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Abstract. We calculate cross sections for helium–antihydrogen scattering for
energies up to 0.01 atomic unit. Our calculation includes elastic scattering, direct
antiproton–alpha particle annihilation and rearrangement into He+p̄ and ground-
state positronium. Elastic scattering is calculated within the Born–Oppenheimer
approximation using the potential calculated by Strasburger et al (2005
J. Phys. B: At. Mol. Opt. Phys. 38 3091). Matrix elements for rearrangement
are calculated using the T -matrix in the distorted wave approximation, with the
initial state represented by Hylleraas-type functions. The strong force, leading to
direct annihilation, was included as a short-range boundary condition in terms of
the strong-force scattering length.
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1. Introduction

Research on cold antihydrogen has seen much experimental progress in recent years, including
the first demonstration of confinement of antihydrogen in a magnetic trap [1] and the formation
of antihydrogen in a cusp trap [2]. Antihydrogen is formed in highly magnetized Rydberg states.
Until recently, the antiatoms formed have always been either field ionized, or annihilated against
the walls of the experiment, on time scales much shorter than the time needed for relaxing to
deeply bound states. This changed very recently when antihydrogen trapping for more than
1000 s was reported by the ALPHA collaboration [3]. Since this time is more than enough for
the antiatom to complete the cascade to the ground state, this marks the creation of the first
ground-state antiatoms, although the internal states of the trapped antihydrogen could not be
measured directly.

The experiments are performed in an environment cooled by liquid helium, but it is not
clear at what energies the antihydrogen is formed. Upon formation the antihydrogen has the
same kinetic energy as the constituent antiproton had just before the formation event. Although
recently antiproton temperatures as low as 9 K were reached by evaporative cooling [4],
antihydrogen has so far only been formed at higher temperatures. The antiprotons will, over
time, thermalize with the positron plasma with temperatures about 40 K [1]. Since the effective
depth of the antihydrogen trap for ground-state atoms is only about 0.5 K only a small fraction
of the antihydrogen atoms formed are trapped.

A limit to the lifetime of antihydrogen in the trap is set by collisions with the background
gas of ordinary atoms and molecules. This limit comes both from inelastic processes where
antihydrogen atoms are destroyed and from elastic scattering where the antihydrogen gains
sufficient energy to escape from the trap. Collisions may also change the orbits of the
antihydrogen within the trap. Because of the cryogenic system using liquid helium, it is likely
that this atom constitutes a significant fraction of the background gas. The temperature of the
background gas is unknown, but should fall within the range from liquid helium temperature,
4 K, and room temperature, 300 K. Using the cross sections reported in this paper, it was found
in [3] that in this temperature range, and for densities of the background gas estimated from
the measured lifetime of antiprotons in the trap, trapping of antihydrogen for times as long as
1000 s is indeed possible.

In order to estimate the possible lifetime of the antihydrogen in the trap, relevant
cross sections for He–H̄ scattering are needed within this energy range. While we present
cross sections for all relevant processes, the main focus of this paper is the calculation of
rearrangement cross sections. The theoretical framework for this calculation is presented in
section 2, while the numerical implementation is described in section 3. In section 4, we
show how elastic and hadronic annihilation cross sections are calculated from the initial-state
interaction potential and the scattering length of the strong nuclear force between the antiproton
(p̄) and helium nucleus (α). Our results for all cross sections are presented in section 5 and the
conclusions are presented in section 6. We have used atomic units except where other units are
explicitly indicated.

2. Rearrangement cross sections

Antihydrogen colliding with helium can undergo a variety of rearrangement processes:

He + H̄ → He+p̄ + Ps, (1)
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He + H̄ → Hep̄ + e+, (2)

He + H̄ → αp̄ + Ps−. (3)

All rearrangement processes result in the antiproton being bound to the helium nucleus. The
ultimate result of these processes will therefore be annihilation, as the complexes formed are
metastable. The direct H̄–He annihilation, without the formation of an intermediate metastable
complex, requires that the p̄ and α overlap during the collision process. Because of the
centrifugal barrier this can only happen for collisions with zero relative angular momentum
between the incoming atom and antiatom. Rearrangement, on the other hand, can occur for all
relative angular momenta. At collision energies above the ultracold regime, where collisions are
not dominated by s-wave scattering ('10−5), rearrangement will therefore be the dominant loss
process.

Preliminary results reported earlier [5] showed that the rearrangement into positronium (1)
dominates the other rearrangement channels by about two orders of magnitude in the low-energy
limit. We shall therefore focus on this process. Our calculation adopts the Born–Oppenheimer
approximation for the initial channel, as has previously been done for H–H̄ scattering [6]. In the
case of scattering with hydrogen, it has been shown that the Born–Oppenheimer approximation
has problems associated with the existence of a critical distance between the colliding nucleus
and antiproton, below which the light particles are no longer bound [7, 8]. For the case of
scattering with ground-state He, no such critical distance exists, and the Born–Oppenheimer
approximation can therefore be expected to work better in this case.

The scattering wavefunction is an eigenfunction of the total Hamiltonian Ĥ ,

Ĥ9(+)
ki
(R, r1, r2, r3)= Ei9

(+)
ki
(R, r1, r2, r3). (4)

Here, 1 denotes the positron, 2 the electron inside the Ps, 3 the electron left in the He+p̄ complex
and R = r A − r B , where A denotes the p̄ and B the He nucleus. The boundary condition used
for the scattering wavefunction is an atom and an antiatom colliding with a relative wavevector
ki and outgoing spherical waves in the final channel. We choose the ẑ coordinate along ki and
make the partial wave expansion

9
(+)
ki
(R, r1, r2, r3)=

∑
J

9
(+)
εi,J (R, r1, r2, r3)PJ (cos θR), (5)

where J is the total angular momentum, PJ the Legendre polynomial, εi the collision energy,
εi = k2

i /(2µ)= Ei − EH̄ − EHe = Ei + 3.404, and µ the reduced mass in the initial channel.
Our calculation uses the T -matrix in the prior form [9]. In this approach, the Hamiltonian

of the helium–antihydrogen system is separated as

Ĥ = Ĥ0 + V, (6)

Ĥ0 = ĤHe+p̄ + ĤPs + T̂ , (7)

V = −
1

rA1
+

2

rB1
+

1

rA2
−

2

rB2
−

1

r13
+

1

r23
. (8)

ĤHe+p̄ and ĤPs denote the internal Hamiltonians of the fragments in the final channel, and T̂ their
relative kinetic energy. V is the interaction between the final-state fragments. The asymptotic
wavefunction in the final channel is given by

Ĥ08(R, r1, r2, r3)= Ef8(R, r1, r2, r3). (9)
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The T -matrix can then be expressed as

Tfi = 〈8|V |9
(+)
ki

〉, (10)

and the rearrangement cross section σr is

σr =
(2π)4

h̄vi

∫
δ(Ei − Ef)|Tfi|

2dkf, (11)

where vi is the relative speed in the initial channel and kf is the relative wavevector between the
fragments in the final channel.

For the scattering wavefunction we use the Born–Oppenheimer approximation

9
(+)
εi,J (R, r1, r2, r3)= χεi,J (R)ψBO(R; r1, r2, r3), (12)

where the Born–Oppenheimer wavefunction is the wavefunction of the light particles with the
heavy particles at a fixed R. This is a bound state of all the light particles. The continuum nature
of the initial state is captured by the much simpler wavefunction χεi,J (R), which represents the
motion of the nuclei. The separation of the most complex part of the calculation, the state of the
light particles, into a bound-state problem makes the combination of the prior-form T -matrix
and the Born–Oppenheimer approximation particularly useful. Hence, the approximation (12)
of 9(+)

εi,J does not contain the asymptotic final state. The T -matrix calculated in this approach
therefore amounts to the distorted-wave Born approximation.

The final-state wavefunction has the form

8(R, r1, r2, r3)=
√

2ϒHe+p̄(R, r3)ψPs(ρ, r12), (13)

where ϒHe+p̄(R, r3) is the wavefunction for the He+p̄ complex, also calculated in
the Born–Oppenheimer approximation, ϒHe+p̄(R, r3)= ξ(R)φHe+p̄(R; r3). The function ψPs

represents the positronium as a function of r12, the relative electron–positron coordinate and the
center-of-mass motion of the positron, as a function of ρ, which is the vector between the mass
centers of the two fragments. The factor

√
2 allows for exchange between the electrons [10].

For the final He+p̄ state the Born–Oppenheimer potential and its adiabatic correction can be
obtained to essentially arbitrary accuracy, since the problem is separable in prolate spheroidal
coordinates. Since the final states are bound the long-range part of the potential is not needed.
The bound-state energies were obtained by the simple shooting method.

Above, the initial-state wavefunction has been expressed in the body-fixed frame, which
rotates with the colliding atom and antiatom. In the final state, on the other hand, it is most
convenient to express ψPs in the space-fixed frame, which does not rotate. Care has to be
taken to transform between these frames when the T -matrix element (10) is calculated. These
considerations are considerably simplified by two restrictions of our calculation. First of all,
we shall only consider rearrangement into ground-state (1S) positronium. Secondly, we shall
approximate the final-state plane wave motion of the positronium by its spherically symmetric
part, i.e.

exp(ikf · ρ)=

∞∑
l=0

(2l + 1)il jl(kfρ)Pl(cos θρ)'
sin(kfρ)

kfρ
, (14)

where jl are the spherical Bessel functions, Pl the Legendre polynomials and θρ the polar
angle of the vector ρ. In the united atom limit R → 0 the He–H̄ system becomes equivalent
to positronium hydride, PsH (a Ps bound to a hydrogen atom). This state is spherically
symmetric [11], and hence all terms with l > 0 in (14) will in this limit give zero contribution
to the T -matrix element. For R > 0 the deviation from spherical symmetry of the initial state
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Table 1. Binding energies Eb of the final He+p̄ states considered, calculated in the
Born–Oppenheimer approximation. The energy εf = Eb − EPs + (EHe + EH̄)=

Eb − 3.153725 is the energy of the center-of-mass motion in the final state for
zero collision energy, and kf the corresponding wavevector. J and v are the
rotational and vibrational quantum numbers.

J v Eb εf kf

0 35 3.164 29 0.010 57 0.205 61
1 35 3.164 06 0.010 33 0.203 30
2 35 3.163 58 0.009 86 0.198 58
3 35 3.162 87 0.009 15 0.191 29
4 35 3.161 92 0.008 20 0.181 08
5 35 3.160 73 0.007 01 0.167 42
6 35 3.159 30 0.005 58 0.149 33
7 35 3.157 62 0.003 90 0.124 87
8 35 3.155 70 0.001 97 0.088 88
9 35 3.153 53 −0.000 20 –
10 35 3.151 10 −0.002 62 –
11 35 3.148 41 −0.005 31 –
0 34 3.265 32 0.111 59 0.668 11
0 33 3.378 56 0.224 84 0.948 34

is measured by the quadrupole moment of the leptonic mass distribution, which has been
calculated in [12]. Here partial waves up to l ∼ kfa are significant, where a is the effective
outer limit of the ρ integration in the evaluation of the T -matrix element. This limit is set by
the spatial extent of the wavefunction of the leptons in the initial channel. In our calculations
we only consider final He+p̄ states lying close to the scattering threshold. The latter restriction
implies that kf < 1 (see table 1). The lepton distribution of the initial state is most diffuse (and
hence a is largest) in the R → 0 limit (where the state is spherically symmetric). For PsH the
root mean square (rms) value of the electron–proton distance is 2.80 [13], which can be used
as an estimate for the maximum of a. For the energy released in the formation of the v = 35,
J = 0 state of He+p̄, this estimate gives kfa ∼ 0.58. As R increases a will decrease, and around
R = 1 the rms value of the e−

−α distance is close to its atomic value 1.54 [12].
With these simplifications the final state becomes

ψPs(ρ, r12)= φ1s
Ps(r12)

sin kfρ

kfρ
. (15)

This expression is spherically symmetric, and hence looks the same in the space fixed and
the body-fixed frames. This simplifies our calculation considerably, as a number of angular
variables drop out, and the rotational quantum numbers J , M of the initial channel translate
into the same quantum numbers for the bound He+p̄ complex, i.e. no angular momentum is
carried away by the positronium.

The T -matrix element Tfi (10) for the J th partial wave can now be separated into a leptonic
and a nuclear part,

Tfi =

∫
ξ ∗(R)tfi(R)χεi,J (R)PJ (cos θR)dR, (16)
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where ξ(R) represents the nuclear motion of the He+p̄ with the same rotational quantum number
J as in the initial state, and the leptonic T -matrix is

tfi(R)= 〈ψPsφHe+p̄|V |ψBO〉. (17)

3. Calculation of the leptonic matrix element

The main challenge is the calculation of the leptonic matrix elements tfi(R). For a fixed
internuclear separation R, the initial leptonic state of the HeH̄ complex is bound, and hence the
Born–Oppenheimer wavefunction ψBO(R; r1, r2, r3) can be calculated using the Rayleigh–Ritz
variational principle.

Our calculation used prolate spheroidal coordinates (λi , µi , φi) for the light particles,
which are defined as

λi =
ri A + ri B

R
, (18)

µi =
ri A − ri B

R
, (19)

and φi is the usual azimuthal angle of spherical polar coordinates. The Cartesian coordinates
can be expressed in terms of prolate spheroidal coordinates as

xi =
R

2

√
(λ2

i − 1)(1 −µ2
i ) cosφi , (20)

yi =
R

2

√
(λ2

i − 1)(1 −µ2
i ) sinφi , (21)

zi =
R

2
λiµi . (22)

In terms of these coordinates our basis functions take the form

ψi = (1 + P23)λ
mi
1 λ

ni
2 λ

pi
3 µ

ji
1 µ

ki
2 µ

li
3 C(si , ti) exp[−α1λ,−α2λ2 −α3λ3 +β1µ1 +β2µ2 +β3µ3].

(23)

Here P23 is the electron permutation operator. For collisions involving He in its ground state
the electrons are in a singlet spin state, and thus the overall wavefunction has the required
antisymmetric form under electron exchange. The factor C(si , ti) denotes the various types of
basis functions according to table 2.

The electron–positron Hylleraas-type functions combined with the electron–electron
repulsion r−1

23 in V give rise to matrix elements of the type r12r13/r23 = r 2
12r

2
13/(r12r13r23). Factors

of the type r 2
i j can easily be expressed in prolate spheroidal coordinates, while 1/ri j factors are

handled using the Neumann expansion

1

ri j
=

2

R

∞∑
τ=0

τ∑
ν=0

Pν
τ (λ<)Q

ν
τ (λ>)P

ν
τ (µi)P

ν
τ (µ j) cos[ν(φi −φ j)]. (24)

Here λ< is the lesser, and λ> the greater, of λi and λ j . Pν
τ (λ) and Qν

τ (λ) are solutions to the
Legendre equation (associated if ν 6= 0).

Hence, a triple Neumann expansion was required. It was found that integration over all
the φ and µ coordinates, as well as one of the λ coordinates, could be carried out analytically.
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Table 2. Types of basis functions used in the He–H̄ calculations.

si ti C(si , ti ) Type

0 0 1 Product of σ functions
1 1 r12 Positron–electron Hylleraas-type
1 2 r23 Electron–electron Hylleraas-type
2 1 2

R (x1x2 + y1 y2) Positron–electron configuration interaction (CI)
product of π functions

2 2 2
R (x2x3 + y2 y3) Electron–electron CI, product of π functions

For the remaining two λ coordinates, numerical integration using Boys’ boundary derivative
method was used [14]. An efficient code for fast and accurate evaluation of the triple Neumann
expansion integrals for general two-center applications has been published in [15].

The Born–Oppenheimer wavefunction was calculated from R = 0.1 to R = 1.5 in steps
of 0.1. This range is more than sufficient for evaluating the matrix element tfi (17), since the
final-state wavefunction ξ(R) does not extend beyond R = 1.3. At each R our calculation uses
a different set of 200 basis functions, selected according to a procedure described in [5].

The basis functions containing r12 (and r13 by exchange) correlate the important attractive
interaction between the positron and the electrons. In an earlier work, we showed that even
a very limited number of basis functions of this type improves the energy significantly (see
tables 2 and 3 in [16]). Further improvements were made by including basis functions of the
less important electron–electron Hylleraas type and by careful optimization of the nonlinear
exponents α1, α2, α3, β1, β2, β3 at each R value [5].

Strasburger et al [17, 18] were able to obtain very accurate energy eigenvalues using basis
sets of explicitly correlated Gaussians

ψi = S23 exp

−

3∑
j=1

α
(i)
j (r j − R(i)

j )
2
−

3∑
j,k( j>k)

β
(i)
jk (r j − rk)

2

. (25)

The Gaussians cannot correctly describe the cusp in the wavefunction at zero lepton–lepton
separation, while this is built into the basis used by us. Nevertheless, this can be compensated
for by using sufficiently large numbers of Gaussians, and very accurate results can be obtained.
In table 3, our results are compared to those in [17]. At all values of R our energies are above
those in [17] and are thus less accurate. The difference is small, about 0.01 at small R and
decreasing to less than 0.001 for R = 1.5. The calculation by Strasburger et al used a much
larger number of basis functions (768) than was found to be practical when calculating matrix
elements using our method (200 basis functions).

Using the numerically obtained wavefunction ψBO(R; r1, r2, r3), and expressing the final-
state wavefunction ψPs(ρ, r12) (15), as well as the interaction V (8), in the prolate spheroidal
coordinates, the leptonic T -matrix element tfi(R) (17) can be obtained through a combination of
analytical and numerical integrations, similar to those described above. The calculated leptonic
T -matrix element tfi(R) calculated this way is shown by the black crosses in figure 1, for
four different kinetic energies εf = Ef − EPs − EHe+p̄ of the outgoing Ps in the final state. An
alternative way of evaluating tfi(R) [8, 10, 19] is to rewrite it as the product of the energy

New Journal of Physics 14 (2012) 035013 (http://www.njp.org/)

http://www.njp.org/


8

Table 3. Leptonic energies calculated in this work compared to those calculated
by Strasburger et al [17].

R This work Strasburger et al [17] Difference

0.1 −0.793 4173 −0.802 8809 0.009 46
0.2 −0.832 1284 −0.841 2736 0.009 15
0.3 −0.893 2532 −0.901 8076 0.008 55
0.4 −0.973 8208 −0.981 6334 0.007 81
0.5 −1.070 4140 −1.076 8457 0.006 43
0.6 −1.178 0082 −1.182 9437 0.004 94
0.7 −1.291 7104 −1.295 5900 0.003 88
0.8 −1.407 7520 −1.410 7955 0.003 04
0.9 −1.522 8727 −1.525 2812 0.002 41
1.0 −1.634 4939 −1.636 4739 0.001 98
1.1 −1.740 9488 −1.742 5519 0.001 60
1.2 −1.841 0898 −1.842 3477 0.001 26
1.3 −1.934 1837 −1.935 2726 0.001 09
1.4 −2.020 2962 −2.021 1627 0.000 87
1.5 −2.099 3586 −2.100 1525 0.000 79

difference and the overlap between the initial and final states

tfi(R)=
[
EHeH̄(R)− EHe+p̄(R)− εf − EPs

]
〈ψPsφHe+p̄|ψBO〉. (26)

Results calculated using this form can also be found in figure 1. When the more accurate
potential EHeH̄(R) calculated by Strasburger et al [17] is used the agreement with the direct
integration is very good at all energies, the largest relative error is 8%, but in most cases it is
much less. When the less accurate potential obtained from our calculation is used in (26), the
discrepancy is somewhat larger. This is particularly true at short R and low energies, where
the inaccuracies in the potential (see table 3) are largest. However, when the inaccuracy of the
potential is smaller than εf, the tfi(R) calculated using this form is quite accurate.

4. Elastic and hadronic annihilation cross sections

The wavefunction for nuclear motion in the initial state χεi,J was obtained through direct
integration (using Mathematica) of the most accurate potential published by Strasburger
et al [17]. This calculation includes both the potential and its first derivative on a grid with
1R = 0.1, which was interpolated using third-order polynomials. The potential goes through
a weak maximum at R = 2.42. We found that the best numerical stability was obtained when
the potential excluding the nuclear attraction −2/R was interpolated for R < 2.42, while for
R > 2.42 the −2/R term was included in the interpolation. For R > 10 the long-range form

EHeH̄(R)= −
2.821 3439

R6
−

41.836 374

R8
−

871.540 66

R10
(27)

was used [20]. As the last point of the interpolation, the energy, and the derivative of the energy,
obtained from (27) at R = 10 was used. In this way, the transition between the calculated values
of the potential and the long-range form becomes smooth. At R = 10, the difference between the
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Figure 1. Leptonic T -matrix element tfi(R) calculated using direct integration
(black, ×), using (26) and the potential calculated in [17] (red, +), and using
(26) and the potential obtained by us (green, �). The different panels represent
different kinetic energies in the final channel, (a) εf = 0.01, (b) εf = 0.02,
(c) εf = 0.05 and (d) εf = 0.10.

value calculated in [17] and (27) is 10−7. Our calculation also included the adiabatic correction
to the Born–Oppenheimer potential from [17].

For initial states with non-zero angular momentum J > 0 the angular momentum barrier
gives an effective repulsive interaction as R → 0, and hence the wavefunction χεi,J vanishes in
this limit. It is the easy to calculate χεi,J , integrating using standard methods from χεi,J (R0)= 0
for some sufficiently small R0. At large R the partial-wave phase δJ shift can be determined
from the asymptotic expansion χεi,J (R)→N [ jJ (ki R)− tan δJ n J (ki R)] YJ M(R̂), where jJ and
n J are the regular and irregular spherical Bessel functions and N is a normalization constant.
The elastic cross section is then given by the standard relation

σel =

∑
σJ , (28)

σJ =
4π

k2
i

sin2 δJ , J > 0. (29)

For zero angular momentum, on the other hand, the potential is attractive in the limit
R → 0, in contrast to normal atom–atom scattering. Hence, there is a nonzero probability that
the antiproton and the helium nucleus overlap, in which case they will interact through the
strong nuclear force. If the effect of the strong interaction is weak the χεi,0 can be calculated
using the regular Coulomb wave G0(k R) as the short-range boundary condition. Here k has to
be defined relative to the asymptote of the Coulombic interaction,

k2

2µ
= Ei − EPsH, (30)

New Journal of Physics 14 (2012) 035013 (http://www.njp.org/)

http://www.njp.org/


10

where EPsH is the leptonic energy of the He–H̄ system in the united atom limit (equivalent
to positronium hydride). In this approximation the cross section for p̄–α annihilation is
proportional to the coalescence density of the two particles, i.e. ∝ |χεi,0(0)|

2 [6]. This is
equivalent to first-order perturbation theory of an effective annihilation potential proportional
to δ(R). As discussed in [21], this treatment is not sufficient when the strong force effects are
large, as is the case for H̄–He scattering. Here a more detailed description of the strong nuclear
force must be used.

We have not been able to find an effective strong-force potential for the α–p̄ interaction
in the literature. Instead we use the approach based on the Coulomb-corrected strong-force
scattering length, which has been described in [21]. We take advantage of the fact that the range
of the strong force Rsi ∼ 10−5 a0 is much shorter than typical atomic distances Ra ∼ a0 (here
a0 is the Bohr radius). Thus, there is a range of internuclear distances short enough for the
Born–Oppenheimer potential to be completely dominated by the Coulomb attraction between
the antiproton and the He nucleus, but still larger than the range of the strong nuclear interaction.
In the absence of the strong interaction, the wavefunction of nuclear motion χεi,J (R) would
in this range be proportional to the regular Coulomb function F0. The effect of the strong
interaction is, within this R-range, to add also a term proportional to the irregular Coulomb
function G0, i.e.

χεi,0(k R)= N [F0(k R)+ tan δsiG0(k R)], Rsi � R � Ra. (31)

Here δsi is the phase shift induced by the strong interaction and N a normalization constant.
The strong interaction phase shift δsi is a complex quantity, with its imaginary part allowing

for annihilation. Taking advantage of the fact that the relevant energy scales in atomic scattering
(∼eV) are much smaller than typical nuclear energies (∼MeV), it is enough to use the zero-
energy limit of δsi. In this limit δsi is related to the Coulomb-corrected scattering length of the
strong interaction through

1

asi
= −

2π

bµ
lim
k→0

cot δsi(k), (32)

where bµ = −1/(2µ) is the Coulomb parameter [22]. In our calculations, we have used the
value asi = (1.851 − 0.630i), fm = (3.5 − 1.2i)× 10−5, which was determined by the fit to
experimental low-energy p̄–He scattering data in [23].

Using the form (31) as a short-range boundary condition the interaction potential can
be integrated using usual methods. As R → ∞ a complex phase shift is obtained for the
atom–antiatom scattering process. The imaginary part of the phase shift signifies annihilation,
and hence depletion of the entrance channel. With a complex s-wave scattering phase shift
δ J=0

= δ J=0
r + iδ J=0

i the corresponding scattering matrix element is S J=0
= exp(2iδ J=0)=

η0 exp(2iδ J=0
r ), where η0 = exp(−2δ J=0

i ) is the inelasticity which expresses the loss of flux,
or absorption, between the initial and final channels [9]. The s-wave part of the elastic cross
section then becomes

σ J=0
el =

π

k2
i

∣∣S J=0
− 1

∣∣2
=

4πη0

k2
i

(
sin2 δ J=0

r + sinh2 δ J=0
i

)
, (33)

and the annihilation cross section is

σa =
π

k2
i

(
1 −

∣∣S J=0
∣∣2

)
=
π

k2
i

(
1 − η2

0

)
. (34)
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Figure 2. Convergence of the elastic cross section with the number of partial
waves included in the calculation. The curves include (from below) only J =

0 (red), J 6 2 (green), J 6 4 (blue), J 6 6 (yellow), J 6 8 (violet), J 6 10
(orange) and J 6 11 (black).

5. Results

The initial-state Born–Oppenheimer wavefunction was obtained using the HeH̄ potential
calculated by Strasburger et al [17] for collision energies between 10−10 and 10−2 (in
temperature units this corresponds to between 32µK and 3200 K, thus covering well the
experimentally relevant range). At lower energies the cross sections are determined by threshold
laws (see below). The calculations included partial waves up to J = 11. The results for the
elastic cross section are displayed in figure 2.

The elastic cross section is dominated by s-wave scattering up to a collision energy ∼10−5

(3.2 K). In the limit of zero collision energy the J = 0 phase shift δ J=0
→ −ka, where a is the

scattering length, as required by threshold laws. We obtain for the scattering length a = 2.15 −

11.4i, which gives for the elastic cross section in the zero-energy limit σel = 4π |a|
2
= 1700. We

note that the imaginary part of the scattering length is larger in magnitude than the real part. This
shows that the strong interaction also has a large impact on the elastic scattering properties in
the zero-energy limit. At larger collision energies, on the other hand, where higher partial waves
dominate, the effects of the strong interaction are negligible. This demonstrates the extreme
sensitivity of the cross section in the ultracold domain. For this reason, a very accurate potential
is required to obtain reliable cross sections in this limit. An earlier calculation [24], using a
slightly less accurate potential [18], obtained a different result from the present calculation.
Comparing the two calculations we have determined that the main reason for the inaccurate
result in [24] was that the potential in [18] was defined on an insufficiently dense grid in the
region R = 0–2.

The elastic cross section has a resonant peak around the collision energy εi = 10−4. This
is due to a shape resonance trapped behind the J = 4 rotational barrier (see figure 3). The
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Figure 3. The wavefunction at the energy Er = 1.04 × 10−4 of the shape
resonance in the J = 4 partial wave (red, - - - -) together with the potential
including the J = 4 rotational barrier (black, –—). (Due to the rotational barrier,
the potential is again repulsive at internuclear separations less than 0.0034, which
is not visible in the graph.)

interaction potential has a double-well structure when the rotational barrier is included. An
inner deep well at R < 2 is strongly dominated by the p̄–α attraction. At larger internuclear
separations there is a shallow outer well around R ∼ 4. The height of the barrier separating
the two wells is only 3 × 10−6 for the J = 0 partial wave, but is reinforced when the rotational
barrier is added, to 0.0015 for J = 4. Fitting the phase shift gives the resonance parameters as
Er = 1.04 × 10−4 and 0r = 3.40 × 10−5. The resonance energy lies only about 10−6 below the
outer maximum of the potential barrier. This shallow outer well only exists for J 6 5. For J 6 3
it supports bound states, while for J = 5 it is too shallow to support any state.

The angular distribution of the elastic scattering is shown for various energies in figure 4.
At low energies the cross section is isotropic, as expected from the dominance of the s-wave. At
higher energies the scattering is mostly in the forward direction, meaning that less momentum
is transferred between the colliding atoms. If the antihydrogen is initially stationary in the lab-
oratory frame, while the helium atom hits it with a laboratory energy E i

He, the amount of kinetic
energy transferred to the antihydrogen atom is related to the COM scattering angle through

E f
H̄ =

2mH̄mHe

(mH̄ + mHe)2
(1 − cos θ)E i

He, (35)

where θ is the scattering angle in the center-of-mass frame. It is therefore useful to define the
momentum transfer cross section

σmt =

∫ 2π

0

∫ π

0

dσ

d�
(θ)(1 − cos θ) sin θ dθ dϕ. (36)

This momentum transfer cross section is shown in figure 5. The resonant structure around 10−4

(32 K) gives a large increase in the momentum transfer. At low energies the momentum transfer
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Figure 4. The angular distribution of elastic scattering dσ
d�(θ)/σel at collision

energies 10−6 (black, –—), 10−5 (red, · · · ·), 10−4 (green, - - - -), 10−3 (blue,
—·—) and 10−2 (orange, —··—).

1e-08 1e-07 1e-06 1e-05 0.0001 0.001 0.01
collision energy [atomic units]

500

1000

1500

m
om

en
tu

m
 tr

an
sf

er
 c

ro
ss

 s
ec

tio
n 

[a
to

m
ic

 u
ni

ts
]

Figure 5. The momentum transfer cross section (36) as a function of collision
energy (black, –—), plotted together with the total elastic cross section
(red, - - - -).

cross section coincides with the total elastic cross section, while around 2 × 10−5 (6.3 K) and
above 10−3 (320 K) the momentum transfer cross section is very small.

Turning to inelastic processes we display the cross section for rearrangement and direct
annihilation in figure 6. In the same figure, we have included the total elastic and the total
inelastic cross sections. We find that the direct annihilation is the dominating inelastic channel
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Figure 6. Cross sections for helium–antihydrogen scattering, total inelastic
(black, –—), rearrangement (red, - - - -), direct annihilation (green, —·—) and
total elastic (blue, · · · ·).

at energies below 1.24 × 10−5 (3.9 K). In the limit of zero collision energy the annihilation cross
section approaches 2.62/

√
εi, while the rearrangement cross section approaches 0.14/

√
εi.

Another inelastic process is electron–positron annihilation. We make a simple estimate of
this process based on the non-relativistic annihilation rate 4πcr 2

0 ne, where r0 = 2.82 × 10−15 m
is the classical radius of the electron, c is the speed of light and ne is the coalescence density
between the electrons and the positron [25]. In atomic units this expression becomes 4πα3ne,
where α is the fine-structure constant. In the context of atom–antiatom scattering we have to
average ne over internuclear configurations, and divide by the flux in the initial channel, in
order to convert the rate to a cross section. Using the normalization exp(iki · R) for the incoming
wave, the expression for the cross section becomes

σ e+e−

a = 4πα3

√
µ

2εi

∑
J

∫
P(R)

∣∣χεi,J (R)
∣∣2

dR, (37)

where P(R)= 2
∫

|ψBO(R; r1, r2, r3)|
2 δ(r1 − r2) dr1 dr2 dr3 is the average electron–positron

overlap. P(R) has been calculated by Strasburger [12], and was found to be less than twice
the value for Ps, (8π)−1, at all R, and falling to zero for R greater than a few atomic units.
We have not calculated the integral in (37) but estimate the cross section to be of the order
σ e+e−

a ∼ 4πα3
√
µ/(2εi)∼ 10−4/

√
εi. This is consistent with the results σ e+e−

a = 4 × 10−5/
√
εi

obtained for H–H̄ scattering [26]. Our estimate for electron–positron annihilation is four orders
of magnitude smaller than the cross section for nuclear annihilation. Hence, this process can be
neglected.

The rearrangement cross section includes, for each J , only rearrangement to the most
loosely bound He+p̄ level. While, in general, rearrangement to deeply bound states should have
much smaller cross sections, it has been found for the case of H–H̄ scattering that the second
most loosely bound state has the largest cross section [27]. To check whether this may also
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be true in He–H̄ scattering we have calculated the rearrangement to the second and third most
loosely bound states in the zero-energy limit (see table 1). Whereas the assumption that the
center-of-mass motion of the outgoing Ps is dominated by the s-wave part may be questionable
for these states, the order of magnitude should still be correct. We find the cross sections
2.6×10−4/

√
εi for v = 34 and 9.2×10−3/

√
εi for v = 33. Since these cross sections are much

smaller than for the v = 35 final state, we have not found a full calculation of these final states
warranted.

Inelastic scattering dominates over elastic scattering at energies below 6.1 × 10−5 (19 K).
The resonance at 1.04 × 10−4 is not clearly visible in the rearrangement cross section. The
reason is clear from figure 3. Rearrangement only takes place from internuclear separations
R < 1.3. In this region, the resonant enhancement of the wavefunction is moderate, since it is
separated from the quasi-bound state in the shallow outer well by a barrier. Above the resonance
the inelastic and elastic cross sections are again comparable around 2.5 × 10−4 (80 K), before
the inelastic cross section drops off.

6. Conclusions

We have found that the double barriers in the Born–Oppenheimer potential for the He–H̄ system
with J > 0 give a complicated structure to the elastic and inelastic cross sections. In particular,
a broad resonance at the collision energy 1.04 × 10−4 strongly influences the elastic cross
section. The sum of the inelastic cross sections as well as the momentum transfer cross section
goes through a minimum around 2 × 10−5–8 × 10−5. This corresponds to a temperature around
6–25 K. Thus, if the lifetime of trapped antihydrogen is due to collisions with He atoms, a lot
can be gained by ensuring that the temperature of the background gas does not lie above ∼25 K.

In the limit of zero collision energy, we find that the strong nuclear force has a large impact
on the collision process. The cross section for direct annihilation is 2.62/

√
εi, which can be

compared to about 0.14/
√
εi for H–H̄ scattering [8, 28]. Also the zero-energy limit of the

elastic cross section σel = 1700 is almost twice as large as for H–H̄. The rearrangement cross
section, on the other hand, approaches 0.14/

√
εi, which is less than the corresponding cross

sections 0.67/
√
εi [27] and 1.1/

√
εi [19] reported for H–H̄. Hence, at zero energy, annihilation

dominates over rearrangement for the He–H̄ system, while the opposite is true for H–H̄.
The elastic scattering cross section is less than the sum of the inelastic processes for

energies below 19 K, and again is also comparable at higher energies. Thus, schemes for cooling
antihydrogen using laser-cooled atoms do not seem suitable for helium, since at the relevant
temperatures antihydrogen atoms will be lost rather than cooled.
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