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Introduction

The structure of nucleus is still an area of
interest due to its mysterious nature. The
richness in its theoretical and experimental
channels adds to its beauty too. The explanation
of the nuclear structure, based on the nucleons
and their interactions is indeed a great challenge.
Development of a unified theoretical framework
that could explain the properties of nuclei and
make successful predictions, especially related to
exotic nuclei which could not be tackled
experimentally, is the usual practice in nuclear
physics. The true nature of nuclear force and the
nucleon-nucleon interaction is still not known
clearly. Though, Bohr, Mottelson and Pines [1]
proposed a theory, considering the pairing
interactions, in analogy with the BCS theory, it
failed in the regions far from the stability line,
since it was inadequate in incorporating the
influence of pairing upon the unstable states.

Hartree-Fock-Bogoliubov (HFB) theory [2]

is a successful theory, which unifies the self-
consistent mean-field approach in the Hartree-
Fock theory, in which the properties of nuclei are
explained by treating nucleons as independent
particles moving in an average potential and the
pairing correlations due to the introduction of
quasi-particles in a pairing field as in the BCS
model. The general product wave functions are
Slater determinants, which are determined by
considering all the correlations in the single-
particle approach by making use of the
variational principle.
In this work, we investigated some of the
ground-state properties of the isotopes of Zinc
(Zn) (Z=30), with mass number ranging from 54
to 81. For this, we performed the Skyrme-
Hartree-Fock-Bogoliubov calculations [3] for all
the isotopes, using SLY4 as the Skyrme
functional. We then compared our results with
the available experimental data [4].

Formalism

The shell model suggests that each nucleon
in a nucleus moves independently in an average
potential generated by all the other nucleons. A
single-particle potential can be derived from the
two-body interactions, following the application
of the variational minimization on the Hartree-
Fock energy by treating the Slater determinants
as trial wave functions. The resulting Hartree-
Fock equation contains a density dependent self-
consistent field in addition to the kinetic energy
term and can be solved iteratively.

The HFB theory treats correlations in a
single-particle approach by the introduction of
quasi-particles in a pairing potential. The
ground-state of the nucleus is considered as a
vacuum of quasi-particles, which are -either
particles or holes in the limit of pairing
correlations. To derive the required HFB
equation, we start with the many-body
Hamiltonian and the particle number symmetry
is conserved by the introduction of Lagrange
multipliers through the Lipkin-Nogami method.
The HFB equation [2] is given by
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The study is carried out using the code HFBTHO
(v2.00d) [3], which iteratively diagonalizes the
Hamiltonian based on the Skyrme functional
SLY4, until a self-consistent solution is reached.
The pairing interaction used in the HFB
approach is of the form,
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where, V0 is the pairing strength, p(7) is the
isoscalar nucleonic density and pe= 0.16fm™[3]
Here, a mixed surface-volume pairing force (6=
0.5) has been used with a quasi-particle cut-off at
60 MeV. The harmonic oscillator basis was
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characterized by setting the length of the
oscillator as 2.2 fm. The principal number of
oscillator shells was taken as 16. The same value
of pairing strength was chosen for both protons
and neutrons, which is 300 MeV. The
calculations for odd isotopes were carried out by
blocking the quasi-particle states.

Results and Discussion

The binding energy per nucleon (BE/A) of the
isotopes of Zinc having mass numbers 54 to 86
were calculated and then compared with the
available experimental data and the results are
plotted in Fig.1. It is evident from the plot that
the results of the HFB calculations follow the
same trend as that of the experimental values.
Odd-even staggering for both even-even and
even-odd isotopes can be clearly noticed. The
maximum in the parabola corresponding to
A=68, is due to the shell closure of the neutron
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Fig.1 Plot of BE/A against mass number of Zn

isotopes
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The single (S,) and two-neutron (S»,) separation
energies [5] were calculated and then compared
with the experimental values. The one-neutron
separation energy is defined as,
S,=BE(Z,N)—B(Z, N—1) 3)
and the two-neutron separation energy is given
by,

Sop,=BE(Z,N)—B(Z,N —2) ()]

It can be seen that the single-neutron separation
energy of odd isotopes is less than that of their
even neighbors and thus odd-even effects are
reflected well in Fig.2. SLY4 functional proves
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Fig. 2 Plot of single-neutron separation energy
against mass number of Zn isotopes
to be consistent with an excellent agreement with
the experimental values.
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Fig. 3 Plot of two-neutron separation energy
against mass number of Zn isotopes

The plot of two-neutron separation energy
also shows an admirable agreement with the
experimental data, as shown in Fig.3.
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