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Abstract: Reliable information on transition matrix elements of various property operators between
molecular electronic states is of crucial importance for predicting spectroscopic, electric, magnetic and
radiative properties of molecules. The finite-field technique is a simple and rather accurate tool
for evaluating transition matrix elements of first-order properties in the frames of the Fock space
relativistic coupled cluster approach. We formulate and discuss the extension of this technique to
the case of transitions between the electronic states associated with different sectors of the Fock
space. Pilot applications to the evaluation of transition dipole moments between the closed-shell-like
states (vacuum sector) and those dominated by single excitations of the Fermi vacuum (the 1h1p
sector) in heavy atoms (Xe and Hg) and simple molecules of heavy element compounds (I2 and TlF)
are reported.

Keywords: relativistic multireference coupled cluster method; heavy element compounds;
transition properties

1. Introduction

In recent years, there has been a marked increase of interest in highly accurate theoretical data
on excited electronic states and electronic transitions in molecules of heavy element compounds.
Such data are of key importance for ultra-low temperature physics [1–4], searches for violation of
time-reversal and spatial-parity symmetries of fundamental interactions in low-energy spectroscopic
experiments [5] and high-resolution spectroscopy of short-lived radioactive atoms and molecules [6].
The preparation of experimental studies and interpretation of their results require detailed knowledge
of energetic, electric, magnetic, radiative and other molecular properties. Besides the information on
pure electronic state properties, transition property values, i.e., matrix elements of property operators
between the electronic state wavefunctions, is necessary to predict the excited-state dynamics.

The Fock space version of the relativistic coupled cluster method (FS RCC) is one of the
most powerful tools of electronic structure modelling for heavy element compounds, widely used
for obtaining accurate and reliable information on excited state potential energy surfaces and
transition energies in molecules [7–10]. The prediction of expectation and transition values of
various property operators within the FS RCC framework is usually a more complicated task than
energy spectra calculations. Due to the exponential form of the wave operators, the expressions
for property matrix elements between the FS CC wavefunctions in terms of cluster amplitudes
and model eigenvectors have the form of (quasi-) nonterminating series. Truncating these series,
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one arrives at computational schemes which had been successfully applied to ab initio calculations
of transition probabilities in small systems (see, e.g., [11–13] and references therein). The simplest
scheme of this kind includes abandoning of all the amplitude-dependent terms, and estimating the
required property matrix elements between the FS (R)CC wavefunctions by the transition amplitudes
between the corresponding model space functions (e.g., left and right eigenvectors of the effective
Hamiltonian) [14,15]. This scheme describes properly indirect influence of the couplings between
the model space and its orthogonal complement (usually referred to as outer space manifold) on the
transition property values. The latter circumstance is of a critical importance for the qualitatively
correct description of transition properties in presence of weakly avoided crossings. At the same time,
the accuracy of this approach remains limited due to the complete neglect of outer-space contributions
to effective property operators.

Apparently the most universal and rigorous approach to evaluating transition matrix elements
of first-order properties [16–19] is based on the use of the constrained-variational technique of
Jørgensen et al. [20]. This approach implies solving the so-called Λ equations for each pair of states
generated in a single FS CC calculation and leads to rather involved computations; to our knowledge,
until now it has only limited implementation within the non-relativistic FS CC framework (for a recent
review, see [21]).

A practical solution of the problem might consist in combining the potential surfaces, constructed
using multireference coupled cluster methods, with the transition property surfaces obtained within
the multireference configuration interaction (MRCI) schemes (see, e.g., [22]). Although the accuracy of
MRCI estimates of some transition properties (in particular, transition dipoles) is generally sufficient
for practical purposes, mismatches of avoided crossings and/or conical intersection’s positions in
MRCI and coupled cluster calculations can give rise to serious distortion of corresponding matrix
elements between vibronic states. Another serious problem can arise from typically large number
of electrons and shells which should be explicitly included into the correlation treatment for heavy
element compounds, since the MRCI method is not size-consistent.

The expectation values of numerous important properties can be straightforwardly determined via
using the finite-field technique, i.e., by numerical differentiation of the calculated energies with respect
to the amplitude of appropriate perturbation (see [23–27] for recent applications). The extension of
this approach to evaluating the transition matrix elements of first-order property operators proposed
in [28,29] is based on the analysis of variations of the effective Hamiltonian eigenvectors induced by
appropriate external field. Although no explicit information on the composition of the wavefunctions
outside of the model space is used, the resulting transition matrix element estimates implicitly include
the leading contributions from couplings between the model space and the outer space manifolds to
the effective property operator [28] (see also Appendix A), thus generally having a significantly better
accuracy than those obtained as property matrix elements between effective Hamiltonian eigenvectors.
Note, however, that, in contrast to the finite-field coupled-cluster method for expectation values,
its counterpart for off-diagonal matrix elements does not ensure the convergency of the results to exact
values with appropriate extension of FS (R)CC computational scheme (inclusion of higher excitations
in the cluster operator, approaching the complete basis set limit, etc.). The transition matrix elements
are determined simultaneously for all pairs of states obtained in FS (R)CC effective Hamiltonian
calculations. Applications of the finite-field technique to atomic and molecular relativistic calculations
of E1 transition probabilities and off-diagonal magnetic hyperfine interactions were described by the
authors of [4,29–31] and the authors of [32,33], respectively.

Up to now, the applications of the finite-field technique were restricted to the cases of single
Fock space sector and complete model spaces. If the model spaces are incomplete and the model
states belong to the same Hilbert space but to different Fock space sectors, the straightforward use
of the finite-field procedure in its present form [29] would always lead to unphysical zero values of
the corresponding off-diagonal matrix elements. In the present paper, we describe the extension of
the technique to the complicated cases mentioned above, focusing on the calculations of transition
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matrix elements between the closed-shell-like ground state and excited states dominated by single
excitations (0h0p–1h1p-type transitions). Pilot applications to transition dipole moment calculations in
heavy atoms and diatomic molecules of heavy element compounds are reported.

2. Theory

Consider a first-order property operator D defining the dependence of the total many-electron
Hamiltonian H on some external field strength parameter F, H(F) = H(0) + DF. Let us choose
a field-independent model space LP as the linear span of several Slater determinants and denote
the projectors onto LP and its orthogonal complement by P and Q, respectively. Within the FS
RCC approach, the field-dependent many-electron problem is solved through constructing the wave
operator Ω and the effective Hamiltonian H̃. The diagonalizaition of H̃ operating within LP,

H̃ψ̃i = Eiψ̃i, (1)

yields low-lying (target) eigenvalues Ei, i = 1, . . . , dimLP of the total Hamiltonian H, whereas the
wave operator Ω should reconstruct the target eigenfunctions ψi of the total Hamiltonian from the
corresponding eigenvectors of H̃ (model eigenstates), ψi = Ωψ̃i. The wave operator is assumed
to be a single normal-ordered exponential of a cluster operator T (linear combination of excitation
operators, usually classified according to their total ranks k and the numbers of annihilated holes nh
and particles np):

Ω = {eT}, T = ∑
k,nh ,np

T
(nhh np p)
k (2)

Naturally, both H̃ and Ω depend on the parameter F.
If LP is a complete model space, i.e., it is spanned by all possible distributions of a certain number

of particles between active spinors, one can adopt the intermediate normalization of the wave operator,

PΩP = P, implying PTP = 0 and H̃ = PHΩP (3)

(in other words, Ω− 1 and T are open operators). In this case, the effective Hamiltonian eigenfunctions
are simply the model space projections of the full wavefunctions, ψ̃i = Pψi, and PH̃P is non-Hermitian.
We suppose that {ψ̃i} are normalized, so that the norms Ni : N2

i = 〈ψi|ψi〉 of the full Hamiltonian
eigenvectors exceed 1.

It is convenient to express the transition property matrix elements

Dij ≡
1

Ni Nj

〈
ψi|D|ψj

〉
(4)

in terms of the eigenvectors of H̃ and the effective property operator D̃. We adopt the following
definition of D̃ [34]:

D̃ = PΩ̃DΩP, (5)

where Ω̃ is the “left” counterpart of the wave operator Ω,

PΩ̃ΩP = P, ΩPΩ̃ = P ; PΩ̃ = (PΩ†ΩP)−1Ω† (6)

(P denotes the orthogonal projector onto the subspace spanned by the target eigenfunctions of H
and the inversion is restricted to the model space). The matrix elements (4) are related to those of the
effective operator (5) by [34]:

Dij = Ni N−1
j 〈ψ̃

⊥⊥
i |D̃|ψ̃j〉 (7)

Here, {ψ̃⊥⊥i } are the left eigenfunctions of H̃, biorthonormalized to its right
eigenfunctions, 〈ψ̃⊥⊥i |ψ̃j〉 = δij.
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The derivative of the effective Hamiltonian with respect to the parameter F does not coincide
with the effective property operator [28]:

D̃ =
∂H̃
∂F

+

[
PΩ̃

∂Ω
∂F

P, H̃
]

(8)

Rewriting Equation (8) in terms of matrix elements as

〈
ψ̃⊥⊥i

∣∣∣D̃∣∣∣ ψ̃j

〉
=

〈
ψ̃⊥⊥i

∣∣∣∣∣∂H̃
∂F

∣∣∣∣∣ ψ̃j

〉
+ (Ej − Ei)

〈
ψ̃⊥⊥i

∣∣∣∣PΩ̃
∂Ω
∂F

P
∣∣∣∣ ψ̃j

〉
(9)

one can notice that the additional term vanishes for the diagonal matrix elements but survives
for the off-diagonal ones. However, a simple perturbation theory analysis [28] demonstrates
that the approximation of D̃ by the effective Hamiltonian derivative incorporates the leading
contributions from the couplings to the orthogonal complement of LP. Combined with the off-diagonal
Hellmann–Feynman theorem [35] for the effective Hamiltonian, this approximation yields〈

ψ̃⊥⊥i

∣∣∣D̃∣∣∣ ψ̃j

〉
≈ (Ej − Ei)

〈
ψ̃⊥⊥i

∣∣∣∣ ∂

∂F
ψ̃j

〉∣∣∣∣
F=0

. (10)

The finite-field technique is based on estimating the derivative matrix element in the rhs of
(10) within the central finite-difference approximation, evaluating and diagonalizing the effective
Hamiltonians H̃(−∆F) and H̃(∆F) for two small finite values of the field strength parameter:

〈
ψ̃⊥⊥i

∣∣∣D̃∣∣∣ ψ̃j

〉
≈

(Ej − Ei)

2∆F

〈
ψ̃⊥⊥i (−∆F)

∣∣∣ ψ̃j(∆F)
〉

. (11)

Absolute values of transition matrix elements can be immediately obtained from Equations (7)
and (11):

|Dij|2 =
∣∣∣〈ψ̃⊥⊥i

∣∣∣D̃∣∣∣ ψ̃j

〉∣∣∣ · ∣∣∣〈ψ̃⊥⊥j

∣∣∣D̃∣∣∣ ψ̃i

〉∣∣∣ , (12)

for all pairs of target states simultaneously.
It is worth underlining that the choice of the wave operator normalization is essential for the

reliability of the basic approximation (10). If the condition (3) is fulfilled for any value of field strength
parameter, (∂T/∂F) has no closed component. Taking into account the exponential form of Ω and
Equation (6), one can represent the operator determining the error of our basic approximation (see
Equation (9)) by the series

PΩ̃
∂Ω
∂F

P = P
∂T
∂F

P + PT† ∂T
∂F

P + P{T ∂T
∂F
}P + . . . , (13)

and notice that in the case of intermediate normalization the first term (which can be large even in the
case when all amplitudes for F = 0 are small) vanishes.

The situation with incomplete model spaces and transitions between the states associated with
different Fock space sectors seems to be more complicated. For the sake of simplicity, let us focus
on the case of transitions from the closed-shell like state to those dominated by the creation of single
hole-particle pairs and described within the valence-universal FS (R)CC approach for the 1h1p sector;
the generalization to other cases of “intersector” transitions is straightforward. The model space
should include the vacuum closed-shell state and the subspace spanned by all possible combinations
of one active hole and one active particle; the corresponding projectors are denoted by P(0h0p) and
P(1h1p),

P = P(0h0p) + P(1h1p). (14)
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The conventional valence-universal FS (R)CC formulation supposes that the 1h1p sector [7,36] is
fully decoupled from the vacuum sector,

PH̃P = P(0h0p)H̃P(0h0p) + P(1h1p)H̃P(1h1p). (15)

so that the model wavefunctions ψ̃i(F) and ψ̃j(F′) for the ground state i and an excited state j are
strictly orthogonal for any field strengths F and F′ and the finite-field estimate of transition property
matrix elements within LP seems to be senseless. Note that the intermediate normalization of Ω is
incompatible with the connectivity of the effective Hamiltonian for incomplete model spaces [37,38].
Two types of cluster components contributing to PΩP are usually introduced: single excitations
creating an active hole and an active particle, T(0h0p)

1 (Figure 1a), and single de-excitations destructing

such pairs, T(1h1p)
1 (Figure 1b). The model-space part of the wave operator

PΩP = P + P(1h1p)T(0h0p)
1 P(0h0p) + P(0h0p)T(1h1p)

1 P(1h1p) + P(1h1p){T(0h0p)
1 T(1h1p)

1 }P(1h1p) (16)

(see Figure 1) explicitly contains the terms linearly and quadratically dependent on cluster amplitudes.

a b c
Figure 1. Goldstone diagrams representing components of the wave operator contributing to PΩP.
Double arrows correspond to active holes/particles, while double horizontal lines denote cluster
amplitudes.

Let us perform a posteriori transformation of the effective Hamiltonian (15),

H̃ −→ H̃′ = (PΩP)H̃(PΩP)−1 (17)

corresponding to the restoration of the intermediate normalization of the wave operator,

ΩP −→ Ω′P = Ω(PΩP)−1, (18)

(cf. [39]). Taking into account Equation (16) and the normalized exponential form of the original wave
operator, one readily realizes that

Ω′P = P + TP− P(T(0h0p)
1 + T(1h1p)

1 )P +O(T2) = P + TOpP +O(T2) (19)

where TOp is the purely open (PTOpP = 0) part of the cluster operator and O(T2) stands for the
sum of terms of second and higher orders in cluster amplitudes. In a strict analogy to Equation (13),
the first term in the similar expansion of PΩ̃′(∂Ω′/∂F)P should disappear. One can thus expect that
the model-space finite-field transition property estimates obtained according to Equations (11) and (12)
with the eigenfunctions of the transformed Hamiltonian H̃′ are generally as accurate as in the case of
transitions within a single sector.

The computational efforts for transforming the effective Hamiltonian (or its eigenvectors) are
negligible since the number of amplitudes required for constructing PΩP is small. Although in the
case of the scalar property operator the CC equations are to be solved at least twice, for F = −∆F
and F = ∆F, the choice of a common (field-independent) set of one-electron spinors enables
one to avoid the doubling of the amount of computations at least for one-electron properties,
using the same transformed and sorted two-body integrals and other intermediate data in both
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calculations. Furthermore, due to the smallness of the step size ∆F, the amplitudes obtained
with one field strength value provide an excellent initial guess for computing the amplitudes for
another field strength, reducing dramatically the number of iterations. Unfortunately, the substantial
increase of computational work is unavoidable when the applied field lowers the symmetry of the
system under study.

Let us notice finally that the simplest finite-field scheme does not make use of the information
concerning the dependence of the cluster amplitudes on F which can be readily extracted from the
results of calculations. Obviously, one could employ this information to estimate the derivative
∂(ΩP)/∂F in the rejected term in the rhs of Equation (9) and to evaluate approximately this term,
truncating in some way the expansions in powers of the cluster operator.

3. Pilot Applications to Transition Dipole Moment Calculations

In this section, we apply the finite-field FS RCC scheme to evaluate transition dipole moments
in heavy atoms (Xe, Hg) and molecules containing heavy atoms (I2, TlF). The calculations described
below employed the accurate relativistic shape-consistent semilocal pseudopotential model [40–42] for
heavy atoms; the inner core shells with principal quantum numbers 1–3 for fifth-row atoms and 1–4
for sixth-row atoms were excluded from the explicit treatment. The light fluorine atom was treated
in the nonrelativistic all-electron manner. The cluster operator expansions were always restricted to
single and double excitations (FS RCCSD). One-electron spinors were generated by solving the two-
or four-component spin–orbit-coupled SCF equations. The component of spinors were expanded in
contracted Gaussian basis sets. All explicitly treated electrons were correlated. The valence-universal
approach to constructing the effective Hamiltonian for the 1h1p sector for the neutral systems with
zero or small electron affinities gives rise to certain difficulties in choosing the set of active “particle”
spinors. Normally one faces a rather objectionable choice between problematically large amplitudes
of T(0h1p)

1 if the active particle spinors are compact (e.g., taken from the solutions of the SCF problem

for a positive ion) and large T(1h1p)
2 amplitudes when these spinors are diffuse (obtained as virtual

SCF spinors for the neutral system). We bypassed this difficulty via choosing quite large sets of active
particle spinors and using the adjustable denominator shift technique [43] to suppress the possible
divergencies in the presence of intruder states (more specifically, we employed the simulated imaginary
shifts [32]). To conserve the core separability of the original FS RCC scheme, shifts were never applied
to the energy denominators in the equations for T(0h0p) amplitudes; a balanced treatment of excitation
and deexcitation contributions to PΩP implied the use of non-shifted equations for T(1h1p)

1 amplitudes
as well. Shift amplitudes (sK in Equation (8) of [32]) were always defined by a single parameter s2,
universal denominator shift amplitude for all double excitations in the 1h0p, 0h1p and 1h1p sectors;
for single excitations in the 0h1p and 1h0p sectors, we used sK = s2/2. The shift attenuation parameter
(m in Equation (8) of [32]) was assumed equal to 3.

The construction of spinors and evaluation of one- and two-electron integrals was performed
using the DIRAC19 program package [15,44], whereas all FS RCC calculations were carried out with
the help of the EXP-T code [45–47]. The VIBROT code [48] was used to solve the vibrational problem
and compute the excited-state lifetime of TlF.

3.1. Transition Dipoles for Excitations of Closed-Shell Atoms

Experimental-based estimates of transition dipole moments in heavy-element-containing
species accurate to about 1% and better are generally available only for atoms and atomic ions.
Reliable estimates of transition dipole moments for several transitions in atomic Xe and Hg
(Tables 1 and 2) were obtained from Einstein coefficients from Sansonetti and Martin [49]. Our FS RCC
calculations for Xe employed the adaptation of the aug-cc-pVQZ-PP basis of Peterson et al. [50,51]
to the pseudopotential [42], augmented by the p3/2 − p1/2-like functions to improve the description
of spin-orbit splittings, core-valence correlation functions from aug-cc-pwCVTZ-PP set [52] and
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additional diffuse functions in order to better reproduce the Rydberg nature of the excited states.
The total basis size was [12s13p11d6 f 3g] (see Supplementary Materials for details). The one-electron
spinors were obtained by solving the SCF equation for the ground-state configuration of the neutral
atom (5p6) or positive ion (5p5); the corresponding results are marked in Table 1 by the symbols (Xe0) or
(Xe+). Three pairs of highest-energy spinors occupied in the neutral Xe and 43 pairs of lowest-energy
unoccupied spinors were considered as active. Rather small shift amplitudes (s2 = −0.2 a.u.) were
found to be sufficient to ensure the numerical stability of solving the FS RCC equations.

The resulting finite-field transition dipole moment estimates DFF
ij along with the

experimental-based values and matrix elements of the dipole operator between the FS RCC model

states, DMS
ij =

(
|〈ψ̃⊥⊥j |D| ψ̃i〉| · |〈ψ̃⊥⊥i |D| ψ̃j〉|

)1/2
, are listed in Table 1. The deviation of DFF

ij from the
empirical values never exceeds 0.04 a.u.; for intensive transitions, the error is within 4 %. It is worth
noting that DFF

ij only slightly depend on the choice of one-electron spinors (which, in turn, defines the

model space). The dipole matrix elements between the H̃ eigenvectors, despite their strong dependence
on this choice, can be considered as less accurate but rather reasonable preliminary estimates of the
transition dipole moments.

Table 1. Transition dipole moments (a.u.) for excitations from the ground 5p6 1S0 state of the Xe atom
according to the finite-field FS RCC calculations (DFF

ij ) and the corresponding dipole matrix elements

between the model space vectors (DMS
ij ).

Excited State Transition Wavenumber DMS
ij DFF

ij Dexptl
ij

FS RCC (Xe0) FS RCC (Xe+) Exptl. [49] (Xe0) (Xe+) (Xe0) (Xe+) [49]

5p5(2P o
3/2)6s 2[3/2]o 68,147 67,230 68,045 0.637 0.494 0.634 0.630 0.654

5p5(2P o
1/2)6s 2[1/2]o 77,201 76,153 77,185 0.536 0.430 0.512 0.518 0.521

5p5(2P o
3/2)5d 2[1/2]o1 80,259 79,306 79,987 0.074 0.050 0.101 0.090 0.120

5p5(2P o
3/2)5d 2[3/2]o1 84,137 83,275 83,889 0.837 0.659 0.663 0.668 0.704

Similar calculations were carried out for the Hg atom. The employed primitive Gaussian basis
set [11s11p10d5 f 4g3h] was essentially an uncontracted version of the augmented quadruple zeta
basis [53] adapted to the use with the shape-consistent pseudopotential [42]. We performed two
series of calculations with one-electron spinors taken from the neutral atom (configuration 5d106s2)
or positive ion (5d106s1) SCF problem. Six Kramers pairs of highest occupied spinors and 31 pairs of
lowest unoccupied spinors spanned active-hole and active-particle subspaces, respectively. The same
shift amplitudes as in the case of the xenon atom were used. The results compared to the experimental
values are listed in Table 2.

Table 2. Transition dipole moments (a.u.) for excitations from the ground 6s2 1S0 state of the Hg atom
according to the finite-field FS RCC calculations (DFF

ij ) and the corresponding dipole matrix elements

between the model space vectors (DMS
ij ).

Excited State Transition Wavenumber DMS
ij DFF

ij Dexptl
ij

FS RCC (Hg0) FS RCC (Hg+) Exptl. [49] (Hg0) (Hg+) (Hg0) (Hg+) [49]

5d10(1S)6s6p 3Po
1 38,973 38,712 39,412 0.355 0.331 0.211 0.216 0.250

5d10(1S)6s6p 1Po
1 54,284 53,813 54,069 2.009 1.655 1.383 1.375 1.527

The finite-field scheme underestimates the 1S0 ↔ 3Po
1 transition moment by 16% and the

1S0 ↔ 1Po
1 transition moment by 11%. This level of accuracy is actually close to that reported in [29] for

the finite-field calculations within the (0h2p) sector. It might be worth noting that the difference
between the finite-field estimates of 〈ψ̃⊥⊥i |D̃|ψ̃j〉 and 〈ψ̃⊥⊥j |D̃|ψ̃i〉 according to Equation (11) were quite
large (up to 20 %). This can be presumably attributed to significant differences in the norms of the
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ground-state and excited-state wavefunctions outside of the model space (see Equation (7)), in other
words, to a non-balanced description of these states within the chosen model space. The results are
stable with respect to further extensions of active spinor subspaces. A possible way of improving the
DFF

ij estimates in such cases might consist in accounting for the dependence of the wave operator on

the external field strength Equation (9). Similarly to the case of Xe, the DFF
ij values for Hg exhibit only

a very weak dependence on the choice of the SCF problem for generating one-electron spinors.

3.2. Transition Dipole Moment Functions in I2 and TlF

Optical transitions in the iodine molecule are among the most studied molecular electronic
transitions in heavy element compounds (see [54] for a recent review). The rather intensive X0+g −B0+u
transition is of particular interest for testing relativistic transition dipole calculation techniques since
it corresponds to the forbidden singlet-triplet (1Σ+

g − 3Πu) excitation at the non-relativistic (or scalar
relativistic) limit. The empirical dependence of the X0+g − B0+u transition dipole moment on the
internuclear separation derived from a large amount of experimental data by Tellinghuisen [55] is
expected to be accurate within a few percent at least in the vicinity of the ground-state equilibrium
point. Our calculations were performed using the [9s 10p 8d 5 f 3g] basis set for iodine constructed
in the same way as for Xe, except for the absence of Rydberg-like functions which are not needed to
describe the valence-like states under study. The active space comprised five Kramers pairs of occupied
spinors and 17 pairs of virtual spinors. The shift amplitude values corresponded to s2 = −0.30 a.u.

The finite-field FS RCC transition dipole moment curve (Figure 2) exhibits a good agreement with
its empirical counterpart for moderate internuclear separations where the single-reference treatment of
the ground state remains reasonable, i.e., approximately for R ≤ 3 Å. At larger R, an unusually rapid
increase of amplitudes of double excitations in the vacuum sector (first of all, σ2

g → σ∗ 2
u -like ones),

see the dotted curve in Figure 2, gradually lowers the efficiency of the single-reference description of
the ground state. The deviation of DFF

X−B values from their empirical counterparts in the vicinity of the
ground-state equilibrium point is about 4%. Except for the domain of large R, our results also agree with
those of quasirelativistic many-body multipartitioning perturbation theory calculations [56] which
ensured equal-footing and inherently multireference treatment of both states involved. In contrast
with the atomic cases, the quality of transition dipole estimates by the dipole matrix elements between
the model space vectors seems fully unacceptable for benchmark calculations.

The transition between the ground X(1)0+ and second excited B(1)1 (sometimes also referred
to as a3Π1) states of the thallium monofluoride molecule attracts great attention due to its possible
use for laser cooling of TlF, which is considered as a perspective system for searches for “new physics”
in tabletop-scale experiments (see [2] and references therein). The lifetime of the lowest vibrational
level (v = 0) of the B(1)1 state, 99± 9 ns, was measured by Hunter et al. [2]. It should be noted
that the accuracy of the lifetime measurements in [2] is of an unprecedented level for molecules of
heavy element compounds. Due to nearly coinciding equilibrium separations Re and vibrational
frequencies of this state with those of the ground one and the negligible probability of its radiative
decay into the first excited A(2)0+ state (energy factor of the branching rate is about 10−4), one can
immediately obtain an estimate of the transition dipole at Re(B) ≈ Re(X): DX−B = 0.315± 0.014 a.u.
The computational study of radiative transitions in TlF was performed recently by Liu et al. [57] using
the scalar relativistic multireference configuration interaction method with subsequent incorporation
of the direct spin-orbit interactions between low-lying scalar eigenstates (MRCI + SO). The resulting
B(1)1, v = 0 lifetime (85 ns) and the transition dipole moment value at Re(X) ≈ Re(B) (0.321 a.u.)
agree perfectly with their experimental counterparts.
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Figure 2. X0+g − B0+u transition dipole moment function of the I2 molecule: bold red line, empirical
function from Tellinghuisen [55]; solid and dashed blue lines: finite-field (DFF

X−B) and model-state
(DMS

X−B) FS RCC estimates, respectively; green dot-dashed line, quasirelativistic multireference

perturbation theory data [56]; dotted violet line, the dependence of the largest amplitude in T(0h0p)
2

(max|t(0h0p)
2 |) on the internuclear separation.

The present calculation used the [9s10p8d6 f 4g1h] Tl basis set with core-valence-correlation and
diffuse functions from Zaitsevskii and Eliav [43] and the standard aug-cc-pVQZ fluorine basis [58,59],
the solutions of the ground-state SCF problem as one-electron spinors, the model space defined by
4 pairs of active hole spinors and 16 pairs of active particle spinors, and the same shift parameters
as for the I2 molecule. Our estimate of vertical transition moment (0.297 a.u.) is quite close to both
experimental-based and MRCI + SO values. In accordance with the MRCI + SO data [57], DFF

X−B as
function of the internuclear separation is rather flat near the equilibrium points and becomes decreasing
at larger R; the difference between DFF

X−B and its MRCI + SO counterpart becomes more significant at
short R (see Figure 3). Combining the present transition dipole moment and energy difference function
along with the accurate RCCSD(T) ground state potential from Zaitsevskii and Eliav [43], we evaluated
the radiative lifetime of B1, v = 0 according to the Tellinghuisen’s formula [60]. The resulting value,
112 ns, is only slightly longer than the measured one.
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Similar to the case of transition in I2, the dipole matrix elements between the model states provide
much worse estimates of the transition moment (however, the correct trend is reproduced).
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Figure 3. Transition dipole moment function for the X0+ − B1 electronic transition in the TlF molecule:
red circle, estimate based on the experimental lifetime measurements [2]; solid and dashed blue
lines, DFF

X−B(R) and DMS
X−B(R) functions from the present FS RCC calculations; green dot-dashed line,

MRCI + SO calculations [57].

4. Concluding Remarks

The simple finite-field technique of molecular transition property matrix element calculations
within the framework of the Fock space relativistic coupled cluster method, deriving the matrix element
estimates from the analysis of variations of the model-space projections of electronic eigenstates under
the influence of an external field, is extended to the case of transitions between the states associated
with different Fock space sectors. In contrast to the case of transitions between the states of the same
sector, these projections are not immediately obtained as eigenstates of FS RCC effective Hamiltonian;
an additional transformation of these eigenstates is required. The transformation matrix is readily
constructed from the cluster amplitudes corresponding to the excitations which are closed with
respect to the direct sum of the involved model subspaces of the Fock space. Pilot applications to
off-diagonal electric dipole matrix elements for excitations of closed-shell-like ground states in systems
containing heavy-element atoms yielded the estimates approximately at the same level of accuracy as
for “single-sector” transitions, normally within 10 % for intensive transitions. This level of accuracy is
comparable with the experimental one for the molecular measurements. The reliability of results is
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clearly superior to that achieved in calculation of dipole matrix elements between the eigenvectors of
FS RCC effective Hamiltonians.

Due to the use of field-independent model spaces and one-electron spinors for solving the
many-electron problem for a molecule in the finite-strength external field, the additional work required
to evaluate transition property values remains moderate. However, in applications to highly symmetric
systems and in the cases when one focuses on a small number of transitions but has to estimate
off-diagonal matrix elements of numerous or multicomponent (tensor) properties the technique can
become computationally extensive, so that the development of relativistic counterparts of analytical
methods for transition density matrix construction remains desirable.

An important advantage of the finite-field technique consists in the possibility to simultaneously
evaluate the transition matrix elements for all pairs of states corresponding to eigenvalues of the FS
RCC effective Hamiltonian. This advantage can be decisive for studying intensity distributions in
dense spectra, especially in those of actinide and lanthanide compounds. The work on assessment of
reliability of the technique as a tool for describing the excitations in molecules and cluster models of
crystals containing f -elements [61] is in progress in our group.

Supplementary Materials: The employed basis sets and numerical results are available online at http://www.
mdpi.com/2073-8994/12/11/1845/s1 . Table S1: FS RCC excitation energy ∆E and finite-field estimate of
transition dipole moment DFF

X−B for the X0+g − B0+u transition in I2 as functions of the internuclear separation
R. Table S2: FS RCC excitation energy ∆E and finite-field estimate of transition dipole moment DFF

X−B for the
X0+ − B1 transition in TlF as functions of the internuclear separation R. Table S3: Contracted Gaussian basis set
for xenon. The DIRAC mol format is assumed. Table S4: Gaussian basis set for mercury. Table S5: Contracted
Gaussian basis set for iodine. Table S6: Contracted Gaussian basis set for thallium.
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Appendix A. Perturbative Analysis of the Effective Property Operator and Effective
Hamiltonian Derivative

At the lowest orders of the perturbation theory with some field-independent zero-order
Hamiltonian H0 commuting with P and degenerate within LP, the (right) wave operator satisfying the
normalization condition (3) can be written as

Ω(1)(F)P = G(V + DF)P

Ω(2)(F)P = G(V + DF)G(V + DF)P− PG2(V + DF)P(V + DF)P.

Here, G denotes the resolvent, G = (Q(E0 − H0)Q)−1, where E0 is the zero-order energy of
model states, and we split the perturbation into the field-independent part, V = H(0)− H0, and the
field-dependent part DF. The derivatives of these operator with respect to F for F = 0 are

∂

∂F
Ω(1)P = GDP

∂

∂F
Ω(2)P = GDGVP + GVGDP− PG2DPVP− PG2VPDP.

http://www.mdpi.com/2073-8994/12/11/1845/s1
http://www.mdpi.com/2073-8994/12/11/1845/s1
http://ckp.nrcki.ru/
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The left wave operator corrections for F = 0 are given by

PΩ̃(1) = PΩ(1)† = PVG

PΩ̃(2) = −PΩ(1)†Ω(1) + PΩ(2)† = −PVG2VP + PVGVG− PVPVG2.

The second-order effective Hamiltonian has the form

H̃(0−2)(F) = PH(F)P + PQΩ1(F) = PH(0)P + FPDP + P(V + DF)G(V + DF)P,

and its derivative with respect to F at F = 0,

∂H̃(0−2)(F)
∂F

∣∣∣∣∣
F=0

= PDP + PDGVP + PVGDP,

coincides exactly with the first-order approximation to the effective property operator

D̃(0−1) = PDP + PΩ(1)†DP + PDΩ(1)P.

The differentiation of the third-order correction for the field-dependent effective Hamiltonian,

H̃(3)(F) = P(V + DF)Ω(2)(F) = P(V + DF)(G(V + DF)G(V + DF)P− PG2(V + DF)P(V + DF)P),

yields
∂H̃(3)(F)

∂F

∣∣∣∣∣
F=0

= PDΩ(2)P + PV
∂

∂F
Ω(2)P

= PDΩ(2)P + PVGDGVP + PVGVGDP− PVG2DPVP− PVG2VPDP.

This expression does not coincide with that for the second-order one for the field-free effective
property operator:

D̃(2) = PDΩ(2)P + PΩ̃(2)DP + PΩ̃(1)DΩ(1)P

= PDΩ(2)P− PVG2VPDP + PVGVGDP− PVPVG2DP + PVGDGVP,

but the difference is restricted to only one class of renormalization-type terms (underlined).
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