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Abstract. Given an arbitrary field F of characteristic 0, we study Lie bialgebra structures on sl(n,F),
based on the description of the corresponding classical double. For any Lie bialgebra structure δ, the
classical double D(sl(n,F), δ) is isomorphic to sl(n,F)⊗FA, where A is either F[ε], with ε2 = 0, or F⊕F or a
quadratic field extension of F. In the first case, the classification leads to quasi-Frobenius Lie subalgebras of
sl(n,F). In the second and third cases, a Belavin-Drinfeld cohomology can be introduced which enables one
to classify Lie bialgebras on sl(n,F), up to gauge equivalence. The Belavin-Drinfeld untwisted and twisted
cohomology sets associated to an r-matrix are computed.
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1. Introduction
Following [3], we recall that a quantized universal enveloping algebra (or a quantum group) over
a field k of characteristic zero is a topologically free topological Hopf algebra H over the formal
power series ring k[[~]] such that H/~H is isomorphic to the universal enveloping algebra of a
Lie algebra g over k.

The quasi-classical limit of a quantum group is a Lie bialgebra. A Lie bialgebra is a Lie algebra
g together with a cobracket δ which is compatible with the Lie bracket. Given a quantum group
H, with comultiplication ∆, the quasi-classical limit of H is the Lie bialgebra g of primitive
elements of H/~H and the cobracket is the restriction of the map (∆−∆21)/~(mod~) to g.

The operation of taking the semiclassical limit is a functor SC : QUE → LBA between
categories of quantum groups and Lie bialgebras over k. The existence of universal quantization
functors was proved by Etingof and Kazhdan [4, 5]. They used Drinfeld’s theory of associators
to construct quantization functors for any field k of characteristic zero. More precisely, let (g, δ)
be a Lie bialgebra over k. Then one can associate a Lie bialgebra g~ over k[[~]] defined as
(g ⊗k k[[~]], ~δ). According to Theorem 2.1 of [5] there exists an equivalence Q̂ between the
category LBA0(k[[~]]) of topologically free over k[[~]] Lie bialgebras with δ ≡ 0 (mod ~) and the
category HA0(k[[~]]) of topologically free Hopf algebras cocommutative modulo ~. Moreover,
for any (g, δ) over k, one has the following: Q̂(g~) = U~(g).

Due to this equivalence, the classification of quantum groups whose quasi-classical limit is g is
equivalent to the classification of Lie bialgebra structures on g⊗CC[[~]]. Since any cobracket over
C[[~]] can be extended to one over C((~)) and conversely, any cobracket over C((~)), multiplied
by an appropriate power of ~, can be restricted to a cobracket over C[[~]], this in turn reduces
to the problem of finding Lie bialgebras on g ⊗C C((~)). Denote, for the sake of simplicity,
K := C((~)) and g(K) := g⊗C K.

As a first step towards classification, following ideas of [6], we proved in [8] that for any Lie
bialgebra structure on g(K), the associated classical double is of the form g(K) ⊗K A, where A

3Quantum: Algebra Geometry Information (QQQ Conference 2012) IOP Publishing
Journal of Physics: Conference Series 532 (2014) 012026 doi:10.1088/1742-6596/532/1/012026

Content from this work may be used under the terms of the Creative Commons Attribution 3.0 licence. Any further distribution
of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI.

Published under licence by IOP Publishing Ltd 1



is one of the following associative algebras: K[ε], where ε2 = 0, K⊕K or K[j], where j2 = ~.
As it was shown in [8], the classification of Lie bialgebras with classical double g(K[ε]) leads

to the classification of quasi-Frobenius Lie algebras over K, which is a complicated and still open
problem.

Unlike this case, the classification of Lie bialgebras with classical double g(K)⊕ g(K) can be
achieved by cohomological and combinatorial methods. In [8], we introduced a Belavin-Drinfeld
cohomology theory which proved to be useful for the study of Lie bialgebra structures. To any
non-skewsymmetric r-matrix rBD from the Belavin-Drinfeld list [1], we associated a cohomology
set H1

BD(g, rBD). We proved the existence of a one-to-one correspondence between any Belavin-
Drinfeld cohomology and gauge equivalence classes of Lie bialgebra structures on g(K). In
case g = sl(n), we showed that for any non-skewsymmetric r-matrix rBD, the cohomology set
H1
BD(sl(n), rBD) has only one class, which is represented by the identity.
Regarding the classification of Lie bialgebras whose classical double is isomorphic to g(K[j]),

with j2 = ~, a cohomology theory can be introduced too. Our result states that there exists a
one-to-one correspondence between Belavin-Drinfeld twisted cohomology and gauge equivalence
classes of Lie bialgebra structures on g(K) whose classical double is isomorphic to g(K[j]). In
[8], we proved that the twisted cohomology corresponding to the Drinfeld-Jimbo r-matrix has
only one class, represented by a certain matrix J (not the identity). A deeper investigation was
done in the subsequent article [9] where twisted cohomologies for sl(n) associated to generalized
Cremmer-Gervais r-matrices were studied.

The aim of the present article is the study of Lie bialgebra structures on sl(n,F), for an
arbitrary field F of characteristic zero. Again the idea is to use the description of the classical
double. We will show that for any Lie bialgebra structure δ, the classical double D(sl(n,F), δ) is
isomorphic to sl(n,F)⊗FA, where A is either F[ε], with ε2 = 0, or F⊕F or a quadratic extension
of F. In the first case, the classification leads to quasi-Frobenius Lie subalgebras of sl(n,F). In
the second and third cases, we will introduce a Belavin-Drinfeld cohomology which enables one
to classify Lie bialgebras on sl(n,F), up to gauge equivalence. In the particular case F = C((~))
we recover the classification of quantum groups whose classical limit is sl(n,C) obtained in [8,9].

2. Description of the classical double
From the general theory of Lie bialgebras it is known that for each Lie bialgebra structure δ on
a fixed Lie algebra L one can construct the corresponding classical double D(L, δ). As a vector
space, D(L, δ) = L⊕ L∗. Moreover, since the cobracket of L induces a Lie bracket on L∗, there
exists a Lie algebra structure on L ⊕ L∗, induced by the bracket and cobracket of L, and such
that the canonical symmetric nondegenerate bilinear form Q on this space is invariant.

Let F be an arbitrary field of zero characteristic. Let us assume that δ is a Lie bialgebra
structure on sl(n,F). Then one can construct the corresponding classical double D(sl(n,F), δ).

Similarly to Lemma 2.1 from [6], one can prove that D(sl(n,F), δ) is a direct sum of regular
adjoint sl(n)-modules. Combining this result with Prop. 2.2 from [2], one obtains the following

Theorem 2.1. There exists one associative, unital, commutative algebra A of dimension 2 over
F, such that D(sl(n,F), δ) ∼= sl(n,F)⊗F A.

The symmetric invariant nondegenerate bilinear form Q on sl(n,F) ⊗F A is given in the
following way. For arbitrary elements f1, f2 ∈ sl(n,F) and a, b ∈ A we have

Q(f1 ⊗ a, f2 ⊗ b) = K(f1, f2) · t(ab)

where K denotes the Killing form on sl(n,F) and t : A −→ F is a trace function.
Let us now investigate the algebra A. Since A is unital and of dimension 2 over F, one can

choose a basis {e, 1}, where 1 denotes the unit. Moreover, there exist p and q in F such that
e2 + pe+ q = 0. Let ∆ = p2 − 4q ∈ F. We distinguish the following cases:
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(i) Assume ∆ = 0. Let ε := (e+ p)/2. Then ε2 = 0 and A = Fε⊕ F = F[ε].
(ii) Assume ∆ is the square of a nonzero element of F. In this case, one can choose e′ ∈ F∗ such

that e′2 = ∆. Then A = F⊕ e′F = F⊕ F.
(iii) Assume ∆ is not a square of an element of F. Then A = F + e′F, where e′ = (e+ p)/2 and

e′2 = ∆/4 ∈ F. Thus A is a quadratic field extension of F.

Summing up the above observations, we get

Theorem 2.2. Let δ be an arbitrary Lie bialgebra structure on sl(n,F). Then D(sl(n,F), δ) ∼=
sl(n,F)⊗F A, where A = F[ε] and ε2 = 0, A = F⊕ F or A is a quadratic field extension of F.

The classification of Lie bialgebras with classical double sl(n,F[ε]) leads to the classification
of quasi-Frobenius Lie algebras over F. More precisely, due to the correspondence between Lie
bialgebras and Manin triples (see [3]), the following result holds:

Proposition 2.3. There exists a one-to-one correspondence between Lie bialgebra structures on
sl(n,F) whose corresponding double is isomorphic to sl(n,F[ε]) and Lagrangian subalgebras W
of sl(n,F[ε]) complementary to sl(n,F).

Similarly to Theorem 3.2 from [7], one can prove

Proposition 2.4. Any Lagrangian subalgebra W of sl(n,F[ε]) complementary to sl(n,F) is
uniquely defined by a subalgebra L of sl(n,F) together with a nondegenerate 2-cocycle B on
L.

We recall that a Lie algebra is called quasi-Frobenius if there exists a nondegenerate 2-cocycle
on it. The complete classification of quasi-Frobenius Lie subalgebras of sl(n,F) is not generally
known for large n.

3. Belavin-Drinfeld untwisted cohomologies
Unlike the previous case, the classification of Lie bialgebras with classical double sl(n,F)⊕sl(n,F)
can be achieved by cohomological and combinatorial methods.

Lemma 3.1. Any Lie bialgebra structure δ on sl(n,F) for which the associated classical double
is isomorphic to sl(n,F) ⊕ sl(n,F) is a coboundary δ = dr given by an r-matrix satisfying
r + r21 = fΩ, where f ∈ F∗ and CYB(r) = 0.

We may suppose that f = 1. Naturally we want to classify all such r up to GL(n,F)-
equivalence. Let F denote the algebraic closure of F. Any Lie bialgebra structure δ over F can
be extended to a Lie bialgebra structure δ over F.

According to [1], the Lie bialgebra structures on a simple Lie algebra g over an algebraically
closed field are coboundaries given by non-skewsymmetric r-matrices. Suppose we have fixed a
Cartan subalgebra h and the corresponding root system. Any r-matrix depends on a discrete
and a continuous parameter. The discrete parameter is an admissible triple (Γ1,Γ2, τ), i.e. an
isometry τ : Γ1 −→ Γ2 where Γ1,Γ2 ⊂ Γ such that for any α ∈ Γ1 there exists k ∈ N satisfying
τk(α) /∈ Γ1. The continuous parameter is a tensor r0 ∈ h⊗ h satisfying

r0 + r21
0 = Ω0, (τ(α)⊗ 1 + 1⊗ α) (r0) = 0, ∀α ∈ Γ1

Here Ω0 denotes the Cartan part of the quadratic Casimir element Ω. Then the associated
r-matrix is given by the following formula

r = r0 +
∑
α>0

eα ⊗ e−α +
∑

α∈(SpanΓ1)+

∑
k∈N

eα ∧ e−τk(α)
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Now, let us assume that δ is a Lie bialgebra structure on sl(n,F). Then its extension δ has a
corresponding r-matrix. Up to GL(n,F)-equivalence, we have the Belavin-Drinfeld classification.
We may therefore assume that our r-matrix is of the form rX = (AdX ⊗ AdX)(r), where
X ∈ GL(n,F) and r satisfies the system r + r21 = Ω and CYB(r) = 0.

Let σ ∈ Gal(F/F). Since

δ(a) = [rX , a⊗ 1 + 1⊗ a]

for any a ∈ sl(n,F) we have

(σ ⊗ σ)(δ(a)) = [σ(rX), a⊗ 1 + 1⊗ a]

and (σ ⊗ σ)(δ(a)) = δ(a). Consequently, σ(rX) = rX + λΩ, for some λ ∈ F. Let us show that
λ = 0. Really,

Ω = σ(Ω) = σ(rX) + σ(r21
X ) = rX + r21

X + 2λΩ

Thus λ = 0 and σ(rX) = rX . Consequently,

(AdX−1σ(X) ⊗AdX−1σ(X))(σ(r)) = r

We recall the following

Definition 3.2. Let r be an r-matrix. The centralizer C(r) of r is the set of all X ∈ GL(n,F)
satisfying (AdX ⊗AdX)(r) = r.

Using the same argumets as in the proof of Theorem 4.3 [8], it follows that σ(r) = r and
X−1σ(X) ∈ C(r), for any σ ∈ Gal(F/F).

Definition 3.3. Let r be a non-skewsymmetric r-matrix from the Belavin-Drinfeld list and
C(r) its centralizer. We say that X ∈ GL(n,F) is a Belavin-Drinfeld cocycle associated to r if
X−1σ(X) ∈ C(r), for any σ ∈ Gal(F/F).

The set of Belavin-Drinfeld cocycles associated to r will be denoted by ZBD(sl(n,F), r). Note
that this set contains the identity.

Definition 3.4. Two cocycles X1 and X2 in ZBD(sl(n,F), r) are called equivalent if there exists
Q ∈ GL(n,F) and C ∈ C(r) such that X1 = QX2C.

Definition 3.5. Let H1
BD(sl(n,F), r) denote the set of equivalence classes of cocycles from

ZBD(sl(n,F), r). We call this set the Belavin-Drinfeld cohomology associated to the r-matrix r.
The Belavin-Drinfeld cohomology is said to be trivial if all cocycles are equivalent to the identity,
and non-trivial otherwise.

Combining the above definitions with the preceding discussion, we obtain

Proposition 3.6. For any non-skewsymmetric r-matrix r, there exists a one-to-one
correspondence between H1

BD(sl(n,F), r) and gauge equivalence classes of Lie bialgebra structures
on sl(n,F) with classical double isomorphic to sl(n,F)⊕ sl(n,F) and F-isomorphic to δ = dr.

The Belavin-Drinfeld cohomology set can be computed as in [8] and the following result holds.

Theorem 3.7. For any non-skewsymmetric r-matrix r, H1
BD(sl(n,F), r) is trivial. Any Lie

bialgebra structure on sl(n,F) with classical double sl(n,F)⊕sl(n,F) is of the form δ = dr, where
r is an r-matrix which is, up to a multiple from F∗, GL(n,F)-equivalent to a non-skewsymmertric
r-matrix from the Belavin-Drinfeld list.
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4. Belavin-Drinfeld twisted cohomologies
We focus on the study of Lie bialgebra structures on sl(n,F) whose classical double is isomorphic
to sl(n,F)⊗FA, where A is a quadratic extension of F. We may suppose that A = F(

√
d), where

d is not a square in F. We will show that Lie bialgebras of this type can also be classified by
means of certain cohomology sets.

Twisted cohomologies associated to r-matrices for sl(n,F) can be defined as in [8], where we
studied the particular case F = C((~)). First, similarly to Prop. 5.3 of [8], one can prove the
following

Proposition 4.1. Any Lie bialgebra structure on sl(n,F) with classical double isomorphic to
sl(n,F[

√
d]) is given by an r-matrix r′ which satisfies CY B(r′) = 0 and r′ + r′21 =

√
dΩ.

Over F, all r-matrices are gauge equivalent to the ones from Belavin-Drinfeld list. It
follows that there exists a non-skewsymmetric r-matrix r and X ∈ GL(n,F) such that
r′ =

√
d(AdX ⊗AdX)(r).

The field F[
√
d] is endowed with a conjugation a+ b

√
d = a − b

√
d. Denote by σ2 its lift to

Gal(F/F). If X ∈ GL(n,F[
√
d]), then σ2(X) = X. Now let us consider the action of σ2 on r′. We

have σ2(r′) = r′+λΩ, for some λ ∈ F. Let us show that λ = −
√
d. Indeed, since r′+r′21 =

√
dΩ,

we also have σ2(r′) + σ2(r′21) = −
√
dΩ. Combining these relations with σ2(r′) = r′+ λΩ, we get

λ = −
√
d and therefore σ2(r′) = r′ −

√
dΩ = −r′21.

Recall now that r′ =
√
d(AdX ⊗AdX)(r). Then condition σ2(r′) = −r′21 implies

(AdX−1σ2(X) ⊗AdX−1σ2(X))(σ2(r)) = r21

For any σ ∈ Gal(F/F[
√
d]), σ(r′) = r′, which in turn implies

(AdX−1σ(X) ⊗AdX−1σ(X))(σ(r)) = r

Now, using the same type of arguments as in the proof of Theorem 4.3 [8], one can deduce that
σ(r) = r and therefore the following result holds.

Proposition 4.2. Any Lie bialgebra structure on sl(n,F) with classical double isomorphic to
sl(n,F[

√
d]) is given by r′ =

√
d(AdX ⊗ AdX)(r), where r is, up to a multiple from F∗, a non-

skewsymmetric r-matrix from the Belavin-Drinfeld list and X ∈ GL(n,F) satisfies (AdX−1σ2(X)⊗
AdX−1σ2(X))(r) = r21 and, for any σ ∈ Gal(F/F[

√
d]), (AdX−1σ(X) ⊗AdX−1σ(X))(r) = r.

Definition 4.3. Let r be a non-skewsymmetric r-matrix from the Belavin-Drinfeld list. We say
that X ∈ GL(n,F) is a Belavin-Drinfeld twisted cocycle associated to r if

(AdX−1σ2(X) ⊗AdX−1σ2(X))(r) = r21

and for any σ ∈ Gal(F/F[
√
d]),

(AdX−1σ(X) ⊗AdX−1σ(X))(r) = r

The set of Belavin-Drinfeld twisted cocycle associated to r will be denoted by ZBD(sl(n,F), r).
Let us analyse for which admissible triples this set is non-empty.

Let S ∈ GL(n,F) be the matrix with 1 on the second diagonal and 0 elsewhere. Let us denote
by s the automorphism of the Dynkin diagram given by s(αi) = αn−i for all i ≤ n− 1.

Proposition 4.4. Let r be a non-skewsymmetric r-matrix associated to an admissible triple
(Γ1,Γ2, τ). If ZBD(sl(n,F), r) 6= ∅, then s(Γ1) = Γ2 and sτ = τ−1s.
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Definition 4.5. Let X1 and X2 be two Belavin-Drinfeld twisted cocycles associated to r. We
say that they are equivalent if there exist Q ∈ GL(n,F) and C ∈ C(r) such that X2 = QX1C.

The set of equivalence classes of twisted cocycles corresponding to a non-skewsymmetric r-
matrix r will be denoted by H1

BD(sl(n,F), r).
Remark 4.6. If two twisted cocycles X1 and X2 are equivalent, then the corresponding r-matrices√
d(AdX1 ⊗AdX1)(r) and

√
d(AdX2 ⊗AdX2)(r) are gauge equivalent via Q.

Remark 4.7. In fact, by obvious reasons it is better to denote H
1
BD(sl(n,F), r) by

H
1
BD(sl(n,F), r, d). However, we fix d and the notation H1

BD(sl(n,F), r) is not misleading.

Proposition 4.8. There exists a one-to-one correspondence between the twisted cohomology
set H1

BD(sl(n,F), r) and gauge equivalence classes of Lie bialgebra structures on sl(n,F) with
classical double isomorphic to sl(n,F[

√
d]) and F-isomorphic to δ = dr.

Let rDJ be the Drinfeld-Jimbo r-matrix. Having fixed a Cartan subalgebra h of g and the
associated root system, we choose a system of generators eα, e−α, hα where α > 0 such that
K(eα, e−α) = 1. Denote by Ω0 the Cartan part of Ω. Then

rDJ =
∑
α>0

eα ⊗ e−α +
1

2
Ω0

The twisted cohomology corresponding to rDJ can be studied in the same manner as was
done in [8] (see Prop. 7.15). Let J ∈ GL(n,F[

√
d]) denote the matrix with entries akk = 1 for

k ≤ m, akk = −
√
d for k ≥ m+ 1, ak,n+1−k = 1 for k ≤ m, ak,n+1−k =

√
d for k ≥ m+ 1, where

m = [(n+ 1)/2].

Theorem 4.9. The Belavin-Drinfeld twisted cohomology H
1
BD(sl(n), rDJ) is non-empty and

consists of one element, the class of J .

Proof. Let X be a twisted cocycle associated to rDJ . Then X is equivalent to a twisted cocycle
P ∈ GL(n,F[

√
d]), associated to rDJ . We may therefore assume from the beginning that

X ∈ GL(n,F[
√
d]) and it remains to prove that all such cocycles are equivalent. The proof

will be done by induction.
For n = 2, consider

J =

(
1 1√
d −

√
d

)
and let X = (aij) ∈ GL(2,F[

√
d]) satisfy X = XSD with

D = diag(d1, d2) ∈ GL(2,F[
√
d])

The identity is equivalent to the following system:

a11 = a12d1, a12 = a11d2, a21 = a22d1, a22 = a21d2

Assume that a21a22 6= 0. Let a11/a21 = a′ + b′
√
d. Then a12/a22 = a′ − b′

√
d. One can

immediately check that X = QJD′, where

Q =

(
a′ b′

1 0

)
∈ GL(2,F), D′ = diag(a21, a22) ∈ diag(2,F[

√
d])
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For n = 3, set

J =

 1 0 1
0 1 0√
d 0 −

√
d


and let X = (aij) ∈ GL(3,F[

√
d]) satisfy X = XSD with D = diag(d1, d2, d3) ∈ GL(3,K[

√
d]).

The identity is equivalent to the following system:

a11 = d1a13, a21 = d1a23, a31 = d1a33,

a12 = d2a12, a22 = d2a22, a32 = d2a32,

a13 = d3a11, a23 = d3a21, a33 = d3a31

Assume that a21a22a23 6= 0. Let

a11/a21 = b11 + b13

√
d, a31/a21 = b31 + b33

√
d

Then

a13/a23 = b11 − b13

√
d, a33/a23 = b31 − b33

√
d

On the other hand, let b12 := a12/a22 and b32 := a32/a22. Note that b12 ∈ F, b32 ∈ F. One can
immediately check that X = QJD′, where

Q =

 b11 b12 b13

1 1 0
b31 b32 b33

 ∈ GL(3,F), D′ = diag(a21, a22, a23) ∈ diag(3,F[
√
d])

Assume n > 3. Denote the constructed above J ∈ GL(n,F[
√
d]) by Jn. We are going to

prove that if X ∈ GL(n,F[
√
d]) satisfies X = XSD, then using elementary row operations with

entries from F and multiplying columns by proper elements from F[
√
d] we can bring X to Jn.

We will need the following operations on a matrix M = {mpq} ∈ Mat(n)

1. un(M) = {mpq, p, q = 2, 3, . . . , n− 1} ∈ Mat(n− 2);
2. gn(M) = {mpq} ∈ Mat(n + 2), where mpq are already defined for p, q = 1, 2, . . . n,
m00 = mn+1,n+1 = 1 and the rest m0,a = ma,0 = mn+1,a = ma,n+1 = 0.

It is clear that un(X) satisfies the twisted cocycle condition. However, its determinant might
vanish. To avoid this complication, we note that columns 2, 3, . . . , n − 1 of X are linearly
independent. Applying elementary row operations (in fact, they are permutations) we obtain a
new cocycle X1, which is equivalent to X and such that un(X1) is a cocycle in GL(n−2,F[

√
d]).

Then, by induction, there exist Qn−2 ∈ GL(n− 2,F) and a diagonal matrix Dn−2 such that

Qn−2 · un(X1) ·Dn−2 = Jn−2

Consider

Xn = gn−2(Qn−2) ·X1 · gn−2(Dn−2)

Clearly, Xn is a twisted cocycle equivalent to X and un(Xn) = Jn−2.
Applying elementary row operations with entries from F and multiplying by a proper diagonal

matrix we can obtain a new cocycle Yn = (ypg) equivalent to X with the following properties:
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1. un(Yn) = Jn−2;
2. y12 = y13 = . . . = y1,n−1 = 0 and yn2 = yn3 = . . . = yn,n−1 = 0;
3. y11 = y1n = 1, here we use the fact that if ypq = 0, then yp,n+1−q = 0.

It follows from the cocycle condition Yn = Yn · S · diag(h1, . . . , hn) that h1 = hn = 1 and hence,
yn1 = ynn.

Now, we can use the first row to achieve yn1 = −ynn =
√
d and after that, we use the first

and the last rows to “kill” {yk1, k = 2, . . . , n− 1}. Then the set {ykn, k = 2, . . . , n− 1} will be
“killed” automatically. We have obtained Jn from X and thus, have proved that X is equivalent
to Jn.

Now investigate twisted cohomologies associated to arbitrary non-skewsymmetric r-matrices.
The following two results will prove to be useful for our study.

Lemma 4.10. Assume X ∈ ZBD(sl(n), r). Then there exists a twisted cocycle Y ∈
GL(n,F[

√
d]), associated to r, and equivalent to X.

Proof. We have X ∈ GL(n,F) and for any

σ ∈ Gal(F/F[
√
d]), X−1σ(X) ∈ C(r)

On the other hand, the Belavin-Drinfeld cohomology for sl(n) associated to r is trivial. This
implies that X is equivalent to the identity, where in the equivalence relation we consider F[

√
d]

instead of F. So there exists Y ∈ GL(n,F[
√
d]) and C ∈ C(r) such that X = Y C. On the other

hand, Y ∈ ZBD(sl(n), r) since

(AdX−1σ2(X) ⊗AdX−1σ2(X))(r) = r21 =⇒ (AdY −1σ2(Y ) ⊗AdY −1σ2(Y ))(r) = r21

Proposition 4.11. Let r be a non-skewsymmetric r-matrix associated to an admissible triple
(Γ1,Γ2, τ) satisfying s(Γ1) = Γ2 and sτ = τ−1s. If X ∈ ZBD(sl(n,F), r), then there exist
R ∈ GL(n,F) and D ∈ diag(n,F) such that X = RJD.

Proof. According to Lemma 4.10, X = Y C, where Y ∈ GL(n,F[
√
d]) and C ∈ C(r). Since

(AdY −1σ2(Y ) ⊗AdY −1σ2(Y ))(r) = r21, (AdS ⊗AdS)(r) = r21

it follows that S−1Y −1σ2(Y ) ∈ C(r). On the other hand, by Lemma 4.11 from [8], C(r) ⊂
diag(n,F). We get S−1Y −1σ2(Y ) ∈ diag(n,F). Now Theorem 4.9 implies that Y = RJD0,
where R ∈ GL(n,F) and D0 ∈ diag(n,F). Consequently, X = RJD0C = RJD with
D = D0C ∈ diag(n,F).

Let T denote the automorphism of diag(n,F) defined by T (D) = SD−1SD.

Lemma 4.12. Let r be a non-skewsymmetric r-matrix with centralizer C(r). Let X = RJD, with
R ∈ GL(n,F) and D ∈ diag(n,F[

√
d]). Then X ∈ ZBD(sl(n,F), r) if and ony if D ∈ T−1(C(r)).

Proof. Let us first note that X ∈ ZBD(sl(n,F), r) if and only if for any σ ∈ Gal(F/F[
√
d]),

X−1σ(X) ∈ C(r) and SX−1X ∈ C(r). We have X = RJD which implies

X = RJD = RJSD = RJDD−1SD = XD−1SD = XST (D)

We immediately get that SX−1X ∈ C(r) if and only if T (D) ∈ C(r).

Lemma 4.13. Let X1 = R1JD1 and X2 = R2JD2 be two Belavin-Drinfeld twisted cocycles
associated to r. Then X1 and X2 are equivalent if and only if D2D

−1
1 ∈ C(r) ·Ker(T ).
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Proof. Assume the two cocycles are equivalent. There exist Q ∈ GL(n,F) and C ∈ C(r) such
that X2 = QX1C. Then

Q = R2JD2C
−1D−1

1 J−1R−1
1

Since Q = Q and J = JS, we get

D2C
−1D−1

1 = SD2C−1D−1
1 S

Thus D2C
−1D−1

1 ∈ Ker(T ). On the other hand, C ∈ C(r) ⊂ diag(n,F), so D2C
−1D−1

1 =
D2D

−1
1 C−1. We have obtained that D2D

−1
1 ∈ C(r) · Ker(T ). Conversely, if this condition

is satisfied, then write D2D
−1
1 = D0C, where C ∈ C(r) and D0 ∈ Ker(T ). Denote

Q := R2JD0J
−1R−1

1 . Then, by construction, Q = Q and X2 = QX1C.

By lemmas 4.12 and 4.13, we get

Proposition 4.14. Let r be a non-skewsymmetric r-matrix associated to an admissible triple
(Γ1,Γ2, τ) satisfying s(Γ1) = Γ2 and sτ = τ−1s. Then

H
1
BD(sl(n,F), r) =

T−1(C(r))

C(r) ·Ker(T )

At this point, one needs the explicit description of the centralizer and its preimage under T .

Lemma 4.15. Let r be a non-skewsymmetric r-matrix associated to an admissible triple
(Γ1,Γ2, τ). Then the following hold:

(a) C(r) consists of all diagonal matrices D = diag(d1, . . . , dn) such that di = sisi+1 . . . sn,
where si ∈ F satisfy the condition: si = sj if αi ∈ Γ1 and τ(αi) = αj.

(b) T−1(C(r)) consists of all diagonal matrices D = diag(d1, . . . , dn) such that di = sisi+1 . . . sn,
where si ∈ F satisfy the condition: sisn−i = sjsn−j if αi ∈ Γ1 and τ(αi) = αj.

Proof. Part (a) can be proved in the same way as Lemma 5.5 from [8] and (b) follows immediately
from (a).

Let us make the following remark. Any admissible triple (Γ1,Γ2, τ) can be viewed as a union
of strings

αi1
τ−→ αi2

τ−→ . . .
τ−→ αik , τ(αik) /∈ Γ1

The above lemma implies that elements of C(r) have the property that si1 = si2 = . . . = sik , i.e.
si is constant on each string. In turn, elements of T−1(C(r)) satisfy

si1sn−i1 = si2sn−i2 = . . . = siksn−ik

i.e. sisn−i is constant on each string.

Theorem 4.16. Suppose r is a non-skewsymmetric r-matrix with admissible triple (Γ1,Γ2, τ)
satisfying sτ = τ−1s. Let str(Γ1,Γ2, τ) denote the number of symmetric strings not containing
the middlepoint. Then

H
1
BD(sl(n,F), r) =

(
F∗

NF(
√
d)/F(F(

√
d))∗

)str(Γ1,Γ2,τ)
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Proof. Let ϕ : (F∗)n → diag(n,F) be the map

ϕ(s1, . . . , sn−1, sn) = diag(s1 . . . sn, s2 . . . sn, . . . , sn−1sn, sn)

Consider T̃ = ϕ−1Tϕ. Since Ker(T ) = ϕKer(T̃ ), we have

T−1(C(r))

Ker(T ) · C(r)
∼=

T̃−1ϕ−1(C(r))

Ker(T̃ ) · ϕ−1(C(r))

We make the following remarks:

(i) (s1, . . . , sn) ∈ Ker(T̃ ) if and only if sisn−i = 1 for all i ≤ n− 1 and sn = s1 . . . sn.
(ii) (s1, . . . , sn) ∈ ϕ−1(C(r)) is equivalent to si is constant on each string of the given triple.
(iii) (s1, . . . , sn) ∈ T̃−1ϕ−1(C(r)) implies that sisn−i is constant on each string.

Step 1.
Suppose that the admissible triple is the disjoint union of two symmetric strings

αi1
τ−→ αi2

τ−→ . . .
τ−→ αik , αn−ik

τ−→ αn−ik−1

τ−→ . . .
τ−→ αn−i1

Here we recall that τ has the property that τ(αn−j) = αn−i if τ(αi) = αj .
Let (s1, . . . , sn) ∈ T̃−1ϕ−1(C(r)). Then

si1sn−i1 = . . . = siksn−ik =: t, sn−i1si1 = . . . = sn−iksik = t

One can check that (s1, . . . , sn) ∈ Ker(T̃ )·ϕ−1(C(r)). Indeed, let us assume first that n = 2m+1.
Then (s1, . . . , sn) is the product of the following elements:

(s1, . . . , sm, (sm)−1, . . . , (s1)−1, s1 . . . sm), (1, . . . , 1, sm+1sm, . . . , sn−1s1, sn(s1 . . . sm)−1

The first factor belongs to Ker(T̃ ) and the second is in ϕ−1(C(r)) since the n − i1, . . . , n − ik
coordinates have the constant value t.

Suppose that n = 2m. Consider(
s1, . . . , sm−1, rm, (sm+1)−1, . . . , (s1)−1, sn

)
, (1, . . . , 1, sm/rm, sm+1sm−1, . . . , sn−1s1)

where

rm =
s1 . . . sm−1sn
s1 . . . sm−1sn

The first factor is in Ker(T̃ ) since rmrm = 1 and the second is in ϕ−1(C(r)) since neither n− i1,
. . . , n− ik can be m, and the corresponding coordinates all equal t.

Step 2.
Let us assume that the admissible triple includes a symmetric string

αi1
τ−→ αi2

τ−→ . . .
τ−→ αik

τ−→ . . .
τ−→ αn−ik

τ−→ αn−ik−1

τ−→ . . .
τ−→ αn−i1

not containing the middlepoint. Let (s1, . . . , sn) ∈ T̃−1ϕ−1(C(r)). Then

si1sn−i1 = . . . = siksn−ik = sn−i1si1 = . . . = sn−iksik = t

We note that t ∈ F since t = t.
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Case 1. Assume there exists q ∈ F(
√
d) such that t = qq. Then (s1, . . . , sn) ∈ Ker(T̃ ) ·

ϕ−1(C(r)). Indeed, one can make the same construction as in Step 1, except for the positions
i1,. . . , ik, n− i1,. . . , n− ik where we consider instead the decomposition

(. . . , sil , . . . , sn−il , . . .) = (. . . , sil/q, . . . , sn−il/q, . . .) · (. . . , q, . . . , q, . . .)

Case 2. Assume for any q ∈ F(
√
d), t 6= qq. Then it follows that (s1, . . . , sn) /∈ Ker(T̃ ) ·

ϕ−1(C(r)). Indeed, let us assume the contrary, i.e. we may write si = piri, where pipn−i = 1 for
all i ≤ n− 1, pn = p1 . . . pn and

ri1 = . . . = rik = rn−i1 = . . . = rn−ik

It follows that

t = si1sn−i1 = ri1rn−i1 = ri1ri1

which is a contradiction.

Step 3.
Let us suppose that the admissible triple includes a symmetric string

αi1
τ−→ αi2

τ−→ . . .
τ−→ αik

τ−→ . . .
τ−→ αn−ik

τ−→ αn−ik−1

τ−→ . . .
τ−→ αn−i1

containing the middlepoint. In this case

si1sn−i1 = . . . = siksn−ik = sn−i1si1 = . . . = sn−iksik = t

Moreover, t = smsm, where sm is the coordinate corresponding to the middlepoint αm. Then
again (s1, . . . , sn) ∈ Ker(T̃ ) · ϕ−1(C(r)) since we may proceed as in Step 2, case 1 by taking
q = sm.

Example 4.17. For F = R and d = −1, it follows that given an r-matrix r with admissible
triple (Γ1,Γ2, τ) we have

H
1
BD(sl(n,R), r) = (Z2)str(Γ1,Γ2,τ)

Example 4.18. Let us consider F = C((~)) and d = ~. Then N(F(
√
d)) = F and Theorem

4.16 implies that H1
BD(sl(n,C((~))), r) is trivial (consists of one element) for any r-matrix r

satisfying the condition of Proposition 4.4 and empty otherwise. We have thus generalized our
previous results [9], where we proved that twisted cohomologies for sl(n) associated to generalized
Cremmer-Gervais r-matrices are trivial.

This result completes classification of quantum groups which have sl(n,C) as the classical
limit. Summarizing, we have the following picture:

1. According to [4, 5], there exists an equivalence between the category HA0(C[[~]]) of
topologically free Hopf algebras cocommutative modulo ~ and the category LBA0(C[[~]]) of
topologically free over C[[~]] Lie bialgebras with δ ≡ 0 (mod ~).

2. To describe the category LBA0(C[[~]]), it is sufficient (multiplying by a proper power of
~N ) to classify Lie bialgebra structures on the Lie algebra g⊗C C((~)).
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3. Following [6], only three classical Drinfeld doubles are possible, namely

D(g⊗C C((~))) = g⊗C Ak, k = 1, 2, 3

Here

A1 = K[ε], ε2 = 0, A2 = K⊕K, A3 = K(
√
~) with K = C((~))

4. Lie bialgebra structures related to the case A1 are in a one-to-one correspondence with
quasi-Frobenius subalgebras of g⊗C C((~)).

5. Now we turn to the case D(g ⊗C C((~))) = g ⊗C A2 with g = sl(n). Up to multiplication
by ~N and conjugation by an element of GL(n,K), the related Lie bialgebra structures are
defined by the Belavin-Drinfeld data (see [1] and Section 2, the main ingredient is the triple
τ : Γ1 → Γ2) and an additional data called a Belavin-Drinfeld cohomology. In the case
g = sl(n), the cohomology consists of one element independently of the Belavin-Drinfeld
data. As a representative of this cohomology class one can choose the identity matrix.

6. Finally, in the case A3 and g = sl(n) the description is as follows. Up to multiplication
by ~N and conjugation by an element of GL(n,K), the related Lie bialgebra structures are
defined by the Belavin-Drinfeld data and an additional data called a twisted Belavin-Drinfeld
cohomology. In this case the twisted cohomology consists of one element if τ : Γ1 → Γ2

satisfies the condition of Proposition 4.4 and is empty otherwise (no Lie bialgebra structures
of the type A3 if τ does not satisfy the condition of Proposition 4.4). If the cohomology
class is non-empty, it can be represented by the matrix J introduced before Theorem 4.9.

Appendix A.
Throughout the paper we use the following convenient notations for the arXiv references:

[8] Stolin A and Pop I 2013 arXiv:1303.4046
[9] Stolin A and Pop I 2013 arXiv:1309:7133
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