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Abstract: The Newton–Hooke duality and its generalization to arbitrary power laws in classical,
semiclassical and quantum mechanics are discussed. We pursue a view that the power-law duality is
a symmetry of the action under a set of duality operations. The power dual symmetry is defined by
invariance and reciprocity of the action in the form of Hamilton’s characteristic function. We find
that the power-law duality is basically a classical notion and breaks down at the level of angular
quantization. We propose an ad hoc procedure to preserve the dual symmetry in quantum mechanics.
The energy-coupling exchange maps required as part of the duality operations that take one system to
another lead to an energy formula that relates the new energy to the old energy. The transformation
property of the Green function satisfying the radial Schrödinger equation yields a formula that relates
the new Green function to the old one. The energy spectrum of the linear motion in a fractional
power potential is semiclassically evaluated. We find a way to show the Coulomb–Hooke duality in
the supersymmetric semiclassical action. We also study the confinement potential problem with the
help of the dual structure of a two-term power potential.

Keywords: power-law duality; classical and quantum mechanics; semiclassical quantization; super-
symmetric quantum mechanics; quark confinement

1. Introduction

In recent years, numerous exoplanets have been discovered. One of the best Doppler
spectrographs to discover low-mass exoplanets using the radial velocity method are HARPS
(High Accuracy Radial Velocity Planet Searcher) installed on ESO’s 3.6 m telescope at La
Silla and ESPRESSO (Echelle Spectrograph for Rocky Exoplanet- and Stable Spectroscopic
Observations) installed on ESO’s VLT at Paranal Observatory in Chile. See, e.g., [1,2].
NASA’s Kepler space telescope has discovered more than half of the currently known
exoplanets using the so-called transit method. See, e.g., [3,4]. For some theoretical work
on planetary systems see, e.g., [5]. In exoplanetary research it is a generally accepted
view that Newton’s law of gravitation holds in extrasolar systems [6]. Orbit mechanics of
exoplanets, as is the case of solar planets and satellites, is classical mechanics of the Kepler
problem under small perturbations. The common procedure for the study of perturbations
to the Kepler motion is the so-called regularization, introduced by Levi–Civita (1906) for
the planar motion [7,8] and generalized by Kustaanheimo and Stiefel (1965) to the spatial
motion [9]. The regularization in celestial mechanics is a transformation of the singular
equation of motion for the Kepler problem to the non-singular equation of motion for
the harmonic oscillator problem with or without perturbations. It identifies the Kepler
motion with the harmonic oscillation, assuring the dual relation between Newton’s law
and Hooke’s law (here, following the tradition, we mean by Newton’s law the inverse-
square force law of gravitation and by Hooke’s law the linear force law for the harmonic
oscillation. Although Hooke found the inverse square force law for gravitation prior
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to Newton, he was short of skills in proving that the orbit of a planet is an ellipse in
accordance with Kepler’s first law, while Newton was able not only to confirm that the
inverse square force law yields an elliptic orbit but also to show conversely that the
inverse square force law follows Kepler’s first law. History gave Newton the full credit
of the inverse square force law for gravitation. For a detailed account, see, e.g., Arnold’s
book [10]). The Newton–Hooke duality has been discussed by many authors from various
aspects [11,12]. The basic elements of regularization are: (i) a transformation of space
variables, (ii) interpretation of the conserved energy as the coupling constant, and (iii) a
transformation of time parameter. The choice of space variables and time parameter is by
no means unique. The transformation of space variables has been represented in terms of
parabolic coordinates [7,8], complex numbers [13,14], spinors [9], quaternions [6,15,16], etc.
The time transformation used by Sundman [13,17] and by Bohlin [14] (for Bohlin’s theorem
see also reference [10]) is essentially based on Newton’s finding [18] that the areal speed
dA/dt is constant for any central force motion. It takes the form ds = Crdt where s is a
fictitious time related to the eccentric anomaly. To improve numerical integrations for the
orbital motion, a family of time transformations ds = Cηrηdt, called generalized Sundman
transformations, has also been discussed [19], in which s corresponds to the mean anomaly
if η = 0, the eccentric anomaly if η = 1, the true anomaly if η = 2, and intermediate
anomalies [20] for other values of η. Even more generalizing, a transformation of the form
ds = Q(r)dt has been introduced in the context of regularization [21].

As has been pointed out in the literature [10,18,22–24], the dual relation between the
Kepler problem and the harmonic oscillator was already known in the time of Newton
and Hooke. What Newton posed in their Principia was more general. According to Chan-
drasekhar’s reading [18] out of the propositions and corollaries (particularly Proposition
VII, Corollary III) in the Principia, Newton established the duality between the centripetal
forces of the form, rα and rβ, for the pairs (α, β) = (1,−2), (−1,−1) and (−5,−5). Revisit-
ing the question on the duality between a pair of arbitrary power forces, Kasner [25] and
independently Arnol’d [10] obtained the condition, (α + 3)(β + 3) = 4, for a dual pair.
There are a number of articles on the duality of arbitrary power force laws [26,27]. Now
on, for the sake of brevity, we shall refer to the duality of general power force laws as the
power duality. The power duality includes the Newton–Hooke duality as a special case.

The quantum mechanical counterpart of the Kepler problem is the hydrogen atom
problem. In 1926, Schrödinger [28,29] solved their equation for the hydrogen atom and
successively for the harmonic oscillator. Although it must have been known that both
radial equations for the hydrogen atom and for the harmonic oscillation are reducible to
confluent hypergeometric equations [30], there was probably no particular urge to relate the
Coulomb problem to the Hooke problem, before the interest in the accidental degeneracies
arose [31–33]. Fock [31,32] pointed out that for the bound states the hydrogen atom has
a hidden symmetry SO(4) and an appropriate representation of the group can account
for the degeneracy. In connection with Fock’s work, Jauch and Hill [34] showed that the
2− D harmonic oscillator has an algebraic structure of su(2) which is doubly-isomorphic
to the so(3) algebra possessed by the 2− D hydrogen atom. The transformation of the
radial equation from the hydrogen atom to that of the harmonic oscillator or vice verse
was studied by Schrödinger [35] and others, see Johnson’s article [36] and references
therein. The same problem in arbitrary dimensions has also been discussed from the
supersymmetric interest [37]. In the post-Kustaanheimo–Stiefel (KS) era, the relation
between the three dimensional Coulomb problem and the four dimensional harmonic
oscillator was also investigated by implementing the KS transformation or its variations
in the Schrödinger equation. See ref. [38] and references therein. The duality of radial
equations with multi-terms of power potentials was studied in connection with the quark
confinement [36,39,40].

The time transformation of the form ds = Cηrηdt used in classical mechanics is in
principle integrable only along a classical trajectory. In other words, the fictitious time s is
globally meaningful only when the form of r(t) as a function of t is known. In quantum
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mechanics, such a transformation is no longer applicable due to the lack of classical paths.
Hence it is futile to use any kind of time transformation formally to the time-dependent
Schrödinger equation. The Schrödinger equation subject to the duality transformation
is a time-independent radial equation possessing a fixed energy and a fixed angular
momentum. The classical time transformation is replaced in quantum mechanics by a
renormalization of the time-independent state function [41]. In summary, the duality
transformation applicable to the Schrödinger equation consists of (i) a change of radial
variable, (ii) an exchange of energy and coupling constant, and (iii) a transformation of
state function. Having said so, when it comes to Feynman’s path integral approach, we
should recognize that the classical procedure of regularization prevails.

Feynman’s path integral is based on the c-number Lagrangian and, as Feynman as-
serted [42], the path of a quantum particle for a short time dt can be regarded as a classical
path. Therefore, the local time transformation associated with the duality transformation
in classical mechanics can be revived in path integration. In fact, the Newton–Hooke dual-
ity plays an important role in path integration. Feynman’s path integral in the standard
form [42,43] provides a way to evaluate the transition probability from a point to another in
space (the propagator or the Feynman kernel). The path integral in the original formulation
gives exact solutions only for quadratic systems including the harmonic oscillator, but fails
in solving the hydrogen atom problem. However, use of the KS transformation enables to
convert the path integral for the hydrogen atom problem to that of the harmonic oscillator if
the action of Feynman’s path integral is slightly modified with a fixed energy term. In 1979,
Duru and Kleinert [44], formally applying the KS transformation to the Hamiltonian path
integral, succeeded to obtain the energy-dependent Green function for the hydrogen atom
in the momentum representation. Again, with the help of the KS transformation, Ho and
Inomata (1982) [45] carried out detailed calculations of Feynman’s path integral with a mod-
ified action to derive the energy Green function in the coordinate representation. In 1984,
on the basis of the polar coordinate formulation of path integral (1969) [46], without using
the KS variables, the radial path integral for the hydrogen atom was transformed to that
for the radial harmonic oscillator by Inomata for three dimensions [47] and by Steiner for
arbitrary dimensions [48,49]. Since then a large number of examples have been solved by
path integration [50,51]. Applications of the Newton–Hooke duality in path integration
include those to the Coulomb problem on uniformly curved spaces [52,53], Kaluza–Klein
monopole [54], and many others [51]. The idea of classical regularization also helped to
open a way to look at the path integral from group theory and harmonic analysis [50,55,56].
The only work that discusses a confinement potential in the context of path integrals is
Steiner’s [57].

As has been briefly reviewed above, the Newton–Hooke duality and its generalizations
have been extensively and exhaustively explored. In the present paper we pursue the
dual relation (power-duality) between two systems with arbitrary power-law potentials
from the symmetry point of view. While most of the previous works deal with equations
of motion, we focus our attention on the symmetry of action integrals under a set of
duality operations. Our duality discussion covers the classical, semiclassical and quantum-
mechanical cases. In Section 2, we define the dual symmetry by invariance and reciprocity
of the classical action in the form of Hamilton’s characteristic function and specify a set of
duality operations. Then we survey comprehensively the properties of the power-duality.
The energy-coupling exchange relations contained as a part of the duality operations lead
to various energy formulas. In Section 3, we bring the power-duality defined for the
classical action to the semiclassical action for quantum mechanical systems. We argue that
the power-duality is basically a classical notion and breaks down at the level of angular
quantization. To preserve the basic idea of the dual symmetry in quantum mechanics, we
propose as an ad hoc procedure to treat angular momentum L as a continuous parameter
and to quantize it only after the transformation is completed. A linear motion in a fractional
power-law potential is solved as an example to find the energy spectrum by extended use of
the classical energy formulas. We also discussed the dual symmetry of the supersymmetric
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(SUSY) semiclassical action. Although we are unable to verify general power duality,
we find a way to show the Coulomb–Hooke symmetry in the SUSY semiclassical action.
Section 4 analyzes the dual symmetry in quantum mechanics on the basis of an action
having wave functions as variables. The energy formulas, eigenfunctions and Green
functions for dual systems are discussed in detail, including the Coulomb–Hooke problem.
We also explore a quark confinement problem as an application of multi-power potentials,
showing that the zero-energy bound state in the confinement potential is in the power-dual
relation with a radial harmonic oscillator. Section 5 gives a summary of the present paper
and an outlook for the future work. Appendix A presents the Newton–Hooke–Morse
triality that relates the Newton–Hooke duality to the Morse oscillator.

2. Power-Law Duality as a Symmetry

Duality is an interesting and important notion in mathematics and physics, but it
has many faces [58]. In physics it may mean equivalence, complementarity, conjugation,
correspondence, reciprocity, symmetry and so on. Newton’s law and Hooke’s law may be
said dual to each other in the sense that a given orbit of one system can be mapped into an
orbit of the other (one-to-one correspondence), whereas they may be a dual pair because
the equation of motion of one system can be transformed into the equation of motion for
the other (equivalence).

In this section, we pursue a view that the power duality is a symmetry of the classical
action in the form of Hamiltonian’s characteristic function, and discuss the power duality
in classical, semiclassical and quantum mechanical cases.

2.1. Stipulations

Let us begin by proposing an operational definition of the power duality. We consider
two distinct systems, A and B. System A (or A in short), characterized by an index or a
set of indices a, consists of a power potential Va(r) ∼ ra and a particle of mass ma moving
in the potential with fixed angular momentum La and energy Ea. Similarly, system B (B
in short), characterized by an index or a set of indices b, consists of a power potential
Vb(r) ∼ rb and a particle of mass mb moving in the potential with fixed angular momentum
Lb and energy Eb.

If there is a set of invertible transformations ∆(B, A) that takes A to B, then we say that
A and B are equivalent. Naturally, the inverse of ∆(B, A) denoted by ∆(A, B) = ∆−1(B, A)
takes B to A.

Let X(a, b) and X(b, a) = X−1(a, b) be symbols for replacing the indices b by a and
a by b, respectively. If B becomes A under X(a, b) and A becomes B under X(b, a), then
we say that A and B are reciprocal to each other with respect to ∆(B, A). If A and B are
equivalent and reciprocal, we say they are dual to each other. Since each of the two systems
has a power potential, we regard the duality so stipulated as the power duality.

The successive applications of ∆(A, B) and X(a, b) transform A to B and change B
back to A. Consequently the combined actions leave A unchanged. In this sense we can
view that the set of operations, {∆(A, B), X(a, b)}, or its inverse, {∆(B, A), X(b, a)}, is a
symmetry operation for the power duality.

If a quantity Qa belonging to system A transforms to Qb while ∆(B, A) takes system A
to system B, then we write Qb = ∆(B, A)Qa. If Qb can be converted to Qa by X(a, b), then
we write Qa = X(a, b)Qb and say that Qa is form-invariant under ∆(B, A). If Qa = Qb,
then Qa is an invariant under ∆(B, A). If every Qa belonging to system A is an invariant
under ∆(B, A), then ∆(B, A) is an identity operation.

2.2. Duality in the Classical Action

The power duality in classical mechanics may be most easily demonstrated by consid-
ering the action integral of the form of Hamilton’s characteristic function, W(E) = S(t)+Et,
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where S is the Hamilton’s principal function and E is the energy of the system in question.
The action is usually given by Hamilton’s principal function,

S(τ) =
∫ τ

dtL =
∫ τ

dt
[m

2
~̇r 2 −V(~r)

]
(1)

which leads to the Euler–Lagrange equations via Hamilton’s variational principle. If the
system is spherically symmetric, that is, if the potential V(~r) is independent of angular
variables, then the action remains invariant under rotations. If the system is conservative,
that is, if the Lagrangian is not an explicit function of time, then the action is invariant
under time translations. In general, if the action is invariant under a transformation, then
the transformation is often called a symmetry transformation.

For a conserved system, we can choose as the action Hamilton’s characteristic function,

W(E) =
∫ τ

dt {L+ E} = S(τ) + Eτ , E = −∂S(τ)
∂τ

. (2)

Insofar as the system is conservative, both the principal action S(τ) and the character-
istic action W(E) yield the same equations of motion. For the radial motion of a particle of
mass m with a chosen value of energy E and a chosen value of angular momentum L in a
spherically symmetric potential V(r), the radial action has the form,

W(r,t)(E) =
∫

It
dt

{
m
2

(
dr
dt

)2
− L2

2mr2 −V(r) + E

}
, (3)

where It = τ(E) 3 t is the range of t. We let a system with a specific potential Va be system
A and append the subscript a to every parameter involved. In a similar manner, we let a
system with Vb be system B whose parameters are all marked with a subscript b. For system
A with a radial potential Va(r), we rewrite the action (3) in the form,

W(r,t)(Ea) =
∫

Iϕ

dϕ

(
dt
dϕ

){
ma

2

(
dt
dϕ

)−2( dr
dϕ

)2
− L2

a
2mar2 −Ua(r)

}
, (4)

with
Ua(r) = Va(r)− Ea, (5)

where ϕ is some fiducial time and Iϕ 3 ϕ is the range of integration.
In (4), as is often seen in the literature [36,40,41], we change the radial variable from r

to ρ by a bijective differentiable map,

R f : r = f (ρ) ⇔ ρ = f−1(r), (6)

where f is a positive differentiable function of ρ, 0 < r < ∞ and 0 < ρ < ∞. With this
change of variable we associate a change of time derivative from (dt/dϕ) to (ds/dϕ) by a
bijective differentiable map,

Tg : (dt/dϕ) = g(ρ)(ds/dϕ) ⇔ (ds/dϕ) =
(dt/dϕ)

g( f−1(r))
. (7)

In the above, we assume that both r and ρ are of the same dimension and that s has
the dimension of time as t does. As a result of operations R f and Tg on the action (4),
we obtain

W(r,t)(Ea) =
∫

Iϕ

dϕ

(
ds
dϕ

){
ma

2
f ′2

g

(
ds
dϕ

)−2( dρ

dϕ

)2
− gL2

a
2ma f 2 − gUa( f (ρ))

}
, (8)
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whose implication is obscure till the transformation functions f and g are appropri-
ately specified.

Suppose there is a set of operations ∆, including R f and Tg as a subset, that can
convert W(r,t)(Ea) of (8) to the form,

W(ρ,s)(Eb) =
∫

Iϕ

dϕ

(
ds
dϕ

){
mb
2

(
ds
dϕ

)−2( dρ

dϕ

)2
−

L2
b

2mbρ2 −Ub(ρ)

}
, (9)

with
Ub = Vb(ρ)− Eb, (10)

where Vb(ρ) is a real function of ρ, and Eb is a constant having the dimension of energy.
Then we identify the new action (9) with the action of system B representing a particle
of mass mb which moves in a potential Vb(ρ) with fixed values of angular momentum
Lb and energy Eb. If Wξa(Ea) = X(a, b)Wξb(Eb) where ξa = (r, t) and ξb = (ρ, s), then
Wξa(Ea) is form-invariant under ∆. Since W(ρ,s)(Ea) is physically identical with W(r,t)(Ea),
if W(ρ,s)(Ea) = X(a, b)W(ρ,s)(Eb), then we say that system A represented by W(r,t)(Ea) is
dual to system B represented by W(ρ,s)(Eb) with respect to ∆.

2.3. Duality Transformations

In an effort to find such a set of operations ∆, we wish, as the first step, to determine
the transformation functions f (ρ) of (6) and g(ρ) of (7) by demanding that the set of space
and time transformations {R f ,Tg} preserves the form-invariance of each term of the action.
In other words, we determine f (ρ) and g(ρ) so as to retain (i) form-invariance of the kinetic
term, (ii) form-invariance of the angular momentum term and (iii) form-invariance of the
shifted potential term.

In the action W(r,t)(Ea) of (8), the functions f (ρ) and g(ρ) are arbitrary and indepen-
dent of each other. To meet the condition (i), it is necessary that g = µ f ′2 where µ is a
positive constant. Then the kinetic term expressed in terms of the new variable can be
interpreted as the kinetic energy of a particle with mass

M : mb = ma/µ. (11)

In order for the angular momentum term to keep its inverse square form as required
by (ii), the transformation functions are to be chosen as

f (ρ) = Cηρη , g(ρ) = µC2
ηη2ρ2η−2, (12)

where η is a non-zero real constant and Cη is an η dependent positive constant which
has the dimension of r1−η as r and ρ have been assumed to possess the same dimension.
With (12), the angular momentum term of (8) takes the form, L2

b/(2mbρ2), when the mass
changes by M of (11), and the angular momentum La transforms to

L : Lb = ηLa. (13)

To date, the forms of f (ρ) and g(ρ) in (12) have been determined by the asserted
conditions (i) and (ii), even before the potential is specified. This means that (iii) is a
condition to select a potential V(r) pertinent to the given form of g(ρ). More explicitly,
(iii) demands that gUa(r) must be of the form,

gUa = Vb(ρ)− Eb, (14)

where Vb(ρ) is such that Va(ρ) = X(a, b)Vb(ρ). Therefore, the space-time transformation
{R f ,Tg} subject to the form-invariance conditions (i)–(iii) is only applicable to a system
with a limited class of potentials.
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The simplest potential that belongs to this class is the single-term power potential
Va(r) = λara where λa ∈ R and a ∈ R. The corresponding shifted potential is given by

Ua(r) = λara − Ea (15)

which transforms with (12) into

gUa(r) = µλaCa+2
η η2ρaη+2η−2 − µC2

ηη2ρ2η−2Ea. (16)

Under the condition (iii) the expected form of the shifted potential is

Ub(ρ) = gUa(r) = λbρb − Eb, (17)

where λb ∈ R and b ∈ R. Comparison of (16) and (17) gives us only two possible
combinations for the new exponents and the new coupling and energy,

b = aη + 2η − 2 and 2η − 2 = 0, (18)

λb = µCa+2
η η2λa and Eb = µC2

ηη2Ea (19)

and

b = 2η − 2 and a η + 2η − 2 = 0, (a 6= −2), (20)

λb = −µC2
ηη2ρ2η−2Ea and Eb = −µCa+2

η η2λa , (21)

Note that a = −2 is included in the first combination but excluded from the sec-
ond combination.

In the following, we shall examine the two possible combinations in more detail by
expressing the admissible transformations in terms of the exponents,

η1 = 1, ηa = 2/(a + 2) (a 6= 0,−2), (22)

and separating the set of ηa into two as

η+ = {ηa|a > −2}, η− = {ηa|a < −2}. (23)

Chandrasekhar in their book [18] represents a pair of dual forces by (a− 1, b− 1).
In a way analogous to their notation, we also use the notation (a, b) via η for a pair of the
exponents of power potentials when system A and system B are related by a transformation
with η. We shall put the subscript F to differentiate the pairs of dual forces from those of
dual potentials as (a− 1, b− 1)F = (a, b) whenever needed. Caution must be exercised
in interpreting (0, 0) which may mean limε→0(±ε,±ε), limε→0(±ε,∓ε) and purely (0, 0)
(see the comments in below Subsections). We shall refer to the sets of pairs (a, b) related
to the first combination (18)–(19) and the second combination (20)–(21) as Class I and
Class II, respectively.

2.3.1. Class I

Class I is the supplementary set of self-dual pairs. Equation (18) of the first combina-
tion implies

C1 : η1 = 1, a = b ∈ R, (24)

which is denoted by (a, a) via η1. In this case, (12) yields f (ρ) = C1ρ and g(ρ) = µC2
1

where C1 and µ are arbitrary dimensionless constants. With these transformation functions,
(6) and (7) lead to a set of space and time transformations whose scale factors depend on
neither space nor time,

R1 : r = C1ρ, (25)
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and
T1 : (dt/dϕ) = µC2

1(ds/dϕ). (26)

Associated with the space and time transformations (25) and (26) are the scale changes
in coupling and energy, as shown by (19),

E1 : λa → λb = (µCa+2
1 )λa, Ea → Eb = (µC2

1)Ea. (27)

According to (11), the mass also changes its scale,

M1 : mb = ma/µ. (28)

From (13) and (24) follows the scale-invariant angular momentum (we use the sub-
script 0 for trivial transformations representing an identity),

L0 : Lb = La. (29)

In this manner we obtain a set of operations ∆1 = {C1,R1,T1,E1,M1,L0} that leaves
form-invariant the action for the power potential system. System B reached from system A
by ∆1 can go back to system A by X(a, b). Hence, system A is dual to system B. Notice,
however, that ∆1 leads to a self-dual pair (a, a) via η1 for any given a ∈ R. In particular,
(0, 0) = limε→0(±ε,∓ε).

Remark 1. Class I consists of self-dual pairs (a, a) via η1 for all a ∈ R. All pairs in this class
are supplemental in the sense that they are not traditionally counted as dual pairs. Since ∆1 is a
qualified set of operations for preserving the form-invariance of the action, we include self-dual pairs
of Class I in order to extend slightly the scope of the duality discussion.

Remark 2. The space transformation R1 of (25) is a simple scaling of the radial variable as C1 > 0.
The scaling is valid for any chosen positive value of C1. Hence it can be reduced, as desired, to the
identity transformation r = ρ by letting C1 = 1. Those dual pairs linked by scaling may be regarded
as trivial.

Remark 3. The scale transformation with C1 > 0 induces the time scaling T1 whereas the time has
its own scaling behavior. The change in time (26) integrates to t = C1µs + ν where ν is a constant
of integration. The resulting time equation may be understood as consisting of a time translation
t = t′ + ν, a scale change due to the space scaling t′ = C1s′, and an intrinsic time scaling s′ = µs.
The time translation, under which the energy has been counted as conserved, is implicit in T1.
The scale factor µ of time scaling, independent of space scaling, can take any positive value. If C1 = 1
and µ = 1, then T1 becomes the identity transformation of time, (dt/dϕ) = (ds/dϕ).

Remark 4. The scale change in mass mb = µma is only caused by the intrinsic time scaling t = µs.
If µ = 1, then the mass of the system is conserved. Conversely, if ma = mb is preferred, the time
scaling with µ = 1 must be chosen. The time scaling in classical mechanics has no particular
significance. In fact, it adds nothing significant to the duality study. Therefore, in addition to
the form-invariant requirements (i)–(iii), we demand (iv) the mass invariance ma = mb = m by
choosing µ = 1. In this setting the time scaling occurs only in association with the space-scaling.
In accordance with the condition (iv), we shall deal with systems of an invariant mass m for the rest
of the present paper.

Remark 5. If C1 = 1 and µ = 1, then operations, E1, M1, and L0, become identities of respective
quantities. Thus, ∆1 for C1 = 1 and µ = 1 is the set of identity operations, which we denote ∆0.
The set of operations ∆1 for C1 > 0 is trivial in the sense that it is reducible to the set of identity
operations ∆0.
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Remark 6. If Class I is based only on the scale transformation, it may not be worth pursuing.
As will be discussed in the proceeding sections, there are some examples that do not belong to the
list of traditional dual pairs (Class II). In an effort to accommodate those exceptional pairs within
the present scheme for the duality discussion, we look into the details hidden behind the space
identity transformation r = ρ. The radial variable as a solution of the orbit equations, such as
the Binet equation, depends on an angular variable and is characterized by a coupling parameter.
In application to orbits, the identity transformation r = ρ means r(θ; λa) = ρ(θ̃; λb), which occurs
when θ → θ̃. The angular transformation θ̃ = θ + θ0 where −2π < θ0 < 2π causes a rotation
of a given orbit ρ(θ̃; λb) = r(θ; λa) = r(θ̃ − θ0; λa) about the center of force by θ0. For instance,
the cardioid orbit r = r0 cos2(θ/2) in a potential with power a = −3 maps into ρ = r0 sin2(θ̃/2)
by a rotation θ̃ = θ + π. This example belongs to the self-dual pair (−3,−3) via η = 1. In this
regard, we argue that the identity transformation includes rotations about the center of forces.
Of course, the rotation with θ0 = 0 is the bona fide identity transformation.

Remark 7. Suppose two circular orbits pass through the center of attraction. It is known that the
attraction is an inverse fifth-power force. If the radii of the two circles are the same, then the inverse
fifth-power force is self-dual under a rotation. If the radii of the two circles are different, the two
orbiting objects must possess different masses. A map between two circles with different radius,
passing through the center of the same attraction, is precluded from possible links for the self-dual
pair (−4,−4) by the mass invariance requirement (iv).

Remark 8. If C1 < 0 in (25), either r or ρ must be negative contrary to our initial assumption.
However, when we consider the mapping of orbits, as we do in Remark 6, we recognize that there
is a situation where the angular change θ → θ̃ induces ρ(θ̃; λb) = −r(θ; λa) = r(θ;−λa).
For instance, consider an orbit given by a conic section r = p/(1 + e cos θ) where p > 0 and
−1/e < cos θ ≤ 1. If e > 1, then it is possible to find θ̃ such that −1 ≤ cos θ̃ < −1/e
by θ → θ̃. Consequently the image of the given orbit is ρ(θ̃; p) = r(θ̃; p) = −r(θ; p) < 0.
Certainly the result is unacceptable. The latus rectum p is inversely proportional to λa. Hence in
association with the sign change in coupling λa → λb = −λa, we are able to obtain a passable
orbit ρ(θ̃,−p) = r(θ̃;−p) = −r(θ;−p) > 0. The orbit mapping of this type cannot be achieved
by a rotation. To include the situation like this in the space transformation, we formally introduce
the inversion,

Ri : r → −ρ, (30)

and treat it as if the case of C1 = −1. Then we interpret the negative sign of the radial variable as a
result of a certain change in the angular variable θ involved in the orbital equation by associating it
with a sign change in coupling so that both r and ρ remain positive. If µ = 1, the inversion causes
no change in time, mass, energy, and angular momentum, but entails, as is apparent from (27),
a change in coupling,

λa → λb = (−1)aλa. (31)

The inversion set ∆1 with C1 = −1 and µ = 1, denoted by ∆i, is partially qualified as a
duality transformation. The reason why ∆i is ”partially” qualified is that it is admissible only when
a is an integer. Notice that (−1)a appearing in (31) is a complex number unless a is an integer.
As λa and λb are both assumed to be real numbers, a must be integral. Having said so, in the
context of the inversion, we need a further restriction on a. The sign change in coupling is induced
by the inversion only when a is an odd number. Since ∆i is not generally reducible to the identity
set ∆0, it is non-trivial.

2.3.2. Class II

Class II is the set of proper (traditional) dual pairs. Equation (20) of the second
combination can be expressed as

C2 : η = 2/(a + 2) with b = −2a/(a + 2) , (a 6= −2). (32)
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which implies that a pair (a, b) = (a,−2a/(a + 2)) is linked by ηa when a 6= −2. The above
operation C2 may as well be given by

C′2 : η = (b + 2)/2 with a = −2b/(b + 2) , (b 6= −2), (33)

which means a pair (a, b) = (−2b/(b + 2), b) linked via η = (b + 2)/2. Another expression
for C2 is

C′′2 : η = (b + 2)/2, with (a + 2)(b + 2) = 4 , (a 6= −2, b 6= −2), (34)

which is a version of what Needham [22,23] calls the Kasner–Arnol’d theorem for dual
forces. If a 6= 0 and b 6= 0,

η = 2/(a + 2) = (b + 2)/2 = −b/a , (a 6= −2, b 6= −2), (35)

from which follows that to every (a, b) via ηa there corresponds (b, a) via η−1
a if a 6= 0,−2.

If |a| � 1, then b ≈ −a and (a, b) ≈ (a,−a). Hence (0, 0) = lima→0(a,−a) via η+, which
overlaps with (0, 0) = lima→0(a, a) of Class I in the limit but differs in approach. In the
above ηa stand for η with a fixed a.

In this case, the transformation functions of (12) can be written as f (ρ) = Caρηa and
g(ρ) = µC2

a η2
a ρ2ηa−2 where Ca = Cηa . Here we choose µ = 1 by the reason stated in

Remark 4. The change of radial variable (6) and the change of time derivative (7) become,
respectively,

Ra : r = Caρηa , (36)

and
Ta : (dt/dϕ) = C2

a η2
a ρ2ηa−2(ds/dϕ). (37)

Equation (21) of the second combination, associated with {Ra,Ta}, yields the coupling-
energy exchange operation,

Ea : λb = −C2
a η2

a Ea , Eb = −Ca+2
a η2

a λa , (a ≷ −2). (38)

The time scaling has been chosen so as to preserve the mass invariance (11),

M0 : mb = ma = m, (39)

and the scale change in the angular momentum follows from (13) with ηa,

La : Lb = ηaLa. (40)

Now we see that each of the sets ∆a = {Ca,Ra,Ta,Ea,M0,La} preserves the form-
invariance of the action (4) with a power potential. The form-invariance warrants that
X(a, b)∆a = ∆b. Hence system B is dual to system A with respect to ∆a. Let ∆± = {∆a; a ≷
−2}. The set ∆+ links a > −2 and b > −2 of (a, b), whereas ∆− relates a < −2 to b < −2.
No ∆a links a ≷ −2 to b ≶ −2. Hence there is no pair (a, b) consisting of a ≷ −2 and
b ≶ −2.

Remark 9. Class II consists of proper dual pairs (a, b) linked by ∆±, which have been widely
discussed in the literature [10,18,22–24,36,40]. Here a and b are distinct except for two self-dual
pairs, (0, 0) via η+ and (−4,−4) via η−.

Remark 10. Note that the time transformation (37) is not integrable unless the time-dependence of
the space variable (i.e., the related orbit) is specified.

Remark 11. The scale factor C1 appeared in Case I was dimensionless. A space transformation
of (12) for a given value of ηa contains a constant Cηa which has a dimension of ra/(a+2). Let
Cηa = Cada where Ca and da are a dimensionless magnitude and the dimensional unit of Cηa ,
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respectively. Use of an appropriate scale transformation which is admissible as seen in Case I enables
Ca to reduce to unity. More over, the dimensional unit may be suppressed to da = 1. Therefore,
if desirable, the space transformation (36) may simply be written as r = ρηa without altering
physical contents.

Remark 12. Let (a, b) be a dual pair satisfying the relation (a + 2)(b + 2) = 4. Then the left
element (a, ) of (a, a) maps via (a, b) into (b, ), and the right element ( , a) into ( , b). Hence the
self-dual pair (a, a) can be taken by (a, b) to the self-dual pair (b, b). Schematically,

(a, a)
(a,b)−→ (b, a)

(a,b)−→ (b, b).

We call ((a, a), (b, b)) a grand dual pair.

2.4. Graphic Presentation of Dual Pairs

A dual pair (a, b) is presented as a point in a two-dimensional a− b plane as shown in
Figure 1. All self-dual pairs (a, a) of Class I are on a dashed straight line a = b denoted by
η1. Every dual pair (a, b) of Class II is shown as a point on two branches η± of a hyperbola
described by the equation (a + 2)(b + 2) = 4 of (34). The graph for Class II is similar to the
one given by Arnol’d for dual forces [10].
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Figure 1. The solid line shows the allowed combinations of dual pairs (a, b) of power laws.
The dashed line indicates the symmetry axis (a, b) ↔ (b, a). The bullets show the only dual pairs
where both a and b are integers representing the Newton–Hook duality. The square represents the
duality pair discussed in Section 4.4.

Among the dual pairs of Class I, there are pairs (a, a) linked by scale transformations
(inclusive of rotations), which cover all real a, and those (a, a) related by the inversion,
which are defined only when a is an odd number. In this regard, every pair (a, a), occupying
a single point on η1, plays multiple roles. While the pairs linked by scale transformations
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admissible for all real values of a form a continuous line η1 indicated by a dashed line, those
pairs linked by the inversion appear as discrete points on η1 and are indicated by circles.

The hyperbola representing all pairs of Class II has its center at (−2,−2), transverse
axis along b = a, and asymptotes on the lines a = −2 and b = −2. The bullets indicate all
pairs (a, b) via η± with integral a’s; namely, (−1, 2) via η = 2, (0, 0) via η = 1, (−3,−6) via
η = −2, and (−4,−4) via η = −1. There are no integer pairs other than those listed above
in Class II. The square represents the dual pair (−1/2, 2/3) to be discussed in Section III
D. On the branch of η+, a dual pair (a, b) via η+ and its inverse pair (b, a) via η−1

+ are
symmetrically located about the transverse axis η1. Since both (a, b) and (b, a) signify that
system A and system B are dual to each other, the curves η± have redundancy in describing
the A− B duality. An example is the Newton–Hooke duality for which two equivalent
pairs (−1, 2) via η = 2 and (2,−1) via η = 1/2 appear in symmetrical positions on η+.

We notice that there are two special points on the graph. They are the intersections
of η1 and η±; namely, (0, 0) with η = 1, and (−4,−4) with η = ±1. The former is an
overlapping point of η1 and η+ where η = 1. The latter is like an overhead crossing of η1
and η− where the pair belonging to η1 is linked by a transformation with η = 1 while the
one belonging to η− is linked with η = −1.

In approaching the crossing of η1 and η+, the pair (0, 0) at η1 = 1 has a limiting behav-
ior as (0, 0) = limε→0(±ε,±ε), while (0, 0) at η+ = 1 behaves like (0, 0) = limε→0(±ε,∓ε)
via η = 1. As has been mentioned earlier, (a, b) = (a− 1, b− 1)F. However, the counterpart
of (0, 0) is not exactly equal to (−1,−1)F. The potential corresponding to the inverse force
F ∼ 1/r is V ∼ ln r. Thus, it is more appropriate to put symbolically (−1,−1)F = (ln, ln).
Yet, (0, 0) 6= (ln, ln). Consider Va(r) = λarε. For ε small, Va(r) ≈ λa(1 + ε ln r), which
gives rise to the force F ≈ κ/r where κ = λaε. As long as κ can be treated as finite,
(ε,−ε) ≈ (−1,−1)F. Chandrasekhar [18] excluded (−1,−1)F from the list of dual pairs on
physical grounds. We exclude (ln, ln) because the logarithmic potential, being not a power
potential, lies outside our interest.

By analyzing Corollaries and Propositions in the Principia, Chandrasekhar [18]
pointed out that Newton had found not only the Newton–Hooke dual pair but also the
self-dual pairs (2, 2), (−1,−1) and (−4,−4). He also mentioned that (−3,−6) was not in-
cluded in the Prinpicia. For a integral, there are only two grand dual pairs ((−1,−1), (2, 2))
and ((−3,−3), (−6,−6)). In Figure 1, (2, 2) and (−1,−1) are marked with triangles on η1,
while (−3,−3) and (−6,−6) are marked with diamonds on η1.

2.5. Classical Orbits

Here we discuss the orbital behaviors for the dual pairs in relation with energy
and coupling.

First, we consider self-dual pairs (a, a) of Class I. If an effective shifted potential is
defined by Ue f f (r) = U(r) + L2/(2mr2), the space transformation r = C1ρ induces

Ue f f
a (r) = λara +

L2
a

2mr2 − Ea, ⇒ Ue f f
b (ρ) = Ca+2

1 λaρa +
L2

a
2mρ2 − C2

1 Ea, (41)

resulting in self-dual pairs (a, a) for any real a. The space transformation includes scale
transformations r = C1ρ with C1 > 0, identity transformation r = ρ (inclusive of rotations),
and inversion formally defined by r = −ρ.

Statement 1. System A and system B linked by a scale transformation are physically identical but
described in different scale. Typically an orbit of system A maps to an orbit of system B similar in
shape but different in scale.

Statement 2. In the limit C1 → 1, the two orbits become congruent (identical) to each other. Any
self-dual pair (a, a) due to a scale transformation is reducible to a trivial pair (a, a) linked by the
identity transformation. However, in dealing with the orbital behaviors, we have to look into the
angular dependence of radial variables by allowing the identity transformation r = ρ to contain
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r(θ) = ρ(θ̃) = r(θ̃ − θ0) with θ → θ̃ = θ + θ0, which represents a rotation of a given orbit about
the center of force by θ0.

The inversion r → −ρ entails λb = (−1)aλa, as is apparent from (41). If a is an
even number, the sign change in coupling does not occur. Hence the inversion for even
a cannot properly be defined and must be precluded. Only when a is odd, the inversion
is meaningful. However, we have to notice that orbits in a potential with a > 0 are all
bounded if λa > 0 and all unbounded if λa < 0. Under the inversion, the sign of λa
changes, so that a bound orbit with Ea > 0 is supposed to go to an unbounded orbit with
Eb = Ea > 0. It is uncertain whether there are such examples to which the inversion works.

Statement 3. If a is a negative odd number, under the inversion, an orbit in an attractive (repulsive)
potential maps to an orbit in a repulsive (attractive) potential, keeping the energy unchanged.

In the Principia, Newton proved that if an orbit passing through the center of attraction
is a circle then the force is inversely proportional to the fifth-power of the distance from
the center (Corollary I to Proposition VII). From Corollary I of Proposition VII and other
corollaries in the Principia Chandrasekhar [18] shows in essence that if an object moves
on a circular orbit under centripetal attraction emanating from two different points on
the circumference of the circle then the forces from the two points exerted on the orbiting
object are of the same inverse fifth-power law. Then he suggests, in this account, that
the inverse fifth power law of attraction is self-dual for motion in a circle. In contrast
to Chandrasekhar’s view on the self-dual pair (−4,−4), we maintain that (−4,−4) can
be understood as a member of Class I and Class II. The circular orbit in an attractive
potential Va(r) = λar−4, which occurs when Ea = 0, can be described by the equation
r = 2Ra cos θ where Ra =

√
−λam/(2L2

a) is the radius of the circle and −π/2 < θ < π/2
is the range of θ. The scale transformation r = C1ρ with C1 > 0 converts the orbit equation
into ρ = 2Rb cos θ where Rb = Ra/C1. Apparently it is consistent with the requirements
Lb = La and λb = C−2

1 λa of (41). Thus, the radius of the circle is rescaled while the
center of force is fixed at the origin and the range of θ is unaltered. The inverse fifth-
power law of attraction may be viewed as self-dual under a scale change for motion in
a circle. If the identity map r = ρ may include a rotation r(θ) → ρ(θ̃) = r(θ̃ − θ0), then
ρ(θ̃) = 2R cos(θ̃ − θ0) with the angular range −π/2 + θ0 < θ̃ < π/2 + θ0. In particular,
if θ0 = π, then ρ(θ̃) = −2R cos(θ̃) with π/2 < θ̃ < 3π/2. The circular orbit maps into
itself, though rotated about the center of force. In this sense, the inverse fifth-power law
of attraction is self-dual under a rotation for motion in a circle. In much the same way,
the inverse fifth-power force, whether attractive or repulsive, may be considered as self-
dual under a scale change and a rotation for motion in any other orbits. Hence the self-dual
pair (−4,−4) linked by the scale transformation (including rotations) is a member of Class
I. The same self-dual pair (−4,−4) has another feature as a member of Class II which will
be discussed in Remark 13.

Secondly, we consider dual pairs (a, b) of Class II.
All dual pairs (a, b) of Class II are subject to the proper dual transformation ∆I I .

The members a and b of each pair obey the Kasner–Arnol’d formula (a + 2)(b + 2) = 4,
and are related via η = 2/(a + 2) (or η = −b/a if a 6= 0). These dual pairs belong to branch
η+ if a > −2, and branch η− if a < −2.

Now the space and time transformations r = Caρ2/(a+2) and
(dt/dϕ) = C2

ηη2ρ−2a/(a+2)(ds/dϕ) induce the energy-coupling exchange,

λb = −C2
ηη2Ea , Eb = −Ca+2

η η2λa, (42)

where Cη > 0 and a 6= −2. Hence the effective shifted potential transforms as

Ue f f
a (r) = λara +

L2
a

2mr2 − Ea, ⇒ Ue f f
b (ρ) = −C2

±η2
±Eaρb +

η2
±L2

a
2mρ2 + Ca+2

± η2
±λa (43)



Symmetry 2021, 13, 409 14 of 50

where a 6= −2 and b = −2a/(a + 2).
The two equations in (42) are not simply to exchange the roles of energy and coupling.

They also provide a useful relation between Ea and Eb. In general Ea depends on λa. So we
let Ea = Ea(λa), and invert it as λa = E−1

a (−λb/η2C2
η) with the help of the first equation

of (42). Substitution of this into the second equation of (42) yields

Eb = −η2Ca+2
η E−1

a

(
− λb

η2C2
η

)
. (44)

which shows that Eb depends on Ea through the coupling λa.

Statement 4. For a dual pair (a, b) of Class II, if the coupling dependence of Ea is explicitly known,
then Eb can be determined by (44), and vice versa.

From (42) there follow four possible mapping patters,

(0) (Ea = 0, λa R 0) =⇒ (Eb Q 0, λb = 0)

(1) (Ea > 0, λa < 0) =⇒ (Eb > 0, λb < 0)

(2) (Ea < 0, λa < 0) =⇒ (Eb > 0, λb > 0)

(3) (Ea > 0, λa > 0) =⇒ (Eb < 0, λb < 0)

(4) (Ea < 0, λa > 0) =⇒ (Eb < 0, λb > 0)

In the above, pattern (0) implies that any zero energy orbit of system A goes to a
rectilinear orbit of system B with no potential. Patterns (1)–(4) imply that any positive
energy orbit of system A, regardless of the sign of λa, maps to an orbit of system B with a
coupling λb < 0, and any negative energy orbit of system A, independent of λa, maps to
an orbit of system B with a coupling λb > 0.

The dual pairs (a, b) of Class II can be grouped into those on η+ and those on η−.
Furthermore, the pairs of the first group can be divided into two parts for η+ > 1 and
0 < η+ < 1. If we let η>

+ denote the part for η+ > 1, then η>
+ = {−b/a| − 2 < a < 0, b > 0}.

Similarly, let η<
+ denote the part for 0 < η+ < 1. Then η<

+ = {−b/a| a > 0,−2 < b <
0} = {−a/b| − 2 < a < 0, b > 0}. Thus, η<

+ = [η>
+ ]
−1. It is sufficient to consider

the set η>
+ . The same can be said for the second group on η−. We take up only the set

η>
− = {−b/a| − 4 < a < −2, b < −4}.

For the case of η>
+ , λa > 0 (< 0) implies a repulsion (attraction), while λb > 0 (< 0)

means an attraction (repulsion). There are no negative energy orbits in a repulsive potential
with λa > 0 and in an attractive potential with λb > 0. For η>

− , both λa > 0 and λb > 0
are repulsive, and both λa < 0 and λb < 0 are attractive. In any repulsive potential with
λa > 0 or λb > 0, no negative energy orbits are present. Pattern (4) is not physically
meaningful. Taking these features of potentials into account, we can restate the implication
of the relations in (42) as follows.

Statement 5. Under the proper duality transformation ∆I I , if −2 < a < 0 (i.e., b > 0), then any
positive energy orbit in the potential of system A, whether attractive or repulsive, maps to an orbit
in a repulsive potential of system B, and any negative energy (bound) orbit maps to a positive energy
(bound) orbit in an attractive potential. If a > 0 (i.e., −2 < b < 0), then the above situations are
reversed. If −4 < a < −2 (i.e., b < −4), then any positive orbit in an attractive potential maps
to a positive orbit under attraction, any negative bound orbit in an attractive potential maps to a
positive orbit under repulsion, and any positive orbit under repulsion maps to a negative bound
orbit in an attractive potential. Even for the case where a < −4 (i.e., −4 < b < −2), the mapping
patterns are the same as those for −4 < a < −2. In all cases, zero energy orbits map to force-free
rectilinear orbits.

This is a modified version of Needham’s statement made in supplementing the Kasner–
Arnol’d theorem [22,23].
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Remark 13. The pair (−4,−4) has another feature as a point on η−, that is, as a member of
Class II. From (42), it is obvious that λb = 0 for the circular zero energy orbit. Hence the duality
transformation ∆I I maps the orbit into a force-free rectilinear orbit. According to Statement 5, any
positive energy orbit must map to an orbit in an attractive potential, and any negative energy orbit
maps to an orbit in a repulsive potential. Therefore, the self-dual pair (−4,−4) Newton established
is not a member of Class II. It must be (−4,−4) on η1, belonging to Class I.

In what follows, we make remarks on the Newton–Hooke pairs and related self-
dual pairs.

Remark 14. Statement 5 applies to the pair (−1, 2). The mapping patterns (0)–(3) works in going
from the Newton system with a = −1 to the Hooke system with b = 2. Namely, (0) the zero energy
orbit of the attractive Newton system maps to a rectilinear orbit; (1) a positive unbound orbit of the
attractive Newton system maps to a positive unbound orbit of the repulsive Hooke system; (2) a
negative energy bound orbit of the attractive Newton system maps to a positive energy bound orbit
of the attractive Hooke system; and (3) a positive unbound orbit of the repulsive Newton system
maps to a negative unbound orbit of the repulsive Hooke system. Since there are no negative orbits
for the repulsive Newton system and the attractive Hooke system, pattern (4) is irrelevant.

Remark 15. In view of the orbit structure, we study in more detail the mapping process from the
Newton system to the Hooke system. As is well-known, for the motion in the inverse-square force,
the orbit equation in polar coordinates has the form,

r =
p

1 + e cos θ
, (45)

where p is the semi-latus rectum, e the eccentricity. The orbit is of conic sections and the origin of the
coordinates is at the focus closest to the pericenter of the orbit. The angle θ is between the position of
the orbiting object and the direction to the pericenter located at r = rmin and θ = 0. The semi-latus
rectum, the semi-major axis, and the eccentricity of the orbit are determined by p = −L2

a/(mλa),
ā = −λa/(m|Ea|), and e =

√
1 + (2L2

aEa/mλ2
a), , respectively. If the inverse square force is

attractive, i.e., if λa < 0, then ā > 0, p > 0, and 1 > cos θ > −1/e. If repulsive, i.e., if λa > 0,
then ā < 0, p < 0 and −1 < cos θ < −1/e.

(i) For the bound motion, Ea < 0, e < 1 and p = ā(1− e2) > 0. The Equation (45) describes
an elliptic orbit with semi-major axis ā and eccentricity e. Apparently, rmin = ā(1− e). For the
duality mapping, a more suited choice is the orbit equation expressed in terms of the eccentric
anomaly ψ,

r = ā(1− e cos ψ), (46)

which may be put in the form,

r = ā
{
(1 + e) cos2(ψ/2) + (1− e) sin2(ψ/2)

}
. (47)

Here ψ is related to the polar angle θ by tan(θ/2) = [(1 + e)/(1 − e)]1/2 tan(ψ/2). Since
r = C2ρ2, use of (47) leads to

ρ =
[
α2 cos2(ψ/2) + β2 sin2(ψ/2)

]1/2
, (48)

where
α =

√
ā(1 + e)/C2 , β =

√
ā(1− e)/C2 . (49)

Let ρ =
√

u2 + v2 in cartesian coordinates, and let

u = α cos(ψ/2), v = β sin(ψ/2). (50)
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Then it is clear that the trajectory drawn by ρ is given as an ellipse,

u2

α2 +
v2

β2 = 1, (51)

with semi-major axis α and semi-minor axis β, centered at the origin of the u− v plane. It is obvious
that ρmin =

√
ā(1− e)/C2 is the semi-minor axis of the ellipse on the u− v plane. The above

calculation shows that the elliptic Kepler orbit with semi-major axis ā and eccentricity e maps to an
ellipse with semi-major axis α =

√
ā(1 + e)/C2 and eccentricity ε =

√
2e/(1 + e) . The semi-

major and semi-minor axes of the resultant ellipse depend on the scaling factor C2. With different
values of C2, a Kepler ellipse of eccentricity e is mapped to ellipses of different sizes having a common
eccentricity ε. In general, the resultant ellipse having eccentricity ε is not similar to the Kepler
orbit with eccentricity e. If e = 0, then ε = 0. Namely, a circular orbit of radius ā under an
inverse-square force maps to a circle with radius α =

√
ā/C2 . With a particular scale C2 = 1/

√
ā,

the mapped circle is congruent to the original orbit. In the limit e→ 1, the Kepler orbit becomes a
parabola with Ea = 0, which maps to a force-free rectilinear orbit described by (u, v) = (ρ, 0).

(ii) If Ea > 0, then e > 1 and ā > 0 for λa < 0. The semi-latus rectum in (45) must be
modified as p = ā(e2 − 1) > 0. Again cos θ < −1/e. The orbit is a branch of a hyperbola with
semi-major axis ā and eccentricity e. The center of attraction is at the interior focus of the branch,
so that rmin = ā(e− 1). In much the same fashion that the eccentric anomaly is used in (46), we
introduce a parameter ψ related to the angle θ by tan(θ/2) = [(e + 1)/(e− 1)]1/2 tanh(ψ/2).
Here cosh ψ > 1/e. Now the orbit equation in parametric representation is

r = ā(e cosh ψ− 1), (52)

which may further be written as

r = ā
{
(e− 1) cosh2(ψ/2) + (e + 1) sinh2(ψ/2)

}
, (53)

whose minimum occurs when ψ = 0. Correspondingly, ρ =
√

r/C2 is expressed as

ρ =
[
α2 cosh2(ψ/2) + β2 sinh2(ψ/2)

]1/2
, (54)

where
α =

√
ā(e− 1)/C2 , β =

√
ā(e + 1)/C2 . (55)

Hence ρmin =
√

ā(e− 1)/C2 . Letting

u = α cosh(ψ/2), v = β sinh(ψ/2), (56)

we obtain ρ =
√

u2 + v2 and the equation for a hyperbola having two branches,

u2

α2 −
v2

β2 = 1, (57)

which has the semi-major axis α =
√

ā(e− 1)/C2 and the eccentricity ε =
√

2e/(e− 1) . Thus,
the positive energy orbit in the attractive inverse potential, given by a branch of the hyperbola, maps
to a positive energy orbit given by either branch of a hyperbola whose center coincides with the
center of the repulsive Hooke force.

(iii) For a repulsive potential with λa > 0 such as the repulsive Coulomb potential, the orbit
Equation (45) describing a hyperbola holds true insofar as Ea > 0, i.e., e > 1. Since p =
−L2

a/(mλa) < 0 for λa > 0, the semi-lotus rectum must be replaced by p̃ = −p. At the same
time, the angular variable has to be changed from θ to θ̃ where cos θ < −1/e and cos θ̃ > −1/e.
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The conversion of the hyperbolic Equation (45) for the attractive potential to the hyperbolic equation
for the repulsive potential,

r̃ =
p̃

1 + e cos θ̃
, (58)

is indeed the inversion process mentioned in Remark 8. Since (45) and (58) have the same form,
we can follow the procedure given in (ii) to show that under r̃ =

√
ρ/C2 the positive energy orbit

in the repulsive inverse potential, given by a branch of the hyperbola, maps to a negative energy
orbit given by either branch of a hyperbola whose center coincides with the center of the repulsive
Hooke force.

Remark 16. In connection with Remark 14, we look at the self-dual pairs (−1,−1) and (2, 2)
which do not belong to Class II. Apparently the two pairs are closely related to each other via the
Newton–Hooke pair (−1, 2), so as to form a grand dual pair ((−1,−1), (2, 2)). As they are both
on η1, each of them is self-dual under scale changes and rotations. In addition, (−1,−1) is self-dual
under the inversion. From (iii) of Remark 15, it is clear that due to the inversion the orbit equation
takes the form (45). There the angular range for θ̃ is θe < θ̃ < 2π − θe where θe = cos−1(−1/e).
Hence the resultant orbit has the center of orbit at the exterior focus. This means that a hyperbolic
orbit in attraction with the center of force at the interior focus maps to the conjugate hyperbola in
repulsion with the center of force at the exterior focus. In contrast, any rotation maps a hyperbolic
orbit under attraction (repulsion) into a hyperbolic orbit under attraction (repulsion). In summary,
the inversion maps a hyperbolic orbit under attraction into a hyperbolic orbit under repulsion,
whereas any rotation takes a hyperbolic orbit under attraction (repulsion) to a hyperbolic orbit
under attraction (repulsion). According to Chandrasekhar’s book [18], what Newton established
for (−1,−1) and (2, 2) are that the attractive inverse square force law is dual to the repulsive
inverse square force law, and that the repulsive linear force law is dual to itself. Thus, we are led to a
view that Newton’s (−1,−1) is due to the inversion and their (2, 2) is due to a rotation. Finally
we wish to point out that by the mapping patterns (1) and (3) of (−1, 2) a hyperbolic orbit of the
attractive Newton system, whether attractive or repulsive, maps to a hyperbolic orbit of the repulsive
Hooke system. In other words, the pair of forces (attraction, repulsion) for (−1,−1) goes to the
pair of force (repulsion, repulsion) for (2, 2) with the help of (−1, 2). This is compatible with the
assertion that Newton’s two self-dual pairs form the grand dual pair ((−1,−1), (2, 2)) via (−1, 2).

2.6. Classical Energy Formulas

We have used the energy-coupling exchange relations,

E : Eb = −η2Ca+2λa, λb = −η2C2Ea, (59)

as essential parts of the power-duality operations. They demand primarily that the roles
of energy and coupling be exchanged. Using these relations, we can also derive energy
formulas which enable us to determine the energy value of one system from that of the
other when two systems are power-dual to each other.

In general Ea depends on λa, La and possibly other parameters. So let the energy
function be Ea = E(λa, La, wa) where wa represents those additional parameters. Then we
pull λa out from the inside of E as

λa = E−1(Ea, La, wa). (60)

Now we insert this coupling parameter λa into the first equation of (59). Substitut-
ing the second relation Ea = −λb/(η2C2) and the angular momentum transformation
La = Lb/η to the right-hand side of (60), we can convert the first relation of (59) into an
energy formula,

Eb(λb, Lb, wb) = −η2Ca+2E−1(−λb/(η2C2), Lb/η, wa(wb)). (61)
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Thus, if Ea is known, then Eb can be determined without solving the equations of
motion for system B. By making an appropriate choice of C, the value of λb may be
specified by the second relation of (59).

Alternatively, let us combine the two relations in (59) by eliminating the constant C to
get another energy formula,

Eb = −η2λa

(
− λb

η2Ea

)1/η

. (62)

This formula can be rearranged to the symmetric form,[
4(a + 2)−2|λa|−2/(a+2)|Ea|

]a
=
[
4(b + 2)−2|λb|−2/(b+2)|Eb|

]b
. (63)

Note that the signs of the energies and coupling constants are related via (59). See also
the four patterns discussed in Statement 4 above.

When the parameters w contained in Ea are invariant, that is, wa = wb, under the
duality operations, the last equation suggests that there is some positive function F (L, w),
independent of λa and λb, such that

|Ea(λa, La, w)| = (a + 2)2

4
|λa|2/(a+2)

{
F
(√

2/(a + 2) La, w
)}1/a

, (64)

|Eb(λb, Lb, w)| = (b + 2)2

4
|λb|2/(b+2)

{
F
(√

2/(b + 2) Lb, w
)}1/b

, (65)

where L =
√
(a + 2)/2 La =

√
(b + 2)/2 Lb. If such a function is specified for Ea by (64),

then Eb can be determined by (65) with the sign to be obtained via (59). Notice that (65) is
useful as an energy formula to find Eb only when Ea has the form of (64).

Remark 17. As an example, let us consider the Newton–Hooke dual pair for which (a, b) =
(−1, 2), η = −b/a = 2 and r = Cρ2. Let system A be consisting of a particle of mass m
moving around a large point mass M � m under the influence of the gravitational force with
λa = −GmM < 0. Let system B be an isotropic harmonic oscillator with λb = 1

2 mω2 > 0. Then,
as the exchange relations of (59) demand, Ea < 0 and Eb > 0. Hence the orbits of the two systems
are bounded. This means that the Newton–Hooke duality occurs only when both systems are in
bound states.

Suppose the total energy of the particle is given in the form,

Ea =
L2

a

2mr2
min

+
λa

rmin
= E(λa, La, rmin), (66)

where rmin is the minimum value of the radial variable r and λa = −GmM. Then we obtain
the inverse function,

λa = E−1
(
−λb/4C2, La, rmin

)
= − L2

a
2mrmin

− λbrmin
4C2 . (67)

With this result, the Formula (60) immediately leads to the energy of the Hooke system
in the form,

Eb =
L2

b
2mρ2

min
+ λbρ2

min (68)

where Lb = 2La and ρmin =
√

rmin/C . Although λb may be interpreted as Hooke’s constant,
its detailed form 1

2 mω2 cannot be determined by the energy formula. Noticing that Ea is a
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constant, we let κ =
√
−2mEa. If we choose C = mω/(2κ), then we have λb = 1

2 mω2 from
the second relation of (59). With the same choice of C, we have mωρ2

min = 2κrmin.
Suppose the energy of system A is alternatively given in the form,

Ea = −
2π2mλ2

a
(J + 2πLa)2 , (69)

where J is the radial action variable, J =
∮

dr pr, or more explicitly,

J = 2
∫ rmax

rmin

dr

√
2m
(

E− λa

r
− L2

2mr2

)
, (70)

which is a constant of motion. Let Ea of (69) be put into the form given via (64) then we
may identify

F
(√

2/(a + 2) La, J
)
=
[

J/(2π) + (
√

2(La)/
√

2
]2

/(2m). (71)

From this follows{
F
(√

2/(b + 2) Lb, J
)}1/2

= [J/(2π) + (Lb)/2]/
√

2m (72)

Since the first relation of (59) indicates that Eb > 0 for λa < 0, the relation (65) together
with λb = 1

2 mω2 results in
Eb = (ω/2π)(2J + 2πLb), (73)

which is an energy expression of the Hooke system obtainable from the Hamilton-
Jacobi equation.

2.7. Generalization to Multi-Term Power Laws

In the following, on a parallel with Johnson’s treatment [36], we examine how the
duality can be realized with a sum of power potentials (i.e., a multi-term potential) in the
present framework.

Let the potential Va be a sum of N distinct power potentials as

Va(r) =
N

∑
i=1

λai r
ai , ai > −2 , (ai 6= aj for i 6= j) (74)

where λai is the coupling constant of the i-th sub-potential in Va. Then R and T take the
shifted potential in (16) to

gUa(r) =
N

∑
i=1

λai C
ai+2η2ρ2η−2+aiη − C2η2ρ2η−2Ea. (75)

Let us pick one of the terms in the sum in (75), say, the i = k term, and make its
exponent zero by letting

η = ηk =
2

ak + 2
, ak > −2 , (76)

where η is k-dependent. If the exponent of the i = k′ term, instead of the k 6= k′ term, is
made vanishing, then η is to be given in terms of ak′ where ak′ 6= ak. Since k = 1, 2, . . . , N,
there are N possible choices of η. Thus, it is appropriate to write η in (76) with the subscript
k as ηk. Apparently, ηk is a possible one of {η1, η2, . . . , ηN}. Let the operations R and T for
η = ηk be denoted by Rk and Tk, respectively.
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For the remaining potential terms (i 6= k) and the energy term in (75), we rename the
exponents of ρ as

bk = −
2ak

ak + 2
, bi =

2(ai − ak)

ak + 2
, i 6= k , (77)

which can easily be inverted to express ak and ai in terms of bk and bi in the same form.
These relations are equivalent to the conditions on the exponents,

Ck : (ak + 2)(bk + 2) = 4, (ai − ak)(bi − bk) = aibi. (78)

From (77) there also follows bi > −2 for all i if ai > −2 for all i. The first relation
of (78) leads to alternative but equivalent expressions of η in (76),

ηk = −
bk
ak

=
bk + 2

2
=

2
ak + 2

. (79)

To Rk and Tk, we have to add two more operations,

Lk : Lbk
= ηkLak , (80)

and

Wk : λbk
= −C2η2

k Ea, Ebk
= −η2

k Cak+2λak , and λbi
= η2

k Cai+2λai , i 6= k. (81)

Then, we express the shifted potential of (75) in the new notation as

gUa(r) = Vbk
(ρ)− Ebk

= Ubk
(ρ) (82)

where

Vbk
(ρ) =

N

∑
i=1

λbi
ρbi . (83)

The set of operations ∆k = {Rk,Tk,Ck,Lk,Wk} transforms the radial action of the A
system into

Wρ(Ebk
) =

∫
Iϕ

dϕ (ds/dϕ)

{
m
2
(ds/dϕ)−2

(
dρ

dϕ

)2
−

L2
bk

2mρ2 −Ubk
(ρ)

}
. (84)

Thus, we find the duality between the A-system and Bk-system with respect to ∆k.
Again, this duality is only one of the N dualities; there are N pairs of dual systems, (ak, bk)
for k = 1, 2, ..., N.

3. Power-Duality in the Semiclassical Action

The power-duality argument made for the classical action in Section 2 can easily
be carried over to the semiclassical action. In semiclassical theory the power-duality is a
relationship between two quantum systems which are not mutually interacting. In studying
such a relationship, there are two distinct approaches; one is to pay attention to a reciprocal
relation between two systems, and the other to pursue a deeper connection between the
quantum states of two systems (see Remark 18). Our power-duality argument is of the
former approach, taking reciprocity as a heuristic guiding. Special care will have to be
exercised though, when dealing with the quantum structure of each system.
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3.1. Symmetry of the Semiclassical Action

The action in semiclassical theory is of the form, W =
∫

dq p, which is Hamilton’s
characteristic function and essentially the same as that in (2). The semiclassical action for
the radial motion reads

W =
∫

dr
√

2m
(

E−V(r)− h̄2L2/(2mr2)
)

. (85)

Here the classical angular momentum L is replaced by h̄L. Customarily the semiclassi-
cal angular momentum (divided by h̄) of (85) is given by the Langer-modified form,

L = `+ (D− 2)/2, ` = 0, 1, 2, ... (86)

if it is defined in D dimensions. Let us write the semiclassical action for system A as

Wa =
∫

dr
√
−2m

[
h̄2L2

a/(2mr2) + Ua(r)
]

(87)

where Ua(r) = Va(r)− Ea. After the change of variable r = f (ρ), the action (87) of system
A becomes

Wa =
∫

dρ

√
−2m

[
h̄2L2

ag/(2m f 2) + gUa( f )
]

, (88)

where f ′ = dr/dρ and g = f ′2. The following substitutions

R : f (ρ) = Cρη , (89)

L : La = Lb/η, (90)

gUa = Ub, (91)

lead the action (88) to

Wb =
∫

dρ

√
−2m

[
h̄2L2

b/(2mρ2) + Ub(ρ)
]
, (92)

which is taken as the action for system B. Here we have assumed ma = mb = m (i.e., µ = 1).
We shall also assume that two mutually power-dual systems are by definition in the same
dimensions (i.e., Da = Db = D).

Only when the potential of system A is a power potential, Ub(ρ) in (92) can be brought
to the form Vb(ρ) − Eb. The change of variable R : r = Cρη with the choice C2 : η =
2/(a + 2) gives g(ρ) = η2C2ρ−aη . Hence, for Va( f ) = λaCaρaη , we have g(ρ)Va( f ) =
η2Ca+2λa and gEa = η2C2Eaρb where b = −aη = −2a/(a + 2). After performing the
energy-coupling exchange,

E : λa = −Eb/(η2Ca+2), Ea = −λb/(η2C2), (93)

we obtain
g(λara − Ea) = λbρb − Eb. (94)

In effect, under the operation of g, the following transformations have taken place,

gVa(r)→ −Eb, gEa → −Vb(ρ), (95)

where Va = λara and Vb(ρ) = λbρb.
In this manner, transforming the action Wa of (87) to Wb of (92) by the duality opera-

tions, we have Wa = Wb, that is,∫
dr
√

2m(Ea − λara)− h̄2L2
a/r2 =

∫
dρ
√

2m(Eb − λbρb)− h̄2L2
b/ρ2 . (96)
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It is also apparent that Wa = X(a, b)Wb with ξa = r and ξb = ρ. Thus, we see that the
semiclassical action (85) is form-invariant under the set of duality operations, {R,L,C,E}.

Although we have presented in the above the power-duality features of the semi-
classical action similar to those in the classical case, we have not taken account of the
possibility that the angular momentum L is a discretely quantized entity given in terms of
the angular quantum number ` = 0, 1, 2, ... by (86). It is natural to expect that the operation
L : Lb = ηLa of (90) implies the equality,

`b + (Db − 2)/2 = η`a + η(Da − 2)/2. (97)

In addition, if we demand that `a = 0 corresponds to `b = 0, then (97) can be separated
into two equalities,

`b = η`a, Db = η(Da − 2) + 2. (98)

Either (97) or (98) suggests that the allowed values of `b differs from those of `a
unless η = 1. This means that the condition ` = 0, 1, 2, ... in (86) cannot be imposed on
system A and system B at the same time. Although the transformations in (97) and (98)
are invertible, they cannot preserve the Langer-form (86) of the angular momentum in the
two systems. In other words, they are not reciprocal relations between the two systems.
Insofar as operation L implies the equalities (97), the semiclassical action with the Langer
modification is not form-invariant under the set of operations {R,L,C,E}. Then, we may
have to draw a conclusion that the power-duality valid in the classical action breaks down
in the semiclassical action due to the quantized angular momentum term.

In the above we have observed that the power-duality is incompatible with the angular
quantization. By the same token, the energy-coupling relations of E in (93) may have to be
examined. In the semiclassical action, the energy E and the coupling λ may be treated as
parameters. However, the implication of the exchange relations in (93) becomes ambiguous
after quantization. It is not clear whether Ea in (93) is one of the energy eigenvalues of
system A or it represents the energy spectrum of the system. As an aid of clarification, we
study one of the energy formulas resulting from combining the two relations in (93),

Eb = −η2λa

(
− λb

η2Ea

)1/η

, (99)

which has been given in Section 2 as a classical energy formula. To see if it will work
in quantum mechanics, let us employ, e.g., the Coulomb–Hooke duality, the quantum
counterpart of the Newton–Hooke duality, and test (99). We assume that Ea and Eb in
(99) represent the spectra of system A and system B, respectively. According to (99),
the energy spectrum Eb of the hydrogen atom with the Coulomb coupling λb = −e2 is
expected to follow from the spectrum Ea of the three-dimensional isotropic harmonic
oscillator with frequency ω =

√
2λa/m. For this pair of systems, (a, b) = (2,−1) and

η = −b/a = 1/2. Given Ea(nr, `a) = h̄ω(2nr + `a + 3/2) with nr = 0, 1, 2, ... and `a =
0, 1, 2, ..., the Formula (99) immediately yields Eb = −(me4/2h̄2)(nr + `a/2+ 3/4)−2. Here
n = nr + `a/2 + 3/4 = 3/4, 5/4, 7/4, .... The result is not the energy spectrum of the
hydrogen atom that is commonly known. Evidently, a naive application of the energy
Formula (99) fails at the level of angular quantum numbers. By contrast, if we consider the
states of a four-dimensional oscillator which possess `a = 0, 2, 4, ..., then n = nr + `b + 1 =
1, 2, 3, ... via `b = `a/2, which matches the principal quantum number of the hydrogen
atom. In other words, the energy Formula (99) suggests that the spectrum of the hydrogen
atom can be composed of “half the states” of the four dimensional isotropic harmonic
oscillator (to be more precise, the set {`a = 0, 2, 4, ..., Da = 4} for the oscillator and the set
{`b = 0, 1, 2, ..., Db = 3} for the H-atom are in one-to-one correspondence). The relation
between the oscillator in four dimensions and the hydrogen atom in three dimensions
is not reciprocal in (99). The alternative scheme is not the Coulomb–Hooke duality that
we pursue (see Remark 18). The Coulomb–Hooke duality in quantum mechanics will be
discussed again in Section 4.3.
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In an effort to make the power duality meaningful in semiclassical theory, we shall
take a view that the power duality is basically a classical notion. Accordingly, for the duality
discussions, all physical objects such as L, E and λ, should be treated as classical entities,
i.e., continuous parameters. Then we consider quantization as a process separate from the
duality operations. The duality is a classical feature of the relation between two systems,
whereas quantization is associated with the micro-structures of each system. None of dual-
ity operations can dictate how the quantum structure of each system should be. The equality
of (93) which is compatible with reciprocity must not imply the non-reciprocal equality
of (97). It is necessary to dissociate duality operations from quantization. Technically,
we deal only with those continuous parameters for the duality discussions, and replace
them as a post duality-argument activity by appropriately quantized counterparts when
needed for characterizing each quantum system. From this view, the power duality of the
semiclassical action has already been established at the equality (96) with follow-up substi-
tutions La = `a + (D− 2)/2, (`a = 0, 1, 2, ..) and Lb = `b + (D− 2)/2, (`b = 0, 1, 2, ...). It
is helpful to introduce the dot-equality .

= to signify the equality amended by substitutions
of quantized entities. The power-duality of the semiclassical action in the amended version
may be exhibited by∫

dr
√

2m(Ea − λara)− h̄2(`a + (D− 2)/2)2/r2

.
=
∫

dρ

√
2m(Eb − λbρb)− h̄2(`b + (D− 2)/2)2/ρ2 . (100)

3.2. The Semiclassical Energy Formulas

In the preceding section, we have adopted the Coulomb–Hooke duality to test (99),
and failed. However, it should be recognized that if the energy spectrum of the three
dimensional radial oscillator is given in the form Ea(nr, La) = h̄ω(2nr + La + 1) without
requiring La = `a + 1/2, then the energy formula (99) together with La = 2Lb yields
Eb(nr, Lb) = −(me4/2h̄2)(nr + Lb + 1/2)−2 which reduces to the desired Coulomb spec-
trum Eb(ν, Lb) = −(me4/2h̄2)(nr + `b + 1)−2 after ad hoc substitution of Lb = `b + 1/2
with `b ∈ N0. So long as L, E and λ are treated as continuous parameters, the energy for-
mula (99) derived from the exchange relations (93) should work for semiclassical systems
provided that those parameters are eventually replaced by their quantum counterparts.

In semiclassical theory, the bound state energy Ea of system A can be evaluated by
carrying out the integration on the left-hand side of (96) between two turning points.
Namely, we calculate for Ea the integral

Ja = 2
∫ r′′

r′
dr
√

2m(Ea − λara)− h̄2L2
a/r2 , (101)

where r′ and r′′ are the turning points of the orbit where the integrand vanishes. The quan-
tity Ja is indeed an action variable defined for a periodic motion by

∮
dq p. It is a constant

depending on Ea, λa, and La. By letting it be a constant Na multiplied by 2πh̄,

Ja(Ea, λa, La) = 2πh̄Na, (102)

and solving (102) for Ea, we obtain the classical bound state energy as a function of
parameters λa, La and Na,

Ea = Ea(λa, La, Na). (103)

Once the classical energy Ea of system A is given in terms of λa, La and Na, when
system A and system B are power-dual to each other, we can determine the energy Eb
of system B, with the help of the operations L and E, as a function of λb, Lb and Nb.
Since Wa = Wb as shown in (96), it is obvious that Na = Nb. As the former equality is a
consequence of the duality operations, so is the latter equality. Hence the equality Na = Nb
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is a consequence but not a part of duality operations. So, we let N = Na = Nb. With the
energy function (103), the semiclassical energy formula stemming from (99) is

Eb(λb, Lb, N) = −η2λa

(
− λb

η2Ea(λa, Lb/η, N)

)1/η

, (104)

which can be rearranged as the classical case in the following form

|Ea(λa, La, N)| = 1
4
(a + 2)2|λa|2/(a+2)

{
F
(√

2/(a + 2) La, N
)}1/a

(105)

|Eb(λb, Lb, N)| = 1
4
(b + 2)2|λb|2/(b+2)

{
F
(√

2/(b + 2) Lb, N
)}1/b

(106)

where F (L, N) is a function common to both systems. The signs for both energy relations
are determined as in the classical case via the signs of the coupling constants, i.e., sgn Ea =
−sgn λb and sgn Eb = −sgn λa.

Alternatively, expressing an explicit form of the energy function (103) by E(λa, La, N) as

Ea = E(λa, La, Na), (107)

and inverting (107) to take λa out, we have

λa = E−1(Ea, La, N). (108)

Then we use the angular momentum transformation L of (90) and the energy-coupling
exchange relations E of (93) to write down the bound state energy formula for Eb as

Eb(λb, Lb, N) = −η2Ca+2E−1(−λb/(η2C2), Lb/η, N), (109)

which is essentially the same as the energy formula (104).
To convert the classical energy Ea in (103) to a quantum spectrum, we replace the

parameters La and N by their corresponding quantized entities. The angular momentum is
quantized in the Langer form La

.
= `a + (D− 2)/2. The Wentzel–Kramers–Brillouin (WKB)

quantization formula for the radial motion,∮
dr pr = 2πh̄

(
nr +

1
2

)
, nr = 0, 1, 2, ... (110)

asserts that
N .

= nr + 1/2 , nr = 0, 1, 2, ... (111)

Substitution of the Langer-modified angular momentum (86) and the WKB quantiza-
tion (111) in the classical energy function of (103) yields the energy spectrum,

Ea(nr, `a)
.
= Ea(λa, `a − 1 + D/2, nr + 1/2), (112)

where nr = 0, 1, 2, ... and `a = 0, 1, 2, ... Similarly, after substitution of the Langer form (86)
to Lb and the WKB quantization (111) to N, the semiclassical energy formula (109) leads to
the energy spectrum of system B,

Eb(nr, `a)
.
= −η2Ca+2E−1

(
−λb/(η2C2), (`b − 1 + D/2)/η, nr + 1/2

)
(113)

where nr = 0, 1, 2, . . . and `b = 0, 1, 2, . . ..
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3.3. A System with a Non-Integer Power Potential and Zero-Angular Momentum

As a simple but non-trivial example, we study a non-integer power potential system
with L2 = 0 (see Remark 22). Let system A be the case. Bound states of system A occur
only when (i) λa < 0, a < 0 with Ea < 0 or (ii) λa > 0, a > 0 with Ea > 0. The integral (101)
with La = 0, denoted Ja(Ea, λa, 0), is reducible to a beta function under either condition (i)
or (ii). Suppose system A be under condition (i). Then it goes to a beta function as

Ja(Ea, λa, 0) = M(Ea, λa)
∫ 1

0
dz z−

a+2
2a −1(1− z)

3
2−1 = M(Ea, λa)B

(
− a + 2

2a
,

3
2

)
(114)

where we have let z = (Ea/λa)r−a and M(Ea, λa) =
√
−2mλa/a2(Ea/λa)(a+2)/2a. As

in (102), we express the right-hand side of (114) by the parameter N as

M(Ea, λa)B
(
− a + 2

2a
,

3
2

)
= 2πh̄N, (115)

which we solve for Ea to find the energy function Ea = E(λa, 0, N),

Ea = −(−λa)
2

a+2

(√
2m

h̄|a|π B
(
− a + 2

2a
,

3
2

))− 2a
a+2

N
2a

a+2 . (116)

Now the WKB condition (111) yields the energy spectrum of system A,

Ea(n)
.
= −(−λa)

2
a+2

(√
2m

h̄|a|π B
(
− a + 2

2a
,

3
2

))− 2a
a+2(

n +
1
2

) 2a
a+2

, (117)

where n = 0, 1, 2, . . .. The bound state energy spectrum of system B can be independently
calculated in a similar fashion, and the WKB quantization (111), separately applied to
system B, will lead to a spectrum similar to but different from the spectrum of system A
in (117). Insofar as system B is power-dual to system A, the bound state energy spectrum of
system B can be obtained via the formula (113). Inverting the λa dependent function (116),
we obtain

λa = E−1(Ea, 0, N) = −(−Ea)
(a+2)/2

(√
2m

h̄|a|π B
(
− a + 2

2a
,

3
2

))a

N−a. (118)

Utilizing this inverted function and the WKB condition (111) in the energy Formula (113),
we arrive at the energy spectrum of system B,

Eb(n)
.
= λ

2
b+2
b

(√
2m

h̄|b|π B
(

1
b

,
3
2

))− 2b
b+2(

n +
1
2

) 2b
b+2

, n = 0, 1, 2, ... (119)

which is independent of the arbitrary constant C appearing in (109). In the above, we have
also changed a to b by using the relations, a = −2b/(b + 2) and ηa = −b. Apparently,
the spectrum (119) is very similar in form with the spectrum of system A in (109) but is not
identical. The relations (93) suggest that Eb > 0 for λa < 0 and λb > 0 for Ea < 0. Hence
system B has bound states with Eb > 0 only when b > 0. This means that system B is under
condition (ii) and that the energy spectrum (119) is for the case where λb > 0, b > 0 with
Eb > 0. In particular, if Va(r) = λa/

√
r with λa < 0, the spectrum resulting from (117) is

Ea=−1/2(n)
.
=

λa

2

(
−mλa

h̄2

)1/3(
n +

1
2

)−2/3
, n = 0, 1, 2, . . . . (120)
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For the dual partner potential Vb(ρ) = λbρ2/3 with λb > 0, the spectrum follows from
(119) as

Eb=2/3(n)
.
= 2λb

(
8h̄2

9mλb

)1/4(
n +

1
2

)1/2
, n = 0, 1, 2, . . . . (121)

3.4. Duality in SUSY Semiclassical Formulas

Let us begin this section with a brief comment on the semiclassical quantization
in supersymmetric quantum mechanics (SUSYQM). In SUSYQM, there are semiclassical
quantization formulas similar to WKB’s. A unified form of them for a radial motion is

∫ r′′

r′
dr
√

2m(E−Φ2(r)) = πh̄
(

ν +
1
2
+

∆
2

)
, ν = 0, 1, 2, . . . , (122)

defined for the partner Hamiltonians H±. In (122), E is the eigenvalue of H±, and Φ(r) is
the superpotential which is a solution of the Riccati equation in the form

Φ2(r)± h̄√
2m

dΦ(r)
dr

−V(r)−
h̄2(L2 − 1

4 )

2mr2 = 0 (123)

where V(r) is a potential function, r′ and r′′ denote the turning points defined by Φ2(r′) =
E = Φ2(r′) with r′ ≤ r′′, and L = `+ (D− 2)/2 with ` = 0, 1, 2, . . .. There, ∆ is the Witten
index whose values are ∆ = ±1 for good SUSY and ∆ = 0 for broken SUSY (SUSY stands for
supersymmetry. If H± are the partner Hamiltonians, then spec(H−) \ {0} = spec(H+) for
good SUSY, and spec(H−) = spec(H+) for broken SUSY). The quantization condition for
good SUSY was found by Comtet, Bandrauk, and Campell [59]. The broken SUSY case and
the general formulation of the form (123) were derived by Eckhardt [60] and independently
by Inomata and Junker [61]. It is known that both the Comtet–Bandrauk–Campbell (CBC)
formula for good SUSY and the Eckhardt–Inomata–Junker (EIJ) condition for broken
SUSY yield the exact energy spectra for many shape-invariant potentials. For detail, see
reference [62].

Now we wish to study the power-duality in SUSY semiclassical action on the left-hand
side of (122) only for the H− case. Let us write the action of system A as

Wa =
∫ r′′

r′
dr
√

2m(Ea −Φ2
a(r)), (124)

where Ea is the eigenvalue of H−. Suppose the superpotential in (124) has the form,

Φa(r) = ε
√

λara/2 − h̄√
2m

µa

r
, (125)

where ε = ±1 and a in the shoulder of r is an arbitrary real number. The potential term
appearing in the SUSY semiclassical action (124) is the squared-superpotential rather than
the usual potential V(r). For the superpotential (125), it is

Φ2
a(r) = λara + λa′ r

a′ +
h̄2µ2

a
2mr2 , (126)

where
a′ = (a− 2)/2, λa′ = −εh̄µa

√
2λa/m. (127)

Then we have

Φ2
a(r)−

h̄√
2m

dΦa(r)
dr

= λara +

(
1 +

a
4µa

)
λa′ r

a′ +
h̄2µa(µa − 1)

2mr2 . (128)
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Evidently, Φa(r) of (125) satisfies the Riccati Equation (123) with a two-term
power potential,

Va(r) = λara + (1 + a/(4µa))λa′r
a′ , (129)

provided that
a′ = (a− 2)/2, µa = La + 1/2. (130)

In (129), a is arbitrary but a′ is dependent on a as given by the first condition of (127).
If both a and a′ are assumed to be independent and arbitrary, the superpotential of the
form (125) cannot be a solution of the Riccati equation. The quantity on the left-hand side
of (128) is a SUSY effective potential, denoted by V(−)

a (r), that belongs to the Hamiltonian
H−. It is related to Va(r) of (129) by

V(−)
a (r) = Φ2

a(r)−
h̄√
2m

dΦa(r)
dr

= Va(r) +
h̄2(L2 − 1

4 )

2mr2 . (131)

The superpotential (125) works for the radial oscillator and the hydrogen atom in a
unified manner as it contains the two as special cases:

(1) Radial harmonic oscillator with a = 2, a′ = 0, λa = 1
2 mω2, λa′ = −h̄ωµa,

µa = La +
1
2 , ε = 1 :

Φa(r) =

√
m
2

ωr− h̄√
2m

µa

r
, (132)

V(−)
a (r) =

1
2

ω2r2 +
h̄2µa(µa − 1)

2mr2 − h̄ω(µa + 1/2), (133)

Ea −Φ2
a = (Ea + h̄ωµa)−

1
2

mω2r2 − h̄2µ2
a

2mr2 . (134)

The CBC quantization of (122) with ∆ = −1 yields

Ea = 2h̄ων, ν ∈ N0, (135)

which corresponds to the energy spectrum in quantum mechanics,

EQM
a (ν, `) = Ea + h̄ωµa = h̄ω(2ν + `+ D/2− 1/2), (136)

if µa = La + 1/2 = `+ D/2− 1/2 with ` ∈ N0.

(2) Hydrogen atom with a = 0, a′ = −1, ε = 1, λa = me4/(2h̄2µ2
a), λa′ = −e2,

µa = La +
1
2 :

Φa(r) =

√
2m

2h̄µa
e2 − h̄√

2m
µa

r
, (137)

V(−)
a (r) = − e2

r
+

h̄2µa(µa − 1)
2mr2 +

me4

2h̄2µ2
a

, (138)

Ea −Φ2
a =

(
Ea −

me4

2h̄2µ2
a

)
+

e2

r
− h̄2µ2

a
2mr2 . (139)

The CBC result is

Ea = EQM
a (ν, `) + me4/(2h̄2µ2

a) = −
me4

2h̄2(ν + `+ D/2− 1/2)2
+

me4

2h̄2(`+ D/2− 1/2)2
, (140)

where ν, ` ∈ N0.
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Next we change the radial variable r by

R : r = f (ρ) = Cρη , ⇔ ρ = f−1(r) = C−1/ηr1/η . (141)

and let the system described by the new variable be system B. Upon application of (141),
the action Wa of (124) transforms to

Wb =
∫ ρ′′

ρ′
dρ
√

2m f ′2(Ea −Φ2
a), (142)

where f ′ = d f (ρ)/dρ and

Ea −Φ2
a = Ea − λara − λa′ r

a′ − h̄2µ2
a

2mr2 , a′ = (a− 2)/2 . (143)

Since f ′2 = η2C2 η2η−2,

f ′2(Ea −Φ2
a) = η2C2Eaρ2η−2 − η2C2+aλaρaη+2η−2 − η2C2+a′λa′ρ

a′η+2η−2 − h̄2η2µ2
a

2mρ2 . (144)

If there is such a parameter η that f ′2(Ea −Φ2
a) takes the form,

Eb −Φ2
b = Eb − λbρb − λb′ρ

b′ −
h̄2µ2

b
2mρ2 , (145)

with
b′ = (b− 2)/2, (146)

then the action is form-invariant under (141) and reciprocal, that is, Wa = Wb and Wa =
X̂(a, b)Wb. In the X̂(a, b)-operation, we have temporarily let r = ξa and ρ = ξb. We have
also assumed that X̂(a, b) takes b′ = (b − 2)/2 to a′ = (a − 2)/2. Furthermore, (145)
together with (146) implies that the new superpotential Φb(ρ) has the same form as that of
Φa(r) in (125), namely,

Φb(r) = ε
√

λbrb/2 − h̄√
2m

µb
r

. (147)

If this were the case, we could establish the general power-duality of the action (124)
with the superpotential (125). Unfortunately there is no way to transform system A with
an arbitrary power a to system B satisfying the conditions (145) and (146). Therefore,
with the superpotential (125), we are unable to demonstrate in a general term the power-
dual symmetry in SUSY semiclassical quantization. To our knowledge, no qualified
superpotential supporting the general power-duality in SUSY semiclassical action has ever
been reported.

Although we have to give up pursuing the general power-duality, we may find
cases where duality occurs within the present scheme. For a dual symmetry, the form-
invariance of the superpotential Φ(r) is not an essential requirement, but it is necessary that
f ′2(Ea −Φ2

a(r)) is reducible to the form Eb −Φ2
b under the transformation r = f (ρ) = Cρη .

There are two options for η to reduce the left-hand side of (144) to the form of (145) under
different conditions than (146). Namely,

(i) η = 2/(a + 2) = 1/(a′ + 2), a, a′ 6= −2,

(ii) η = 2/(a′ + 2) = 4/(a + 2), a, a′ 6= −2.

Let D̂(b, a) be such an operator that D̂(b, a)Wa = Wb under the change of variable (141).
Since (141) with option (i) or (ii) is invertible, the operator has an inverse. Hence Wa =
D̂−1(b, a)Wb in addition to Wa = Wb. Although the strict reciprocity is broken, we can talk
about the power-dual symmetry in this relaxed sense.
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Option (i): Transformation r = Cρ2/(a+2) in (141) brings

Eb −Φ2
b = Eb − λbρb − λb′ρ

−1 −
h̄2µ2

b
2mρ2 . (148)

which contains a Coulomb-like potential in addition to a power potential for any value of a
other than a = −2 (a′ = −2). Option (i) must be associated with the substitutions,

Eb = −η2C2+aλa, λb = −η2C2Ea, λb′ = η2C2+a′λa′ , µb = ηµa, (149)

and
η =

2
a + 2

=
1

a′ + 2
, b = − 2a

a + 2
, b′ = −1. (150)

The second relation in (149) may be used to determine the constant C of the
transformation (141).

Option (ii): Transformation r = Cρ2/(a′+2) yields

Eb −Φ2
b = Eb − λbρ2 − λb′ρ

b′ −
h̄2µ2

b
2mρ2 , (151)

where a Hooke potential appears in addition to a power potential for any a 6= −2. Option (ii)
comes with

Eb = −η2C2+a′λa′ , λb′ = −η2C2Ea, λb = η2C2+aλa, µb = ηµa, (152)

and

η =
2

a′ + 2
=

4
a + 2

, b = 2, b′ = − 2a′

a′ + 2
= −2(a− 2)

a + 2
. (153)

Again, the second relation of (152) is able to fix the constant C.

Example 1. The Coulomb–Hooke duality:
Option (i) is appropriate for the Hooke to Coulomb transition with a = 2, a′ = 0, b = −1 and
b′ = −1. By r = Cρ1/2,

Ea −Φ2
a = (Ea + h̄ωµa)−

1
2

mω2r2 − h̄2µ2
a

2mr2 . (154)

transforms to

Eb −Φ2
b =

(
Eb −

me4

2h̄2µ2
b

)
+

e2

ρ
−

h̄2µ2
b

2mρ2 , (155)

where

Eb −
me4

2h̄2µ2
b

= −1
8

mω2C4, C2 =
4e2

Ea + h̄ωµa
, µb =

1
2

µa. (156)

Combining the first and the second relation of (156) gives

Eb = − 2me4

h̄2(Ea/h̄ω + µa)2
+

me4

2h̄2µ2
b

. (157)

which can be converted to the QM spectrum for the hydrogen atom

EQM
b (ν, `) = Eb −

me4

2h̄2µ2
b

= − me4

2h̄2(ν + `+ D/2− 1/2)2
, (158)

by substitution of Ea = 2h̄ων and µa = 2µb = 2(`+ D/2− 1/2).
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Option (ii) is for the Coulomb to Hooke transition with a = 0, a′ = −1, b = 2 and b′ = 2.
By ρ = C−1r2, the Equation (155) for the hydrogen atom transforms back to the Equation (154) for
the radial oscillator. The constant C−1 appearing in the variable transformation is the inverse of C
obtainable from the second relation of (156). Obviously, for the Coulomb–Hooke pair, option (ii)
is the inverse of option (i). This confirms that the Coulomb–Hooke dual symmetry is valid in the
SUSY semiclassical action.

Example 2. A confinement problem:
Option (i) and option (ii) may be used to study a confinement potential for which the superpo-

tential (125) is of the form,

Φa(r) = ε
√

λar1/2 − h̄√
2m

µa

r
, (ε = 1, λa > 0). (159)

Correspondingly, we have

Ea −Φ2
a(r) = Ea − λar + εh̄µa

√
2λa

m
r−1/2 − h̄2µ2

a
2mr2 . (160)

Option (i) with a = 1 (a′ = −1/2) gives η = 2/3. By r = Cρ2/3, (159) transforms to

Eb −Φ2
b(ρ) = Eb − λbρ−2/3 − λb′ρ

−1 −
h̄2µ2

b
2mr2 , (161)

where

Eb = −4
9

C3λa, λb = −4
9

C2Ea, λb′ = −ε
4
9

h̄µbC3/2

√
2λa

m
, µb =

2
3

µa. (162)

The result (161) is not particularly interesting because it is not integrable. However, it is
interesting that the limit λb → 0 implies Ea → 0. Hence the states in the vicinity of the zero-energy
state of system A may be approximated by a set of states of the hydrogen atom.

Option (ii) with a′ = −1/2 implies η = 4/3. The transformation r = Cρ4/3 reduces
Ea −Φ2

a(r) of (160) to the form,

Eb −Φ2
b = Eb − λbρ2/3 − λb′ρ

2 −
µ2

b h̄2

2mρ2 , (163)

where

Eb = ε
16
9

h̄µaC3/2

√
2λa

m
, λb = −16

9
C2Ea, λb′ =

16
9

C3λa, µb =
4
3

µa. (164)

In the limit λb → 0, system B becomes a radial harmonic oscillator with the coupling constant,
λb′ > 0. Thus, the states of system A in the vicinity of Ea = 0 may be approximated by those of
such a radial harmonic oscillator. The confinement problem will be revisited in Section 2.4.

Remark 18. The duality relation between system A and system B is reciprocal in the sense that the
two systems are bijectively mapped to each other. Hence, if system A is dual to system B then system
B is dual to system A. For instance, the Newton–Hooke duality in classical mechanics is reciprocal.
The Newton–Hooke duality is the Hooke–Newton duality. The map from the Newton system to the
Hooke system is bijective. By contrast, it has been known [63–65] that all the states of the hydrogen
atom in three dimensions correspond to half the states of the isotopic harmonic oscillator in four
dimensions. The map from the three dimensional Coulomb system (of `cou = 1, 2, 3, . . .) to the
four dimensional oscillator (of `osc = 2, 4, 6, ...) is injective. Hence all the states of the oscillator
as a Hooke system (with `osc = 0, 1, 2, ...) cannot be mapped back to the Coulomb system (with
`cou = 0, 1, 2, ...). The relation between the Coulomb system and the Hooke system at the level of
the quantum structures is not reciprocal [64,66].
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Remark 19. The Langer replacement,
√
`(`+ D− 2)→ `+ (D− 2)/2, is an ad hoc procedure

introduced so as to be consistent with the quantum mechanical results [67]. In the literature [36],
it has been suggested to regard the angular momentum L appearing in the Schrödinger equa-
tion as a continuous parameter since an arbitrary inverse square potential can be added to make
the quantized angular momentum continuous. This reasoning, however, would make Langer’s
replacement nonsensical.

Remark 20. Recall that η = −b/a for a dual pair (a, b) and that `b = η`a and Db − 2 =
η(Da − 2). Although η can be any positive real number, in the following, we list a few examples of
relevant numbers and relations for integral values of η:

η (a, b) `a = 0, 1, 2, ... `b = 0, 1, 2, ... Da = 2, 3, ...
ine2 (−1, 2) `b = 0, 2, 4, ... `a = 0, 1/2, 1, ... Db = 2Da − 2

3 (−4/3, 4) `b = 0, 3, 6, ... `a = 0, 1/3, 2/3, ... Db = 3Da − 4
4 (−3/2, 6) `b = 0, 4, 8, ... `a = 0, 1/4, 1/2, ... Db = 4Da − 6

For example, from the line of η = 2, we see that the states of the Coulomb system in Da = 3
correspond to half the states of the Hooke system in Db = 4. System A and system B cannot be
reciprocal as long as the equality `b = η`a is assumed.

Remark 21. The time transformation T has no role to play because the semiclassical action does
not explicitly depend on time as a solution of the stationary Hamilton–Jacobi equation.

Remark 22. The condition L2 = 0 assumed for the example in (117), if the Langer replacement (86)
is employed, implies ` = 0, which occurs only in two dimensions.

Remark 23. The spectrum (120) for a = −1/2 is similar to the approximate result obtained from
an exact solution of Schrödinger’s equation in one dimension [68].

Remark 24. The action on either side of (96) is not always integrable in closed form. Suppose
the power a of the potential Va be a non-zero integer. Then there are a few integrable examples.
If a = 2,−1 or −2 then the action of system A is reducible to an elementary function, and if
a = 6, 4, 1,−3,−4 or −6 then it can be expressed in terms of an elliptic function. Therefore,
(2,−1), (−3,−6), (−4,−4), (1,−2/3), (4,−1/3) and (6,−3/2) are integrable dual pairs
(a, b) when a is an integer other than 0 and −2 though b is not necessarily an integer. To a = −2,
there corresponds the self-dual pair (−2,−2) with η = 1.

4. Power-Duality in Quantum Mechanics

The main object to be studied for the power-duality in quantum mechanics is the
energy eigenequation of the form Ĥ|ψ〉 = E|ψ〉 where Ĥ is the Hamiltonian operator for
a system in a power-law potential. Since one of the key operations in the power-duality
transformation is the change of variable r = Cρη , we have to deal with the eigenequation in
the radial coordinate representation, that is, the radial Schrödinger equation. In the context
of the duality argument, the radial Schrödinger equation with power-law potentials have
been exhaustively explored in the literature [36,39,40]. There is little room available to add
something new. The aim of this section is, however, to present from the symmetry point of
view the power-duality of the radial Schrödinger equation in parallel to the classical and
semiclassical approaches. The power-duality in the path integral formulation of quantum
mechanics is important but is not included in the present paper.
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4.1. The Action for the Radial Schrödinger Equation

The stationary Schrödinger equation for a D dimensional system in a central-force
potential V(r) can be separated in polar coordinates into a radial equation and an angular
part. The radial Schrödinger equation has the form,{

− h̄2

2m

(
d2

dr2 +
D− 1

r
d
dr

)
+

h̄2`(`+ D− 2)
2mr2 + V(r)− E

}
R`(r) = 0. (165)

In the above equation, the angular contribution appears in the third term, which stems
from L̂2Ym

` (r/r) = `(`+ D− 2)Ym
` (r/r) where L̂ is the angular momentum operator and

Ym
` (r/r) is the hyperspherical harmonics. Substituting R`(r) = r(1−D)/2ψ`(r) reduces it to

a simplified differential equation on the positive half-line,{
− h̄2

2m
d2

dr2 +
h̄2(L2 − 1/4)

2mr2 + V(r)− E

}
ψ`(r) = 0, (166)

where
L = `+ (D− 2)/2, ` = 0, 1, 2, .... (167)

For the sake of simplicity, we shall call Equation (166) the radial equation and ψ`(r)
the wave function. The angular quantity L in (167) is precisely the same as Langer’s
choice (86) in the semiclassical action (see Remark 25). Under operation L : La = Lb/η,
the same problem that we have encountered in the semiclassical case should recur with the
equality (167). Therefore, again, we adopt the view that the power-duality is basically a
classical notion and follow the steps taken previously to circumvent the problem. Namely,
for the duality argument, we treat L and E in (166) as continuous parameters. Only after
the duality is established, we replace the parameters by their quantized counterparts. We
consider that operation L applies only to the angular parameter and that La = Lb/η does
not imply `a + D/2− 1 = (`b + D/2− 1)/η. The last equality breaks the reciprocity that
`a ∈ N0 and `b ∈ N0. The relation (167) holds true for each quantum system as an internal
structure being independent of duality operations.

Suppose that system A has a two-term power potential Va(r) = λara + λa′ra′ where
a 6= a′. Defining the modified potential,

Ua(r) = λara + λa′r
a′ − Ea, (168)

we write the radial Equation (166) as{
d2

dr2 −
L2

a − 1/4
r2 − 2m

h̄2 Ua(r)

}
ψa(r) = 0. (169)

Since we ignore the relation (167) for a while, we have dropped the subscript ` of the
state function ψa(r). The radial Equation (169) for system A is derivable from the following
action integral,

Wa =
∫

σa
drLa

(
dψ∗a (r)

dr , dψa(r)
dr ; ψ∗a (r), ψa(r)

)
, (170)

having a fixed range σa 3 r and the Lagrangian of the form,

La =
dψ∗a (r)

dr
dψa(r)

dr
+

(
L2

a − 1/4
r2 +

2m
h̄2 Ua(r)

)
ψ∗a (r)ψa(r)

−1
2

d
dr

(
ψ∗a (r)

dψa(r)
dr

+ ψa(r)
dψ∗a (r)

dr

)
, (171)

where ψ∗a (r) is the complex conjugate of ψa(r). Here we assume that the wave function
ψa(r) and its derivative are finite over the integration range σa. The last term of (171)
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is completely integrable, so that it contributes to the action as an unimportant additive
constant. Use of the equality,

dψ∗a (r)
dr

dψa(r)
dr

= −ψ∗a (r)
d2ψa(r)

dr2 +
d
dr

(
ψ∗a (r)

dψa(r)
dr

)
, (172)

enables us to put the Lagrangian (171) into an alternative form,

L′a = −ψ∗a (r)

{
d2ψa(r)

dr2 −
(

L2
a − 1/4

r2 +
2m
h̄2 Ua(r)

)
ψa(r)

}

+
1
2

d
dr

(
ψ∗a (r)

dψa(r)
dr

− ψa(r)
dψ∗a (r)

dr

)
. (173)

The Euler–Lagrange equation, resulted from δW/δψ∗a = 0,

d
dr

 ∂La

∂
(

dψ∗a
dr

)
− ∂La

∂ψ∗a
= 0, (174)

readily yields, with either of La or L′a, the radial Equation (169). Since La is symmetric with
respect to ψ(r) and ψ∗(r), the complex conjugate of (169) can be derived from it. However,
L′a is inappropriate for deriving the radial equation for ψ∗a (r). For now we put L′a aside
even though there is no need for complex conjugation of the radial equation. For studying
the power-duality in quantum mechanics, we focus our attention on the action Wa of (170)
with the Lagrangian (171) rather than the radial Equation (169).

The symmetry operations that we consider for the power-duality in quantum mechan-
ics are as follows

R : r = f (ρ) = Cρη (C > 0), (175)

L : Lb = ηLa, (176)

E : Eb = −η2Ca+2λa, λb = −η2C2Ea, (177)

C : η = 2/(a + 2) = (b + 2)/2, (a 6= −2, b 6= −2), (178)

B : λb′ = λa′(2/(a + 2))2Ca′+2, b′ = 2(a′ − a)/(a + 2), (179)

F : ψa(r) = h(ρ)ψb(ρ). (180)

In (180), h(ρ) is a continuous positive real function of ρ.
As dr goes to dρ, the integration range of (170) changes from σa 3 r to σb 3 ρ.

Under (175) and (180), the first term of the Lagrangian (171) transforms as

dψ∗a (r)
dr

dψa(r)
dr

=
h2

f ′2

{
dψ∗b (ρ)

dρ

dψb(ρ)

dρ
−
[

d
dρ

(
h′

h

)
−
(

h′

h

)2
]

ψ∗b ψb

}
+

h2

f ′2
d

dρ

(
h′

h
ψ∗b ψb

)
. (181)

By choice, we let h2(ρ) = f ′(ρ). Then the second term on the right-hand side of (181)
reduces to the Schwarz derivative

S [ f ] =
f ′′′

f ′
− 3

2

(
f ′′

f ′

)2

(182)

divided by 2 f ′. The third term of (181) can be decomposed to two terms by using
the relation,

d
dr

(ψ∗a (r)ψa(r)) =
h2

f ′
d

dρ
(ψ∗b (ρ)ψb(ρ)) +

2hh′

f ′
ψ∗b ψb. (183)

Therefore,
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dψ∗a (r)
dr

dψa(r)
dr

− 1
2

d
dr

[
d
dr

(ψ∗a (r)ψa(r))
]
=

1
f ′

{
dψ∗b (ρ)

dρ

dψb(ρ)

dρ
− 1

2
S [ f ]ψ∗b ψb

}
− 1

2 f ′
d

dρ

[
d

dρ
(ψ∗b (ρ)ψb(ρ))

]
. (184)

The angular term of the Lagrangian (171) transforms as

L2
a − 1/4

r2 ψ∗a (r)ψa(r) =
1
f ′

g(L2
a − 1/4)

f 2 ψ∗b (ρ)ψb(ρ) (185)

where g denotes f ′2 as in the classical and semiclassical cases. The energy-potential term
of (171) changes as

2m
h̄2 Ua(r)ψ∗a (r)ψa(r) =

2m
h̄2 gUa( f (ρ))ψ∗b (ρ)ψb(ρ). (186)

Moreover, we let f (ρ) = Cρη as defined by (175). Then S [ f ] = −(η2 − 1)/2, g =
C2η2ρ2η−2 and g/ f 2 = C2η2ρ2. Hence, we have

g(L2
a − 1/4)/ f 2 − (1/2)S [ f ] = (η2L2

a − 1/4)/ρ2, (187)

which results in (L2
b − 1/4)/ρ2 under L : Lb = ηLa. Changing the variable by (175) and

making the energy-coupling exchange by (177) result in

g(ρ)Ua(Cρη) = −Ebρaη+2η−2 + Ca′+2λb′ρ
a′η+2η−2 + λbρ2η−2, (188)

which is written as
Ub(ρ) = λbρb + λb′ρ

b′ − Eb (189)

with the help of (178) and (179). Namely, Ua(r) goes to Ub(ρ) by Ub(ρ) = g(ρ)Ua(r).
Consequently, we obtain Wa = Wb or, emphasizing the parameter dependence of the
Lagrangian, ∫

σa
drLa(λa, La, Ua) =

∫
σb

dρLb(λb, Lb, Ub), (190)

where

Lb =
dψ∗b (ρ)

dρ

dψb(ρ)

dρ
+

(
L2

b − 1/4
ρ2 +

2m
h̄2 Ub(ρ)

)
ψ∗b (ρ)ψb(ρ)−

1
2

d
dρ

(
ψ∗b (ρ)

dψb(ρ)

dρ
+ ψb(ρ)

dψ∗b (ρ)

dρ

)
. (191)

The last term of (191) is completely integrable and contributes to Wb as an unimportant
constant. We identify Lb of (191) with the Lagrangian of system B, use of which leads to
the radial equation for system B,{

d2

dρ2 −
L2

b − 1/4
ρ2 − 2m

h̄2 Ub(ρ)

}
ψb(ρ) = 0. (192)

Apparently the form of the Lagrangian is preserved under the set of power-duality
operations, {R,L,C,E,B,F}. Furthermore, with the Lagrangians La of (171) and Lb
of (191), the equality (190) implies that the action W of (170) is invariant under the same set
of operations. By (190) the complex conjugate of the radial Schrödinger Equation (166) is as
well assured to be form-invariant.

To complete the procedure, as we have done for the semiclassical case, we must
replace in an ad hoc manner each of the angular momentum parameters by the quantized
form `+ (D− 2)/2 with ` = 0, 1, 2, . . .. Using the dot-equality introduced in Section 3.1,
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we write the form-invariance of the action amended by the angular quantization with
`a, `b ∈ N0,∫

σa
drLa(λa, `a + (D− 2)/2, Ua)

.
=
∫

σb

dρLb(λb, `b + (D− 2)/2, Ub), (193)

which warrants that the radial Schrödinger Equation (166) with the angular quantization
(167) is form-invariant under the set of duality operations, {R,L,C,E,B,F}. In this mod-
ified sense we claim that two quantum systems with Va(r) = λara + λa′ra′ and with
Vb(ρ) = λbρb + λb′ρ

b′ are in power-duality provided that (a + 2)(b + 2) = 4.

4.2. Energy Formulas, Wave Functions and Green Functions

In arriving at the invariance relation (190), we have seen the equality drLa = dρLb
under the duality operations. The relation (190) is valid with the alternative Lagrangian L′
of (173), suggesting drL′a = dρL′b. The last equality in turn leads to{

d2

dr2 −
L2

a − 1/4
r2 − 2m

h̄2 Ua(r)

}
ψa(r) =

1
h3

{
d2

dρ2 −
L2

b − 1/4
ρ2 − 2m

h̄2 Ub(ρ)

}
1
h

ψa( f (ρ)) (194)

where f ′ = h2 = Cηρη−1. Let Ha(r) be the Hamiltonian for system A in the r-representation,
that is,

Ha(r) = −
h̄2

2m
d2

dr2 +
h̄2(L2

a − 1/4)
2mr2 + λara + λa′r

a′ . (195)

Similarly, we define Hb(ρ) for system B. By using the exchange symbol X(b, a), we
have Hb(ξb)− Eb = X(b, a){Ha(ξa)− Ea}where ξa = r and ξb = ρ. Then the equality (194)
may be put into the form,

{Ha(r)− Ea}ψa(r) =
1
h3 {Hb(ρ)− Eb}ψb(ρ), (196)

when ψa(r) = h(ρ)ψb(ρ) with r = f (ρ) and f ′ = h2. Evidently, the radial Equation (169),
expressed as {Ha(r)− Ea}ψa(r) = 0, implies {Hb(ρ)− Eb}ψb(ρ) = 0.

4.2.1. Energy Formulas

To find the energy spectrum of system A, we usually solve the radial Equation
of (169) by specifying boundary conditions on ψa(r). Suppose we found a solution ψa(r; ν)
compatible with the given boundary conditions when the energy parameter took a spe-
cific value Ea(ν) characterized by a real number ν. This solution may be seen as an
eigenfunction satisfying

Ha(r)ψa(r; ν) = Ea(ν)ψa(r; ν). (197)

Since operation F demands ψa(r; ν) = ψa( f (ρ); ν) = h(ρ)ψb(ρ; ν), the Equation (197)
should imply via the equality (196)

Hb(ρ)ψb(ρ; ν)〉 = Eb(ν)ψb(ρ; ν). (198)

This shows that the number ν is a dual invariant being common to Ea(ν) and Eb(ν). As
has been repeatedly mentioned earlier, the duality operations cannot interfere the internal
structure of each quantum system. In general, there are a number of solutions for the given
boundary conditions. Thus, ν may be representing a set of numbers. Then we understand
that the value of ν is preserved by F. For a while, however, we treat ν as another parameter
and express the energy Ea as a function of λa, La and ν,

Ea = Ea(λa, La, ν). (199)

This corresponds to the energy function Ea(λa, La, N) in the semiclassical case. We
convert this energy function to the energy spectrum of system A by replacing the param-
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eters La and ν to their quantum counterparts. If we restrict our interest to bound state
solutions, the parameter ν is to be replaced by a set of discrete numbers ν = 0, 1, 2, . . ..
Furthermore, putting the angular parameter La into the Langer form (167), we obtain the
discrete energy spectrum of system A,

Ea(`a, ν) = Ea(λa, `a + D/2− 1, ν), (200)

where `a ∈ N0 and ν ∈ N0.
Since the energy functions Ea(λa, La, ν) and Eb(λb, Lb, ν) are related by the classical

energy formulas, (60) and (64)–(65), the corresponding energy spectra Ea(`a, ν) and Eb(`b, ν)
can be related by the same formulas provided the angular parameter and the quantum
parameter are properly expressed in terms of quantum numbers. Knowing the energy
spectrum of the form Ea(`a, ν) = E(λa, La, ν) for system A, we can determine the energy
spectrum Eb of system B by

Eb(`b, ν) = −η2Ca+2E−1(−λb/(η2C2), Lb/η, ν), (201)

where Lb = `b + D/2− 1 with `b ∈ N0. For the bound state spectrum, ν = 0, 1, 2, . . ..
If the energy spectrum of system A is given in the form

Ea(`a, ν) = ±1
4
(a + 2)2|λa|2/(a+2)

[
F
(√

2/(a + 2) (`a + D/2− 1), ν
)]1/a

(202)

then the energy spectrum of system B is given by

Eb(`b, ν) = ±1
4
(b + 2)2|λb|2/(b+2)

[
F
(√

2/(b + 2) (`b + D/2− 1), ν
)]1/b

. (203)

These relations are the same as the semiclassical relations (104 and (105) where the
signs are determined by the signs of the coupling constants, sgn Ea = −sgn λb and sgn Eb =
−sgn λa.

4.2.2. Wave Functions

The wave function transforms as ψa(r; La, ν) = h(ρ)ψb(ρ; Lb, ν). Therefore, if an
eigenfunction of system A is given, then the corresponding eigenfunction of system B can
be determined by

ψb(ρ; Lb, ν) =
1

h(ρ)
ψa(Cρη ; Lb/η, ν), (204)

where Lb = `b + D/2 − 1 with `b ∈ N0. Both ψa(r) and ψb(ρ) as eigenfunctions are
supposed to be square-integrable, and each of them must be normalizable to unity. How-
ever, even if ψa(r) is normalized to unity, it is unlikely that ψb(ρ) constructed by (204) is
normalized to unity. This is because∫ ∞

0
dr |ψa(r)|2 =

∫ ∞

0
dρ g(ρ) |ψb(ρ)|2 = 1 (205)

where g(ρ) = [ f ′(ρ)]2 = [h(ρ)]4 = C2η2ρ2(η−1). In this regard, if system A and system B
are power-dual to each other, the formula (204) determines ψb(ρ) of system B out of ψa(r)
of system A except for the normalization.

4.2.3. Green Functions

The Green function G(r, r′; z) = 〈r|Ĝ(z)|r′〉 is the r-representation of the resolvent
Ĝ(z) = (z− Ĥ)−1 where z ∈ C\spec Ĥ and Ĥ is the Hamiltonian operator of the system
in question. Let E(ν) and |ψ(ν)〉 be the eigenvalue of Ĥ and the corresponding eigenstate,
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respectively, so that Ĥ|ψ(ν)〉 = E(ν)|ψ(ν)〉. For simplicity, we consider the case where
ν ∈ N0. Assume the eigenstates are orthonormalized and form a complete set, that is,

〈ψ(ν)|ψ(ν′)〉 = δν,ν′ , ∑
ν∈N0

|ψ(ν)〉〈ψ(ν)| = 1. (206)

From the completeness condition in (206), it is obvious that

Ĝ(z) = ∑
ν∈N0

|ψ(ν)〉〈ψ(ν)|
z− E(ν)

. (207)

Hence, the Green function can be written as

G(r, r′; z) = ∑
ν∈N0

ψ∗(r′; ν)ψ(r; ν)

z− E(ν)
. (208)

Use of Cauchy’s integral formula leads us to the expression,

ψ∗(r, ν)ψ(r′; ν) =
1

2πi

∮
Cν

dz G(r, r′; z), (209)

where the closed contour Cν counterclockwise encloses only the simple pole z = E(ν) for a
fixed value of ν. Note that we will deal only with radial, hence one-dimensional, problems
where no degeneracies can occur. Multiplying both sides of (209) by two factors v(r) and
v(r′) yields

ψ̃∗(r, ν)ψ̃(r′; ν) =
1

2πi

∮
Cν

dz G̃(r, r′; z), (210)

where ψ̃(r; ν) = v(r)ψ(r; ν) and G̃(r, r′; z) = v(r)v(r′)G(r, r′; z).
For instance, the Green function G(r, r′; E) for the radial Schrödinger Equation (165) is

related to the Green function G(r, r′; E) for the simplified radial Equation (166) by

G(r, r′; E) = (r r′)(1−D)/2G(r, r′; E) (211)

as the wave functions of (165) and (166) are connected by R`(r) = r(1−D)/2ψ`(r).
Suppose the Green functions of system A and system B are given, respectively, by

ψ∗a (r; ν)ψa(r′; ν) =
1

2πi

∮
Cν

dz Ga(r, r′; z), (212)

and
ψ∗b (ρ; ν)ψb(ρ

′; ν) =
1

2πi

∮
Cν

dz Gb(ρ, ρ′; z). (213)

By comparing these two expressions, we see that if ψa(r; ν) = h(ρ)ψb(ρ; ν) then

Ga(r, r′; Ea(ν)) = h(ρ)h(ρ′)Gb(ρ, ρ′; Eb(ν)). (214)

The above result is obtained without considering the detail of the Hamiltonian. In the
following, an alternative account is provided for deriving the same result by using the
Hamiltonian explicitly. Let Ĥa be the Hamiltonian operator of system A such that 〈r|Ĥa −
Ea|r′〉 = (Ha(r)− Ea)〈r|r′〉. Then it is obvious that

{Ha(r)− Ea}Ga(r, r′; Ea) = −δ(r− r′). (215)

According to (194), Equation (215) implies

{Hb(ρ)− Eb}
1
h

Ga( f (ρ), f (ρ′); Ea) = −h3(ρ)δ( f (ρ)− f (ρ′)). (216)
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From the relations,∫
dr |r〉〈r| =

∫
dρ f ′(ρ)| f (ρ)〉〈 f (ρ′)| =

∫
dρ |ρ〉〈ρ′| = 1, (217)

there follows |ρ〉 = h(ρ)| f (ρ)〉. Hence we have, 〈ρ|ρ′〉 = h(ρ)h(ρ′)〈 f (ρ)| f (ρ′)〉, that is,
δ(r− r′) = δ( f (ρ)− f (ρ′)) = [h(ρ)h(ρ′)]−1δ(ρ− ρ′). Thus, we arrive at the radial equation
satisfied by the Green function of system B,

{Hb(ρ)− Eb}Gb(ρ, ρ′; Eb) = −δ(ρ− ρ′), (218)

if the Green function transforms as

Ga(r, r0; Ea, La) = h(ρ)h(ρ′)Gb(ρ, ρ′; Eb, Lb). (219)

Substitution of La = `a + D/2− 1 with `a ∈ N0 and Lb = `b + D/2− 1 with `b ∈ N0
into (219) results in

Ga(r, r′; Ea, `a + D/2− 1) .
= h(ρ)h(ρ0)Gb(ρ, ρ′; Eb, `b + D/2− 1), (220)

which is not an equality as `a ∈ N0 and `b ∈ N0 are assumed. Insofar as system B is
power-dual to system A, the Green function of system B can be expressed in terms of the
Green function of system A as

Gb(ρ, ρ′; Eb, `b + D/2− 1, λb, λb′) = [( f ′(ρ) f ′(ρ′)]−1/2Ga
(

f (ρ), f (ρ′); Ea, (`b + D/2− 1)/η, λa, λa′
)

(221)

where f (ρ) = Cρη and the parameters Ea, λa and λa′ are given via the relations (177) and
(179) in terms of Eb, λb and λb′ . This relation is an equality even though (220) is a dot
equality. An expression similar to but slightly different from (221) has been obtained by
Johnson [36] in much the same way.

4.3. The Coulomb–Hooke Dual Pair

Again, we take up the Coulomb–Hooke dual pair to test the transformation properties
shown in Section 3.1. Let system A be the hydrogen atom with λa = −e2 < 0 and system
B a radial oscillator with λb = 1

2 mω2 > 0. So (a, b) = (−1, 2) and η = −b/a = 2. Both
systems are assumed to be in D dimensional space. The Coulomb system has the scattering
states (Ea > 0) as well as the bound states (Ea < 0). However, the exchange relations (177)
prohibits the process (Ea > 0, λa < 0)⇒ (Eb > 0, λb > 0). The Coulomb–Hooke duality
occurs only when the Coulomb system is in bound states.

The energy relations: Suppose we know that the energy spectrum of system A has
the form,

Ea(λa, La, ν) = − me4

2h̄2(ν + La + 1/2)2
, (222)

where λa = −e2, ν ∈ N0 and La = `b + D/2− 1 with `a ∈ N0. Then the formula (202)
leads to

F
(√

2La, ν
)
=

h̄2

2m

[
ν + (

√
2La)/

√
2 + 1/2

]2
. (223)

Careful use of this result in the formula (203) enables us to determine the energy
spectrum of system B. Namely,

Eb(λb, Lb, ν) = 4
√

λb

√
h̄2

2m

[
ν + (Lb/

√
2)/
√

2 + 1/2
]1/2

. (224)
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Substituting λb = mω2/2 and Lb = `b + D/2− 1 in (224), we reach the standard
expression for the energy spectrum of the isotropic harmonic oscillator in D-dimensional
space,

Eb(`b, ν) = h̄ω(2ν + `b + D/2) (`b, ν ∈ N0). (225)

Wave functions: The radial Equation (166) for the Coulomb potential V(r) = −e2/r
can easily be converted to the Whittaker Equation [69]{

d2

dx2 −
L2 − 1/4

x2 +
k
x
− 1

4

}
w(x) = 0, (226)

where L = `+ D/2− 1 (` ∈ N0). In the conversion, we have let x = 2κr, k = me2/(h̄2κ) =
ka, h̄κ =

√
−2mE, L = La and w(x) = ψa(x/(2κ)). This set of replacements is indeed a

duality map for the self-dual pair (a, a) = (−1,−1). The Whittaker functions, Mk,L(x) and
Wk,L(x), are two linearly independent solutions of the Whittaker Equation (226). For |x|
small, Mk,L(x) ∼ xL+ 1/2 and Wk,L(x) ∼ − Γ(2L)

Γ(L−k+1/2) x−L+ 1/2. If −π/2 < arg x < 3π/2
and |x| is large, then

Mk,L(x) ∼ Γ(2L + 1)

{
eiπ(L−k+ 1

2 )e−x/2xk

Γ(L + k + 1
2 )

+
ex/2x−k

Γ(L− k + 1
2 )

}
, (227)

and, if x /∈ R− and |x| is large,

Wk,L(x) ∼ e−x/2xk[1 + O(x−1)]. (228)

The first solution Mk,L(x) vanishes at x = 0 as L > −1/2 but diverges as |x| → ∞
unless k− L− 1

2 ∈ N0, whereas the second solution Wk,L(x) diverges at x = 0 but converges
to zero as |x| → ∞.

The solution for the Coulomb problem is given in terms of the Whittaker function,

ψa(r; La, ν) = Na(La) Mν+La+
1
2 , La

(2κr), (229)

where ka is replaced by ν + La + 1/2. For the bound state solution which vanishes at
infinity, we have to let ν = 0, 1, 2, . . .. In this case, ka = ν + La + 1/2 implies the discrete
spectrum Ea(λa, La, ν) in (222).

Since the Whittaker function Mk,µ(z) is related to the Laguerre function L2µ
ν (z) as

Mµ+ν+ 1
2 , µ(z) =

Γ(2µ + 1)Γ(ν + 1)
Γ(2µ + ν + 1)

e−z/2zµ+ 1
2 L2µ

ν (z), (230)

the eigenfunction may also be expressed in terms of the Laguerre function as

ψa(r; La, ν) = Na(La)
Γ(2La + 1)Γ(ν + 1)

Γ(ν + 2La + 1)
e−κr(2κr)La+

1
2 L2La

ν (2κr), (231)

which is normalized to unity with

Na(La) =
h̄κ/
√

me2

Γ(2La + 1)

√
Γ(ν + 2La + 1)

Γ(ν + 1)
. (232)

The radial equation for the Hooke system with Vb(ρ) =
1
2 mω2ρ2, too, can be reduced

to the Whittaker equation by letting

y = (mω/h̄)ρ2, L = Lb/2, k = Eb/(2h̄ω) = kb, w(y) = y1/4ψb(y), (233)
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which form a duality map for (b, c) = (2,−1). Here Lb = `b + D/2− 1 with `b ∈ N0. The
bound state solution for the radial oscillator is given by

ψb(ρ; Lb, ν) = Nb(Lb)
1
√

ρ
Mν+ 1

2 Lb+
1
2 , 1

2 Lb

(mω

h̄
ρ2
)

. (234)

The choice kb = (2ν + Lb + 1)/2 with ν ∈ N0 makes the solution (234) the eigen-
function belonging to the energy Eb(ν, `b) in (224). In terms of the Laguerre function,
it reads

ψb(ρ; Lb, ν) = Nb(Lb)
Γ(Lb + 1)Γ(ν + 1)

Γ(ν + Lb + 1)
e−(mω/2h̄)ρ2

(mω

h̄
ρ2
)(Lb+

1
2 )/2

LLb
ν

(mω

h̄
ρ2
)

, (235)

which is normalized to unity with

Nb(Lb) =
(4mω/h̄)1/4

Γ(Lb + 1)

√
Γ(ν + Lb + 1)

Γ(ν + 1)
. (236)

The process of going from (229) to (234) is rather straightforward. First we notice
that η = −b/a = 2 for the Coulomb–Hooke pair (a, b) = (−1, 2). Then we use the
relation λb = −η2C2Ea, λb = mω2/2 and h̄κ =

√
−2mEa to get C = mω/(2h̄κ). Hence

operation R : r = Cρη with η = 2 yields 2κr = (mω/h̄)ρ2. In addition, we apply
L : La = Lb/2. Consequently, we have the right hand side of (204) for a = −1, η = 2 and
h(ρ) =

√
mω/(h̄κ)ρ1/2 in the form,

√
h̄κ/mω

1
√

ρ
ψa((mω/2h̄κ)ρ2; Lb/2, ν) = Ñb(Lb)

1
√

ρ
Mν+ 1

2 Lb+
1
2 , 1

2 Lb

(mω

h̄
ρ2
)

, (237)

which coincides with the eigenfunction for the radial oscillator in (234) except for the
normalization factor. In (237),

Ñb(Lb) =
√

h̄κ/mωNa(Lb/2), (238)

which differs from Nb(Lb) of (236) due to the difference of factors,√
h̄2κ3/(me2)(mω/h̄)−1/2 6=

√
2(mω/h̄)1/4. The wave function of the radial oscillator can

be determined by the radial wave function of the hydrogen atom except for its normalization.
The Green functions: The Green function of interest, Ga(r, r′; E, L), obeys the radial

equation, {
d2

dr2 −
L2 − 1/4

r2 − 2m
h̄2 V(r) +

2m
h̄2 E

}
Ga(r, r′; E, L) = −2m

h̄2 δ(r− r′), (239)

where Va(r) = λara + λa′ra′ . The boundary conditions we impose on it are

lim
r→0

G(r, r′; E, L) = 0 and lim
r→∞

G(r, r′; E, L) < ∞. (240)

Let ψ(1)(r) and ψ(2)(r) be two independent solutions of the radial Equation (166). Let
us assume that ψ(1)(r) remains finite as r → ∞ while the second solution obeys ψ(2)(0) = 0.
With these solutions, following the standard procedure [70], we can construct the Green
function G(r, r′; E, L) as

G(r, r′; E, L) =
2m

h̄2W [ψ(1), ψ(2)]

{
ψ(1)(r)ψ(2)(r′), r > r′

ψ(1)(r′)ψ(2)(r), r′ > r
(241)

whereW [·, ·] signifies the Wronskian.
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For the Coulomb problem with Va(r) = −e2r−1, we let ψ(1)(r) = Wka , La(2κr) and
ψ(2)(r) = Mka , La(2κr). Then we calculate the Wronskian to get

(2κ)−1W [Wk,L(2κr), Mk,L(2κr)] =W [Wk,L(x), Mk,L(x)] = − Γ(2L + 1)
Γ(L− k + 1

2 )
, (242)

where we have use the property,

W [Wk,L(x), Mk,L(x)] = (dy/dx)W [Wk,L(y), Mk,L(y)]. (243)

Substituting this result in the formula (241), we obtain the radial Green function for
the Coulomb problem,

Ga(r, r′; Ea, La) = −
m

h̄2κ

Γ(La − ka +
1
2 )

Γ(2La + 1)
Wka , La(2κr>) Mka , La(2κr<), (244)

where r> = max{r, r′} and r< = min{r, r′}. We have also set κ =
√
−2mEa h̄ and ka =

me2/(h̄
√
−2mEa), both of which are in general complex numbers. The resultant Green

function is a double-valued function of Ea. It contains the contribution from the continuous
states (corresponding to the branch-cut along the positive real line on Ea) as well as
the bound states (corresponding to the poles on the negative real axis). The poles of
G(r, r′; La, Ea) on the Ea-plane occur when La − ka +

1
2 = −ν with ν ∈ N0, yielding the

discrete energy spectrum (222).
Similarly, for the radial oscillator with Vb(ρ) = (m/2)ω2ρ2, we let

ψ(1)(ρ) = Wkb ,Lb
((mω/h̄)ρ2) and ψ(2)(ρ) = Mkb ,Lb

((mω/h̄)ρ2). Use of the property,

W [χ(y)Wk,L(y), χ(y)Mk,L(y)] = [χ(y)]2W [Wk,L(y), Mk,L(y)], (245)

for a differentiable function χ(y), together with (243) and (242), enables us to evaluate the
Wronskian and to get to the Green function for the radial oscillator,

Gb(ρ, ρ′; Lb, Eb) = −
1

h̄ω
√

ρρ′
Γ( 1

2 Lb − kb +
1
2 )

Γ(Lb + 1)
Wkb , 1

2 Lb

(mω

h̄
ρ2
>

)
Mkb , 1

2 Lb

(mω

h̄
ρ2
<

)
, (246)

where kb = Eb/(2h̄ω). Since G(ρ, ρ′; lb, Eb) is not a multi-valued function of Eb, it has no
branch point on the Eb-plane and contains no contribution corresponding to a continuous
spectrum, but has poles at kb = ν + 1

2 Lb +
1
2 with ν ∈ N0 yielding the discrete energy

spectrum (225).
Finally, we compare the Green function for the bound state of the Coulomb problem

(244) and the Green function for the radial oscillator (246). The Gamma functions and
the Whittaker functions in (244) are brought to those in (246) by transformations r = Cρ2

with C = mω/(2h̄κ), La = Lb/η with η = 2, and ka = kb. Although the first two
transformations are two of the dual operations, the last one must be verified. Since
ka = me2/(h̄2κ) = −mλa/(h̄2κ) and λa = −Eb/(4C), it immediately follows that ka =
Eb/(2h̄ω) = kb provided C = mω/(2h̄κ). For the bound state problem, ka = ν+ La +

1
2 and

kb = ν + 1
2 Lb +

1
2 . Hence, it is apparent that ka = kb when La = Lb/2. The extra function

in (219) is now given by h(ρ)h(ρ′) =
√

mω/(h̄κ)
√

ρρ′. Hence the prefactor m/(h̄2κ)
in (244) divided by the extra function gives rise to the prefactor (h̄ω

√
ρρ′)−1 in (246).

In this fashion, Ga(r, r′; La, Ea) of (244) is completely transformed into Gb(ρ, ρ′; Lb, Eb) by
the duality procedures with C = (mω/2h̄κ). By letting Lb = `b + D/2− 1 with `b ∈ N0,
we can see that the formula (221) works well for the Coulomb–Hooke pair.



Symmetry 2021, 13, 409 42 of 50

4.4. A Confinement Potential as a Multi-Term Power-Law Example

One of the motivations that urged the study of power-law potentials was the quark-
antiquark confinement problem. See, for instance, references [36,39,40]. Here we examine
a two-term power potential as a model of the confinement potential.

Let system A consist of a particle of mass m confined in a two-term power potential,

Va(r) = λara + λa′r
a′ , (247)

where λa 6= 0, λa′ 6= 0, a 6= a′, a 6= 0, and a′ 6= 0. Let system B be power-dual to system
A and quantum-mechanically solvable. Then we expect that some quantum-mechanical
information can be obtained concerning the confined system A by analyzing the properties
of system B. As we have seen earlier, when system A and system B are dual to each other,
the shifted potential of system A,

Ua(r) = λara + λa′r
a′ − Ea, (248)

transforms to that of system B,

Ub(ρ) = λbρb + λb′ρ
b′ − Eb, (249)

by
Ub(ρ) = g(ρ)Ua( f (ρ)). (250)

Here r = f (ρ) = Cρη , g(ρ) = C2η2ρ2η−2, η = 2/(a + 2) = −b/a, and

b′ = 2(a′ − a)/(a + 2) λb′ = λa′η
2Ca′+2. (251)

Note also that the exchange relations,

Eb = −η2Ca+2λa, λb = −η2C2Ea, (252)

play an essential role in verifying the equality (250).
First, we wish to tailor the potential of system A to be a confinement potential. To this

end, we set the following conditions.
(i) System B behaves as a radial harmonic oscillator (λb = 0, λb′ > 0, b′ = 2)
(ii) System A has a bound state with Ea = 0 and its potential is asymptotically linearly-

increasing (λa′ > 0, a′ = 1).
Since we are unable to solve analytically the Schrödinger equation for system B

with (249) in general, we consider the limiting case for which λb → 0, that is, we employ
for the potential of system B

Ub(ρ) = lim
λb→0

Ub(ρ) = λb′ρ
b′ − Eb. (253)

According to the second relation of (252), the limit λb → 0 implies Ea → 0. Hence we
study only the zero-energy state of system A by assuming that it exists and is characterized
by an integral number ν0. We denote the zero-energy by Ea(ν0). There are only a few
exactly soluble nontrivial examples with Ub of (253). Our choice is the one for the radial
harmonic oscillator with b′ = 2 and λb′ > 0,

Ub(ρ) = λb′ρ
2 − Eb (λb′ > 0). (254)

Namely, we consider that system B behaves as the radial harmonic oscillator with
frequency Ω =

√
2λb′/m and angular momentum Lb. Since b′ = 2 implies 2(a′ − a)/(a +

2) = 2 as obvious from (251), the corresponding potential of system A is

Va(r) = λar(a′−2)/2 + λa′r
a′ . (255)
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Next we assume that a possible confinement potential behaves asymptotically as a
linearly increasing function. Thus, letting a′ = 1 and λa′ > 0 in (255), we have

Va(r) = λar−1/2 + λa′r, (λa < 0, λa′ > 0). (256)

If λa > 0, then Va(r) > 0 for all r, and the assumed zero-energy state cannot exist. For
λa < 0, the effective potential of system A,

Ve f f
a (r) =

(L2
a − 1

4 )h̄
2

2mr2 − |λa|r−1/2 + |λa′ |r, (257)

can accommodate the zero-energy state provided that λa and λa′ are so selected that
Ve f f

a (r1) < 0 where r1 is a positive root of dVe f f
a (r)/dr = 0. Here La = Lb/η and

La = `a + D/2− 1 with `a ∈ N0. In this manner, we are able to obtain the confinement
potential (256) which is asymptotically linearly increasing and may accommodate at least
the assumed zero-energy state. Figure 2 shows the effective potential (257) of system A for
`a = 1, D = 3, λa′ = 1 and ν0 = 0, 1, 2, 3, 4 in units 2m = h̄ = 1.

2 4 6 8 10
r

-15

-10

-5

0

5

10

V eff

Figure 2. The effective potential (257) related to the eigenfunctions (266) for ν0 = 0, 1, 2, 3, 4 from top
to bottom. The parameters and units are set to `a = λa′ = 1, D = 3 and 2m = h̄ = 1, respectivly.

Since a′ = 1, we have a = (a′ − 2)/2 = −1/2, η = 2/(a + 2) = 4/3 and b = −aη =
2/3. The last information concerning b is unimportant insofar as λb → 0 is assumed.
The second relation of (251) demands that

C = (9λb′/16λa′)
1/3. (258)

Therefore, the first relation of (252) yields

Eb = −4
3

λa

√
λb′

λa′
. (259)

On the other hand, since system B behaves as a radial harmonic oscillator with
frequency Ω =

√
2λb′/m and angular momentum Lb, its energy spectrum is given by

Eb(ν0, `b) = h̄Ω (2ν0 + Lb + 1), (260)

where ν = ν0 is fixed by Ea(ν0) and Lb = `b + D/2− 1 with `b ∈ N0. Letting Lb = (4/3)La
in (260) and interpreting that Eb of (259) represents an allowed value in the spectrum (260),
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we observe that the coupling constant λa may take one of the values specified by the set of
(ν0, `a) via

λa = −
3
4

√
2λa′ h̄

2

m
(2ν0 + (4/3)La + 1), (261)

where La = `a + D/2− 1 with `a ∈ N0.
The energy eigenfunction of the radial oscillator has been given in (234). Replacing

(mω/h̄) in the previous result by β = mΩ/h̄ =
√

2mλb′ /h̄, we write down the eigenfunc-
tion of the present oscillator as

φb(ρ; Lb, ν0) = Nb(Lb, ν0, β)
(

βρ2
)−1/4

Mν0+
1
2 Lb+

1
2 , 1

2 Lb

(
βρ2
)

, (262)

which is normalized to unity with

Nb(Lb, ν0, β) =
(4β)1/4

Γ(Lb + 1)

√
Γ(ν0 + Lb + 1)

Γ(ν0 + 1)
. (263)

Moreover, utilizing the eigenfunction just obtained, we construct the eigenfunction for
the zero-energy state in the confinement potential (256) by following the simple prescription
φa(r) = h(ρ)φb(ρ). For the pair (a, b) = (−1/2, 2/3), the two variables r and ρ are related
by r = Cρ4/3 with C given in (258). Since ρ2 = C−3/2r3/2 and C−3/2 = (4/3)

√
λa′/λb′ ,

we let

α =
4
3

β

√
λa′

λb′
=

4
3

√
2mλa′

h̄
, β =

√
2mλb′

h̄
, (264)

and
βρ2 = αr3/2. (265)

Multiplying φb(ρ) of (262) by h(ρ) =
√

dr/dρ =
√

4C/3ρ1/6, and substituting (264)
and Lb = (4/3)La into φb(ρ), we arrive at the eigenfunction for the zero-energy state of
system A,

φa(ρ; La, ν0) = Na(La, ν0, α)
(

αr3/2
)−1/6

Mν0+
2
3 La+

1
2 , 2

3 La

(
αr3/2

)
, (266)

where La = `a + D/2− 1 with `a ∈ N0. Here the factor Na(La, ν0, α) that normalizes
φa(ρ) to unity cannot be determined by Nb((4/3)La, ν0, (3/4)α

√
λb′/λa′). Corresponding

to the value of λa specified in (261) by the set (ν0, `a), the eigenfunction φa(ρ; `a, ν0) is
characterized by the same set (ν0, `a) of numbers.

The Green function of system A obeys the inhomogeneous radial equation,{
d2

dr2 −
L2

a − 1/4
r2 − 2me2

h̄2

(
λar−1/2 + λa′r

)
+

2me2

h̄2 Ea

}
Ga(r, r′; Ea, La) = −

2m
h̄2 δ(r− r′). (267)

Since the Green function for the radial oscillator has been given in (246), we can write
down the Green function Gb(ρ, ρ′; Eb(ν0)) of system B with λb = 0 as

Gb(ρ, ρ′; Eb, Lb) = −
m

h̄2β

1√
ρρ′

Γ( 1
2 Lb − kb +

1
2 )

Γ(Lb + 1)
Wkb , 1

2 Lb
(βρ2

>
) Mkb , 1

2 Lb
(βρ2

<
), (268)

where kb = Eb/(2h̄Ω). The pole of Gb(ρ, ρ′; Eb) that corresponds to Eb(ν0) occurs when
kb(Lb, ν0) = ν0 +

1
2 Lb +

1
2 where ν0 is a non-negative integer.

The Green function Ga(r, r′; Ea, La) of system A at Ea = 0 can be found by substituting
(265) together with

h(ρ) =
√

4/3C3/8r1/8,
1
2

Lb =
2
3

La,
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into h(ρ)h(ρ′)Gb(ρ, ρ′; Eb, Lb). Namely,

Ga(r, r′; Ea = 0, La) =
4
3

C3/4(rr′)1/8 Gb

(
(r/C)3/4, (r′/C)3/4; Eb =

16
9
|λa|,

4
3

La

)
, (269)

where C has been given in (258). Explicitly, we have

Ga(r, r′; Ea, La) = −
4m

3h̄2α
(rr′)−1/4 Γ( 2

3 La − ka +
1
2 )

Γ( 4
3 La + 1)

Wka , 2
3 La

(αr3/2
>

) Mka , 3
2 La

(αr3/2
<

). (270)

where α and β have been given by (264). The pole corresponding to Ea(ν0) = 0 occurs
when ka = ν0 + (2/3)La + 1/2 and La = `a + D/2− 1. We have to remember that the
Green function (269) is meaningful only in the vicinity of Ea = 0.

Remark 25. The angular momentum L in (167) is identical in form to that used in the semiclassical
case (86). However, no Langer-like ad hoc treatment has been made in the Schrödinger equation.
The angular contribution `(`+ D− 2) and an additional contribution (D− 1)(D− 3)/4 from the
kinetic term due to the transformation of base function, R`(r) to ψ`(r), make up the term L2 − 1/4
in the effective centrifugal potential term of (169).

Remark 26. The time transformation T needed in classical mechanics takes no part in the power
duality of the stationary Schrödinger equation. Instead, the change of the base function plays an es-
sential role. While T assumes dt = g(ρ)ds, the state function changes as ψa(r) = [g(ρ)]1/4ψb(ρ).
The possible connection between the time transformation and the change of state function has been
discussed in the context of path integration for the Green function in [41]. So long as the stationary
Schrödinger equation is concerned, there is no clue to draw any causal relation between T and F.
However, one might expect that T would play a role in the time-dependent Schödinger equation.
If the energy-coupling exchange operation E of (93) is formally modified as

E′ : gVa(r)→ −ih̄
∂

∂s̄
, gih̄

∂

∂t̄
→ −Vb(ρ), (271)

then the time-dependent radial Schrödinger equation,[
− h̄2

2m
d2

dr2 +
h̄2(L2

a − 1/4)
2mr2 + Va(r)

]
ψa(r) = ih̄

∂ψa(r)
∂t̄

, (272)

transforms into [
− h̄2

2m
d2

dρ2 +
h̄2(L2

b − 1/4)
2mρ2 + Vb(ρ)

]
ψb(ρ) = ih̄

∂ψb(ρ)

∂s̄
, (273)

under the set of {R,L,E′,F}. It is important that t̄ and s̄ are not necessarily connected by T; they
are basically independent time-like parameters. In conclusion, the time transformation T has no role
in the time-dependent Schrödinger equation.

Remark 27. More on time transformations. Since we are dealing with the action integral (170)
rather than the Schrödinger equation, it is easy to observe that the time transformation T in the
classical action in Section 2 is closely related to the transformation F of wave functions in the
quantum action (170). Recall that T : (dt/dϕ) = g(ρ)(ds/dϕ) where g = f ′2 with f = Cρη ,
and that

dt Ua = ds gUa = ds Ub. (274)

From (171) and (190), we have

dr Uaψ∗a ψa = dρ f ′h2Uaψ∗b ψb = dρ Ubψ∗b ψb, (275)
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where g = f ′h2 = f ′2. Comparing (274) and (275), we see that dt = gds in classical mechanics
corresponds to dr ψ∗a ψa = g dρ ψ∗b ψb in quantum mechanics. In other words, dr ψ∗a ψa has the same
transformation behavior that dt does. In this respect, we may say that the role of T in classical
mechanics is replaced by F in quantum mechanics.

5. Summary and Outlook

In the present paper we have revisited the Newton–Hooke power-law duality and its
generalizations from the symmetry point of view.

(1) We have stipulated the power-dual symmetry in classical mechanics by form-
invariance and reciprocity of the classical action in the form of Hamilton’s characteristic
function, and clarified the roles of duality operations {C,R,T,E,L}. The exchange oper-
ation E has a double role; it may decide the constant C appearing in the transformation
r = Cρη , while it leads to an energy formula that relates the new energy to the old energy.

(2) We have shown that the semiclassical action is symmetric under the set of duality
operations {C,R,E,L}without T insofar as angular momentum L is treated as a continuous
parameter, and observed that the power-duality is essentially a classical notion and breaks
down at the level of angular quantization. To preserve the basic spirit of power-duality
in the semiclassical action, we have proposed an ad hoc procedure in which angular
momentum transforms as Lb = ηLa, as the classical case, rather than `b = η`a; after that
each of L is quantized as L = `+ D/2− 1 with ` ∈ N0. As an example, we have solved by
the WKB formula a simple problem for a linear motion in a fractional power potential.

(3) We have failed to verify the dual symmetry of the supersymmetric (SUSY) semi-
classical action for an arbitrary power potential, but have succeeded to reveal the Coulomb–
Hooke duality in the SUSY action.

(4) To study the power-dual symmetry in quantum mechanics, we have chosen the
action in which the variables are the wave function ψ(r) and its complex conjugate ψ∗(r)
and from which the radial Schrödinger equation can be derived. The potential appearing in
the action is a two-term power potential. We have shown that the action is symmetric under
the set of operations {C,R,E,L} plus the transformation of wave function F provided that
angular momentum L is a continuous parameter. Again the ad hoc procedure introduced
for the semiclassical case must be used in quantum mechanics. Associated with F is the
transformation of Green functions from which we have derived a formula that relates the
new Green function and the old one. We have studied the Coulomb–Hooke duality to
verify the energy formula and the formula for the Green functions. We also discussed a
confinement potential and the Coulomb–Hooke–Morse triality.

There are more topics that we considered important but left out for the future work.
They include the power-dual symmetry in the path integral formulation of quantum
mechanics, the Coulomb–Hooke duality in Dirac’s equation, and the confinement problem
in Witten’s framework of supersymetric quantum mechanics. Feynman’s path integral is
defined for the propagator (or the transition probability) with the classical action in the
form of Hamilton’s principal function, whereas the path integral pertinent to the duality
discussion is based on the classical action in the form of Hamilton’s characteristic function.
Since the power-dual symmetry of the characteristic action has been shown, it seems
obvious that the path integral remains form-invariant under the duality operations, but the
verification of it is tedious. As is well-known, Dirac’s equation is exactly solvable for the
hydrogen atom. There are also solutions of Dirac’s equation for the harmonic oscillator.
However, the Coulomb–Hooke duality of Dirac’s equation has never been established.
The situation is similar to Witten’s model of SUSYQM. Using the same superpotential as
that used for the semiclassical case in Section 4, we may be able to show the Coulomb–
Hooke symmetry and handle the confinement problem in Witten’s framework.
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Appendix A. The Coulomb–Hooke–Morse Triality

In this Appendix A, we wish to present the Coulomb–Hooke–Morse triality that
relates the Morse oscillator to the Coulomb–Hooke duality. Specifically, letting system
A be the hydrogen atom (for the Coulomb system), system B be the radial harmonic
oscillator (for the Hooke system) and system C be the Morse oscillator, we deal with
their triangular relation. The Morse oscillator is a system obeying the one-dimensional
Schrödinger Equation [71],

− h̄2

2m
d2ψc(ξ)

d2ξ
+ (Vc(ξ)− Ec)ψc(ξ) = 0, ξ ∈ R, (A1)

where
Vc(ξ) = D1 e−2αξ − 2D2 e−αξ , α, D1, D2 > 0, (A2)

which is the Morse potential in a slightly modified form. The potential (A2), being not a
power-law potential, is beyond the scope of the main text. It is yet interesting to observe
how the Morse oscillator is related to the Coulomb–Hooke duality. It is straightforward,
if one follows the general transformation procedure [41] for the Schrödinger equation,
to transform (A1) directly to the Schrödinger equation for each of the hydrogen atom and
the radial harmonic oscillation. Here, to focus our attention on their trial nature, we place
the Whittaker function at the center of the triangular relation. In fact, the Schrödinger
Equation (A1) is easily transformed to the Whittaker Equation (226) under the substitutions

x = γ e−αξ , γ =

√
8mD1

h̄α
(A3)

Lc =

√
−2mEc

h̄α
, kc =

√
2mD2

2

h̄2α2D1
, (A4)

w(x) = x1/2ψc(ξ). (A5)

Hence the bound state solution of (A1) can be expressed in terms of the Whittaker
function as

ψc(ξ) = Nc eαξ/2Mkc ,Lc

(
γ e−αξ

)
, (A6)

subject to the condition

kc = ν + Lc +
1
2

, ν ∈ N0. (A7)

The last condition yields the energy spectrum,

Ec = −
h̄2α2

2m

{√
2mD2

2

h̄2α2D1
−
(

ν +
1
2

)}2

, ν = 0, 1, 2, . . . <

√
2mD2

2

h̄2α2D1
− 1

2
. (A8)

The Morse oscillator solution ψc(ξ) in (A6) may be compared with the Coulomb
bound state solution ψa(r) and the Hooke oscillator solution ψb(ρ) given, respectively, by

ψa(r) = Na Mka ,La(2κr), (A9)

with
ka = ν + La +

1
2

ν ∈ N0, (A10)

and
ψb(ρ) = Nb

(mω

h̄
ρ2
)−1/4

Mkb , 1
2 Lb

(mω

h̄
ρ2
)

, (A11)
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with
kb = ν +

1
2

Lb +
1
2

ν ∈ N0. (A12)

The bound state conditions (A10) and (A12) lead to the energy spectrum of the
Coulomb system (A) and that of the Hooke system (B), respectively, when

ka = me2/(h̄2κ) , h̄κ =
√
−2mEa , La = `+ 1/2 , ` ∈ N0 , (A13)

kb = Eb/(h̄ω) , Lb = `+ 1/2 , ` ∈ N0 . (A14)

The triality relations are schematically shown below,

Morse Morse
CA ↙ ↖ BC AC ↗ ↘ CB

Coulomb −→ Hooke Coulomb ←− Hooke
AB BA

and the dual transformations AC, CB and BA are given by

AC : 2κr = γe−αξ , ka = kc, La = Lc, ψa(r) = e−αξ/2ψc(ξ)
CB : γe−αξ = (mω/h̄)ρ2, kc = kb, Lc = (1/2)Lb, e−αξ/2ψc(ξ) = ρ−1/2ψb(ρ)
BA : (mω/h̄)ρ2 = 2κr, kb = ka, (1/2)Lb = La, ρ−1/2ψb(ρ) = ψa(r)

which are all invertible. Although none of the energy formulas discussed earlier for the
power-duality works when the Morse (non-power-law) potential is involved, transforming
one of the bound state conditions to another suffices as each condition generates an energy
spectrum. Let χ(ks, ηsLs) represent the condition ks − ηsLs − 1

2 = ν where s = a, b, c,
and ηa = ηc = 1 and ηb = 1/2. The map χ(ks, ηsLs) ⇒ χ(ks′ , ηs′Ls′) induces Es ⇒ Es′ .

χ(kc, Lc) Ec
CA ↙ ↖ BC ⇒ CA ↙ ↖ BC

χ(ka, La) −→ χ(kb, 1
2 Lb) Ea −→ Eb

AB AB

Finally, it must be mentioned that this triangular relation has been discussed in the
context of so-called shape invariant potentials in supersymmetric quantum mechanics [72].
It may also be worth pointing out that the three systems share the SU(1, 1) dynamical
group [50,56].
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