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Abstract Inthis paper, we study the resonant state X (6900).

The scattering amplitudes of coupled channels, J /v J /-
J/ Uy (28)-J /¥ (3770), are constructed with the interac-

tion of four vector mesons described by effective Lagrangians.

The amplitudes are calculated up to one loop, decomposed
by partial wave projection, and unitarized by Padé approxi-
mation. These amplitudes are fitted to the latest experimen-
tal data sets of di-J /v and J /¥ ¢ (2S) invariant mass spec-
tra of LHCb, CMS, and ATLAS. High-quality solutions are
obtained. With these partial wave amplitudes, we extract the
pole parameters of the X (6900). Its quantum number is likely
tobe 0. According to the pole counting rule as well as anal-
ysis of the phase shifts of the partial waves, it supports our
previous conclusion that the X (6900) prefers to be a compact
tetra-quark.

1 Introduction

Since the 1960s, quark model [1-3] has turned out to be
a successful classification scheme for hadrons, that is, a
meson is composed of a pair of quark and anti-quark, and a
baryon/anti-baryon is composed of three quarks/anti-quarks.
Hundreds of hadrons listed in the particle data group (PDG)
[4] can be formed as such inner structure. However, until
now, there is no fundamental principle to rule out other inner
structures of hadrons, such as hadronic molecules, quark-
gluon hybrids, glueballs, and multi-quark states. Searching
for exotic states remains a keen interest of the physics com-
munity. In 2003, a tetraquark candidate, X (3872), was dis-
covered by Belle [5] and other collaborations [6—8]. In 2013,
BESIII and Belle discovered the Zj‘(3900) [9,10] in the
J /¥t invariant mass spectrum, implying the ¢cdu com-
ponent. In 2015, LHCb discovered two P, states [11] and

4 e-mail: dailingyun@hnu.edu.cn (corresponding author)

Published online: 09 May 2023

later they are found to be ‘splitted’ into three such states
[12], PF(4312), PF(4440), P (4457), with about nine more
times decay events collected. The P.s are observed in the
J /¥ p invariant mass spectra, and hence they should con-
tain at least five quarks, ccuud. In 2021, LHCb discovered
the 7. in DDz + invariant mass spectrum [13,14]. This
further grasps the attention of theorists as it is very likely
to be evidence for multi-quark states, cciid. All these exotic
hadrons observed so far contain at most two heavy (charm or
bottom) quarks/anti-quarks, but as many models predicted,
there should also be multi-quark states composed of three or
more heavy quarks/anti-quarks [15-19]. This is confirmed by
the very recent experiment of LHCb collaboration [20]. With
the datasets of proton-proton collision in the center-of-mass
energies /s = 7, 8 and 13 TeV collected by the LHCb detec-
tor, the invariant mass spectrum of J /v J /¢ was measured in
the energy range of [6.2—7.4] Gev/c?, and a narrow structure
was found near 6.9Gev/c2, labeled as X (6900), with the sig-
nal statistical significance being larger than 5 o. Its mass and
width are given in two ways: On the one hand, they assume
that the non-resonant single-parton scattering (NRSPS) con-
tinuum is not disturbed, and use Breit-Wigner forms to fit the
structure. Then the mass and width are determined to be

M[X (6900)] = 6905 &= 11 & 7 MeV/c2,
I'[X (6900)] = 80 £ 19 = 33 MeV/c2.

On the other hand, once the contribution of the NRSPS con-
tinuum is taken into account, one has

M[X (6900)] = 6886 & 11 & 11 MeV/c2,
T[X (6900)] = 168 = 33 + 69 MeV/c2.

Recently, ATLAS and CMS presented their measurements

on J /v J /1 invariant mass spectra, too. They confirmed the
existence of the X (6900). For CMS, the mass and width of
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the X (6900) are given as [21]
M[X (6900)] = 6.87 £+ 0.0375-%° GeV,
T[X (6900)] = 0.12 + 0.041303 GeV.

and ATLAS measures the mass and width of the X (6900) as
[22]

M[X (6900)] = 6927 &9 £ 5 MeV,
T[X(6900)] = 122 4 22 4 19 MeV.

Not limited to confirming the X (6900), they also find a new
fully heavy quark state, X (6600). These measurements cer-
tainly should be included in the analysis.

One would notice that the X (6900) is discovered in the
di-J /¢ invariant mass spectrum, which is also suggested
by earlier theoretical prediction Ref. [23]. Hence, it is not
a stretch to infer that this state is composed of at least two
charm quarks and two charm anti-quarks, resulting in a cor-
nucopia of models trying to classify its origin and search for
similar states, see e.g., Refs. [24-37]. Nonetheless, before
discussing its inner structure, a natural and fundamental prob-
lem is determining the mass, width, and quantum number
of the X (6900). Among the theoretical research, Ref. [24]
unitarize the amplitudes and fit them to the invariant mass
spectrum. They extract the mass and width of the X (6900)
as 68181%3 — i142f}3 MeV in the third Riemann sheet in
their two-channel case, with the quantum number either to
be 0T or 27T, while in the triple-channel case they do not
find such a pole. They also claim a near-threshold resonance
named X (6200). In Ref. [27], they discuss the nature of the
X (6900) and conclude that it could very well be confining
states or molecular states, but it is impossible to distinguish
them at present. In Ref. [32], they find that the wide peaks
between 6200 and 6800 MeV are caused by contributions of
S-waves, with the quantum number to be either 0™ or 27,
While the X (6900) can be regarded as a P-wave resonance,
with the quantum number to be either 0~ or 1=F. Nev-
ertheless, these works are not originated from partial wave
decomposition, and they assign a quantum number to the res-
onance. Correspondingly, only a sole partial wave is taken
into account when fitting the data.

In our earlier work [38], we perform an amplitude analysis
to extract the pole parameters (mass, width, and residues).
Nonetheless, the previous work is only about the LCHb’s
data, and we need to update it to include the new mea-
surements from ATLAS and CMS. The strategy is similar
to before: The amplitudes are calculated up to one loop
with effective Lagrangians, and partial wave projections are
applied. Padé approximation is used to perform unitarization,
and the scattering amplitudes are constructed. By fitting to
the experimental data, the unknown couplings of the effec-
tive Lagrangians are fixed, and thus one can obtain the pole
information of the resonance at last. With the pole informa-
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tion, one can study the nature of the X (6900) according to the
pole counting rule [39-41], which is helpful to distinguish
molecule or Breit-Wigner type origins. The conclusion can
be further tested by extracting the phase shifts of the scat-
tering amplitudes. As has been recognized in the last few
decades, phase shift is one of the most critical inputs for S-
matrix methods such as dispersion relation [42,43]. Obtain-
ing exact phase shifts would help to confirm the existence and
also give clues for the nature of the resonance.! Therefore,
we will also extract the phase shifts of the J /v J /¢ partial
wave scattering amplitudes.

In the following part of the paper, in Sect. 2, we build
the scattering amplitude and perform its partial wave decom-
position. In Sect. 3, we fit our amplitudes to the invariant
mass spectra of J/y-pairs and J /¥ (2S), determine the
mass and width of the X (6900) as well. Finally, we give the
conclusions in Sect. 4.

2 Formalism
2.1 Effective Lagrangians and scattering amplitudes

For the scattering of coupled channels J /v J /y-J /¥ (25)-
J/vyr(3770), we construct the following effective
Lagrangians?:

L=c1V, Vo VIV + 0V, Vo VIV + 3V, V VIV
+ea Vi VIV V' + sV, Vo VIV
+c6 Vi Vy VEV™ + 7V, V'V, V™
+egVu Vg VIV + oV, VIV V™, ¢))

where V, V', V" represent for J/v, ¥ (2S), ¥ (3770),
respectively. Note that the interactions of four heavier vec-
tor mesons, V””, such as V;i V,V'*V'™® are ignored since
the thresholds of V' V') would be heavier than 7.2 GeV,
beyond the energy region of the invariant mass spectrum we
focus on. The x.0xc0 and x.1 x.1 channels are ignored, too, as
the left-hand cuts generated by the meson exchanges through
t- and u-channels scatterings in the processes of J /¥ J /¢ —
XcJ XcJ are farther away than thatin J /¥ J /v — J /¥ J /¥,
J/wyr(2S), J/ Yy (3770).3 For more details, see discus-
sions in Appendix B. For simplicity, the interactions between
vectors and pseudoscalar or scalar mesons, for instance,
V Vrr terms, are not taken into account as what is done in the
hidden gauge symmetry formalism [48,49]. Also, we ignore

! Typical examples can be found in research for light scalars [44—47].
2 Some of the formalism has been given in Ref. [38], but for reader’s
convenience, we rewrite it and give more detials.

3 We are aware that if the X(6900) is not of molecule ori gin but rather a
bare state, these light meson exchanges would not play significant roles
on the dynamical structures.
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the intermediate channels of n.n., hche, as they are sup-
pressed by heavy quark spin symmetry [24,50], too. These
effective Lagrangians are consistent with the leading order
(LO) Lagrangians constructed by HQSS [51]. The heavier
meson with angular momentum J = 1 is realized in the
formalism of HQSS as

J=—1[H, v* — ,
) [,u)/ 77)’5] )

7 t 19
T =00y = ——Hy" + ']

1+

—
Consequently, the LO interaction Lagrangian for J /¥ J /¢ —
J/Wd /s

Lii8ss = a1(JTJ )

A R A e
_< g M = >
=2Ncg1V, Vo VHVY, (2

where N is the number of colors. It is the same as Eq. (1)
with ¢; = 2N¢ g1. The other interaction Lagrangians can be
obtained in the same way. With these effective Lagrangians,
we can calculate the scattering amplitude. The Feynman dia-
grams up to next-to-leading order (NLO) can be seen in Ref.
[38]. In the Appendix A, we give the concrete expression
of the amplitude T%. The superscripts ‘i, j* are labels for
channels, with the numbers ‘1,2,3” specified as J/yJ /¥,
J/Yr(2S) and J /Y (3770).

2.2 Partial wave decomposition

To clarify the quantum number of the possible resonances
that appear as the intermediate states in the scattering, we
need to carry out partial wave projection for the scattering
amplitudes. Partial wave projection of the helicity amplitude
is given as [52]:

(), (z5)-

ij _ - J.ij
Tmuz:mm(s’ ) = 167TN’J Z(ZJ + I)Tumz;mw
J

3)

Here one has z; = cos 6, with 6, the scattering angle in
the center of mass frame in s-channel. © = ©u; — w2 and
' = u3 — g are the difference in the helicities of the
two particles in initial or final states, respectively. N;; is the
normalization factor caused by the property of identical par-
ticles, with Ny; = 2 for J /Y J /¥ — J/¥J/y amplitude,
Nivii = V2 for J/yJ/yr — Ty (2S), J /¥ (3770)
amplitudes, and N = 1 for others. s is the Mandelstam vari-
able, with s = (p1 + p2)°. dlfw is the standard Wigner
functions defined according to rotations [52]. The partial
wave amplitudes 77 () can be obtained in Ref. [38].

123 43 4
Indeed, each polarization vector of Eq. (A1) can have three

different helicities, {+1, 0, —1}, as all of the quantum num-
ber of J/¥, ¥ (2S), and (3770) are 1~ . For details of
the polarization vectors, see Eq.(A6) in Appendix A. There-
fore, for each angular momentum J, there are as many as 81
amplitudes with different combinations of helicities. Never-
theless, according to discrete symmetry such as P and T,
these amplitudes can be reduced to much less independent
ones. The conservation of the amplitudes under parity trans-
form gives

7 _ n3n4 _1\S1Hs2—s3—saJ
s 8) = m( D™ T i3 —na 8>
“)

where 7; is the intrinsic parity of the i —th particle, and s;
is the spin. The conservation of the amplitudes under time
reversal transformation gives

J 7/
Lminans®) = Tispgipiop, (8- 5

Notice that the time reversal invariance holds true only if
the initial states are equal to the final states. According to
Eq. (4), the amplitudes will be reduced to 41 independent
ones. With the other constraints of Eq. (5), the amplitudes
will be reduced again, resulting in 25 independent amplitudes
in the processes of J /¥ J /v — J/WJ /Y, J/yy(2S) —
J/Yyr2S), J/Yyy(3770) — J/Yy(3770). See discus-
sions below.

In order to clarify the quantum number of the possible
resonance that appears as an intermediate state in these scat-
terings, we need to transfer the partial wave amplitudes from
|J M1 u2) tothe |J M LS) representation. This is converted
by the following operations [52]

1
2L +1\?2
|JM; pipn) = Z( ) (LSOu|J )

= \27 +1
X (sysopu1, —p2|Su) |JM; LS), (6)

where the Clebsch—Gordan coefficients can be found in PDG
[4]. With Egs. (3,6), the partial wave decomposition of each
helicity amplitude in the | J M L S) representation can be seen
Eq. (A11) in Appendix A.

Further, it is convenient to list the quantum number J pC
of the J /vy J /v system to separate the partial waves. In di-
J /¥ system, the charge conjugation and parity are given
by C = (=DEtSand P = (=DL. A pure neutral system
requires L + S to be even so that one has C = 1. Further,
we only consider the lowest partial waves with L = 0, 1
and ignore all other higher partial waves. That is, five partial
waves are included in total: The S-waves, 07T and 2t The
P-waves, 01, 171, and 2. See Table 1.

The quantum numbers in bold and italics in Table 1 are
those that meet the requirements of discrete and Bose sym-
metry. Since the higher partial waves of L > 2 are ignored,
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Table 1 Quantum number (J 7€) of J /v J /¥ system. The number in the bracket is in the |J M LS) representation, with the form of 25*1L

§S=0 S=1 S=2
0 0+t (IS()) 1+— 2++ (SSZ)
1 1= 0=+ CPy) 17+ (P 271 (3Py) == 277 37~
2 2+t 1t— 2t— 3+-— ott t+ pt+ 3+ g4+t

the partial waves of italics are excluded, and there is no cou-
pling between the partial waves of L = 0 and L = 2 (for
So —> Dy.). For the partial wave amplitudes 7/
(i # j, inelastic scatterings), there are 41 independent helic-

example, 1

ity amplitudes, and the partial waves can be expressed as

lego (s) =

Tyg () =

(SNOE
Ty () =

@ Springer

1

S o 21 - 27
2TOOOZ+ (9) + Toog(s )] ;

1 V6

Flhe+ il o]+ Froo

2, 2 2
+TE @+ T )+ T fr]++(5)]

ﬁ[ 2ij

2,ij 2,ij
5 L T+0 ) + Tigi () + T, (5)
2, 2, 2,
+To+li+(s) + T+ij o)+ T oli+(s)

FTPU () + Ty (s>] [féé+(s)

+

FTo40@) + T2 () + Ty 2” o) + T25L0(®)
TR ) + T () + T2 o<s>]

ﬁ 13 ] 1
5 [T+ T 0+ T o

2, 2,
Tt () + T2 () + T} +0 ()

2,ij

+T 70 () + 02+”+(s)] + 15 [ ii/oo( )
i ij 2 i
—|—T0201+(s) + Tozdof)(s)] + 1\?[ v (s
+TT ()] + = [ T )+ 1 )]
2’ ] 1
;g_[ ioéo( )+ Tozoio(s)
+T02-‘;-i({0 (s) + Tod(l;l;r(s )],
++++(S) ++——(s)
Lr 1 i
[ Toho®) = T3 ) = Tyilo(®)
HT o) = Tigh-(6) = Ty (9)

11] 1,ij
+To104 () + Toro-

®)

3P2( ) =

f[zl]

2,ij 2,ij
o) + Tigy () + Tiio, (5)
21] 2,ij 2 j
TToi4+(8) — +7IL 0o(®) — ()l++( 5)
21] 21] 21]
o) = To~ ++(s)] 5 [ To40(s)

2,ij

+To304 () — 0+0 (s) = —0+0(s)+Tiolé+(S)
o) = i () = T (o))
20 2

[ o -1 )] %

Due to the time reversal invariance, the partial wave ampli-
tudes of T/ (elastic scatterings), i.e., the amplitudes of pro-
cessesof J /Yy J /vy — J/ W/, J/yr2S) — J/v(2S),
J/ Uy (3770) — J /¥ (3770), have only 25 independent
helicity amplitudes and the partial waves can be simplified

as

Tig (s) =

Tll (S)

Tll

3P1 (S)

3P0(S) =

1 N N
2 [2T£il++ () + 27 _(s)

3

AT {0(5) + Tygp(o) .
22 o+ 12 )]

2§[ T2 0() + T2, () + T2 0(s)
T2 )]+ 3T + 5[12 )
HTH L) + T ) + Tl )]
+2“5f2[ T2 () + TH (5) + T2 (s)

4
1200, 0) |+ T2 + 5 [i(;;()(s)

T )+ T )+ THTo(o)]

#0100 + 22130+ 1)
+%[Tif++(s) + Tffrl——(s)]

T () = T (),

;[ T 3h0() = 2T )50, () + T L5 o (s)
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27 (5) + Ty, () + 75 ).
[ritw - o]+ 20

T, ) - 2y )]

+130[ 75400 + Toi04 () = Tgio_ (o)
0]+ 3T e - T 0] ®

For details of each partial wave, see Eq. (A13) in Appendix A.

T21l

3192 (s) = Hr+0(8)

2 ii
Ty o(s) —

2.3 Unitarizaton

The unitarity of the partial wave amplitudes in terms of the
|JMLS) representation is given as [38,52-54]. As can be
found in Table 1, there is no coupled partial waves with
different initial and final orbit angular momentums, where
L should be either zero or one. In the present analysis,
we consider the coupled channels scattering of J /vy J/y-
J /Uy (28)-J /¥ (3770). Therefore, one can write the uni-
tarity relation for each partial wave as

ImTJULS = Z jrs Pk T JLS’ (€))

2|pk| M2 (s mp m3)

Ey - N '
where ‘a=2, 3’ represents a couple-channels case or a triple-
channels case. See discussions below. For simplicity, the
quantum numbers ‘J, L, S* are ignored from now on. pj
is the phase space factor for the k-th channel, given as [55],
where m 1 and moy are the masses of the two particles in the
k-th channel. The triangle function A(s, m%k, m%k) has been
given in the Appendix A.

The scattering amplitudes given in Egs. (7,8) do not fulfill
unitarity since they are calculated according to the spirit of
perturbation theory. In order to restore the unitary, we apply
Padé approximation [40,41,56] to realize the unitarization.*
Here, the matrix Padé approximation is performed by con-
structing the amplitudes from the LO and NLO amplitudes.
One has

(10)

Pk (s)

T = TLO . [pLO _ pNLO}=1  TLO (11)

It is not hard to check that Eq. (11) can not only satisfy
coupled channel unitarity as given in Eq. (9), but also restore
the perturbation calculations up to NLO once the one-loop

4 There are some similar approaches that are successful in unitariz-
ing chiral amplitudes, for instance, the inverse amplitude method. See
Refs. [57-59] for details.

corrections are smaller than that of the tree diagrams. In
practice, the partial waves of 3 Py and 3 P (with the quantum
numbers 0~ and 2~ ) vanish at LO, and they are still small
at NLO. Hence, we do not perform unitarization on them to
avoid further complications to our model. Finally, we apply
the Padé approximation for three partial waves, 1 So, 5 S, 3 Py.
Furthermore, for 3 Py and 3 P, waves, we use the perturbative
amplitudes without unitarization. We sum these five partial
waves to obtain the invariant mass spectrum of J/y-pair
system and fit it to the data. The relation between S matrix
element and 7" amplitudes may also be helpful for searching
poles:

Sjk(s) = 8] +2i\/ pj () pr($) Tjx (s). (12)

With the fixed T amplitudes and S matrix elements, one can
extract the pole information and study the property of the
resonance. See discussions in the next section.

3 Fit results and discussions

3.1 Fit to the invariant mass spectra

With the partial wave amplitudes obtained by Padé approxi-
mation, one can get the helicity amplitudes and fit them to the

J /¥ J /¥ invariant mass spectrum. The events distribution is
calculated by [62]

d Events! .
——— =Nipenl(s) Y f dz,

/s 1243 4
a 2
i1
x Z“iTlimzusm(s’zs)
i=1
d Events? ~
—dﬁ N2 Py (s Z / dzs

14203 (L4
2

Za, M1M2M3u4(s’zf) (13)

i=1

where pcn and pl,, are the momentum of J/yJ/y and
J/¥yr(2S) in the center-of-mass frame, respectively. The
superscript of the summation symbol is the number of cou-
pled channels we consider, i.e., a = 2 for a couple-channels
case and a = 3 for a triple-channels case. The superscripts
‘1,2> represent for invariant mass spectra of di-J/v or
J/¥r(2S). Note that only ATLAS gives the data of the

5 We are aware that the Padé approximation is not as model-independent
as some other methods such as dispersion relation [60,61], and it violates
the crossing symmetry and introduce some fake poles [40,41]. However,
it is still successful in confirming the existence of the o and «, with
reasonable poles found in unitarized amplitudes of chiral perturbation
theory.

@ Springer
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J/ ¥ (2S) invariant mass spectra, which will be able to
perform a combined analysis on these two invariant mass
spectra. N 1,2 is a normalization factor. Notice that the other
factors, such as the integration on the azimuthal angle ¢, a
factor 277, and the normalization factor of the final states, have
been absorbed into the normalization factors N 1,2. The super-
script ‘i’ is the label for the channels. As discussed before,
the helicity amplitudes are composed of five partial waves,
Fig,(s), F55,(5), F3p,(s), F3p (s), F3p, (5). The quantitative
contributions of the intermediate states J /vy J /W to J /Yy J /¥
re-scattering are unknown. Indeed it is possible that each of
the amplitudes, T 721 and 73!, has a significant contri-
bution to the J /v J /¢ invariant mass spectrum. In addition,
the threshold of J /¢ J /4 (2S) is 6783 MeV, and the thresh-
old of J /v J /v (3770) is 6867.6 MeV, which is close to the
X (6900) and may play a significant role on the resonance
structure in the invariant mass spectrum. Hence, the strategy
we use here is that: each channel, 7;; (T;2), contributes a
ratio, «;, with the normalization condition Zi ozl.z = 1. Note
that the aiz and N are multiplied together and fitted to the dis-
tribution of the events. Hence the normalization condition is
to fix the dependence between them. The specific expression
of the amplitude part of Eq. (13) can then be expressed as

1] o 2
2 e s 52| dzs
M2 3[4 i=1
= 5127 [ RO +SIFZ @R + 1 F o)
H3F P +SIF 6P ], (14)

The relationship between F amplitudes and T amplitudes can
be expressed as

F}ps(s) = a1 N1T}Lg(s) + aaNaT 7L 5 (s) + azN3 T3} g(s),
F?,4(s) = aiN1T}? o(s) + 02 NaT 77 o(5) + a3 N3 T (s),
(15)

Here N; is the normalization factor caused by the property of
identical particles in the initial states of 7 amplitudes, which
is given as N| = V2 and Nz 3 = 1. Indeed, the way to
achieve F Jles (s) is the same as the Au—Morgan—Pennington
(AMP) method [63,64], where final state interactions [65]
is taken into account systematically, with ¢; including the
left-hand cut and distant right-hand cut.

As discussed above, except for measurements on the
invariant mass spectrum of J /¢ pairs by LHCb collaboration
[20], there are two other new measurements. One is from the
CMS collaboration [21], where the X(6900) is confirmed in
the invariant mass of di-J /v, and also a new X(6600) reso-
nant structure is observed. The other is from ATLAS collab-
oration [22], where they measured the invariant mass spec-
tra of 4, both from di-J /¢ and from J /-y (2S), respec-
tively. Following these three sets of data, we perform three

@ Springer

kinds of fits. Each focuses on one data set, and each has two
fits: one for couple-channels case (J/y¥J/¥-J /v (2S))
and the other for triple-channels case (J /v J /¥-J /¥y (25)-
J /Y (3770)).5 At the end of the day, we classify our fits
as follows: the ones for LHCb (Fit. I for the couple-channels
case and Fit. IV for the triple-channels case), for CMS (Fit. II
and Fit. V), and for ATLAS (Fit. III and Fit. VI).

The input parameters, such as the masses of the parti-
cles, are taken from PDG [4]. They are given as: mj,y =
3096.9 MeV,mw(zs) = 3686.1 MCV, My, (3770) = 3773.7MeV.
The renormalization scale of one-loop amplitudes is taken to
be u = 1 GeV. The other parameters, the couplings of the
effective Lagrangians and the normalization factor, are fixed
by MINUIT [66], which is a common tool to find the solu-
tion with minimum Xg, o.f." The parameters and the Xi of Of
Fits. I, II, and I1I are shown in Table 2 for the couple-channels
case. Those of Fits. IV, V, and VI are shown in Table 3 for the
triple-channels case. The errors of the parameters are mainly
from bootstrap [67] rather than MINUIT, as the latter is much
smaller. The uncertainties of bootstrap are counted by vary-
ing the experimental data within its uncertainty, multiplying
a normal distribution function. The fit results are shown in
Fig. 1.

It can be found from Tables 2 and 3 that, almost in all the
Fits, ¢, c4 and c7 are relatively large, indicating that 77 12 122,
and 733 play significant roles in the coupled channel scatter-
ings. They could contribute to the di-J /¥ spectrum through
process such as J/y v (2S) — J/yy(2S) — J/YyJ/¢.
This implies that J /¥y (2S) should have a relatively signif-
icant contribution to the resonant structure of the X (6900).
The strength of the couplings confirms this point. See dis-
cussions on the residues of the X (6900).

As can be seen in Fig.1, the solutions of the triple-
channels case fit better to the data in the energy region from
6200 MeV to 6800 MeV than those of the couple-channels
Fits. In comparison, both of them fit perfectly around 6900
MeV (the resonant structure for the X (6900)) except for
Fits.IIT and VI, the couple-channels cases for ATLAS. Of
course, the Xj o.f. (except for that of the ATLAS’s) of
couple-channels and triple-channels are almost the same,
though the latter has better fit quality. This is caused by
the fact that there are more parameters in the triple-channels
case. Correspondingly, the contributions from re-scatterings
such as J /Yy (3770) — J/vJ /¢ and J /Yy (3770) —
J /¥ (2S) have been included. It should be stressed that
though the J /v (3770) channel will contribute little to the
X (6900), it supplies a significant background to the J /¢ J /¢
invariant mass spectra and thus improve the fit quality, espe-
cially around the J /vy (3770) threshold.

6 InRef. [38], we have already presented the results with LHCb’s exper-
imental data. Here we add the fits for the data sets of CMS and ATLAS
to check the stability of the conclusion.
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Table 2 Parameters of couple-channels case. The unit of the normalization factor N is 10~*MeV 2. The uncertainties of the parameters are taken

from bootstrap

Fit.Il (CMS)

Fit.ITl (ATLAS)

Parameter Fit.I (LHCb)

¢l —0.12360:0001
o —0.533610:0021
c3 —0.31800:901
ca —0.617870:023
Ny 1.560070 555
N>

a 0.383170:019%
@ —0.923710:0089
Xios. 1.31

—0.1504 99001
—0.6203 105001
—0.3492F 00004
—0.6835 0000

+0.1404
0.53367) 0703
+0.0012
0.3510% 5001

+0.0001
—0.93647 ) 1009
1.77

—0.0618™+0:0001
—0.3369 0000
—0.317110:0001
—0.5386 100078
0.1888015%
0.2200190758
0.18123:0473
0.9834 103808
2.53

Table 3 Parameters of triple-channels case. The unit of the normalization factor N is 10~*MeV~2. The uncertainties of the parameters are taken

from bootstrap

Fit.V (CMS)

Fit.VI (ATLAS)

Parameter Fit.IV (LHCb)

ci —0.1254 5500,
o —0.586010 0001
c3 0.1908™0.00%%
cs —1.0690700053
cs —0.0611795001
c6 —0.28117+0:000¢
7 0.599410:0007
cs 0.261870:0003
co —0.2169100007
Ny 24583103538
N>

a 0.362470032
@ —0.8610704972
a3 —0.3568™0 0053
Xdo. f. 1.30

01466708
0589270007
000721308
0847670008
008927008
034687900
0795013020
0.5205120001
067897007
0‘7274-%-0.2454

—0.1157

+0.0018
027215 9003
+0.0276
—0.93127 ) 008
+0.0912
—0.24267 ) o517
1.95

~0.12587 00!
—0.58951 00001
009930008
—1.0289 100011
~0.0542500
—0.2897:0002
0.5903 90002
022097485
—0.2408 0000
014877070
0.124755!
0.1761100552
07333380
065670

1.91

Our Fits. I and IV for LHCb data have much smaller
X{?' o.f." The reason is as follows: For the data of ATLAS,
it has fewer statistics and data points. Not to say that some
of the data points are not so consistent with each other in
the energy region around the X (6900); For CMS’s data, it
has an apparent ‘peak-like’ structure in the energy region
around 6500 MeV, but our solutions do not have such a struc-
ture. Hence, the Xz%u. 7 is larger. Of course, our main goal
is to extract the pole information and the quantum number
of the the X(6900). Hence, we will satisfy the fit around
6500 MeV and pay more attention to the energy region
around 6900 MeV.” Roughly, the solutions of Fits. I/IV (for

7 Indeed, our solutions do not find a pole like the X (6600). It should
be caused by either more complicated dynamics such as two-loop con-
tributions or contributions from some other channels.

LHCb) and Fit.Il/V (for CMS) are similar to each other, as
shown in the four graphs at the top of Fig. 1. This is confirmed
by the relatively small differences between their parameters.
See Tables 2 and 3. For the solutions of ATLAS, they fit well
the invariant mass spectra of di-J/v and J/¥ ¥ (2S). See
the last four graphs at the bottom of Fig. 1. Nevertheless, the
latter has fewer statistics, and we will focus on the former
to extract pole information. See discussions in the following
sub-section.

3.2 On the nature of the X (6900)
To study the nature of the X (6900), one needs to extract the

pole locations (mass and width) and quantum numbers from
the partial wave scattering amplitudes. Firstly we need to

@ Springer
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Fig. 1 Fits to the invariant mass spectra and individual contribution
of each partial wave. The graphs on the left side are for the couple-
channels case, and the ones on the right side are for the triple-channels

extend the partial wave amplitudes to the complex-s plane. It
is performed by unitarity and reflection, and now searching
for poles is converted into finding zeros of Si1, Sz, detS,
etc. See Ref. [55] for details of the definition of nonphysical
Riemann sheets. One also needs to search for poles in the
relevant partial waves, i.e., 1So, 552, and 3P1 waves, while
the other two (> Py and 3 P, waves) are rather small and con-

@ Springer

My pgas) MeV]

case. The data sets are taken from Refs. [20-22]. The cyan bands are the
uncertainties of our solutions, taken from the bootstrap method within
20

tribute as a background. Finally, only one pole is found in the
1Sy partial wave. All the pole parameters are shown in Tables
4 and 5 for couple-channels and triple-channels case, respec-
tively. Though the invariant mass spectra are quite different,
it is impressive to find that the pole parameters are somehow
stable in all these solutions. Firstly, we only find one resonant
state in the ! Sy (with quantum numbers of 07+) partial wave
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for each of these fits. Specifically, in each solution, we find
two poles for the couple-channel case or four poles for the
triple-channels case in the unphysical Riemann sheets (RS).
Even the RSs (where the poles locate) are the same for these
different solutions. This confirms the reliability of the model
and also the extracted pole parameters.

For the couple-channels case, two poles can be found in
RS-1I and RS-1IT in 'Sy wave. The latter is the closest one
to the physical sheet. The pole parameter of Fit. I (fitting
to the LHCb data) is M = 6880.4757 and I' = 55.6753,
that of the Fit. II (fitting to CMS’s) is M = 6893.2"}%7
and I' = 75.410%, and that of Fit. III (fitting to ATLAS’s)
isM = 68556.64_';19'3 and ' = 41.21'8:3. According to the
pole counting rule [39,40], a pair of accompanying shadow
poles in RS-II and RS-IITI indicate that the X (6900) should
be a Breit Wigner type particle. In another aspect, this res-
onance state contains at least four quarks (cccc), so it is
likely to be a compact tetra-quark state. Its couplings to the
J/WwJ /v, J/Yy(2S) channels are given in Table 4. The
magnitudes of g; and g, are large and in the same order. Both
of them are much larger than that of g3. It implies that the
two channels, J /¥ J /vy and J /¢ (2S), couple strongly to
the X (6900). This is compatible with our discussions above,
where J /¢ (2S) should have a relatively large contribution
to the di-J /v invariant mass spectrum.

For the triple-channels case, we find four poles in RS-II,
RS-III, RS-IV, and RS-VII, and again in 1So wave only. The
information about their pole parameters is shown in Table
5. In the energy region between ,/s;p, = 6783.0 MeV and
/Sti; = 6870.6 MeV, RS-1V is the closest one to the physical
sheet, while in the energy region above , /575, = 6867.6 MeV,
RS-IV is the closest one to the physical sheet. Specifically,
the poles being closet to the physical sheet are as follows:
M = 6862.07¢3 and I' = 137.8"33 in RS-V for Fit. IV
(fitting to LHCb’s); M = 6878.97 13 and I' = 146.2737 in
RS-1V for Fit.V (fitting to CMS’s); And M = 6883.87}%3
and I = 146.873% in RS-IV for Fit.VI (fitting to ATLAS’s).
It can also be seen from Table 5 that for each fit, g3 is much
smaller than g; and g». This confirms that J /v (3770)
should contribute little to the X (6900). However, as we have
pointed out in Ref.[38], it still contributes to the amplitudes
significantly as a background. This also demonstrates the
correctness of our choice of a couple-channels model. Since
there are four accompanying poles in the unphysical sheets,
it again suggests that the X (6900) should be a Breit- Wigner
type particle. Further, it should be a compact tetra-quark state,
similar to the conclusion of the couple-channels case.

We show the contribution of each partial wave in Fig. 1.
The blue solid, brown dashed, gray dotted, olive dash-dotted,
and pink solid lines are for 1 So, 5 S7, 3 Py, 3 Py, and 3 P> waves,
respectively. As can be seen from Fig. 1, for each solution,
in the energy region between 6200 MeV and 6800 MeV, the

contribution is mainly from the 58, partial wave, and 1§y and
3P| have small contributions in most of solutions. Also, no
waves have a resonance-like structure around the 6600 MeV.
This is compatible with the fact that we do not find a pole
relative to the X (6600). In contrast, in the energy region of
[6800, 7200] MeV, the main contribution is from 'Sy and
5S2, while the other contributions from the P-waves can be
ignored. In all these solutions, the 'Sy partial wave has an
obvious resonant structure around 6900 MeV, and the 5S2
partial wave contributes as a smooth background. It suggests
that the X (6900) should be !So(07*) state. The shape of
the contribution of the X (6900) is similar to a normal Breit-
Wigner’s, being compatible with the conclusion from the
pole counting rule. That is, the X (6900) looks like a normal
Breit-Wigner resonance.

As discussed in the introduction, the phase shifts help
study the property of the state. With intuitive views, a nar-
row Breit-Wigner resonance should have a step-function-like
phase shift of the scattering amplitude, which dramatically
jumps from O to 7. Therefore, we give the phase shifts of
s(J/y I/ — J/¥J /) of each partial wave, shown in
Fig.2. For all the Fits, these phase shifts are similar to each
other. The phase shift of the ! Sy partial wave is very likely
to be generated by a normal Breit-Wigner resonance, which
rises 180° steeply and crosses 90° around 6900 MeV. The
phase shifts of other partial waves are tiny, and they should
contribute as smooth ‘backgrounds’, which changes slowly.
In contrast, we do not find any poles in these partial waves
too. This again supports the hypothesis that the X (6900) is
a tetra-quark state with the quantum number of 0.

4 Summary

In this paper, we consider two models of coupled channel
scatterings: J /W J /W -J /Yy (2S) and J /Y T/ -J /Y (25)-
J /¥ (3770). The effective Lagrangian is constructed, and
the corresponding tree and one-loop Feynman diagrams for
the scattering amplitudes are calculated. With these ampli-
tudes, we perform partial wave decomposition to separate
different partial wave amplitudes, where lSO, 58,,3 Po,3 Py,
and 3 P, waves are left. The padé approximation is applied
to recover the unitarity. By fitting to the di-J /v invari-
ant mass spectra of LHCb, ATLAS, and CMS, as well as
the J/y ¢ (2S) invariant mass spectrum from ATLAS, the
unknown couplings are fixed. The amplitudes are contin-
ued to the complex-s plane. From them, we extract the pole
parameters for each partial wave. Our fits, coming from the
triple-channels case, give the mass and width of the X (6900)
as: M = 6862.0%¢3 and I' = 137.8"} ) in Fit.IV, fitting to
the date of LHCb; M = 6878.97113 and I' = 146.2%37
in Fit.V, fitting to the date of CMS; M = 6883.87}%> and
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Table 4 Poles locations and residues for Fits. I-III. RS represents the Riemann sheet, and the signs in the bracket are for the phase space factors,

p1, and pp
Data RS Pole location (MeV) Iy = lgle'? Iy (RS) = Igle’®
lg11(MeV) @1(°) |g2|(MeV) (%)

LHCb (Fit. I) I(—+) 6882.8753-i16.572% 992.51363 ~89.970% 684.340 89.1701
II(——) 6880.4754-i27.8732 981.2%3%2 874101 681.0757 84.9102

CMS(Fit.IT) (—+) 6897.47,%7-i20.9%07 1113.74)] 89.9701 8153757 88.9701
II(——) 6893.271%7 ~i37.793 1104.27%2 86.5103 804.5757 83.8101

ATLAS(Fit.IIl) I(—+) 6887.313%-i16.710 2 821.17355 —89.970-1 3945723 88.7701
II(—— ) 6886.673%* —i20.610 820.874% 89.1701 393.0723 85.870]

Table S Poles locations and residues for Fits. IV-VI. RS represents the Riemann sheets, and the signs in the bracket are for the phase space factors,

p1, 2, and p3
Data RS Pole location (MeV) g]/¢]/w = |g|ei‘p gj/v”/,(zs) = \glei“’ gj/¢¢(3770) = |g\ei(p
1g11(MeV) @1 (%) [g2/(MeV)  ¢2(%) [g3|(MeV)  ¢3(°)
H +5.0 - +1.7 +21.6 +0.3 +14.9 —+0.1 +0.7 +1.2
LHCb (Fit. IV)  I(—++)  6874.8739-i50477  1398.5%71% 859703 o962.1%|55  84.670, 182707 ~79.9%53
M(——+)  6862.07¢3-i68.970 136477390 80.6707 927473 775707 19.370] ~79.010%
IV(———)  6862.07¢3-i68.9710  1361.67199 807702 9253715 77504 194707 ~78.6703
VII(—+—)  6874.8739-i50.47]] 1394.37177 8591024 95927107 845701 1847 ] ~79.2%0%
CMS(Fit.V) M(—++)  6888.47053 459407 14528751 856701  795.8T)3% 833701 38.87F] 82.2+03
Mi(——+)  6878.97013473.173¢ 14303724 82070 773905 778701 364727 65.0%0¢
IV(———)  6878.971373.173¢ 143051188 820101 773.87%]  77.8%07 36773 65.675%
VI(—+—)  6888.4715550.4707 145231244 856701 79547330 833701 394722 83.4703
ATLAS(FItVD) (- ++)  6897.77%'-i50.9705  1409.8%13° 86270  997.07%% 850701 57701 56.779%
M(——+)  6883.87}%3 —73.473% 13736705 80.870 ]  960.0775 77510 7.2701 21.6%1%
IV(———)  6883.87)%3-73.472%  1379.01)%°  80.870  963.8T])  77.5%01  7.3701 22.1%
VI(— +—)  6897.70%" -i50.9%07 14067105 86210 994.9M7%  85.07]  5.8%07 57.6107

' = 146.877 in Fit.VL, fitting to the date of ATLAS. All
of these poles are from ! Sy wave, implying that their quan-
tum number is 07", Since we find a pair of accompanying
poles in the couple-channels model and four poles in the
triple-channels model, the X (6900) is likely to be a Breit-
Wigner type particle, i.e., a compact tetra-quark. We check it
by extracting the phase shifts of each partial wave, and it sup-
ports the Breit-Wigner origin. Nevertheless, our solution can
not describe the data around 6500 MeV well. Correspond-
ingly, the X (6600) is not found in our study, though it will not
affect the results about the X (6900). To clarify the X (6600),
one needs more information about the dynamics in the rel-
evant energy region. More experimental measurements on
the angular distributions would lend credibility and plausi-
bility to the partial wave decomposition and further study the
nature of the X (6900).
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Appendix A: Scattering amplitudes

The scattering amplitudes 7%/ can be expressed as

T = FJl (e1 - £2)(e3 - €3) + Fj) (61 - €5)(e2 - &)

+F) (61 &) (82 - €3), (AD

The subscripts ‘1,2,3,4” of the polarization vectors are the
labels for the particles. The subscripts ‘(a,b,c)’ are used to
tag form factors with different polarization structures. Notice
that the effective Lagrangians do not contain derivatives.
Hence, the polarization vectors are contracted by the met-
ric tensors g*# g”‘,ﬁ, without complicated momentum terms,
resulting in a simple formalism for the scattering amplitude
as shown in Eq. (A1). The specified expressions of the form
factors F o (k =a, b, ¢) up to NLO can be found in Eq. (A2).
The coupled channel scattering amplitudes up to the next-to-
leading order are written as Eq. (A1l). The form factors F, (,{)
are given by

Fl) = 8ci + —|256c1 Bo(s, mi, m?)

=
+32¢3 Bo(s, m3, m3) + 320530(s m3, m3)
+(32¢3 + 16¢3¢4) Bo(s, m3, m3)
+(320é + 16¢6c7) Bo (s, m%, m%)

(b)

(c)

+(16¢3 4 8cgco) Bo(s, m3, m3)

+64¢1 Bo(t, m3, m?) + 8¢5 Bo(t, m3, m3)
—}—SCgBo(t m% m%) +4cﬁBo(t m% m%)
+64¢? Bo(u, m3, m?) + 8czBo(u, m?, m2)
+80§Bo(u, m% m%) + 4c§Bo(u, m% m%)

+4C7B()(u mg,m3)+2c930(u mz,m3)]

=8c; + SC%Bo(s,m%,m%)

T z[
+8CSBQ(S‘ ml , m3) + 64c1 By (s, m1 , ml)
—|—32czBo(t, ml, mz) + 32c5 By(t, ml, m3)

+256¢7 Bo(t, m}, m?) + 8¢3 Bo(u, m?, m3)
+8CSB()(M m],m3) —|—64clB()(u m],m])

+209 Bo(s, mz, m3) + 4C4Bo(s, mz, mz)

+4C%Bo(s, m% m%) + 8cg(2¢s + ¢9) By (t, m% m%)
+16¢3(2¢3 + c4) By (¢, m%, m%) + 4c§Bo(u, m%, m%)
+16¢6(2¢c6 + ¢7) Bo(t, m%, m%) + ZCgBo(u, m%, m%)

+4C7B()(u mg, m3)]

=8c; + SC%Bo(s,m%,m%)

=
+8CSBQ(S‘ ml , m3) + 64c1 By (s, m1 , ml)
+64c¢1 Bo(t, m}, m}) + 32¢3 Bo(u, m3, m3)
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—|—32c§Bo(u, m%, m%) + 2566%30(1/!, m%, m%) +2¢2(2cg + ¢9) Bo(u, m%, m%)
+2C§Bo(s, m% m%) + 4C%Bo(s, m% m%) +4(2ce + ¢7)csBo(u, m%, m%)
+4C%B()(S, m%, m%) + ZCSBO(I, m%, m%) +16¢1¢5Bo(u, m%, m%)],

+4cﬁBo(t, m%, m%) + 4C%B()(l‘, m%, m%)
+8cs(2cs + c9) Bo(u, m3, m3)
+16¢3(2¢3 + ¢4) Bo(u, m%, m%)

+16¢6(2¢s + ¢7) Bo(u, md, m3) |,

1
Fipy = 2es + 1e—512¢2(2cs + ¢o) Bo(s, m}, m3)

+42ce + ¢7)c5Bo(s, m%, m%)
+16¢1¢5By (s, m%, m%)
+2¢2(2¢g + 7o) Bo(t, m3, m3)
[4(2¢3 + Teg)er Bo(s, m}, m3) +4(2c6 + Te7)es Bo(t, m7, m3)
+64cicsBo(t, m7, m?)
+2¢2(2¢8 + ¢9) Bo(u, m, m3)
+42ce + ¢7)c5Bo(u, m%, m%)
+16¢1c5Bo(u, m3, m3)],

F(laz) =20 + Ton?
+2¢5(2¢8 + 7o) Bo(s, m3, m3)
+64ci1cyBo(s, m%, m%)

+4(2¢3 4 c4)ca Bo(t, m3, m3)
+2¢5(2c8 + ¢9) Bo(t, m3, m3)
+16¢1cy Bo(t, m%, m%) F(lg = 2c¢5 +
+4(2c3 + c4)ca Bo(u, m%, m%)

+2¢5(2cg + c9) Bo(u, m%, m%)

+16¢1¢3 Bo(u, m%, m%)],

31202 Ccs + o) Bos, mi, m3)

+4(2c¢ + c¢7)csBo(s, m%, m%)
+16¢ic5Bo(s, m%, m%)
+2c¢2(2cg + ¢9) Bo(t, m%, m%)
[4(2¢3 + ca)ea Bo(s, m7, m3) +4(2¢6 + c7)cs Bo(r, m3, m3)
+16¢1c5By(t, m%, m%)
+2c2(2cg + 7c9) By (u, m%, m%)
+4(2c6 + Te7)cs Bo(u, m3, m3)

F2 =204+ —
b =22 62

+2¢5(2¢8 + ¢9) Bo (s, m3, m3)
+1601CZBo(s,m%,m%)
+4(2c3 + Tea)ea Bo(t, mi, m3)
2 2 +64cicsBo(u, m?, m?)]
+2¢5(2¢g + Tcg) Bo(t, my, m3) >y, myl,

+64cicyBo(t, m%, m%)

F& =2cs+ [8c4(2¢3 + 3c4) Bo(s, m3, m3)

+4(2¢3 + ca)ea Bo(u, m3, m3) 1672
+2¢5(2¢s + c9) Bo(u, m7, m3) +2¢9(2¢s + 3c9) Bo(s, m3, m3)
+16¢1c2Bo(u, m%, m%)], +160%Bo(s, m%, m%)

1
1672
+2¢5(2cg + ¢9)Bo(s, m%, m%)
+16¢1¢2 By (s, m% m%)

2 2 )
F(lc% =2¢ + [4(2c3 + ca)caBo(s, m, m3) +16cicaBo(t, my, my) + 16¢3c4Bo(u, my, m3)
+4cgco Bo(u, m3, m3)

+4c3 Bo(u, mi, m)],

+4(2e3 + ca)ea Bo(t, m3, md) F(zbz) =dc3 + #[4(4% + ¢} Bo(s, m3, m3)
+2¢5(2cg + c9) Bo(t, m%, m%) +(4c§ + c%)Bo(s, m%, m%)
+16¢1c2Bo(t, m3, m?) +4¢3Bo(s, m}, m3)

+4(2¢3 + Tea)cr Bo(u, m3, m3) +16¢1(6¢3 + c4) Bo(t, m3, m?)
+2c¢5(2cg + 7c9) Bo(u, m%, m%) +4(4c§ + cZ)Bo(u, m%, m%)
+64c1cyBo(u, m3, m3)], +(4c§ + c3)Bo(u, m?, m3)

1 2 2 2
Fi) =2cs + Toq2 1262 +7¢o) Bos, m1, m3) ey Bolu, my, mpl,
T

+4(2c6 + Te7)es Bo(s. m?, m3) Fy = 2c4+ Te2 H6cacaBo(s, mi, m3)
+64ci1c5Bo(s, m%, m%) +4cgcgBo(s, m%, m%)

+2¢2(2¢3 + c9) Bo(t, m3, m3) +4¢3 Bo(s, m3, m3) + 16¢1c4Bo(t, m3, m?)
+4(2c6 + ¢7)csBo(t, mi, m3) +8¢4(2c3 + 3¢4) Bo(u, m?, m3)
+16¢1c5Bo(t, m%, m%) +2c9(2cg + 3¢9) By (u, m%, m%)
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+160230(u ml,ml)]

F(2a3) =09+ — 167r2 [4(cacs + c3co + 3caco) Bo(s, m3, m3)
+4(cqes + coco + 3¢7¢9) Bo(s, my, m3)
+16¢3¢5Bo(s, m%, m%) + 8cicoBy(t, m%, m%)
+4(cacs + c3c9) Bo(u, m3, m3)

+4(c7c8 + coco) Bo(u, m7, m3)

+4cyes Bo(u, m3, m))],

Fi) =2cs + [2(4c3cs + caco) Bo(s, mi, m3)

1
1672
+2(4cecg + c¢7¢9) Bo (s, m%, m%)
+4cres5Bo(s, m%, m%)
+8¢1(6¢8 + c9) Bo(t, m7, m3)
+2(4c3c8 + cac9)Bo(u, m%, m%)
+2(4cecg + c7¢9) Bo(u, m%, m%)
+4crc5Bo(u, m%, m%)],

23 1 2 2

Fo=co+ 167[4(6'408 + ¢3¢9) Bo(s, my, m3)
+4(cqes + coc9) Bo(s, m3, m3)
+4cres5Bo(s, m%, m%) + 8c1c9By(t, m%, m%)
+4(c3co + c4(cg + 3¢9)) Bo(u, m3, m3)
+4(cgco + c7(cs + 3¢9)) Bo(u, my, m3)
+16¢2¢5 Bo(u, m3, m],

Fé;) =2c7+ — o2 [2¢9(2¢g + 3¢9) By (s, ml, m2)

+8¢7(2¢c6 + 3¢7) By (s, ml, m3)

—|—160530(s ml,ml)—i— 16¢c1c7Bo(t, ml, %)
+4cgcogBo(u, ml, m2) + 16¢6c7Bo (1, ml, m%)
+4CSB()(M ml,ml)]

F(?f) =dce + (4c§ + cS)Bo(s, m%, m%)

W[
+4(4cé + c%)Bo(s, m%, m%) + 4C§Bo(s, m%, m%)
+16¢1(6¢6 + ¢7) Bo(t, m7, m?)

+(4c§ + c%)Bo(u, m%, m%)

+4(4ck + ) Bo(u, m3, m3) 4 4c2 Bo(u, m3, m?)),

1
F(3c3) =2c7+ WMC&@BO(& m%, m%)

+16¢6¢7Bo(s, m3, m3) + 4c2 Bo(s, m7, m3)
+16¢1¢7Bo(t, m%, m%)

+2c9(2cg + 3c9) Bo(u, m%, m%)

+8¢7(2¢6 + 3¢7) Bo(u, m3, m3)

—|—160§Bo(u, m%, m%)], (A2)

where s, f, u are the Mandelstam variables with s = (p; +

p3)?t = (p1 — p3)? and u = (p; — pa)®. my 2,3 represent
for the masses of J/vr, ¥(25), and 1 (3770), respectively.

Notice that the first term of each form factor is from the tree-
level Feynman diagrams (LO), and the left parts are from one-
loop diagrams (NLO). The scalar function By(s, m2, m3) is
defined as [68]

A1/2 Svm27m2
Bots,m2,mf) = 2 e )y

N <\/S — (ma +mp)? — /s — (mg —mh)2>

Vs = (ma —mp)? + /s — (mq +mp)?
2 2 2 2
mp (ma —myp +S) mp
—1In (7) +2+ Tln(yﬂ(lz) s
(A3)

where A(a, b, ¢) = (a+b— c)2 —4ab is the triangle function.
In the equal mass case, it can be simplified into

2
m_z) — p(s,m)n (—p(s’ mx 1)
2 p(s,m) — 1
+2, (A4)

with p(s, m) = /1 — 4m? /s the phase space factor. Note
that in the calculation of the one-loop diagrams, the propa-

gator we used is
g/w - 5)
2 — m2 ’

where the Feynman gauge is applied, i.e., £ = 1. The polar-
ization vectors are expressed as [69,70]

By (s, m2, mz) = —1In (

k/l,kU

iDy,(k) = (AS5)

. V2 .
el (pr, ) = - (0; F1,=1,0)
T
5 [P1]
el (p1,0) = (”— 0,0, _) ,
m m
ey (Pr, +) = £(0; +1,-i,0)"
o D E>
6§(P270) = <|p | 0 0 __) )
m mo
- 2 .
€§(p3, +) = %_(O; Fcosby, —i, £sinby)T
- T
R E; . E
E?(P&O) = <@ =3 sin 6y, 0, —300595) ,
m3 ms3 m3
- 2 .
€y (Pa, ) = %(O; + cos by, —i, Fsinby)”

T

. E E

(P4, 0) = (—'p“' — % Gine,,0, -4 cos@s) . (A6)
ny ny nmqy

where E; = \/m? + | p;|? is the energy of the i —th particle,
and 6 is the scattering angle in the x — z plane. Here the
overall phase of the polarization vector of spin-one particle
has been fixed such that

e"(p, =) = (=D)*e’(p, M)*. (A7)
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For the other particle moving in the — p direction, one has
(=P, —2) = —5g*Peg(p, 2). (A8)

where g“ﬂ = diag (1, —1, —1, —1) is the metric tensor. Note
that there is no summation on the indices 8. One has &), = 1
for the other particle in the initial/final states in the Jacob-
Wick convention [71]. In summation, these spin-1 polariza-
tion vectors satisfy

€(p, 1) - €(p, M) = =8 (A9)

For the scattering of the coupled channels, J /v J /-
J/ Uy (28)-J /¥ (3770), the 41 independent helicity ampli-
tudes are given as:

T LYSRTIILY /A )2F]!
it (s, z9) = (a) + 4(25 ) ) + Z(Zs -D (©)*

Tz = 3 (1=2) () + R,
Tz = 3 (1= 2) (i + R,
Tij+7+(5’ %) = i (1-z )(F(’Ii) c))’
TV, (5,2) = i( — ) (F, + F).

ij
Tihiols,zs) =

(f(zs-i-l)‘/l—z Es Lij

4m, (b)
+\/§(Zy 1)\/1_Z E2 lj)
(c)
i _ \/E(Zs 1)\/ 1 —z5 IE4 Fl
Fo4 (8:25) = 4mg Fip)
+[(Zv_1)\/ E4 lj)
(c)
Tij _ \/E(Zs l)\/ 1- s El 1]
0+ (8 25) = 4m, Fep)
+f(Z¢ - 1)\/ El lj
4m Foy
Tt] f(zs + Dy/1 E3 z]
0+ (8 25) = 4m; Fip)
f(zs_l)vl_ZES lj
4ms Fer

Ti]+77(ss Z5) = (a) + (Za I)ZF(IIZ) + - (Zs + 1)2 (C)’

. 1
T (5.2) = G+ D) 2(F) + F).

1
T+ _+(S Zs) = 7(25 -1 (F(Ib/) F(lcj))

f(zs—l)\/l—z Es ij

i
T+]+_0(S» Z5) =

4msy Fip)
f(Zs +1)\/ E2 1]
4my Foy
_ V2 =DV - RE
Tt 0++(5 ) == 4ma Fiy)
V2 + DT 2FEs )
4my (‘)’
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T _ Z;)\/iEl l]
Yro- (8, 25) = Ay Fp
V2T FE L
4m (‘)’
Vaa —mﬁ Es
T 1108 29) = — fzf)
f( 1-— Zs)\/iES lj
4ms (‘)’
” V2 A DVT=Ea i pis
4— +()(S Zs) = 4m, (b) (‘))
V2(zs + Dy/1— Z§E4 ij
T (s.25) = — s (Fghy + Fy).
y V20 - z;)ﬂ& i, i
T oy (s.25) = — (Fy + Foy)
. f(l -z )\/ 22E;3
ij S ij
Ty (s.25) = (Fy + F).
ij _ Zy)\/ E2 ij ij
T o(s.25) = — Fipy + Fey)-
Tij _ _Zx)\/ _ZSE4 sz
o408, 29) = s i+ F),
L. ﬂ(—z — 1)1/1 —ZZEl
ij _ -S S ij ij
T2 o (s, 25) = . Fipy + F&y)»
” _ 2z - 1)ﬁEs Fii
or_(5,29) = — o () + Fi)),
i E\E; + p?
ij — _Z1=2 T Pem pij
Tio0(s:25) = — Fa
2
w(ﬂ/ )
2mym, (b) (()
. E3E4+ (p. )2 ij
ij _ _ema v \Mem/
Too++(5.25) = mama Fay
(& = 1) EsBq s
s ot Fi):
(zs + D (zsE2E4 — Pem Py) ij
+0+0(S Z) = 2momy C
LB R
2momy ©>
i _ (Zg_l)ElE“
Vo0 (8, 25) = — T amma @

+(Zs — D(zsE1E4 +PcmP£m)Fij ’
2mimy ©
(@ = 1) E2Es
Toh (s, 29) = = T mms @

2s — (@5 E2E3 + pem Proy) Fi
2m2m3 © )

(Z_y + 1)(Z.§‘E1E3 - PcmPém)

Tohos (5. 25) = Py Fiyy
L&) EiEs
2mims3 OX
Tl ots,zp = S Dot 172:.24— “BED i
(1 —z ) E>Ey
2moymy (‘)’
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2
Tii (5.2) = — (1 —2) E1E4 ij
+00- 85 2s) = 2myma (b)

(Zy + Dz (—E1Ey) — pcmpém) Fij
2mimy OF N
. 1 —z2) E2E3
ij _ (!
Ty”vo(s:25) = —<WF@>
(Zs + D(zs(—E2E3) — pcmpé-m) Fij
2mom3 @ )
ij (zs — 1)(pcmp~ Z$E1E3)
le , — cm
030 (8> 25) 2mims (b)
L(1=3) EiEs
2mims3 >
(1 - z?) E\E
= F
U 00(5 2s) = 2mim, % & T (L))
(l—z ) E3E4 ij ij
00+ (s,25) = Imama (F(b) F(C))
V21— 22E\(zyE2E4 — Pem Ply) Fii
+000(s ) = 2mymama b
\f\/ 1 - ZXEZ(Z?ElEél + pcmpcm) F
2mimomy ey
T (s.20) = _\/E\/I — 22E3(zs E2Ey — Pcmpém)Fij
004055 2s) = 2mymama (b)
B V21 = 22E4(z5 E2E3 + PemPloy) Fii
2moymamy (>
Tt] ( ) = \/z\/ 1- Z%E2(_13E1E3 + pcmp:,-m) Fij
0400'5> 2s) = 2mimams; (b)
V21 =22E1(E2E5 + pemPin) Fii
2mimoms3 (>
le (s, 25) = _\/z\/ 1 - Z%E4(_Z.VE1E3 + pcmpz-m)Fij
000+ (85 Zs 2mymama (b
\/ 1- 15 EB(ZSE1E4 + Pcmpm,) F
2mim3my ()
ij (E\Ez + p2,)(E3E4 + (p),,)* )
T’] L Zg) = cm cm
000082 2s) = M mamama (a)
+ (pcmp(/;m — 25 E1E3) (Pem p(/,-m —zsErEy) Fij
mimoymsmyg ®)
(ZcE1E4 + pcmpun)(zcEZE:; + pcmpcm) F
mymaymsna (e
(A10)

where E; = ,/m? + |p;|? is the energy of the i-th parti-
cle (i =1, 2,3, 4) in the center of mass frame, and |p;|

is the modulus of the three momentum. One has |p;| =

|2l = pem = JM(s,m3, m3)/4s, |p3| =

A A(s, m%, mﬁ)/4s.
The decompositions of the helicity amplitudesin | J M LS)
representation are given as:

|pal = ply =

ij _ . J
T s (55 25) = 167N 213(21 +Dd(z5)

3 JCRL+ DL +1)

(LSOu|J
27 +1 w )

LS,L'S’
/ !l ol /
x (JW'IL'S'0u') (sysamn1. —pa|Sp)

X <S/M/|S3S4M3, ,U«4>TLSJL/S/ (A1)

The specified expressions for the helicity amplitudes are
given as

- 167 ..
Ty (520) = =TV () + 87T} )

+ [%T” () + 871Tif;,2 (S)] Gz2—1)

+. ce
T (520 =4rTis ()1 =)+,

TL’,H(s, 25) =4nTiy ()1 =2+
T Y Jr(s Zs) —471T51§2(s)(1—z%)+...7
TV (sz) = 4Ty ()1 =)+

Ty oG 25) = 4V2n T35 ()

+12\f2nT;;,2(s)],/1 — 24
T (s 25) = [—4ﬁnT;§ (s)

—12fnT’f ()] 1—22z5+---,

T/ 0 (5.25) = [—4ﬁnTlf (s)

~12v2r 7, O 1= zizs+-0

Tohyy(5:2) = 4V2R T3S (5)

+H12V27 T, (W1 =225+

16

TV, _(s,29) = —T’f ()= 87T ()

4 i l
+[7T5’ (s) — 8Ty (s)](3z3—1>

4+ s
ij ) - i 2
Ty o (s,zs) _471T552(s)(1+zs) +o,

T"-’;+(s,zs) = 4n Ty (5)(1— 20 +

++ O(S zs) =[— 4[ﬂT’j (s)

+12fnT” (s)]\/l —z2z5 +-

T (5.25) = @V2 nT’§2<s)
_12ﬁnT3ii,z(s)) 1—22z5+---,

T o (s.25) =[4v2m Tyy, ()

_IZﬁnT;{Jz(s)]‘/l — z%zs 4o,

@ Springer



383 Page 16 of 21

Eur. Phys. J. C (2023) 83:383

ii
Toi++ (S, ZS)

T‘ll.’j*‘}'o(s’ 2s)
T‘ll.’jo+*(s’ 2s)
T_f_j_o_’_(s, Zs)
Tyl (5.25)
TV o(5.25)
T (5.25)

ii
Tj+0+ (S, ZS)

i
T()i,+(ss Zs)

T, 05 25)
T(;6++(‘Y’ Zs)
TEO 1005, 25)
TJZ)0+(S  25)
USOED!
T(;io 4 (5, 25)
Tj,jo,() (s, z5)
T (5. 25)
Tl (5. 25)
Tgho-(s.20)

i
TJFJ,O()(& Zs)

i
TO(])+—(‘Y’ Zs)
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= [—4V27 T3], (s)

+12v27 73, W1 —2a -,
- —4\/§nT5i§2 (5)(1 + Zx)ﬁ"’ =
= 4\/§7rT5i£2(S)(1 +Zs)m+ s

- —4\/§nT5i§2(s)(l —zey 1 =22+
= 4V2r Ty ()1 =z 1= F 4
= —4\/§nT5i§2(s)(zs —Dyl—zi+--
= 4\/§7TT5"§2(5)(Z‘Y —Dyl—z2+---,
= 42T ()5 + DY 1= 4

= 42T ()5 + Dy 1 —2F 4+

167 ;i
== Tig,®)
8
3
167 _ij
B

87 Lij 2
+5 Tig, GG =D+

= 67Ty, ()1 +2,) + 47 T35 (5)

+ T OGF =D+

(s)

+Or T, ()12 2y~ D+

= —6nT3";l ($)(1 —z5) + [4nT5"é2

(s)
+67TT3ii)2 (S)](—ZZ% +zs+ D+,
= —67TT3I§31 (S)(] — Zs) + [4ﬂT;§2(S)
+61 Ty, (=223 + 25+ 1)+
= 67T}, ()1 + 25) + (47 T35, (5)
+61 T3, (1225 +25 = 1+
= on T%l (s)(1 — zg) + [47 Ts’éz (s)
_6”T31532(5)](—2Z32~ +zs+ D+,
= —671T3111DI () +z5) + [4nT5’§2(s)
—61 Ty, (D125 + 25— D+,
= 67Ty, ()(1+25) + (4715 (s)
—~6nT{], (N 25— D+,
= 6JTTSI‘{:>] ()(1 = z5) + [47TT51§2(3)
—6m Ty, (DN(=223 + 25+ 1)+
= 871T51§2(s)(1 — ),

= 8T ()1 =)+,

i 1 ! 1
Tii — /
1o 32a N;; J—1 3mimoymazmy

T000(s: 2s) = —8f2nT;§2(s) 1= 2225+,
To010(5:25) = 8J§nT;§2(s) 1= 2225+,
Ty 00(s:25) = SJEnngz(s)mzs T
Tééo+(S, 7s) = —8\/§7TT5i£2 (s)mzs 4o,

167 _ij

.. 67-[ ..
Toooo(s: 25) = —=Tig () + —=Tsg ()G — 1)

1
3 1S 3
+oee (A12)

where the ellipses represent the ignored higher partial waves. With
it, the summation of the square of the helicity amplitudes can be
obtained. See Eq. (14). According to Egs. (3, 7, 8, A10), the partial
wave amplitudes can be obtained as follows:

[Fit [ B2 + )

X(E3E4 + (phy)?) + 4m3ma(E1Ey + mymy + me)]
+Fi)[(PemPlon = EVE3Z) (pom Pl — E2Ea2)
myma(mma (e + 1) — 261 By — 1))

+F i) [(BVEaz + pom plon) (B2 E3z + pem Plon)

+mymy(mima (3 + 1) = 261 Ex(@} = 1)] }dzs,

. 1 1 1 .
i = / [Fi 262 -1
i) 32n N;; J—1 30mymom3zmy (@)

(E1Ex + p2)(E3Eq + (L))
m3ma(mym = 2(E1 Ey + ply)))|

+F i) |2 am Plow — E1E3z0) (322 = D (pem Pl
—EpE42) + my(6Exzg(22 — 1) — 3mpzd))

+m3(m1 (323 (E2E4Z — Pem Pioy)

+m4BEy(=2z% + 22 + 1) + ma(Bz + 222 +2)))
—E1(z2 — D(62(E2E4zs — pem D) + Eama(d — 623)
+3my(—2E422 + E4 +mg(222 + 1)))))]

+ I (262 = D(E1 Eaz + pempi) * (E2E3zy

+Pem Pem) — 3E1m4(z — 1)(425(E2 E32s + Pem D)
+mo(E3 — 2E323)) + m3(—4Ex (22 — 1) * (32 (E1 E42
+Pem Do) + E1ma(2 = 322)) + 6mp (223 (E1 Esz
FPem Pl + Etma(=22¢ + 22 + 1) + mi GE2E4 22
=322 + 1) + ma(6Ex (=225 + 22 + 1)

+ma (624 + 422 + 4)))] |z,

pii _ 1 l(Fii _Fiiyd
3p 327TNii i ) (c) TsdZls,

i 1 /‘ 1
Py 327 N;;i J—1 dmimomazmy
X (Pem Pl — E1E325) — 2E1 Egm3zs(z2 — 1))

[Fif)[ma=mad + 1)
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—mm3 (e + 1) (pem Py — E2Ea2) | x (E2Exzs + Pem Plm)
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S0 = 327Ny )y 3mmamamy @ | F152 K= (PemPem — E2Eaze)) — ExEymazg(c3 — 1))
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By Eymama(22 — 1) + mymamama(z2 + 1) —ma(@} + D(E2E3zs + pempen))] Jdzs,
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E3E4(z; 1))] +F [(E1E4Zs Ty, = / {F(’,g) [3m2(m4<3z§ -1
) 327tN,-j _1 20mmomszmy
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—E152m3m4(23 -1

mima(myma(z3 + 1) = ExEa@} = 1)] }dz;,

X (=(pem Poms — E1E325)) — Eym3zs (22 — 1)
X (Eq +2m4)) + m1 (m3(=3G322 — 1)(Pem Pl
—EE4qzs) + 2mazs (my (622 —2) — 3Ex(z2 — 1))

.. 1 1 1 ..
oo 1 2
55 = 32w, /_ | 30mmamamg @ 262 -1 —6E4mazs(z} — 1)) = 3E3mazs (2} — D(Ez +2m2)]
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X (Pem Do — E1E325) + 3Eym3z5(z3 — 1)
+2Eama(z2 — 1)B3zs (Pem Pl — E1E3zs)
+E1m3(322 — 2)) + 3ma(2(E4z5(z2 — 1) — myz))

X (pem Do — E1E325) + Eym3 (23 — 1)(E4(225 — 1)

—m4(2252, + 1)) + m(6z5(E3 (zf —1)— m3z§) One can estimate each partial wave amplitudes from Eq. (A13).
’ 2 2 Inputting these partial wave amplitudes into Eq. (14), one can cal-

X (pe — EyEqzg) +3Eymy(zy — 1)(E3(2zy — 1

(Pcmpzcm 2E42s) 5 2ma (3 )(2 3Gz =D culate the invariant mass spectrum and fitit to the data. Nevertheless,

—m3(2z5 4 1)) +ma(Eg(zy — D(2E3(3z5 —2) to get an impression about the partial wave scattering amplitudes

—3m3(223 +1)) + my(3E3 (—ZZ? + Z% +D intuitively, we list the analytical LO amplitudes as follows

(62} + 422 +4)))]
+F(ZZ) [6(mzzs(—E3z§ + E3 + mng)
—Eam3z5(z2 — D))(E1 Eazs + Pem Plo)

+2(322 — D(E1 E42g + Pem Pio)
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T, 077 (s) =— , T (s) =0,
P 12nm% Py
le LO( ) —lOcz(m? — m%ml)2 — 2s2(3m% — 8mom | + m%) + s(m‘zL + 4m%m% + 56m2m? + 7m‘11) + 553
5) = ,
1o 288\f2nm2m%s
7210 —c2(14m?3 + 6m1 /s + 5)((m?3 —m3)? — 3532 (my + ma) — 14mymas + 3/s(my — m2)?(my +my) — s2)
s) = ,
5 3600\f271m?m2s
12.L0 12.L0 c2(my +m)pemPem 12,10
I, (s) =0,T,,77(s) = T (s) =0,
3Py 3Py 12fﬂm1m2
T13’L0( ) c5(—10(m% — m%ml)2 — 252(3m3 —8mims + m%) + s(m‘3‘ + 4m%m% + 56m?m3 + 7m‘1‘) + 5s3)
§) = s
'S0 288ﬁnm%m3s
ERT —c5(14m? + 6m1 /s + $)(m3 —m)? = 3532 (my + m3) — 14mym3s + 3/s(my — m3)*(my +m3) — s?)
s) = ,
35 3600[7{m?m3s
T31;,L0(s) —o. T13 LO( )= cs(my +m3) * pem * Pem T13 LO(S) -0
0 12fﬂm1m3
2,L0,. _ 1 3 2
T‘S (s5) = ﬁ[—s (3m2(2c‘3 +3cq4) —dmyimy(2c3 + Tey) + 3m{(2c3 + 3cq)) — 5(2¢3 + c4)
0 2887rm1m252
#(3m3 + 4mymy + 3m3)(m3 — m3)? + 2c3 + ca)m? — m3)* + 52 (8e3(m3 + Smimi +m))
+C4(7m2 24m1m2 + 74m1m2 24m1m2 + 7m1)) +2s% (3 + 2c4)],
T22’L0(s) _ (2C3 + C4)(—(ml — m%)2 + 3s3/2(m1 + m2) + 14m1m2s — 3«5(1’)’[1 — mz)z(ml —|—m2) + 82)2
>S5 7200nm%m%s2
[c3(m? 4+ m3) + 2camyma]p?
T32;’L0( ) =0, T32;’L0(S) — _ 1 2 cm ’ T32}%’LO(S) =0,
0 1 12m1m2 2
1
T2 10 6) = ———————[-53(3Qes + 3co)@m? +m3 + m3) — 4m Q2eg + Teo)(my + m3)) +2(2cg + co)
0 11527‘rm1m2m3s2
*(m% — m%)z(m% — m%)2 + sz(ch(mé + 4m%(m% + 8momsz + m%) + 6m%m§ + m§ + Sm?) + cg(mg
+2m1(5m2 + 64moms + 5m3) + 12m2m3 24m1(m2 + m3) — 2dmymomz(mo + m3) + m3 + 14m1))
—s(2cg + cg)(4m1m2m3(m2 + m3) — 3m1 (m2 + m3) +3m3 m3(m2 + m3) + 3m1(m2 4m2m3 + m3)
+4m1(m2 +m3) — 8m1m2m3(m2 +m3) + 6m1) + 45 (cg + 2c9)],
23,L 1
TE06) = s [Qeg + o) ((m] —m)* = 3532 0m1 +m) — 14mymas +3/s(my —mo)?
2 14400 mymoms3s
x(my +mp) = 52) x ((m] — m3)* = 3572 (my +m3) — 14mimys +3v/5(m) —m3)>(my +m3) — s7)]
2 /
23.L 23.L [2cg(m] + mam3) + com(ma + m3)1pem pe. 23,L
T31§ O(S) _OT3}§ 0()_ 1 4 cmPem ng O():O,
0 48w mymyms3
73310 33 2c6 + 3c7) — 4 2 2 3
g, ) = s [ (ml +mg)( c6 +3c7) —4mim3(2ce + Tc7)) — s(2c6 + c7)( Wt3
0 2887 m? m3s
+4mims + 3m1)(m% — m%)2 + (2ce + C7)(m% — m%)4 + s2(8c6(m§1 + Sm%m% + m‘ll)
+e7(Tmi — 24mym3 + 74m3m3 — 24m3ms 4+ Tm?)) + 25* (c6 + 2¢7)],
33LO (o) _ (2c6 + 1) (—(m3 —m3)? + 3532 (my + m3) + 14mym3s — 3/s(my — m3)>(my +m3) + s%)?
5 7200 m3m3s2
2 2 2
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]}3P(;L0(s) =0, T33 LO( )= 1 3 - cm 33 LO( )y =0,

2
127'rm1m3

(A14)
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Fig. 3 The t-channel meson
exchange diagrams of

S/

X cOo J/¢ Xel

Y

J/WJ /Y — Xcoxeo and
J/WJ /¥ — Xe1Xe1- The u- 3%
channel ones are similar and not
plotted here

Y
Y
Y

Y

S/

One would find that the LO partial wave amplitudes are not simply
the coupling constants, e.g., ¢;, as the particles in the scattering have
a spin J = 1. Also, it shows the threshold behavior of the elastic
and inelastic scattering partial waves. See 3 Py waves for details.

Appendix B: The channels of x.j x.s

About the intermediate channels of x.jx.s, they contribute
through the processes of J /¥ J/¥ — xcoxco — J/¥J /¢ and
J/WI /v — xc1xe1 — J/¥J /¥, see Fig. 3. Here the w exchange
dominates the diagrams. To elaborate it clearly, we construct the
effective Lagrangians of SVV and AVV as

Lsyy = hixcovu(VH),

Lavy = hae™ Py xe1v(Vag), (B1)

where Vg = Vo Vg — Vg Vy, and Vy is the Octec of lightest vector
resonances [72]. According to these effective Lagrangians, we can
calculate the amplitudes listed in Fig. 3. One has

_ i)
ot —m?
2
Ty = —25 (%) ((—p3 - e1)(pa-e2) —1(e1 - £2))
t—m2

2h7(e1 - £2)

—m2
u —mg,

TX 0

+(e2 - 5)(t(e1 - €}) — (—p3 - €1)(—p2 - €F))

+(p1-e)((—p2-e))(e1 - €2) — (pa - €2)(e1 - €1)))
8h% * %
+——"5((e3 - e4)((—pa - £1)(p3 - £2) — uley - €2))
u—mg

+(e1 - €3)(uler - €3) — (p3 - €2)(p1 - €3))

+(=p2-e3)((p1-ex)(er - €2) — (—pa - e1)(e2 - €)))).
(B2)

As done in the previous sections, the partial wave decomposition of
these amplitudes, e.g, S-waves are given as

TXO 2V3 70 X0 \@TO.X(»O
ISy — T ++ T 00
2hf(2m§/w +5)

«/imi/w\/(s — 4m3/w)(s —4m? )

| (2("’3/1// + mico —m2) —s+ \/(S - 4m3/¢)(s - 4”&.0))
x In ,

2(m3/w + mfm —m2) —s— \/(s - 4m3/¢)(s _ 4’"%&»0)

1
TXe 0, xe 70 % 0. x¢ 70 % 0. xe
1s01 - §(2T+++1+ +2 ++—l— - 2T++0(]) -2 00+-¢1— + TO()O()])

2.2 2 2 2 2
hymg[4my ymy, = s,y +my, )l

N 2 2 2 2
12nm]/wmjxll\/(s — 4m]/¢)(s — 4m1x(|)

Y
Y
Y

X cO J/¢ Xecl

2 2 2 2 2
N 20myy +my,  —mgy) —s+ \/(S —4my ) (s —4m7, )
2(m3/w +m3x(1 —m2)—s— \/(s - 4m3/w)(s - 4m3)m)

2 2 2 2 2
WMy Mg = SOy + M7 5,)]

. (B3)

2 2
127'rmj/‘l,mj)(£l

From it, one sees very clearly the left hand cuts locate at
(—00,5.908 GeV) for x.0xc0 and (—00, 5.569 GeV) for x.1xc1-
Obviously, These left hand cuts would be farther compared with
the ones generated by the mesons exchange (such as 7, o, n and

n)of J/J /v — ) d /¥, I/ (2S), J /¥ (3770). Besides,
the J/¢(2S) and J/¢¥ ¢ (3770) thresholds almost lie on the dip
and peak, respectively. Empirically speaking, they are supposed to
play essential roles in the structures. See Fig. 1. Finally, we ignore
Xc0Xco and x¢1 xc1 channels in our analysis.
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