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Abstract

We discuss the feasibility of different kinds of curved space-times as backgrounds for
string theory. This thesis is divided into two parts. First, we focus on the double copy pro-
cedure and apply it to the Born-Infeld solution in open string theory in the approximation
when field-strength derivative terms can be ignored. This process leads us to a generalised
version of the Schwarzschild metric which looks non-singular at the origin. Whether this
metric is a solution to some closed string equations of motion is also discussed. In the
second half of the thesis, Kundt space-times are studied. We show how it is possible to
obtain solutions to the Weyl anomaly equations for a background formed by a Kundt

metric and a dilaton. The inclusion of a B-field is mentioned but not implemented.
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1 Introduction

The search for new solutions to string theory equations of motion is a crucial process in the
understanding of the capabilities and connections to previously found results of the theory at
hand. In this context, it is not only important to classify these solutions but also to find relations
between them that might allow us to comprehend how such solutions may be generalised or
reproduced by a systematic procedure. Therefore, we split the following explanation into two
very well-differentiated parts.

First, we focus on a method derived from relations between scattering amplitudes that
allows to link together solutions to gravity and gauge theory equations of motion. This method
is commonly known as the double copy procedure and it lead us to find a generalisation of the
Schwarzschild metric that looks formally non-singular at the origin starting from the Born-
Infeld electric field created by a point charge. The latter is the leading-order solution to the
open string effective action when the field-strength derivative terms are ignored. It would be
great news if the metric that we found were a solution to some closed string equations of motion.
Alas, this is not to be expected as generalisations of the double copy ansatz may be needed
to account for the presence of non-trivial o/-corrections as well as a non-vanishing dilaton field
on the closed-string side of the problem. It is also important to note that neglecting further
corrections to the Born-Infeld solution is a sensitive choice, as these may induce major changes
on the resulting double copy metric.

In the second part of our thesis, we focus on a family of metrics known as Kundt space-
times, which have been given a lot of attention over the years due to their very interesting and
important properties. The Kundt family of metrics is very wide and encapsulates some of the
most relevant exact solutions to Einstein’s equations of General Relativity as well as S-function
equations of motion in higher dimensions. Our aim in these notes is to give a general idea of
the feasibility of a Kundt metric to be a solution to the Weyl anomaly equations in the presence
of additional fields, but also to make some general points on the symmetries of these metrics
under certain coordinate transformations. Our work shows that it is possible to find solutions
to the leading-order terms of the Weyl anomaly equations in the presence of a metric and a
dilaton field under some conditions. This result contributes as a bit of evidence that Kundt

metrics may be consistent backgrounds for string theory, but a general proof is still missing.



2 Generalised Schwarzschild metric from double copy of point-like

charge solution in Born-Infeld theory

2.1 Preliminaries

The (classical) double copy is a procedure to construct gravity solutions from gauge theory
ones. It originated from the KLT relations [1] in string theory and BCJ duality [2, 3, 4, 5]
associated to scattering amplitudes in field theory, which allow to understand closed-string
scattering amplitudes as products of its open-string counterparts. The underlying reason of
why this is allowed remained unclear as an explicit relationship between the lagrangians of
both theories was missing. In general terms, the double copy idea is sometimes referred to as
“duality between color and kinematics” and it presents applications to a wide range of theories,
including supersymmetric ones (see [4] for a review). To show schematically how the double
copy for amplitudes works, let us consider two m-point L-loop gauge theory amplitudes in a

space-time of arbitrary dimension d 3, 4, 6]:

Agn m 2+2LZ/H HTZCZ (21)

le g 2+2LZ/H HZICI . (2.2)

where the sums are only over triple-vertex graphs; g, g are the coupling constants; n;,n; are
kinematic numerators; and c¢;, ¢; are the colour factors associated to each graph. The ¢;,¢;
depend on each other through linear relations derived from their Lie algebra, which can be
schematically written as ¢, = ¢; — ¢j, for some triplet of colour factors {c;, ¢;, ¢} (same for ¢).
The BCJ conjecture then claims that it is possible to find some kinematic numerators that also
obey linear relations in a one-to-one correspondence with those of the colour factors. Since the
relations satisfied by both sets of entities are the same, replacing colour factors by kinematic
numerators does not violate gauge-invariance and allows for the construction of new objects.
If this duality between colour and kinematics is present in at least one of the two amplitudes
shown above, we can replace the colour factors in one of them with the kinematic numerators

of the other and construct the following m-point L-loop amplitude [3, 4, 6]:

M L+1< m 2+2L2/HH’Z”Z o (2.3)

which is a typical gravity amplitude after replacing the gauge theory coupling constants by

their gravity analogue k. Notice that if we wanted to go the other way around and obtain a



gauge theory amplitude from (2.3), schematically the operation reduces to substituting one of
the kinematic numerators by an appropriate set of colour factors. On this spirit, we can ask
what we would obtain by performing such a substitution on an amplitude such as (2.1) or (2.2).

In this case, for a coupling constant y the result would look like:

L om— CzCz
7-”(1L) x ity 2+2LZ/H Ty dp,, (2.4)

which corresponds to a biadjoint scalar theory [6].

A remarkable encounter was that this double copy idea also works when applied to the
exact solutions of the underlying gravity and gauge theory equations of motion. A sufficient
condition is that the space-time metric on the gravity side admits a Kerr-Schild decomposition

as:
v = ?JW + ¢kukua (25)

where g, is a background metric, ¢ is a scalar field depending on the space-time coordinates
and k, is a null vector field with respect to both g and g. The Kerr-Schild family of metrics,
first introduced in |7], are specially nice to deal with since quantities such as the Ricci tensor

and scalar linearise on the field ¢ [6]:

Rt = % [0 0u(0k k) + 0,0% (dhak") — O*(Dk"k,)], (2:6)

R = 0,0, (¢k"k"). (2.7)

One can naively define a gauge field from the scalar ¢ and null vector k, as A, = ¢k, and see
that if we demand the stationary vacuum Einstein’s equations to be satisfied for the metric g,
then the abelian field strength F),, = 20,4, solves the vacuum Maxwell equations 0, F"" = 0.
There is also evidence to support that the same works for non-abelian theories [6]. Furthermore,
this implies that the scalar field ¢ solves an abelian version of the biadjoint scalar equations of
motion, 9?¢ = 0. This fact may be used to give a physical interpretation to the double copy
procedure from that of the scalar field ¢, as this can then be understood as a scalar propagator
integrated over a given source [6]. The scalar propagator ¢ stays the same after constructing
the single copy gauge field and the double copy metric. This is an analogous behaviour to the
denominators of the amplitudes of equations (2.1) to (2.4) remaining intact [3, 5, 6].

It is common in the literature to refer to the gauge fields coming from a metric via the
double copy as “single copy gauge fields” and to the process of transitioning from gravity to
gauge theory as the “single copy”. The expression “double copy” would therefore be assigned

to the inverse process, while the resulting metric will be called “double copy metric”. On the



other hand, the transition from gauge theory to the biadjoint scalar theory is usually known as
the “zeroth copy”, and hence the field ¢ is the “zeroth copy scalar field”.

There are multiple examples of the application of the double copy method to exact solutions
of the equations of motion of General Relativity and Electromagnetism. In Section 2, we
give a review of a few of them. Maybe, the simplest use case is on the relation between the
Schwarzschild metric and the Coulomb potential A, = (¢(r),0,0,0) created by a point charge
in four space-time dimensions, where ¢ = Q/r [6]. By means of a gauge transformation we
can write the gauge field as A, = ¢(r) k, for k, = (1, x;/r) a null vector field. Then we may
construct the metric g, = 1., + ¢ k,k,, which is the Schwarzschild metric with mass M = 2@
in Kerr-Schild form.

So far almost all examples of the double copy started with linear Maxwell fields. The validity
and physical origins of the classical double copy construction at the full non-linear, quantum
and string theory levels are not clearly understood at present but one might speculate that
it may extend beyond the leading order in o’ and relate exact open-string and closed-string
backgrounds. In [8], a first naive attempt to study such an extension was made and will be
explained in the following sections.

Gauge theory equations of motion appear as the leading order approximation to the effec-
tive field equations for the massless vector field in the open string theory [9]. The tree-level

open string effective action is given, in the abelian case, by the Born-Infeld [10, 11] term

Vdet(n,, + 2ma’F),) [12] plus terms depending on derivatives of the field strength F),, (for a
review see [13]). We may attempt to first ignore all derivative corrections and generalize the
Maxwell’s theory Coulomb solution to its Born-Infeld counterpart [10, 11]. The corresponding
electric field is E = Q/+\/r§ + 1%, where 13 = T7'Q and T = ;- is the string tension. In
contrast to the Coulomb case here the field is non-singular at the origin. This may be inter-
preted as a consequence of the inclusion of the o/ corrections that are expected to "regularize"
point-like singularities in string theory [14]. Since the field of the Born-Infeld solution is ap-
proximately constant near the origin, this suggests that it may be possible to consider it as an
approximation to a solution of the full (tree-level) open string effective field equations in the
region close to r = 0.

One may wonder whether this regular Born-Infeld solution may double-copy to a general-
ization of the Schwarzschild metric that will also be non-singular at the origin.! Making the

simplest assumption that the form (2.5) with a Minkowski background of the standard "leading-

!One may argue that to discuss a possibility of a double copy for Born-Infeld fields one should be assuming

that there exists its non-abelian version that satisfies some form of color/kinematics duality.



order" double copy ansatz is not modified by the o/-corrections, the resulting metric with the
potential ¢ corresponding to the regular Born-Infeld solution will look formally non-singular
at r = 0. However, as we will find in Section 4, the corresponding curvature invariants happen
to diverge at the origin. This has to do with too slow ¢ ~ r decay of the scalar potential at
r — 0.

We do not expect this singular o'-dependent double-copy metric to solve a closed-string
generalization of the Einstein equations. First, the string-theory generalization of the double
copy ansatz may require its non-trivial o/-modification. One may also need to generalize the
double copy ansatz to allow for a non-zero dilaton field [15, 16] which is expected to be non-
trivial for the closed-string generalization of the Schwarzschild solution beyond the leading
order in /. Finally, our use of the Born-Infeld solution as an approximation to the exact
open-string solution may be too naive: it is possible that (a resummation of) the derivative
corrections in the open-string equations may lead to a subtle modification of the Born-Infeld
solution resulting in a non-singular double-copy metric.

We organise this part of the thesis as follows. In Section 2.2 we give a brief review of some
well-known space-time metrics and gauge fields that can be related via the double copy method.
Section 2.3 deals with basic aspects of open string effective field theory focusing on the solution
obtained when all field-strength derivative terms are ignored, i. e. the Born-Infeld solution. In
Section 2.4 we will present the double copy metric corresponding to the Born-Infeld solution
and discuss the singularity of the corresponding curvature invariants. Section 2.5 contains a
prospect of two possible lines of work that we would like to pursue in the future in relation to
the double copy. We give some concluding remarks in Section 2.6 and present three technical
appendices (A, B and C) extracted from our paper [8], in which Sections 2.3 and 2.4 are also

based on.

2.2 The Classical Double Copy. Known Relations
2.2.1 Coulomb and Schwarzschild

The Schwarzschild metric is a particular case of the more general family of metrics of the

form:
2

=om

for ¢ = 2M/r. Tt can be written in Kerr-Schild form via a change of coordinates to (,x;),

ds? = —[1— o(r)]d* + do® + sin® 0 dip”) | (2:8)

where t = ¢t + 2M In(r — 2M) is an Eddington-Finkelstein time variable and x; are the usual



cartesian coordinates [6]:

i

(L), kb =0, (2.9)

Guv = N + ¢kuku > k,u

The double copy prescription then allows us to construct an abelian vector field as

Q
3

A= o(r) Ky ¢ = (2.10)

where we assume that the charge () in the gauge theory side is defined in terms of the mass
M on the gravity side as () = 2M, ignoring the presence of normalization constants on both
parameters. The electric potential in (2.10) is gauge-equivalent to the Coulomb potential, AM =
¢(1,0,0,0). The gauge transformation between them is A, = A, —,x, for x(z') = QIn(r?)/2.

For general ¢(r), the change of coordinates bringing the metric (2.8) to the Kerr-Schild form

(2.9) can be found by looking for radial null geodesics of (2.8). Setting —(1 — ¢)dt* + fli =0

gives the following integral representation for ¢ (denoted by ¢*(r)):
dr
t*(r) = :l:/— . 2.11
=+ [ = (2.11)
In the Schwarzschild case of ¢ = 2M /r this gave t*(r) = r + 2M In(r — 2M). The Kerr-Schild
form of (2.8) is then obtained by changing from (¢,7,60, ) to (¢,z;) coordinates where z; are
the standard cartesian ones and t =t — r + t*(r). To perform the change of coordinates it is

sufficient to use the differential of t =t — r + t*, i.e.

¢(r)
1—¢(r)

We can also consider the analogue of the Schwarzschild metric in higher dimensions [6, 18|,

df = dt + dr. (2.12)

known as the Tangherlini metric, which may be written in Kerr-Schild form as:

L
Guv = N + m kukuy (213)

where d is the number of space-time dimensions and y is related to the mass. The single copy

of the Tanguerlini solution is naturally the higher-dimensional generalisation of the Coulomb
field:

g1,
AP — (W 0, 0, 0), (2.14)

for 24_5 the area of the (d—2)-dimensional sphere. It was noted in |18 that the classical double
copy is expected to remain valid in higher-dimensions, as the results for scattering amplitudes,

do not depend on the number of dimensions.



2.2.2 Coulomb and JNW Solution

A general statement of the double copy idea can be formulated by saying that gravity states
are to be identified as tensor products of gauge theory states. But the tensor product of two
spin-1 states will generally involve more than just a symmetric second-rank tensor, and the
classical double copy as stated above does not capture this fact [16]. In general, we will expect
a second-rank tensor with no specific symmetry properties. This can be split into its irreducible
parts as sum of an antisymmetric, symmetric traceless tensors and a scalar. Using the string
theory terminology, these would correspond to the NS-NS two-form B-field, the graviton field
and the dilaton, [15, 16]. A discussion of this point can be found in [16]. Here, it is suggested
that the double copy of the Coulomb field is the JNW solution [19] in General Relativity, which
describes a metric minimally coupled to a scalar field and includes the Schwarzschild solution
as a particular case. The novelty here is that the JNW solution does not admit a Kerr-Schild
form. The possibility of a classical double copy not constrained by a Kerr-Schild ansatz was

discussed in some detail in [15]. The JNW metric and dilaton can be written in the following

form [15, 16]:
vy = 1=y
ds? = — (1 —~ @) dt* + (1 - @) dp® + (1 - @) pPdQ?, (2.15)
P P P
and
o= Y (1o, (2.16)
2 dmpo p

with the definitions:
M

where M is related to the graviton and Y to the scalar field or dilaton. The event horizon of this

po=2GVM?2+Y? and v = (2.17)

solution can be found on this set of coordinates at p = py. We can recover the Schwarzschild
case for Y = 0 and positive M.

The JNW metric cannot be cast into the usual Kerr-Schild form, but a double-copy-inspired
analysis is still possible. Following [16], we can rewrite closed string effective theory in a way
that T-duality is manifest, sometimes known as “double field theory” or “DFT”. The metric
and B-field of closed string theory would then be encapsulated under a “generalised metric”
that can be casted in a form reminiscent of Kerr-Schild. Studying the equations of motion in
this setting it is possible to extract the form of the single copy gauge field and compute the
field strength with the JNW data. In the limit where the radial distance to the origin goes to
infinity we recover the Coulomb electric field. Whether it is possible to employ this procedure

the other way around, i. e. starting with some gauge theory solution and working out what

10



would the closed string theory fields be is not clear. As far as we know, the consistency of the
method shown in [16] is only valid in the transition from gravity to gauge theory, but not the

other way around.

2.2.3 Kerr Black Hole and Maxwell with a magnetic field

The Kerr space-time metric, describing a rotating uncharged black hole, admits a Kerr-Schild

decomposition with background metric being Minkowski and the ¢ and k, fields given by [6]:

2MGr3

rTr+ay rTYy-—ar =z
r)= —"-— and k,=1(1 - 2.18
o(r) rt 4+ a2z2 K (’ r2 4+ q?’ r2+a2’7’)’ ( )
where 7 is defined via the relation:
2 2 2
Ty L E 1, outside of the region 2?4+ 1y*<a, 2 =0, (2.19)

r24+a?  a?
for a a constant. r is equal to zero inside such region. The single copy gauge field can be read

directly from here:

a_ Y9
Al = yym o(r) caky, (2.20)

which is also a solution to Maxwell’s equations, as in the cases of Schwarzschild and Coulomb
studied previously, but including as well a magnetic component. One can think of this [6] as a
consequence of the rotation characteristic of a Kerr black hole. The extension to higher dimen-
sions of the Kerr black hole is the Myers-Perry black hole [17], which also admits a Kerr-Schild
decomposition. Since the number of rotation planes depends of whether the dimensionality of
the spacetime is even or odd, we have two different expressions for the double copy fields. If we
call d the number of spacetime dimensions, the zeroth copy field ¢ for the Myers-Perry black
hole is [6]:

pr?
gb(’/’) = ﬁ, for odd d, (221)
o(r) = %, for even d, (2.22)

and the single copy gauge field k, may be written as:

(d-1)/2
r(xidr; + ydy;) + a;(zdy; — yida;)
k., dx" = dt it dd d 2.23
ot =it Y it ~ foroddad 223)
(d-2)/2
zdz r(xide; + yidy;) + a;(xdy; — yidx;)
kudat = dt + —+ Z . , for even d, (2.24)

=1

11



where we have the following definitions for Il and F:

(d—2)/2 (d=1)/2 o, o 2
a; (] + ;)
I1 = || r? +a?, F=1- E L ‘

— 77 2.25
2 rray (22

for a; a rotation parameter, (x;,y;) a pair of spatial coordinates, z a spatial coordinate unpaired

from (x;,y;) and r a radial coordinate. The latter is given by the condition that &, is null [17]:

d-1)/2 5
BEY 0, forodd d, (2.26)
2. Prap
2 (=22 5 | o
z TPy
ﬁ —+ Z m = O, fOI‘ even d (227)

2.2.4 Magnetic Monopole and Taub-NUT spacetime

We have seen how the single copy field of the Schwarzschild metric may be identified with
the electric field created by a point-like charge. In the same way, we can prove that the field
created by a magnetic monopole can be understood as the single copy of a general Taub-NUT
spacetime [20, 21, 22, 23|. This family of metrics are stationary solutions to Einstein’s equations
and show some very interesting properties (see [22, 23| for more). A general Taub-NUT metric

may be written as [23, 24, 27
ds® = —f(r)(dt — 2N cos0dp)* + f(r) " 'dr* + (r* + NQ)dQ%Q), (2.28)

where N is the Taub-NUT charge, with no known Newtonian analogue and the function f(r)
is given by [23]:

flr) = r _QJ)F(ZV; ), (2.29)

with 7. = M 4 ry, r2 = M? + N?, M being the mass of the source in the Newtonian limit. In

Kerr-Schild form, the Taub-NUT metric can be expressed as [23, 26]:

G = N + KRy = N + K(Ok kL + Y1), (2.30)

where the vector fields k,, and [,, are null with respect to both the background Minkowski metric
and the full metric. They also satisfy the identities (k- D)k, =0 and (/- D)l, = 0, where D is
the covariant derivative taken with respect to those two metrics, [22, 23]. A couple of comments
are in place. First, we see that this expression is not of the simple Kerr-Schild form that we
have seen previously. Instead, we have a slightly generalized version of the ansatz, including

two sets of null vectors and scalar fields. Secondly, the reader may also find the Taub-NUT

12



metric in Kerr-Schild form with the Minkowski background metric replaced by a general de

Sitter metric g, as in [22]. We will however continue our work with the form given in (2.30).
There is a particular coordinate system where the Einstein equations linearise for the Taub-

NUT metric. We will denote this set of coordinates by (7, &, p, q), following the notation of

[22]. In these coordinates, the metric acquires the form [22]:

A, (d7 + ¢?d5)? + Ay (dF + p*dc)?

~2
ds® = — 7z

— 2(d7 + ¢*d&)dp — 2(d7 + p*d5)dg,  (2.31)

with the definitions A, = v — ep? + A\p* and A, = — (7 — €¢® + A\¢*), where € is a constant,
while v relates to the angular momentum and X is a cosmological constant. As explained in
[27], not all of the constants involved carry physical meaning. In fact, they are to be considered
as arbitrary integration constants in the general case and there even exists a family of scale
transformations that allows to assign a discrete value to the constant e [27].

Under the (7, &, p, ¢) coordinate system, the expressions for the null vectors and scalar

fields are as follows [22, 23|

2Np 2Mq
kﬂ = (1, q2, O, O), l# = (1, p2, O, O), ¢ = m, w = m (232)

In order to obtain our single copy gauge field, we can perform the substitutions Mk/2 —
(c,T")gs and Nk/2 — (c,T*)g,, which are a naive generalization of the one used in the

Schwarzschild case above. Also, naively, our gauge field may be defined as [23]:

“ “ 2c?
A}, = c*(Oky + ol,) = W(NP + Mg, Npg®+ Mqp?, 0, 0). (2.33)
We can see more clearly what this gauge field corresponds to if we perform a change to spherical
coordinates, (7, &, p, q) — (t, v, 0, ¢). This job can be completed in three steps. First, the

variables 7 and & are related to p, ¢ and two new variables 7 and o by [22]:

2 2
- p q . dp  dq

dr =d —dp— =—d d dod =do— — + —. 2.34
T T+Ap D A, g an ol o Ap+Aq ( )

Second, the variables (7,0, p, q) relate to the usual spherical variables through the identities
[22]:
T=1t+ ag, a:?, g=r and p=acos, (2.35)
a
where we have defined a such that o> = ~. Finally, take the limit where the constant v, or

equivalently a, goes to zero. This constant is related to the angular momentum, so it vanishing

will imply spherical instead of spheroidal symmetry. With these changes, the gauge field of

13



equation (2.33) can be written as:

Nacost + Mr M Nsind
A =2 dt + 2¢* ———— dr — 2¢° df
T2 a%cos?d e r(Ar? —€) roEe (e — Aa? cos? ) cos *

o Nr?cos6 + Mar(1 + cos®0) + Na? cos 0
c

+ 2
r?2 — a? cos? 6

do, (2.36)

which, in the limit a — 0, becomes:

2¢* M 2¢*M 2¢*N sin 6
Sl T dr — 2 g 19N cosf dgo (2.37)

r r(Ar? —€) ecost

A

The field-strength built from this gauge field has only four non-vanishing components, of which

only two are independent. We can easily compute them to be:

2 M
r2

F,=0A =— and Fyy = 0pAy = —2c¢"Nsin 6. (2.38)

The first of these components may be identified with the Coulomb solution [22, 23]. In the
Newtonian limit, the charge M is the mass of the source. The component Fjy,, on the other

hand, exclusively depends on the NUT charge N and corresponds to a magnetic monopole,

123].

2.2.5 PP-waves

PP-waves are exact solutions of both Einstein equations in General Relativity and gauge
theory equations of motion. They have very interesting properties and, therefore, have been
given a lot of attention in the literature, see |28, 29, 30, 31, 32, 33|. From the gravity side, a

plane-wave metric in Brinkmann coordinates can be written as:
ds® = dudv + K (u, 2")du® + dv'dz;, (2.39)

where v and v are light-cone coordinates, 2° for i = 1, 2,..., D—2 are “transverse” coordinates,
and K (u,z) is a function independent of the coordinate v. There is an alternative coordinate
system to represent plane-waves in General Relativity, the Einstein-Rosen coordinates, but their
non-global character makes Brinkmann coordinates easier to work with [28]. Metrics of this
form possess a null Killing propagation vector, represented by the components of the derivative
along the light-cone direction v [34]. In the context of the classical theory of gravity, space-times
of this kind have been named of plane-fronted waves with parallel rays, or pp-waves for short, a
term introduced by Ehlers and Kundt in [35]. They are a time-dependent Ricci-flat solution to
any action built from Einstein-Hilbert plus any corrections with arbitrary powers of Riemann

tensor contractions and derivatives which are gravitationally covariant. Moreover, they solve
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the corresponding equations of motion at all orders 34, 36, 37|. Therefore, in particular, the
pp-wave metric given above is an exact solution of closed string theory provided that 9;0°K = 0.
In the context of the double-copy procedure, it is evident that we can construct a plane-wave
gauge field from the metric of equation (2.39) even without the Kerr-Schild ansatz |18, 38]. We

may just define [18]:
Al = ¢ (u, 2 )ky, (2.40)

where ¢(u,z") < K(u,2") and k, is defined such that k,dz* = du. This gauge field is of the
plane-wave type, standing as an exact solution to Maxwell’s equations and, more generally,
to open string theory to all orders in the o/-expansion [39|, provided that ¢ is harmonic in
transverse space, a condition that is already fulfilled from the gravity side.

The case of the double copy procedure for pp-waves can also be explored from the viewpoint
of amplitudes, as was done for example in [28]. There is also an alternative method, the so-
called Weyl double copy, which instead of relating metrics and gauge fields it works on the
field-strengths and Weyl tensors. It has proven to solve some inconveniences of the Kerr-Schild

double copy [23] and has been applied to pp-waves as well [38].

2.2.6 Gauge and Gravity Shock-waves

We can transform the Schwarzschild solution to obtain a shockwave-like solution to Einstein’s
equations, a procedure first carried out by Aichelburg and Sexl in 1971 [40, 41]. This new
solution in General Relativity is therefore known as the Aichelburg-Sexl shockwave and admits
a representation in Kerr-Schild form, so it is in principle possible to discuss it in the context
of the double copy procedure. This has in fact been verified and represents one of the simplest
time-dependent cases where the double copy recipe applies [6, 42|, together with the even
simpler case of pp-waves discussed previously.

Following from the general expression of a metric in Kerr-Schild form (2.5), the Aichelburg-
Sexl shock-wave metric corresponds to the following choice of the background metric g, scalar

field ¢ and vector field &, [41]:

M
.EIHZ/ = nullv ku = (17 - 1a 07 O) and Qb - K:8 In (£> 5(t - fl?), (241)

T Po
where pg = Constant and p = \/y? + 22 if the shock-wave is propagating along the direction
give by the = coordinate. We define x here such that k* = 167G [41]. We can read off from

here the expression of the corresponding single copy gauge field to be [41]:

o 9c” P
Al o pym In (%) ot —x)ky,, (2.42)
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which relates to a gauge theory shock-wave, as one could intuitively foresee |41].

2.2.7 Further Developments

After exploring all the cases shown above, an evident question is whether or not the double copy
still works when the space-time is not four-dimensional. We already commented without much
detail on the cases of the Schwarzschild and Kerr black holes in higher dimensions, i. e. the
Tangherlini and Myers-Perry space-times, respectively. There are a number of works dealing
with other higher-dimensional metrics, such as D-Type space-times or black branes (see, for
example, [6, 23]).

On the other side of the spectrum, little work has been done in lower dimensions. We may
cite [43], where the workings of the double copy in three dimensions were studied. The kind
of black hole solutions living on a three-dimensional space-time are collectively known as BTZ
black holes |44]. These do not have a Newtonian limit due to the lack of propagating degrees
of freedom for the graviton, but admit a Kerr-Schild form and so are suitable for a double
copy analysis. The single copy of the BTZ black hole corresponds to a constant charge density
extending to all space [43]. A remarkable detail is that the mass on the gravity side and the
charge on the gauge theory side are not related to each other. What is more, the mass does
not play any role in the dynamics of the single-copy theory. Starting from gauge theory, one
can also ask what is the double copy of a point-charge living in three space-time dimensions.
The answer is gravity coupled to a dilaton field [43].

Attempts to accommodate the double copy idea to metrics that do no admit a Kerr-Schild
decomposition have been carried out in some works, see [16] for instance. Another approach
is to elevate the double copy procedure from the metric and gauge field to the level of field
strengths and Weyl tensors by means of the Weyl double copy [23, 38]. It was shown to be
consistent with the classical double copy, proving itself useful to find new relations and double
copy interpretations where the classical procedure could not reach. In terms of spinors, the

Weyl double copy relation reads:

1
Capcp = g faasfepy (2.43)

where C'is the spinor for the Weyl tensor, f the analogue for the electromagnetic field strength
and S is a function associated to the zeroth copy.

Another interesting line of research asks whether the double copy idea may be used to find
the gravity (gauge theory) analogues of certain symmetries known to be present in the gauge

theory (gravity) side. As an example, [23| studies what are the gravity analogues of S-duality

16



and charge conjugation in electromagnetism. S-duality refers to the invariance of Maxwell’s
equations under a suitable exchange of the electric and magnetic fields, while charge conjuga-
tion may be schematically understood as a sign inversion on the electric charge. Both were
shown to be present as well in the more general Yang-Mills theory. We can interpret these
symmetries as solution generating techniques in the sense that given a solution to Maxwell’s
theory, we can construct a different solution by simple application of the corresponding sym-
metry transformation. In this spirit, we know of at least two solution generating techniques in
General Relativity that allow to build solutions to Einstein’s equations from previously known
ones: the Ehlers transformation [35] and the Buchdahl’s reciprocal transformation [45]. The
former was shown to be the double copy analogue of S-duality, while the latter was identified
with charge conjugation [23].

Finally, we will briefly mention a correspondence found recently in [46], dubbed the Newman-
Penrose map. This maps enhances the double copy idea in that it applies to Kerr-Schild metrics
that need not be time-independent or vacuum solutions. However, it also has some drawbacks.
For instance, since the Newman-Penrose construction is based on the tetrad formalism, there
is no obvious higher-dimensional extension, which in the Kerr-Schild double copy is evident.
Furthermore, the set of Kerr-Schild metrics that the Newman-Penrose map was applied to in
[46] must be such that the Kerr-Schild vector is tangent to a congruence with a non-vanishing
expansion that is null, geodesic and shear-free. It was argued [46] that such a constraint
is not very restrictive, since most of the cases of interest are of this form. In essence, the
Newman-Penrose idea may be summarised as follows. For any metric that admits a Kerr-
Schild decomposition and satisfies the properties listed above for corresponding Kerr-Schild
vector, one can find a complex scalar field ® that is harmonic for which A = k® is self-dual?
and solves the vacuum Maxwell equations. Here, k is a one-form understood as a differential
operator, which plays the role of the Kerr-Schild vector in the classical double copy. The authors
of [46] outlined the possible lines of research that could be followed to uncover the full potential
of this new relationship in the spirit of the double copy. To cite a couple of them, it would be
interesting to see if the Newman-Penrose map also applies to complex Kerr-Schild metrics or

if it may provide a work with non-abelian gauge fields.

2 Another work that comments on how to apply the Kerr-Schild double-copy idea to self-dual solutions is [6].
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2.3 Open string effective action and the Born-Infeld solution

In this section we give an explanation of how the Born-Infeld solution of modified electro-
dynamics [10, 11] may be obtained from bosonic open string effective theory. The explanation
follows closely that of [8], where we investigated what the double copy of such a solution might
be.

The effective action for the abelian gauge field in the bosonic open string theory has the
following structure [12, 47, 48] after considering reduction to four dimensions and setting 71 =

2mal:

S=c / d*x \/ —det(n,, + T1F,,) [1 + T2 BH* (T F)0,F,,0, F, + O(0'F)|, (2.44)

where the 0F-independent part is the Born-Infeld action and B is a particular function of the

field-strength F), = d,A, — 9,A,. Explicitly, the leading order o/® derivative terms are [48]

1
S =c / d4x<\/—det(n +T-1F) — T T2 (00 Fu ) (O“FM ) E,, FP°

T

+ 80 Fy) (0 F¥N) Fy 7 + 4(8QFW)(85F“”)FBAFCM} + O(T”)) . (2.45)

The resulting equation for F),, may be written as:

O/ —det(n + TlF)] B
OF 1

+ 2(8,00 Fy ) (0“F)F™ + 40, [(0a F oy ) (0" F77 ) F*

20 T [(0uF) (0 ) @,)

27

+ 40, [(0aF3) (0 F ") P + (QuFp) (@ F ) FY] | + O(TTT) =0 (2.46)

The Born-Infeld equation corresponding to the vanishing of the first term here is equivalent to
(n—T2F?),, OF™ =0,

Ignoring the contributions of the derivative correction terms in (2.45) let us look for a point-
like charge solution of the Born-Infeld term in (2.46). In the purely electric case the Born-Infeld
part of (2.46) reduces to 8; (E;/v/1—T-2E?) = 0. If the electric field is spherically symmetric
(corresponding to a point-like charge), i.e. has only a radial component depending on 7, one

finds [10[2
_Q
e+t ’

In contrast to the standard Coulomb solution the Born-Infeld solution is regular at » = 0. Since

E, = Fy, = =0, A¢(r) = re=T10Q. (2.47)

the electric field (2.47) is approximately constant near r = 0, one may hope that at least near

3The Born-Infeld solution has been extensively studied in the literature. A few works that we can cite include

[13, 49, 50, 51, 52, 53, 54].
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the origin this background may be trusted as a solution to the full open string effective action,
including the derivative corrections. A further discussion of this point is presented in Appendix
A.

Our aim below will be to construct the double copy metric corresponding to the scalar
potential in (2.47) that generalizes the Schwarschild metric which is the double copy of the

Coulomb potential.

2.4 Double copy of the Born-Infeld solution

To determine the classical double copy metric for the Born-Infeld solution in (2.47) we will
follow the general steps given in the introduction. To do this, we will need to compute the
gauge field A,. Its zeroth component, the electric potential, is given by (2.47) and can be
calculated by integrating that equation over r with the boundary condition Ao{r_>OO — 0. The
result reads:

Ao(r) = o(r) = [0 dr' B, (r') = % 2F1<}1, % Z —T—O) - %[1 - % + O(;’—é)} . (2.48)
where oF) is the standard hypergeometric function, also known as (Gauss’s hypergeometric
function. Under our assumptions in the previous section, this is the only non-zero component
of A, i. e. the gauge field takes the form A, = (¢,0,0,0). In analogy with the Schwarzschild

case of Section 2.1, we require our gauge field to be of the form (2.10). We can achieve this via

a gauge transformation and the result is:

A= 6(r) k= 0(r) (1, 2) (2.49)

We now use (2.9) with ¢(r) given by (2.48) to build the double copy metric as ds* = g, (x)dz"dz”
with 2 = (¢, z;) and ¢ related to ¢ as in (2.12). This metric can be written in the Schwarzschild-
like form (2.8) with ¢(r) as in (2.48) by using (2.12) and the transformation relations between
cartesian and spherical coordinates. The fact that our metric admits such a representation may
indicate that it is indeed a generalization of the Schwarzschild solution for non-zero r§ = 27a/Q.
Furthermore, the components of our double copy metric look non-singular due to the fact that

the series expansion of the function ¢(r) near r = 0 is regular:

o(r) = co+ ar +csr’ + O(r?) = T;QOF(E) D(VT — F(f) o + 5T_71§’] +0(r") . (2.50)

This became a striking discovery after we found out that the corresponding curvature invariants

still presented a singular behaviour for small . To give an example, the scalar curvature is
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given by

_20(r)  2Q(r* +2r5) _ 2Q NHL(E) 1 4Q(y) +2r(})] 1
)

R = 4 ~+ 003 . 2.51
2 r(rt + i)/ ro/T 72 2T +0() (2.51)

This singularity is due to the presence of the first two (co and ¢;r) terms in the r — 0 expansion
of ¢ in (2.50). The same happens for the contraction of two Riemann tensors. To be more
explicit, let us start with a general ¢ that admits the following regular Taylor expansion near
the origin:

P(r) = co + 17 + cor? + c3r® + eyt + esr® + O(r%), (2.52)
Hence, for a metric as in (2.8) we obtain a curvature squared that reads

_Acy | 8coer | Act 4 8cocy | 8(cicy + cocs)
=0 4 r3 + r2 + r

UV po
pra RHvP ‘

(2.53)
+ 4(c5 + 2c1e3 + 2cocq) + 8(cacy + creq + cocs)r + O(r?) . (2.54)
As we had previously announced, it is indeed the c¢q and ¢; coefficients on the expansion of

¢(r) that are responsible for the non-regular behaviour. For completeness, substituting the

expression for ¢(r) that we obtained in (2.50) we find (see also (B.5))

Alp(r))*  8Q*(r® +rgr! + 315)

RMVpUR#UPU = 4 + 7”2(7”4 n Té)?’ (255)
IQPTGEPT(R)® 1 32Q7T(3) 1 4QT()° + 16T(3)* 1 16Q°T(5)° o0
- 1 _=.3 .3 -+ ——F7 r°) .
g rt VErg ot g L(3)? r2 5y

The Ricci tensor is also non-trivial for ry different from zero (see Appendix B). It is worth

pointing out that, in the case of ¢(r) as in the Schwarzschild metric, both (2.51) and (2.55)

reduce to R =0 and R, ,, RM7 = IQT?Q, respectively, as expected.

If ¢|T%O = ¢p # 0 then the metric (2.8) has a conical singularity at » = 0. This is not a real
issue because we can always set ¢o = 0 by changing the integration constant in (2.48) (or by
a gauge transformation of the potential (2.49)) and then redefine the double copy metric (2.9)
using ¢ in this gauge. However, this would also entail that instead of setting ¢|THOO =0 we
will have to consider the limit ¢|Tﬁoo = —cg. The real problem is that gb’r%(] =cr = cl\/x_f is
non-analytic in cartesian coordinates and this effectively produces a singularity in the curvature
invariants. This ¢;r term cannot be eliminated by a gauge transformation as it is responsible
for the non-zero constant value of the Born-Infeld electric field E, = —0,¢ in (2.47) at r = 0
(see also Appendix C). Finally, it is not clear if there is some generalization of the Einstein

equations for which the metric (2.8) with ¢ in (2.48) is a solution.
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2.5 Further Work

We will briefly discuss two lines of work that might be interesting to pursue in the future.
Mainly, the application of the classical double copy to the Kerr-Schild-Kundt and Robinson-
Trautman families of metrics. We will first give a short explanation of their properties and an
outline of past works on the subject to motivate our interest on these space-times . A third line
of work that could potentially be of great value in the future, but which we will not consider
in this section, is a rigorous analysis of whether the double copy ansatz should be modified for
gravity and gauge theory solutions that include o/-corrections. In case that a modification is
needed, we would need to reconsider our work on the Born-Infeld solution of Sections 3 and
4, but most importantly, it will widen our understanding of the nature of the double copy

procedure itself and possibly lead to new applications.

2.5.1 Kerr-Schild-Kundt Metrics

There is a certain family of metrics called “universal” that solve nearly any covariant gravity
equations, including or not any set order of quantum corrections [55]. As this is a very restrictive
property, there are not many examples of such metrics and finding them is not an easy task.
However, the examples that can be found in the literature do admit a Kerr-Schild form which
can be written as follows [56]

Guv = ng + QV)\/L)\V7 (256)

where the background metric is of the de Sitter or anti-de Sitter type and the vector field A,
and function V satisfy

A-A=0, X9V =0, (2.57)

as well as

Vo = Ephy,  E-A=0, (2.58)

where £ is an auxiliary vector field defined by the first of these relations. Due to (2.57) and
(2.58), A is non-expanding, shear-free and non-twisting. This means that the metric (2.56)
defines a Kundt space-time. Since it is also of the Kerr-Schild form, these metrics have been
called “Kerr-Schild-Kundt”, or “KSK” for short, metrics [56]. Two examples of this class are the
AdS-plane waves and the AdS-spherical waves.

Kundt space-times appear in the study of universal solutions to the Einstein-Yang-Mills
theory [57, 58, 59|. It has been shown [59, 57| that a necessary and sufficient condition for
a metric and gauge field with a non-zero field-strength to be a solution to the full Einstein-

Yang-Mills theory with an arbitrary number of higher-order corrections is that both fields are
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of the so-called “vanishing scalar invariant” type (or VSI for short) satisfying a couple of simple
tensor relations. A gauge field with a non-vanishing field-strength is VSI if and only if said
field-strength is aligned in a degenerate Kundt space-time and null, where the gauge group
is chosen to be compact and semi-simple [60]. On the other hand, the metric is Kundt and
satisfies the properties outlined below (2.58).

The fact that the Kundt family of metrics may be written in Kerr-Schild form is motivation
enough for us to consider it in the context of the double copy. Such a program was followed in
some detail in [58] in the context of the Einstein-Yang-Mills theory. Even though the authors
did not pursue a strict application of the double copy idea, they did show that there is a relation
between the metric and gauge field in some Einstein-Maxwell-Yang-Mills theories. Therefore,
it would be interesting to know what the single copy of a KSK metric is on its own, i. e. not
necessarily inside any theory of gravity coupled to electromagnetism. Once this is achieved, it
would indeed be interesting to see what equations such a gauge field satisfies and under what

conditions it relates to solutions of an Einstein-Yang-Mills theory.

2.5.2 Robinson-Trautman metric

The Robinson-Trautman family of metrics (or RT metrics for short) are solutions to the
four-dimensional vacuum equations of motion in General Relativity where one of the principal
null vector fields of the Weyl tensor is shear and twist-free, has non-zero divergence and is
parallel to a congruence of null geodesics |61, 62]. The line element for such a metric may be
written as [30]:

ds® = 2r?e®dz dz — 2dtdr — H(z, z; t)dt?, (2.59)

where 7 is an affine parameter, ¢ is a retarded time coordinate, (z, z) is a system of conformally-
flat coordinates (which can be taken to be the stereographic coordinates on the unit sphere)
and H is a function given by:

2m(t) A_r2

H(z,zt) = ro,® — V& —
(Z7Z7) roy r 3

: (2.60)

with m understood sometimes as the physical mass of the system and A being a cosmological
constant. The function @ is in principle unknown and depends on the problem at hand. The
remarkable fact about these metrics, first studied in [63, 64], is that they bear a close relationship
to the so-called Liénard-Wiechert fields (or L-W for short), describing the motion of a point
charge on a given worldline |65, 66]. The analogy comes into place after noticing that a sufficient

and necessary condition for a regular solution to Maxwell’s equations to be a Liénard-Wiechert
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field is that the Maxwell tensor admits a principal null vector with the same properties as those
listed above characteristic of the principal null vector of a Robinson-Trautman metric [62]. In
fact, an analysis reminiscent of the single copy procedure was carried out in [62] where it was
shown how it is possible to extract L-W fields from RT metrics. Therefore, we ask whether
there is a double copy relationship between the Liénard-Wiechert and Robinson-Trautman
solutions. Here, we will only perform a very basic attempt on writing a general R-T metric in
Kerr-Schild form and leave the rest of the discussion for future work. It should be noted that a
Kerr-Schild-like form for this family of metrics has already been studied in the past (see [67]).

We aim to write the line element (2.59) as:
ds® = (G, + ¢ kuk,)datda”. (2.61)

Let us first try to attempt this on the coordinates x* = (t,r, z,Z). We can then expand (2.61)
and identify the coefficients of the coordinate differentials with (2.59). We obtain the following

equations:
Goo + d(ko)* = —H, G11 + o(k1)? =0, oo + O(ka2)* = 0,
a3 + ¢(ks)? =0, Jo1 + Pkok1 = —1, Joo + Pkoks = 0,
§03 + ¢k0k’3 = 07 Gi2 + ¢k’1k2 = 07 §13 + ¢k51k3 = 07
Goz + Okoks = r?e®. (2.62)

A solution may be found with the following assumptions:

ko = ks =0, 9oi = 912 = 913 = Y22 = J33 = 0. (2.63)
We obtain:
ko =k, G =1%%  Gyp=1—H. (2.64)
Finally, setting k; = 1, the Kerr-Schild form of the RT metric in (2.59) is ds* = (g, +
ok, k,)dx*dz”, for

¢ = _17 k,u = (17 1707 0)7 guy = : (265)

0 0 r%* 0
The background metric g, is not Minkowski. Recall that in spherical coordinates the Minkowski
metric is given by:

ds3 imkowsni = —dt* 4+ dr? +12(d6* + sin? 0dp?). (2.66)
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If we take (z,2) to be the stereographic coordinates on the sphere, i. e. z = €'’ cot(6/2), then:

df? + sin® 0dp?
4sin*(0/2)

dzdz = (2.67)

so we end up with

dS3 pimkowki = —dt> + dr® + 4r® sin(0/2)dzdz. (2.68)

Direct substitution on the equations (2.62) has the same effect as equating this line element
with that of g, in (2.65), so what we are left with the following constraints on the functions
H and

H(z,z:t) =2 and  e® =4sin*(0/2), (2.69)

thus reducing the generality of our solution.

Whether the Kerr-Schild metric with parameters as in (2.65) will have some interesting
double copy application needs further work. It is of course not ideal for the simplest analysis
that the background metric is not Minkowski and whether it does relate to the Liénard-Wiechert

family of fields is not clear.

2.6 Concluding remarks

We studied the known applications of the classical double copy procedure on its Kerr-Schild
formulation. This idea has gained increasing interest in the last few years mainly due to its
promise of bringing gravity and gauge theory closer together. It is too early to ascertain
whether the double copy does have some underlying physical interpretation or if it is merely a
useful mathematical game. Regardless of the answer to this question, it is undeniable that the
several applications found so far in the literature and the increasing number of possibilities to
be explored are enough to keep our hopes up on this active area of research.

In Section 1 we introduced the concept of double copy from the scattering amplitudes point
of view and quickly went on to explain the classical Kerr-Schild double copy on which we
focused on the rest of the document. We presented several examples of application of this idea
on the first six titles within Section 2 and summarised other different and highly interesting
lines of work on the last subsection.

In the next two sections, we narrowed the analysis to our work in [8]. The bosonic sector
of the open-string effective action may be approximated to the Born-Infeld action when field-
strength derivative terms are ignored. The solution to its equations of motion is a generalization
of the Coulomb solution that includes o/-corrections. Near the origin, i. e. r = 0, the Born-

Infeld solution is approximately constant, and so it may be trusted to some extent as a solution

24



to the full open string effective theory. We asked whether the classical double copy of the
Born-Infeld solution could yield a metric that may be interpreted as a generalisation to the
Schwarzschild solution in General Relativity. Our result does indeed have some relation to
Schwarzschild and it reduces to it in the o/ — 0 limit. One remarkable property of our double
copy metric is that although all of its components are regular at the origin, the corresponding
curvature invariants are not. We traced back the reason for this divergence to be associated
to the slow decay of the scalar potential of the Born-Infeld electric field as the radial distance
approaches the origin. We do not speculate on the possibility for this double copy metric to be
a solution to some closed-string effective equations of motion.

Finally, we presented a summary of some interesting future lines of work. This includes the
concept of “universality” in gravity theories and the double copy of the Robinson-Trautmann
family of metrics. Another open question that has not been mentioned here is whether we will
be able to map exact open-string and closed-string solutions via the double copy. This program
is highly non-trivial and might require an extension of the double copy idea that applies to all

orders in the o/ expansion.
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3 Kundt metrics as consistent backgrounds for string theory

3.1 Preliminaries

Kundt spacetimes have a number of applications in general relativity in four dimensions and
have been shown to be relevant as well in higher dimensions in the study of string theory. In
general, an n-dimensional spacetime is said to belong to the Kundt class if it admits a null

vector ¢ satisfying the following conditions [68]:
Vila (" X by, Vol*=0, Vil VD =0, Vi, VPl =o0. (3.1)

This guarantees that ¢ is geodesic, expansion-free, shear-free and twist-free within some kine-
matic frame [68]. A general n-dimensional Kundt metric may be written in the following way

169, 70, 71]:
ds* = G, datdr” = —2dudv + K (u,v, %) du® + 24;(u, v, 2%)dudz’ + Gij(u, 2¥)dz'dz?, (3.2)

where i¢,7 = 1,...,n — 2 and G;; is a metric on an (n — 2)-dimensional transverse space.
Under certain conditions, coordinate transformations may be used to simplify the form of this
metric. For instance, in the absence of the dudz’ components and for a function K of the form
K(u,v,2¥) = H(u)v + K (u,z*) the metric in (3.2) is equivalent to one of the same form but
whose components do not show any explicit dependence on the coordinate v (see Section 3.3).
Identities of this sort are useful in the search for new solutions of equations of motion where
backgrounds of this kind are present.

Kundt spacetimes have several important subclasses that have been studied extensively in
the literature. Some of the most well-known examples include exact solutions to Einstein’s
equations of General Relativity such as pp-waves [69, 72, 73, 74|, for which A; = 0, K is
independent of v and G;; is flat euclidean space in n — 2 dimensions. Moreover, some CSI
(Constant Scalar Invariants) and all VST (Vanishing Scalar Invariants) spacetimes also belong
to the Kundt class [72, 75]. For (3.2) to be CSI, we require that K is a polynomial of at most
second-order in v and the coefficient of the v2-term be constant. On the other hand, (3.2) being
VSI demands that K is linear in v and the transverse metric is flat and euclidean [70].

In four dimensions, all CSI metrics that are not locally homogeneous define Kundt space-
times. In fact, any four-dimensional lorentzian spacetime metric that is not determined by its
curvature invariants must belong to the Kundt class |68, 76]. In the case where K and A;
are independent of v, i. e. when there is no explicit dependence on the coordinate v on the

components of the metric, (3.2) is the most general form of a spacetime with a covariantly
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constant null Killing vector field |70|. If only A; is independent of v, then (3.2) is a suitable
expression for any metric with Sim(n — 2) holonomy, and therefore has a recurrent vector field.
These metrics, also known as Kundt-RNV metrics, are said to be of Walker form [70].

In higher dimensions, there has been progress on the study of Kundt metrics as consistent
backgrounds for string theory. In fact, several VSI spacetimes have been found to be such
consistent backgrounds at all orders in o-model perturbation theory [77], where pp-waves are
also included as a particular case. Kundt spacetimes in higher dimensions also play a role in
the search for supersymmetric solutions to supergravity theories where they may lead to the
discovery of new physical phenomena [70].

There is currently no systematic approach to the search for new solutions of General Rel-
ativity and string theory. The same is true even if we limit ourselves to the study of one
particular set of backgrounds, such as the Kundt class of metrics. We aim to provide evidence
on the feasibility of Kundt spacetimes as consistent backgrounds for string theory starting from
the case of a simplified Kundt metric coupled to a dilaton field. If the dudz® components of the
metric are linear in the coordinate v and the transverse space is flat, solutions to the g-function
equations at leading order can be found for a dilaton linear on the coordinate v. Two different
sets of solutions arise depending on whether the coefficient function of the v term in the dilaton
is identically equal to zero or not.

The structure of this part of the thesis is as follows. Section 3.2 is devoted to a brief
review of a few important examples of Kundt metrics and their classification. In Section 3.3,
we analyse some of the properties of a metric such as (3.2). We focus on whether or not
it is possible to simplify this expression under certain constraints. In particular, we look at
when and how the dudz® terms may be eliminated as well as to the possibility of removing
the v-dependence from the metric components. Section 3.4 explores the solutions of the Weyl
anomaly equations in string theory for a background formed by a metric such as (3.2) and a
general dilaton ¢ = ¢(u,v,2¥). We proceed with our calculations under the assumption that
the functions A; are linear in the coordinate v. Finally, in Section 3.5 we wrap up our discussion
with some concluding remarks and point towards possible future work. We also include a couple
of appendices, D and E. The first one serves as a reference for some mathematical properties
and expressions regarding the metric (3.2) that were used in the derivation of our results. The
second one extends Section 3.5 by showing some calculations in relation to future investigations

in the subject matter of the content of that section.
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3.2 Kundt Metrics. Particular Cases
3.2.1 VSI and CSI metrics

Vanishing Scalar Invariants spacetimes (VSI, for short) are Lorentzian space-time metrics
with the property that all scalar curvature invariants constructed from the Riemann tensor
and its derivatives are equal to zero at all orders [72, 68]. This condition is satisfied if and
only if there exists a null direction /“ with the same properties as the null vector involved in
the definition of a general Kundt metric given above (3.2) (see Theorem 1 in |69]). Therefore,
all VSI spacetimes belong to the Kundt class, regardless of the space-time dimension, and can
be written as in (3.2) but with the following values for the functions K, A; and the transverse

metric G;; [72, 68]:

K (u,v,2") = a(u, 2¥)v? + b(u, 2%)v + c(u, %), (3.3)
Ai(u, v, 2%) = X (u, 2%) + v Yi(u, 2), (3.4)

VSI spacetimes are part of a more general family known as Constant Scalar Invariants (CSI,
for short) spacetimes, made up of metrics whose scalar curvature invariants are not necessarily
vanishing but constants. In contrast to the VSI case, not all CSI spacetimes belong to the Kundt
class in an arbitrary number of dimensions. A useful result known as the C'ST, conjecture (see
|69, 68, 75]) helps with the classification of CSI metrics by asserting that all CSI space-times
are either locally homogeneous or of the higher-dimensional Kundt-CSI class. This conjecture
is true in four dimensions [75] and Kundt space-times that are CSI can be written as in (3.2)
with K and A; as in (3.3) and (3.4), respectively, but without any further assumptions on the
transverse metric components G;; |75, 68, 72|.

CSI and VSI space-times have very important physical applications as some of them are
exact solutions to the equations of motion of General Relativity and string theory. In fact, all
four-dimensional VSI space-times are exact solutions to string theory equations of motion at all
orders in o-model perturbation theory [69]. From a more strictly mathematical point of view,
these families of metrics also provide useful insight in the classification of space-times and of

whether these can be uniquely characterised by their curvature invariants [69].

3.2.2 PP-waves

The family of metrics known as pp-waves has been briefly introduced in 2.2.5 in the context

of the classical double copy. This section will be focused on their role as a member of the wider
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family of Kundt metrics. In Brinkmann coordinates, a general pp-wave metric takes the form

given in (2.39), but we will rewrite it here in line with the general expression on (3.2):
ds* = —2dudv + K (u, 2*)du® + 6;;dx'da?, (3.6)

where the sum over the 4, j indices is implicit and 2’ are a set of transverse coordinates with
i =1,2,...,D — 2 in D dimensions. The function K is independent of v and {u,v} are a
couple of light-cone coordinates. The transverse metric is that of flat space as all VSI metrics
belonging to the Kundt class allow for a coordinate transformation (u, v, z%) — (u, v, f(u, %))
that transforms the general transverse metric G;;(u, 2*) into &;; (see |78, 79]). We mentioned in
2.2.5 that the Brinkmann form of the metric is easier to work with when it comes to curvature
calculations and regularity. However, Einstein-Rosen coordinates are still used in the study of
symmetries as these are more manifest in this coordinate frame [28].

PP-waves stand as one of the simplest examples of a Kundt metric that is an exact solution
to string theory equations of motion at all orders in perturbation theory [29, 74, 77, 80]. This
is still true even in the presence of certain radiation fields and of a dilaton [29]. PP-waves are a
particular case of a VSI metric for which we impose that the null vector ¢ in the definition of a
general Kundt metric above (3.2) is also a Killing vector. This requires K and A; in (3.3) and
(3.4), respectively, to be independent of the coordinate v [68, 69]. According to our explanation
in section 3.3, it should be possible then to eliminate the dudxz® components of the metric via

a change of coordinates and we would end up with the expression given in (3.6).

3.2.3 Gyratons

Gyratons stand as a particular case of a VSI metric and are in close relationship with the D-
dimensional pp-wave family of metrics. Their physical interpretation is that of the field created
by a beam of radiation or null matter that propagates with a non-zero angular momentum.
The angular momentum and energy of the beam are kept finite by imposing that the radius
of the cross-section of the source is negligible and that it lasts for a controlled amount of time
[72, 81, 82|. The metric of such a space-time is given by that of a pp-wave metric but where

the dudz® terms cannot be eliminated, that is:
ds? = —2dudv + K (u, 2%)du® + 24, (u, 2*)dudz’ + 6;;dz’ da? . (3.7)

In the pp-wave case, we could eliminate the A; functions, at least locally (see |72] and section
3.3), but in the gyraton case this is not possible. The reason having to do with the properties

of the exterior vacuum pp-wave manifold (for a more complete explanation, see [72]).
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In order for (3.7) to satisfy the Einstein equations of General Relativity in vacuum, the

following two conditions must be satisfied [81]:

O;F =0, (3.8)
. . 1
0;,0'K — 20,0,A" = 3 F?, (3.9)

where Fj; = 0;A; — 0;A; and 7,5 = 1,2, ..., D — 2. These equations allow for an interpretation
of the A; and K functions as the electromagnetic vector and scalar potentials, respectively, in
the flat transverse space [72]. We should also mention that there exist generalisations of the
metric (3.7) with an explicit dependence on the variable v and which fall as well within the

Kundt family [72].

3.3 Kundt Metrics. Coordinate transformations
In N-dimensions, a general Kundt metric takes the form [69, 70, 71]:
ds? = G, datde” = —2dudv + K (u,v,2")du® + 24;(u, v, 7¥)dudz’ + Gy;(u, 2¥)dz'dx?, (3.10)

where we will call “transverse space” the spacetime spanned by the coordinates x* with metric
Gi;(u, 2%) and latin indices running from 1 to N — 2. This Kundt metric has a null, geodesic,
non-expanding, shear-free vector field. Let us consider the most general case of (3.10) and show

when the dudz® terms can be removed by a change of coordinates. Define v and z'* as [86]:
v =1+ h(u,2'"), z' = fi(u,2'"), (3.11)

where h and f* are arbitrary functions. The K and A; functions in (3.10) will now depend
on u,v and 2'F after the change of coordinates. For the sake of clarity, we will write this

dependence explicitly in the expressions to come. The line element becomes:
ds® = =2dudv’ + K'du?® + 24, dudx’™ + G dz’™dz'™, (3.12)

with the following definitions:

K' = K(u,v' + h, 2'™*) + 2A4;(u,v' + h, 2’")0u f* + GijO0uf0uf? — 20,h, (3.13)
Ay = Ai(u, v + by 2 o fr A+ Gig o fLOuf — O b, (3.14)
G/mn = 8/mfia/nijija (315)
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where &', f* = 0 f"/0x'™. For the sake of clarity, since everything depends on the 2’ coordinates
we can redefine ' — x and get rid of the primes on top of the coordinates and derivatives. For

the dudz’™ — dudz™ term to vanish we just need to impose A’,, =0, i. e.:
Ai(u, v + hy 280 1+ GO f10uf? — Omh = 0. (3.16)

This differential equation does not have a solution when A; is a general function of v and its

other arguments. However, let us explore the case where A; is linear in v, i. e.
Ai(u,v, 2%) = Xi(u, o) + Yi(u, z%). (3.17)

Then, applying the change of coordinates on v, we have:

Ai(u, v, %) = Xi(u, 2 + h X, (u, o) + Yi(u, 2%), (3.18)

and (3.16) becomes:
—Omh + X;hOm f* 4 Gii0u f O f? + YiOm f* 4+ (XiOn [V = 0, (3.19)

which is satisfied if:
XiOnf' =0, (3.20)
—Onh + XihOm [+ GijOuf' Ot + YiOmf' = 0. (3.21)

We can simplify (3.21) by using (3.20) and obtain:
Omh =Y; O f' + GijOn f'Ouf’. (3.22)

Notice that this equation is formally the same as (3.16) for the case when A; is independent of
v

Omh = Ai(u, )0 ' + GijOn frOuf?. (3.23)

If we want to eliminate A;, which is equivalent to eliminating the 2(N — 2) functions X; and
Y;, it does not seem possible to do so by using the 2(N — 2) equations (3.20) and (3.22) if we
only know the N — 1 functions h, f;. However, in the case where A; does not depend on v, it
seems reasonable that under certain conditions we would be able to solve (3.23) and simplify

our line element to:

ds? = —2dudv + K (u, v, 2")du® + Gy (u, 2*)dz'da’. (3.24)
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We reiterate that for the wider case where A; is a general function of u,z* and v, we cannot
remove the dudz’ terms of (3.10) without any loss of generality *.

A case of interest is that of spacetimes where the function K is a polynomial on the coordi-
nate v. These metrics, when considered together with the right bosonic fields, can solve certain

supergravity and superstring equations. For K quadratic on v:

K (u,v,2%) = \* + H(u, o) + K (u, 2%), (3.25)

all curvature invariants of the metric (3.24) will be constants. Metrics with this property are
often called CSI (or Constant Curvature Invariants) spacetimes. Let us focus for now on a

function K linear in v with a coefficient H only dependent on wu:
K(u,v,z") = H(u)v + K (u, z%). (3.26)
Here, it is possible to further simplify the form of our metric by a simple change of coordinates.

We formalise this statement in the following theorem:

Theorem 1. “A metric of the Kundt family as shown in (3.10) with no dudz' components is
equivalent, up to a coordinate transformation, to a metric of the same form but whose compo-
nents are independent of the coordinate v if the function K is linear on v with a coefficient only
dependent on the coordinate uw. In other words, a metric of the form (3.24) with K given by

(3.26) is equivalent, up to a coordinate transformation, to a metric of the same form and same

K but with H=0.”

Proof. Introduce two new coordinates (U, V') defined such that v = f(u)V and U = [ du f(u),

where f is an arbitrary function. Then, the line element of our metric becomes:

S = 1 i
ds* = —2dUdV + [2V(H§ — N+ K]FdUQ + Gijdx'da? . (3.27)
Therefore, if f(u) = exp (f du %H), then:
ds® = —2dUdV + KdU? + Gy;da'da? (3.28)

where we have defined K(U,z*) = K (u,*)/f2. Notice that this metric is formally the same
as (3.24) but with K independent of v or, equivalently, with K as in (3.26) but for H = 0. In

fact, all components of the new metric are independent of the coordinate v. O]

4In fact, the dudx® do carry physical meaning. They are important in the case of gyratonic solutions to
General Relativity [82, 87, 88, 89]. These metrics have been studied since as early as 1970 [90] by solving
Einstein’s equations with a source moving in a straight line at the speed of light. They are related to the

Aichelburg-Sex! family representing a shockwave [82]. See section 3.2.3 for more.
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3.4 Weyl Anomaly Equations

We will attempt to solve the Weyl anomaly equations for a dilaton ¢ = ¢(u,v,2*) and the
metric of equation (3.10) when A; depends on v. The Christoffel symbols and Ricci tensor
components for this case are shown in Appendix D. We will employ an ansatz where A; is

linear in the coordinate v:
Ai(u, v, 2%) = Xi(u, 2%)v + Y;(u, 2%). (3.29)
The B-function equations to consider are®:

Ry +2V,V,6 =0, (3.30)

—%V% + G"'V 0V, ¢ = c, (3.31)

for the metric and dilaton, respectively, where ¢ = (D — 26)/6 for the critical bosonic string, D
being the spacetime dimension [85]. We will work in the case where the transverse space part
of the metric is flat, i. e. Gy; = d;;. The (vv) component of the equations for the metric implies

that the dilaton has to be linear on v:
B(,0,2%) = g, 740 + plu, 7%). (3.32)
Then, the (vi) equation gives the following relation between X; and g¢:
1
9= — 1% (3.33)
while the (ij) equation gives the following two equalities:

281‘8]'(] + Q(ain + anz) = O, (334)

1
20,0;p + q(0;Y; + 0;Y;) — §(Xin +0,X; 4+ 0,X;) =0. (3.35)
The (uv) component of (3.30) becomes the following differential equation for the function K:
1
—583[( + @O0, K + kv + kg = 0, (3.36)

where we have defined k; and k, as:

k= —qX? — X0y, (3.37)
1 ) 1 )

>The consistency of these equations with each other can be tested by taking the derivative of (3.30) and
using the Bianchi identity. For a formal explanation on how they are obtained in the first place, see for instance

83, 84, 85].
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The solution for K can thus be written as:

Cl(u>$k> p2av _ w U — ﬁ 2 (3.39)

kY _ k

Note that this expression for K is not compatible with the case ¢ = 0, where (3.36) becomes

1 _
—§a§K + ko = 0, (3.40)
for
7. 1 i, Lo i
and the solution for K is:
K(u,v,2%) = kyv? + 1 (u, 2%)v + e (u, 5). (3.42)

This expression for K is not a particular case of (3.39). Therefore, in the following we will

examine the cases ¢ = 0 and ¢ # 0 separately.

3.4.1 Caseq#0

For ¢ # 0, we can use (3.33) in (3.34) to obtain the following relation between 0;,X; and X;:
1
which allows us to simplify (3.35) to:
The dilaton equation, (3.31), provides two different relations:

X?=0, (3.45)

1 . . . |
—§8i8’p + 0;p O'p + 2qY 0ip + ¢*Y? — 2q0up — g oY+ 3 X? — ¢’y —c=0. (3.46)

The first of these equations implies X; = 0, so A; =Y, ky = 0, ky = 20,4, and from (3.33)
we get 0;q = 0, so ¢ = q(u). Also, (3.34) (or (3.43)) is automatically satisfied and we can use
(3.35) to simplify (3.46) to

oip O'p +2qY ' 0ip + ¢°Y? — 2¢0up — ¢Pco — ¢ = 0, (3.47)

which gives the following expression for cs:

c 1

CQZ———f-

1 20up
P ¢

Op Op+=YOop+Y?— (3.48)
q
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The (ui) component of the equations for the graviton is
) . 1.

which can be simplified by using (3.48) to give

& (8,Y; — 0,Y;) = 0. (3.50)

An expression for Y; that solves both (3.44) and (3.50) is

Yi(u, 2*) = _3;]9 + Z;(u), (3.51)

where Z; are arbitrary functions of the variable u. With all the information we have gathered

so far, the (uu) component of (3.30) gives the following equation:

1 , o' 1., 1 , ;0" dip O O
—— 0;0'c1 + L dicy — - Z'0ic1 + S0uc1 + a1 | Z°0ip + b_apror 1) =o.
4q q 2 2 2q q 2q

(3.52)

To summarise our results, our initial metric and dilaton can now be written as

ds® = —2dudv + K (u, v, v¥)du® + 2Y;(u, 2%)dudz’ + §;;dx'dz’ (3.53)
o(u, v, 2%) = q(u)v + p(u, %), (3.54)
where
F 0
K(u,v,2%) = cy(u, 2") + a2 )62‘“’ — 20 Lq, (3.55)
2q q
20,
e(u,a?) = =5 4 72 = 28 (3.56)
4q q

subject to (3.52), which is the only remaining differential condition to our problem. The simplest
solution to this equation is ¢; = 0. A sightly more general case is given by ¢; = Constant # 0,

which implies
0;0" O;pd" Oy
L %0 dpdp o O
2q q 2q

admitting ¢, p = Constant as a solution, for instance. This restricts Y; and ¢, to be functions

0, (3.57)

of u only; the dilaton only depends on v and the function K only has v dependence on the

exponential factor on its second term in (3.55).

3.4.2 Caseq=0

In this case, equation (3.33) is automatically satisfied, the dilaton is ¢ = p(u, 2*), independent
of v, and K is given by (3.42). Then, the equation for the dilaton provides the following relation

) 1. 1 )
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the (i) component of (3.30) becomes
1

The (ui) and (uu) components of the equations for the graviton are quite complicated in the
general case. Instead of solving them head-on, let us use them to check if a particular Kundt
metric that we know is a solution to the vacuum Einstein equations also solves our Weyl anomaly
equations for some non-trivial dilaton field. We will focus on the four-dimensional metric of
equation (1) of [91], which can be written in the following alternative form by a rescaling of
the variable v:

2
2
ds* = —2dudv + (% — 81‘h) du® + 2 - ;U dudz + dz* + dy?, (3.60)

where h = h(u,z,y) has to be harmonic on the transverse space coordinates for the metric to
be a solution to the vacuum Einstein equations. According to our notation, the functions K

and A; that we have been using so far become in this case:

K v? 2v
K(u,v,2%) = — — 8zh(u, z,y), A, = Xp(2)v = —, A, =0. (3.61)
T

12
The (uv) component of the equations for the graviton (or just matching this expression for K

with (3.42)), we get d,p = 0, so p = p(u, y). The equation for the dilaton is
9p 1.
ap 8'p — 2L — ~9,0'p = c. (3.62)
T 2
The (ij) component of the equations for the graviton gives ajp =0, so p is linear in y:
p(u,y) = Pu)y + Q(u), (3.63)

where P, ) are arbitrary functions of u. The (ui) component of the graviton equations then

implies that p has to be independent of u, so P, () become constants and our dilaton is:
o(y) = Py + Q. (3.64)
Furthermore, (3.62) then implies that P is related to the constant ¢ by
P?=c. (3.65)
Finally, the (uu) graviton equation is

(07 + 02)h — 2Pd,h = 0. (3.66)
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If we avoid the case of a trivial dilaton, given by P = 0, this equation can be satisfied by
assuming that h is harmonic in the transverse space coordinates and that it is independent of

the variable y. It follows then that h has to be linear on x:
h(u,z) = hy(u)x + ho(u). (3.67)

A more general solution of (3.66) may be obtained by assuming that h can be decomposed in
the following way:

h(u, z,y) = X (u,2)Y (u,y), (3.68)
where XY are arbitrary functions. Then, it follows that X and Y must satisfy

D2X — \Mu)X =0, (3.69)

QY —2P9,Y + Nu)Y =0, (3.70)

where A(u) is a general function of the variable u. These are second-order differential equations

that can be solved to give

X (u,2) = Xo1(u)e™™ + Xop(u)e™v?, (3.71)
Y (u,y) = Yor (u)eV PV =) L eu(PHVPE=A) (3.72)

for Xo1, Xoz2, Yo1, Yoo arbitrary functions of u. We see that for h to be real, we need a constant
P such that P? is always greater than or equal to the maximum value of A as a function of w.
We have thus shown that the metric (3.60) can indeed solve our Weyl anomaly equations for a
non-trivial dilaton field (3.64) if the function h(u,z,y) is a solution of (3.66), such as the ones
shown in (3.67) and (3.68).

3.5 Concluding remarks

At the beginning, we gave an introduction to the family of Kundt metrics and briefly delved
into some of its most important subclasses. Later, we explored the mathematical structure of
a general Kundt space-time showing that there are situations where the dudx® terms of the
metric may be eliminated by a change of coordinates without any loss of generality. Later on,
we solved the string g-function equations for a background given by a general Kundt metric
and a dilaton field. We focused on the case where the coefficients of the dudz® components of
the metric are linear in the coordinate v and the transverse space is flat. The equations soon
lead us to a dilaton also linear on the coordinate v. This split our attention into two main cases
depending on whether the coefficient function of v in the dilaton vanishes or not. We found

particular solutions in both cases under some further assumptions.
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The fact that solutions to these equations exist implies that Kundt metrics may be con-
sistent backgrounds for string theory. However, further information is needed to know where
such backgrounds are solvable and/or may be associated with relevant and new interesting
phenomena. For this purpose, we present Appendix E. Here, we take a look at three different
sets of equations and properties, all of them related to the metric of equation (3.60), i.e. the
case of a dilaton independent of the variable v. The first aspect we look at is null geodesics,
where a solution is obtained. The second is a massless scalar field equation of motion on this
metric, which is solvable under our separable variables ansatz of equation (E. 11) for a slight
variation of the du? component of our metric. Finally, we also look at the string equations of
motion on this background and show how a solution may be obtained. The implications of our

results are left open for the moment to further research on the subject.
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Appendix A Born-Infeld solution as an approximation to open-string

solution

Assuming the same ansatz for F,, (no magnetic field, time-independent electric field) that
led to the Born-Infeld solution in (2.47), only the v = 0 component of the equations (2.46) is

non-trivial and may be written as (ignoring higher order terms in (2.46))

E, 1. sl
a@(W) to. T b (O0nE:) (O E) 0 E + (0,0, £, ) (0; Ex) Ei

+ 204[(0: Ey,)(0; Ex ) Ei] + 0i[(0; Ey) (05 i) By + 3i[(3jEk)(ajEk)Ei]} = 0. (A1)

Assuming further that E; is spherically-symmetric we get (E = E,.(1))
O, __rE + iT*”@,E 2rE? +r*(0,E)* + 2r*E(0,E + raZE)} =0. (A.2)
V1—T2E2]  dr "
From here we may find the leading correction to the Born-Infeld solution coming from the
presence of the field strength derivative terms in the open string effective action. Setting
E(r) = EO(r) + EQ(r), where E©(r) is the Born-Infeld solution (2.47) we obtain from (A.2)
the following first-order differential equation for B (72 = T71Q):

dEM  2(rt —2rd) B0 _ 3rérT(Tr® — 6rort 4 15)

— A3
dr r(rt +rg) m(rt +rg)s (A.3)
Its solution may be written as:
Spd(Tr8 + 2rgrt +1f) rd 3r8
EL — T ( 0 o) _ _ O(r12) A4
27 (rt + 1)’ 27r§ + 2770 +0(r) (A4)

Its expansion near the origin starts at order r* so it does not change the E ‘rao = % = const
0

behaviour of the Born-Infeld field (2.47) near the origin, suggesting it can be trusted near r = 0.

Equivalently, the derivative terms do not alter the leading ¢;r term in the scalar potential (2.50)

that was found to be responsible for the singularity of the double-copy metric.

Appendix B Curvature tensor for the double copy metric

The curvature tensor for the metric of the form (2.8) can be computed for general function

¢(r) with the non-trivial components being

¢//

Rtrtr = m7 Rt@@t = RTHGT = _5 ¢/7 Rtgpcpt = Rrgogor = Rt@é‘t Sil’l2 97
r 1 0 ol - ¢ / 0 Qb/
Rttr:§(1_¢)¢”7 Rtt9: Rtt¢:7¢7 Rr@r: Rwr@TZM7
R, = R sin? 0 = ¢(r) sin” 6. (B.1)
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For the Ricci tensor and scalar we get:

1—¢ 24 + 1" R
= - — 2 / /" = - _= hhid = / B2
Rtt 20 ( ¢ + T¢ )7 R'I"I‘ 90— 2’/’@5 P R99 sin2 0 §Z5 + ch ) ( )
2 4¢/
R:—gb+7¢+¢”. (B.3)

CQri(1—9¢)  Qroym-QT(PL(H 1 4Q°T(}) 3
Ry = 7”7(1—1—:%)3/2 = ré’ﬁ . + Tér(}ﬁ + O(r?),

- Qri - NG 1 4Q>r T(3)0(3) )
= (1—¢)(1+ D)2 molroym = QT(HT()] 7 T oV - QUONEP? o)

Rggz chcp = ¢(7”)——<1+

sin® 6 r

riN-12 - QT(MI()  #2T(d) +8Qr(3) 3
ﬁ) ==t - 27 T(0) r+0(r°). (B4)

The curvature squared invariant is

Q0% + i+ )
r2(rt +rd)3

oo 4¢2 4¢/2 ) 4¢2
RMP :7_‘_ 7.2 +¢// :T_4

, (B.5)

R/u/pa

with its expansion at » — 0 given in (2.55). The Weyl tensor squared is also singular at r — 0

(20 —2rd/ +1°¢")> _4Q°T(3)°T(3)* 1

CvpeCH?7 = —
Hope 3rd 3mrd ré

+O(r ). (B.6)

Appendix C Gauge transformation of the vector potential near r = 0

Given the vector potential A, = ¢(r)(1, z;/r) with ¢‘7‘—>0 = co+ar+cr’+ ... asin
(2.49),(2.50), let us see if there is a gauge transformation that eliminates ¢y and ¢; terms, i.e.

if A, can be transformed into

A, = d(r) (1, “”“7) S(r)| =+ . (C.1)

The relation Au = A, — 0,x implies

CoZ;

a()X =cy+cr + (65 — 65)7”5 + ..., 80( = , +cix; + (05 — 65)1‘2‘7‘4 + ... (02)
These equations lead to
x(t, x) :[co + o+ (c5 — 65)7“5} t+ f(x), (C.3)

C1%;

azf($) :COTIZ' +cix; + <C5 - 65)1’7;7’4 - [ IT + 5(C5 - E5>IZ‘T3 t. (C4)

The left-hand side of (C.4) is time-independent, so it is consistent only if ¢ = ¢5 and ¢; = 0.

Thus ¢; cannot be eliminated by a gauge transformation.
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Appendix D General Christoffel Symbols and Curvature Components

The metric of equation (3.10) with contravariant components [72]

Gvi — GijAj, G = —K + GiinAj, QW — _17 G = O, Guz — 07

has the following non-zero Christoffel connection components [72]:

1
I * =-9,K,
2

. 1 ..
T, =-G79,A,,
2
0 1 1
L= GU0,A; = SGYOK — JADK,

. 1 . 1 .
r'= §G”“(8quk + 0 A — OpAj) — 5141811143’»

Fijk = Fi]ka
1, 1
LY, =5A0,4; = S0,K,
L= —%(AQ - K)o, K — %&LK + A9, A; — %A’@K,
1 1 1
L= =5 (A = K)0uAi — SOK + S A 0.6y + iA; — 0; A1),

1 1

Likewise, the non-zero Ricci tensor components are [72]:

1 1. . 1. 1.
Ry = —583K +50i(GY0,45) + ZG”ag(AiAj) + 5GY0i(In VG)d,A;,
s =k 1
1
Ryy = 5(83K — GM0,A,0,A) (K — A?)

(8, K)(8;A" + A9, In VG — 9, n VG) — Z(GY A,0,A;)?

1 1
2 2

+ %G”&,Aj (0K + 244 0,4, — 9, A))] + AY(9,0,A; — 0,0, K)

- %ai(GijajK) - %Giﬂ‘ajf(@» In VG — %G”G’“’@lAj(aiAk — A

- . 1 ..
+ 9;(GY9,A;) + G79,A;0,In VG — ZIG”G’“auGi,fau(;ﬂ — 9’ VG,
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(D. 1)

(D. 12)

(D. 13)
(D. 14)

(D. 15)

(D. 16)



1 . 1 1 .
Rui — 514] (0U8,AJ - &,ﬁin — &)AZ&)A]—) — Eav&K ‘l— §ij8UAk82AJ
1 .
+ SOKGM(0uGyy + DiA; = 0;A; — A;0,A7)]
+ %Gﬂ"f(@uGij + 0 A; — 0, A; — A;0,A,)0, In VG
1

+ 5 GG Gl (A1 — DA + A0, A1 — Aid, Ay)
+ %avauAi + %&Aﬁu InvVG — 9,0, In VG — iGikGlmainmauGﬂ, (D. 17)

where A% = GYA;A;.

Appendix E Further properties

E.1 Null geodesics

We may also investigate some other properties of the metric (3.60). Let us start by a study of

its massless null geodesics. From the geodesics equation, we obtain the following four equations:

. r. . :
b=—— (vt + 2z%), (E. 1)
2 2 2 2 3
b= 5 b+ bbb 5 d? o+ —82d,h i+ 4 (“—3 +2h — 2x8xh> i + (”—4 — 8v0,h — 4x8uh) 2,
T T X T X
(E. 2)
1 ‘
i = — u(v*i — 42’hi — 200 + dvxk — 420, h ), (E. 3)
T
i = —dx O,h 2, (E. 4)
and from the condition of null geodesics, i.e. ds®> = 0, we get
2
4
—2u®+<v—2—8wh) i+ = 4 i 4 P =0, (E. 5)
T T

Everywhere in these equations, the dot represents derivative with respect to some affine pa-
rameter 7. A simple solution can be obtained by assuming v = Constant. Then, (E. 1) is
automatically satisfied. Equations (E. 3) and (E. 4) imply that = and y are, respectively, linear
in the affine parameter:

z(7) = xo + 117, Y(7) = yo + T, (E. 6)
where zq, x1, Yo, y1 are constants. Equation (E. 5) gives a relation between the linear coefficients
of  and y:

zi +y; = 0. (E. 7)
Finally, (E. 2) provides a second order ordinary differential equation:

2 222
s S W (E. 8)
To+ 21T (xo + x17)?
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which solves to

3/2+17/2

v(T) = T vy g2V (E. 9)

where vg, v; are constants and x = z(7) is the linear function of 7 shown above. The domain

of v(7) expands over all values of 7 such that x = xo + z17 > 0, i.e. for 7 > —x¢ /2.

E.2 Massless scalar field

We can also examine the solutions of a massless scalar equation, —V?T = 0, for some scalar
field T' = T'(u, v, x,y). For the metric of equation (3.60), this takes the form
3v? 4 4 2
~20,0,T + (12 + 8xh> PT+ — 0,0,T +PT+ T+ —0,T+-9,T=0. (E.10)
x x x x
A solution to this equation may be obtained by decomposing the scalar field T" as

T(u,v,z,y) = p(u,v)®(z,y), (E. 11)

where ¢, ® are functions of their respective arguments and @ is harmonic, i.e. (9% + 82)(13 =0.

Then, if neither ® nor 9, P vanish, (E. 10) gives

3v? 4y
—20,0,p + (? + 8£Eh> %o + p= Ovp =0, (E. 12)
1
Oy — ¢ =0. E. 13
g, (E. 13)
We can use the second of these equations to simplify the first to
v 6zh
Ou — 4+ — =0, E. 14
¢+ ( w2y ) @ (E. 14)

Equations (E. 13) and (E. 14) each gives an expression for 0,0,¢. Equating both, we obtain

the following for h:

U2

h=—gis. (E. 15)

This expression for h is incompatible with its definition in the metric of equation (3.60), since

there is an explicit v-dependence. Setting h to zero in (E. 14) would then imply ¢ = 0 after
equating both expressions for 0,0,¢, which in turn leads to the trivial solution 7' = 0. If we
relax the condition that h is independent of v and consider a general h = h(u,v,z,y) with
v-dependence, then we can still live with (E. 15) and move forward. By direct substitution
of (E. 15) into (E. 14), we get that ¢ has to be independent of u and therefore we can solve
(E. 13) to obtain

%0
= E. 16
(v) NGk (E. 16)
for some constant ¢y. Our final solution for 7" then takes the form
T(v,x,y) = 0 O (z,y), for (824 07)® = 0. (E. 17)

NG
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E.3 String equations of motion

The metric (3.60) as a target space metric for string theory leads to the following string equa-

+

tions of motion (conformal gauge and light-cone worldsheet coordinates, 0= = 7 4 o, are used

here):

u: vr(0ud_v + 04v0_u) — 20x0,20_x + 22 (04 v0_x + 0, 10_v)
+ z[(v* — 82°h)040_u — 220, 0_v + 2vrd, 0_x] — 42" (O, ud_y + O y0_u)d,h
— [v* + 42*(h + 20,h)] (0, ud_z + 0, x0_u) — 42" O,h Oyu O_u = 0, (E. 18)

O u0_u + x(0yu0_x + 04x0_u + x0,0_u) = 0, (E. 19)

<

r: v20,u 0_u+ 20r*0,0_u
+ 23(4hz0_udiu + 0 ud_v + 0,v0_u + x0,0_x + 42%0,h Opu O_u) =0,  (E. 20)

040_y + 4x0,h 04u 0_u = 0. (E. 21)

<

These equations can be solved, for example, for u = u(c™), so O_u = 0. Then, the equation for
x, tells us that 0_z = 0, so x = z(c™), and the same for the equation for z, from where we get

0_v=0,s0v=uv(c"). The equations for u and y simplify to:

8z Oyu 0_y dyh =0, (E. 22)
040_y = 0. (E. 23)

Both of these equations may be solved for d_y = 0 (other possibilities also hold). In this case,
we attain a solution for our system of equations if all variables u, v, x,y depend only on o*. A
different solution may be obtained if one starts with the opposite assumption that « is only a
function of 0~. Then, the analogue solution to the one showed here is that where all coordinates

only depend on o~

o1
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