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Abstract.
This study introduces an innovative control methodology designed specifically for quantum physical sys-
tems. It bridges a critical gap by accounting for the full spectrum of uncertainties and noise that could
affect the time evolution of these systems. In contrast to conventional methods, our pioneering approach
utilizes probability density functions (pdfs) to characterize quantum dynamics, providing a more detailed
and accurate description of their temporal behavior. We propose a strategy that seeks to minimize the dis-
crepancy between the actual pdf, which encapsulates the combined dynamics of the quantum system and
an external electric field, and a desired pdf that aligns with the system’s intended outcomes. This strategy
marks a significant shift from traditional quantum control techniques. Initially, we present a solution for
controlling quantum systems defined by general pdfs. This solution is then demonstrated on quantum sys-
tems described by Gaussian pdfs, with an in-depth account of the resulting optimized controller’s structure.
The study culminates with practical demonstrations, showcasing the approach’s efficacy and practicality,
thus endorsing its potential as a formidable instrument in quantum control.

1 Introduction

The concept of controlling quantum physical systems,
which emerged towards the end of the last century fol-
lowing the advent of laser technology [1–7], has become
a cornerstone of quantum information theory and quan-
tum technology. The field of quantum control has
expanded significantly, both theoretically and experi-
mentally, in recent years [8–12]. Theoretical advance-
ments have introduced a variety of methods to exert
control over quantum systems, such as optimal control
theory [13,14], Lyapunov control [15–17], learning con-
trol algorithms [18], and robust control methods [19].
Optimal quantum control, in particular, focuses on find-
ing a control input that ensures the closed-loop stability
of the quantum system while optimizing a predefined
cost function [4]. The objective here is to identify a con-
troller that can transition the quantum system from an
initial state to a predefined desired state [4]. Histori-
cally, this has been approached by optimizing a cost
function, typically the expected value of a predefined
target operator [4]. To this end, several numerical algo-
rithms have been developed for optimizing quantum
control systems, notably the Krotov method [20] and
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the rapid, monotonically convergent iteration methods
by Rabitz et al. [21–24]. Initially applied to manip-
ulate transition probabilities between molecular sys-
tem’s bound states [21], these methods have evolved
to address a wider range of target operators [22].

The concurrent development of feedback control
methods for quantum physical systems has seen the
incorporation of optimal estimations of dynamical vari-
ables from measurement records [25]. When Gaussian
measurement noise is assumed, the resulting quantum
mechanical cost function exhibits a linear and quadratic
form analogous to that found in classical systems [25].
This resemblance has permitted the extension of clas-
sical linear quadratic Gaussian control theory to the
realm of quantum systems [25,26]. However, despite
the method’s success and its substantial applications,
it is pertinent to note that its applicability is limited to
specific systems and is contingent upon certain assump-
tions.

Building on the foundations laid by earlier research,
the domain of quantum control has recently turned its
focus towards the manipulation of spin systems due to
their pivotal role in quantum optics and quantum infor-
mation theory [27,28]. Innovations in this area have
seen the use of radio-frequency pulses within coher-
ent spectroscopy to adeptly navigate the state tran-
sitions within spin systems [27]. Furthermore, strate-
gies have been devised for the control of ensembles
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of spin systems with uniform distribution, with sub-
sequent explorations extending to Gaussian distribu-
tions [28]. The continuous advancement of quantum
control strategies attests to the field’s vibrant and com-
plex character, constantly presenting new challenges
and paving the way for inventive research and tech-
nological breakthroughs. This progressive trend under-
scores a broader commitment within the field to refine
and expand control methodologies to meet the nuanced
demands of quantum systems.

Despite the significant advancements made in quan-
tum control, a pervasive challenge across existing
methodologies is their reliance on deterministic cost
functions, which do not fully account for the intrinsic
noises and uncertainties prevalent in quantum systems.
This oversight can lead to control strategies that, while
theoretically sound, may falter under the unpredictable
conditions of real-world applications. In response, our
study introduces a paradigm shift in quantum control
by proposing a methodology that inherently accommo-
dates the complex uncertainties characteristic of quan-
tum systems in noisy and uncertain environments. The
cornerstone of our approach is the redefinition of the
cost function as the distance between the probabilistic
distributions describing the dynamics of the quantum
system and the external control field, and a desired dis-
tribution that encapsulates the target system behav-
ior. This approach, which characterizes system evolu-
tion through probability density functions (pdfs), offers
a holistic view of the system’s behavior, allowing for
a more accurate representation of its evolution amidst
uncertainties. By leveraging distance measures between
pdfs, a concept well-established in classical control the-
ory [29–34], our method transcends traditional con-
straints, offering a robust framework for optimizing con-
trol strategies in the intricate domain of atomic-scale
systems. This innovative approach not only addresses
the limitations of previous quantum control techniques
but also paves the way for the development of more
resilient control strategies that are better suited to the
realities of quantum technology applications.

The adaptation of a fully probabilistic control method-
ology to quantum systems introduces significant chal-
lenges. Quantum systems, distinguished by complex
random variables in their time evolution, differ fun-
damentally from classical systems which are defined
by real random variables. This necessitates the use
of complex probability density functions to accurately
describe quantum dynamics, diverging from the clas-
sical norm of real distributions. Furthermore, quantum
systems are inherently influenced by their environment,
leading to dissipation effects that add layers of complex-
ity to their control. To manage this, our approach incor-
porates the Liouville–von Neumann equation, enhanced
with a Lindblad term, to effectively model the interac-
tion between the quantum system and its surround-
ings. Additionally, the derivation of optimal control
laws for quantum systems faces hurdles, as conven-
tional assumptions applicable in classical mechanics,
such as non-perturbative information extraction, are
not directly transferable to quantum contexts. While

this paper does not delve into the complete resolu-
tion of this challenge, it suggests a prospective pathway
through the incorporation of an additional Lindblad
term, analogous to the method employed for address-
ing system-environment interactions. These integrated
strategies collectively establish a comprehensive frame-
work, facilitating nuanced control over quantum sys-
tems and bridging the gap between theoretical princi-
ples and practical implementation.

Our study introduces a transformative approach to
quantum physical systems control, marking a depar-
ture from mere incremental advancements in existing
methods. The proposed methodology is distinguished
by several key features that underscore its novelty and
significance. Firstly, unlike conventional quantum con-
trol approaches that may overlook the complexities
introduced by factors like sensor noise and measure-
ment inaccuracies, our method fully integrates these
sources of uncertainty. This comprehensive consider-
ation ensures a more accurate representation of real-
world quantum system dynamics, offering a robust solu-
tion that is reflective of actual operating conditions.
Secondly, a pivotal achievement of our research is the
derivation of a closed-form solution for the optimal con-
trol law applicable to quantum systems characterized
by arbitrary probability density functions (pdfs). This
advancement facilitates an analytical framework specif-
ically for systems described by Gaussian pdfs, contrast-
ing sharply with the iterative or numerical solutions
prevalent in current practices. This analytical approach
simplifies the controller design process and broadens
the spectrum of quantum systems amenable to control.
Lastly, the method diverges from the traditional neces-
sity for a positive definite target operator to guarantee
the convergence of the objective function, a constraint
common in many current methodologies. This flexibility
allows for a wider array of quantum control problems to
be effectively tackled, thereby enhancing the method’s
applicability and utility. In essence, the methodologi-
cal innovation presented in this research encompasses
a holistic acknowledgment of quantum system dynam-
ics, offers an analytical solution where previously only
iterative methods may have been viable, and intro-
duces a level of flexibility not found in many exist-
ing approaches. These contributions promise to signif-
icantly alter the landscape of quantum control, facili-
tating a closer alignment between theoretical constructs
and their practical realizations. This paradigm shift in
controller design for quantum systems represents a sub-
stantial leap towards the tangible implementation of
quantum technologies.

This paper is organised as follows: Section 2 briefly
recalls the evolution of open quantum systems and
develops the corresponding state space model. In Sect.
3, we introduce a general theory to fully control
the quantum systems using a probabilistic approach
and demonstrate its general solution. The developed
approach will then be applied in Sect. 4 to systems
described by Gaussian pdfs. Thereafter, the method is
applied to a spin system and an atomic system in Sect.
5. Finally, some conclusions are provided in Sect. 6.
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2 Evolution of open quantum systems

2.1 A brief review of Liouville–von Neumann
equation

The temporal evolution of an open quantum system
is effectively described by the Liouville–von Neumann
equation, which is given by:

i�
dρ(τ)
dτ

= [H0 + Hu(τ), ρ(τ)] + L(ρ(τ)),

ρ(0) = ρ0. (1)

Here, � represents the reduced Planck’s constant, a fun-
damental quantity in quantum mechanics. The term
ρ(τ) is the reduced density operator, which is a posi-
tive Hermitian operator with the property that its trace
equals one, denoted by Tr(ρ(τ)) = 1. H0, referred to as
the free Hamiltonian, describes the intrinsic energy of
the system in the absence of any external influences.
Conversely, Hu(τ) = −μu(τ) characterizes the inter-
action between the quantum system and an external
electric field, denoted by u(τ). The coupling between
the system and the field is mediated by the operator μ,
which depends on the specific physical characteristics of
the system [35–38]. This equation forms the cornerstone
of quantum dynamics, capturing the intricate interplay
between the system’s inherent properties and external
forces, as well as the influence of the surrounding envi-
ronment encapsulated by the term L(ρ(τ)).

In Eq. (1), the commutator represents the Liouvil-
lian super-operator acting on the reduced density oper-
ator, ρ(τ), capturing the system’s intrinsic dynamics.
The open system’s interactions with its environment
are described by L(ρ(τ)), following the Lindblad form:

L(ρ(τ)) = i�
∑

s

(
Lsρ(τ)L†

s − 1
2
{L†

sLs, ρ(τ)})
. (2)

Here, the Lindblad operators Ls, key to modeling dissi-
pative effects in quantum systems, are formulated using
transition rates Γk→j . These rates quantify the transi-
tion probabilities between the system’s eigenstates |k〉
and |j〉 under the free Hamiltonian. Specifically, each
operator Lj,k is constructed as follows:

Ls = Lj,k =
√

Γk→j |j〉 <k|, (3)

where the index k spans a finite set, |k〉, k = 0, . . . , l − 1,
with l denoting the total number of the free Hamilto-
nian’s eigenvectors. From Eq. (1), it can be straightfor-
wardly shown that the time evolution of the elements
of the density operator is given by,

dρn,m(τ)
dτ

=

(−iωn,m − γn,m)ρn,m(τ) +
l−1∑

k=0

Γk→nρk,k(τ)δn,m

+i
u(τ)

�

l−1∑

k=0

(μn,kρk,m(τ) − ρn,k(τ)μk,m), (4)

with indices n,m = 0, 1, . . . , l − 1, and δn,m as the Kro-
necker delta. The matrix elements of the operator μ
are given by μk,n :=< k|μ|n >. The Bohr frequencies,

represented by ωn,m :=
En − Em

�
, capture the energy

differences between eigenstates |n〉 and |m〉 of the
free Hamiltonian H0, where En specifies the energy
eigenvalue corresponding to |n〉. Additionally, the total
dephasing rate γn,m is defined as:

γn,m :=
1
2

l−1∑

j=0

(Γn→j + Γm→j). (5)

which quantifies the cumulative dephasing effects on
the coherence between states |n〉 and |m〉 due to inter-
actions with the environment. The time evolution of
any physical observable, represented by an Hermitian
operator ô, within this open quantum system is deter-
mined by:

õ(τ) = 〈ô〉 = Tr(ρ(τ)ô). (6)

where Tr(ρ(τ)ô) computes the expectation value of ô at
time τ . This equation encapsulates the principle that
the evolution of observables in a quantum system can
be traced through the system’s density operator, ρ(τ).

This section has laid down the essential theoreti-
cal foundation for understanding the dynamics of open
quantum systems. This understanding is pivotal for the
discussions that follow, setting the stage for delving into
the intricacies of quantum control in the presence of
environmental interactions and uncertainties.

2.2 Evolution of the vectorisation of the density
operator

In exploring quantum mechanics, the dynamic evolu-
tion of quantum systems is pivotal. Central to this
exploration is the density matrix, ρ(τ), which defines
the quantum system’s state. In the previous section,
we formulated the density matrix as depicted in Eq.
(1). A more granular representation can be written as,

ρ(τ) = (ρ(τ))†

=

⎛

⎜⎜⎝

ρ0,0(τ) ρ0,1(τ) . . . ρ0,l−1(τ)
ρ1,0(τ) ρ1,1(τ) . . . ρ1,l−1(τ)

...
...

. . .
...

ρl−1,0(τ) ρl−1,1(τ) . . . ρl−1,l−1(τ)

⎞

⎟⎟⎠ ∈ C
l×l,

with Tr(ρ(τ)) = 1. (7)

This representation highlights the complex, time-
dependent components ρi,j(τ) of the matrix, offering
a detailed view of the quantum system’s evolving state.
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Building upon the representation of the density
matrix given in Eq. (7), we can further enhance our
mathematical treatment of quantum dynamics through
the introduction of the vectorization operation. This
process transforms ρ(τ) into a column vector x̃(τ), as
represented in the following equation,

x̃(τ) = vec(ρ(τ))

=

⎡

⎣
ρ0, 0(τ) ρ1,1(τ) . . . ρl−1,l−1(τ) ρ0,1(τ) . . .

ρ0, l−1(τ) ρ1,0(τ) . . . ρl−1,0(τ) . . . . . . . . .

ρl−2, l−1(τ) ρl−1,l−2(τ)

⎤

⎦
T

,

(8)

This vectorization facilitates a more streamlined manip-
ulation of quantum dynamics.

Employing the vectorized form x̃(τ), we reformulate
the differential equations from (4) into:

dx̃(τ)
dτ

= (Ã + iu(τ)Ñ)x̃(τ), x̃(0) = x̃0, (9)

where Ã ∈ C
l2×l2 , and Ñ ∈ C

l2×l2 representing matri-
ces, the elements of which are computable from Eq. (4),
while x̃0 symbolizes the vectorization of the initial den-
sity operator [38]. The notation ‘T’ in Eq. (8) represents
the transpose operation. We detail the derivation of Ã
and Ñ for a two-dimensional system in Appendix (A),
a process extendable to l-dimensional systems for l > 2.

To further simplify the analysis, a shifting operation
is applied to transition from x(τ) to x̃(τ) − xe. This
adjustment allows for a more succinct representation of
the differential Eq. (9), encapsulating the essence of the
system’s dynamics in a streamlined form as illustrated
by,

dx(τ)
dτ

= Ãx(τ) + B̃(x(τ))u(τ), x(0) = x̃0 − xe, (10)

Here, xe represents an eigenvector of Ã that fulfills
the condition Ãxe = 0. The term B̃(x(τ)) is defined
as iÑ(x(τ) + xe), effectively capturing the system’s
response to the external electric field u(τ). This com-
pact expression of the system dynamics offers a clearer
insight into the interaction between the quantum sys-
tem and the control input, facilitating an intuitive
understanding of the control process [38].

To facilitate analysis within discrete time intervals,
the continuous state-space equation is discretized. By
denoting xt ≡ x(tΔτ) and ut ≡ u(tΔτ), where t =
0, 1, 2, . . . is an integer indexing discrete steps and Δτ
is the sampling period, the discrete-time state-space
model is articulated as:

xt+1 = Axt + B(xt)ut. (11)

where A and B(xt) are derived through time discretiza-
tion as follows:

A = eÃΔτ , B(xt) =
(

B̃(xt)
∫ Δτ

0

eÃλdλ

)
, (12)

and where λ is the integration variable. Rewriting the
discrete state-space Eq. (11) for the t-th time step, we
get:

xt = Axt−1 + B(xt−1)ut−1. (13)

As mentioned in the introduction section and in related
literature [25], the evolution of quantum systems can
be influenced by various sources of uncertainties, such
as sampling, parameter, and functional uncertainties.
Consequently, to account for these various sources of
uncertainty, we introduce a noise term into the discre-
tised Eq. (13), resulting in:

xt = Axt−1 + But−1 + ζt, (14)

where ζt is a multivariate Gaussian noise term. It is also
important to highlight that in Eq. (14), we symbolize B
instead of B(xt−1), which is a deliberate simplification
of notation for readability. Nonetheless, please remem-
ber that B does indeed retain its dependency on xt−1.
This is a critical aspect to consider while interpreting
the subsequent discussion and results.

With the state-space model in place, we now turn
our attention to the observation model. This model
can leverage the well-known property stating that
for any pair of matrices Z1 and Z2, Tr(Z†

1Z2) =
(vec(Z1))†vec(Z2). This principle facilitates the expres-
sion of observations õt from Eq. (6) as a linear function
of the system state:

õt = Dx̃t = D(xt + xe), (15)

where D = (vec(ô†))† acts as a transformation matrix,
and Dxe serves as an offset term. To reflect real-world
measurements, we incorporate a noise term σt, repre-
senting multivariate Gaussian noise, into our observa-
tion model:

ot = D(xt + xe) + σt, (16)

These observations constitute the output equation.
In essence, the bilinear state-space model, encapsu-

lating the dynamics of quantum systems, is defined
by the interaction between the state Eq. (14) and the
observation Eq. (16). This framework not only captures
the influence of the input electric field but also incor-
porates the inherent uncertainties and noise present
in quantum systems, offering a comprehensive view of
their evolution.
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3 Fully probabilistic control for quantum
systems

In this section, we aim to outline the control objec-
tives and provide a general solution to the probabilistic
control problem for quantum systems. These systems
are characterized by arbitrary probabilistic dynamical
models.

3.1 Objectives of the fully probabilistic control for
quantum systems

The presence of the noise signal, ζt, in Eq. (14) implies
that the system state at time step t cannot be com-
pletely specified by the preceding state and control
input. Instead, it can only be fully determined by
its probabilistic description, s(xt|ut−1, xt−1). Similarly,
the measurement output can only be determined by a
suitable probability density function (pdf), s(ot|xt).

Following this probabilistic representation, the con-
trol problem is formulated as: derive the pdf of the
randomized controller c(ut−1|xt−1) that minimizes the
Kullback–Leibler divergence (KLD) between the joint
pdf of the closed-loop description of the system dynam-
ics, f(Z(t,H)), and a predefined ideal one, If(Z(t,H)),

D(f ||If) =
∫

f(Z(t,H)) ln
( f(Z(t,H))

If(Z(t,H))
)
dZ(t,H).

(17)

In the equation above, Z(t,H) = xt, . . . , xH, ot, . . . , oH,
ut−1, . . . , uH signifies the system closed-loop data sequence,
while H ≤ ∞ represents a given control horizon. The
joint probability function of the closed-loop description
of the system dynamics can be calculated as,

f(Z(t,H)) =
H∏

t=1

s(xt|xt−1, ut−1)s(ot|xt)c(ut−1|xt−1).

(18)

Conversely, the ideal joint pdf of the closed-loop data
can be factored as follows,

If(Z(t,H)) =
H∏

t=1

s(xt|xt−1, ut−1)Is(ot|xt)

×Ic(ut−1|xt−1), (19)

where Is(ot|xt) represents the ideal distribution of the
measurement ot, and Ic(ut−1|xt−1) symbolizes the ideal
pdf of the controller. Importantly, in Eq. (19), the fac-
tor s(xt|xt−1, ut−1) describing the ideal distribution of
the state vector of the vectorized density operator, is
deemed identical to the corresponding component in
Eq. (18). This assumption suggests that the evolution
of the density matrix adheres to the Liouville von-
Neumann equation.

To contextualize the development of our optimal ran-
domized controller, we introduce a theorem that encap-
sulates the core principles of our approach. This theo-
rem, grounded in the foundational works of [29–31], for-
malizes the derivation of a controller that strategically
minimizes the Kullback–Leibler Divergence (KLD), as
previously outlined. By adopting a recursive strategy,
we define the expected minimum cost-to-go function
− ln(γ(xt−1)) through the following relationship:

− ln(γ(xt−1))

= min
c(ut′−1|xt′−1)

H∑

t′=t

∫
f(Zt, . . . ,ZH|xt−1)

× ln
(

s(ot′ |xt′)c(ut′−1|xt′−1)
Is(ot′ |xt′)Ic(ut′−1|xt′−1)

)

× d(Zt, . . . ,ZH). (20)

This principle applies universally across any time step
t′ within the horizon H.

Theorem 1 In accordance with the defined cost-to-go
function in Eq. (20), the recursive minimization of the
Kullback–Leibler divergence (17), contrasting the joint
probability density function (18) with an ideal counter-
part (19), is articulated by the following recursive func-
tional equation:

− ln(γ(xt−1))

= min
c(ut−1|xt−1)

∫ [
s(xt|xt−1, ut−1)s(ot|xt)c(ut−1|xt−1)

×
(

ln
(

s(ot|xt)c(ut−1|xt−1)
Is(ot|xt)Ic(ut−1|xt−1)

)

− ln(γ(xt))
)]

d(xt, ot, ut−1), (21)

Proof The derivation of the result above can be achieved
by evaluating the optimal cost-to-go function specified
in Eq. (20). �	
This theorem serves as a pivotal element in navigat-
ing towards our control objective. By iteratively solv-
ing the recursive functional Eq. (21), we can ascertain
the optimal control strategy that minimizes the KLD.
This ensures the quantum system’s trajectory is opti-
mally aligned with the predefined probabilistic frame-
work. The practical application and implications of this
theorem will be expounded upon in the subsequent sec-
tions, highlighting its significance in the broader con-
text of quantum control optimization.

3.2 General solution to the fully probabilistic
quntum control problem

To address the quantum control problem within our
probabilistic framework, we turn our focus towards
deriving a general solution that encapsulates our con-
trol objectives for quantum systems. Building upon the
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foundational concept introduced in the previous sec-
tion, the cost-to-go function, denoted as γ(xt−1), this
section aims to expand upon its implications and artic-
ulate a comprehensive solution to the control problem.
Our approach hinges on identifying an optimal control
distribution, c(ut−1|xt−1), that effectively minimizes
the cost-to-go function, thereby aligning the quantum
system’s behavior with our targeted outcomes.

To formalize this approach, we present the following
theorem, which delineates the formulation of the opti-
mal control law’s probability density function, crucial
for achieving the desired control objectives.

Theorem 2 The probability density function of the
optimal control law, c(ut−1|xt−1), that minimizes the
cost-to-go function, as encapsulated in (21), is defined
as:

c(ut−1|xt−1) =
Ic(ut−1|xt−1) exp[−β(ut−1, xt−1)]

γ(xt−1)
,

(22)

where,

γ(xt−1) =
∫

Ic(ut−1|xt−1)

× exp[−β(ut−1, xt−1)]dut−1,

(23)

β(ut−1, xt−1) =
∫

s(xt|ut−1, xt−1)s(ot|xt)

× ln
(

s(ot|xt)
Is(ot|xt)

1
γ(xt)

)
dxtdot.

(24)

Proof The derivation of this theorem are inspired by
and adapted from the proof of Proposition 2 detailed
in [39]. This adaptation ensures the theorem’s applica-
bility within the quantum control context, providing a
rigorous foundation for the proposed control strategy.

�	
The significance of Theorem 2 lies in its universal-

ity. Specifically, the solution to the control problem it
presents is not bounded by the specific distributions
that depict the quantum system’s dynamical evolution,
its controllers, or their ideal manifestations. In essence,
this theorem offers a comprehensive solution appli-
cable to any arbitrary probability density functions,
encompassing a wide array of quantum control scenar-
ios. However, an interesting observation arises when all
generative probabilistic models (pertaining to system
dynamics, controller, and ideal outcomes) follow Gaus-
sian distributions.Under such circumstances, the theo-
rem enables the derivation of a more explicit and ana-
lytically tractable form for the randomized controller.
This analytical form, which will be elaborated upon in
the following section, provides a concrete methodolog-
ical pathway for implementing the control strategy in

practical scenarios where Gaussian models are preva-
lent, a common occurrence in quantum mechanics. This
dual facet of Theorem 2 not only underscores its the-
oretical robustness but also enhances its practical util-
ity in the realm of quantum control, bridging the gap
between abstract theoretical constructs and their real-
world applications.

4 Solution of quantum control problems
with Gaussian PDFs

In the preceding section, we introduced a general frame-
work for quantum control problems that can be applied
to systems influenced by various noise types. Recog-
nizing the prevalence and importance of Gaussian dis-
tributions in quantum systems, we will now focus on
demonstrating the applicability of this general solution
to quantum systems affected specifically by Gaussian
noise.

The predominance of Gaussian distributions in quan-
tum and other physical systems can often be attributed
to the Central Limit Theorem. This theorem posits
that, under certain conditions, the sum of a large num-
ber of independent and identically distributed (i.i.d)
variables, irrespective of their original distributions, will
converge to a Gaussian distribution. Given the inherent
uncertainties and the multitude of variables in quantum
mechanics, Gaussian distributions are particularly apt
descriptions for such systems.

4.1 Gaussian description of quantum systems

In our model, where ζt in Eq. (14) represents the
amalgamation of diverse uncertainties as Gaussian
noise, the state probability density function (pdf),
s(xt |xt−1, ut−1 ), naturally transitions into a complex
normal pdf. This transition is not arbitrary but deeply
rooted in the fundamental constructs of quantum
mechanics. Given that density matrices serve as the
cornerstone for depicting quantum states, especially
within mixed state frameworks, their constituents can
exhibit complex values. This complexity stems directly
from their association with wave functions, which them-
selves are solutions to the Schrödinger equation, a fun-
damentally complex-valued equation. Thus, the intri-
cate probabilistic narrative woven by density matri-
ces necessitates the adoption of complex numbers and,
consequently, complex distributions to encapsulate the
full spectrum of quantum phenomena comprehensively.
This requirement underscores the inherent complexity
of quantum systems and the necessity for a probabilistic
framework that can accommodate the nuanced charac-
teristics of quantum states.

Given this, our system state pdf becomes,

s(xt |xt−1, ut−1 ) ∼ NC(μt,Γ), (25)
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where the parameters of this distribution are further
detailed as,

μt = E(xt) = Axt−1 + But−1,

Γ = E((xt − μt)(xt − μt)†), (26)

with A and B being the state and control matrices
respectively, E(·) represents the expected value, and
† is the conjugate transpose operator. Notably, μt and
Γ represent the mean and covariance matrices, respec-
tively. For completeness, the form of the complex nor-
mal distribution is recalled in Appendix B.

Additionally, in quantum mechanics, measurements
are usually described by observables that are Hermi-
tian operators, and their expected values are real num-
bers. Given the real nature of quantum measurements,
it becomes intuitive to characterize the probabilistic
distribution of these measurements using real Gaussian
distributions. Hence, when the noise, σt, from Eq. (16),
stems from a Gaussian source, the measurement pdf,
s(ot|xt), can be articulated in terms of a real Gaussian
distribution. Specifically, the measurement pdf can be
characterized as:

s(ot |xt ) ∼ N (Dxt, G), (27)

where Dxt is the mean of the distribution. The covari-
ance matrix G is defined as:

G = E((ot − Dxt)(ot − Dxt)T ).

To re-emphasize, the selection of a real Gaussian for ot

is rooted in the physical significance and practicality
of real-valued measurements in quantum systems. This
ensures that our probabilistic representation aligns with
the observable realities of quantum mechanics.

With the previously defined constructs, the entire
system which includes the quantum system state, mea-
surements, and the electric field or controller, ut can be
comprehensively represented as,

f(xt, ot, ut−1|xt−1) = c(ut−1|xt−1)N (Dxt, G)
×NC(μt,Γ), (28)

where c(ut−1|xt−1) represents the electric field distri-
bution as discussed in earlier sections.

The model further postulates an ideal joint pdf that
captures the desired distributions of the system state,
measurement, and controller,

If(xt, ot, ut−1|xt−1) = Is(xt|xt−1, ut−1)Is(ot |xt)

×Ic (ut−1 |xt−1) , (29)

wherein,

Is(xt|xt−1, ut−1) = s(xt|xt−1, ut−1) ∼ NC(μt,Γ), (30)
Is(ot |xt ) ∼ N (od, Gr), (31)
Ic(ut−1 |xt−1 ) ∼ N (ur,Ω). (32)

In these equations, od and Gr stand for the mean
and covariance of the ideal measurement pdf, respec-
tively. Simultaneously, ur and Ω represent the mean
and covariance of the ideal controller pdf. Notably, as
evidenced by Eq. (30), the ideal state distribution is
congruent with the actual state distribution, reflecting
the principles of the Liouville-von Neumann equation.
A deeper exploration into this congruence is warranted
to appreciate its implications fully.

4.2 Quantum system Gaussian controller

The fundamental objective in controlling the quantum
system is succinctly defined: Devise a randomized con-
troller, denoted as c(ut−1|xt−1), that bridges the gap
between the current joint distribution of the quantum
system, as represented by Eq. (28), and the desired dis-
tribution expressed in Eq. (29). Before diving deeper
into the intricacies of this distribution, it is impera-
tive to shed light on the architecture of the perfor-
mance index. This discussion will naturally lead us to
the upcoming theorem.

Theorem 3 Incorporating the ideal distribution of mea-
surements from Eq. (31), the ideal controller distribu-
tion from Eq. (32), along with the actual measurement
distribution (27) and system dynamics (25) into Eq.
(23), yields the following performance index,

− ln (γ (xt−1)) = 0.5xT
t−1Mt−1xt−1

+ 0.5Pt−1xt−1 + 0.5ωt−1, (33)

where,

Mt−1 = AT (DT G−1
r D + Mt)A − AT (DT G−1

r D

+ Mt)T B
(
Ω−1 + BT (DT G−1

r D + Mt)B
)−1

× BT (DT G−1
r D + Mt)A, (34)

Pt−1 = (Pt − 2oT
d G−1

r D)A

+ 2(Ω−1ur − 0.5BT (PT
t − 2DT G−1

r od))T

× (
Ω−1 + BT (DT G−1

r D + Mt)B
)−1

× BT (DT G−1
r D + Mt)A, (35)

and

ωt−1 = ωt + oT
d G−1

r od + ln(
|Gr|
|G| ) − Tr

(
G(G−1 − G−1

r )
)

+ Tr(Γ(DT G−1
r D + Mt)) + uT

r Ω−1ur

− (
Ω−1ur − 0.5BT (PT

t − 2DT G−1
r od)

)T

× (
Ω−1 + BT (DT G−1

r D + Mt)B
)−1

× (
Ω−1ur − 0.5BT (PT

t − 2DT G−1
r od)

)

− 2 ln(|Ω|−1/2|Ω−1

+ BT (DT G−1
r D + Mt)B|−1/2), (36)

123



   63 Page 8 of 17 Eur. Phys. J. D           (2024) 78:63 

such that |G| represents the determinant of matrix G.

Proof Detailed proof is articulated in Appendix C. �	
Remark 1 To ensure the performance index from Eq.
(33) is real, the matrix Mt−1 should be the outcome
of a vectorized Hermitian operator’s transpose mul-
tiplied with the operator itself. For instance, with a
vectorized Hermitian operator, Wt−1, the relationship
Mt−1 = WT

t−1Wt−1 holds. Consequently, the first term
in Eq. (33) remains real. Likewise, Pt−1 in Eq. (33) rep-
resents a vectorized Hermitian operator.

Equation (33) signifies a quadratic performance index,
which arises due to the Gaussian assumption made on
the distributions involved in the minimization of the
Kullback–Leibler distance. Specifically, the quadratic
term, 0.5xT

t−1Mt−1xt−1, the linear term, 0.5Pt−1xt−1,
which primarily emerges in the context of a tracking
problem, and the constant term, 0.5ωt−1, together con-
struct the complete quadratic function. This arrange-
ment of terms illustrates the fundamental structure of
the performance index in the context of the assumed
Gaussian distributions.

This quadratic form of the performance index allows
a more straightforward derivation of the optimal con-
troller distribution, c(ut−1|xt−1), as per definition (22),
with the details presented in the following theorem.

Theorem 4 The controller’s distribution that opti-
mally minimizes the recurrence Eq. (21) emerges as,

c(ut−1 |xt−1 ) ∼ N (vt−1, Rt), (37)

where,

vt−1 =
(

Ω−1 + BT (DT G−1
r D + Mt)B

)−1

×
(

Ω−1ur − BT (DT G−1
r D + Mt)Axt−1

− 0.5BT (PT
t − 2DT G−1

r od)
)

, (38)

and,

Rt =
(

Ω−1 + BT (DT G−1
r D + Mt)B

)−1

. (39)

Proof The comprehensive proof can be found in
Appendix D. �	
This theorem extends our understanding of the opti-
mal control strategy by providing a distribution form,
with both its mean vt−1 and variance Rt articulated
as explicit functions of system parameters and states.
This transparency elucidates how different components
within the system impact the control strategy, offering
insights into the intricate interplay of variables within
the system.

Moreover, this theorem marks a significant stride in
bridging the gap between theoretical constructs and
their practical implications. The derived expressions
underpin the control distribution in a real-world con-
text, serving as a valuable reference in the implementa-
tion of control strategies. Consequently, it not only vali-
dates the preceding theoretical discourse but also paves
the way for practical applications and future explo-
rations.

The distribution, as described in Eq. (37), albeit
derived for Gaussian distributions, retains the funda-
mental attributes of linear quadratic controllers, with
the addition of a random factor. This randomization
broadens the exploratory nature of the control strat-
egy, enhancing its capacity to adapt to changing system
dynamics. Despite a marginal compromise on control
precision, the beneficial trade-off lies in the controller’s
amplified exploratory capability, crucial for navigating
complex and dynamic operational environments.

4.3 Implementation of the Gaussian controller

This subsection provides a detailed, step-by-step pro-
cedure for implementing the Gaussian controller, as
derived from Theorem 4. For clarity and ease of ref-
erence, this process is presented as algorithmic pseudo-
code.

Algorithm 1 Fully Probabilistic Control of Quantum
Systems
1: Begin by evaluating the operator D, which is associated

with the target operator ô;
2: Compute the matrices Ã and Ñ , making use of Eq. (4).

Subsequently, derive the matrix A from Eq. (12);
3: Decide on the predefined desired value od;
4: Specify the initial state x0 and the shifting state xe.

With these, calculate the initial value of the measure-
ment state, defined as o0 ← Dx0;

5: Define the covariance of the ideal distribution of the
state vector, Gr, and the covariance of the controller,
Ω;

6: Initialise the variables t ← 0, M0 ← rand, P0 ← rand;
7: while t �= H do
8: Determine B using Eq. (12);
9: Find the steady state solutions of Mt and Pt, follow-

ing the formulas provided in Eqs. (34) and (35), respec-
tively;

10: Utilize Mt and Pt to compute the optimal control
input, vt−1, following Eq. (38) given in Theorem (4);

11: Set the value of ut−1 ← vt−1;
12: Use the control input obtained from the previous

step to evaluate the state xt at time step t according to
Eq. (14), xt ← Axt−1 + But−1 + ζt;

13: Evaluate the measurement state ot at time step t
following Eq. (16), defined as ot ← Dxt + σt;

14: Increment the time variable t ← t + 1;
15: end while

In the subsequent section, Algorithm 1 will be applied
to control a variety of quantum physical systems. This
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algorithm integrates the theoretical concepts presented
in the preceding section, detailing the probabilistic
quantum control approach in the presence of Gaussian
noise.

5 Results and discussions

The probabilistic control approach, presented in ear-
lier sections, finds its application here in manipulating
selected quantum physical systems. The objective is to
guide these systems in achieving outcomes that align
with predefined target operators. Specifically, this study
will scrutinize the transition dynamics of open spin and
atomic systems when they interact with an external
electric field.

To streamline the upcoming analysis, a simplifying
assumption is made: � = 1. This normalization simpli-
fies computations by setting the reduced Planck con-
stant, a fundamental parameter in quantum mechanics,
equal to one. Consequently, all parameters in this sec-
tion will be considered dimensionless, allowing a more
focused investigation of the system dynamics indepen-
dent of the physical units. This is a common practice
in theoretical quantum mechanics, known as natural
units, and will facilitate the elucidation of the key con-
cepts under discussion.

In the subsequent analysis, the emphasis is placed on
understanding how the probabilistic control approach
can effectively shape the evolution of these quantum
systems in response to external influences. The find-
ings from this investigation will be pivotal in establish-
ing the real-world applicability and utility of the con-
trol approach, moving beyond theoretical explorations
to practical quantum control scenarios.

5.1 Control of a spin system

This subsection focuses on controlling a spin system.
The state of a spin-j system is represented as,

|ψ〉 =
j∑

m=−j

cm|j,m〉, (40)

where, cm are complex coefficients fulfilling
∑j

m=−j

|cm|2 = 1. The basis |j,m〉 ≡ |m〉,m = −j, . . . , j com-
prises the common eigenstates of the operators J2 =
J2

1 + J2
2 + J2

3 and J3. The three observables Ji (i =
1, 2, 3) comply with the angular momentum commuta-
tion relations [J1, J2] = i�ε123J3 (with ε123 being the
Levi-civita symbol).

The spin system’s interaction with an external elec-
tric field u(τ) is considered. The objective is to tran-
sition the system from an initial state ρi to a target
state ρd through this interaction. Hence, the control
sequence optimizing this transition needs to be derived.
In this context, the output o(τ) at every time instant τ
is o(τ) = Tr(ρ(τ)ρd) where ρ(τ) represents the system’s

density operator at time τ . Therefore, the chosen value
for od should be 1.

A spin-1/2 system (i.e., j =
1
2
) is considered for this

study. The interaction of a spin-1/2 system with an
external electric field, u(τ), is modelled as follows:

H = H0 + Hu(τ) =
1
2
σ3 +

1
2
(σ1 + σ2)u(τ). (41)

The Pauli matrices, σ1, σ2, and σ3, are given in the

basis |+〉 ≡ |1
2
,
1
2
〉, |−〉 ≡ |1

2
,−1

2
〉 as,

σ1 =

(
0 1
1 0

)
, σ2 =

(
0 −i
i 0

)
, σ3 =

(
1 0
0 −1

)
,

(42)

The spin-1/2 system’s interaction with an external envi-
ronment is described by the following master equation,

dρ(τ)

dτ
= −i[H, ρ(τ)] + Θ

(
σ−ρ(τ)σ+ − 1

2
{σ+σ−, ρ(τ)}

)
,

ρ(0) = ρ0 = |−〉〈−|, (43)

where σ± =
σ1 ± iσ2

2
, and Θ denotes the system-

environment coupling.
The control goal for this example is to determine an

optimal control sequence to transition the system from
initial state ρ0 = |−〉〈−| to the state ρd = |+〉〈+|
utilizing the proposed probabilistic quantum control
approach. Hence, the target operator is chosen as D =
[1 0 0 0], which is equal to D = (vec(Π+))T , where
Π+ = |+〉〈+|.

Subsequently, using operators Ã and Ñ (their calcu-
lations and values detailed in Appendix E), the matrices
A and B needed for evaluating the optimal control sig-
nal are determined via Eq. (12), with Δt = 0.000025.
After calculating the A, B, and D operators and select-
ing Gr = 0.00001, Ω = 10, and Θ = 0.05, the matrices
Mt and Pt as defined in Eqs. (34) and (35) are eval-
uated at each time instant, following Algorithm (1).
The matrices Mt and Pt are then utilized to calculate
the electric field (i.e., the control signal), vt−1. These
steps are repeated until the measurement output, o(τ),
approximates the predefined desired value od. The pre-
defined desired value od is considered to be 1 for this
experiment.

Figure 1a illustrates the time evolution of the popula-
tion, ρ11 of the |+〉 state for a spin-1/2 system initially
prepared in state ρ0. This is the result of the system’s
interaction with the derived electric field as calculated
from Eq. (38). Figure 1b showcases the time evolution
of the optimal control signal. From Fig. 1a, it is evident
that the population ρ11 reaches the predefined desired
target value od = 1 within a few time steps. This out-
come underscores the potential effectiveness of the pro-
posed method.
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Fig. 1 a The blue curve represents the time evolution of the population of the |+〉 state of the considered spin-1/2 system.
The red curve is the desired value od = 1. b Time evolution of the control signal, u(τ) responsible of achieving the control
objective

5.2 Control of a Λ-type atomic system

To further substantiate the performance of the pro-
posed probabilistic quantum control method, it is
applied her to manage a Λ-type atomic system initially
prepared in its ground state. The interaction between
the system and the electric field is captured by the
Hamiltonian, provided in the basis |2〉, |1〉, |0〉 as,

H = H0 + Hu(τ) = ω

⎛

⎜⎝

3
2

0 0
0 1 0
0 0 0

⎞

⎟⎠

+θ

( 0 0 1
0 0 1
1 1 0

)
u(τ),

(44)

where ω and θ are constant. The interaction of the
system is illustrated by the master Eq. (1). Consid-
ering simplicity, only one jump operator is taken into
account, L02 =

√
Θ|0〉 < 2|, where Θ represents the

relaxation from the state |2〉 to the state |0〉. In the
following, we consider, without loss of generality, that
ω ≡ θ.

For this instance, the control objective aims to tran-
sition the system from the initial state ρ0 = |0〉〈0| to

the state ρd = |ψd〉〈ψd|, where |ψd〉 =
1√
2
(|1〉 + |2〉).

The target operator corresponding to this objective is
the projector Πd = |ψd〉〈ψd|, which in vectorized form
appears as D = (vec(Πd)T )T .

Considering ω = θ = 10−4, Θ = 0.9×10−4 and utiliz-
ing the operators, Ã and Ñ , the calculations and values
of which are detailed in Appendix F, the matrices A,
and B required for evaluating the optimal control sig-

nal get determined using Eq. (12), with Δt = 0.0001.
After computing the A, B and D operators, and set-
ting Gr = 0.0000001, and Ω = 10000, the matrices Mt

and Pt, defined in Eqs. (34) and (35) respectively, get
evaluated at each instant of time as delineated in Algo-
rithm (1). The matrices Mt and Pt then get employed
to calculate the electric field, vt−1. This process contin-
ues until the measurement output, o(τ), approximates
the predefined desired value od as closely as possible,
which is set to be 1 for this experiment.

Figure 2a depicts the time evolution of the measure-
ment o(τ) = Tr(ρ(τ)ρd), with ρ(τ) being the density
operator at time τ , for the atomic system under con-
sideration. This is prepared in the state ρ0 and is the
result of its interaction with the derived electric field
calculated from Eq. (38). Figure 2b presents the time
evolution of the acquired optimal control signal that
facilitated the realization of this control objective. As
evident from Fig. 2a, the designed probabilistic con-
troller succeeds in accomplishing the control objective
and transitioning the state of the atomic system from
the initial state, ρ0, to the desired state, ρd. This results
corroborate the effectiveness of the proposed approach.

6 Final comments

This study advanced the field of quantum control
by introducing a probabilistic framework, marking a
departure from the conventional deterministic method-
ologies prevalent in the literature. Initially, the study
developed a state space model tailored specifically for
quantum systems, revealing that the inherent com-
plexity of these systems necessitated the employment
of probability density functions (pdfs) for their thor-
ough characterization. Central to our approach was
the minimization of the Kullback–Leibler divergence,
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Fig. 2 a The blue curve represents the time evolution of the measurement o(τ) = Tr(ρ(τ)ρd) of the considered Λ-type
atomic system. The red curve is the desired value od = 1. b Time evolution of the control signal, u(τ) responsible for
achieving the control objective

which served as a measure of the discrepancy between
the actual joint pdf, capturing the quantum system’s
dynamics including an external electric field, and a tar-
get joint pdf. This divergence underpinned our cost
function, steering the optimization process. Our find-
ings were twofold: the proposed methodology is appli-
cable to quantum systems delineated by arbitrary pdfs
and providing an explicit solution for systems defined
by bilinear equations and Gaussian pdfs, contingent on
the system’s parameters. In scenarios involving bilin-
ear equations and Gaussian pdfs, an analytical feedback
controller emerges from our methodology.

The hallmark of this research lies in its probabilis-
tic stance, a notable departure from the deterministic
narratives that dominate current discussions on quan-
tum control. By integrating the noises and uncertainties
inherent in quantum systems into the formulation of
the optimal control law, our strategy aimed at enhanc-
ing precision. The application of this methodology,
aimed at managing target operators within open spin
systems and Λ-type atomic systems under the influ-
ence of external electric fields, corroborated its effec-
tiveness. These numerical validations underscored the
algorithm’s capability to swiftly reconcile the expected
value of the target operator with its intended state,
highlighting its potential for real-time quantum appli-
cations.

While the analytical demonstration of the pro-
posed framework in this study has centred on bilin-
ear and Gaussian systems, reflecting the inherent lin-
earity within the formalism of quantum mechanics as
dictated by the Liouville von-Neumann equation, it
is important to acknowledge that our methodology is
versatile enough to accommodate a wider spectrum of
quantum scenarios. As detailed in Sect. 3.2, Theorem
(2) presents a general solution that not only encom-

passes nonlinear dynamics but also extends to non-
Gaussian distributions. This solution is particularly rel-
evant for scenarios in quantum mechanics where non-
linearity plays a key role, such as in Bose-Einstein con-
densates and certain quantum optical configurations,
as well as systems where non-linear effects emerge from
interactions with non-linear environments or non-linear
measurement processes. The flexibility of our method-
ology to accommodate these intricate quantum scenar-
ios highlights its potential and innovative nature. How-
ever, the full realization of these sophisticated mod-
els extends beyond the scope of our current analyti-
cal methods, necessitating a shift toward computational
and numerical strategies. These strategies are crucial
for a comprehensive representation and management of
the diverse behaviors encountered in quantum systems,
including stochastic processes and nonlinear dynamics.
This expansion of focus paves the way for new research
directions. Future efforts will be dedicated to incorpo-
rating these complex dynamics and uncertainties within
our framework, employing computational techniques to
navigate the intricacies of increasingly complex quan-
tum systems.

In summary, this study not only introduced a novel
perspective on quantum system control but also under-
scored the efficiency and accuracy of this probabilistic
approach. By considering quantum noise and system
uncertainties, it pushed forward the boundaries of accu-
racy in quantum control. The results presented also pro-
vide promising indications for further exploration and
applications in the quantum domain, marking a sig-
nificant step forward in the development of quantum
technology.

Acknowledgements This work was supported by the
EPSRC grant EP/V048074/1.

123



   63 Page 12 of 17 Eur. Phys. J. D           (2024) 78:63 

Author contributions

RH formulation, conceptualisation, theoretical develop-
ment and calculations, article writing, and simulations.
AB calculations, article writing, and simulations.

Data Availability Statement The data that support the
findings of this study are generated using Mathematical
equations included in this article.

Declarations

Conflict of interest The authors declare that they have
no Conflict of interest, either financial or non-financial,
with respect to the research, authorship, and/or publica-
tion of this article. Specifically, there are no known compet-
ing financial interests or personal relationships within the
last 3 years that might have influenced the presented work.
No interests outside the 3-year time frame are perceived as
influencing the submitted work.

Open Access This article is licensed under a Creative Com-
mons Attribution 4.0 International License, which permits
use, sharing, adaptation, distribution and reproduction in
any medium or format, as long as you give appropriate credit
to the original author(s) and the source, provide a link to
the Creative Commons licence, and indicate if changes were
made. The images or other third party material in this arti-
cle are included in the article’s Creative Commons licence,
unless indicated otherwise in a credit line to the material. If
material is not included in the article’s Creative Commons
licence and your intended use is not permitted by statu-
tory regulation or exceeds the permitted use, you will need
to obtain permission directly from the copyright holder.
To view a copy of this licence, visit http://creativecomm
ons.org/licenses/by/4.0/.

Appendices

A Vectorisation of the density operator

This section provides the matrices Ã and Ñ , as men-
tioned in Eq. (9), for a two-dimensional system. The
vectorisation (8) of the density operator ρ(τ), repre-
sented as,

ρ(τ) =
(

ρ00(τ) ρ01(τ)
ρ10(τ) ρ11(τ)

)
,

is subsequently defined by,

x̃(τ) =

⎛

⎜⎝

ρ00(τ)
ρ11(τ)
ρ01(τ)
ρ10(τ)

⎞

⎟⎠ , (A.1)

From Eq. (4), the matrices Ã and Ñ can be shown to
be represented as,

Ã =

⎛

⎜⎝

−γ0,0 Γ1→0 0 0
Γ0→1 −γ1,1 0 0

0 0 −iω0,1 − γ0,1 0
0 0 0 −iω1,0 − γ1,0

⎞

⎟⎠

(A.2)

and

Ñ =
1
�

⎛

⎜⎝

0 0 −μ1,0 μ0,1

0 0 μ1,0 −μ0,1

−μ0,1 μ0,1 μ0,0 − μ1,1 0
μ1,0 −μ1,0 0 μ1,1 − μ0,0

⎞

⎟⎠ .

(A.3)

The findings of this section can be generalised in a
straightforward manner for any l-dimensional physical
system, demonstrating the broader applicability of the
vectorisation approach to the density operator. This
lays the groundwork for further exploration and util-
isation in quantum control and beyond.

B Complex normal distribution

Consider a complex random variable xt ∈ C
n. For a

nonsingular covariance matrix Γ, the complex normal
distribution of the variable xt is given by,

NC(μt,Γ) =
1

πn|Γ| exp
[

− (xt − μt)†Γ−1(xt − μt)
]
.

(B.1)

In the above equation, μt = E(xt) and Γ = E((xt −
μt)(xt − μt)†). Here, E(xt) denotes the expectation
value of xt and |Γ| represents the determinant of Γ.
This mathematical representation serves as a key tool in
analyzing the properties of complex random variables,
especially those encountered in the realm of quantum
systems.

C Derivation of performance index γ(xt−1)

To calculate the performance index function γ(xt−1),
as delineated in Eq. (33), the evaluation of the coef-
ficient β(ut−1, xt−1), defined in Eq. (24), is necessary.
The expression for this coefficient is given as,

β(ut−1, xt−1) =
∫

s(xt|ut−1, xt−1)s(ot|xt)

× ln
(

s(ot|xt)
Is(ot|xt)

1
γ(xt)

)
dxtdot.

(C.1)

Before moving forward, it is essential to calculate
ln

(
s(ot|xt)
Is(ot|xt)

1
γ(xt)

)
. Utilizing Eqs. (27), (31) and (33),

the following can be derived,

ln
(

s(ot|xt)
Is(ot|xt)

1
γ(xt)

)
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= −0.5(ot − Dxt)T G−1(ot − Dxt)

+ 0.5(ot − od)T G−1
r (ot − od) + 0.5xT

t Mtxt + 0.5Ptxt

+ 0.5ωt + 0.5 ln
( |Gr|

|G|
)

, (C.2)

where |G| stands for the determinant of the matrix G.
After further calculations, the expression simplifies to,

ln
(

s(ot|xt)
Is(ot|xt)

1
γ(xt)

)

= −0.5oT
t G−1ot − 0.5xT

t DT G−1Dxt

+ oT
t G−1Dxt + 0.5oT

t G−1
r ot − oT

t G−1
r od

+ 0.5xT
t Mtxt + 0.5Ptxt + 0.5ωt

+ 0.5oT
d G−1

r od + 0.5 ln
( |Gr|

|G|
)

= −0.5oT
t (G−1 − G−1

r )ot + oT
t (G−1Dxt

− G−1
r od) − 0.5xT

t DT G−1Dxt

+ 0.5xT
t Mtxt + 0.5Ptxt + 0.5ωt

+ 0.5oT
d G−1

r od + 0.5 ln
( |Gr|

|G|
)

. (C.3)

Substituting this back into Eq. (C.1) and integrating
over ot provides,

β(ut−1, xt−1) =
∫

s(xt|ut−1, xt−1)s(ot|xt)

×
(

− 0.5oT
t (G−1−G−1

r )ot+oT
t (G−1Dxt

− G−1
r od) − 0.5xT

t DT G−1Dxt

+ 0.5xT
t Mtxt + 0.5Ptxt + 0.5ωt

+ 0.5oT
d G−1

r od + 0.5 ln
( |Gr|

|G|
) )

dxtdot

=
∫

s (xt|ut−1, xt−1)
(

0.5xT
t DT G−1

r Dxt

− xT
t DT G−1

r od + 0.5xT
t Mtxt

+ 0.5Ptxt + 0.5ωt+0.5oT
d G−1

r od

− 0.5Tr((G−1 − G−1
r )G)

+0.5 ln
( |Gr|

|G|
) )

dxt

=
∫

s (xt|ut−1, xt−1)

×
(

0.5xT
t (DT G−1

r D + Mt)xt

+ 0.5(Pt − 2oT
d G−1

r D)xt + 0.5ωt

+ 0.5oT
d G−1

r od + 0.5 ln
( |Gr|

|G|
)

− 0.5Tr((G−1 − G−1
r )G)

)
dxt.

(C.4)

Now, integrating over xt, yields,

β(ut−1, xt−1) = 0.5μT
t (DT G−1

r D + Mt)μt

+ 0.5(Pt − 2oT
d G−1

r D)μt + 0.5ωt

+ 0.5oT
d G−1

r od + 0.5 ln
( |Gr|

|G|
)

− 0.5Tr((G−1 − G−1
r )G)

+ 0.5Tr((DT G−1
r D + Mt)Γ). (C.5)

The next step involves replacing the mean state value
μt with the system dynamics, given by Axt−1 +But−1.
This substitution provides the following result,

β(ut−1, xt−1)

= 0.5(Axt−1 + But−1)T (DT G−1
r D

+ Mt)(Axt−1 + But−1)

+0.5(Pt−2oT
d G−1

r D)(Axt−1+But−1)

+0.5ωt+0.5oT
d G−1

r od

+0.5 ln
( |Gr|

|G|
)

− 0.5Tr((G−1 − G−1
r )G)

+ 0.5Tr((DT G−1
r D + Mt)Γ)

= 0.5xT
t−1A

T (DT G−1
r D + Mt)

Axt−1 + 0.5(Pt − 2oT
d G−1

r D)Axt−1

+ 0.5uT
t−1B

T (DT G−1
r D + Mt)But−1

+ uT
t−1B

T
(
(DT G−1

r D

+ Mt)Axt−1 + 0.5(Pt − 2oT
d G−1

r D)T
)

+ 0.5ωt + 0.5oT
d G−1

r od + 0.5 ln
( |Gr|

|G|
)

− 0.5Tr((G−1 − G−1
r )G)

+ 0.5Tr((DT G−1
r D + Mt)Γ). (C.6)

The substitution of β as discovered in Eq. (C.6), cou-
pled with the ideal distribution of the controller pre-
sented in Eq. (32), into the definition of γ(xt−1) from
Eq. (23), culminates in the following derivation,

γ(xt−1) =
∫

Ic(ut−1|xt−1) exp[−β(ut−1, xt−1)]dut−1,

= (2π)−1/2|Ω|−1/2

∫
exp

[
− 0.5(ut−1 − ur)T Ω−1(ut−1 − ur)

− 0.5xT
t−1A

T (DT G−1
r D + Mt)Axt−1

− 0.5(Pt − 2oT
d G−1

r D)Axt−1

− 0.5uT
t−1B

T (DT G−1
r D + Mt)But−1
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− uT
t−1B

T
(
(DT G−1

r D + Mt)Axt−1

+ 0.5(Pt − 2oT
d G−1

r D)T
) − 0.5ωt

− 0.5oT
d G−1

r od − 0.5 ln
( |Gr|

|G|
)

+ 0.5Tr((G−1 − G−1
r )G)

− 0.5Tr((DT G−1
r D + Mt)Γ)

]
dut−1

= (2π)−1/2|Ω|−1/2exp
(

− 0.5xT
t−1A

T (DT G−1
r D + Mt)Axt−1

−0.5(Pt−2oT
d G−1

r D)Axt−1−0.5ωt

−0.5oT
d G−1

r od − 0.5 ln
( |Gr|

|G|
)

+ 0.5Tr((G−1 − G−1
r )G)−0.5Tr

((DT G−1
r D+Mt)Γ)−0.5uT

r Ω−1ur

)

×
∫

exp
(
−0.5uT

t−1(Ω
−1+BT (DT G−1

r D

+Mt)B)ut−1 + uT
t−1

(
Ω−1ur − BT (DT G−1

r

×D+Mt)Axt−1−0.5BT (Pt−2oT
d G−1

r D)T
))

dut−1. (C.7)

This integral in Eq. (C.7) is a distinct representation
of the general multiple integral delineated in Theorem
(10.5.1) from [40]. Therefore, it is derived that,

γ(xt−1) = exp
(

− 0.5xT
t−1A

T (DT G−1
r D + Mt)Axt−1

− 0.5(Pt − 2oT
d G−1

r D)Axt−1 − 0.5ωt

− 0.5oT
d G−1

r od − 0.5 ln
( |Gr|

|G|
)

+ 0.5Tr(G(G−1 − G−1
r )) − 0.5Tr(Γ(DT G−1

r

D + Mt)) − 0.5uT
r Ω−1ur

)

exp
(

0.5
(
Ω−1ur − BT (DT G−1

r D + Mt)Axt−1

− 0.5BT (Pt − 2oT
d G−1

r D)T
)T

× (
Ω−1 + BT (DT G−1

r D + Mt)B
)−1

× (
Ω−1ur − BT (DT G−1

r D + Mt)Axt−1

− 0.5BT (Pt − 2oT
d G−1

r D)T
))

×|Ω|−1/2|Ω−1 + BT (DT G−1
r D + Mt)B|−1/2.

(C.8)

The final derivation results in,

− ln (γ(xt−1)) = 0.5xT
t−1

(
AT (DT G−1

r D + Mt)A

− AT (DT G−1
r D + Mt)T B

× (
Ω−1 + BT (DT G−1

r D + Mt)B
)−1

× BT (DT G−1
r D + Mt)A

)
xt−1

+ 0.5
(

(Pt − 2oT
d G−1

r D)A + 2(Ω−1ur

− 0.5BT (PT
t − 2DT G−1

r od))T

× (
Ω−1 + BT (DT G−1

r D + Mt)B
)−1

× BT (DT G−1
r D + Mt)A

)
xt−1 + 0.5

(
ωt + oT

d G−1
r od

+ ln
( |Gr|

|G|
)

− Tr
(
G(G−1 − G−1

r )
)

+ Tr(Γ(DT G−1
r D + Mt)) + uT

r Ω−1ur

− (
Ω−1ur − 0.5BT (PT

t − 2DT G−1
r od)

)T

× (
Ω−1 + BT (DT G−1

r D + Mt)B
)−1

× (
Ω−1ur − 0.5BT (PT

t − 2DT G−1
r od)

)

−2 ln(|Ω|−1/2|Ω−1+BT (DT G−1
r D + Mt)B|−1/2)

)
.

(C.9)

Equation (C.9) indicates that the natural logarithm of
the performance index γ(xt−1) is a summation of sev-
eral terms, each representing different influences on the
index. These influences include the system dynamics
represented by matrices A, B, and D, the desired con-
trol efforts denoted by ur, the matrices Mt, and Pt, and
uncertainties in the system characterized by G, and Gr.

D Calculation of the control distribution function

The focus of this section revolves around the com-
putation of the control distribution function, which
is essentially related to the optimal controller. As
expressed in Eq. (22), the control distribution function,
c(ut−1|xt−1), is represented as a function of the desired
control distribution, Ic(ut−1|xt−1), along with exponen-
tial terms governed by the parameter β(ut−1, xt−1) and
γ(xt−1).

c(ut−1|xt−1) =
Ic(ut−1|xt−1) exp[−β(ut−1, xt−1)]

γ(xt−1)
.

(D.1)

Through the use of Eqs. (32), (C.6) and (C.9), a for-
mulation for c(ut−1|xt−1) is derived as,

c(ut−1|xt−1) = (2π)−1/2|Ω−1 + BT (DT G−1
r D + Mt)
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B|1/2 exp
[
−0.5uT

t−1

(
Ω−1+BT (DT G−1

r D+Mt)B
)

ut−1

+ uT
t−1

(
Ω−1ur − BT (DT G−1

r D + Mt)Axt−1

− 0.5BT (Pt − 2oT
d G−1

r D)T

)

− 0.5
(

Ω−1ur − BT (DT G−1
r D + Mt)Axt−1

− 0.5BT (PT
t − 2DT G−1

r od)
)T (

Ω−1

+ BT (DT G−1
r D + Mt)B

)−1

(
Ω−1ur − BT (DT G−1

r D + Mt)Axt−1

− 0.5BT (PT
t − 2DT G−1

r od)
)]

. (D.2)

Upon further simplification, the control distribution
function reveals its Gaussian nature, denoted as,

c(ut−1|xt−1) ∼ N (vt−1, Rt). (D.3)

The mean and variance of this Gaussian distribution
are explicitly determined as follows,

vt−1 =
(

Ω−1 + BT (DT G−1
r D + Mt)B

)−1

×
(

Ω−1ur − BT (DT G−1
r D + Mt)Axt−1

− 0.5BT (PT
t − 2DT G−1

r od)
)

, (D.4)

and,

Rt =
(

Ω−1 + BT (DT G−1
r D + Mt)B

)−1

. (D.5)

The expressions for the mean control value, vt−1, and
the control variance, Rt, both distinctly showcase the
dependency on system parameters and states. This
explicit delineation facilitates a more profound com-
prehension of the interaction between various system
factors and the subsequent influence they have on the

formulating control strategy. The emergence of these
expressions fortifies the nexus between theoretical for-
mulations and their practical ramifications in the con-
text of the optimal control distribution.

E State space model for spin 1
2

The time evolution of the density operator ρ(τ) of a
spin-1/2 system interacting with an external electric
field u(τ) is given by,

dρ(τ)
dτ

= −i[H, ρ(τ)] + Θ
(

σ−ρ(τ)σ+

−1
2
{σ+σ−, ρ(τ)}

)
, (E.1)

where, H is the Hamiltonian given in Eq. (41) in terms

of the Pauli matrices by H =
1
2
σ3 +

1
2
(σ1 +σ2)u(τ) and

σ± =
σ1 ± iσ2

2
. In the matrix form the Hamiltonian H

is provided by,

H =
1
2

(
1 u(τ)(1 − i)

u(τ)(1 + i) −1

)
. (E.2)

Hence, in terms of the density operator elements, the
von-Neumann Eq. (E.1) can be re-written as,

d

dτ

(
ρ00(τ) ρ01(τ)
ρ∗
01(τ) ρ11(τ)

)
=

−i

2

(
u(τ)

(
(1 − i)ρ∗

01(τ) − (1 + i)ρ01(τ)
)

2ρ01(τ) + u(τ)(1 − i)(ρ11(τ) − ρ00(τ))
−2ρ∗

01(τ) + u(τ)(1 + i)(ρ00(τ) − ρ11(τ)) u(τ)
(
(1 + i)ρ01(τ) − (1 − i)ρ∗

01(τ)
)

)

−

⎛

⎜⎝
Θρ00(τ)

Θ
2

ρ01(τ)
Θ
2

ρ∗
01(τ) −Θρ00(τ)

⎞

⎟⎠ , (E.3)

where the elements ρ00(τ), ρ01(τ), ρ∗
01(τ) and ρ11(τ) are

the elements of the density operator ρ(τ). Using the vec-
torisation given in Eq. (A.1), the above equation yields,

d

dτ

⎛
⎜⎜⎝

ρ00(τ)
ρ11(τ)
ρ01(τ)
ρ∗
01(τ)

⎞
⎟⎟⎠

︸ ︷︷ ︸
x(τ)

=

⎛
⎜⎜⎜⎜⎜⎝

−Θ 0 0 0
Θ 0 0 0

0 0 −i − Θ

2
0

0 0 0 i − Θ

2

⎞
⎟⎟⎟⎟⎟⎠

︸ ︷︷ ︸
Ã

⎛
⎜⎜⎝

ρ00(τ)
ρ11(τ)
ρ01(τ)
ρ∗
01(τ)

⎞
⎟⎟⎠

︸ ︷︷ ︸
x(τ)

(E.4)
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+ i
1

2

⎛
⎜⎜⎝

0 0 (1 + i) −(1 − i)
0 0 −(1 + i) (1 − i)

(1 − i) −(1 − i) 0 0

−(1 + i) (1 + i) 0 0

⎞
⎟⎟⎠

︸ ︷︷ ︸
Ñ

⎛
⎜⎜⎝

ρ00(τ)
ρ11(τ)
ρ01(τ)

ρ∗
01(τ)

⎞
⎟⎟⎠

︸ ︷︷ ︸
x(τ)

u(τ),

(E.5)

implying,

dx(τ)
dt

= (Ã + iÑu(τ))x(τ), (E.6)

which is the state equation for the spin-1/2 system,

F State space model for a Λ-type atomic system

In this section we aim to provide the state equation of
the Λ-type atomic system interacting with an external
electric u(τ) field through the following Hamiltonian,

H = H0 + u(τ)H1 = ω

⎛

⎜⎝

3
2

0 0
0 1 0
0 0 0

⎞

⎟⎠ + θ

( 0 0 1
0 0 1
1 1 0

)
u(τ),

(F.1)

where ω and θ are constants. We consider, without
loss of generality, that ω ≡ θ and that the system inter-
acts with an external environment described by one Lin-
blad operator, L02 =

√
Θ|0〉〉2|. By expanding the den-

sity operator in terms of its matrix elements the von-
Neumann equation given in Eq. (1) can be written as,

i

ω

d

dτ

⎛
⎝

ρ00(τ) ρ01(τ) ρ02(τ)
ρ∗
01(τ) ρ11(τ) ρ12(τ)

ρ∗
02(τ) ρ∗

12(τ) ρ22(τ)

⎞
⎠ =

⎛
⎜⎜⎜⎜⎝

u(τ)
(
ρ∗
02(τ) − ρ02(τ)

) 1

2
ρ01(τ) + u(τ)

(
ρ∗
12(τ) − ρ02(τ)

) 3

2
ρ02(τ) + u(τ)

(
ρ22(τ) − ρ00(τ) − ρ01(τ)

)

−1

2
ρ∗
01(τ) + u(τ)(ρ∗

02(τ) − ρ12(τ)) u(τ)
(
ρ∗
12(τ) − ρ12(τ)

)
ρ12(τ) + u(τ)

(
ρ22(τ) − ρ∗

01(τ) − ρ11(τ)
)

−3

2
ρ∗
02(τ) + u(τ)

(
ρ00 + ρ∗

01(τ) − ρ22(τ)
) −ρ∗

12(τ) + u(τ)(ρ01(τ) + ρ11(τ) − ρ22(τ)) u(τ)
(
ρ02(τ) + ρ12(τ) − ρ∗

02(τ) − ρ∗
12(τ)

)

⎞
⎟⎟⎟⎟⎠

+
i

2
Θ̃

⎛
⎝

−2ρ00(τ) −ρ01(τ) −ρ02(τ)
−ρ∗

01(τ) 0 0
−ρ∗

02(τ) 0 2ρ00(τ)

⎞
⎠ , (F.2)

where Θ̃ =
Θ
ω

. Using the vectorisation defined in Eq.

(8), the time evolution Eq. (F.2) can be written as,

d

dτ

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

ρ00(τ)
ρ11(τ)
ρ22(τ)
ρ01(τ)

ρ02(τ)
ρ∗
01(τ)

ρ∗
02(τ)

ρ12(τ)
ρ∗
12(τ)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

︸ ︷︷ ︸
x(τ)

= ω

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

−Θ̃ 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0

Θ̃ 0 0 0 0 0 0 0 0

0 0 0 − i

2
− Θ̃

2
0 0 0 0 0

0 0 0 0 −3i

2
− Θ̃

2
0 0 0 0

0 0 0 0 0
i

2
− Θ̃

2
0 0 0

0 0 0 0 0 0
3i

2
− Θ̃

2
0 0

0 0 0 0 0 0 0 −i 0
0 0 0 0 0 0 0 0 i

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

︸ ︷︷ ︸
Ã

×

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

ρ00(τ)
ρ11(τ)
ρ22(τ)

ρ01(τ)
ρ02(τ)
ρ∗
01(τ)

ρ∗
02(τ)

ρ12(τ)
ρ∗
12(τ)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

︸ ︷︷ ︸
x(τ)

+iω

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 0 1 0 −1 0 0
0 0 0 0 0 0 0 1 −1
0 0 0 0 −1 0 1 −1 1
0 0 0 0 1 0 0 0 −1
1 0 −1 1 0 0 0 0 0
0 0 0 0 0 0 −1 1 0
−1 0 1 0 0 −1 0 0 0
0 1 −1 0 0 1 0 0 0
0 −1 1 −1 0 0 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

︸ ︷︷ ︸
Ñ

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

ρ00(τ)
ρ11(τ)
ρ22(τ)
ρ01(τ)
ρ02(τ)
ρ∗
01(τ)

ρ∗
02(τ)

ρ12(τ)
ρ∗
12(τ)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

︸ ︷︷ ︸
x(τ)

u(τ).

(F.3)

Hence, we find the form of the state equation given in
Eq.(9) as follows,

dx(τ)
dτ

= (Ã + iÑu(τ))x(τ). (F.4)
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