
35 Spontaneous leptonic CP violation and
θ13

H. Serôdio

Abstract In this work one reviews a simple scenario [1] where the above three aspects
(leptogenesis, leptonic mixing and spontaneous CP violation) are related. To this aim, we shall
add to the Standard Model (SM) a minimal particle content: two Higgs triplets Δ ( = 1,2)
with unit hypercharge and a complex scalar singlet S with zero hypercharge.

35.1 The model

The SM is extended with two Higgs triplets Δ ( = 1,2) of unit hypercharge and a complex
scalar singlet S with zero hypercharge. In the SU(2) representation:
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CP invariance is imposed at the Lagrangian level and a Z4 symmetry is introduced under
which the scalar and lepton fields transform as indicated in Table. 35.1

The most general scalar potential invariant under the above symmetries can be written as

VCP×Z4 = VS + Vϕ + VΔ + VSϕ + VSΔ + VϕΔ + VSϕΔ, (35.2)

where each terms are presented in [1]. Since CP invariance has been imposed at the La-
grangian level, all the parameters are assumed to be real. This symmetry can be spontaneously
broken by the complex VEV of the scalar singlet S. To show that this is indeed the case, let us
analyze the scalar potential for S. The tree-level potential then reads
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S
4
S
cos (4α) , (35.3)

with 〈S〉 = Seα. Besides the trivial solution S = 0, which leads to V0 = 0, there are other
three possible solutions to the minimization problem with S 6= 0: (i) α = 0,±π , (ii) α± π

2 and

(iii) cos(2α) = −
μ2
S
+ λ′′

S
2
S

4λ′
S
2
S

.

Only the last solution is of interest to us since it leads not only to the spontaneous breaking of
the CP symmetry but also to a non-trivial CP-violating phase in the one-loop diagrams relevant
for leptogenesis, for a review on this subject see [2].
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Table 35.1: Representations of the fields under the A4 × Z4 and SM = SU(2)L × U(1)Y
symmetries.

Field L eR, μR, τR Δ1 Δ2 ϕ S  Ψ
A4 3 1, 1′, 1′′ 1 1 1 1 3 3
Z4  − 1 −1  −1  1
SM (2,−1/2) (1,−1) (3,1) (3,1) (2,1/2) (1,0) (1,0) (1,0)

In order to generate a realistic lepton mixing pattern we shall also impose an A4 discrete
symmetry at high energies. We recall that, in a particular basis, the Clebsch-Gordan decom-
positions of the A4 group are can be made with real coefficients. The spontaneous breaking
of the A4 symmetry is then guaranteed by adding to the theory two extra heavy scalar fields,
 and Ψ, with a suitable VEV alignment. The complete symmetry assignments of the fields
under A4 × Z4 and SU(2)L × U(1)Y are given in Table 35.1.

Below the cut-off scale Λ, the flavour dynamics is encoded in the relevant effective Yukawa
Lagrangian L, which contains the lowest-order terms1 in an expansion in powers of 1/Λ,
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(35.4)

As soon as the heavy scalar fields develop VEVs along the required directions, namely,

〈〉 = (r,0,0) , 〈Ψ〉 = (s, s, s) , (35.5)

and the scalar singlet S acquires a complex VEV, 〈S〉 = S eα, the Yukawa matrices become

Ye =







ye 0 0
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, (35.6)

and

ye,μ,τ =
r

Λ
yℓ
e,μ,τ

, yΔ1 =
S

Λ′
�

y1e
α + y′1e

−α
�

, yΔ2 =
y2

Λ
s. (35.7)

Notice that the Yukawa matrices YΔ1 and YΔ2 exhibit the so-called μ−τ and magic symmetries,
respectively.

1In principle, one could also include the renormalizable 4-dimension term Δ2LTL. This term is however easily
removed by imposing an additional shaping Z4 symmetry.
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Figure 35.1: Neutrino masses m as a function of the high-energy phase β in the exact TBM
case.

35.2 Low-energy phenomenology

In the present framework, neutrinos acquire masses through the well-known type II seesaw
mechanism due to the tree-level exchange of the heavy scalar triplets Δ. The unitary mixing
matrix U is given by

U = e−σ1/2
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�

, (35.8)

where

γ1 = (σ1 − β)/2, γ2 = (σ1 − σ2)/2, σ1,2 = arg
�

z2 ± z1eβ
�

. (35.9)

Hereafter we consider the relevant CP-violating phase as being β. Since at this point there is
no Dirac-type CP violation (U13 = 0), the Majorana phases γ1,2 are the only source of CP
violation in the lepton sector.

At 1σ confidence level, the neutrino mass squared differences are [3]

Δm2
21 =

�

7.59+0.20−0.18

�

× 10−5 eV2, Δm2
31 =

�

2.50+0.09−0.16

�h

−2.40+0.09−0.08

i

× 10−3 eV2,

(35.10)

for the normal [inverted] neutrino mass hierarchy. The present model cannot accommodate an
inverted hierarchy for the neutrino mass spectrum. The dependence of neutrino masses on the
high-energy phase β is presented in Fig. 35.1 for the exact TBM case. The light red shaded
area is currently disfavoured by the recent WMAP seven-year cosmological observational
data [4].
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The T2K [5] and MINOS [6] neutrino oscillation data imply for the θ13 mixing angle

sin2 θ13 = 0.013+0.007−0.005

�

+0.015
−0.009

�h

+0.022
−0.012

i

, (35.11)

at 1σ(2σ)[3σ]. Recently, through the observation of electron-antineutrino disappearance,
the Daya Bay Reactor Neutrino Experiment has also measured the non-zero value [7]:

sin2(2θ13) = 0.092± 0.016(stt)± 0.005(syst) , (35.12)

with a significance of 5.2σ. In the light of these results, models that lead to tribimaximal
mixing appear to be disfavored. Here we shall consider small perturbations around the TBM
vacuum-alignment conditions (35.5). We consider two distinct cases (with |ϵ1,2| � 1.):

CASE A - Small perturbations around the flavon VEV 〈〉 = (r,0,0) of the form 〈〉 =
r(1, ϵ1, ϵ2);

Due to the new form of 〈〉, the charged lepton Yukawa matrix is

Yℓ =







ye yτϵ1 yμϵ2
yτϵ2 yμ yeϵ1
yμϵ1 yeϵ2 yτ






, (35.13)

which implies Uℓ 6= 11, where Uℓ is the unitary matrix which rotates the left-handed charged-
lepton fields to the their physical basis. The new lepton mixing matrix U = U†

ℓUTBM yields the
perturbed mixing angles

sin2 θ12 '
1

3
[1− 2(ϵ1 + ϵ2)] , sin2 θ23 '

1

2
(1+ 2ϵ1) , sin2 θ13 '

(ϵ1 − ϵ2)2

2
,

(35.14)
at lowest order in ϵ1,2. Obviously, the rotation of the charged lepton fields does not affect the
neutrino spectrum nor generate a Dirac-type CP-violating phase. Since the flavon fields are
real, the Majorana phases γ1,2 also remain unaltered.

CASE B - Small perturbations around the flavon VEV 〈Ψ〉 = s(1,1,1) of the form 〈Ψ〉 =
s(1,1+ ϵ1,1+ ϵ2);

The Yukawa couplings YΔ2 contributing to the neutrino mass matrix are now given by

YΔ2 =
yΔ2

3
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
. (35.15)

Consequently, at first order in ϵ1,2, the neutrino mass spectrum get small corrections. Still, as
in the unperturbed case, it can be shown that an inverted neutrino hierarchy is not allowed. In
the present case, the approximate analytic expressions for the mixing angles are

sin2 θ12 '
1

3
+
2

9
(ϵ1+ϵ2), sin2 θ13 '

(ϵ1 − ϵ2)2

72cos2 β
, sin2 θ23 '

1

2
+
1

6
(ϵ1−ϵ2) , (35.16)
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Figure 35.2: Allowed regions in the (ϵ1, ϵ2) plane corresponding to the VEV perturbations of
the flavon field 〈〉 = r(1, ϵ1, ϵ2) in case A (left panel) and 〈Ψ〉 = s(1,1+ϵ1,1+
ϵ2) in case B (right panel). The scatter points were obtained considering the 1σ
(black), 2σ (red) and 3σ (green) neutrino oscillation data.

while for the Dirac-type CP-violating invariant JCP we have

JCP = m
�

U11U22U
∗
12U

∗
21

�

'
ϵ2 − ϵ1
36

tnβ .

We now comment on the possibility of reproducing the recent Daya Bay θ13 value (35.12) in
our framework. In the absence of a 3-neutrino global analysis of the oscillation data including
the Daya Bay results, we take the 1σ values for θ12, θ23 and Δm2

21,31 obtained in [3]. One
can see that the new Daya Bay value for θ13 is not compatible with the remaining mixing
angles for case A. Instead, for case B we get a perfect agreement with all data [1].

35.3 Higgs triplet decays and leptogenesis

The mechanism of leptogenesis can be naturally realized in the present model due to the
presence of the scalar triplets Δ1 and Δ2. In the presence of CP-violating interactions, the
decay of Δ into two leptons generates a nonvanishing leptonic asymmetry for each triplet
component (Δ0


,Δ+


,Δ++


). Assuming M � Mb, the flavoured CP asymmetry given for each

triplet component can be rewritten as

εαβ

= cαβPαβ ε

0

, ε0


=
1

3π

z zb ||2M2

sinβ

z2

t4 + 4 ||4M2



, (35.17)
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where cαβ is 2− δαβ for Δ0

, Δ++


and 1 for Δ+


, and with t1 = 3 and t2 = 2. The matrix P is

given by

P =
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2
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
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, (35.18)

for case A, while

P = (−1)




1

2
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




, (35.19)

in case B. Obviously, in the TBM limit (ϵ1,2 = 0), there is a unique matrix P. In this case, the
flavour structure of P dictates that the only allowed decay channels of Δ are into the ee and
μτ flavours. Once the VEV perturbations are introduced, new decay channels are opened in
case A with the corresponding CP asymmetries suppressed by O(ϵ) factors.

Maximizing ε0


with respect to the VEV of the decaying scalar triplet , one obtains

ε01,max '
M1

Æ

Δm2
31

12
p
6π2

sinβ, ε02,max '
M2

Æ

Δm2
31

48π2
tnβ . (35.20)

One can see from the above equations that sufficiently large values of the CP asymmetries
can be obtained in the flavoured regime, i.e. M < 1012. Therefore, unlike the type-I seesaw
framework [8–11], imposing to the Lagrangian a discrete symmetry do not necessarily leads to
a vanishing leptonic CP asymmetry in the type II seesaw case [12].

35.4 Conclusion

A simple scenario where spontaneous CP violation, leptonic mixing and thermal leptogenesis
are related was presented. We added a minimal particle content to the SM, namely, two Higgs
triplets Δ1,2 and a complex scalar singlet S. In this framework, a single phase connects low-
and high-energy CP violation.
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