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Abstract

We discuss the feasibility of di�erent kinds of curved space-times as backgrounds for

string theory. This thesis is divided into two parts. First, we focus on the double copy pro-

cedure and apply it to the Born-Infeld solution in open string theory in the approximation

when �eld-strength derivative terms can be ignored. This process leads us to a generalised

version of the Schwarzschild metric which looks non-singular at the origin. Whether this

metric is a solution to some closed string equations of motion is also discussed. In the

second half of the thesis, Kundt space-times are studied. We show how it is possible to

obtain solutions to the Weyl anomaly equations for a background formed by a Kundt

metric and a dilaton. The inclusion of a B-�eld is mentioned but not implemented.
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1 Introduction

The search for new solutions to string theory equations of motion is a crucial process in the

understanding of the capabilities and connections to previously found results of the theory at

hand. In this context, it is not only important to classify these solutions but also to �nd relations

between them that might allow us to comprehend how such solutions may be generalised or

reproduced by a systematic procedure. Therefore, we split the following explanation into two

very well-di�erentiated parts.

First, we focus on a method derived from relations between scattering amplitudes that

allows to link together solutions to gravity and gauge theory equations of motion. This method

is commonly known as the double copy procedure and it lead us to �nd a generalisation of the

Schwarzschild metric that looks formally non-singular at the origin starting from the Born-

Infeld electric �eld created by a point charge. The latter is the leading-order solution to the

open string e�ective action when the �eld-strength derivative terms are ignored. It would be

great news if the metric that we found were a solution to some closed string equations of motion.

Alas, this is not to be expected as generalisations of the double copy ansatz may be needed

to account for the presence of non-trivial α′-corrections as well as a non-vanishing dilaton �eld

on the closed-string side of the problem. It is also important to note that neglecting further

corrections to the Born-Infeld solution is a sensitive choice, as these may induce major changes

on the resulting double copy metric.

In the second part of our thesis, we focus on a family of metrics known as Kundt space-

times, which have been given a lot of attention over the years due to their very interesting and

important properties. The Kundt family of metrics is very wide and encapsulates some of the

most relevant exact solutions to Einstein's equations of General Relativity as well as β-function

equations of motion in higher dimensions. Our aim in these notes is to give a general idea of

the feasibility of a Kundt metric to be a solution to the Weyl anomaly equations in the presence

of additional �elds, but also to make some general points on the symmetries of these metrics

under certain coordinate transformations. Our work shows that it is possible to �nd solutions

to the leading-order terms of the Weyl anomaly equations in the presence of a metric and a

dilaton �eld under some conditions. This result contributes as a bit of evidence that Kundt

metrics may be consistent backgrounds for string theory, but a general proof is still missing.
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2 Generalised Schwarzschild metric from double copy of point-like

charge solution in Born-Infeld theory

2.1 Preliminaries

The (classical) double copy is a procedure to construct gravity solutions from gauge theory

ones. It originated from the KLT relations [1] in string theory and BCJ duality [2, 3, 4, 5]

associated to scattering amplitudes in �eld theory, which allow to understand closed-string

scattering amplitudes as products of its open-string counterparts. The underlying reason of

why this is allowed remained unclear as an explicit relationship between the lagrangians of

both theories was missing. In general terms, the double copy idea is sometimes referred to as

�duality between color and kinematics� and it presents applications to a wide range of theories,

including supersymmetric ones (see [4] for a review). To show schematically how the double

copy for amplitudes works, let us consider two m-point L-loop gauge theory amplitudes in a

space-time of arbitrary dimension d [3, 4, 6]:

A(L)
m ∝ gm−2+2L

∑︂
i

∫︂ L∏︂
l=1

nici∏︁
αi
p2αi

ddpl, (2.1)

Ã(L)

m ∝ g̃m−2+2L
∑︂
i

∫︂ L∏︂
l=1

ñic̃i∏︁
αi
p2αi

ddpl, (2.2)

where the sums are only over triple-vertex graphs; g, g̃ are the coupling constants; ni, ñi are

kinematic numerators; and ci, c̃i are the colour factors associated to each graph. The ci, c̃i

depend on each other through linear relations derived from their Lie algebra, which can be

schematically written as ck = ci − cj, for some triplet of colour factors {ci, cj, ck} (same for c̃l).

The BCJ conjecture then claims that it is possible to �nd some kinematic numerators that also

obey linear relations in a one-to-one correspondence with those of the colour factors. Since the

relations satis�ed by both sets of entities are the same, replacing colour factors by kinematic

numerators does not violate gauge-invariance and allows for the construction of new objects.

If this duality between colour and kinematics is present in at least one of the two amplitudes

shown above, we can replace the colour factors in one of them with the kinematic numerators

of the other and construct the following m-point L-loop amplitude [3, 4, 6]:

M(L)
m ∝ iL+1

(︂κ
2

)︂m−2+2L∑︂
i

∫︂ L∏︂
l=1

niñi∏︁
αi
p2αi

ddpl, (2.3)

which is a typical gravity amplitude after replacing the gauge theory coupling constants by

their gravity analogue κ. Notice that if we wanted to go the other way around and obtain a
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gauge theory amplitude from (2.3), schematically the operation reduces to substituting one of

the kinematic numerators by an appropriate set of colour factors. On this spirit, we can ask

what we would obtain by performing such a substitution on an amplitude such as (2.1) or (2.2).

In this case, for a coupling constant y the result would look like:

T (L)
m ∝ iLym−2+2L

∑︂
i

∫︂ L∏︂
l=1

c̃ici∏︁
αi
p2αi

ddpl, (2.4)

which corresponds to a biadjoint scalar theory [6].

A remarkable encounter was that this double copy idea also works when applied to the

exact solutions of the underlying gravity and gauge theory equations of motion. A su�cient

condition is that the space-time metric on the gravity side admits a Kerr-Schild decomposition

as:

gµν = ḡµν + ϕkµkν , (2.5)

where ḡµν is a background metric, ϕ is a scalar �eld depending on the space-time coordinates

and kµ is a null vector �eld with respect to both g and ḡ. The Kerr-Schild family of metrics,

�rst introduced in [7], are specially nice to deal with since quantities such as the Ricci tensor

and scalar linearise on the �eld ϕ [6]:

Rµ
ν =

1

2
[∂µ∂α(ϕk

αkν) + ∂ν∂
α(ϕkαk

µ)− ∂2(ϕkµkν)], (2.6)

R = ∂µ∂ν(ϕk
µkν). (2.7)

One can naively de�ne a gauge �eld from the scalar ϕ and null vector kµ as Aµ ≡ ϕkµ and see

that if we demand the stationary vacuum Einstein's equations to be satis�ed for the metric gµν ,

then the abelian �eld strength Fµν = 2∂(µAν) solves the vacuum Maxwell equations ∂µF
µν = 0.

There is also evidence to support that the same works for non-abelian theories [6]. Furthermore,

this implies that the scalar �eld ϕ solves an abelian version of the biadjoint scalar equations of

motion, ∂2ϕ = 0. This fact may be used to give a physical interpretation to the double copy

procedure from that of the scalar �eld ϕ, as this can then be understood as a scalar propagator

integrated over a given source [6]. The scalar propagator ϕ stays the same after constructing

the single copy gauge �eld and the double copy metric. This is an analogous behaviour to the

denominators of the amplitudes of equations (2.1) to (2.4) remaining intact [3, 5, 6].

It is common in the literature to refer to the gauge �elds coming from a metric via the

double copy as �single copy gauge �elds� and to the process of transitioning from gravity to

gauge theory as the �single copy�. The expression �double copy� would therefore be assigned

to the inverse process, while the resulting metric will be called �double copy metric�. On the
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other hand, the transition from gauge theory to the biadjoint scalar theory is usually known as

the �zeroth copy�, and hence the �eld ϕ is the �zeroth copy scalar �eld�.

There are multiple examples of the application of the double copy method to exact solutions

of the equations of motion of General Relativity and Electromagnetism. In Section 2, we

give a review of a few of them. Maybe, the simplest use case is on the relation between the

Schwarzschild metric and the Coulomb potential Aµ = (ϕ(r), 0, 0, 0) created by a point charge

in four space-time dimensions, where ϕ = Q/r [6]. By means of a gauge transformation we

can write the gauge �eld as Aµ = ϕ(r) kµ for kµ = (1, xi/r) a null vector �eld. Then we may

construct the metric gµν = ηµν + ϕ kµkν , which is the Schwarzschild metric with mass M = 2Q

in Kerr-Schild form.

So far almost all examples of the double copy started with linear Maxwell �elds. The validity

and physical origins of the classical double copy construction at the full non-linear, quantum

and string theory levels are not clearly understood at present but one might speculate that

it may extend beyond the leading order in α′ and relate exact open-string and closed-string

backgrounds. In [8], a �rst naive attempt to study such an extension was made and will be

explained in the following sections.

Gauge theory equations of motion appear as the leading order approximation to the e�ec-

tive �eld equations for the massless vector �eld in the open string theory [9]. The tree-level

open string e�ective action is given, in the abelian case, by the Born-Infeld [10, 11] term√︁
det(ηµν + 2πα′Fµν) [12] plus terms depending on derivatives of the �eld strength Fµν (for a

review see [13]). We may attempt to �rst ignore all derivative corrections and generalize the

Maxwell's theory Coulomb solution to its Born-Infeld counterpart [10, 11]. The corresponding

electric �eld is E = Q/
√︁
r40 + r4, where r20 = T−1Q and T = 1

2πα′ is the string tension. In

contrast to the Coulomb case here the �eld is non-singular at the origin. This may be inter-

preted as a consequence of the inclusion of the α′ corrections that are expected to "regularize"

point-like singularities in string theory [14]. Since the �eld of the Born-Infeld solution is ap-

proximately constant near the origin, this suggests that it may be possible to consider it as an

approximation to a solution of the full (tree-level) open string e�ective �eld equations in the

region close to r = 0.

One may wonder whether this regular Born-Infeld solution may double-copy to a general-

ization of the Schwarzschild metric that will also be non-singular at the origin.1 Making the

simplest assumption that the form (2.5) with a Minkowski background of the standard "leading-

1One may argue that to discuss a possibility of a double copy for Born-Infeld �elds one should be assuming

that there exists its non-abelian version that satis�es some form of color/kinematics duality.

7



order" double copy ansatz is not modi�ed by the α′-corrections, the resulting metric with the

potential ϕ corresponding to the regular Born-Infeld solution will look formally non-singular

at r = 0. However, as we will �nd in Section 4, the corresponding curvature invariants happen

to diverge at the origin. This has to do with too slow ϕ ∼ r decay of the scalar potential at

r → 0.

We do not expect this singular α′-dependent double-copy metric to solve a closed-string

generalization of the Einstein equations. First, the string-theory generalization of the double

copy ansatz may require its non-trivial α′-modi�cation. One may also need to generalize the

double copy ansatz to allow for a non-zero dilaton �eld [15, 16] which is expected to be non-

trivial for the closed-string generalization of the Schwarzschild solution beyond the leading

order in α′. Finally, our use of the Born-Infeld solution as an approximation to the exact

open-string solution may be too naive: it is possible that (a resummation of) the derivative

corrections in the open-string equations may lead to a subtle modi�cation of the Born-Infeld

solution resulting in a non-singular double-copy metric.

We organise this part of the thesis as follows. In Section 2.2 we give a brief review of some

well-known space-time metrics and gauge �elds that can be related via the double copy method.

Section 2.3 deals with basic aspects of open string e�ective �eld theory focusing on the solution

obtained when all �eld-strength derivative terms are ignored, i. e. the Born-Infeld solution. In

Section 2.4 we will present the double copy metric corresponding to the Born-Infeld solution

and discuss the singularity of the corresponding curvature invariants. Section 2.5 contains a

prospect of two possible lines of work that we would like to pursue in the future in relation to

the double copy. We give some concluding remarks in Section 2.6 and present three technical

appendices (A, B and C) extracted from our paper [8], in which Sections 2.3 and 2.4 are also

based on.

2.2 The Classical Double Copy. Known Relations

2.2.1 Coulomb and Schwarzschild

The Schwarzschild metric is a particular case of the more general family of metrics of the

form:

ds2 = −
[︁
1− ϕ(r)

]︁
dt2 +

dr2

1− ϕ(r)
+ r2(dθ2 + sin2 θ dφ2) , (2.8)

for ϕ = 2M/r. It can be written in Kerr-Schild form via a change of coordinates to (t̄, xi),

where t̄ ≡ t + 2M ln(r − 2M) is an Eddington-Finkelstein time variable and xi are the usual
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cartesian coordinates [6]:

gµν = ηµν + ϕ kµkν , kµ ≡
(︁
1,
xi

r

)︁
, kµk

µ = 0 . (2.9)

The double copy prescription then allows us to construct an abelian vector �eld as

Aµ = ϕ(r) kµ , ϕ =
Q

r
. (2.10)

where we assume that the charge Q in the gauge theory side is de�ned in terms of the mass

M on the gravity side as Q ≡ 2M , ignoring the presence of normalization constants on both

parameters. The electric potential in (2.10) is gauge-equivalent to the Coulomb potential, Ãµ =

ϕ(1, 0, 0, 0). The gauge transformation between them is Ãµ = Aµ−∂µχ, for χ(xi) = Q ln(r2)/2.

For general ϕ(r), the change of coordinates bringing the metric (2.8) to the Kerr-Schild form

(2.9) can be found by looking for radial null geodesics of (2.8). Setting −(1− ϕ)dt2 + dr2

1−ϕ
= 0

gives the following integral representation for t (denoted by t∗(r)):

t∗(r) = ±
∫︂

dr

1− ϕ(r)
. (2.11)

In the Schwarzschild case of ϕ = 2M/r this gave t∗(r) = r + 2M ln(r − 2M). The Kerr-Schild

form of (2.8) is then obtained by changing from (t, r, θ, ϕ) to (t̄, xi) coordinates where xi are

the standard cartesian ones and t̄ ≡ t − r + t∗(r). To perform the change of coordinates it is

su�cient to use the di�erential of t̄ = t− r + t∗, i.e.

dt̄ = dt+
ϕ(r)

1− ϕ(r)
dr. (2.12)

We can also consider the analogue of the Schwarzschild metric in higher dimensions [6, 18],

known as the Tangherlini metric, which may be written in Kerr-Schild form as:

gµν = ηµν +
µ

rd−3
kµkν , (2.13)

where d is the number of space-time dimensions and µ is related to the mass. The single copy

of the Tanguerlini solution is naturally the higher-dimensional generalisation of the Coulomb

�eld:

Aµ =

(︃
gTa

Ωd−2rd−3
, 0, 0, 0

)︃
, (2.14)

for Ωd−2 the area of the (d−2)-dimensional sphere. It was noted in [18] that the classical double

copy is expected to remain valid in higher-dimensions, as the results for scattering amplitudes,

do not depend on the number of dimensions.
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2.2.2 Coulomb and JNW Solution

A general statement of the double copy idea can be formulated by saying that gravity states

are to be identi�ed as tensor products of gauge theory states. But the tensor product of two

spin-1 states will generally involve more than just a symmetric second-rank tensor, and the

classical double copy as stated above does not capture this fact [16]. In general, we will expect

a second-rank tensor with no speci�c symmetry properties. This can be split into its irreducible

parts as sum of an antisymmetric, symmetric traceless tensors and a scalar. Using the string

theory terminology, these would correspond to the NS-NS two-form B-�eld, the graviton �eld

and the dilaton, [15, 16]. A discussion of this point can be found in [16]. Here, it is suggested

that the double copy of the Coulomb �eld is the JNW solution [19] in General Relativity, which

describes a metric minimally coupled to a scalar �eld and includes the Schwarzschild solution

as a particular case. The novelty here is that the JNW solution does not admit a Kerr-Schild

form. The possibility of a classical double copy not constrained by a Kerr-Schild ansatz was

discussed in some detail in [15]. The JNW metric and dilaton can be written in the following

form [15, 16]:

ds2 = −
(︃
1− ρ0

ρ

)︃γ

dt2 +

(︃
1− ρ0

ρ

)︃−γ

dρ2 +

(︃
1− ρ0

ρ

)︃1−γ

ρ2dΩ2, (2.15)

and

ϕ =
κ

2

Y

4πρ0
ln

(︃
1− ρ0

ρ

)︃
, (2.16)

with the de�nitions:

ρ0 ≡ 2G
√
M2 + Y 2 and γ ≡ M√

M2 + Y 2
, (2.17)

whereM is related to the graviton and Y to the scalar �eld or dilaton. The event horizon of this

solution can be found on this set of coordinates at ρ = ρ0. We can recover the Schwarzschild

case for Y = 0 and positive M .

The JNW metric cannot be cast into the usual Kerr-Schild form, but a double-copy-inspired

analysis is still possible. Following [16], we can rewrite closed string e�ective theory in a way

that T-duality is manifest, sometimes known as �double �eld theory� or �DFT�. The metric

and B-�eld of closed string theory would then be encapsulated under a �generalised metric�

that can be casted in a form reminiscent of Kerr-Schild. Studying the equations of motion in

this setting it is possible to extract the form of the single copy gauge �eld and compute the

�eld strength with the JNW data. In the limit where the radial distance to the origin goes to

in�nity we recover the Coulomb electric �eld. Whether it is possible to employ this procedure

the other way around, i. e. starting with some gauge theory solution and working out what
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would the closed string theory �elds be is not clear. As far as we know, the consistency of the

method shown in [16] is only valid in the transition from gravity to gauge theory, but not the

other way around.

2.2.3 Kerr Black Hole and Maxwell with a magnetic �eld

The Kerr space-time metric, describing a rotating uncharged black hole, admits a Kerr-Schild

decomposition with background metric being Minkowski and the ϕ and kµ �elds given by [6]:

ϕ(r) =
2MGr3

r4 + a2z2
and kµ =

(︃
1,

rx+ ay

r2 + a2
,
ry − ax

r2 + a2
,
z

r

)︃
, (2.18)

where r is de�ned via the relation:

x2 + y2

r2 + a2
+
z2

a2
= 1, outside of the region x2 + y2 ≤ a, z = 0, (2.19)

for a a constant. r is equal to zero inside such region. The single copy gauge �eld can be read

directly from here:

Aa
µ =

g

4π
ϕ(r) cakµ, (2.20)

which is also a solution to Maxwell's equations, as in the cases of Schwarzschild and Coulomb

studied previously, but including as well a magnetic component. One can think of this [6] as a

consequence of the rotation characteristic of a Kerr black hole. The extension to higher dimen-

sions of the Kerr black hole is the Myers-Perry black hole [17], which also admits a Kerr-Schild

decomposition. Since the number of rotation planes depends of whether the dimensionality of

the spacetime is even or odd, we have two di�erent expressions for the double copy �elds. If we

call d the number of spacetime dimensions, the zeroth copy �eld ϕ for the Myers-Perry black

hole is [6]:

ϕ(r) =
µr2

ΠF
, for odd d, (2.21)

ϕ(r) =
µr

ΠF
, for even d, (2.22)

and the single copy gauge �eld kµ may be written as:

kµdx
µ = dt+

(d−1)/2∑︂
i=1

r(xidxi + yidyi) + ai(xidyi − yidxi)

r2 + a2i
, for odd d, (2.23)

kµdx
µ = dt+

zdz

r
+

(d−2)/2∑︂
i=1

r(xidxi + yidyi) + ai(xidyi − yidxi)

r2 + a2i
, for even d, (2.24)
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where we have the following de�nitions for Π and F :

Π ≡
(d−2)/2∏︂

i=1

r2 + a2i , F ≡ 1−
(d−1)/2∑︂

i=1

a2i (x
2
i + y2i )

(r2 + a2i )
2
, (2.25)

for ai a rotation parameter, (xi, yi) a pair of spatial coordinates, z a spatial coordinate unpaired

from (xi, yi) and r a radial coordinate. The latter is given by the condition that kµ is null [17]:

(d−1)/2∑︂
i=1

x2i + y2i
(r2 + a2i )

2
= 0, for odd d, (2.26)

z2

r2
+

(d−2)/2∑︂
i=1

x2i + y2i
(r2 + a2i )

2
= 0, for even d. (2.27)

2.2.4 Magnetic Monopole and Taub-NUT spacetime

We have seen how the single copy �eld of the Schwarzschild metric may be identi�ed with

the electric �eld created by a point-like charge. In the same way, we can prove that the �eld

created by a magnetic monopole can be understood as the single copy of a general Taub-NUT

spacetime [20, 21, 22, 23]. This family of metrics are stationary solutions to Einstein's equations

and show some very interesting properties (see [22, 23] for more). A general Taub-NUT metric

may be written as [23, 24, 27]:

ds2 = −f(r)(dt− 2N cos θ dϕ)2 + f(r)−1dr2 + (r2 +N2)dΩ2
(2), (2.28)

where N is the Taub-NUT charge, with no known Newtonian analogue and the function f(r)

is given by [23]:

f(r) =
(r − r+)(r − r−)

r2 +N2
, (2.29)

with r± ≡M ± r0, r
2
0 ≡M2 +N2, M being the mass of the source in the Newtonian limit. In

Kerr-Schild form, the Taub-NUT metric can be expressed as [23, 26]:

gµν = ηµν + κhµν = ηµν + κ(ϕkµkν + ψlµlν), (2.30)

where the vector �elds kµ and lµ are null with respect to both the background Minkowski metric

and the full metric. They also satisfy the identities (k ·D)kµ = 0 and (l ·D)lµ = 0, where D is

the covariant derivative taken with respect to those two metrics, [22, 23]. A couple of comments

are in place. First, we see that this expression is not of the simple Kerr-Schild form that we

have seen previously. Instead, we have a slightly generalized version of the ansatz, including

two sets of null vectors and scalar �elds. Secondly, the reader may also �nd the Taub-NUT
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metric in Kerr-Schild form with the Minkowski background metric replaced by a general de

Sitter metric ḡµν as in [22]. We will however continue our work with the form given in (2.30).

There is a particular coordinate system where the Einstein equations linearise for the Taub-

NUT metric. We will denote this set of coordinates by (τ̃ , σ̃, p, q), following the notation of

[22]. In these coordinates, the metric acquires the form [22]:

ds̃2 = −∆̄p(dτ̃ + q2dσ̃)2 + ∆̄q(dτ̃ + p2dσ̃)2

q2 − p2
− 2(dτ̃ + q2dσ̃)dp− 2(dτ̃ + p2dσ̃)dq, (2.31)

with the de�nitions ∆̄p ≡ γ − ϵp2 + λp4 and ∆̄q ≡ −(γ − ϵq2 + λq4), where ϵ is a constant,

while γ relates to the angular momentum and λ is a cosmological constant. As explained in

[27], not all of the constants involved carry physical meaning. In fact, they are to be considered

as arbitrary integration constants in the general case and there even exists a family of scale

transformations that allows to assign a discrete value to the constant ϵ [27].

Under the (τ̃ , σ̃, p, q) coordinate system, the expressions for the null vectors and scalar

�elds are as follows [22, 23]:

kµ = (1, q2, 0, 0), lµ = (1, p2, 0, 0), ϕ =
2Np

q2 − p2
, ψ =

2Mq

q2 − p2
. (2.32)

In order to obtain our single copy gauge �eld, we can perform the substitutions Mκ/2 →

(caT
a)gs and Nκ/2 → (caT

a)g̃s, which are a naive generalization of the one used in the

Schwarzschild case above. Also, naively, our gauge �eld may be de�ned as [23]:

Aa
µ = ca(ϕkµ + ϕlµ) =

2ca

q2 − p2
(Np+Mq, Npq2 +Mqp2, 0, 0). (2.33)

We can see more clearly what this gauge �eld corresponds to if we perform a change to spherical

coordinates, (τ̃ , σ̃, p, q) → (t, r, θ, ϕ). This job can be completed in three steps. First, the

variables τ̃ and σ̃ are related to p, q and two new variables τ and σ by [22]:

dτ̃ = dτ +
p2

∆̄p

dp− q2

∆̄q

dq and dσ̃ = dσ − dp

∆̄p

+
dq

∆̄q

. (2.34)

Second, the variables (τ, σ, p, q) relate to the usual spherical variables through the identities

[22]:

τ = t+ aϕ, σ =
ϕ

a
, q = r and p = a cos θ, (2.35)

where we have de�ned a such that a2 ≡ γ. Finally, take the limit where the constant γ, or

equivalently a, goes to zero. This constant is related to the angular momentum, so it vanishing

will imply spherical instead of spheroidal symmetry. With these changes, the gauge �eld of
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equation (2.33) can be written as:

A = 2ca
Na cos θ +Mr

r2 − a2 cos2 θ
dt+ 2ca

M

r(λr2 − ϵ)
dr − 2ca

N sin θ

(ϵ− λa2 cos2 θ) cos θ
dθ+

+ 2ca
Nr2 cos θ +Mar(1 + cos2 θ) +Na2 cos θ

r2 − a2 cos2 θ
dϕ, (2.36)

which, in the limit a→ 0, becomes:

A =
2caM

r
dt+

2caM

r(λr2 − ϵ)
dr − 2caN sin θ

ϵ cos θ
dθ + 2caN cos θ dϕ (2.37)

The �eld-strength built from this gauge �eld has only four non-vanishing components, of which

only two are independent. We can easily compute them to be:

Frt = ∂rAt = −2caM

r2
and Fθϕ = ∂θAϕ = −2caN sin θ. (2.38)

The �rst of these components may be identi�ed with the Coulomb solution [22, 23]. In the

Newtonian limit, the charge M is the mass of the source. The component Fθϕ, on the other

hand, exclusively depends on the NUT charge N and corresponds to a magnetic monopole,

[23].

2.2.5 PP-waves

PP-waves are exact solutions of both Einstein equations in General Relativity and gauge

theory equations of motion. They have very interesting properties and, therefore, have been

given a lot of attention in the literature, see [28, 29, 30, 31, 32, 33]. From the gravity side, a

plane-wave metric in Brinkmann coordinates can be written as:

ds2 = dudv +K(u, xi)du2 + dxidxi, (2.39)

where u and v are light-cone coordinates, xi for i = 1, 2, . . . , D−2 are �transverse� coordinates,

and K(u, x) is a function independent of the coordinate v. There is an alternative coordinate

system to represent plane-waves in General Relativity, the Einstein-Rosen coordinates, but their

non-global character makes Brinkmann coordinates easier to work with [28]. Metrics of this

form possess a null Killing propagation vector, represented by the components of the derivative

along the light-cone direction v [34]. In the context of the classical theory of gravity, space-times

of this kind have been named of plane-fronted waves with parallel rays, or pp-waves for short, a

term introduced by Ehlers and Kundt in [35]. They are a time-dependent Ricci-�at solution to

any action built from Einstein-Hilbert plus any corrections with arbitrary powers of Riemann

tensor contractions and derivatives which are gravitationally covariant. Moreover, they solve
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the corresponding equations of motion at all orders [34, 36, 37]. Therefore, in particular, the

pp-wave metric given above is an exact solution of closed string theory provided that ∂i∂
iK = 0.

In the context of the double-copy procedure, it is evident that we can construct a plane-wave

gauge �eld from the metric of equation (2.39) even without the Kerr-Schild ansatz [18, 38]. We

may just de�ne [18]:

Aa
µ ≡ ϕa(u, xi)kµ, (2.40)

where ϕ(u, xi) ∝ K(u, xi) and kµ is de�ned such that kµdx
µ ≡ du. This gauge �eld is of the

plane-wave type, standing as an exact solution to Maxwell's equations and, more generally,

to open string theory to all orders in the α′-expansion [39], provided that ϕ is harmonic in

transverse space, a condition that is already ful�lled from the gravity side.

The case of the double copy procedure for pp-waves can also be explored from the viewpoint

of amplitudes, as was done for example in [28]. There is also an alternative method, the so-

called Weyl double copy, which instead of relating metrics and gauge �elds it works on the

�eld-strengths and Weyl tensors. It has proven to solve some inconveniences of the Kerr-Schild

double copy [23] and has been applied to pp-waves as well [38].

2.2.6 Gauge and Gravity Shock-waves

We can transform the Schwarzschild solution to obtain a shockwave-like solution to Einstein's

equations, a procedure �rst carried out by Aichelburg and Sexl in 1971 [40, 41]. This new

solution in General Relativity is therefore known as the Aichelburg-Sexl shockwave and admits

a representation in Kerr-Schild form, so it is in principle possible to discuss it in the context

of the double copy procedure. This has in fact been veri�ed and represents one of the simplest

time-dependent cases where the double copy recipe applies [6, 42], together with the even

simpler case of pp-waves discussed previously.

Following from the general expression of a metric in Kerr-Schild form (2.5), the Aichelburg-

Sexl shock-wave metric corresponds to the following choice of the background metric g̃µν , scalar

�eld ϕ and vector �eld kµ [41]:

g̃µν = ηµν , kµ = (1, − 1, 0, 0) and ϕ =
κ2M

8π
ln

(︃
ρ

ρ0

)︃
δ(t− x), (2.41)

where ρ0 ≡ Constant and ρ ≡
√︁
y2 + z2 if the shock-wave is propagating along the direction

give by the x coordinate. We de�ne κ here such that κ2 ≡ 16πG [41]. We can read o� from

here the expression of the corresponding single copy gauge �eld to be [41]:

Aa
µ ∝ gca

4π
ln

(︃
ρ

ρ0

)︃
δ(t− x) kµ, (2.42)
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which relates to a gauge theory shock-wave, as one could intuitively foresee [41].

2.2.7 Further Developments

After exploring all the cases shown above, an evident question is whether or not the double copy

still works when the space-time is not four-dimensional. We already commented without much

detail on the cases of the Schwarzschild and Kerr black holes in higher dimensions, i. e. the

Tangherlini and Myers-Perry space-times, respectively. There are a number of works dealing

with other higher-dimensional metrics, such as D-Type space-times or black branes (see, for

example, [6, 23]).

On the other side of the spectrum, little work has been done in lower dimensions. We may

cite [43], where the workings of the double copy in three dimensions were studied. The kind

of black hole solutions living on a three-dimensional space-time are collectively known as BTZ

black holes [44]. These do not have a Newtonian limit due to the lack of propagating degrees

of freedom for the graviton, but admit a Kerr-Schild form and so are suitable for a double

copy analysis. The single copy of the BTZ black hole corresponds to a constant charge density

extending to all space [43]. A remarkable detail is that the mass on the gravity side and the

charge on the gauge theory side are not related to each other. What is more, the mass does

not play any role in the dynamics of the single-copy theory. Starting from gauge theory, one

can also ask what is the double copy of a point-charge living in three space-time dimensions.

The answer is gravity coupled to a dilaton �eld [43].

Attempts to accommodate the double copy idea to metrics that do no admit a Kerr-Schild

decomposition have been carried out in some works, see [16] for instance. Another approach

is to elevate the double copy procedure from the metric and gauge �eld to the level of �eld

strengths and Weyl tensors by means of the Weyl double copy [23, 38]. It was shown to be

consistent with the classical double copy, proving itself useful to �nd new relations and double

copy interpretations where the classical procedure could not reach. In terms of spinors, the

Weyl double copy relation reads:

CABCD =
1

S
f(ABfCD), (2.43)

where C is the spinor for the Weyl tensor, f the analogue for the electromagnetic �eld strength

and S is a function associated to the zeroth copy.

Another interesting line of research asks whether the double copy idea may be used to �nd

the gravity (gauge theory) analogues of certain symmetries known to be present in the gauge

theory (gravity) side. As an example, [23] studies what are the gravity analogues of S-duality
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and charge conjugation in electromagnetism. S-duality refers to the invariance of Maxwell's

equations under a suitable exchange of the electric and magnetic �elds, while charge conjuga-

tion may be schematically understood as a sign inversion on the electric charge. Both were

shown to be present as well in the more general Yang-Mills theory. We can interpret these

symmetries as solution generating techniques in the sense that given a solution to Maxwell's

theory, we can construct a di�erent solution by simple application of the corresponding sym-

metry transformation. In this spirit, we know of at least two solution generating techniques in

General Relativity that allow to build solutions to Einstein's equations from previously known

ones: the Ehlers transformation [35] and the Buchdahl's reciprocal transformation [45]. The

former was shown to be the double copy analogue of S-duality, while the latter was identi�ed

with charge conjugation [23].

Finally, we will brie�y mention a correspondence found recently in [46], dubbed the Newman-

Penrose map. This maps enhances the double copy idea in that it applies to Kerr-Schild metrics

that need not be time-independent or vacuum solutions. However, it also has some drawbacks.

For instance, since the Newman-Penrose construction is based on the tetrad formalism, there

is no obvious higher-dimensional extension, which in the Kerr-Schild double copy is evident.

Furthermore, the set of Kerr-Schild metrics that the Newman-Penrose map was applied to in

[46] must be such that the Kerr-Schild vector is tangent to a congruence with a non-vanishing

expansion that is null, geodesic and shear-free. It was argued [46] that such a constraint

is not very restrictive, since most of the cases of interest are of this form. In essence, the

Newman-Penrose idea may be summarised as follows. For any metric that admits a Kerr-

Schild decomposition and satis�es the properties listed above for corresponding Kerr-Schild

vector, one can �nd a complex scalar �eld Φ that is harmonic for which A = k̃Φ is self-dual2

and solves the vacuum Maxwell equations. Here, k̃ is a one-form understood as a di�erential

operator, which plays the role of the Kerr-Schild vector in the classical double copy. The authors

of [46] outlined the possible lines of research that could be followed to uncover the full potential

of this new relationship in the spirit of the double copy. To cite a couple of them, it would be

interesting to see if the Newman-Penrose map also applies to complex Kerr-Schild metrics or

if it may provide a work with non-abelian gauge �elds.

2Another work that comments on how to apply the Kerr-Schild double-copy idea to self-dual solutions is [6].
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2.3 Open string e�ective action and the Born-Infeld solution

In this section we give an explanation of how the Born-Infeld solution of modi�ed electro-

dynamics [10, 11] may be obtained from bosonic open string e�ective theory. The explanation

follows closely that of [8], where we investigated what the double copy of such a solution might

be.

The e�ective action for the abelian gauge �eld in the bosonic open string theory has the

following structure [12, 47, 48] after considering reduction to four dimensions and setting T−1 ≡

2πα′:

S = c

∫︂
d4x

√︂
−det(ηµν + T−1Fµν)

[︂
1 + T−3Bµνρσλγ(T−1F ) ∂µFνρ∂σ Fλγ +O(∂4F )

]︂
, (2.44)

where the ∂F -independent part is the Born-Infeld action and B is a particular function of the

�eld-strength Fµν = ∂µAν − ∂νAµ. Explicitly, the leading order α′5 derivative terms are [48]

S =c

∫︂
d4x

(︂√︁
−det(η + T−1F )− 1

48π
T−5

[︂
(∂αFµν)(∂

αF µν)FρσF
ρσ

+ 8(∂αFµν)(∂
αF νλ)FλρF

ρµ + 4(∂αFµν)(∂
βF µν)FβλF

αλ
]︂
+O(T−7)

)︂
. (2.45)

The resulting equation for Fµν may be written as:

2∂µ

[︂∂√︁−det(η + T−1F )

∂Fµν

]︂
− 1

12π
T−5

[︂
(∂αFλγ)(∂

αF λγ)(∂µF
µν)

+ 2(∂µ∂αFλγ)(∂
αF λγ)F µν + 4∂µ

[︁
(∂αFσγ)(∂

µF σγ)Fαν
]︁

+ 4∂µ
[︁
(∂αFβγ)(∂

αF γµ)F νβ + (∂αFγλ)(∂
αF νγ)F λµ

]︁]︂
+O(T−7) = 0 . (2.46)

The Born-Infeld equation corresponding to the vanishing of the �rst term here is equivalent to

(η − T−2F 2)−1
λµ ∂

λF µν = 0.

Ignoring the contributions of the derivative correction terms in (2.45) let us look for a point-

like charge solution of the Born-Infeld term in (2.46). In the purely electric case the Born-Infeld

part of (2.46) reduces to ∂i
(︁
Ei/

√
1− T−2E2

)︁
= 0. If the electric �eld is spherically symmetric

(corresponding to a point-like charge), i.e. has only a radial component depending on r, one

�nds [10]3

Er = F0r = −∂rA0(r) =
Q√︁
r40 + r4

, r20 ≡ T−1Q. (2.47)

In contrast to the standard Coulomb solution the Born-Infeld solution is regular at r = 0. Since

the electric �eld (2.47) is approximately constant near r = 0, one may hope that at least near

3The Born-Infeld solution has been extensively studied in the literature. A few works that we can cite include

[13, 49, 50, 51, 52, 53, 54].
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the origin this background may be trusted as a solution to the full open string e�ective action,

including the derivative corrections. A further discussion of this point is presented in Appendix

A.

Our aim below will be to construct the double copy metric corresponding to the scalar

potential in (2.47) that generalizes the Schwarschild metric which is the double copy of the

Coulomb potential.

2.4 Double copy of the Born-Infeld solution

To determine the classical double copy metric for the Born-Infeld solution in (2.47) we will

follow the general steps given in the introduction. To do this, we will need to compute the

gauge �eld Aµ. Its zeroth component, the electric potential, is given by (2.47) and can be

calculated by integrating that equation over r with the boundary condition A0

⃓⃓
r→∞ → 0. The

result reads:

A0(r) ≡ ϕ(r) =

∫︂ ∞

r

dr′Er(r
′) =

Q

r 2F 1

(︂1
4
,
1

2
,
5

4
,−r

4
0

r4

)︂
=
Q

r

[︂
1− r40

10r4
+O(

r80
r8
)
]︂
, (2.48)

where 2F1 is the standard hypergeometric function, also known as Gauss's hypergeometric

function. Under our assumptions in the previous section, this is the only non-zero component

of Aµ, i. e. the gauge �eld takes the form Aµ = (ϕ, 0, 0, 0). In analogy with the Schwarzschild

case of Section 2.1, we require our gauge �eld to be of the form (2.10). We can achieve this via

a gauge transformation and the result is:

Aµ = ϕ(r) kµ = ϕ(r)
(︂
1,

xi
r

)︂
. (2.49)

We now use (2.9) with ϕ(r) given by (2.48) to build the double copy metric as ds2 = gµν(x)dx
µdxν

with xµ = (t̄, xi) and t̄ related to t as in (2.12). This metric can be written in the Schwarzschild-

like form (2.8) with ϕ(r) as in (2.48) by using (2.12) and the transformation relations between

cartesian and spherical coordinates. The fact that our metric admits such a representation may

indicate that it is indeed a generalization of the Schwarzschild solution for non-zero r20 = 2πα′Q.

Furthermore, the components of our double copy metric look non-singular due to the fact that

the series expansion of the function ϕ(r) near r = 0 is regular:

ϕ(r) = c0 + c1r + c5r
5 +O(r9) =

Q

r0
Γ(5

4
)
[︂
Γ(1

4
)
√
π − r

Γ(1
4
) r0

+
r5

5r50

]︂
+O(r9) . (2.50)

This became a striking discovery after we found out that the corresponding curvature invariants

still presented a singular behaviour for small r. To give an example, the scalar curvature is
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given by

R =
2ϕ(r)

r2
− 2Q(r4 + 2r40)

r(r4 + r40)
3/2

=
2QΓ(1

4
)Γ(5

4
)

r0
√
π

1

r2
−

4Q[Γ(1
4
) + 2Γ(5

4
)]

r20 Γ(
1
4
)

1

r
+O(r3) . (2.51)

This singularity is due to the presence of the �rst two (c0 and c1r) terms in the r → 0 expansion

of ϕ in (2.50). The same happens for the contraction of two Riemann tensors. To be more

explicit, let us start with a general ϕ that admits the following regular Taylor expansion near

the origin:

ϕ(r) = c0 + c1r + c2r
2 + c3r

3 + c4r
4 + c5r

5 +O(r6), (2.52)

Hence, for a metric as in (2.8) we obtain a curvature squared that reads

RµνρσR
µνρσ

⃓⃓
r→0

=
4c20
r4

+
8c0c1
r3

+
4c21 + 8c0c2

r2
+

8(c1c2 + c0c3)

r
(2.53)

+ 4(c22 + 2c1c3 + 2c0c4) + 8(c2c4 + c1c4 + c0c5)r +O(r2) . (2.54)

As we had previously announced, it is indeed the c0 and c1 coe�cients on the expansion of

ϕ(r) that are responsible for the non-regular behaviour. For completeness, substituting the

expression for ϕ(r) that we obtained in (2.50) we �nd (see also (B.5))

RµνρσR
µνρσ =

4[ϕ(r)]2

r4
+

8Q2(r8 + r40r
4 + 1

2
r80)

r2(r4 + r40)
3

(2.55)

=
4Q2 Γ(1

4
)2Γ(5

4
)2

πr20

1

r4
−

32Q2Γ(5
4
)2

√
π r30

1

r3
+

4Q2

r40

Γ(1
4
)2 + 16Γ(5

4
)2

Γ(1
4
)2

1

r2
+

16Q2 Γ(5
4
)2

5r70
√
π

r +O(r3) .

The Ricci tensor is also non-trivial for r0 di�erent from zero (see Appendix B). It is worth

pointing out that, in the case of ϕ(r) as in the Schwarzschild metric, both (2.51) and (2.55)

reduce to R = 0 and RµνρσR
µνρσ = 12Q2

r6
, respectively, as expected.

If ϕ
⃓⃓
r→0

= c0 ̸= 0 then the metric (2.8) has a conical singularity at r = 0. This is not a real

issue because we can always set c0 = 0 by changing the integration constant in (2.48) (or by

a gauge transformation of the potential (2.49)) and then rede�ne the double copy metric (2.9)

using ϕ in this gauge. However, this would also entail that instead of setting ϕ
⃓⃓
r→∞ = 0 we

will have to consider the limit ϕ
⃓⃓
r→∞ = −c0. The real problem is that ϕ

⃓⃓
r→0

= c1r = c1
√︁
x2i is

non-analytic in cartesian coordinates and this e�ectively produces a singularity in the curvature

invariants. This c1r term cannot be eliminated by a gauge transformation as it is responsible

for the non-zero constant value of the Born-Infeld electric �eld Er = −∂rϕ in (2.47) at r = 0

(see also Appendix C). Finally, it is not clear if there is some generalization of the Einstein

equations for which the metric (2.8) with ϕ in (2.48) is a solution.
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2.5 Further Work

We will brie�y discuss two lines of work that might be interesting to pursue in the future.

Mainly, the application of the classical double copy to the Kerr-Schild-Kundt and Robinson-

Trautman families of metrics. We will �rst give a short explanation of their properties and an

outline of past works on the subject to motivate our interest on these space-times . A third line

of work that could potentially be of great value in the future, but which we will not consider

in this section, is a rigorous analysis of whether the double copy ansatz should be modi�ed for

gravity and gauge theory solutions that include α′-corrections. In case that a modi�cation is

needed, we would need to reconsider our work on the Born-Infeld solution of Sections 3 and

4, but most importantly, it will widen our understanding of the nature of the double copy

procedure itself and possibly lead to new applications.

2.5.1 Kerr-Schild-Kundt Metrics

There is a certain family of metrics called �universal� that solve nearly any covariant gravity

equations, including or not any set order of quantum corrections [55]. As this is a very restrictive

property, there are not many examples of such metrics and �nding them is not an easy task.

However, the examples that can be found in the literature do admit a Kerr-Schild form which

can be written as follows [56]

gµν = ḡµν + 2V λµλν , (2.56)

where the background metric is of the de Sitter or anti-de Sitter type and the vector �eld λµ

and function V satisfy

λ · λ = 0, λ · ∂V = 0, (2.57)

as well as

∇µλν = ξ(µλν), ξ · λ = 0, (2.58)

where ξ is an auxiliary vector �eld de�ned by the �rst of these relations. Due to (2.57) and

(2.58), λ is non-expanding, shear-free and non-twisting. This means that the metric (2.56)

de�nes a Kundt space-time. Since it is also of the Kerr-Schild form, these metrics have been

called �Kerr-Schild-Kundt�, or �KSK� for short, metrics [56]. Two examples of this class are the

AdS-plane waves and the AdS-spherical waves.

Kundt space-times appear in the study of universal solutions to the Einstein-Yang-Mills

theory [57, 58, 59]. It has been shown [59, 57] that a necessary and su�cient condition for

a metric and gauge �eld with a non-zero �eld-strength to be a solution to the full Einstein-

Yang-Mills theory with an arbitrary number of higher-order corrections is that both �elds are
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of the so-called �vanishing scalar invariant� type (or VSI for short) satisfying a couple of simple

tensor relations. A gauge �eld with a non-vanishing �eld-strength is VSI if and only if said

�eld-strength is aligned in a degenerate Kundt space-time and null, where the gauge group

is chosen to be compact and semi-simple [60]. On the other hand, the metric is Kundt and

satis�es the properties outlined below (2.58).

The fact that the Kundt family of metrics may be written in Kerr-Schild form is motivation

enough for us to consider it in the context of the double copy. Such a program was followed in

some detail in [58] in the context of the Einstein-Yang-Mills theory. Even though the authors

did not pursue a strict application of the double copy idea, they did show that there is a relation

between the metric and gauge �eld in some Einstein-Maxwell-Yang-Mills theories. Therefore,

it would be interesting to know what the single copy of a KSK metric is on its own, i. e. not

necessarily inside any theory of gravity coupled to electromagnetism. Once this is achieved, it

would indeed be interesting to see what equations such a gauge �eld satis�es and under what

conditions it relates to solutions of an Einstein-Yang-Mills theory.

2.5.2 Robinson-Trautman metric

The Robinson-Trautman family of metrics (or RT metrics for short) are solutions to the

four-dimensional vacuum equations of motion in General Relativity where one of the principal

null vector �elds of the Weyl tensor is shear and twist-free, has non-zero divergence and is

parallel to a congruence of null geodesics [61, 62]. The line element for such a metric may be

written as [30]:

ds2 = 2r2eΦdz dz̄ − 2dtdr −H(z, z̄; t)dt2, (2.59)

where r is an a�ne parameter, t is a retarded time coordinate, (z, z̄) is a system of conformally-

�at coordinates (which can be taken to be the stereographic coordinates on the unit sphere)

and H is a function given by:

H(z, z̄; t) = r∂tΦ−∇2Φ− 2m(t)

r
− Λr2

3
, (2.60)

with m understood sometimes as the physical mass of the system and Λ being a cosmological

constant. The function Φ is in principle unknown and depends on the problem at hand. The

remarkable fact about these metrics, �rst studied in [63, 64], is that they bear a close relationship

to the so-called Liénard-Wiechert �elds (or L-W for short), describing the motion of a point

charge on a given worldline [65, 66]. The analogy comes into place after noticing that a su�cient

and necessary condition for a regular solution to Maxwell's equations to be a Liénard-Wiechert
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�eld is that the Maxwell tensor admits a principal null vector with the same properties as those

listed above characteristic of the principal null vector of a Robinson-Trautman metric [62]. In

fact, an analysis reminiscent of the single copy procedure was carried out in [62] where it was

shown how it is possible to extract L-W �elds from RT metrics. Therefore, we ask whether

there is a double copy relationship between the Liénard-Wiechert and Robinson-Trautman

solutions. Here, we will only perform a very basic attempt on writing a general R-T metric in

Kerr-Schild form and leave the rest of the discussion for future work. It should be noted that a

Kerr-Schild-like form for this family of metrics has already been studied in the past (see [67]).

We aim to write the line element (2.59) as:

ds2 = (ḡµν + ϕ kµkν)dx
µdxν . (2.61)

Let us �rst try to attempt this on the coordinates xµ = (t, r, z, z̄). We can then expand (2.61)

and identify the coe�cients of the coordinate di�erentials with (2.59). We obtain the following

equations:

ḡ00 + ϕ(k0)
2 = −H, ḡ11 + ϕ(k1)

2 = 0, ḡ22 + ϕ(k2)
2 = 0,

ḡ33 + ϕ(k3)
2 = 0, ḡ01 + ϕk0k1 = −1, g̃02 + ϕk0k2 = 0,

ḡ03 + ϕk0k3 = 0, ḡ12 + ϕk1k2 = 0, ḡ13 + ϕk1k3 = 0,

ḡ23 + ϕk2k3 = r2eΦ. (2.62)

A solution may be found with the following assumptions:

k2 = k3 = 0, ḡ0i = ḡ12 = ḡ13 = ḡ22 = ḡ33 = 0. (2.63)

We obtain:

k0 = k1, ḡ23 = r2eΦ, ḡ00 = 1−H. (2.64)

Finally, setting k1 ≡ 1, the Kerr-Schild form of the RT metric in (2.59) is ds2 = (ḡµν +

ϕkµkν)dx
µdxν , for

ϕ = −1, kµ = (1, 1, 0, 0), ḡµν =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1−H 0 0 0

0 1 0 0

0 0 0 r2eΦ

0 0 r2eΦ 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
. (2.65)

The background metric ḡµν is not Minkowski. Recall that in spherical coordinates the Minkowski

metric is given by:

ds2Minkowski = −dt2 + dr2 + r2(dθ2 + sin2 θdφ2). (2.66)

23



If we take (z, z̄) to be the stereographic coordinates on the sphere, i. e. z = eiφ cot(θ/2), then:

dzdz̄ =
dθ2 + sin2 θdφ2

4 sin4(θ/2)
, (2.67)

so we end up with

ds2Minkowki = −dt2 + dr2 + 4r2 sin4(θ/2)dzdz̄. (2.68)

Direct substitution on the equations (2.62) has the same e�ect as equating this line element

with that of ḡµν in (2.65), so what we are left with the following constraints on the functions

H and Φ:

H(z, z̄; t) = 2 and eΦ = 4 sin4(θ/2), (2.69)

thus reducing the generality of our solution.

Whether the Kerr-Schild metric with parameters as in (2.65) will have some interesting

double copy application needs further work. It is of course not ideal for the simplest analysis

that the background metric is not Minkowski and whether it does relate to the Liénard-Wiechert

family of �elds is not clear.

2.6 Concluding remarks

We studied the known applications of the classical double copy procedure on its Kerr-Schild

formulation. This idea has gained increasing interest in the last few years mainly due to its

promise of bringing gravity and gauge theory closer together. It is too early to ascertain

whether the double copy does have some underlying physical interpretation or if it is merely a

useful mathematical game. Regardless of the answer to this question, it is undeniable that the

several applications found so far in the literature and the increasing number of possibilities to

be explored are enough to keep our hopes up on this active area of research.

In Section 1 we introduced the concept of double copy from the scattering amplitudes point

of view and quickly went on to explain the classical Kerr-Schild double copy on which we

focused on the rest of the document. We presented several examples of application of this idea

on the �rst six titles within Section 2 and summarised other di�erent and highly interesting

lines of work on the last subsection.

In the next two sections, we narrowed the analysis to our work in [8]. The bosonic sector

of the open-string e�ective action may be approximated to the Born-Infeld action when �eld-

strength derivative terms are ignored. The solution to its equations of motion is a generalization

of the Coulomb solution that includes α′-corrections. Near the origin, i. e. r = 0, the Born-

Infeld solution is approximately constant, and so it may be trusted to some extent as a solution
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to the full open string e�ective theory. We asked whether the classical double copy of the

Born-Infeld solution could yield a metric that may be interpreted as a generalisation to the

Schwarzschild solution in General Relativity. Our result does indeed have some relation to

Schwarzschild and it reduces to it in the α′ → 0 limit. One remarkable property of our double

copy metric is that although all of its components are regular at the origin, the corresponding

curvature invariants are not. We traced back the reason for this divergence to be associated

to the slow decay of the scalar potential of the Born-Infeld electric �eld as the radial distance

approaches the origin. We do not speculate on the possibility for this double copy metric to be

a solution to some closed-string e�ective equations of motion.

Finally, we presented a summary of some interesting future lines of work. This includes the

concept of �universality� in gravity theories and the double copy of the Robinson-Trautmann

family of metrics. Another open question that has not been mentioned here is whether we will

be able to map exact open-string and closed-string solutions via the double copy. This program

is highly non-trivial and might require an extension of the double copy idea that applies to all

orders in the α′ expansion.
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3 Kundt metrics as consistent backgrounds for string theory

3.1 Preliminaries

Kundt spacetimes have a number of applications in general relativity in four dimensions and

have been shown to be relevant as well in higher dimensions in the study of string theory. In

general, an n-dimensional spacetime is said to belong to the Kundt class if it admits a null

vector ℓ satisfying the following conditions [68]:

∇bℓa ℓ
b ∝ ℓa, ∇aℓ

a = 0, ∇(bℓa)∇(bℓa) = 0, ∇[bℓa]∇[bℓa] = 0. (3.1)

This guarantees that ℓ is geodesic, expansion-free, shear-free and twist-free within some kine-

matic frame [68]. A general n-dimensional Kundt metric may be written in the following way

[69, 70, 71]:

ds2 = Gµνdx
µdxν = −2dudv +K(u, v, xk)du2 + 2Ai(u, v, x

k)dudxi +Gij(u, x
k)dxidxj, (3.2)

where i, j = 1, . . . , n − 2 and Gij is a metric on an (n − 2)-dimensional transverse space.

Under certain conditions, coordinate transformations may be used to simplify the form of this

metric. For instance, in the absence of the dudxi components and for a function K of the form

K(u, v, xk) = H(u)v + K̃(u, xk) the metric in (3.2) is equivalent to one of the same form but

whose components do not show any explicit dependence on the coordinate v (see Section 3.3).

Identities of this sort are useful in the search for new solutions of equations of motion where

backgrounds of this kind are present.

Kundt spacetimes have several important subclasses that have been studied extensively in

the literature. Some of the most well-known examples include exact solutions to Einstein's

equations of General Relativity such as pp-waves [69, 72, 73, 74], for which Ai = 0, K is

independent of v and Gij is �at euclidean space in n − 2 dimensions. Moreover, some CSI

(Constant Scalar Invariants) and all VSI (Vanishing Scalar Invariants) spacetimes also belong

to the Kundt class [72, 75]. For (3.2) to be CSI, we require that K is a polynomial of at most

second-order in v and the coe�cient of the v2-term be constant. On the other hand, (3.2) being

VSI demands that K is linear in v and the transverse metric is �at and euclidean [70].

In four dimensions, all CSI metrics that are not locally homogeneous de�ne Kundt space-

times. In fact, any four-dimensional lorentzian spacetime metric that is not determined by its

curvature invariants must belong to the Kundt class [68, 76]. In the case where K and Ai

are independent of v, i. e. when there is no explicit dependence on the coordinate v on the

components of the metric, (3.2) is the most general form of a spacetime with a covariantly
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constant null Killing vector �eld [70]. If only Ai is independent of v, then (3.2) is a suitable

expression for any metric with Sim(n−2) holonomy, and therefore has a recurrent vector �eld.

These metrics, also known as Kundt-RNV metrics, are said to be of Walker form [70].

In higher dimensions, there has been progress on the study of Kundt metrics as consistent

backgrounds for string theory. In fact, several VSI spacetimes have been found to be such

consistent backgrounds at all orders in σ-model perturbation theory [77], where pp-waves are

also included as a particular case. Kundt spacetimes in higher dimensions also play a role in

the search for supersymmetric solutions to supergravity theories where they may lead to the

discovery of new physical phenomena [70].

There is currently no systematic approach to the search for new solutions of General Rel-

ativity and string theory. The same is true even if we limit ourselves to the study of one

particular set of backgrounds, such as the Kundt class of metrics. We aim to provide evidence

on the feasibility of Kundt spacetimes as consistent backgrounds for string theory starting from

the case of a simpli�ed Kundt metric coupled to a dilaton �eld. If the dudxi components of the

metric are linear in the coordinate v and the transverse space is �at, solutions to the β-function

equations at leading order can be found for a dilaton linear on the coordinate v. Two di�erent

sets of solutions arise depending on whether the coe�cient function of the v term in the dilaton

is identically equal to zero or not.

The structure of this part of the thesis is as follows. Section 3.2 is devoted to a brief

review of a few important examples of Kundt metrics and their classi�cation. In Section 3.3,

we analyse some of the properties of a metric such as (3.2). We focus on whether or not

it is possible to simplify this expression under certain constraints. In particular, we look at

when and how the dudxi terms may be eliminated as well as to the possibility of removing

the v-dependence from the metric components. Section 3.4 explores the solutions of the Weyl

anomaly equations in string theory for a background formed by a metric such as (3.2) and a

general dilaton ϕ = ϕ(u, v, xk). We proceed with our calculations under the assumption that

the functions Ai are linear in the coordinate v. Finally, in Section 3.5 we wrap up our discussion

with some concluding remarks and point towards possible future work. We also include a couple

of appendices, D and E. The �rst one serves as a reference for some mathematical properties

and expressions regarding the metric (3.2) that were used in the derivation of our results. The

second one extends Section 3.5 by showing some calculations in relation to future investigations

in the subject matter of the content of that section.
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3.2 Kundt Metrics. Particular Cases

3.2.1 VSI and CSI metrics

Vanishing Scalar Invariants spacetimes (VSI, for short) are Lorentzian space-time metrics

with the property that all scalar curvature invariants constructed from the Riemann tensor

and its derivatives are equal to zero at all orders [72, 68]. This condition is satis�ed if and

only if there exists a null direction ℓα with the same properties as the null vector involved in

the de�nition of a general Kundt metric given above (3.2) (see Theorem 1 in [69]). Therefore,

all VSI spacetimes belong to the Kundt class, regardless of the space-time dimension, and can

be written as in (3.2) but with the following values for the functions K,Ai and the transverse

metric Gij [72, 68]:

K(u, v, xk) = a(u, xk)v2 + b(u, xk)v + c(u, xk), (3.3)

Ai(u, v, x
k) = Xi(u, x

k) + v Yi(u, x
k), (3.4)

Gij(u, x
k) = δij. (3.5)

VSI spacetimes are part of a more general family known as Constant Scalar Invariants (CSI,

for short) spacetimes, made up of metrics whose scalar curvature invariants are not necessarily

vanishing but constants. In contrast to the VSI case, not all CSI spacetimes belong to the Kundt

class in an arbitrary number of dimensions. A useful result known as the CSIk conjecture (see

[69, 68, 75]) helps with the classi�cation of CSI metrics by asserting that all CSI space-times

are either locally homogeneous or of the higher-dimensional Kundt-CSI class. This conjecture

is true in four dimensions [75] and Kundt space-times that are CSI can be written as in (3.2)

with K and Ai as in (3.3) and (3.4), respectively, but without any further assumptions on the

transverse metric components Gij [75, 68, 72].

CSI and VSI space-times have very important physical applications as some of them are

exact solutions to the equations of motion of General Relativity and string theory. In fact, all

four-dimensional VSI space-times are exact solutions to string theory equations of motion at all

orders in σ-model perturbation theory [69]. From a more strictly mathematical point of view,

these families of metrics also provide useful insight in the classi�cation of space-times and of

whether these can be uniquely characterised by their curvature invariants [69].

3.2.2 PP-waves

The family of metrics known as pp-waves has been brie�y introduced in 2.2.5 in the context

of the classical double copy. This section will be focused on their role as a member of the wider
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family of Kundt metrics. In Brinkmann coordinates, a general pp-wave metric takes the form

given in (2.39), but we will rewrite it here in line with the general expression on (3.2):

ds2 = −2dudv +K(u, xk)du2 + δijdx
idxj, (3.6)

where the sum over the i, j indices is implicit and xi are a set of transverse coordinates with

i = 1, 2, . . . , D − 2 in D dimensions. The function K is independent of v and {u, v} are a

couple of light-cone coordinates. The transverse metric is that of �at space as all VSI metrics

belonging to the Kundt class allow for a coordinate transformation (u, v, xi) → (u, v, f i(u, xk))

that transforms the general transverse metric Gij(u, x
k) into δij (see [78, 79]). We mentioned in

2.2.5 that the Brinkmann form of the metric is easier to work with when it comes to curvature

calculations and regularity. However, Einstein-Rosen coordinates are still used in the study of

symmetries as these are more manifest in this coordinate frame [28].

PP-waves stand as one of the simplest examples of a Kundt metric that is an exact solution

to string theory equations of motion at all orders in perturbation theory [29, 74, 77, 80]. This

is still true even in the presence of certain radiation �elds and of a dilaton [29]. PP-waves are a

particular case of a VSI metric for which we impose that the null vector ℓ in the de�nition of a

general Kundt metric above (3.2) is also a Killing vector. This requires K and Ai in (3.3) and

(3.4), respectively, to be independent of the coordinate v [68, 69]. According to our explanation

in section 3.3, it should be possible then to eliminate the dudxi components of the metric via

a change of coordinates and we would end up with the expression given in (3.6).

3.2.3 Gyratons

Gyratons stand as a particular case of a VSI metric and are in close relationship with the D-

dimensional pp-wave family of metrics. Their physical interpretation is that of the �eld created

by a beam of radiation or null matter that propagates with a non-zero angular momentum.

The angular momentum and energy of the beam are kept �nite by imposing that the radius

of the cross-section of the source is negligible and that it lasts for a controlled amount of time

[72, 81, 82]. The metric of such a space-time is given by that of a pp-wave metric but where

the dudxi terms cannot be eliminated, that is:

ds2 = −2dudv +K(u, xk)du2 + 2Ai(u, x
k)dudxi + δijdx

idxj. (3.7)

In the pp-wave case, we could eliminate the Ai functions, at least locally (see [72] and section

3.3), but in the gyraton case this is not possible. The reason having to do with the properties

of the exterior vacuum pp-wave manifold (for a more complete explanation, see [72]).
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In order for (3.7) to satisfy the Einstein equations of General Relativity in vacuum, the

following two conditions must be satis�ed [81]:

∂jF
j

i = 0, (3.8)

∂i∂
iK − 2∂u∂iA

i =
1

2
F 2, (3.9)

where Fij ≡ ∂iAj − ∂jAi and i, j = 1, 2, . . . , D− 2. These equations allow for an interpretation

of the Ai and K functions as the electromagnetic vector and scalar potentials, respectively, in

the �at transverse space [72]. We should also mention that there exist generalisations of the

metric (3.7) with an explicit dependence on the variable v and which fall as well within the

Kundt family [72].

3.3 Kundt Metrics. Coordinate transformations

In N -dimensions, a general Kundt metric takes the form [69, 70, 71]:

ds2 = Gµνdx
µdxν = −2dudv +K(u, v, xk)du2 + 2Ai(u, v, x

k)dudxi +Gij(u, x
k)dxidxj, (3.10)

where we will call �transverse space� the spacetime spanned by the coordinates xk with metric

Gij(u, x
k) and latin indices running from 1 to N − 2. This Kundt metric has a null, geodesic,

non-expanding, shear-free vector �eld. Let us consider the most general case of (3.10) and show

when the dudxi terms can be removed by a change of coordinates. De�ne v′ and x′k as [86]:

v = v′ + h(u, x′k), xi = f i(u, x′k), (3.11)

where h and f i are arbitrary functions. The K and Ai functions in (3.10) will now depend

on u, v′ and x′k after the change of coordinates. For the sake of clarity, we will write this

dependence explicitly in the expressions to come. The line element becomes:

ds2 = −2dudv′ +K ′du2 + 2A′
mdudx

′m +G′
mndx

′mdx′n, (3.12)

with the following de�nitions:

K ′ ≡ K(u, v′ + h, x′k) + 2Ai(u, v
′ + h, x′k)∂uf

i +Gij∂uf
i∂uf

j − 2∂uh, (3.13)

A′
m ≡ Ai(u, v

′ + h, x′k)∂′mf
i +Gij∂

′
mf

i∂uf
j − ∂′mh, (3.14)

G′
mn ≡ ∂′mf

i∂′nf
jGij, (3.15)
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where ∂′mf
i = ∂f i/∂x′m. For the sake of clarity, since everything depends on the x′ coordinates

we can rede�ne x′ → x and get rid of the primes on top of the coordinates and derivatives. For

the dudx′m → dudxm term to vanish we just need to impose A′
m = 0, i. e.:

Ai(u, v
′ + h, xk)∂mf

i +Gij∂mf
i∂uf

j − ∂mh = 0. (3.16)

This di�erential equation does not have a solution when Ai is a general function of v and its

other arguments. However, let us explore the case where Ai is linear in v, i. e.

Ai(u, v, x
k) = Xi(u, x

k)v + Yi(u, x
k). (3.17)

Then, applying the change of coordinates on v, we have:

Ai(u, v
′, xk) = Xi(u, x

k)v′ + hXi(u, x
k) + Yi(u, x

k), (3.18)

and (3.16) becomes:

−∂mh+Xih∂mf
i +Gij∂uf

i∂mf
j + Yi∂mf

i + (Xi∂mf
i)v′ = 0, (3.19)

which is satis�ed if:

Xi∂mf
i = 0, (3.20)

−∂mh+Xih∂mf
i +Gij∂uf

i∂mf
j + Yi∂mf

i = 0. (3.21)

We can simplify (3.21) by using (3.20) and obtain:

∂mh = Yi ∂mf
i +Gij∂mf

i∂uf
j. (3.22)

Notice that this equation is formally the same as (3.16) for the case when Ai is independent of

v:

∂mh = Ai(u, x
k)∂mf

i +Gij∂mf
i∂uf

j. (3.23)

If we want to eliminate Ai, which is equivalent to eliminating the 2(N − 2) functions Xi and

Yi, it does not seem possible to do so by using the 2(N − 2) equations (3.20) and (3.22) if we

only know the N − 1 functions h, fi. However, in the case where Ai does not depend on v, it

seems reasonable that under certain conditions we would be able to solve (3.23) and simplify

our line element to:

ds2 = −2dudv +K(u, v, xk)du2 +Gij(u, x
k)dxidxj. (3.24)
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We reiterate that for the wider case where Ai is a general function of u, xi and v, we cannot

remove the dudxi terms of (3.10) without any loss of generality 4.

A case of interest is that of spacetimes where the function K is a polynomial on the coordi-

nate v. These metrics, when considered together with the right bosonic �elds, can solve certain

supergravity and superstring equations. For K quadratic on v:

K(u, v, xk) = λv2 +H(u, xk)v + K̃(u, xk), (3.25)

all curvature invariants of the metric (3.24) will be constants. Metrics with this property are

often called CSI (or Constant Curvature Invariants) spacetimes. Let us focus for now on a

function K linear in v with a coe�cient H only dependent on u:

K(u, v, xk) = H(u)v + K̃(u, xk). (3.26)

Here, it is possible to further simplify the form of our metric by a simple change of coordinates.

We formalise this statement in the following theorem:

Theorem 1. �A metric of the Kundt family as shown in (3.10) with no dudxi components is

equivalent, up to a coordinate transformation, to a metric of the same form but whose compo-

nents are independent of the coordinate v if the function K is linear on v with a coe�cient only

dependent on the coordinate u. In other words, a metric of the form (3.24) with K given by

(3.26) is equivalent, up to a coordinate transformation, to a metric of the same form and same

K but with H = 0.�

Proof. Introduce two new coordinates (U, V ) de�ned such that v ≡ f(u)V and U ≡
∫︁
du f(u),

where f is an arbitrary function. Then, the line element of our metric becomes:

ds2 = −2dUdV + [2V (H
f

2
− f ′) + K̃]

1

f 2
dU2 +Gijdx

idxj. (3.27)

Therefore, if f(u) ≡ exp
(︁∫︁

du 1
2
H
)︁
, then:

ds2 = −2dUdV + K̄dU2 +Gijdx
idxj, (3.28)

where we have de�ned K̄(U, xk) ≡ K̃(u, xk)/f 2. Notice that this metric is formally the same

as (3.24) but with K independent of v or, equivalently, with K as in (3.26) but for H = 0. In

fact, all components of the new metric are independent of the coordinate v.

4In fact, the dudxi do carry physical meaning. They are important in the case of gyratonic solutions to

General Relativity [82, 87, 88, 89]. These metrics have been studied since as early as 1970 [90] by solving

Einstein's equations with a source moving in a straight line at the speed of light. They are related to the

Aichelburg-Sexl family representing a shockwave [82]. See section 3.2.3 for more.
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3.4 Weyl Anomaly Equations

We will attempt to solve the Weyl anomaly equations for a dilaton ϕ = ϕ(u, v, xk) and the

metric of equation (3.10) when Ai depends on v. The Christo�el symbols and Ricci tensor

components for this case are shown in Appendix D. We will employ an ansatz where Ai is

linear in the coordinate v:

Ai(u, v, x
k) = Xi(u, x

k)v + Yi(u, x
k). (3.29)

The β-function equations to consider are5:

Rµν + 2∇µ∇νϕ = 0, (3.30)

−1

2
∇2ϕ+Gµν∇µϕ∇νϕ = c, (3.31)

for the metric and dilaton, respectively, where c = (D− 26)/6 for the critical bosonic string, D

being the spacetime dimension [85]. We will work in the case where the transverse space part

of the metric is �at, i. e. Gij = δij. The (vv) component of the equations for the metric implies

that the dilaton has to be linear on v:

ϕ(u, v, xk) = q(u, xk)v + p(u, xk). (3.32)

Then, the (vi) equation gives the following relation between Xi and q:

∂iq = −1

2
qXi, (3.33)

while the (ij) equation gives the following two equalities:

2∂i∂jq + q(∂iXj + ∂jXi) = 0, (3.34)

2∂i∂jp+ q(∂jYi + ∂iYj)−
1

2
(XiXj + ∂iXj + ∂jXi) = 0. (3.35)

The (uv) component of (3.30) becomes the following di�erential equation for the function K:

−1

2
∂2vK + q∂vK + k1v + k2 = 0, (3.36)

where we have de�ned k1 and k2 as:

k1 ≡ −qX2 −X i∂iq, (3.37)

k2 ≡
1

2
∂iX

i +
1

2
X2 + 2∂uq −X i(∂ip+ qYi). (3.38)

5The consistency of these equations with each other can be tested by taking the derivative of (3.30) and

using the Bianchi identity. For a formal explanation on how they are obtained in the �rst place, see for instance

[83, 84, 85].
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The solution for K can thus be written as:

K(u, v, xk) = c2(u, x
k) +

c1(u, x
k)

2q
e2qv − k1 + 2k2q

2q2
v − k1

2q
v2. (3.39)

Note that this expression for K is not compatible with the case q = 0, where (3.36) becomes

−1

2
∂2vK + k̄2 = 0, (3.40)

for

k̄2 =
1

2
∂iX

i +
1

2
X2 −X i∂ip, (3.41)

and the solution for K is:

K(u, v, xk) = k̄2v
2 + c1(u, x

k)v + c2(u, x
k). (3.42)

This expression for K is not a particular case of (3.39). Therefore, in the following we will

examine the cases q = 0 and q ̸= 0 separately.

3.4.1 Case q ̸= 0

For q ̸= 0, we can use (3.33) in (3.34) to obtain the following relation between ∂iXj and Xi:

∂iXj = −1

2
XiXj, (3.43)

which allows us to simplify (3.35) to:

2∂i∂jp = −q(∂iYj + ∂jYi). (3.44)

The dilaton equation, (3.31), provides two di�erent relations:

X2 = 0, (3.45)

−1

2
∂i∂

ip+ ∂ip ∂
ip+ 2qY i∂ip+ q2Y 2 − 2q∂up−

q

2
∂iY

i +
1

8
X2 − q2c2 − c = 0. (3.46)

The �rst of these equations implies Xi = 0, so Ai = Yi, k1 = 0, k2 = 2∂uq, and from (3.33)

we get ∂iq = 0, so q = q(u). Also, (3.34) (or (3.43)) is automatically satis�ed and we can use

(3.35) to simplify (3.46) to

∂ip ∂
ip+ 2qY i∂ip+ q2Y 2 − 2q∂up− q2c2 − c = 0, (3.47)

which gives the following expression for c2:

c2 = − c

q2
+

1

q2
∂ip ∂

ip+
2

q
Y i∂ip+ Y 2 − 2∂up

q
. (3.48)
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The (ui) component of the equations for the graviton is

q∂ic2 + 2∂u∂ip− (qY j + ∂jp)(∂iYj − ∂jYi) +
1

2
∂j(∂iYj − ∂jYi) = 0, (3.49)

which can be simpli�ed by using (3.48) to give

∂j(∂iYj − ∂jYi) = 0. (3.50)

An expression for Yi that solves both (3.44) and (3.50) is

Yi(u, x
k) = −∂ip

q
+ Zi(u), (3.51)

where Zi are arbitrary functions of the variable u. With all the information we have gathered

so far, the (uu) component of (3.30) gives the following equation:

− 1

4q
∂i∂

ic1 +
∂ip

q
∂ic1 −

1

2
Zi∂ic1 +

1

2
∂uc1 + c1

(︃
Zi∂ip+

∂i∂
ip

2q
− ∂ip ∂

ip

q
− ∂up+

∂uq

2q

)︃
= 0.

(3.52)

To summarise our results, our initial metric and dilaton can now be written as

ds2 = −2dudv +K(u, v, xk)du2 + 2Yi(u, x
k)dudxi + δijdx

idxj (3.53)

ϕ(u, v, xk) = q(u)v + p(u, xk), (3.54)

where

K(u, v, xk) = c2(u, x
k) +

c1(u, x
k)

2q
e2qv − 2v

∂uq

q
, (3.55)

c2(u, x
k) = − c

q2
+ Z2 − 2∂up

q
, (3.56)

subject to (3.52), which is the only remaining di�erential condition to our problem. The simplest

solution to this equation is c1 = 0. A sightly more general case is given by c1 ≡ Constant ̸= 0,

which implies

Zi∂ip+
∂i∂

ip

2q
− ∂ip∂

ip

q
− ∂up+

∂uq

2q
= 0, (3.57)

admitting q, p ≡ Constant as a solution, for instance. This restricts Yi and c2 to be functions

of u only; the dilaton only depends on v and the function K only has v dependence on the

exponential factor on its second term in (3.55).

3.4.2 Case q = 0

In this case, equation (3.33) is automatically satis�ed, the dilaton is ϕ = p(u, xk), independent

of v, and K is given by (3.42). Then, the equation for the dilaton provides the following relation

∂ip ∂
ip− 1

2
X i∂ip−

1

2
∂i∂

ip− c = 0, (3.58)
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the (ij) component of (3.30) becomes

∂i∂jp =
1

4
(XiXj + ∂iXj + ∂jXi), (3.59)

The (ui) and (uu) components of the equations for the graviton are quite complicated in the

general case. Instead of solving them head-on, let us use them to check if a particular Kundt

metric that we know is a solution to the vacuum Einstein equations also solves our Weyl anomaly

equations for some non-trivial dilaton �eld. We will focus on the four-dimensional metric of

equation (1) of [91], which can be written in the following alternative form by a rescaling of

the variable v:

ds2 = −2dudv +

(︃
v2

x2
− 8xh

)︃
du2 + 2 · 2v

x
dudx+ dx2 + dy2, (3.60)

where h = h(u, x, y) has to be harmonic on the transverse space coordinates for the metric to

be a solution to the vacuum Einstein equations. According to our notation, the functions K

and Ai that we have been using so far become in this case:

K(u, v, xk) =
v2

x2
− 8xh(u, x, y), Ax = Xx(x)v =

2v

x
, Ay = 0. (3.61)

The (uv) component of the equations for the graviton (or just matching this expression for K

with (3.42)), we get ∂xp = 0, so p = p(u, y). The equation for the dilaton is

∂ip ∂
ip− ∂xp

x
− 1

2
∂i∂

ip = c. (3.62)

The (ij) component of the equations for the graviton gives ∂2yp = 0, so p is linear in y:

p(u, y) = P (u)y +Q(u), (3.63)

where P , Q are arbitrary functions of u. The (ui) component of the graviton equations then

implies that p has to be independent of u, so P,Q become constants and our dilaton is:

ϕ(y) = Py +Q. (3.64)

Furthermore, (3.62) then implies that P is related to the constant c by

P 2 = c. (3.65)

Finally, the (uu) graviton equation is

(∂2x + ∂2y)h− 2P∂yh = 0. (3.66)

36



If we avoid the case of a trivial dilaton, given by P = 0, this equation can be satis�ed by

assuming that h is harmonic in the transverse space coordinates and that it is independent of

the variable y. It follows then that h has to be linear on x:

h(u, x) = h1(u)x+ h2(u). (3.67)

A more general solution of (3.66) may be obtained by assuming that h can be decomposed in

the following way:

h(u, x, y) = X(u, x)Y (u, y), (3.68)

where X, Y are arbitrary functions. Then, it follows that X and Y must satisfy

∂2xX − λ(u)X = 0, (3.69)

∂2yY − 2P∂yY + λ(u)Y = 0, (3.70)

where λ(u) is a general function of the variable u. These are second-order di�erential equations

that can be solved to give

X(u, x) = X01(u)e
−x

√
λ +X02(u)e

x
√
λ, (3.71)

Y (u, y) = Y01(u)e
y(P−

√
P 2−λ) + ey(P+

√
P 2−λ), (3.72)

for X01, X02, Y01, Y02 arbitrary functions of u. We see that for h to be real, we need a constant

P such that P 2 is always greater than or equal to the maximum value of λ as a function of u.

We have thus shown that the metric (3.60) can indeed solve our Weyl anomaly equations for a

non-trivial dilaton �eld (3.64) if the function h(u, x, y) is a solution of (3.66), such as the ones

shown in (3.67) and (3.68).

3.5 Concluding remarks

At the beginning, we gave an introduction to the family of Kundt metrics and brie�y delved

into some of its most important subclasses. Later, we explored the mathematical structure of

a general Kundt space-time showing that there are situations where the dudxi terms of the

metric may be eliminated by a change of coordinates without any loss of generality. Later on,

we solved the string β-function equations for a background given by a general Kundt metric

and a dilaton �eld. We focused on the case where the coe�cients of the dudxi components of

the metric are linear in the coordinate v and the transverse space is �at. The equations soon

lead us to a dilaton also linear on the coordinate v. This split our attention into two main cases

depending on whether the coe�cient function of v in the dilaton vanishes or not. We found

particular solutions in both cases under some further assumptions.
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The fact that solutions to these equations exist implies that Kundt metrics may be con-

sistent backgrounds for string theory. However, further information is needed to know where

such backgrounds are solvable and/or may be associated with relevant and new interesting

phenomena. For this purpose, we present Appendix E. Here, we take a look at three di�erent

sets of equations and properties, all of them related to the metric of equation (3.60), i.e. the

case of a dilaton independent of the variable v. The �rst aspect we look at is null geodesics,

where a solution is obtained. The second is a massless scalar �eld equation of motion on this

metric, which is solvable under our separable variables ansatz of equation (E. 11) for a slight

variation of the du2 component of our metric. Finally, we also look at the string equations of

motion on this background and show how a solution may be obtained. The implications of our

results are left open for the moment to further research on the subject.
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Appendix A Born-Infeld solution as an approximation to open-string

solution

Assuming the same ansatz for Fµν (no magnetic �eld, time-independent electric �eld) that

led to the Born-Infeld solution in (2.47), only the ν = 0 component of the equations (2.46) is

non-trivial and may be written as (ignoring higher order terms in (2.46))

∂i

(︂ Ei√
1− T−2E 2

)︂
+

1

6π
T−3

[︂1
2
(∂kEi)(∂kEi)∂jEj + (∂i∂jEk)(∂jEk)Ei

+ 2∂j[(∂iEk)(∂jEk)Ei] + ∂i[(∂jEk)(∂jEi)Ek] + ∂i[(∂jEk)(∂jEk)Ei]
]︂
= 0. (A.1)

Assuming further that Ei is spherically-symmetric we get (E ≡ Er(r))

∂r

[︂ r2E√
1− T−2E2

]︂
+

3

4π
T−3∂rE

[︂
2rE2 + r3(∂rE)

2 + 2r2E(∂rE + r∂2rE)
]︂
= 0 . (A.2)

From here we may �nd the leading correction to the Born-Infeld solution coming from the

presence of the �eld strength derivative terms in the open string e�ective action. Setting

E(r) = E(0)(r) +E(1)(r), where E(0)(r) is the Born-Infeld solution (2.47) we obtain from (A.2)

the following �rst-order di�erential equation for E(1) (r20 = T−1Q):

dE(1)

dr
+

2(r4 − 2r40)

r(r4 + r40)
E(1) =

3r60r
7(7r8 − 6r40r

4 + r80)

π(r4 + r40)
6

. (A.3)

Its solution may be written as:

E(1) = −r
6
0r

4(7r8 + 2r40r
4 + r80)

2π(r4 + r40)
5

= − r4

2πr60
+

3r8

2πr100
+O(r12) . (A.4)

Its expansion near the origin starts at order r4 so it does not change the E
⃓⃓
r→0

= Q
r20

= const

behaviour of the Born-Infeld �eld (2.47) near the origin, suggesting it can be trusted near r = 0.

Equivalently, the derivative terms do not alter the leading c1r term in the scalar potential (2.50)

that was found to be responsible for the singularity of the double-copy metric.

Appendix B Curvature tensor for the double copy metric

The curvature tensor for the metric of the form (2.8) can be computed for general function

ϕ(r) with the non-trivial components being

Rt
rtr =

ϕ′′

2(1− ϕ)
, Rt

θθt = Rr
θθr = −r

2
ϕ′, Rt

φφt = Rr
φφr = Rt

θθt sin
2 θ,

Rr
ttr =

1

2
(1− ϕ)ϕ′′, Rθ

ttθ = Rϕ
ttϕ =

1− ϕ

2r
ϕ′, Rθ

rθr = Rφ
rφr =

ϕ′

2r(1− ϕ)
,

Rθ
φθφ = Rφ

θφθ sin
2 θ = ϕ(r) sin2 θ. (B.1)
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For the Ricci tensor and scalar we get:

Rtt = − 1− ϕ

2r
(2ϕ′ + rϕ′′), Rrr =

2ϕ′ + rϕ′′

2r − 2rϕ
, Rθθ =

Rφφ

sin2 θ
= ϕ+ rϕ′ , (B.2)

R =
2ϕ

r2
+

4ϕ′

r
+ ϕ′′ . (B.3)

The explicit form of the Ricci tensor corresponding to the metric (2.8) with ϕ in (2.48) is

Rtt =
Qr40 (1− ϕ)

r7(1 +
r40
r4
)3/2

=
Qr0

√
π −Q2 Γ(1

4
)Γ(5

4
)

r30
√
π

1

r
+

4Q2 Γ(5
4
)

r40Γ(
1
4
)

+O(r3),

Rrr =
Qr40

(1− ϕ)(1 +
r40
r4
)3/2

= − Q
√
π

r0[r0
√
π −QΓ(1

4
)Γ(5

4
)]

1

r
+

4Q2π Γ(5
4
)Γ(1

4
)

r20[r0
√
π −QΓ(1

4
)Γ(5

4
)]2

+O(r),

Rθθ =
Rφφ

sin2 θ
= ϕ(r)− Q

r

(︂
1 +

r40
r4

)︂−1/2

=
QΓ(1

4
)Γ(5

4
)

r0
√
π

−
r20 Γ(

1
4
) + 8QΓ(5

4
)

2r20 Γ(
1
4
)

r +O(r3). (B.4)

The curvature squared invariant is

RµνρσR
µνρσ =

4ϕ2

r4
+

4ϕ′2

r2
+ ϕ′′2 =

4ϕ2

r4
+

8Q2(r8 + r40r
4 + 1

2
r80)

r2(r4 + r40)
3

, (B.5)

with its expansion at r → 0 given in (2.55). The Weyl tensor squared is also singular at r → 0

CµνρσC
µνρσ =

(2ϕ− 2rϕ′ + r2ϕ′′)2

3r4
=

4Q2Γ(1
4
)2Γ(5

4
)2

3πr20

1

r4
+O(r−3). (B.6)

Appendix C Gauge transformation of the vector potential near r = 0

Given the vector potential Aµ = ϕ(r)(1, xi/r) with ϕ
⃓⃓
r→0

= c0 + c1r + c5r
5 + ... as in

(2.49),(2.50), let us see if there is a gauge transformation that eliminates c0 and c1 terms, i.e.

if Aµ can be transformed into

Ãµ = ϕ̃(r)
(︁
1,
xi
r

)︁
, ϕ̃(r)

⃓⃓
r→0

= c̃5r
5 + ... . (C.1)

The relation Ãµ = Aµ − ∂µχ implies

∂0χ = c0 + c1r + (c5 − c̃5)r
5 + ..., ∂iχ =

c0xi
r

+ c1xi + (c5 − c̃5)xir
4 + ... . (C.2)

These equations lead to

χ(t, x) =
[︁
c0 + c1r + (c5 − c̃5)r

5
]︁
t+ f(x) , (C.3)

∂if(x) =
c0xi
r

+ c1xi + (c5 − c̃5)xir
4 −

[︂c1xi
r

+ 5(c5 − c̃5)xir
3
]︂
t. (C.4)

The left-hand side of (C.4) is time-independent, so it is consistent only if c5 = c̃5 and c1 = 0.

Thus c1 cannot be eliminated by a gauge transformation.
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Appendix D General Christo�el Symbols and Curvature Components

The metric of equation (3.10) with contravariant components [72]

Gvi = GijAj, Gvv = −K +GijAiAj, Guv = −1, Guu = 0, Gui = 0, (D. 1)

has the following non-zero Christo�el connection components [72]:

Γ u
u u =

1

2
∂vK, (D. 2)

Γ u
u i = −Γ v

v i =
1

2
∂vAi, (D. 3)

Γ i
u v =

1

2
Gij∂vAj, (D. 4)

Γ i
u u = Gij∂uAj −

1

2
Gij∂jK − 1

2
Ai∂vK, (D. 5)

Γ i
u j =

1

2
Gik(∂uGjk + ∂jAk − ∂kAj)−

1

2
Ai∂vAj, (D. 6)

Γ j
i k = Γ̄

j
i k, (D. 7)

Γ v
u v =

1

2
Ai∂vAi −

1

2
∂vK, (D. 8)

Γ v
u u = −1

2
(A2 −K)∂vK − 1

2
∂uK + Ai∂uAi −

1

2
Ai∂iK, (D. 9)

Γ v
u i = −1

2
(A2 −K)∂vAi −

1

2
∂iK +

1

2
Aj(∂uGij + ∂iAj − ∂jAi), (D. 10)

Γ v
i j =

1

2
(∂uGij − ∂jAi − ∂iAj) +

1

2
Ak(∂jGik + ∂iGjk − ∂kGij). (D. 11)

Likewise, the non-zero Ricci tensor components are [72]:

Rvv = 0, (D. 12)

Rvi = −1

2
∂2vAi, (D. 13)

Rvu = −1

2
∂2vK +

1

2
∂i(G

ij∂vAj) +
1

4
Gij∂2v(AiAj) +

1

2
Gij∂i(ln

√
G)∂vAj, (D. 14)

Rij = R̄ij + Γ̄
k
i j∂vAk −

1

2
(∂vAi∂vAj + ∂v∂jAi + ∂v∂iAj), (D. 15)

Ruu =
1

2
(∂2vK −Gkl∂vAk∂vAl)(K − A2)

− 1

2
(∂vK)(∂iA

i + Ai∂i ln
√
G− ∂u ln

√
G)− 1

2
(GijAj∂vAi)

2

+
1

2
Gij∂vAj[∂iK + 2Al(∂lAi − ∂iAl)] + Ai(∂v∂uAi − ∂v∂iK)

− 1

2
∂i(G

ij∂jK)− 1

2
Gij∂jK∂i ln

√
G− 1

2
GijGkl∂lAj(∂iAk − ∂kAi)

+ ∂i(G
ij∂uAj) +Gij∂uAj∂i ln

√
G− 1

4
GijGkl∂uGik∂uGjl − ∂2u ln

√
G, (D. 16)
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Rui =
1

2
Aj(∂v∂iAj − ∂v∂jAi − ∂vAi∂vAj)−

1

2
∂v∂iK +

1

2
Gjk∂vAk∂iAj

+
1

2
∂k[G

jk(∂uGij + ∂iAj − ∂jAi − Aj∂vAi)]

+
1

2
Gjk(∂uGij + ∂iAj − ∂jAi − Aj∂vAi)∂k ln

√
G

+
1

2
GjkGlm∂kGim(∂jAl − ∂lAj + Aj∂vAl − Al∂vAj)

+
1

2
∂v∂uAi +

1

2
∂vAi∂u ln

√
G− ∂u∂i ln

√
G− 1

4
GjkGlm∂iGkm∂uGjl, (D. 17)

where A2 ≡ GijAiAj.

Appendix E Further properties

E.1 Null geodesics

We may also investigate some other properties of the metric (3.60). Let us start by a study of

its massless null geodesics. From the geodesics equation, we obtain the following four equations:

ü = − 1

x2
u̇ (vu̇+ 2xẋ), (E. 1)

v̈ = −2v

x2
u̇v̇ +

2

x
v̇ẋ+

2v

x2
ẋ2 +−8x∂yh u̇ẏ + 4

(︃
v2

x3
+ 2h− 2x∂xh

)︃
u̇ẋ+

(︃
v3

x4
− 8v∂xh− 4x∂uh

)︃
u̇2,

(E. 2)

ẍ =
1

x3
u̇(v2u̇− 4x3hu̇− 2x2v̇ + 4vxẋ− 4x4∂xh u̇), (E. 3)

ÿ = −4x ∂yh u̇
2, (E. 4)

and from the condition of null geodesics, i.e. ds2 = 0, we get

−2u̇v̇ +

(︃
v2

x2
− 8xh

)︃
u̇2 +

4v

x
u̇ẋ+ ẋ2 + ẏ2 = 0. (E. 5)

Everywhere in these equations, the dot represents derivative with respect to some a�ne pa-

rameter τ . A simple solution can be obtained by assuming u = Constant. Then, (E. 1) is

automatically satis�ed. Equations (E. 3) and (E. 4) imply that x and y are, respectively, linear

in the a�ne parameter:

x(τ) = x0 + x1τ, y(τ) = y0 + y1τ, (E. 6)

where x0, x1, y0, y1 are constants. Equation (E. 5) gives a relation between the linear coe�cients

of x and y:

x21 + y21 = 0. (E. 7)

Finally, (E. 2) provides a second order ordinary di�erential equation:

v̈ − 2x1
x0 + x1τ

v̇ − 2x21
(x0 + x1τ)2

v = 0, (E. 8)
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which solves to

v(τ) = v0 x
3/2+

√
17/2 + v1 x

3/2−
√
17/2, (E. 9)

where v0, v1 are constants and x = x(τ) is the linear function of τ shown above. The domain

of v(τ) expands over all values of τ such that x = x0 + x1τ ≥ 0, i.e. for τ ≥ −x0/x1.

E.2 Massless scalar �eld

We can also examine the solutions of a massless scalar equation, −∇2T = 0, for some scalar

�eld T = T (u, v, x, y). For the metric of equation (3.60), this takes the form

−2∂u∂vT +

(︃
3v2

x2
+ 8xh

)︃
∂2vT +

4v

x
∂v∂xT + ∂2xT + ∂2yT +

4v

x2
∂vT +

2

x
∂xT = 0. (E. 10)

A solution to this equation may be obtained by decomposing the scalar �eld T as

T (u, v, x, y) = φ(u, v)Φ(x, y), (E. 11)

where φ,Φ are functions of their respective arguments and Φ is harmonic, i.e. (∂2x + ∂2y)Φ = 0.

Then, if neither Φ nor ∂xΦ vanish, (E. 10) gives

−2∂u∂vφ+

(︃
3v2

x2
+ 8xh

)︃
∂2vφ+

4v

x2
∂vφ = 0, (E. 12)

∂vφ+
1

2v
φ = 0. (E. 13)

We can use the second of these equations to simplify the �rst to

∂uφ+

(︃
v

4x2
+

6xh

v

)︃
φ = 0, (E. 14)

Equations (E. 13) and (E. 14) each gives an expression for ∂u∂vφ. Equating both, we obtain

the following for h:

h = − v2

24x3
. (E. 15)

This expression for h is incompatible with its de�nition in the metric of equation (3.60), since

there is an explicit v-dependence. Setting h to zero in (E. 14) would then imply φ = 0 after

equating both expressions for ∂u∂vφ, which in turn leads to the trivial solution T = 0. If we

relax the condition that h is independent of v and consider a general h = h(u, v, x, y) with

v-dependence, then we can still live with (E. 15) and move forward. By direct substitution

of (E. 15) into (E. 14), we get that φ has to be independent of u and therefore we can solve

(E. 13) to obtain

φ(v) =
φ0√
v
, (E. 16)

for some constant φ0. Our �nal solution for T then takes the form

T (v, x, y) =
φ0√
v
Φ(x, y), for (∂2x + ∂2y)Φ = 0. (E. 17)
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E.3 String equations of motion

The metric (3.60) as a target space metric for string theory leads to the following string equa-

tions of motion (conformal gauge and light-cone worldsheet coordinates, σ± = τ ± σ, are used

here):

u : vx(∂+u∂−v + ∂+v∂−u)− 2vx∂+x∂−x+ x2(∂+v∂−x+ ∂+x∂−v)

+ x[(v2 − 8x3h)∂+∂−u− x2∂+∂−v + 2vx∂+∂−x]− 4x4(∂+u∂−y + ∂+y∂−u)∂yh

− [v2 + 4x3(h+ x∂xh)](∂+u∂−x+ ∂+x∂−u)− 4x4∂uh ∂+u ∂−u = 0, (E. 18)

v : v∂+u∂−u+ x(∂+u∂−x+ ∂+x∂−u+ x∂+∂−u) = 0, (E. 19)

x : v2∂+u ∂−u+ 2vx2∂+∂−u

+ x2(4hx∂−u∂+u+ ∂+u∂−v + ∂+v∂−u+ x∂+∂−x+ 4x2∂xh ∂+u ∂−u) = 0, (E. 20)

y : ∂+∂−y + 4x∂yh ∂+u ∂−u = 0. (E. 21)

These equations can be solved, for example, for u = u(σ+), so ∂−u = 0. Then, the equation for

x, tells us that ∂−x = 0, so x = x(σ+), and the same for the equation for x, from where we get

∂−v = 0, so v = v(σ+). The equations for u and y simplify to:

8x ∂+u ∂−y ∂yh = 0, (E. 22)

∂+∂−y = 0. (E. 23)

Both of these equations may be solved for ∂−y = 0 (other possibilities also hold). In this case,

we attain a solution for our system of equations if all variables u, v, x, y depend only on σ+. A

di�erent solution may be obtained if one starts with the opposite assumption that u is only a

function of σ−. Then, the analogue solution to the one showed here is that where all coordinates

only depend on σ−.
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