level consists
of two iterations with 10,000 calls each. This level is useful in particular for many-particle
processes, where it takes some time before VAMP has found the physical region in each channel.

In the second level, the grids within each phase space channel and the relative weights of
the phase space channels are adapted after each iteration. The example of Fig. 5 shows how
the integral converges, the error estimate improves, and the estimated reweighting efficiency
increases, until some saturation is reached. Here, the sixth column is of main interest, which
is given by the estimator for the relative error multiplied by the square root of the number of
calls. One expects a number of the order of unity (or smaller) here for a well-adapted grid,
independent of the number of calls. Each time this number improves, it is marked by an
asterisk. The best grid will be used later for the final integration and event generation steps.

In the third level, the relative weights are fixed again, and the remaining iterations are
averaged for the final cross-section result.

23

WHIZARD 0.40 (Sep 11 2000)
Reading process data from file whizard.in
Process nnbb_m:
e a-e ->nu.e anue ba-b
32 16 -> 1 2 4 8
Generating phase space channels for process nnbb_m ...
40 channels generated.

WHIZARD run for process nnbb_m: (checksum = 131465255)

It Calls Integrallfb] Error[fb]l Err[/] Err/Exp Eff[/] Chi2

Adapting (fixed weights): Generating 2 samples of 10000 events
2 20000 5.7019717E+01 1.58E+00 2.76 3.91x 2.31 0.31

Adapting (var. weights): Generating 8 samples of 10000 events

3 10000 5.5642224E+01 1.23E+00 2.21 2.21x 7.58
4 10000 5.9028368E+01 1.06E+00 1.80 1.80x 7.51
5 10000 ©5.8586436E+01 8.34E-01 1.42 1.42x 9.82
6 10000 5.8997829E+01 6.89E-01 1.17 1.17x 12.18
7 10000 5.8626448E+01 1.04E+00 1.78 1.78 10.78
8 10000 b5.7737567E+01 5.12E-01 0.89 0.89% 17.50
9 10000 5.7693393E+01 4.75E-01 0.82 0.82% 19.50
10 10000 5.8216141E+01 5.42E-01 0.93 0.93 14.60

Integrating (fixed w.): Generating 2 samples of 10000 events ...
12 20000 5.8910540E+01 4.25E-01 0.72 1.02 11.64 0.05

Figure 5: Sample output of running WHIZARD.

24

3.5.2 The phase space configuration

The critical point for the integration is the phase space configuration. This is set up auto-
matically by WHIZARD before starting the integration. WHIZARD phase space consists of a set of
channels which formally correspond to Feynman diagrams. It should be kept in mind that the
choice of phase space channels does not influence the integration results (all Feynman graphs
are included in the cross section calculation and event generation). However, the accuracy and
the speed of convergence depend on this choice. In many cases it will not be necessary to
modify anything, but if you are not satisfied with the results of the default configuration, the
following remarks may help.

The default phase space configuration includes essentially all structures up to a certain
number of internal off-shell lines (2 by default), together with additional ¢-channel topologies
(t-channel photons/gluons are regarded as on-shell). This yields satisfactory results for many
processes, in particular those with a clear resonance structure (cascade decays).

The number of channels in the default configuration tends to be large. This is reasonable
since in principle all Feynman diagrams contribute, but it is a disadvantage for various reasons:
First, the necessary CPU time increases with the number of channels since the fraction of
time spent in calculating the mappings between different channels is not negligible. Second,
fluctuations have a strong effect if there are too many degrees of freedom, possibly spoiling
the convergence of the adaptive procedure. Third, in order to have a sufficient number of calls
within each integration channel, the total number of calls per iteration should also increased
with the number of channels, resulting again in more CPU time. As a rule, one should avoid
to have more than about 100-200 phase space channels or much less than O(1000) phase space
points per channel.

On the other hand, it may happen that important channels are missed by the default
configuration. In some cases the program is unable to generate any phase space configuration
because no graphs pass all criteria. In this case the restrictions should be weakened.

Therefore, various switches are available to control the phase space configuration. First of
all, to reduce the number of irrelevant channels, one may set double_off_shell_branchings=F
or even single_off_shell_branchings=F. This tells WHIZARD not to consider cases where an
off-shell particle decays into two particles, one or both of them being off-shell as well. The
total number of off-shell lines allowed is controlled by the parameter off_shell_lines.

Considering on-shell particles, WHIZARD by default will take two- and three-body decays into
account. The latter can be removed from the phase space setup by setting single_off_shell_decays=F
On the other hand, one may account for certain four-body decays by double_off_shell_decays=T.

Whether exchange (t-channel) graphs are important or not depends on the dynamics. For
instance, Higgs production at low energies is due to ete™ annihilation at low energies, while
vector boson fusion dominates at high energies. In the phase space configuration, this is con-
trolled by the parameter exchange_lines, which is the number of massive exchange lines that
should be counted as on-shell. The default (1) has proven to be adequate for most cases. Fi-
nally, to reduce the number of channels one can set massive_FSR=F. This will, e.g., remove
graphs where a massive boson is radiated off the spectator fermion after boson exchange.

To summarize, while for simple processes (2 — 3, 2 — 4) the default configuration can

25

usually be kept if one is not too much concerned about execution speed, in more complicated
cases a good starting point is a setup like

&integration_input

1]
'

double_off_shell_branchings
single_off_shell_branchings
single_off_shell_decays = F
massive_FSR = F

/

1]
'

which will result in a low number of channels. (Set phase_space_only = T and look at the
generated configuration in whizard.phs if you want to inspect the configuration before starting
the integration.) One should check that no important subprocesses are missed; ultimately, the
test for that is the convergence and stability of the integration. If it fails, some parameters
should be modified in order to increase the number of channels.

3.5.3 What if it does not converge?

Although WHIZARD is able to produce stable results with the default settings for a large variety
of scattering processes, it is not possible to guarantee fast convergence in all circumstances.
There is no simple rule for the achievable accuracy and event generation efficiency for a given
process; the examples in Sec. 4 should provide some guideline. In any case the screen output
of the adaptation procedure should be inspected, and questionable results should not be used for
stmulation.

Experience shows that in well-behaved 2 — 4 processes an accuracy (Err/Exp in the output)
below 1 and an estimated reweighting efficiency above 10 % is reasonable. Due to the increased
dimensionality of phase space, for 2 — 6 processes the numbers are typically worse by a factor
2 to 4. Activating ISR and beamstrahlung also reduces the efficiency.

If convergence is apparently not reached, this may be due to one of the following causes:

e The integral is infinite. One should check the cuts if they are sufficient for a finite result.

e The number of iterations is insufficient. For simple 2 — 3 processes, one reaches a stable
result after 2 — 5 iterations, but in complicated cases (many particles, photon emission
with weak cuts, etc.) 20 — 30 iterations may be needed. WHIZARD will make a guess, but
this may be not sufficient in some cases.

e The number of calls per iteration is insufficient. With increasing dimension and complex-
ity of the phase space, this number should be increased as well.

e The phase space parameterization is inadequate (see above). One may try to include or
remove channels by modifying parameters such as the number of off-shell lines allowed
in generating parameterizations. The examples in Sec. 4 illustrate some of the possible
problems and solutions.

26

e The matrix element is numerically unstable. This has not (yet) been observed for 0’Mega
matrix elements, but cannot be excluded. In a future version of WHIZARD and 0°’Mega,
quadruple precision will be available.

One should be careful to avoid the effects of gauge invariance violation, which can be large if
unstable particles and photons are around. With CompHEP matrix elements, the gwidth switch
should be set in this case, while 0°’Mega matrix elements should be generated with the ‘f’
option.

3.5.4 Output files

All results are logged in the file whizard.out, which is rewritten after each iteration. Depend-
ing on the settings of the diagnostics parameters, it will contain additional information: The
contents of the input file are repeated, including also the default values which have been in-
serted by the program. Furthermore, it shows the detailed history of the individual integration
channels and of their relative weights.

After each iteration, the current VAMP grids are written to file as well: whizard.grc for the
current grid and whizard.grb for the best grid. These may be reused in another run.

27

3.6 Event generation

Event generation is activated in the input file, either by specifying a nonzero luminosity

&process_input

luminosity = 100
/

or by a nonzero number of events

&simulation_input
n_events = 10000
/

In the former case, the actual number of generated events depends on the calculated cross
section. If both numbers are given, the one leading to the larger event sample will be used.

The simulation makes sense only if WHIZARD could find a stable result for the cross sec-
tion. This should be judged from inspecting the results displayed on screen and in the log file
whizard.out.

With event generation activated, WHIZARD will not stop after the integration step, but start
event generation. By default, WHIZARD will generate unweighted events, which result from
reweighting the events produced by the VAMP sampling algorithm. In the event generation step,
importance sampling is used, such that the events are random and have the proper distribution
as required for a realistic simulation.

WHIZARD is able to write events to file in various formats:

e The file whizard.evx contains the events in a binary machine-dependent format. By
setting read_events_raw=T they can be re-read, bypassing the time-consuming event
generation.

e The file whizard.evt contains the events in a format controlled by the parameter write_events_f
The supported formats are:

0 Verbose format (ASCII), useful mainly for debugging.

1 HEPEVT format (ASCII). The format corresponds to the HEPEVT standard, such
as if the contents of a HEPEVT common block were written in their natural order
(Fig. 6, 7). As an extension, the helicity (—1, 0, or 1) is written for each particle in
the same line after JDAHEP.

2 SHORT format (ASCII). This is similar to HEPEVT, but unnecessary entries are
suppressed (Fig. 8).

3 STDHEP format (binary, machine-independent)®

5This works only if the STDHEP library is present.

28

integer, parameter :: nmxhep = 4000

integer :: nevhep, nhep

integer, dimension(nmxhep) :: isthep, idhep

integer, dimension(2, nmxhep) :: jmohep, jdahep

real (kind=double), dimension(5, nmxhep) :: phep

real (kind=double), dimension(4, nmxhep) :: vhep

common /HEPEVT/ nevhep, nhep, isthep, idhep, &
& jmohep, jdahep, phep, vhep

Figure 6: Definition of the HEPEVT common block in Fortran 90 format

Within each event, the particles will appear in the order determined by the process definition
(for MadGraph and 0’Mega; CompHEP may reorder them). Since hadronization packages such
as JETSET require a particular order of colored particles to properly assign showers, it be may
necessary for the user to rearrange them before feeding them into the hadronization step.

Reweighting Monte-Carlo events requires the knowledge of the highest weight. This can
never be known with certainty in advance, so there may be some fraction of events with weight
greater than one. By default, WHIZARD will sum up the excess weight of those events and show
the induced error in the total cross section, which should be small compared to the statistical
error of event generation. If desired, the excess events can be further analyzed by WHIZARD’s
own analysis capabilities (see below), to make sure that they have no significant impact on final
results.

WHIZARD will use the adaptation step to determine the highest weight beforehand. This
requires sufficient statistics in the adaptation procedure. If many events have to be generated,
the default choice for the number of calls per iteration may be too low, and too many excess
events are produced. As a rule of thumb, the number of calls per adaptation iteration should
be of the order of the number of unweighted events divided by the estimated efficiency.

Alternatively, a “test” run can be made by specifying a nonzero value of n_events_warmup
in the input file. For instance, one may generate 200,000 (weighted) events to determine the
highest weight before generating the actual sample to be used for the reweighting procedure:

&simulation_input
n_events = 10000
n_events_warmup = 200000

/

Fortunately, this is not necessary in most cases since the pre-determined highest weight is
usually quite accurate.
3.6.1 Built-in analysis

WHIZARD has capabilities to analyze the events without reference to external packages. To
this end, a configuration file whizard.cut5 should be set up which has a similar format as

6Tt is planned to implement a direct PYTHIA interface in WHIZARD.

29

WRITE(22, 11, IOSTAT=ICHEK) NHEP
DO I=1,NHEP
WRITE (22, 13, IOSTAT=ICHECK) ISTHEP(I),IDHEP(I), &
& (JMOHEP (J,I),J=1,2), (JDAHEP(L,I),L=1,2)
WRITE (22, 12, IOSTAT=ICHECK) (PHEP(J,I),J=1,5)
WRITE (22, 12, IOSTAT=ICHECK) (VHEP(L,I),L=1,5)
END DO

11 FORMAT (115)
12 FORMAT (10F17.10)
13 FORMAT(I9,19,4I5)

Figure 7: Equivalent FORTRANT7 code which would produce the event file whizard. evt from
the contents of a HEPEV'T common block.

write(u,11) evtln_out
do i=1, evt¥n_out
p = array(particle_momentum(evtiprt(i)))
write (u,13) particle_code(evt/prt(i)), evti)hel_out(i)
write (u,12) p(1:3), p(0), particle_mass(evtyprt(i))
end do
11 format (1I5)
12 format (10F17.10)
13 format(I9,I9,5I5)

Figure 8: Output routine for the SHORT event file format.

30

' e- e+ -> e- e+ gamma
16 8 1 2 4
process eeg
cut M of 3 within 80 100
and
cut M of 3 within 180 200
cut PT of 4 within 100 99999
and
cut E of 4 within 0 100
histogram PT of 1 within 0 500

Figure 9: Analysis configuration file.

whizard.cutl. For instance, in Fig. 9 a configuration file is shown which tells WHIZARD to

analyze the generated event sample in three different ways: to calculate the cross section

within a window 80 < M (ete™) < 100, then within 180 < M(ete™) < 200 with an additional

cut on p, (), and finally to generate a histogram of p, (e~) with a cut on the photon energy.
The histogram specification may take either one of the form

histogram PT of 1 within 0 500
histogram PT of 1 within 0 500 nbin 50
histogram PT of 1 within 0 500 step 10

Instead of the number of bins (20 by default), the bin width can be specified by the keyword
step.

The cross section results are displayed on screen. In addition, they are written together
with the histogram data to the file whizard-plots.dat. If show_excess=T has been set in the
input file, the summary and the histograms will contain also information about any events with
weight greater than one, such that their properties can be examined.

Clearly, for a quick analysis it is not necessary to simulate proper unweighted events. There-
fore, one may set unweighted=F in order to analyze a sample of weighted events, which saves
a lot of execution time.

The contents of whizard-plots.dat can be visualized directly by means of the gamelan
graphical analysis package which is contained in the distribution. This requires the existence
of the MetaPost program, which is part of many KTEX distributions. Plots can then be made

by typing
make plots

This will result in a Postscript file whizard-plots.ps which can be viewed and printed.
The event sample can further be analyzed in terms of helicity and flavor content. Example

! e- e+ -> q gbar b bbar
16 8 1 2 4 8

31

process qgbb
cut M of 3 within 85 95
helicity 1 -1 -1 1
helicity -1 1 -1 1
flavor 1-15-5
histogram M of 12 within 0 500

This would plot a histogram of the invariant mass of the bb pair with the additional requirement
that the other quark pair must be ut, and that the b (anti)quarks must be left- resp. right-
handed.

The order should be as above: first cut specifications (the event must pass all cuts), then
flavor and helicity specifications (the event must match any of the given helicity combina-
tions and any of the given flavor combinations), finally histogram specifications. Any of these
may be absent; an empty entry will just display the total cross section again. More analysis
configurations can be added for the same process, they must be separated by the keyword and.

32

4 Examples

In the following sections three realistic applications of WHIZARD are presented: Higgs production
in the four-fermion channels, Higgs pair production (six fermions), and strong WW scattering
(six fermions). With certain refinements and modifications, they could be used for actual
physical applications. However, here they are intended as a form of tutorial, showing typical
setups and common problems. Some of the applications shown take a considerable amount of
CPU time to run completely; for a first try, one may reduce this by removing flavor summation,
require a smaller number of iterations, or consider simpler processes for test purposes.

4.1 Higgs production at LEP

Let us simulate the production of a 115 GeV Standard Model Higgs in e*e™ collisions at
209 GeV. With this mass, the Higgs boson decays mainly into bb with a small fraction of 77~
decays. Here, we only consider the signal together with its irreducible background, contributing
to the processes

vibb
qqbb
bbbb
pu b
e eThb

gqr

N

1

where ¢ = u,d, s,c and v = v,, v, v,. This list of processes directly translates into the config-
uration file whizard.prc:

WHIZARD configuration file

The selected models (CompHEP/0’Mega):
model sm-GF 4

model SM

Processes

(Methods: chep=CompHEP, mad=MadGraph, omega=0’Mega)
(Options: number=QCD order [Madgraph])
#
#

Tag In Out Method Option
#=======================sssssssssssosssosoooooooooooososooooooo=s
On-shell process:
zh el ,El Z,H chep

Full four-fermion matrix elements (no QCD):
nnbb el,E1 nl:n2:n3,N1:N2:N3,b,B omega

33

qqgbb el ,El u:d:s:c,U:D:S:C,b,B omega

bbbb el,E1 b,B,b,B omega
eebb el ,El el,E1,b,B omega
mmbb el ,El e2,E2,b,B omega
qqtt el ,El u:d:s:c,U:D:S:C,e3,E3 omega
bbtt el ,El b,B,e3,E3 omega

QCD contribution (gluon splitting):

uubb_qcd el ,El u,U,b,B mad 2
ddbb_qcd el,E1l d,D,b,B mad 2
ssbb_qcd el ,El s,S,b,B mad 2
ccbb_qcd el ,El c,C,b,B mad 2
bbbb_qgcd el,E1l b,B,b,B mad 2

Here, we use flavor summation for the quark and missing-energy channels. Since 0’Mega can’t
yet handle QCD corrections where one quark pair originates from gluon fragmentation, those
are implemented using MadGraph for the matrix elements. (We could also use CompHEP for that
purpose. For 2 — 4 processes, however, CompHEP matrix elements typically need considerable
more CPU time both in compilation and execution.)

After this file has been saved in the conf subdirectory, we should run configure in the
directory where we had unpacked the distribution, if not already done,

> ./configure
and make and install the executable
> make install

After this step is completed, we are ready for running the program.

4.1.1 The on-shell process

All necessary files have now been installed in the results subdirectory:

> cd results

> 1s
Makefile whizard whizard.cutb whizard.mdl
Makefile.in whizard.cutl whizard.in whizard.prc

The file whizard.prc is a copy of the one we prepared above. whizard.mdl is a list of Feynman
rules to be considered for phase space generation; usually we don’t need to modify it. The two
cut configuration files are empty. The file which is of interest for us now is whizard.in which
we have to edit:

&process_input
process_id = '"zh"

34

sqrts = 209
/

&integration_input
stratified = F

/

&simulation_input /

&diagnostics_input /

¶meter_input

MH = 115

wH = 0.3228E-02
Mb = 2.9

Me = 0

Ms =0

Mc =0

/

&beam_input /

&beam_input /

As a warm-up, we examine the on-shell process e"et — ZH, labeled zh. We insert the c.m.

energy 209 GeV and the Higgs mass 115 GeV. The next two parameters are not relevant here,

but will be needed for the other processes: The Higgs width value wH is the one returned by

HDECAY [7]. The b mass Mb is the running mass evaluated at a scale around my. This is

important since the Hbb coupling is proportional to m;,.” The setting stratified=F calls for

importance sampling instead of stratified sampling (see below). All other fields are left empty.
Having saved whizard.in, the program can be started:

> ./whizard

(if you like, you can also type make run). Since this process is trivial, the results are there
immediately:

WHIZARD 1.00beta (Nov 15 2000)
Reading process data from file whizard.in

e a-e —> h Z

!
!
! Process zh:
!
! 8 4 > 1 2

" For a genuine analysis, one should inspect the underlying assumptions and try to find a consistent parameter
set. Since the WHIZARD matrix elements are evaluated at tree level, some higher-order corrections should not be
included in the Higgs width.

35

Reading phase space information from file whizard.phs ...
2 phase space channels found for process zh

Reading cut configuration data from file whizard.cutl

No cut data found for process zh

WHIZARD run for process zh: (checksum = 2042343512)

! __
! It Calls Integral[fb] Error[fb] Err[)] Err/Exp Eff[}] Chi2
! __
! Adapting (fixed weights): Generating 1 sample of 5000
events ...

1 5000 1.6112998E+02 1.16E-02 0.01 0.01x 99.43 0.00
! __
! Adapting (var. weights): Generating 3 samples of 5000
events ...

2 5000 1.6117984E+02 6.88E-02 0.04 0.03 91.43

3 5000 1.6119047E+02 6.83E-02 0.04 0.03 90.85

4 5000 1.6121313E+02 5.75E-02 0.04 0.03 92.52
! __
! Integrating (fixed w.): Generating 1 sample of 5000
events ...

5 5000 1.6116885E+02 6.74E-02 0.04 0.03 90.99 0.00
! __
!
! Time estimate for generating 10000 unweighted events: 0:00:00 hours

! WHIZARD run finished.

We read off the total cross section
o =161.174+0.07 fb

Clearly the grid adaptation was of no use at all, since the final error is larger than the initial
one. This would have been even worse if we had not inserted stratified = F. However, for less
trivial processes stratified sampling usually gives better results, and in the examples presented
below we keep stratified = T.

If we were interested in a more accurate result, we could increase the statistics like this

&integration_input

calls = 1 100000 1 100000 3 500000

(one initial run of 100,000 events, one run of 100,000 events for adaptation, 3 runs of 500,000
events for integration) and would get something like

o = 161.1417 4+ 0.0006 fb.

This serves merely as an illustration: for this process the cross section is easily obtained ana-
lytically, and the accuracy is limited by the input parameters anyway.

36

4.1.2 The missing-energy channel

The actual virtues of WHIZARD lie in calculating complete multi-fermion processes. Requesting
the process

e~et — vbb where v = v,, Uy, Vi QU
in the input file, which we have called nnbb,

&process_input

process_id = '"nnbb"
sqrts = 209
/

and returning to the default integration setting
&integration_input /

we arrive at a result like this:

! WHIZARD 1.00beta (Nov 15 2000)

! Reading process data from file whizard.in

! Process nnbb:

! e a-e -> nu_e a-nu_e b a-b

' 32 16 -> 1 2 4 8

! Reading phase space information from file whizard.phs ...
! No entry found for process nnbb.

! Generating phase space channels for process nnbb ...

! 40 channels generated.

! Wrote new phase space configuration file whizard.phs

! Reading cut configuration data from file whizard.cutl

! No cut data found for process nnbb

!
!

! WHIZARD run for process nnbb: (checksum = -1141000641)
gy gy gy Sy S S
! It Calls Integrall[fb] Error[fb] Err[)] Err/Exp Eff[)] Chi2
e
! Adapting (fixed weights): Generating 1 sample of 20000
events ...

1 20000 1.0469953E+02 1.53E+00 1.46 2.06% 5.21 0.00
gy gy gy Sy S S
! Adapting (var. weights): Generating 10 samples of 20000
events ...

2 20000 1.0644204E+02 9.77E-01 0.92 1.30% 9.42

3 20000 1.0679193E+02 6.47E-01 0.61 0.86% 17.78

4 20000 1.0716129E+02 6.67E-01 0.62 0.88 16.57

5 20000 1.0645896E+02 5.69E-01 0.53 0.76x 18.23

6 20000 1.0673084E+02 6.07E-01 0.57 0.80 16.95

7 20000 1.0562857E+02 5.07E-01 0.48 0.68x 20.64

8 20000 1.0894981E+02 2.17E+00 1.99 2.81 T7.35

9 20000 1.0587926E+02 5.20E-01 0.49 0.69 19.53

37

10 20000 1.0699021E+02 5.05E-01 0.47 0.67% 19.41

11 20000 1.0661609E+02 4.90E-01 0.46 0.65% 22.29
! __
! Integrating (fixed w.): Generating 1 sample of 20000
events ...
12 20000 1.0655991E+02 6.05E-01 0.57 0.80 18.03 0.00
! __
!
! Time estimate for generating 10000 unweighted events: 0:01:06 hours

! WHIZARD run finished.

The cross section is®

o =106.6 £0.6 tb

This calculation takes about 5 minutes on a state-of-the-art Alpha processor (Nov. 2000), and
about 15 minutes on a standard PC. Of course, if we invest more CPU time, we can improve
the accuracy, as explained in the previous subsection.

In inspecting the output, the column tagged Err/Exp is of main interest (read: relative
error over expected relative error). This is the estimated relative error multiplied by the square
root of the number of calls, a number which should be of the order one. Each time this error
improves, the entry is marked with a star. The best grid so far (the last one with a star) will
be used for integration, and later for event generation. As evident from the column Eff [%],
the estimated reweighting efficiency improves as well. In the last column the y? value divided
by the number of iterations is shown. This value is meaningful only if there is more than one
iteration in the integration step. This is not the case here, so it is zero in our example.

Let us now generate events. We define a nonzero luminosity (100 fb~!, which is more than
100 times the LEP integrated luminosity per year):

&process_input

process_id = '"nnbb"
sqrts = 209
luminosity = 100

/

We do not want to repeat the adaptation and integration steps, therefore we read in the
previously adapted grids

&integration_input
read_grids =T

/

Now running WHIZARD will result in a repetition of the previous result, before event generation
is started:

8This number should be taken with a grain of salt. See footnote 7.

38

Reading analysis configuration data from file whizard.cutb
No analysis data found for process nnbb

Event sample corresponds to luminosity [fb-1] = 100.0

Generating 10656 unweighted events ...

Analysis results for the generated event sample:

! It Calls Integrall[fb] Error[fb] Err[)] Err/Exp Eff[)] Chi2

! __
13 10656 1.0655991E+02 1.03E+00 0.97 1.00 100.00

! __

! Excess events: 14.1 (Error[%]: 0.13)

! WHIZARD run finished.

The generation of 10,656 events takes one more minute in this case (on an Alpha processor). No
further analysis has been requested, so we just get the total cross section again. By definition,
this is equal to the previously calculated cross section, but the error now corresponds to the
actual event sample.

There are some excess events (weight greater than one), but the effect of this excess be-
ing dropped is considerably less than the statistical error of the event sample. If necessary,
the excess could be reduced by a higher-statistics adaptation or by a warmup run with large
statistics:

&simulation_input
n_events_warmup = 500000

/

The event sample can be further analyzed: Let us plot the missing invariant mass distribu-
tion and the dijet invariant mass distribution, which should exhibit peaks at the Z and Higgs
mass. To this end, we tell WHIZARD to reread the generated event sample

&simulation_input
read_events_raw = T

/
and make up an analysis configuration file whizard.cutb:

cut/histogram configuration file

e— e+ —-> nu nubar b bbar

32 16 1 2 4 8

process nnbb, qgbb, bbbb, eebb, mmbb, qqtt, bbtt,

uubb_qcd, ddbb_qcd, ssbb_qcd, ccbb_qgcd, bbbb_qcd

histogram M of 3 within 0 209 nbin 40

and
histogram M of 12 within 0 209 nbin 40

and

39

cut M of 12 within 114 116
histogram M of 3 within 0 209 nbin 40

This type of analysis can serve for all processes, therefore we have added the other tags. The
last histogram counts only those events which have a bb invariant mass close to the Higgs mass.
The numbers result from adding up the binary codes of the external particles, which are shown
as a the comment in the file header.

Running WHIZARD this time takes almost no time since only the previously generated files
have to be read:

Reading analysis configuration data from file whizard.cutb
Found 3 analysis configuration datasets

Event sample corresponds to luminosity [fb-1] = 100.0

Looking for raw event file whizard.evx ...
Reading 10656 unweighted events ...

Analysis results for the generated event sample:

It Calls Integral[fb] Error[fb] Err[)] Err/Exp Eff[%]

13 10656 1.0655991E+02 1.03E+00 0.97 1.00 100.00

Analysis results for the generated event sample:
It Calls Integral[fb] Error[fb] Err[)] Err/Exp Eff[%]

13 10656 1.0655991E+02 1.03E+00 0.97 1.00 100.00

cu

Analysis results for the generated event sample:

Additional cuts:
integration level 5

t Mof 12 12 within 1.14000E+02 1.16000E+02

! __
It Calls Integral[fb] Error[fb] Err[)] Err/Exp Eff[%]

! __
13 2276 2.2759980E+01 4.77E-01 2.10 1.00 21.36

WHIZARD run finished.

From the last line we read off that the actual contribution of Higgs production in this channel
is 2276 events (or 21.36 %). Here the efficiency is not the reweighting efficiency as before, but
the fraction of events remaining after cuts. The histograms can now be found in the output file
whizard-plots.dat:

WHIZARD 1.00beta (Nov 15 2000)
Process nnbb:

e a-e -> nu_e a-nu_e b a-b
32 16 > 1 2 4 8

40

Analysis results for the generated event sample:

1
!
! Histograms:
1

histogram M of 3 within 0.00000E+00 2.09000E+02 =nbin 40
2.61250000 1.00000000 1.00000000 0.00000000
7.83750000 2.00000000 1.41421356 0.00000000
13.0625000 3.00000000 1.73205081 0.00000000
18.2875000 4.00000000 2.00000000 0.00000000
23.5125000 4.00000000 2.00000000 0.00000000
28.7375000 8.00000000 2.82842712 0.00000000
33.9625000 12.0000000 3.46410162 0.00000000
39.1875000 23.0000000 4.79583152 0.00000000
44.4125000 12.0000000 3.46410162 0.00000000
49.6375000 35.0000000 5.91607978 0.00000000
54.8625000 38.0000000 6.16441400 0.00000000
60.0875000 47.0000000 6.85565460 0.00000000
65.3125000 73.0000000 8.54400375 0.00000000
70.5375000 93.0000000 9.64365076 0.00000000
75.7625000 123.000000 11.0905365 0.00000000
80.9875000 277.000000 16.6433170 0.00000000
86.2125000 1106.00000 33.2565783 0.00000000

In these histograms, the first column is the bin midpoint. The second column is the number of
entries, the third column the statistical error on this number (v/N). The fourth column would
show the excess events (since we have read the events from file, they are not shown here).

The actual histograms are shown in Fig. 10. In the dijet invariant mass distribution the 7
and Higgs peaks are clearly visible. At low dijet invariant mass there is a tail of continuum
bb production. In the missing mass distribution the peak is at the Z mass. If the dijet mass
is required to be close to the Higgs mass, the background with My,iss > /s — My is rejected,
including continuum bb production from WW fusion which peaks at high missing mass. The
Higgs signal, which includes Higgs-strahlung, WW fusion and interference, is retained.

4.1.3 The four-jet channel

There are two four-jet channels
e~et — qqbb, bbbb.

If the light quark masses are set to zero (see the input file above), all light quark channels can
be treated in a single run. For unequal masses, flavor summation is not possible, therefore the
b channel has to be treated separately. (We can’t set the b mass to zero since this would remove
the b Yukawa coupling.)

Running the program as before for the process gqgbb with the given input and analysis
configuration files takes about 10 minutes in total on an Alpha processor. The cross section
result is

oc=284.0+1.21b

41

#evt /bin

10—

1000 —

100

10—

#evt /bin

|
100
My, [GeV] of (bb)

10—
1000 —
100 —

10—

s

20

|
100
My, [GeV] of (vp)

150 200

Figure 10: Histograms for the process e”e™ — vbb at \/s = 209 GeV with my = 115 GeV.
Top: Dijet invariant mass distribution. Bottom: Missing invariant mass distribution; light: all
events, dark: only those events with 114 GeV < M (bb) < 116 GeV.

42

and 28399 events are generated in this run, 4704 of them within the Higgs mass window.
To obtain a finite result, WHIZARD had to insert a cut of 10 GeV on the dijet invariant mass
of the light quarks. This cut is written into the file whizard.cutO:

! Automatically generated set of cuts

! Process qgbb:

! eae -> uau bab

' 32 16 > 1 2 4 8

process qgbb

cut M of 3 within 1.00000E+01 1.00000E+99

The cut could be modified either by changing the default value in whizard.in, e.g.

&integration_input

default_jet_cut = 5
/

or by providing a non-empty file whizard.cutl of the same format, with a different set of cuts.
If an appropriate process entry is found in this file, any default cuts are ignored.

The bbbb channel is similar, although the presence of identical particles in the final state
makes phase space more complicated. The adaptation again works well and we get

o=445+02 b (1)

The 7 lepton channels pose no additional problem.

4.1.4 The lepton channels

In the g™ p~ channel adaptation is slightly worse due to the small muon mass, if no cuts are
provided.

0=>525+04fb

If there are cuts, we can set the muon mass to zero, which as a side effect speeds up the
calculation by a factor of two.
A more difficult task is to get to a stable result for the cross section of the process

e“et > e ethh

without cuts, but with nonzero electron mass. The default choice for the number of calls and
iterations does not suffice here:

! WHIZARD run for process eebb: (checksum = 539229792)

! It Calls Integral[fb] Error[fb] Err[)] Err/Exp Eff[}] Chi2

! Adapting (fixed weights): Generating 1 sample of 20000

events ...

1 20000 2.0951810E+02 1.23E+02 58.52 82.76% 0.27 0.00
e
! Adapting (var. weights): Generating 10 samples of 20000
events ...

2 20000 1.5504546E+02 3.19E+01 20.60 29.13%x 0.37

3 20000 2.2879370E+02 4.00E+01 17.49 24.74x 0.34

4 20000 2.8014176E+02 7.T74E+01 27.63 39.07 0.31

5 20000 4.4875009E+02 9.73E+01 21.69 30.67 0.20

6 20000 9.5489073E+02 3.00E+02 31.38 44.37 0.10

7 20000 6.5788137E+02 8.21E+01 12.49 17.66% 0.19

8 20000 1.8098498E+03 5.94E+02 32.79 46.38 0.09

9 20000 5.4673479E+03 2.71E+03 49.65 70.21 0.05

Apparently, convergence is not reached. We reuse these grids, but do further iterations with
higher statistics:

&integration_input
calls = 1 20000 30 100000 1 100000
read_grids =T

/

For the first iterations the old results are copied. The additional high-statistics iterations now
find convergence, although the final accuracy and efficiency are not as good as for the other
processes:

26 100000

7.6569064E+03 9.51E+01 1.24 3.93% 0.53

27 100000 7.5403570E+03 6.52E+01 0.86 2.73x 1.37

28 100000 7.6645772E+03 5.83E+01 0.76 2.40% 1.40

29 100000 7.7191224E+03 5.63E+01 0.73 2.31x 1.09

30 100000 7.6527526E+03 6.15E+01 0.80 2.54 0.99

31 100000 7.5842005E+03 5.07E+01 0.67 2.11%x 2,32
|
! Integrating (fixed w.): Generating 1 sample of 100000
events ...

32 100000 7.6335267E+03 4.39E+01 0.58 1.82x 2.76 0.00
|
!
! Time estimate for generating 10000 unweighted events: 0:11:40 hours

Of course, the CPU time needed is much longer than before, scaling linearly with the total
number of calls. With a cross section as large as this and a comparatively low efficiency
(which could still be somewhat improved by further adaptation iterations), the adaptation and
integration takes one hour.

With suitable cuts a stable result would have been reached as fast as in the other processes.
The extra effort is needed only if we are particularly interested in the events with electron and
positron going in the very forward and backward regions, respectively.

44

#evt/bin

10*

1000 —

100 R -

10

| | | |
0 20 100 150 200
My [GeV] of (ua)

Figure 11: Invariant mass distribution of the light quark pair for the process e”et — uubb,
taking into account only the QQCD contribution.

4.1.5 QCD contribution

The QCD background where one quark pair results from gluon splitting is not included in the
above. It has been listed separately in our process set. Here, no flavor summation is (yet)
possible, and we have to calculate the individual quark flavors separately. Taking, e.g., the
channel uubb_qcd

e"et —uubb (QCD contribution)
with the default cut M (uu) > 10 GeV, we obtain
o=23.784+0.16 tb

with the default settings. The invariant mass distribution of the jet pair can be analyzed as
before (Fig. 11). Although the total cross section is quite large, the amount contributing in the
Higgs mass region is tiny (0.34 %), as the analysis shows:

! Additional cuts:

! integration level 5

cut M of 12 12 within 1.14000E+02 1.16000E+02

! It Calls Integrall[fb] Error[fb] Err[)] Err/Exp Eff[)] Chi2

13 8 T7.9985184E-02 2.83E-02 35.36 1.00 0.34

45

4.2 6-fermion production: Higgs pairs

A process which is of interest at a future Linear Collider is Higgs pair production, which is

sensitive to the Higgs trilinear coupling. A process definition file whizard.prc for this process
could look like

WHIZARD configuration file

The selected models (CompHEP/0’Mega):
model sm-GF 4

model SM

Processes

(Methods: chep=CompHEP, mad=MadGraph, omega=0’Mega)
(Options: number=QCD order [Madgraph])
#
#

Tag In Out Method Option
#===========oooooommooooo oo o—ooooo oo oom—oooooooommmoooo oo
On-shell process:
zhh el,E1 Z,H,H chep

Full six-fermion matrix elements (no QCD):
qqbbbb el ,El u:d:s:c,U:D:S:C,b,B,b,B omega

QCD contribution (gluon splitting):
uubbbb_qgcdl el ,El u,U,b,B,b,B mad 2
uubbbb_qcd2 el ,El u,U,b,B,b,B mad 4

For simplicity, we consider only six-quark production where four quarks are b quarks (the main
decay channel of the Higgs pair), and the remaining quark pair is light. This is supplemented
by second- and fourth-order QCD contributions calculated by MadGraph.

The input file whizard.in is prepared for the six-fermion process at /s = 500 GeV with
default settings. We would like to generate an event sample corresponding to 10 ab™!.

&process_input
process_id = 'qgbbbb"

sqrts = 500
luminosity = 1000
/

&integration_input /
&simulation_input /

&diagnostics_input /

46

¶meter_input

MH = 115

wH = 0.3228E-02
Mb = 2.9

Me = 0

Ms =0

Mc =0

/

&beam_input /

&beam_input /

Without further considerations, we start integration and event generation

>

./whizard

After the initial message

WHIZARD 1.00beta (Nov 15 2000)
Reading process data from file whizard.in
Process qgbbbb:
ea-e -> wuawu ba-b ba-b
128 64 -> 1 2 4 8 16 32
Phase space configuration file whizard.phs not found
Generating phase space channels for process qgbbbb ...

the program needs quite some time for generating the phase space configuration (this would
be faster without flavor summation). Fortunately, the configuration is written to the file
whizard.phs and WHIZARD will reuse it when possible.

After this step is finished, a default cut for the light quark pair is inserted and integration

is started.

104 channels generated.
Wrote new phase space configuration file whizard.phs
% Warning: The cross section may be infinite without cuts.
Wrote default cut configuration file whizard.cutO
User cut configuration file whizard.cutl not found.
Using default cuts.

cut M of 3 within 1.00000E+01 1.00000E+99

!

! WHIZARD run for process qgbbbb: (checksum = -214172314)
! __
! It Calls Integral[fb] Error[fb] Err[)] Err/Exp Eff[}] Chi2

! __
! Adapting (fixed weights): Generating 1 sample of 100000
events ...

Since the physical region is small in some of the phase space channels and the number of 1000

events per channel is not very large, messages like

47

! Warning: Function identically zero in channel

4

may appear, which usually can be ignored. The whole adaptation and integration run takes a
considerable amount of CPU time (about one day on an Alpha processor). If only one quark
flavor were considered, this could be reduced by a factor of four (currently, WHIZARD/0’Mega
does not take advantage of the fact that some matrix elements with different flavor content are
in fact identical).

A usable result is already reached after about 10 iterations, with considerable fluctuation

around the optimal grid®:

! Adapting (var.

100000

events ...

2

© 00 N U b W

12

! Integrating (fixed w.):

100000
100000
100000
100000
100000
100000
100000
100000
100000
100000
100000
100000
100000
100000
100000
100000
100000
100000
100000
100000

events ...

1.7245154E-01 9.02E-03

weights): Generating

1.4965342E-01 2.15E-03
1.4929719E-01 1.29E-03
1.5426710E-01 5.29E-03
1.5014838E-01 1.48E-03
1.4741355E-01 1.11E-03
1.5119871E-01 1.33E-03
1.4969993E-01 8.36E-04
1.5623658E-01 5.13E-03
1.5145665E-01 7.81E-04
1.5170008E-01 1.05E-03
1.5207701E-01 9.18E-04
1.6122997E-01 1.03E-02
1.5167050E-01 7.18E-04
1.5346776E-01 1.60E-03
1.5190641E-01 9.46E-04
3.9266569E-01 2.40E-01
1.5427618E-01 1.94E-03
1.5282396E-01 1.90E-03
1.5299694E-01 1.11E-03
1.6406596E-01 1.30E-02

Generating

(o)
~NO P P R, O, OO0DOOOWOOOO WwWOo K
()]
Ne]

16.54%

20 samples of

4.54x%
2.73%
10.84
3.12
2.37%
2.78
1.77%
10.38
1.63%
2.19
1.91
20.13
1.50%
3.30
1.97
193.49
3.98
3.94
2.30
.98

1 sample of

0.

O WINNOWNPOWWWEFEF WNWFONKF

73

100000

100000

Nevertheless, the best grid obtained so far can safely be used for event generation. The final
estimate for the integral is

100000

1.5188597E-01 7.48E-04

0.49

! Time estimate for generating 10000 unweighted events:

2:24:24 hours

However, we don’t need that many events: simulating 10 ab~! now takes only half an hour:

! Event sample corresponds to luminosity [fb-1] =

0.1000E+05

9By reducing the parameter weights_power in the input file, these fluctuations can be somewhat dampened.

48

Generating 1519 unweighted events ...

Analysis results for the generated event sample:

! It Calls Integrall[fb] Error[fb] Err[)] Err/Exp Eff[)] Chi2

! __
23 1519 1.5188597E-01 3.90E-03 2.57 1.00 100.00

! __

! Excess events: 6.8 (Error[%]: 0.45)

! WHIZARD run finished.

If we wish to know how many of those events are originating from H H pairs, we should set up

an analysis configuration file whizard.cutb like this

I e- e+ -> q gbar b bbar b bbar
1128 64 1 2 4 8 16 32
process qgbbbb
cut M of 12 within 114 116
cut M of 48 within 114 116
and
cut M of 36 within 114 116
cut M of 24 within 114 116

and rerun the program, setting read_grids=T and read_events_raw=T. The result is

Analysis results for the generated event sample:

Additional cuts:

integration level 5

cut M of 12 12 within 1.14000E+02 1.16000E+02
cut M of 48 48 within 1.14000E+02 1.16000E+02

! It Calls Integrall[fb] Error[fb] Err[)] Err/Exp Eff[)] Chi2

23 150 1.4998614E-02 1.22E-03 8.16 1.00 9.87

Analysis results for the generated event sample:

Additional cuts:

integration level 5

cut M of 36 36 within 1.14000E+02 1.16000E+02
cut M of 24 24 within 1.14000E+02 1.16000E+02

! It Calls Integrall[fb] Error[fb] Err[)] Err/Exp Eff[)] Chi2

23 199 1.9898162E-02 1.41E-03 7.09 1.00 13.10
! WHIZARD run finished.

The two event samples may be added (assuming that no events pass both cuts simultaneously),

to yield 349 “signal” events.

49

The stability of the result and the computing time can be improved by reducing the number
of phase space channels (see Sec. 3.5.2).

20

4.3 Vector boson scattering: polarization and beamstrahlung

In case no light Higgs boson exists, one will try to measure vector boson scattering at high-
energy colliders, e.g.

WW- —=W*W~, ZZ
At an eTe™ collider these processes occur as a subprocess of
j— + — — —
e e = Veleqqqq.
This can be simulated in a single run, if we set up the process configuration file whizard.prc
as follows:

WHIZARD configuration file

The selected models (CompHEP/0’Mega):
model chpt-GF 4

model SM_ac

Processes

(Methods: chep=CompHEP, mad=MadGraph, omega=0’Mega)
(Options: number=QCD order [Madgraph])
#
#

Tag In Qut Method Option
#================sssssssssssssososososossosoosooooooooooooosoossssss==o=
On-shell process:
wW W+, W- W+, W- chep
ZZ W+, W- 7,7 chep

Full six-fermion matrix elements (no QCD):
nnqqqq el,El n1:n2:n3,N1:N2:N3,u:d,U:D,u:d,U:D omega

enqqqq el ,E1 el,N1,u:d,U:D,u:d,U:D omega f
neqqqq el ,E1 nl,E1,u:d4,U:D,u:d,U:D omega f
eeqqqq el ,E1 el,E1,u:d,U:D,u:d,U:D omega f

First neutrino generation only:

WW and ZZ

nnuudd el ,E1 ni,N1,u,U,d,D omega

WW only

nnucsd el ,E1 nl,N1,u,C,s,D omega
eeucsd el ,E1 el,E1,u,C,s,D omega f
Z7Z only

nnuuss el ,E1 ni,N1,u,U,s,S omega

WZ

enudss el ,E1 el,N1,u,D,s,S omega f

ol

Second neutrino generation only:

WW and ZZ

nnuudd2 el,El n2,N2,u,U,d,D omega
WW only

nnucsd2 el,El n2,N2,u,C,s,D omega
Z7Z only

nnuuss?2 el,El n2,N2,u,U,s,S omega

The models we have chosen correspond to the no-Higgs model with anomalous quartic vec-
tor boson couplings. The Higgs mass is set to a very large value (resp. infinity) by default.
Apart from the signal process nnqqqq we have included some important background processes,
which must be considered if the final-state electron is not observed. For these processes, gauge
invariance is an issue, and we must set the f (fudged-width) option to obtain a consistent result.

The summation over flavors in the processes nnqqqq etc. is convenient, but it is a luxury in
terms of computing time, even if we include only the first quark generation, as indicated above.
It is more economical to generate definite flavor states, where particular states like uésd project
either on WW or on ZZ pairs (the interference of both is negligible, and will not be taken into
account in the hadronization anyway). Therefore, in the following we investigate the processes
nnuudd etc. with a definite quark content, assuming that the event rates are multiplied by
appropriate factor in order to take the missing flavor combinations into account.

The setup below is for the planned TESLA collider. We may have polarization and have
to account for ISR and beamstrahlung. The input file whizard.in specifies 80 % left-handed
electron polarization and 40 % right-handed positron polarization:

&process_input
process_id = '"nnqqqq"
sqrts = 800
luminosity = 1000
polarized_beams = T

/

&integration_input
double_off_shell_branchings
single_off_shell_branchings
single_off_shell_decays = F
massive_FSR = F
exchange_lines = 2

/

non
e e

&simulation_input /

&diagnostics_input /

52

¶meter_input
a4 = 0

ab =
Me =
Ms =
Mc =
/

O O O O

&beam_input
polarization
fixed_energy
CIRCE_on =T
CIRCE_acc = 2
ISR_on =T
ISR_alpha = 0.0072993
ISR_m_in = 0.000511

/

non
T O
2
o

&beam_input
polarization = 0 0.40
fixed_energy
CIRCE_on =T
CIRCE_acc = 2
ISR_on =T
ISR_alpha = 0.0072993
ISR_m_in = 0.000511

/

1}
rr

The beamstrahlung settings (CIRCE) are for the accelerator type 2 (TESLA), default param-
eterization version and revision numbers. Concerning initial-state radiation (ISR), we should
set the electromagnetic coupling constant equal to the low-energy value of 1/137 since on-shell
photons are radiated. The incoming mass must be reset equal to 511 keV, since the physical
electron mass Me has been set to zero.

In the parameter section, the two anomalous couplings a4 and aj; are included. Here, we
set them to zero which is also the default value.

The phase space setup for processes like this turns out to be critical. In general, the default
setup could result in a too large number of channels. The settings in &integration_input here
result in a manageable number (see Sec. 3.5.2). Although irrelevant channels will be removed
during the adaptation procedure, the convergence is much faster if they are absent from the
beginning.

The setting exchange_lines = 2 isimportant. The meaning of this parameter is somewhat
obfuscated: For each graph, on may determine the difference of the multiplicity and the number
of t-channel (exchange) lines. The multiplicity is the number of produced external or resonant

23

particles, not counting cascade decays. If this number is less than the value of exchange_lines,
the channel will be included even if it has one off-shell line more than allowed.

With the default value (1), the signal graphs we are interested in (WW scattering) would
not be included in the phase space setup. In the absence of a Higgs boson, the multiplicity of
these graphs is 4, since 2 fermions and 2 vector bosons are produced on-shell resp. resonant.
The s-channel WW scattering graph (containing WW — v* — WW) has 2 t-channel lines, so
the difference is 2. This is the value of the parameter exchange_lines we need. If there were
a resonant Higgs boson, this problem would be absent since the multiplicity of the same graph
would be 3.

Unfortunately, this is not sufficient to yield stable results for all six-fermion channels in
the present case. The problem is that the effective Zee coupling is accidentally suppressed.
This fact is not taken into account by the WHIZARD phase space configuration. Although the
corresponding channels die out during adaptation, convergence is bad in the ZZ production
processes. This can be observed by inspecting the whizard.out log file, where the history of the
relative channel weights is shown. A straightforward strategy is therefore to start a run where
the irrelevant channels have been removed by hand (commented out) from the configuration
file whizard.phs. If read_phase_space = T (default), a pre-generated file will be read again.
In the present case, the rule is to remove all channels which do not have at least two W bosons
or one neutrino as internal lines.

With these caveats, WHIZARD is able to integrate the corresponding cross sections and gen-
erate event samples. The output shown below is for the complete process, including all possible
flavor combinations in the process labeled nnqqqq

-+ o — . —
e e’ = V.U.qqqq; V = Ve, Uy, Vr; q=u,d

! WHIZARD 1.00beta (Nov 15 2000)

! Reading process data from file whizard.in

! Process nnqqqq:

! e a-e ->nu_e a-nu_,e uau ua-u

' 128 64 —> 1 2 4 8 16 32

circe:warning: *kkkskkskkokkokkokkokkokkokkokkokkokkokokkokkokdkokok Kok
circe:warning: * This release is not official yet, *
circe:warning: * do not use it in publications! *
circe:warning: *kkkskkkkokkokkokkokkokkok ok ok ok dokokdok ok ok ok

! Reading phase space information from file whizard.phs ...

! 168 phase space channels found for process nnqqqq
! %xx Warning: The cross section may be infinite without cuts.
! Wrote default cut configuration file whizard.cutO

! User cut configuration file whizard.cutl not found.

! Using default cuts.

cut M of 12 within 1.00000E+01 1.00000E+99

cut M of 20 within 1.00000E+01 1.00000E+99

cut M of 36 within 1.00000E+01 1.00000E+99

cut M of 24 within 1.00000E+01 1.00000E+99

cut M of 40 within 1.00000E+01 1.00000E+99

cut M of 48 within 1.00000E+01 1.00000E+99

!

! WHIZARD run for process nnqqqq: (checksum = 1659754136)

54

Integral [fb]

Error[fb]

! Adapting (fixed weights): Generating
events ...
200000 6.0040794E+00 6.18E-01

1

! Adapting (var.

events ...

2

© 00N U b W

12

! Integrating (fixed w.):

300000
300000
300000
300000
300000
300000
300000
300000
300000
300000
300000
300000
300000
300000
300000
300000
300000
300000
300000
300000
300000
300000
300000
300000
300000
300000
300000
300000
300000
300000

events ...

33

weights): Generating
5.7430567E+00 2.57E-01
6.2731287E+00 2.93E-01
6.3060272E+00 2.25E-01
5.8487971E+00 1.84E-01
6.3231405E+00 2.66E-01
6.2152705E+00 1.57E-01
6.0017351E+00 1.15E-01
6.0617537E+00 1.22E-01
6.3693499E+00 1.71E-01
6.2081047E+00 1.09E-01
6.1271515E+00 7.48E-02
6.2637971E+00 1.42E-01
6.2333353E+00 4.80E-02
6.1428110E+00 4.24E-02
6.1264061E+00 7.16E-02
6.1872816E+00 5.17E-02
6.1253950E+00 3.02E-02
6.1726745E+00 3.29E-02
6.1184702E+00 2.59E-02
6.1153004E+00 2.35E-02
6.1568659E+00 2.41E-02
6.0982476E+00 2.18E-02
6.1644998E+00 2.58E-02
6.1176604E+00 2.00E-02
6.1114816E+00 2.17E-02
6.1406600E+00 3.39E-02
6.1303492E+00 2.50E-02
6.1456257E+00 2.03E-02
6.1410563E+00 2.26E-02
6.1278282E+00 2.69E-02
Generating
600000 6.1017075E+00 1.36E-02

Generating

6102 unweighted events ...

Event sample corresponds to luminosity [fb-1] =

1 sample of
.29 46.
30 samples of

A7 24,
.67 25,
.56 19.
.15 17.
.21 23.
.52 13.
.91 10
.01 11.
.68 14.
.76 9.
.22 6.
.42
.22%
.T8x%
.40
.58
.T0%
.92
.32x%
11
.14
.96%
.29
LTO%

N
~
-
N

w
©
NNEFENWFELRRPLPDNDNEFENNDNDNDNDDOO WD

00x*

48x%
59
52x%
25%
08
81x%

.48%

00
69
64 %
68*

Time estimate for generating 10000 unweighted events:
Analysis configuration file not found

1000.

0.

NNNFEFFPNDMNNDNNDMNNDMNDNNNERERPRPROORFR,OOO0OOOOO0OO0OO0OOOoOOoOOo

19

.20
.19
.21
.28
.24
.30
.38
.38
.34
.41
.50
.52
.88
.00
.74
.94
.65
.38
.01
.35
.07
.49
.32
.75
.49
.73
.87
.78

300000

5:17:12 hours

95

! Analysis results for the generated event sample:

! It Calls Integral[fb] Error[fb] Err[)] Err/Exp Eff[}] Chi2

! __
34 6102 6.1017075E+00 7.81E-02 1.28 1.00 100.00

! __

! Excess events: 19.2 (Error[/]: 0.31)

! WHIZARD run finished.

Acknowledgements

I am most grateful to Thorsten Ohl, who provided me with pre-release versions of VAMP and
0’Mega and had many valuable suggestions and criticisms during the development of WHIZARD.
I would also like to thank R. Chierici, K. Desch, N. Meyer and S. Rosati, who used prelimi-
nary versions of the program for real-life applications and thus helped a lot in debugging and
improving the code.

References
[1] T. Sjéstrand, Comput. Phys. Commun. 82 (1994) 74.
(2] A. Pukhov, et al., Preprint INP MSU 98-41/542, hep-ph/9908288.
(3] T. Stelzer and W.F. Long, Comput. Phys. Commun. 81 (1994) 357.

[4] T. Ohl, to appear in: Proceedings of the Seventh International Workshop on Advanced
Computing and Analysis Technics in Physics Research, ACAT 2000, Fermilab, October
2000, TKDA-2000-30, hep-ph/0011243; M. Moretti, Th. Ohl, and J. Reuter, to be pub-
lished.

[5] T. Ohl, Comput. Phys. Commun. 120 (1999) 13.
[6] T. Ohl, Comput. Phys. Commun. 101 (1997) 269.

(7] A. Djouadi, J. Kalinowski, M. Spira, Comput. Phys. Commun. 108 (1998) 56-74.

26

