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ABSTRACT

Two ideas that extends on the theory of General Relativity are introduced and then the

phenomenology they can offer is explored. The first idea shows how certain types of f (R)

gravity allows for traversable wormholes among its vacuum solutions. This is surprising

to find in such simple setting as these type of solutions usually requires fairly complex

constructions to satisfy the equations of motion of a gravitational theory. The second idea

is the matter bounce description of the early universe where a fairly unique feature of the

model is identified. Consequences of this feature could allow the paradigm to distinguish

itself from other alternative descriptions, such as inflation, through late time observations.

An explicit example of this claim is worked out by studying a model involving an inter-

action in the dark sector. Results of a more astrophysical nature, where a careful analysis

of the morphology of blazar halos is performed, are also presented in the Appendix. The

analysis determined that the Q-statistic is an appropriate tool to probe the properties of the

intergalactic magnetic fields responsible for the halos formation.
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CHAPTER 1

INTRODUCTION: CONTRIBUTION OF THE AUTHOR

This thesis presents 3 papers co-written by the author of this thesis while in collaboration

with many individuals. In High Energy Physcis, it is the custom to list the authors of a

paper in alphabetical order and not based on the magnitude of the workload. For the three

papers being showcased, the author of this thesis was a main contributor in working out the

details, content and writing of the papers.

The papers were lightly formatted and modified from their published versions to fit

the flow of the thesis. Chapter 3 presents the paper Traversable wormholes & non-singular

black holes from the vacuum of quadratic gravity [1] co-written with D. Easson. This

work discovered new exotic solutions, namely transversable wormholes, that were found

in the vacuum of a class of very simple f (R) theories of gravity. The solutions themselves

were also elegant, a feature that is not commonly seen in the literature of wormholes. This

simplicity was possible because of the existence of solutions that were conformally singular

in these theories.

Chapter 5 presents the paper Searching for a matter bounce cosmology with low

redshift observations [3] co-written with Y-F. Cai, D. Easson and D.G. Wang. The Matter

Bounce alternative to cosmological Inflation is shown to possess an interesting feature that

is largely model independant. Namely, the energy scale at which the perturbations are

set is small enough that the possible range can be probed by late time observations. This

opens a new way of testing these models as the physical principles that operated during the

generation of the perturbations that are eventually seen in the CMB should also be revelant

today.
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Finally, Appendix C presents the paper Probing Stochastic Inter-Galactic Mag-

netic Fields Using Blazar-Induced Gamma Ray Halo Morphology [4] co-written with

T. Vachaspati. In this chapter we’ve extended previous work found in the literature to

investigate the morphologies of blazar halos. We introduced the Pair-Production (PP) sur-

face which gives a nice visualization to understand how the halo shapes are determined.

We also investigated whether the Q-statistic is a useful tool to extract information about

the magnetic field responsible for the halo formation. It was shown that the statistic is

sensitive to the helicity, strength and coherence length of the magnetic field.
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CHAPTER 2

A BRIEF OVERVIEW OF MODIFIED GRAVITY

It was in 1915 that Albert Einstein first proposed the full mathematical framework of Gen-

eral Relativity (GR) [5], a theory which currently represent our best understanding of grav-

ity. Since then, it became apparent that the initial logical steps leading to GR did not

make it entirely unique; Einstein’s original framework was only the simplest possibility.

Although no observations suggests the need of a more complex gravitational theory, the

motivations for additional research on extensions of GR came from a theoretical stand-

point. For instance, it is known that GR cannot be renormalized (see [6] for a review)

while some alternatives do not a priori have that problem.

The state of the art understanding of GR comes from a Quantum Field Theory

(QFT) perspective. Assuming Lorentz invariance, Weinberg has shown [7] that GR is the

unique Lagrangian solely describing a massless spin-2 field in four dimensions. A consis-

tent theory of such massless field requires diffeomorphism invariance as a gauge symmetry

and also implies the equivalence principle [8]. From a QFT point of view, we expect GR to

be a the low energy approximation of some more complete Effective Field Theory (EFT)

that includes higher order corrections. Any such extensions inevitably introduces new de-

grees of freedom, whether it be through adding new fields or higher curvature/derivative

terms. Below, we describe how these additional terms would look like. We shall restrict

our discussion to 3+1 dimensions. Moreover we will use a mostly pluses metric signature

i.e. η = diag(−1,1,1,1) and fundamental units c = h̄ = 1.

Let us first write down the action of GR, named the Einstein-Hilbert action,

SEH =
∫

d4x
√
−g(

M2
p

2
R−M2

pΛ), (2.1)

with gµν being the metric, g its determinant, R the Ricci scalar and Λ being some constant
3



which we call the cosmological constant. One can add a matter content to the theory by

adding Sm, the matter action, to SEH . This does introduce extra degrees of freedom but

we do not refer to this as a modification of gravity if they simply have minimal coupling

to the metric (i.e. couplings due to derivatives being covariant ∂µ → ∇µ and from the

volume form
√
−gd4x). Alternatively, there exist many non-minimal interactions between

a field and the metric that can be added to SEH , the galileons [9] are an example, and those

type of construction fall in the realm of what we call modified gravity. We will not focus

on exploring these types of models in this review, but shall instead turn our attention to

theories of gravity that contains terms of higher order in curvature. Using the metric to

construct the Christoffel symbols,

Γρ
µν =

1
2

gρζ(∂µgνζ +∂νgµζ −∂ζ gµν
)
, (2.2)

we can write down the Riemann tensor,

Rρ
µζ ν = ∇ζ Γρ

µν −∇νΓρ
µζ +Γα

µνΓρ
αζ −Γα

µζ Γρ
αν , (2.3)

whose index can be contracted to form the Ricci tensor,

Rµν = Rρ
µρν , (2.4)

and the Ricci scalar R = Rµ
µ . At second order in curvature, the possible invariants that can

be constructed out of these are,

R2, RµνRµν , Rρµζ νRρµζ ν . (2.5)

Therefore, we can write

S =
∫

d4x
√
−g(

M2
p

2
R−M2

pΛ+αR2 +βRµνRµν + γRµνρσ Rµνρσ + ...)

with the ... denoting higher order corrections and α, β , γ are some dimensionless coeffi-

cients.
4



An extended version of the original Einstein-Hilbert action is called quadratic grav-

ity whenever one truncates any terms higher than second order in curvature. In 1977, Stelle

managed to show that quadratic gravity was renormalizable [10]. However this came at

a hefty price as renormalizability seemed to require terms that propagated ghosts (see ap-

pendix 5.5 for a discussion of the ghost issue). To extend this quadratic theory even further,

one could also add terms having extra derivatives such as Rµ1ν1ρ1σ1O
µ1ν1ρ1σ1
µ2ν2ρ2σ2 Rµ2ν2ρ2σ2 with

O being a differential operator. Such theories are studied in [11] where it is argued that it

is possible to avoid the ghosts, as found in quadratic gravity, when considering non-local

operators for O .

If one does not demand renormalizability, then we have plenty of possibilities to ex-

tend GR without encountering ghosts. In the case of Lovelock theories [12], one demands

that the equation of motions stays second order in derivatives. This requirement imposes

a constraint on the Lagrangians L that can be built and force the theory to be constructed

from the terms,

L =
∞

∑
m=0

cmLm, (2.6)

Lm =
1

2m
1

m!
δ a1
[c1

δ b1
d1
...δ am

cm
δ bm

dm]
Rc1d1

a1b1
...Rcmdm

ambm
. (2.7)

The m = 0 and m = 1 terms yields the cosmological constant and Ricci scalar respectively.

Due to the (anti)symmetries of Rµνρσ , the terms Lm are guarranteed to vanish for m > D/2.

In our four dimensional case of interest, this yields a single extra term that is added to the

EH action and it is called the Gauss-Bonnet term,

G = R2 −4RµνRµν +RµνσρRµνσρ . (2.8)

This term is a linear combination of the invariants constructed in (2.5). To single it out, we

rewrite the quadratic gravity action as,

5



S =
∫

d4x
√
−g(

M2
p

2
R−M2

pΛ+αR2 +βC2 + γG ), (2.9)

where C2 = CµνρσCµνρσ = RµνσρRµνσρ − 2RµνRµν + 1
3R2 is the square of the

Weyl curvature tensor which is responsible for the appearance of ghost degrees of free-

dom. The Lovelock theory has α = β = 0, which eliminates the threat. Interestingly the

remaining Gauss-Bonnet term is a total derivative in four dimension and can be integrated

out as to not affect the equations of motions (EOM), it only becomes important when dis-

cussing questions involving spacetime boundaries. Therefore the EOM from the Lovelock

theory reduces to the same as the Einstein-Hilbert action in D = 4. For additional details

on Lovelock theories see [13].

What about the R2 term? This coefficient is not found in the Lovelock theory as

its inclusion would introduce higher than second order derivative terms in the EOM. This

leads to an additional scalar degree of freedom (DOF) in the theory which is fortunately

healthy [14]. An action having solely R and R2 is a special case of a more general class

of ghost-free modified gravity called, f(R) theories of gravity [15, 16]. Their Lagrangians

simply replaces the Ricci scalar of the EH action by an arbitrary function of R,

S =
M2

p

2

∫
d4x

√
−g f (R)+Sm. (2.10)

Chapter 2 uncovers new exotic solutions in this class of modified gravity theories but

mostly focuses on the f (R) = R2 case for reasons explained in the chapter’s introduc-

tion. Following [16], we will now show how f(R) theories of gravity are closely related to

scalar-tensor theories in which the tensor field (the graviton) non-minimally couples to a

scalar field. Let us introduce a Lagrange multiplier χ and consider the action,

S =
M2

p

2

∫
d4x

√
−g[ f (χ)+ f,χ(χ)(R−χ)]+Sm. (2.11)

6



Varying the action with χ gives us the EOM,

f,χχ(χ)(R−χ) = 0, (2.12)

which forces χ = R if f,χχ does not vanish. Under this circumstance, the actions (2.10) and

(2.11) are equivalent and are a special case of a Brans-Dicke (BD) scalar-tensor theory,

SBD =
∫

d4x
√
−g
[M2

p

2
(Φ

2
R+

ωBD

2Φ
(∇Φ)2)−U(Φ)

]
+Sm, (2.13)

with Φ = d f/dχ , ωBD = 0 and U(Φ) =
M2

p
2

(
χ(Φ)Φ− f (χ(Φ))

)
.

We can go further by performing a conformal transformation. Define the rescaled

metric as g̃µν = Ω2gµν
1,2, and choose the conformal factor to be Ω = Φ1/2. The Ricci

scalar then transforms as

R = Ω−2(R̃+6∇̃µ∇̃µω −6g̃µν∂µω∂νω
)
, (2.14)

with ω = lnΩ = 1
2 lnΦ. Moreover the volume form rescales as

√
−g = Ω−4√−g̃. This

yields the action,

S =
∫

d4x
√
−g̃
[M2

p

2
(
R̃+6∇̃2ω −6g̃µν∂µω∂νω

)
−Φ−4U(Φ)

]
+Sm, (2.15)

The term 6∇̃2ω can be integrated out and does not contribute to the EOM, therefore we

drop it. We now introduce a new field ϕ =
√

6Mpω and potential,

V (ϕ) =
Mp

2
ΦR− f (R)

Φ2 , (2.16)

allowing us to write,

S =
∫

d4x
√

−g̃
[M2

p

2
R̃− 1

2
g̃µν∂µϕ∂νϕ −V (ϕ)

]
+Sm. (2.17)

Therefore we see that whenever the conformal transformation can be performed, the

gravitational sector of f (R) theories are equivalent to Einstein gravity minimally coupled
1From now on we will employ the notation that tilded objects are constructed from the rescaled metric g̃.
2 Note that g̃µν is only well defined if Ω is strictly positive, the case in which it is not will be of importance

to Chapter 2.
7



to a scalar field. This also shows that the act of promoting R → f (R) simply introduced a

new scalar degree of freedom, which also turns out to be healthy. This duality can be quite

useful and one can choose to study the theory using the action in either form: in certain

cases, keeping the f (R) term explicit is easier while in others it is beneficial to deal with

ϕ , R̃. We call the Jordan frame the situation in which the Ricci scalar is multiplied by some

function of the scalar field, which is the case for the f (R) form of the action here. On the

other hand, the frame obtained by disentangling the coupling between the scalar field and

the Ricci scalar in the way we’ve just done is called the Einstein frame. Note that we have

not discussed the effect of this transformation on the matter action Sm. In the Jordan frame,

the matter is minimally coupled to the metric. However upon going to the Einstein frame

the matter is generally not only coupled to the new graviton g̃µν but also to the scalar field

ϕ . In the special case that Sm enjoys a conformal symmetry, the scalar field’s presence is

not felt by the matter content.

As was already mentioned earlier, the EH action is the unique Lagrangian for a

massless spin-2 field in 3+1 dimensions. Our discussion so far was concerned about modi-

fication of the R term in the EH action which is the term governing the graviton’s dispersion

relations when expanded around a background (read kinetic and gradient terms). These

types of modification kept the action invariant under diffeomorphism. However if we are

willing to forgo this gauge symmetry, we can introduce a mass term for the graviton and

in doing so introduce 3 new dof (for a total of 5 dof which is expected of a massive spin

2 particle). The idea of massive gravity dates back to Fierz and Pauli [42] who tried to

simply add the following linear mass term to the perturbed EH action,

LFP =
−1
8

m2(hµνhµν − (hµ
µ)

2). (2.18)

However this theory does not reduce to GR in the limit that the mass vanishes. This be-

havior is known as the van Dam-Veltman-Zakharov (vDVZ) discontinuity [43] and is a

symptom of neglecting the non-linearities in Eq. (2.18). It was eventually shown [44] that
8



a non-linear treatment could indeed tame the discontinuity and hopefully produce a theory

that reduced to GR in the correct limit, but the efforts were tainted by the seemingly un-

avoidable introduction of a sixth ghostlike DOF named the Boulware-Deser ghost [45]. It

is not until 2010 that de Rham, Gabadadze and Tolley [47] identified five combinations of

terms (three of them non-linear) from which a massive gravity action could be built and not

be plagued by the BD ghost issue. The gravitational theory constructed out of these terms

is known as dRGT massive gravity and we refer the interested reader to the following in

depth reviews [18, 19] for additional details. The paper [2], co-written by the author of this

thesis, studies the cosmological solutions in dRGT massive gravity when the kinetic term

is also replaced by an arbitrary f(R) function.
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CHAPTER 3

NEW EXOTIC SOLUTIONS IN PURE R2 GRAVITY

Recently, an exploration of the vacuum solutions of pure R2 gravity uncovered new black

hole solutions, resulting, in part, from the lack of a generalized Birkhoff theorem [20].

As a theory, quadratic gravity has some interesting features: it possesses scale invariance

and with the addition of the Weyl curvature tensor C2 = CµνρσCµνρσ , is renormalizable

[10]. Numerically it has been shown that the most general quadratic gravitational action,

R2 −αC2 for some constant α , also admits new black hole solutions [21]. Pure R2 gravity

is the only pure quadratic gravity that is ghost free [14, 22] and, as an example of an

f (R) theory, is sometimes dual to the Einstein-Hilbert action of General Relativity (GR)

minimally coupled to a scalar field. We’ve introduced this duality in Chapter 1 and here

we shall discuss the cases where the duality fails in section 3.1. It is precisely in this

regime that the new black hole solutions of [20] were found. The authors interpreted these

solutions as a part of the strong coupling limit of GR.

In Einstein’s theory of General Relativity, every metric gµν , is a solution to Ein-

stein’s equations for some associated stress energy tensor Tµν . It is therefore a challenging

task to determine which solutions should be considered physical solutions. This dilemma

lead to the development of ad hoc energy conditions intended to reasonably restrict proper-

ties of the sourcing matter. The weakest such condition, the Null Energy Condition (NEC),

stipulates that the stress energy tensor of matter should satisfy Tµνkµkν ≥ 0 for any arbitrary

null vector kµ . Imposing such conditions prohibits the construction of many spacetimes in

the context of GR, including traversable wormholes [23] 3. Wormholes have appeared in

many science fiction settings, recently giving rise to additional research on the subject [24].

Besides a means of rapid interstellar travel used by advanced civilizations, wormholes are
3See Appendix 5.5 for details
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discussed in the quest to understand the relation between entanglement and the possible

emergence of spacetime [25]. Such ideas were applied to the information paradox, yield-

ing the so called, ER = EPR conjecture [26], which suggests that entangled particles are

connected via a (non-traversable) Einstein-Rosen bridge. Likewise, it has long been spec-

ulated that quantum gravity may somehow resolve singularities in black hole spacetimes

leading some researchers to the idea that the Universe itself, might have been created on the

interior of a black hole (for some early work see [27, 29, 30, 33, 32, 28, 34, 35, 31, 36, 37]).

In this chapter, we show that the vacuum space ofR2 gravity permits new traversable

wormhole and non-singular black hole solutions. We emphasize that these structures are

supported only by the vacuum and do not require any unusual states of matter. In section 3.1

we discuss how such spacetimes are possible and present our solutions in section 3.2. We

then show explicitly in section 3.3 that observers and light rays can traverse the throat of

the wormhole and discuss some of the trajectory’s properties in section 3.4. Finally, we

discuss the appearance of the wormhole to asymptotic observers in section 3.5.

3.1 R2 Gravity and Its Vacuum Structure

The R2 gravity action is a specific example of the more general f (R) action that was intro-

duced in Chapter 1,

S =
M2

p

2

∫
d4x

√
−g f (R)+Sm. (3.1)

When thematter action Sm exhibits conformal symmetry andF(R)= d f/dR is non-vanishing,

it is well known that this action is equivalent to Einstein gravity minimally coupled to a

scalar field. This is shown by writing the action in terms of the metric g̃µν = Ω2gµν , where

the conformal factor is given by Ω = F(R)1/2. Therefore, any solutions found in such f (R)

theories will also be found in Einstein gravity coupled to a scalar field. However, as was

shown in [20], this is not necessarily the case when F(R) vanishes, and the metric g̃µν , is

11



ill defined.

In f (R) gravity the metric gµν has equation of motion,

F(R)Rµν −
1
2

f (R)gµν −∇µ∇νF(R)

+gµν�F(R) = M−2
p Tµν . (3.2)

In the above, Tµν is the stress-energy tensor of any external matter present.4 Focusing on

vacuum solutions, Tµν = 0, we notice that any metric producing f (R) = F(R) = 0 will be

a solution of this theory. These conditions may constraint R but leave significant freedom

in the form of the Ricci tensor Rµν .

Focusing on the simplest case which satisfies the above criteria, f (R) = R2, we

find that every spacetime with traceless Ricci tensor is a solution to the R2 gravity EOM.

This abundant freedom in the form of Rµν is how Birkhoff’s theorem is circumvented. In

standard Einstein gravity, R = 0 implies Rµν ∝ Tµν and therefore any metric sourced by

matter with traceless energy-momentum tensor will also be a solution to the vacuum of R2

gravity. One notable example is the electromagnetic field with Lm =−1
4FµνFµν . We will

show that this new freedom found in the vacuum of R2 gravity allows bundles of ingoing

modes to evolve from converging to diverging modes in section 3.4. In ordinary Einstein

gravity, such evolution would only be possible through a violation of the NEC as can be

shown through the Raychaudhuri equation–an equation which describes the evolution of the

bundle’s divergence θ . For null geodesics with tangent null vector kµ , the Raychaudhuri

equation is
d
dλ

θ =−1
2

θ 2 −σµνσ µν +ωµνωµν −Rµνkµkν . (3.3)

Here σµν is the shear tensor and ωµν the vorticity tensor. The vorticity can always be

set to zero by choosing a coordinate system in which the congruences are hypersurface
4We use the reduced Planck mass, M2

p = 1/8πGN , metric signature (−,+,+,+), and �≡ ∇µ ∇µ .
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orthogonal. The remaining terms on the RHS are all negative in GR if the NEC is satis-

fied (Rµνkµkν = M−2
P Tµνkµkν ≥ 0). This implies that d

dλ θ < 0 and hence bundles of null

geodesics are always converging. In R2 gravity, vacuum solutions can have Rµνkµkν > 0

so that the above conclusion need not apply.

3.2 Non-Singular Black Holes and a Traversable Wormhole

The most general static and spherically symmetric spacetime is given by

ds2 =− f1(r)dt2 + f2(r)dr2 + r2dΩ2, (3.4)

where dΩ2 = dθ 2 + sin2θ dϕ 2. We make the following metric ansatz

f1(r) = G(r) and, f2(r) =
r2

r2 − k2
1

G(r)
. (3.5)

Introducing a reparametrization of the radial coordinate, l2 = r2 − k2, for some constant k,

the metric becomes,

ds2 =−G(l)dt2 +
1

G(l)
dl2 +(l2 + k2)dΩ2. (3.6)

If G(l) → 1 as l → ±∞, this metric connects two asymptotically Minkowski spacetimes.

The constant k will set the minimal wormhole throat radius as r cannot become smaller than

this value.

The Ricci scalar of this spacetime is given (in terms of G) by,

−1
2
(k2 + l2)2R =

1
2

(
(k2 + l2)2G′

)′
+(k2 + l2)(G−1)+Gk2 , (3.7)

where ′ ≡ d/dl. Requiring R = 0, yields a two parameter solution for G. A complicated

exact solution of this second order ODE is given in Appendix 3.7. For our purposes we need

13



only discuss certain limiting behaviors. Taking the large l limit of Eq.(3.7), corresponding

to large r, and solving the R = 0 ODE, we find the asymptotic solution,

G(l →±∞)≃ 1− 2M±
l

+
Q2
±

l2 . (3.8)

This resembles a Reissner–Nordström metric of mass M± and charge Q±. The mass and

charge need not be the same for the two different asymptotic regions. Hence we label them

by a ± to denote the values measured by observers located at l →±∞. These parameters

arises as integration constants and should not be associated with a conserved mass and

charge even though we employ the nomenclature. For example, the approximate solution in

equation (3.8) drops a non-analytic term, seen only in the large l limit of the exact solution,

that goes as k2 log(l/k)
l2 . Hence Q2

±, taken as the coefficient of the 1/l2 term in the series

expansion, cannot be a well defined finite charge. We will discuss this point further in

section 3.5.

At small l, the solution is approximately,

G(l ≈ 0)≃ 1
2
[
1+2(G0 −0.5)cos(2l/k)+ kv0 sin(2l/k)

]
(3.9)

where G0 = G(0) and v0 = G′(0) are the initial conditions determining the shape of the

throat. The mass M± and charge Q± are expressed in terms of these parameters in section

3.5. Given appropriate choices of G0, v0, we ensure that G is strictly positive for all l.

The solutions are shown in figure (3.1). In these cases the spacetime has no horizons even

though it appears as a charged black hole to asymptotic observers.

For certain initial conditions our solutions can develop horizons, however the so-

lutions remain free of singularities. To the asymptotic observer these solutions appear as

non-singular black holes (or one-way traversable wormholes). In general there can be up to

two regions where the l = const slices become spacelike, whenever G becomes negative.

This can be seen by noting that for |l/k| > 1 the ODE is similar to an overdamped oscil-

lator with equilibrium at G = 1 and therefore any zero crossings must occur in the range
14



l ∈ [−k,k]. As O(1) changes in G occur on a length scale l ∼ k, we expect G to oscillate

at most once during this interval, possibly below zero, and then it will asymptote monoton-

ically to its equilibrium value. This may occur on either side of the l = 0 point and there

are at most two regions where G is negative. Penrose diagrams show the causal structures

of the three spacetimes discussed above in Figure 3.2. In the remainder of this work we

focus on the cases with no horizons, where G remains well behaved so that the {t, l,θ ,ϕ}

coordinate system covers the entire spacetime manifold. In other words we will assume

that G is a continuous non vanishing function of l that asymptotes to 1 as l →±∞.

Figure 3.1: Plot of G(l/k) vs l/k. The blue/dashed, red/dotted-dashed, and green/solid
have initial conditions (G0,v0) set as (1,0), (0.2,0),and (1,1/k) respectively.

3.3 Geodesics of Timelike and Null Observer

Here we compute the paths of null and timelike geodesics traveling in the radial direction

(dΩ = 0). We show that a timelike observer can, in principle, safely traverse the worm-

hole. We begin with a discussion of null geodesic which have ds2 = 0 and are therefore

parametrized by,
dl
dt

=±G. (3.10)
15



Figure 3.2: Penrose diagrams of the three possible causal structure found in the vacuum
solutions of ansatz (3.6). The shaded regions have G < 0 and the l = const slices are
spacelike. Top: G is well behaved and no horizons exist. Middle: G is negative in a single
region between l ∈ [l−, l+]. Bottom: G is negative in two regions between l ∈ [l1

−, l
1
+] and

l ∈ [l2
−, l

2
+].
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Assuming no horizons, this may be integrated to find the path l(t) of radially prop-

agating photons. In section 3.4 we shall see that the affine parameter defined by dt/dλ =

cG−1 for some arbitrary constant c is a monotonic boundless function of t. Hence the light

rays trajectory through the throat can be described in a finite range of the affine parameter.

We now turn to timelike geodesics. Given a four velocity uα(τ) with τ being the

observer’s proper time the geodesic equation reads,

uα∇αuβ = 0. (3.11)

The normalization of u for radial trajectories gives the following condition,( dt
dτ

)2
=

1
G2

( dl
dτ

)2
+

1
G
. (3.12)

Eliminating u0 = dt/dτ from the l component of the geodesic equation, one can solve for

l(τ) through,
d2

dτ2 l =−G′

2
, (3.13)

and t(τ) is determined from Eq.(3.12). To visualize the geodesic motion, we embed the

geometry in a higher dimensional space. Suppressing the θ coordinate and taking a time

slice at a particular t (which looks the same for any choice of t), we embed the wormhole in

a 3D space as shown in figure (3.3a). This particular solution corresponds to a G0 = 1 and

v0 = 0 wormhole. The red line represents the radial trajectory of a timelike observer. We

also show how different values of G0, v0 (defined and color coded in the caption of figure

(3.1)) affect our courageous explorer along his journey.

Note that the solutions can have regions where gravity is attractive or repulsive to-

wards l = 0. The transition occurs wherever G′ switches sign. For instance, our solutions

with G0 = 1 have repulsive gravitational forces near the throat and incoming observers

must possess sufficient velocity to traverse the throat. In figure (3.3b), our infalling ex-

plorer labelled by the solid green curve does not have sufficient speed and is repelled out of
17



(a) Embedding of the wormhole in higher di-
mensions with a throat–traversing, radial tra-
jectory traced in red. We have suppressed the
θ coordinate such that every circle at some
constant z is a sphere having that circle’s ra-
dius.

(b) The coordinates l and t as seen by
observers with identical initial speeds at
l = 0 and attempting to cross the differ-
ent throats. The observer on the green
geodesic fails to traverse the wormhole and
is spit back out. The observer labelled by
the red dot-dashed line oscillates around the
everywhere–attractive wormhole. The blue
dashed observer successfully passes through
the throat.

Figure 3.3: Wormhole structure.

the wormhole. However, the solution with G0 = 0.2 is attractive everywhere towards the

wormhole and the observer travelling in this background (designated by the red dot-dashed

line in figure (3.3b)) oscillates back and forth through the wormhole. It is even easy to find

solutions where G asymptotically relaxes back to 1 from above. In these cases our asymp-

totic observers would associate a negative mass to the wormhole and feel a repulsive force

from it! This might be concerning at first sight as this definition of mass corresponds to

energy in standard GR. However the situation is more complicated in R2 gravity as we will

discuss in section 3.5.
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3.4 Tidal Forces Through the Wormhole

In this section we determine how bundles of geodesics evolve as they pass through the

wormhole. The non-zero components of the Ricci tensor read,

Rtt =
1
2

G
( 2lG′

k2 + l2 +G′′
)
, (3.14)

Rrr =−(2G)−1
(4k2G+2l(k2 + l2)G′

(k2 + l2)2 +G′′
)
, (3.15)

Rθθ = 1−G− lG′, Rϕϕ = sin(θ)2Rθθ . (3.16)

Taking the radial geodesics with affine parameter λ , k = ∂ t
∂λ (1,±G,0,0) for in(-) and out-

going(+) geodesics respectively, we find

Rµνkµkν =−
( ∂ t

∂λ

)2 2k2G2

(k2 + l2)2 . (3.17)

This is strictly negative and therefore can allow for d
dλ θ > 0. We now compute the diver-

gence explicitly. The divergence of a bundle of geodesics with tangent vectors kµ is given

by θ = ∇αkα = 1√
−g∂α(

√
−gkα). To determine kt = ∂ t

∂λ one must look at the geodesic

equation for the null ray. The kt equation is,

kt d
dt

kt + kl d
dl

kt +Γt
αβ kαkβ = 0, (3.18)

=⇒ d
dl

kt +
G′

G
kt = 0 , (3.19)

where in the second line we assumed d
dt kt = 0, appropriate for a time independent metric.

This is solved by kt = cG−1 for some integration constant c which denotes the arbitrary

choice in the affine parameter’s normalization. We take the value c = 1. In the cases were

G is well behaved so that our coordinate system is valid everywhere, we can compute θ for

any l,

θ =±
( 2l

l2 + k2

)
. (3.20)
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The ± corresponds to in and outgoing modes respectively. As expected, θ switches sign

when the light rays cross the throat at l = 0. Moreover, since θ gives the expansion/contraction

of the cross sectional area of a bundle of light rays (it is an area, as orthogonal hypersurfaces

to null geodesics are two dimensional), the radial null geodesics of the metric in Eq. (3.6)

are not affected by the form of G.

A timelike observer will also feel increasingly squeezed by the tidal forces as we

enters the wormhole. Unlike for null geodesics, such observers will be sensitive to G. Mor-

ris & Thorne [23] used these tidal forces to impose constraints on the wormhole spacetime

by requiring that a human sized observer feels less than a g of force. We avoid imposing

any such conditions here but give a brief derivation of the tidal forces below. We refer the

reader to [23] for additional details.

Consider an observerO ′ at rest with respect to {l,θ ,ϕ}, and proper reference frame

with basis vectors,

et̂ =
1√
G

et , el̂ =
√

Gel,

eθ̂ =
1√

k2 + l2
eθ , eϕ̂ =

1
sinθ

√
k2 + l2

eϕ . (3.21)

In this coordinate system the metric takes the simple form ηα̂β̂ = (−1,1,1,1). A second

observerO ′′ located at the same point, but moving with a speed v in the radial direction, will

also have his own reference frame whose basis can be written in terms of the coordinates

of O ′ through a Lorentz boost, leaving ηα̂β̂ unchanged,

e0̂ = γet̂ ∓ γvel̂,

e1̂ = γvet̂ ∓ γel̂,

e2̂ = eθ̂ , e3̂ = eϕ̂ . (3.22)

Here the gamma factor is the usual γ = (1−v2)−1/2. In this frame the moving observer has

four velocity ũ = e0̂. Since the four acceleration a is perpendicular to the four velocity, our
20



radially moving observer’s acceleration will only have a non zero radial component in his

own reference frame. In the {t, l,θ ,ϕ} coordinates one can compute at = ũα∇α ũt which is

related to the acceleration a felt by the observer O ′′ through at = a · et = ae1̂ · et . We find,

a =− 1√
G

[
γ

G′

2
+G

∂γ
∂ l

]
. (3.23)

At l →±∞ and assuming γ ≈ 1, the acceleration felt is a ≈ −M±/l2. For l ≈ 0, the term

G′ contains terms evolving as G0/k and v0. Hence one may tune these values so that the

observer crossing the throat will feel a desired acceleration.

The tidal acceleration felt by the observer O ′′ can also be computed in his reference

frame. The relative acceleration of two nearby points separated by ξ = (0, ξ⃗ ) as measured

by O ′′ is given by,

∆a ĵ =−R ĵ
α̂β̂ ρ̂

uα̂ξ β̂ uρ̂ =−R ĵ0̂k̂0̂ξ k̂, (3.24)

with,

R1̂0̂1̂0̂ =−G′′

2
, R2̂0̂2̂0̂ = R3̂0̂3̂0̂,

R3̂0̂3̂0̂ = γ2 lG′

l2 + k2 − γ2v2
( l(l2 + k2)G′+2k2G

2(l2 + k2)2

)
. (3.25)

Wecan explicitly see how the size of the throat k influences the strength at which our traveler

is squeezed in the angular directions.

3.5 The Wormhole to Asymptotic Observers

Following observers through the wormhole we see there is a lack of parity symmetry in the l

component when v0 ̸= 0. Observers in different asymptotic regions view the wormhole with

a mass M± and charge Q± where the ± designating the parameters measured by observers

at l =±∞. These are determined by G0, v0 from the exact solution of G and by picking out

the asymptotic coefficients. Defining u = 1/l, we expand the solution of G around u = 0

and define,
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M± = lim
u→±0

−1
2

d
du

G(u,G0,v0), (3.26)

Q2
± = lim

u→±0

d2

du2 G(u,G0,v0). (3.27)

One finds that the mass is,

−2M±
k

=−2
M0

k
+ cos(

√
3π/2)G0 ±

sin(
√

3π/2)√
3

kv0 (3.28)

with M0 ≈ 0.7 being a number whose exact expression is given in section (3.7). The ±

sign in front of v0 reflects how the properties of the wormhole differ to each asymptotic ob-

server. Even though this implies that asymptotic observers will feel different accelerations

toward the wormhole, one cannot gain energy by going from one region to the other. The

asymmetrical shape of the throat (as is seen by the solid green curve in Fig.3.1) will prohibit

this as can be shown by Eq.(3.13) which implies (dl/dτ)2 +G is a conserved quantity and

so ∆v = [dl/dτ]l=±∞ = 0.

The coefficent Q2
± is found to be,

Q2
±

k2 =
Q2

0
k2 ±

√
3sin(

√
3π/2)G0 − cos(

√
3π/2)kv0 −2log(uk). (3.29)

The very last term has a logarithmic dependence so that, not only is Q2
± not a con-

stant, it diverges as u → 0. In the case of GR with electromagnetism, the conserved charge

of a Reissner–Nordström spacetime is defined by the conserved current jµ = 1
4π ∇νFµν

integrated over a spacelike hypersurface. Here no such analogue electromagnetic field is

present. The logarithm found is just a feature of our particular wormhole solution. Choos-

ing a different ansatz, such as simply replacing the angular part of Eq. (3.6) by,

gΩdΩ2 =
(

l2 +
k2

l2 + k2

)
dΩ2, (3.30)
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allows us to obtainwormhole solutions that asymptotically approach the Reissner–Nordström

metric without logarithmic contribution.

Conserved charges are tightly linked with symmetries of the theory. In our case,

we have a timelike killing vector et =
∂
∂ t with which we can construct a conserved current

and find the corresponding charge; however, the interpretation of charges in R2 gravity is

tricky. Previous attempts [38, 39] byDeser&Tekin, to define an energy for higher curvature

gravity in analogy with GR have shown that every asymptotically flat solution of R2 gravity

has vanishing energy. An alternative definition was proposed by the same authors and relied

instead on the corresponding Poisson equation of higher curvature gravity [40]. In terms

of this second definition, the leading term of the source in the Poisson equation defines

the energy and allows for a less degenerate classification of spacetimes but still yields a

vanishing energy for solutions with everywhere vanishing Ricci scalar. Therefore even

though an asymptotic observer will feel that the wormhole is exerting a gravitational force

(just as if it were a spherical object of mass M± in ordinary GR) he shouldn’t associate

this value with a conserved charge such as the energy. Hence one might wonder if these

quantities can evolve upon the introduction of small perturbations.

3.6 Final Remarks

In this chapter we have presented new static wormhole and (non-singular) black hole so-

lutions found in the vacuum of R2 gravity. Of particular interest are the perfectly healthy

wormhole solutions supported without any NEC violating matter. Their existence could

prove important as it is argued in [20] that the new R = 0 solutions might be part of the

strong coupling limit (Mp → 0) of General Relativity. It would be interesting to study the

role of such spacetimes in this limit using other tools. For instance it was shown recently

that in the context of AdS/CFT, the strong subadditivity condition of entanglement entropy
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imposes constraints on the bulk geometry of certain spacetimes [41]. One would require a

dual CFT to asymptotically R = 0 solutions to apply similar results.

In the context of our particular solution, we have shown that asymptotic observers

view the wormhole as a Reissner–Nordström black hole with “mass” M± and “charge”

Q±. We have stressed that one should not be associating these values as conserved charge.

They are taken as coefficients of the 1/r and 1/r2 terms in the metric expansion and do

not correspond to some conserved quantity as was the case in GR. This raises the question

of whether M± and Q±, along with the whole wormhole itself, are dynamical once small

perturbations are introduced. It would also be interesting to look for further exotic solutions

to general f (R) theories which cannot be captured by Einstein gravity coupled to a scalar

field.
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3.7 Explicit Form of the Asymptotic Coefficients of G

The general solution to G is given by

G(l) = 1+
k cos

(√
3arctan(l/k)

)
√

k2 + l2
G0 +

k sin
(√

3arctan(l/k)
)

√
3
√

k2 + l2
kv0

− k

6
√

k2 + l2

[√
3
(
H− 1

4 (1+
√

3)−H1
4 (−5+

√
3)−2−

√
3+π tan

(
(1+

√
3)π/4

))
ei
√

3arctan(l/k)

+
(√

3H1
4 (−3+

√
3)−

√
3H1

4 (−1+
√

3)+3
)
e−i

√
3arctan(l/k)

]
− 2k

(3+
√

3)(k− il)

[
(2+

√
3)2F1

(
1,

1
2
(1−

√
3);

1
2
(3−

√
3);1− 2k

k− il

)
+ 2F1

(
1,

1
2
(1+

√
3);

1
2
(3+

√
3);1− 2k

k− il

)]
. (3.31)

Here 2F1(a,b;c;z) is the ordinary hypergeometric function. The mass M± and charge Q±

can be read as the coefficients of the series expansion of G at large l as written in Eq. (3.26,

3.27). The result is,

−2M±
k

=cos(
√

3π/2)G0 ±
sin(

√
3π/2)√
3

kv0

+
1

2
√

3
cos(

√
3π/2)

[
−H− 1

4 (1+
√

3)+2H1
4 (−5+

√
3)−H− 1

4 (3−
√

3)

+2
√

3+4−π tan
(
(1+

√
3)π/4

)]
, (3.32)

Q2

k2 =±
√

3sin(
√

3π/2)G0 − cos(
√

3π/2)kv0

+
1
2

sin(
√

3π/2)
[
−H− 1

4 (1+
√

3)+2H1
4 (−5+

√
3)−H− 1

4 (3−
√

3)

+2
√

3+4−π tan
(
(1+

√
3)π/4

)]
−2log(2uk)−2(1− γE−M)−ψ(0)

(
(1−

√
3)/2

)
−ψ(0)

(
(1+

√
3)/2

)
(3.33)

Here γE−M is the Euler-Mascheroni constant. The functions Hn and ψ(0)(z) are Harmonic

numbers and polygamma functions respectively, both are defined from the Gamma function
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through,

Hn = γE−M +
Γ′(n+1)
Γ(n+1)

, (3.34)

ψ(0)(z) = Γ′(z)/Γ(z). (3.35)
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CHAPTER 4

A COMPARISON BETWEEN INFLATION AND THE MATTER BOUNCE

In this section, we give a comparison between two models of the very early Universe: Infla-

tion and the Matter Bounce. We first review the standard picture of Big Bang Cosmology

and comment on its peculiar features. This leads us to explore how these can be explained

through the two models. Inflation has been proposed around 1980 and has since found

strong support from nearly every cosmologist. Nevertheless, determining exactly what oc-

curred in the early Universe is a hard task. Testing out the scenario is difficult as it involves

physics at energies far beyond which can be probed and hence any evidence comes from

cosmological measurements of the late universe. This has motivated the search to deter-

mine if there could be other alternatives and it eventually lead to the development of the

Matter bounce.

4.1 Big Bang Cosmology

The Big Bang picture is based on the assumption of a universe which is spatially homoge-

neous and isotropic on very large scales. A universe with these features is easily described

in general relativity by considering the most general metric obeying those symmetries,

ds2 =−dt2 +a(t)2dx2 =−dt2 +a(t)2
[ dx2

1− kx2 + x2dΩ2
]
. (4.1)

where dΩ2 = dθ 2+sin2 θdϕ 2, and k ∈ {0,1,−1} is a dimensionless value representing the

curvature of the universe. Themetric (4.1) is known as the Friedmann-Lemaitre-Robertson-

Walker (FLRW) metric. The scale factor a sets the distance between objects on a constant t

hypersurface at fixed comoving positions. As observations constrains our universe to have

little curvature [58], we will assume a flat case (k = 0) in the rest of this manuscript in order
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to simplify the equations.

It is also important to discuss the matter content as it determines the behavior of

the metric (4.1). We approximate matter by a perfect fluid and spatial homogeneity and

isotropy then restricts the stress-energy tensor to be of the form,

T µ
ν = diag(−ρ, p, p, p). (4.2)

We can obtain a dynamical equation of this fluid by employing the conservation of the

stress-energy tensor ∇µT µν = 0. Its ν = 0 component yields the continuity equation,

ρ̇ +3
( ȧ

a

)
(ρ + p) = 0. (4.3)

The Einstein equations characterizes the dynamics of the metric and its relation to

the energy and matter densities, Gµν = 1
M2

p
Tµν where M2

p = (8πG)−1 is the reduced Planck

mass. Using the metric ansatz of Eq. (4.1), the 00 component and the trace of the Einstein

equations give rise to what are known as the two Friedmann equations,

( ȧ
a

)2
=

1
3M2

p
ρ (4.4)

( ä
a

)
=− 1

6M2
p
(ρ +3p). (4.5)

Once an equation of state (EoS) for matter is specified, usually of the form wρ = p

with w constant. One can use the Friedmann equations to obtain an explicit expression

for a(t). Whichever fluid dominates the energy density will determine the dynamics in

the evolution of a(t). For instance, a fluid with w = 1/3,0or−1 corresponds to a radiation

(r), non-relativistic matter (m) or vacuum energy (Λ) dominated universe respectively. Note

that we label a gas of relativistic particles as radiation since its equation of state hasw= 1/3,

when we speak of ”matter” we shall specifically refer to the kind that has an equation of

state satisfying w = 0 which would be obeyed by a non-relativistic gas. Combining the EoS
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with equations 4.3 and 4.4 we find for the specific examples,

a(t) ∝ t1/2 for radiation (r),

a(t) ∝ t2/3 for matter (m),

a(t) ∝ eHt for vacuum/dark energy (Λ),

a(t) ∝ a
2

3(1+w) for a general w. (4.6)

Here we defined the Hubble parameter as H = ȧ
a . Its inverse, 1/H, sets the Hubble

time and radius which are the characteristic time and distance scales of the Universe’s de-

scription. By defining ρc = 3M2
pH2

0 and Ωi = ρi/ρc one rewrites the Friedmann equation

4.4 in a form that makes the dominant energy density of the universe apparent,

H(t)
H0

=
[Ωm

a3 +ΩΛ +
Ωr

a4

]1/2
(4.7)

with H0 ≈ 67.27 ± 0.66km · s−1 ·Mpc−1, Ωm = Ωb + Ωdm, Ωdmh2 ≈ 0.1198 ± 0.0015,

Ωbh2 = 0.02225±0.00016 and h = H0/(100km · s−1 ·Mpc−1) [58] are the Planck’s mea-

sured present day value of each quantity after choosing the normalization scale a(t0) = 1.

The quantity Ωrh2 ≈ 10−5 can be obtained from today’s neutrino/photon density based on

the CMB temperature while ΩΛh2 ≈ 0.3 balances out Eq. (4.7). Written in this form, the

Friedmann equation makes it easy to determine the matter type which dominates at differ-

ent epochs. It is now obvious that an expanding universe will eventually be dominated by

the non zero ΩΛ.

As the time coordinate t is somewhat arbitrary, it is important to find a physical way

to measure the time elapsed. Consider the wavelength λ of some photon. This quantity

will be affected by the evolution of the scale factor, getting stretched(squeezed) by the

expansion(contraction) of the universe as λ (t) = a
a(t∗)

λ (t∗) for some reference time t∗. In

the Standard Model the scale factor is monotonically increasing. Therefore in this case, a

photon’s wavelength allows us to determine how long ago and how far away a photon was
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emitted, provided we know its original value. This leads to the concept of redshift. Let t0

be the current age of the universe, the redshift z is defined as,

1+ z(t) =
a(t0)
a(t)

=
1

a(t)
, (4.8)

where in the second equality we have set that a(t0) = 1. The Cosmic Microwave Back-

ground (CMB) was emitted when the temperature dropped below ∼ 3000 Kelvin through

hydrogen recombination. The detection of the CMB light today allows us determine that

the redshift of recombination must have been zrec ≃ 1100. Another important time was

when matter overtook radiation as the dominant contributor to the energy density budget.

This transition occurred at a redshift of zeq ≈ 3300 which is named the redshift at matter-

radiation energy density equality. It was only around redshift z ∼ 1 that the dark energy

became a very important contributor to the energy density.

4.2 Success and Failures of the Standard Model

The description offered by the Standard Model of Big Bang Cosmology (BBC) has gath-

ered a great amount of success (see [59, 60] for a more detailed review). By assuming a

young universe that was hot, dense, isotropic and homogeneous up to tiny scale invariant

fluctuations, the Big Bang theory was able to predict the following observations,

• The abundance of elements through Big Bang Nucleosynthesis (BBN)

• The CMB and various of its statistical properties

• The formation and distribution of the Large Scale Structure (LSS)

• Hubble’s Law

However over the past few decades, many observations have been left unanswered by the

theory. To name a few,
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• Baryon Asymmetry

• What is dark energy and dark matter?

• The Big Bang Singularity

• Monopole Problem

• Horizon Problem

• Flatness Problem

• Initial Inhomogeneities

It is possible that some of these problems will be solved without having recourse to exten-

sions of the BBC. For example, the nature of the baryon asymmetry and the dark sector

properties are likely to be resolved from theories beyond the standard model (of particle

physics). This statement is based on the fact that the current zoo of cosmological scenarios

seems unsuited to produce new phenomenology that can address these two questions; for

example one must work really hard to tie inflation with dark matter. This is in contrast to

the 5 other problems of which we will review here.

• The Singularity Problem

A well known issue with the Big Bang Cosmology is that it offers no explanation

regarding what occurs at the ”Big Bang”. As the scale factor is a monotonically in-

creasing function of t, the past seems to have originated from a region where a = 0

in which physical quantities become divergent. Of course this just shows that the de-

scription outlined by the Big Bang theory is not adequate to tackle this epoch, but then

what kind of extensions could offer answers? Possibilities have been put forward by

invoking exotic matter and/or modification of GR, but it is possible one will require
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an understanding of quantum gravity to discuss this apparent singularity. Neverthe-

less, the issue forces us to conjure some initial state at some finite a > 0. With such

freedom, the problems faced by the BBC can all be resolved through fine tuning these

initial conditions. In practice, one would desire more satisfactory resolutions that are

somewhat independent of the initial state.

• Monopole Problem

In the 1970s a lot of attention was placed on finding a Grand Unified Theory (GUT).

The efforts attempted to find a group with a single coupling constants from which the

Standard model of particle physics would emerge after symmetry breaking. A very

common feature of these models was the existence of monopoles: very heavy sta-

ble topological defects that were created during the GUT symmetry breaking epoch.

The view offered by the Big Bang theory had trouble with this picture. The rea-

son was tied to the decreasing temperature in an expanding universe of relativistic

matter (T ∼ 1/a). At early times we expect the GUT symmetry to be intact as the

temperatures are high, however the expansion will eventually force T to drop below

the GUT scale - triggering symmetry breaking - a proliferation of GUT monopoles

should therefore have been created. Being very heavy, their energy density dilutes

as pressureless matter and hence quickly dominates the energy budget shown in Eq.

(4.7). Observations suggest otherwise, it shows matter only overtook radiation at a

redshift of z ≈ 3300.

So where are the monopoles? A possible resolution comes from arguing that they

simply do not exist. However many theoretical considerations (not only GUTs) that

are beyond the scope of this work strongly suggest their inevitability. We will intro-

duce in section 4.3 some examples of cosmological scenarios which allows the Big

Bang picture and the existence of monopoles to coexist.

• Horizon Problem
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The CMB shows that the universe was nearly homogeneous and correlated on very

large scales. However a quick calculation shows that these correlation scales are

larger than what would seem possible by causality. The comoving particle horizon is

defined as the maximum distance a particle could travel in a given time,

ℓ(t1, t2) =
∫ t2

t1

dt
a(t)

=
∫ a2

a1

d(lna)
aH

. (4.9)

We see a homogeneous CMB over distances of ℓ(trec, t0), with trec,t0 being the time

of recombination and today respectively. This is to be compared to ℓ(0, trec) which

gives the size of the causal regions at recombination. The issue comes when one

uses today’s value of the energy budget and works backwards with the forms of a(t)

given in Eq. (4.6), we find that ℓ(trec, t0)≫ ℓ(0, trec). Hence it seems that the CMB

has correlations beyond what is causally acceptable. The main culprit of this result

is the comoving Hubble radius, (aH)−1, which is monotonically decreasing when

radiation or matter is the dominating form of energy. Note that we’ve also glossed

over the fact that one integral runs all the day down to t = 0 which is likely beyond

the regime of validity of our assumptions. The resolutions explored in this document

will use this fact to justify changing the picture at early times.

• Flatness Problem

In the introductionwe’ve decided to set k= 0 as this was consistent with observations.

However why would the Universe be so flat? A flat universe is unstable. It is easy to

see this instability by considering the continuity equation (4.3) with the EOS p = wρ

and the Friedmann equation with non-zero k,

H2 − k
a2 =

1
3M2

p
ρ. (4.10)

Defining a time dependent critical density ρc = 3M2
pH2 we look at the quantity Ω =

ρ/ρc, satisfying 1−Ω =−k/(aH)2. In terms of these variables, the continuity
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equation turns into,
dΩ

d lna
= (1+3w)Ω(Ω−1)

and so assuming w >−1/3 as suggested by the BBC, Ω > 1 implies dΩ
d lna > 0 while

Ω< 1 implies dΩ
d lna < 0. ThereforeΩ= 1, corresponding to k= 0, is an unstable fixed

point. The universe must have started out incredibly flat (ρ−ρc
ρc

∼ 10−50 at T = 1015

GeV) in order to account for the current observations of the lack of any curvature.

The flatness problem deals with trying to justify this fine tuned initial condition.

• Initial Inhomogeneities

The last problem we will discuss is the origin of the inhomogeneities. The CMB

is not perfectly homogeneous, its temperature maps show fluctuations of one part

per 105. These originated from perturbations of the energy density which initially

possessed a nearly scale invariant spectrum. Those seeds were also responsible for

the formation of structure. How did these perturbations appear?

4.3 Beyond Big Bang Cosmology

In this section we introduce two cosmological scenarios and discuss what they bring to

the resolutions of the BBC problems outlined above. The first scenario we shall review is

the theory of cosmological inflation. This paradigm is by far the most famous and almost

universally taken as the correct extension to the standard model of cosmology. However

probing the inflationary epoch can be quite challenging and finding unambiguous support of

its existence could prove impossible, hence onemight wonder if there are other possibilities.

This motivated some researchers to devote some of their time to finding alternatives, one

of these being bouncing cosmologies and more precisely the matter bounce. This scenario

will be our second paradigm to be reviewed.
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4.3.1 Cosmological Inflation

Cosmological inflation refers to an epoch at very early time where the universe under-

went a rapid expansion. More precisely, inflation requires that the comoving Hubble scale

decreases with time, d
dt (aH)−1 < 0. This places restrictions on the type of energy that

dominates, a fluid with EOS w will have a Hubble radius evolving as

(aH)−1 ∼ t
1

3(1+w) (1+3w)
, (4.11)

therefore inflation will take place whenever w <−1/3 is satisfied.5 The usual descriptions

of matter and radiation obviously do not have the right requirement to drive an accelerated

expansion. However we would be naive to expect matter to behave as a perfect fluid at the

very high energy where the inflationary epoch occurs. Seeking guidance from the current

state of the art tools to study high energy physics, namely Quantum Field Theory (QFT),

we turn our attention to fields. Interestingly a simple scalar field allows us to obtain an

inflationary phase.

Consider the matter action,

Sm =
∫

d4x
√
−g(L)ϕ =

∫
d4x

√
−g
(1

2
∂µϕ∂ µϕ −V (ϕ)

)
, (4.12)

Using a flat FLRW metric, we find the EOM for a homogeneous ϕ to be,

ϕ̈ +3Hϕ̇ +
∂V
∂ϕ

= 0. (4.13)

While the stress-energy tensor,

Tµν = 2
δLϕ

δgµν +gµνLϕ , (4.14)

5We will restrict ourselves to the w ≥−1 case, see [61] for discussions considering w <−1.
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has the form Tµν = diag(ρ, p, p, p) with,

ρ =
1
2

ϕ̇ +V (ϕ) (4.15)

p =
1
2

ϕ̇ −V (ϕ). (4.16)

The EoS w = p/ρ can be as close to −1 as one wants by specifying a situation where

V (ϕ)≫ ϕ̇ 2. This condition is called the slow-roll condition. If satisfied and w ≈−1 we are

in regime where the Hubble parameter is mainly fixed by the potential H2 =V (ϕ)/(3M2
p)

and as ϕ varies slowly, we can approximate H as constant on short timescales. This puts

us in a (quasi) de Sitter geometry as the scale factor will now grow as a(t) ∼ eHt . The

slow-roll parameter ε = − Ḣ
H2 characterizes the deviation from a de Sitter phase. In order

for ϕ̇ to stay small and therefore have a sustained period of inflation, it is important that

|ϕ̈ | ≪ |3Hϕ̇ |+ |V,ϕ | (4.17)

which leads to a second condition on the so called η-parameter,

η =− ϕ̈
Hϕ̇

≪ 1. (4.18)

A specific realization of inflation is easily obtained with V (ϕ) = 1
2m2ϕ 2. Whenever ϕ ≫

ϕe ≃ Mp, the slow-roll conditions are satisfied and can be shown to be approximatively,

ε(ϕ)≃ η(ϕ)≃ 2
(Mp

ϕ

)2
≪ 1. (4.19)

So how does inflation solve the BBC problems?

• The Singularity Problem

Unfortunately this problem is still present. Although the exponential form of the

scale factor seems to allow for t →−∞ and not cause any divergence, this is simply

a coordinate artifact. One can show that caustics develops at finite proper time in

the past of any geodesics, a feature that arises in all scenarios with which the average
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expansion rate in the past satisfiesHavg > 0 [62]. Therefore inflation still requires one

to input initial conditions by hand. However these do not have to be homogeneous

over seemingly acausal scales. If our scalar field starts high enough on its potential

Eq. (4.4) insures that the expansion will quickly redshift away any gradient energy

density. However as potential energy does not get diluted by the expansion of space

it creates a region with a near homogeneous ϕ that seeds an inflationary phase.

• Monopole Problem

This issue was the motivation that drove Alan Guth to develop one of the first pro-

totypes of inflation. The original idea discussed the supercooling of the Universe, it

accomplished that by trapping the scalar field in a false vacuum and thereby obeying

all the slow roll conditions. If GUT monopoles were only created before this event,

they would then be diluted away at an exponential pace and rendered very rare.

• Horizon Problem

As stated previously, the Horizon problem came about because the Hubble radius

(aH)−1 was an increasing function of time in BBC. This is obviously not the case

when a is exponentially increasing andH is constant. Moreover we can now push our

time variable to −∞. Therefore now one should be considering ℓ(ti, trec) = ℓ(ti, te)+

ℓ(te, trec) with ti, te the time at the start and end of inflation respectively. Looking at

ℓ(−ti, te),

ℓ(ti, te) =
∫ te

ti

dt
a0eHt =

1
a0H

(e−Hti − eHte) (4.20)

can be made arbitrary large by having an arbitrary long period of inflation.

• Flatness Problem

We saw previously that Ω = 1 was an unstable fixed point in BBC. This is in contrast

to inflation in which it is an attractor. As aH ∼HeHt is now exponentially increasing,

an inflationary period drivesΩ towards unity because 1−Ω=−k/(aH)2. In terms of
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efolding numberN =
∫ te

ti Hdt = ln(aend/astart), inflationmust last for aboutN ∼ 40−

60 to solve the flatness and horizon problems. The exact efolding number depends

on the reheating mechanism, but we defer the interested reader to the review [60] on

inflationary cosmology for these additional details.

• Initial Inhomogeneities

Likely the most impressive feat of the inflationary scenario is its ability to give an ele-

gant explanation to the existence of the initial density perturbations. As the Universe

grows exponentially, all energy gets redshifted away except for the vacuum energy

supplied by the potentialV (ϕ). This energy is eventually dumped into radiation by a

process known as reheating. However quantum mechanics forbid us to know the ex-

act value of ϕ . Studying the vacuum fluctuations of the field δϕ (⃗x, t)= ϕ (⃗x, t)−ϕ0(t)

for some ϕ0(t) being the background value, we find that these evolve to a nearly scale

invariant spectrum on large scales which is exactly what is measured by the CMB.

The near scale invariance of these fluctuations are a consequence of being in a quasi

de Sitter background geometry. We will explore these details in section 4.4 when

outlining the mathematical framework of cosmological perturbations.

Inflation is a beautiful explanation to many mysteries facing the BBC. However it

does have its issues such as the singularity problem. In recent years, new bounds on the

tensor-to-scalar ratio r have been set by BICEP/Keck Array [63] which improves on their

previous joint analysis with Planck [64] and now bounds r < 0.07 at 95% CL at a pivot

scale of k = 0.05Mpc−1. Such bounds are hard to obtain from models in which the scalar

field takes super planckian values. The simplest large field models such as our V = m2ϕ 2

example are excluded or under heavy stress. From an Effective Field Theory (EFT) point

of view, these models were already questionable, however the small field models require

some big fine tuning to generate inflationary epochs that last long enough to tackle the
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problems it intended to solve. If the trend continues and the acceptable inflation models

get too complex, one might start to seriously question the whole paradigm and look for

potential alternatives.

4.3.2 Bouncing Cosmologies and the Matter Bounce

Amongst these alternatives are bouncing scenarios. Bouncing cosmologies assumes that

the Universe was originally contracting and underwent a bounce to set the stage for its cur-

rent expanding phase. We will focus on one specific realization of the bounce, one dubbed

the Matter Bounce. Unfortunately, in similar fashion than what occurred with inflation,

simple models of the Matter Bounce have been ruled out. This does not make them a very

attractive contender at the moment. Nevertheless the scenario approaches the BBC prob-

lems in interesting ways and so is worth exploring. We introduce it in two parts, the first

will survey the contracting phase while the second will deal with the bounce event.

Let us first discuss the contracting phase. The beginning of the bounce scenario

assumes a large contracting universe. The physics is still described by the Friedmann equa-

tion which we present once more but with additional explicit energy components on the

right hand side.

3M2
pH2 =

ρ∗
Λ

a0 +
ρ∗

m
a3 +

ρ∗
r

a4 +
ρ∗

a

a6 +
ρ∗

ϕ

a3(w+1)
+ ..., (4.21)

with ρ∗ being the energy density of each component when a= 1, which we will fix to be the

scale factor at the present time. The components that we chose to list in Eq. (4.21) are: a

cosmological constant, matter, radiation, the anisotropy, and a scalar field ϕ with an EoS of

w respectively. We see that as the scale factor gets progressively smaller, energy densities

with larger EoS tends to eventually drive the Hubble expansion for a period of time. When

discussing the creation of the energy density fluctuations in section 4.4 it will become clear
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that the different epochs will tend to produce perturbations with different spectrum. As

the name suggest, the Matter Bounce scenario assumes that the fluctuations seen in the

CMB were created (or frozen out) during the period of matter contraction. The motivation

is that it is in this epoch that a massless scalar field’s vacuum fluctuations will acquire a

scale-invariant spectrum.

A major obstacle in any bouncing universe is the anisotropy problem which leads

to a so called Mixmaster universe [65]. If one breaks the isotropy symmetry of the FLRW

metric we can write,

ds2 =−dt2 +a2 ∑
i
eβidxi, (4.22)

with the βi characterizing the anisotropy and obey ∑i βi = 0. Rederiving the corresponding

FLRW equation shows that these fields enters as having an energy density who scales as

a−6. This scaling implies that, in a contracting phase, anisotropy will eventually dominate

over all the form of known energy listed in Eq. 4.21. The universe becomes increasingly

anisotropic and the dynamics of the β ’s become controlled by the potential shown in fig

4.1. Misner showed [65] that this potential creates a chaotic behavior and causes one to lose

track of the background evolution. The common way to bypass this problem is to postulate

the existence of a stiff fluid with w ≫ 1. Such an EoS insures that the fluid eventually dom-

inates over anisotropies. This has the effect of driving the β ’s to a constant value as one

approaches the bounce, thus evading the chaotic behavior and driving the universe towards

an isotropic state [66]. The epoch driven by the stiff fluid is known as an Ekpyrotic phase

and is the only relevant pre-bounce epoch in the Ekpyrotic scenario [67] which was first

introduced as an alternative to inflation.

We are now ready to takle the bounce phase. The condition H = 0 must hold at

the bounce point if the Einstein equations are still valid. This requires a fluid whose en-
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Figure 4.1: Equipotential lines of the effective potential V (β ), taken from [65]. The fields
are β+ = β1 +β2 and β− = 1√

3
(β1 −β2).

ergy density is effectively negative in order to cancel the large contribution from the other

components we’ve been discussing. Such scenarios are called non-singular bounces as it

evades singularity theorems. These give us the opportunity to track every instance of the

bounce analytically (see [68]& [69] for examples). On the other hand, singular bounces

invoke unknown quantum gravity effects that are said to resolve the timelike singularity. If

these quantum gravity effect occurs for a very short time, one then treats the bounce phase

as a singular surface and then attempt to

(ambiguously) apply matching conditions to follow the evolution across the bounce. No-

table recent development in [71] introduces some machinery which allows them to tracks

the classical paths of perturbations in the complex plane and subsequently argue that this of-
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fers a rigorous way to compute the behavior of the perturbations through a singular bounce.

For more details on the bounce phase and for explicit examples, the interested reader is

encouraged to consult the review [72].

Here is how the contracting phase helps in explaining some of the mysteries of BBC.

• Singularity Problem

Unlike in the inflationary case, the Universe starts in a region with H < 0 but ends up

in a region withH > 0. Therefore this evades the condition outlined in [62]. However

new ideas needs to be introduced in order for the Hubble parameter to switch signs.

This is quite hard to achieve and involves violating the Null Energy Condition (NEC)

in the context of GR. There has been debates on whether this is possible without

introducing pathologies [73, 74, 70].

• Monopole Problem

Monopole creation occurs when the Universe’s temperature drops below a certain

threshold that force some symmetry to spontaneously break. In a bouncing scenario,

the Universe does not have to contract indefinitely. A bounce can occur at a finite

scale factor, insuring that the temperature never reaches high enough value to restore

the symmetry that, once rebroken, would generate monopoles.

• Horizon Problem

In a way similar to what inflation enables us to do, the contraction phase allow the

initial time t1 of the integral ℓ(t1, t2) =
∫ t2

t1
dt

a(t) to be pushed to negative values. This

allow us to go around the argument we’ve previously encountered.

A nice cartoon that summarizes the horizon problem is shown in fig (4.2). A length

scale λ (t) = a(t)λ0 is inside the Hubble radius if it is smaller than H−1. The horizon

problem deals with the fact that modes enters the Hubble radius today implies cor-

relations that couldn’t have been set by causal physics in the BBC. Inflation solves
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this by stretching these modes beyond H−1 while bouncing cosmologies shrinks H−1

below λ (t).

• Flatness Problem

The peculiarity regarding the Universe’s flatness does not get completely answered

in bouncing scenarios. However the problem is not as stout as in BBC. Being in

some way the reverse situation than the expanding phase, the contracting phase has

a flat universe as an attractor. Hence during contraction Ω approaches unity. There-

fore a small initial flatness is not necessarily a fine tuned parameter in this model.

Nevertheless this initial small flatness obtained from the contraction is undone just

as quickly in the expanding phase.

• Initial Homogeneities To explain the density perturbations that we observe today,

bouncing scenarios also rely on vacuum fluctuations. Unfortunately they do not pos-

sess any glaring symmetries that justifies the appearance of a scale-invariant spec-

trum. We will discuss this detail in this next section.

Figure 4.2: Cartoon of the Inflationary and (non-singular) Bounce resolutions of the hori-
zon problem. A region of length λ initially starts inside the Hubble radius but eventually
becomes larger. The x−axis delimits the end of inflation or the bounce point. The Hubble
radius must diverge for a short period of time in a non-singular bounce as it requires H = 0
at the bounce point.
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4.4 Cosmological Perturbations

Computing the predicted initial inhomogeneities of each scenario will require us to ana-

lyze their perturbations. Doing so forces us to chose a more specific realization of each

paradigm. We will assume that a scalar field exists in both cases and is ultimately re-

sponsible for the inhomogeneities, to be more exact the field needs to eventually dump its

energy density into radiation and hence imprint the statistical properties of its perturbations

unto the primordial plasma. Note that the background in a Matter Bounce scenario can

be driven by typical matter, hence the inclusion of the scalar field is an extra ingredient

that is required. This scenario produces the inhomogeneities by what is called isocurvature

fluctuations. The name comes from the fact that they are fluctuation in variables which

cannot be absorbed by a time translation as they are “orthogonal” to the background evolu-

tion. These must seed energy density fluctuations in the primordial plasma through detailed

mechanisms that are beyond the basic scope of this review 6. In inflation, the scalar field’s

position is responsible for the cosmological expansion and so perturbations in ϕ can easily

be transfered to density fluctuations in the primordial plasma through reheating [75].

We denote by ϕ the scalar field present in each scenario and assume its dynamics

are described by the action,

Sϕ =
∫

d4x
√
−g
(1

2
∂µϕ∂ µϕ −V (ϕ)

)
. (4.23)

We can expand this to second order in perturbations to read off the EOM for δϕ =

ϕ −ϕ0. For our purposes we will use a rescaled field u = aδϕ to simplifies the EOM. In

Fourier space and with conformal time (′ = d/dτ with dτ = dt/a) we find [77],
6Using precisely, we are referring to mechanisms seeding an adiabatic mode from an entropic one.
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(
uk
)′′

+
(

k2 − a′′

a
+a2V,ϕϕ

)
uk = 0. (4.24)

In the inflationary (de Sitter) case, a ∼ eHt ∼ 1
Hτ which gives a′′/a ∼ 2/τ2. On the

other hand, a Matter contraction has a ∼ (−t)2/3 with t negative and increasing towards 0

(the bounce point). In conformal time we then have, a ∼ τ2 which also yields a′′/a ∼ 2/τ2.

One immediately notices that the EOM term involving the scale factor ends up being equal

for either an inflationary phase or a matter contraction. This is an example of Wands’

duality, Wands showed that for every expanding background there existed a corresponding

contracting one in which a scalar field had the same dynamics [78]. The duality is one of

the main reason that the Matter Bounce has gathered interest.

To further solve the EOM, we will assume the potential term can be neglected, this is done

by considering a massless scalar field in the Matter Bounce case, and impose that a2V,ϕϕ ≪

k2 on the inflationary potential.

With these assumptions the EOM is solved by the two solutions,

uk =
A√
2k

e−ikτ
(

1− 1
kτ

)
+

B√
2k

eikτ
(

1+
1
kτ

)
. (4.25)

We will have to chose an initial condition, this is done by requiring that the fluctuations

start off in their quantum vacuum. At very early time, when kτ ≫ 1, the modes are much

smaller than the Hubble radius and therefore evolves as if they were in Minkowski space.

Imposing such Minkowski vacuum state,

lim
τ→−∞

uk =
1√
2k

e−ikτ , (4.26)

picks out the A = 1, B = 0 solution. In inflation, one can also justify this choice by picking

the vacuumwhich is invariant under de Sitter isometries, this is known as the Bunch-Davies

vacuum (see [79]). At late time when τk ≪ 1 the modes effectively becomes “frozen” as

the solutions stop having oscillatory behavior and start behaving as if it were a background
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mode with k = 0. Its relative amplitude when compared to a second mode k′ is therefore

set at Hubble crossing and hence so are the statistical properties of these perturbations.

We can now compute the power spectrum of ϕ ([75, 76]),

P(ϕ)
k =

4πk3

(2π)3

∣∣∣δϕk

∣∣∣2 = 4πk3

(2π)3

∣∣∣uk

a

∣∣∣2 ≈

(

H
2π

)2
, Inflation(

1
4πa(τ)τ

)2
, Matter Bounce.

(4.27)

We took the large scale limit in the final equality, showing that the scalar field even-

tually acquires a scale invariant power spectrum in either cases. However there exist a

glaring difference between the two computed quantities, unlike for the matter bounce, the

inflationary power spectrum is time independent. This difference in behavior can be traced

to the zero mode of each quantities7. In inflation, one has slow-roll and ϕ̇ ≃ 0 to first order,

while in the matter bounce our massless field has an EoS of w = 1 and evolves as ϕ ≃ a−3.

The departure from scale invariance is characterized by the spectral index ns defined

by,

ns −1 =
d lnP
d lnk

. (4.28)

A scale invariant spectrum has ns = 1 and hence a P that is independent of k. CMB mea-

surements from Planck shows that the initial conditions of BBC had to possess a nearly

scale invariant power spectrum with ns = 0.968±0.006 [58]. We say the power spectrum

has a red tilt as larger wavelength possesses more power. Inflationary models naturally

give rise to such departure when one takes into account slow roll corrections which we’ve

so far neglected. The matter bounce does not have this luxury and more complexity must

be added to obtain a red tilt, for instance a bounce model with interacting dark energy and

dark matter would work and such model is introduced in the next Chapter.
7The perturbations dynamic is the same as the background on super Hubble scales. This is essentially

because the effective local background in each scenario changes with time as ϕ new
0 = ϕ0 +∑k|k>(aH) δϕk, see

[80]
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The overall amplitude of these perturbations can be related to the value of theHubble

constant and the slow-roll parameters in simple single field inflationary models. Whenmul-

tiple fields are present, such as in the curvaton mechanism (for inflation) and our example

of a Matter Bounce, this parameter becomes dependent on the mechanism responsible for

transferring the isocurvature fluctuations unto the energy density of the primordial plasma.

4.5 Summary

The inflationary scenario enjoys tremendous successes without any glaring problems, hence

attempts to find simple alternatives has been the focus of only a small portion of cosmol-

ogists. Nevertheless the question is a cheap but important one to investigate. Failure will

further solidify our confidence in the paradigm offered by inflation, but a success would

yield a big overhaul of the current topics discussed in early universe cosmology. Bouncing

scenarios have been one of the most popular contenders, but they still require a lot of work

to elucidate their many details. However, as new data piles up, recent acceptable bounce

models seem to be increasing in complexity at a faster rate than the inflationary ones. It

might be that this alternative is simply not adequate, or that we don’t understand all of its

ramifications yet. The future could hold surprises.
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CHAPTER 5

SEARCHING FOR A MATTER BOUNCE COSMOLOGY WITH LOW REDSHIFT

OBSERVATIONS

The Matter Bounce scenario allows for a sizable parameter space where cosmological fluc-

tuations originally exit the Hubble radius when the background energy density was small.

In this scenario and its extended versions, the low energy degrees of freedom are likely re-

sponsible for the statistical properties of the cosmic microwave background (CMB) power

spectrum at large length scales. An interesting consequence is that these modes might be

observable only at relatively late times. Therefore low redshift observations could provide

evidence for, or even falsify, various bouncing models. We provide an example where a

recently hinted potential deviation from Λ-Cold-Dark-Matter (ΛCDM) cosmology results

from a dark matter (DM) and dark energy (DE) interaction. The same interaction allows

Matter Bounce models to generate a red tilt for the primordial curvature perturbations in

corroboration with CMB experiments.

5.1 Introduction

The recently released CMB data from the Planck collaboration has constrained the value

of the spectral index to be ns = 0.968± 0.006 [58], verifying at high precision a nearly

scale invariant power spectrum of primordial curvature perturbation with a slightly red tilt.

These properties are naturally achieved in inflationary cosmology where a nearly scale in-

variant power spectrum is associated with an almost constant Hubble scale during inflation

as described by cosmological perturbation theory [81]. Despite the many successes of the

inflationary universe paradigm, recent precision observations are beginning to statistically

disfavormany of the simplest (polynomial field potential) models (see, e.g. Planck [58], and

BICEP2/Keck Array [63]). In light of the latest observations it is worthwhile to continue to
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search for potential alternative theories of the early universe. The study and interpretation of

primordial cosmological perturbation theory may also be performed in alternative early uni-

verse paradigms, such as bouncing cosmology [82, 83, 72], ekpyrotic cosmology [67, 84],

the pre-big bang model [85, 86], and string gas cosmology [87, 88, 89]. Amongst some

of these scenarios, it was pointed out in [78, 90] that a massless scalar field will acquire a

scale invariant power spectrum when its vacuum fluctuations are allowed to exit the Hub-

ble radius during a matter-like (background equation-of-state parameter w = 0) contracting

phase.

The aforementioned scenario, known as matter bounce cosmology, has been ex-

tensively studied in the literature. A challenge matter bounce cosmology has to address

is whether the scale invariant primordial power spectrum can survive the bouncing phase.

This issue has been studied in several models, for example, the quintom bounce [91, 92], the

Lee-Wick bounce [93], the Horava-Lifshitz gravity bounce [94, 95, 96], the f (T ) teleparal-

lel bounce [97, 98, 99], the ghost condensate bounce [100], the Galileon bounce [101, 68],

the matter-ekpyrotic bounce [69, 102, 103], the fermionic bounce [104, 105], etc. (see, e.g.

[106, 76] for recent reviews). It was found in general, that on length scales larger than the

time scale of the nonsingular bounce phase, both the amplitude and the shape of the power

spectrum remain unchanged through the bounce due to a no-go theorem [107, 141].

In addition, successful models of a nonsingular bounce must satisfy various obser-

vational constraint from CMBmeasurements. In particular, successful models must yield a

red tilted spectral index, as well as satisfy observational non-gaussianity constraints [108] .

These considerations resulted in various extensions of the original matter bounce paradigm.

For instance, one may realize a small deviation from the exact matter contracting phase to

obtain the red tilt, as achieved in the quasi-matter bounce cosmology [109, 110]. In this

case, however, a specific, tuned form of the scalar field potential was introduced, making

the model seemingly unnatural.
49



Recently, it was proposed that a ΛCDM bounce scenario could solve some of the

aforementioned challenges by simply considering a cosmological constant plus an almost

pressureless dark matter fluid during the contracting phase [111]. However this natural

sounding scenario produces too much running of the spectral index, we will discuss this in

section 5.4.

The goal of this chapter is to determine whether viable models of the matter bounce

can be constructed using low energy DOF that can be seen with low redshift observations.

The ΛCDM bounce scenario would have been an example but does not agree with the CMB

data. Dark energy and dark matter are the two dominant components governing the evo-

lution of the universe today and in the ΛCDM model, those two sectors are decoupled and

probed indirectly through their gravitational effects. However there exists the possibility

of a small, but non zero, interaction between the dark sector. This scenario is dubbed the

interactive DE model (see [112, 113, 114] for earlier literature and [115, 116, 117] for com-

prehensive reviews on DE dynamics). The interaction term between DE and DM could

give rise to new features in the formation of LSS, and the corresponding constraints were

studied extensively in the past (for example, see[118, 120, 121, 122, 119, 123, 124] and

references therein). In particular, the recent BOSS experiment of the SDSS collaboration

[125] indicates a slight deviation (at 2σ CL) in the expected ΛCDM value of the Hubble

parameter and the angular distance at an average redshift of z = 2.34. These observational

hints could be modeled by wCDM [126, 127] and interactive DE [128, 129, 130] models.

A statistical analysis of these models using the BOSS data was done in [131].

Here we consider the influence of the DE and DM interaction during the contracting

phase assuming that primordial cosmological perturbations were mainly generated by the

vacuum fluctuations of a massless scalar field. In our model, the dark interaction modulates

the background evolution to yield a small deviation from the exact matter contraction phase

when the universe was dominated by DM before the bounce. We find it is possible to obtain
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a red tilt for the primordial isocurvature perturbations which can then be transfered into

the adiabatic mode. In addition, because the dark sector interaction term may survive the

bounce and influence late time dynamics 8, this physical interpretation of the CMB red tilted

power spectrum would be connected to the essence of DE and DM dynamics measured by

astronomical surveys in the late time universe.

The interaction would produce observable signatures in the LSS of which we may

already have discovered hints [133]. This would provide a testable mechanism that explains

the CMB measurement of the spectral index in the context of the Matter Bounce scenario.

The chapter is organized as follows. We begin by a review of perturbation theory of

a matter bounce cosmology in Section 5.2 (here we cover additional important details that

were omitted in Chapter 1) along with the shortcomings of the original scenario. In section

5.3 we perform the analysis of the energy scales that was present at the time the primordial

perturbation modes associated with the CMB window were initially exiting the Hubble

radius. From this study, we show that a sizable parameter space allows for a very low

energy density at that epoch, and hence could be probed with the late-time observations. In

Section 5.4, we first revisit the possibility of generating a red tilt for the power spectrum of

primordial perturbations within the ΛCDM bounce and describe why it fails. Afterwards,

we show that a tilt can be achieved after assuming an existence of the interaction term

between DE and DM. We conclude with a discussion in Section 5.5.

5.2 Generation of Perturbations in a Bouncing Model - Part Deux

Figure 5.1 shows the cartoon of a bouncing scenario in conformal time. One notable feature

is how certain of the comoving modes become larger than the Hubble radius as it decreases
8However, as discussed in Ref. [132], undergoing a bounce at very high energies could result in the

variation of the physical constants to random values, and thus in this case the pre-bounce coupling wouldn’t
"survive". We will assume that such situation does not occur.
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during the contraction. 9 It is during horizon crossing that the statistical properties of the

fluctuations are partially determined (i.e. quantities such as the spectral index of a given

field’s power spectrum).

As discussed at the beginning of the chapter, fluctuations in the adiabatic direction

of known bouncing models will generically yield a scalar power spectrum whose tilt is

irreconcilable with CMBmeasurements. Hence one has to resort to an entropic mode which

must eventually seed the fluctuations seen today. Here we briefly review the details behind

those statements. Our scenario requires two key ingredients. The first is some matter to

produce the correct contraction while the second is a homogeneous massless scalar field φ .

The scalar fluctuations can be characterized by the comoving curvature perturbation

whose Fourier mode k is given by, [75, 77],

Rk = ψk −
H

ρ + p
δqk , (5.1)

where ψk is the curvature perturbation, ρ is the energy density, p is the pressure density and

δqk is the scalar part of the 3-momentum. We can rewrite Rk in terms of gauge-invariant

variables of the individual fluid components as the quantities ρ, p and δqk are simply the

sum of the individual quantities of each component. Namely, defining Q(i)
k = −δq(i)k +

ρ(i)+p(i)
H ψk we have,

Rk =
H

ρ + p ∑
i

Q(i)
k . (5.2)

For instance a massive scalar field χ with potential V (χ) = m2χ2/2 will have an

EoS that oscillates around 0. This field can drive a matter contraction provided these oscil-

lations occur on a time scale much shorter than a Hubble time. Throwing a massless scalar
9 Note that the small scale modes in the CMB entered the Hubble radius during a radiation dominated

period. As the Matter Bounce scenario requires these same modes to exit the Hubble radius during a matter
dominated epoch, it implies that a perfectly symmetric bounce cannot occur. The cosmological history must
therefore be asymmetric. This can be obtained by having a period of “reheating” in which some of the energy
density is transformed into radiation [139] allowing for a longer period of radiation domination after the
bounce.
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Figure 5.1: A potential depiction of a non-singular bounce in conformal time. A mode
λ first exits the Hubble horizon prior to the bounce and reenters thereafter. The different
times label different epochs: a non-singular bounce phase starts at τB−, ends at τB+ and then
a reheating phase occurs until τreh. The blue-dashed conformal Hubble radius represents
only one particular model where the background EoS is w > 0 except during the bounce.
The brown dot-dashed line is another possible evolution if some energy density with EoS
having w < −1/3 dominates the evolution between the bounce and reheating. We will
remain agnostic about what happens in the shaded bouncing region and focus on studying
the contracting phase beforehand and assume a standard radiation dominated Big Bang
cosmology afterwards. When discussing the energy scale of the Matter Bounce in section
5.3, we will make the assumption that the uncertain shaded region, encompassing the start
of the bouncing phase until the end of reheating, occurs quick enough that it can be well
approximated by a singular bounce where the scale factor is continuous but the Hubble
parameter might not.
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field φ in the mix, we have a two field model which was studied in [102] and allows us to

write,

Rk = H
( φ̇Q(φ)

k + χ̇Q(χ)
k

φ̇2 + χ̇2

)
, (5.3)

with Q(φ)
k = δφk +

φ̇
H ψk being the gauge invariant Mukhanov-Sasaki variable of φ (and

Q(χ)
k is the corresponding one for χ). Hence, as long as χ dominates the energy density

ρ ∼ χ̇2 +m2χ2 we have χ̇ ≫ φ̇ and the spectrum of Rk is set by Q(χ)
k . This can change if

φ becomes the dominant field and reflects some of the time dependence of Rk if there is a

significant non-adiabatic pressure component.

We define u(χ)k = aQ(χ)
k and u(φ)k = aQ(φ)

k as these variables have equations of mo-

tion that can be written as [77],

(
u(χ)k

)′′
+
(

k2 +m2a2 − a′′

a

)
u(χ)k = 0, (5.4)(

u(φ)k

)′′
+
(

k2 − a′′

a

)
u(φ)k = 0. (5.5)

For the massless scalar field this is solved by the two solutions,

u(φ)k =
A√
2k

e−ikτ
(

1− 1
kτ

)
+

B√
2k

eikτ
(

1+
1
kτ

)
. (5.6)

At very early times, when kτ ≫ 1, imposing the Minkowski vacuum state picks out the

A = 1, B = 0 solution. At late time when τk ≪ 1 this initial condition evolves to yield a

scale invariant spectrum

P(φ)
k ∼ k3

∣∣∣u(φ)k
a

∣∣∣2 ∼ 1
τ6 . (5.7)

The situation is more complicated for the massive field due to the a2m2 term. If the

field is to mimic matter we require that m2a2 ≫ k2. Then at small scale we can impose

initial conditions using the WKB approximation,

u(χ)k =
1√
2am

e−i
∫ τ amdτ , (5.8)
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which is valid if m ≫ 2/τ . This approximation turns out to fail when m2a2 ∼ a′′/a and

transition to a solution of the form u(χ)k ∼ Aτ2 +B/τ with both coefficients A and B set

by the initial conditions which are independent of k. Therefore we can conclude that the

amplitudes of the modes u(χ)k have no k dependence and the spectrum is deeply blue as it

goes like P(χ)
k ∼ k3.

One can note that the initial spectrum of perturbations will depend on the details

of the component responsible for the matter contraction. To see this in more detail let us

assume for simplicity that no entropy perturbation exists. The only energy component will

be an unknown matter-like fluid described by its EoS w = p/ρ ≃ 0 and its speed of sound

c2
s = (∂ p/∂ρ)|s = ṗ/ρ̇ . An equation of motion can then be written for uk = zRk where

z = a
√

ρ+p
Hcs

[140],

u′′k +
(
c2

s k2 − z′′

z

)
uk = 0. (5.9)

The properties of the fluid on the evolution of uk are captured by z and the speed of sound.

This would generate a scale invariant spectrum provided that z ∝ a and ċs/cs ≪ H. A

scalar field with exponential potential can fulfill these properties [109, 110], but in our

previous example we had time varying EoS for χ which made z not proportional to a.

More realistically we would expect the matter contraction to be due to some non relativistic

perfect fluid composed of dust particles. In this case the speed of sound grow as cs ∝ a−1

hence z ∝ a2, giving a blue spectrum.

Nevertheless, even with an entropic mechanism the above models does not generate

a slight red tilt. To obtain such feature, consider a background evolving as a ∼ τ p so that

a′′/a = p(p− 1)/τ2. A slight deviation from perfect matter contraction, parametrized by

ε ≪ 1 through p = 2(1+ε), gives a′′/a ≈ (3/2+2ε)2−1/4
τ2 =

v2
s−1/4

τ2 . This allows the spectral

index of the massless scalar field to be red as it is given by ns − 1 = 3− 2vs = −4ε . The

measurement of ns ∼ 0.968±0.006 provided by the latest Planck data[58] determines the
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needed value of ε . A mechanism converting this entropic perturbation to an adiabatic one,

such as presented in [102], would provide Rk with the correct spectrum.

The hope we’d like to convey in this chapter is that such deviation from perfect mat-

ter contraction should be due to physics that still impacts the cosmological evolution after

the bounce and hence be tested. The logic behind the statement stems from an EFT point

of view: if the matter bounce occurs at low energy scales - a question that will be explored

in section 5.3 - only the low energy degree of freedoms will be important to describe the

dynamics. Such low energy DoFmight only become observable again at late times, the cos-

mological constant being an example. If future observations could detect a departure from

the expected ΛCDM expansion, it could be a nice hint for the validity of a matter bounce

if the same departure during the contraction allows for a red tilt to be generated. This point

of view naturally raises questions about the nature of the required massless isocurvature

mode. For instance where is it today? In the current chapter we do not attempt to give a

satisfying answer to this question. It could be something along the line of a quintessence

field responsible for dark energy, a natural candidate in the context of section 5.4.2 where

we will consider an explicit model that realizes the red tilt.

5.3 The Energy Scale During Contraction

In this section we argue that Matter Bounce models can generically have small energy den-

sity at the time the CMB modes exited the horizon. We will make the assumption that the

background evolves with an EoS w(t) ≥ 0 that is increasing (decreasing) towards (away

from) the bounce. This insures that the comoving Hubble radius H −1 shrinks and grows

in a way similar to what is shown by the blue-dashed curve on the plot of Figure 5.1. This

would be false if the bounce itself was triggered by a NEC violating fluid as it would have
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w <−1 which is smaller than w = 0 during matter contraction (and seen around the bounce

point of of Figure 5.1). This assumption can also break down if a phase transition - which

one could expect to happen - occurred at very early time. In that case, parts of the universe

can be trapped in a false vacuum leading to topological defects. These defects can cause

an inflationary stage to occur which then makes it impossible to meaningfully estimate the

energy scales involved before the bounce. As such, we want to focus on scenarios which

does not have (or have an expansion close to) an inflationary period between the matter

contracting phase and today. We also haven’t found evidence for any type of matter (other

than the CC) with w< 0 and it is reasonable to consider bouncing models that does not have

such ingredients dominating the background for long period of times. This implies that our

conclusions, and assumption, will be approximately correct provided the scale factor does

not evolve appreciably during any times some energy component with negative EoS dom-

inates. For instance, we assume the bounce occurs in such a way that the scale factor is of

similar size across the bounce, i.e. a(τB−)≃ a(τB+) using the notation in Figure (5.1).

The smallest length seen in the CMB by Planck is about 100 times smaller than the

BAO scale of about 150Mpc today, denote the comoving wavenumber of this mode by ks.

It crosses the horizon twice at ks = a−H− = a+H+ when it is exiting(entering) at −(+).

The largest scale in the CMB is about 103 times bigger and labeled by kL = 10−3ks. We

parametrize our ignorance of the background between the time of the bounce and the time

ks exits the Hubble radius by an effective EoS by w−. With this we can write,

ks = a−HB

( aB

a−

) 3
2 (w−+1)

, (5.10)

which implies,
aB

a−
=
( ks

HBaB

) 2
1+3w− . (5.11)

The energy density when ks = a−H− is

ρs
− ≃ M2

pH2
− ≃ M2

pH2
B

( aB

a−

)3(w−+1)
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≃ M2
pH2

B

( ks

HBaB

)6 (1+w−)
1+3w− . (5.12)

We similarly parametrize the EoS after the bounce but before BBN by w+ in order to write,

HB+

( aB

aBBN

)3(1+w+)/2
= HBBN . (5.13)

This allows us to express aB in terms of the Hubble scale right after the bounce HB+ and at

BBN HBBN .

Moreover the energy scale after reheating must be higher than ρBBN ≃ MeV4 but

must be below the energy scale of the bounce, therefore HB ≥ HB+ ≥ HBBN . As assuming

w+ ≥ 0 implies ρs
− is maximized by having HB+ as large as possible, we set HB+ = HB to

get an upper bound. With this we find,

ρs
− . M2

pH
4(w−−w+)

(1+3w−)(1+w+)

B H
−4(1+w−)

(1+3w−)(1+w+)

BBN

( ks

aBBN

)6 (1+w−)
1+3w−

≃
(Mpks

aBBN

)6 (1+w−)
1+3w− (E−1−w−

BBN Ew−−w+
B

) 8
(1+w+)(1+3w−) , (5.14)

where in the second line we have rewritten HB and HBBN in terms of the energy scale using

M2
pH2 ≃ E4. We can now plug in some numbers to see what we could expect from different

types of bounce models. With a0 being the scale factor today, we have the following known

values for the parameters in Eq. (5.14),

ks/a0 ∼Mpc∼ 10−38GeV, aBBN/a0 ∼ 10−8,

EBBN ∼ 10−3GeV, Mp ∼ 2.4×1018GeV. (5.15)

Three numbers remain unknown: w−, w+ and EB. As ks re-enters the Hubble radius

during the radiation epoch we might expect w+ to be close to 1/3. We will then consider

two cases to represent Eq.(5.14) : one with w+ = 0 and the other with w+ = 1/3. Note
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that the upper bound becomes smaller as w+ increases. As a function of the energy scale of

the bounce EB, figure (5.2) shows the upper bound on the energy scale during first horizon

crossing Ek = (ρ−(k))1/4 for various modes k and effective EoS w−. The solid black line

represents the energy scale at the time ks exits the horizon if w− ≫ 1, i.e. an Ekpyrotic

phase takes place between the bounce and τ− when ks = a−H−. If the CMB scales leave

the horizon solely during an Ekpyrotic phase (i.e. we do not have aMatter Bounce scenario)

we still can compute EkL which is shown by the dashed blue line. We see that large numbers

such as Eks ∼ 105GeV can be achieved if ρB occurs near the planck scale. On the other hand

a Matter Bounce model would require a matter dominated contraction prior to τ−. This

would yield a EkL given by the dotted black line which is at most on the order of a GeV.

Therefore, in models with a very long Ekpyrotic phase we expect Ek to be quite large and

independent of w+. Of course it is sensible to expect the matter dominated phase to last for

some time after τ−, hence at the other extremewe can havemodels with amatter domination

epoch for most of the contracting phase with w− ≃ 0. This yields a Eks(EkL) shown by the

solid(dotted) red line. The energy scales are much lower and take values as low as 10−28

GeV for w+ = 1/3 and 10−18 GeV for w+ = 0. Interpolating between the two extremes of

w− we will find that any specific model should lie in the green region. Nevertheless, this

identifies the existence of a large parameter space which has Matter Bounce models which

generate the statistical properties of the CMB fluctuations at very low energies. These

numbers should be compared to the current energy density today, ρ0 ≃ (10−12GeV)4.

What happens if w+ is negative? The power of EB is given by 8(w−−w+)
(1+w+)(1+3w−)

and

so lowering w+ will increase the bound on ρs
− to render it meaningless. Models that have

such features push ρs
− to large values. However, as no topological defects have been de-

tected, if they where produced they must have decayed into radiation at very early times.

Additionally, the monopole problem could impose bounds on the bounce scale which could

further reduce the parameter space of Figure 5.2. Hence we restate that such components
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Figure 5.2: A plot of an upper bound on the energy scale during Hubble crossing of the
CMB modes in the contracting phase as a function of the energy scale at the bounce. The
solid lines represents the smallest mode ks while the dotted ones represents the largest
mode kL. The shaded region characterize our ignorance on the effective background EoS
w− from the time ks crosses the horizon until the bounce. The top solid line occurs when
w− ≫ 1 while the bottom solid line is when w− = 0. We expect any Matter Bounce models
to fall in the green region that interpolates between these two extremes. These plots do
depend on the effective EoS after the bounce and BBN which we denote by w+. See the
text for additional details. 60



can exist and yet still impose a strong lower upper bound on ρs
− as long as the defects do

not dominate the evolution for a significant amount of time. It would be interesting to see

how these conclusions are affected when analyzing models with such features.

5.4 The CMB Red Tilt

We’ve mentioned earlier that a slight deviation frommatter contraction can produce a small

tilt in the power spectrum of a massless scalar field. A red tilt is generated if an energy den-

sity with w < 0 dominates during the contracting phase. To produce a slight red tilt, one

might consider pressureless matter w = 0 to be the dominant contribution and some sub-

dominant energy component with w < 0 so that the effective w is slightly less than, but

still very close to, zero. Some possibilities with this behavior include the CC with w =−1,

defects, such as domain walls with w =−2/3 and cosmic strings with w =−1/3. The last

two examples might create additional difficulties for the homogeneity of the background if

they become significant when approaching the bounce, for instance a network of intersect-

ing strings would eventually evolve as an inhomogeneous radiation fluid [142]. It has been

argued that a cosmological constant could give rise to the desired tilt [111]; however, we

demonstrated in section 5.4.1 that the desired tilt cannot be maintained for a wide enough

range of k as there will be significant running. This issue can be avoided by using an inter-

acting dark energy model which we explore in section 5.4.2.

5.4.1 Matter Contraction with Non-Interacting Dark Energy (the ΛCDM Bounce

Scenario)

Assuming the EoS of dark energy is pd = wρd , the Friedmann equation is

H2 =
1

3M2
p
(ρm +ρd) , (5.16)
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with ρm = ρm0a−3 and ρd = ρd0a−3(1+w). For w = −1 we return to the ΛCDM bounce

scenario discussed in Ref. [111]. We introduce the ratio of DM and DE energy density

ρ ≡ ρm/ρd and define ρ0 ≡ ρm0/ρd0, so that ρ = ρ0a3w. In conformal time, Eq.(5.16) can

be expressed as

a′(τ) =
1√
3Mp

√
aρm0

(
1+

1
ρ

)
. (5.17)

Taking a derivative with respect to τ ,

a′′(τ) =
1

6M2
p

ρm0

(
1+

1−3w
ρ

)
. (5.18)

As ρ ≫ 1 in the matter dominated stage, we can solve for a to first order in 1/ρ ,

a ≃ ρm0

12M2
p

τ2(1+(1−3w)/ρ) , (5.19)

which leads to the following expression for the ratio a′′/a,

a′′

a
≃ 2

τ2

(
1+

2(1−3w)2 −1
2(1−3w)ρ

+O(1/ρ2)
)
≃

v2
s − 1

4
τ2 , (5.20)

with vs ≃ 3
2 +

2(1−3w)2−1
3(1−3w)ρ . Therefore, as shown in section 5.2, the spectral index of our

massless field is estimated to be,

ns −1 = 3−2vs =−4(1−3w)2 −1
3(1−3w)ρ

. (5.21)

Forw< 0, this gives the desired red tilt. Note that because ρ = ρ0a3w
0 τ6w is time dependent,

the spectral index should be calculated at the time of horizon exit |τk| ∼ 1/k of each mode.

Thus we find

ns −1 ∼− 4(1−3w)2 −1
3(1−3w)ρ0a3w

0
k6w, (5.22)

which is heavily dependent on k for w ≃−1. In this case, the spectral running is

αs =
dns

d lnk
=−6(ns −1), (5.23)

and is larger than the absolute value of ns − 1 by a factor of 6. The current observational

bounds on αs are smaller than ns −1 by about one order of magnitude [58]; therefore, the

ΛCDM bounce scenario cannot generate the observed cosmological perturbations.
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5.4.2 Matter Contraction with Interacting Dark Energy

We now present a mechanism to generate a red power spectrum with little running. The

mechanism relies on the introduction of a dark matter and dark energy interaction. Such

interactions in the dark sector have been considered previously in the literature [144, 145,

113, 146, 147, 148] as an attempt to explain the coincidence problem and are precisely of

the form needed to generate a slight red tilt with little running in a contracting universe.

Consider a phenomenological model with dark energy and matter being two fluids

having energy-momentum tensor T µν
d and T µν

m respectively. By Einstein equations and the

Bianchi identity, the total energy-momentum tensor is conserved,

0 = ∇µT µν = ∇µT µν
d +∇µT µν

m = Qν
d +Qν

m . (5.24)

Here ∇µT µν
i = Qν

i is non zero whenever interactions are present. Thus the energy transfer

satisfies Q0
m = −Q0

d ≡ Q. While the background evolution remains adequately described

by Eq.(5.16). The energy conservation equations for matter and dark energy are expressed

as

ρ̇m +3Hρm = Q , (5.25)

ρ̇d +3H(ρd + pd) =−Q . (5.26)

Here we have used pm = 0 for the matter component and assume a constant EoS w =

pd/ρd ≃−1 for dark energy. 10 Thus for Q > 0, energy flows from dark energy to matter,

and for Q < 0 energy flows from matter to dark energy. Using Eq.(5.25) and (5.26), the

ratio of matter and dark energy density ρ ≡ ρm/ρd evolves as

dρ
dt

= 3Hρ

[
w+

Q
9H3M2

p

(1+ρ)2

ρ

]
. (5.27)

10We will have to chose the dark energy EoS to be near, but slightly less than, −1 to insure stability [149].
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Unlike the ΛCDM universe corresponding to Q = 0, this expression allows for a non-trivial

fixed point if Q ∝ H3. In what follows we consider one of the simplest model of interacting

dark energy that have this feature, namely Q = 3HΓρm with a constant Γ > 0. In this case,

Eq.(5.25) and Eq.(5.26) become

dρm

da
+3(1−Γ)

ρm

a
= 0 , (5.28)

dρd

da
+3(1+w)

ρd

a
+3Γ

ρm

a
= 0 . (5.29)

Here we used the scale factor a instead of the cosmic time t as it is more convenient to de-

scribe the evolution before the bounce. Using this new time coordinate, Eq.(5.27) becomes

dρ
da

=
3
a

[
Γρ2 +(Γ+w)ρ

]
. (5.30)

This equation can be solved analytically. Setting the initial condition ρ = ρ0 at a = 1, we

have

ρ(a) =
ρ0(w+Γ)

(w+Γ+ρ0Γ)a−3(w+Γ)−ρ0Γ
. (5.31)

In Fig.5.3 we compare ρ(a) for an interacting dark energy model against the ΛCDM pre-

diction and show how the fixed point is approached at ρ = ρ+ for a ≪ 1. The value of ρ+

is obtained using Eq.(5.30) and the condition dρ
da = 0. We find two constant solutions of ρ ,

ρ+ =−Γ+w
Γ

and ρ− = 0 . (5.32)

Thus in a situation with Γ ≪ 1, we have ρ ≃ ρ+≫ 1 for a ≪ 1 and this nearly constant

stage is matter dominated.

In what follows, we show how a slight red tilt for Pφ(k) is produced from this inter-

acting dark energy model. Solving Eq.(5.28) we find ρm ∝ a−3(1−Γ) and using this with the

first Friedmann Equation (5.16) in the regime where ρ is approximately constant, we find

a(t) ∝ t2/3(1−Γ) ∝ τ2/(1−3Γ). The perturbations of φ are again be given by Eq. (5.5) with,

a′′

a
=

( 2
1−3Γ − 1

2

)2 −1/4
τ2 =

v2
s −1/4

τ2 . (5.33)
64



Figure 5.3: The evolution of DM to DE energy density ratio ρ ≡ ρm/ρd in two different
models. Here we set Γ = 0.0026 and w =−1.

The spectral index is therefore, ns − 1 = 3− 2vs = 4− 4
1−3Γ . The latest Planck measure-

ments [58] set ns = 0.968± 0.006 which fixes Γ = 0.0026± 0.0005 in order to get the

measured red tilt. Another feature, arising due to being near the fix point, is that the run-

ning of ns will be small and negative, the exact value is related to the time variation of ρ .

Having such energy transfer will also affect the late time universe by altering the

cosmological expansion. Therefore this model can, and has, been tested by late time obser-

vations [131, 129]. The analysis of [131] fits Γ = 0.002272+0.00103
−0.00137 at the 68% confidence

level for Planck+BAO data, and Γ = 0.001494+0.00065
−0.00116 at the 68% confidence level for

Planck+BAO+SNIa+H0 data. There are still large uncertainties in these constraints but the

fit suggests a 2 sigma deviation from ΛCDM and an agreement with the demands to gen-

erate the proper red tilt. Improvements on measurements in the not so distant future will

further determine the viability of such scenarios.
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5.5 Conclusion

As an alternative to the simple picture given by the inflationary scenario, current Matter

Bounce models require many intricacies to agree with observations. The original idea of

having a single massless scalar field responsible for the CMB perturbations cannot explain

the observed red tilt. Additional parameters must be added to achieve these features. This

presents a difficult challenge for the Matter Bounce scenario, however, if the new param-

eters are expected to exist, observational opportunities are also present. This is where a

particularly interesting feature of the Matter Bounce comes into play: the energy density

of the universe at the time the statistical properties of the perturbations are frozen in can

be very low, in some cases many order of magnitude smaller than today’s energy density.

Hence unlike other pre Big Bang or early universe scenarios, only low energy degrees of

freedom are relevant during the times of CMB mode horizon crossing. The observations

that uncover those degrees of freedom are made at low redshifts where their effects are

most easily seen. The cosmological constant is an example: it is a parameter of the theory

that only becomes important during the late stages of our universe. In a universe where the

Matter Bounce occurred, this opens the possibility of determining the identity of the extra

parameters that make up a viable model, especially when considering the recent cosmolog-

ical hints of modified gravity [133]. To illustrate how the hunt for these parameters might

ensue, we note that a deviation from perfect matter contraction would give a red tilt to per-

turbations. Whatever is responsible for this deviation is likely to also cause a similar effect

after the bounce and can be observationally detected. The introduction of a coupling in the

dark sector that allows energy to flow from dark matter to dark energy is able to support

a contracting phase giving the correct ns. These interacting model have been considered

as extensions of ΛCDM [131, 129] and the best fit to the Planck+BAO+SNIa+H0 data has

the coupling Γ deviate from 0 at the 2 sigma confidence level. Intriguingly, the strength of
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the coupling needed to set the measured CMB value of ns sits comfortably within the error

bars found by this analysis.

It is interesting to speculate further about the potential new signatures that might

arise in viable Matter Bounce models. For instance, another issue faced by matter bounce

scenario is to realize a small tensor-to-scalar ratio consistent with the CMB observations,

which has been comprehensively reviewed in [82]. However, if future low redshift obser-

vations could detect a small graviton mass [19], this feature would change the details of

how the tensor modes are created during the contracting phase and affect the predictions

for the tensor-to-scalar ratio. Therefore, besides the specific example about interacting dark

energy considered in this chapter, it is also interesting to further explore the role of massive

graviton in matter bounce models as another example of our idea.

Additionally, probing the matter bounce using low redshift observations could also

shed light on experimental tests of nonsingular bounces by other mechanisms, such as by

using the direct dark matter searches or the BBN bound as analyzed in Refs.[150, 151, 152,

153].
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CHAPTER 6

FINAL REMARKS

The study of modified theories of gravity allow us to broaden the horizons of what we can

expect in the late and early Universe. This gives us the ability to formulate more creative

models which can fit the observed data. For example, the exotic solutions uncovered in

Chapter 3 could point to the existence of surprising new objects at high energies (i.e. rele-

vant in the early Universe). Note that such examples of modified gravity have underlying

issues and so are not meant to be taken as serious contenders to a better description of grav-

ity than what is currently given by General Relativity. Instead, they merely serve as toy

models which we use to explore the possibilities of what gravitational theories can offer.

To complement the above logic, lines of work similar to the one of Chapter 5 attempt to

develop new ideas that can determine whether these speculative models hold some truth.

In that particular chapter we’ve explored novel ways to test the ideas behind bouncing cos-

mologies. Models with a bounce are hard to construct as they generally require a violation

of the NEC. Hence one would expect that bouncing cosmologies only occurs in some of

these exotic theories of modified gravity. The result of Chapter 5 shows that identifying

certain early and late time observations in our Universe could lend support to this idea,

hinting that expending energy to improve these models could be fruitful. Employing this

type of strategy to push our ignorance of the unknown is sound as they are cheap and fosters

creativity. Hopefully the strategy will prove to be successful in the future.
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In this appendix we will introduce the concept of ghost fields and discuss the issues

of their presence in a theory. We will approach the question only from a classical point

of view, namely we will not discuss the unitarity problems that they cause in a quantum

mechanically setting. For such discussionwe refer the reader to the review in [17]. Consider

a scalar field theory containing N fields along with a given background Φ̃i(⃗x, t) where i ∈

{1, ...,N}. We can write down an effective Lagrangian density for the perturbations ϕi =

Φi − Φ̃i which, to second order, takes the form,

L (2) =
1
2

Ui jϕ̇ iϕ̇ j − 1
2

Vi j∂ϕ i∂ϕ j − 1
2

Wi jϕ iϕ j, (A.1)

and has a Hamiltonian density,

H =
1
2

Ui jϕ̇ iϕ̇ j +
1
2

Vi j∂ϕ i∂ϕ j +
1
2

Wi jϕ iϕ j. (A.2)

We have three matrices U,V,W and their properties will signal possible instabilities which

we will now discuss. Note that if this is the whole system, the overall sign of the Lagrangian

does not matter. Hence without loss of generality we will assume that at least one of the

three matrices is positive definite. We will also simplify the discussion by asking that the

matrices all have full rank as otherwise we’d need to find the non vanishing higher order

terms of the Lagrangian to continue the discussion.

A healthy theory will have the three matrices U,V,W be of the same definiteness,

i.e. all positive in our case. If either U,V or W fails to be positive definite there will exist

instabilities called ghosts, gradient or tachyonic respectively. The failure of being positive

definite implies the existence of at least one direction in field space which has negative

eigenvalue and hence the Hamiltonian density (A.2) will be unbounded from below.

Gradient and ghost instabilities suggest something very wrong with the theory. This

is not the case for tachyons, which arises when W is not positive definite but U,V are. As
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an example consider a theory with one field expanded around Φ̃ = 0 giving U = 1, V = 1

and W = λ < 0. The Lagrangian density in Fourier space is,

L
(2)

k =
1
2

ϕ̇k
2
+

1
2

k2ϕk
2 − 1

2
λϕ 2

k . (A.3)

This is a well defined theory and the instability has a physical meaning that usually indicates

the existence of a rapidly changing background. For long wavelength modes satisfying

k2 < −λ , we have a runaway solution ϕk(t) ∼ eit
√

λ+k2 meaning that perturbations will

eventually grow large and the perturbation expansion around a specific backgroundwill lose

its applicability. However as long as we focus on timescales shorter than tinst = 1/
√
−λ -

which is the timescale of the fastest growing unstable mode - we are still in the perturbative

regime and can get a sense of what the theory is doing.

On the other hand, a ghost instabilities does not offer us such luxury. Going back to the one

field example but now with U = λ < 0, V = 1 and W = m2, the Lagrangian becomes,

L =
λ
2

ϕ̇k
2
+

1
2

k2ϕ 2
k −

m2

2
ϕ 2

k . (A.4)

By changing the sign of the kinetic term, we now find that the modes all have runaway

solutions ϕk(t) ∼ eit
√

m2+k2/
√

λ . This causes a problem because there is no timescale at

which the theory stays in the perturbative regime, therefore there is no regime in which the

perturbative expansion is applicable. A similar thing occurs for gradient instabilities, where

U = 1,V = λ < 0 and W = m2.

One might try to introduce a cutoff Λ on k and then argue that this is an effective field

theory only defined for wavelengths smaller than Λ. Such a cutoff will introduce a lower

bound on the timescale of instability. In such setting the fastest perturbations to become

uncontrollably large only do so after some time akin to tinst ∼ 1/(Λ
√
−λ ). Unfortunately,

by imposing such cutoff we are also forbidding the theory to describe any phenomenon

on any timescales shorter than the one defined by your smallest wavelength, namely tinst .

Hence the regime in which the EFT is defined is also the one in which it cannot be
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perturbative. Hence this raises concern and confusion about the meaning of any calculation

that is performed in such theories.

Our fear of ghosts can be summarized in the following way. The runaway behavior

arises because it takes negative energy to excite a ghost mode. As we expect all field to be

coupled to gravity and because quantum mechanics insures that the ghost fields cannot be

set to vanish identically, a ghost field coupled to gravity will be able to explore any part of

their phase space from an entropic point of view as exciting a mode k of each field cost 0

energy. If we have a cutoff Λ, then the phase space is not infinite and the time of instability

is finite but any calculations cannot be trusted from our EFT viewpoint. If we do not have a

cutoff, such as in a Lorentz Invariant theory, then the phase space is infinite and the theory

blows up instantaneously.
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This Appendix illustrates how the Null Energy Condition (NEC) is required to be

violated if one were to harbor wormhole solutions in General Relativity. We intend this

section to be instructive to a reader unfamiliar with the subject but leave out most details

and refer the interested party to the excellent book cited in [154].

The language of differential geometry is at the core of modern gravitation. In this

paradigm, gravity is felt by test masses solely due to the properties of the manifold on which

they reside. We attribute to the manifold the spacetime coordinates xµ and keep track of the

information regarding its local curvature through the metric gµν(t,x,y,z). A specific theory

of gravity can be defined by an action such as the Einstein-Hilbert action 2.1 introduced in

Chapter 1. The action allows us to determine the dynamical degrees of freedom in themetric

and how they propagate. It also provides a description of how external matter affects the

metric and hence affect the local properties of the manifold.

We wish to point out that one does not require an action to determine the behavior

of geodesics of test particles. If one has a specific metric in hand and impose the require-

ment of a symmetric and metric compatible connection (i.e. the connection is chosen to

be the Christoffel symbols), one can reconstruct the local geometry of the manifold which

completely fixes the geodesics. Consider a particle moving with four momentum kµ = dxµ

dλ

for some parametrization λ of its trajectory, the geodesic equation is then,

kα∇αkµ = κkµ , (B.1)

where κ = d lnL/dλ with L being the Lagrangian of our test particle. In general, one can

find a reparametrization λ ∗ such that κ = 0. We call these λ ∗’s affine parameters and

we shall assume such parametrization choice from now on as it simplifies the geodesic

equation.

Consider two geodesics γ0 and γ1 who are describe by the same affine parameter λ and

have coordinates xµ(λ ,s). Here we’ve introduced the parameter s ∈ [0,1] which labels a
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continuous family of curves which interpolates between γ0 and γ1 whose curves are labeled

by the values s ∈ {0,1}. We define the tangeant vector of this family as ξ α = ∂xα/∂ s and

tune it so that it is orthogonal to our first geodesic, i.e. ξ αkα |s=0 = 0. One can then show

that the acceleration of this vector at s = 0 is,

kµ∇µ(kµ∇µξ α) =−Rα
ζ ρσ kζ ξ ρkσ . (B.2)

This is called the geodesic deviation equation and shows how the curvature (through the

Riemann tensor) can impact the behavior of neighboring geodesics by creating a relative

acceleration between them.

This relative acceleration leads to interesting conclusions. Consider the expansion scalar

θ = ∇αkα , which represents the fractional rate of change in the cross section of a congru-

ence of geodesics. Namely,

θ =
1

δV
d

dλ
δV for timelike geodesics, (B.3)

θ =
1

δA
d

dλ
δA for null geodesics, (B.4)

where difference between the null and timelike cases arises because the cross-section of a

bundle of null geodesic is only two dimensional as there is no rest frame. If one uses coordi-

nates in which the geodesic congruence is hypersurface orthogonal, a lengthy calculations

shows that,
dθ
dλ

=−1
p

θ 2 −σαβ σαβ −Rαβ kαkβ . (B.5)

Here p = 2 or p = 3 for null and timelike geodesics respectively, and σ is the shear tensor.

The equations for dθ
dλ are called the Raychaudhuri equations, the overall sign of the right

hand side describes whether the underlying manifold confers an attractive or repulsive at-

traction between the geodesics. For instance, a congruence of light rays passing through a

wormhole would initially have a negative expansion scalar θ as they are approaching the

throat, however once through the sign of θ must change to prohibit them from meeting at
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a single point, causing a caustic and a hence a singularity. A wormhole would then re-

quire dθ
λ > 0 as a minimal condition for θ to flip sign from negative to positive. A look at

the Raychaudhuri equations shows that the first two terms are the negatives of a squared

quantity, hence the only chance for dθ
λ > 0 to be satisfied is if

Rµνkµkν < 0. (B.6)

This imposes a condition on the Ricci scalar. To go further we must introduce a specific

theory of gravity, so let us consider GR and null geodesics (the same argument with timelike

geodesics imposes even stronger conditions). In GR the EOM for the metric are the Einstein

equations,

Rµν −
1
2

Rgµν =
1

M2
p

Tµν . (B.7)

Dotting these with kµkν we find,

Rµνkµkν =
1

M2
p

Tµνkµkν . (B.8)

The condition B.6 would require matter that satisfies

Tµνkµkν < 0. (B.9)

The opposite of this, namely the condition that Tµνkµkν > 0 for any future-pointing null

vector kν is called the Null Energy Condition (NEC). Hence within the context of GR,

wormhole solutions (and by the same arguments, bouncing solutions) requires a type ofmat-

ter that violates the NEC. This requirement cast doubts on the existence of such solutions as

all known classical matter satisfies the some form of the NEC. Quantum fluctuations which

violates the condition have been observed (Casimir fluctuations are an example) however

these only do so for short moments and still satisfies a time averaged version of the NEC

[182].
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What would a theory violating the NEC look like? One can easily construct an

example using a scalar field with the wrong sign for its kinetic energy,

L =−1
2
(dφ

dt

)2 −V (φ). (B.10)

This has energy ρ =−1
2

(dφ
dt

)2
+V (φ) and pressure p =−1

2

(dφ
dt

)2 −V (φ) so that ρ + p =

−
(dφ

dt

)2
< 0. However as discuss in appendix 5.5, such theory contains a ghost and hence

cannot describe anything meaningful. It is possible that any theory capable of a classical

violation of the condition would bring pathologies such as ghosts, negative energy densi-

ties [155] or superluminal propagation signaling an issue with the theory in the UV [156].

Nevertheless there are have been many attempts to build field theories that might violate

the NEC but do not suffer from any glaring issues. The galileons might have succeeded

in doing so and a nice review of some current constructions can be found in [157]. It is

beyond the scope of this thesis to explore these possibilities and their critiques in further

details, but see [74, 158] for an additional point of view on the subject.
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APPENDIX C

PROBING STOCHASTIC INTER-GALACTIC MAGNETIC FIELDS USING

BLAZAR-INDUCED GAMMA RAY HALO MORPHOLOGY
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Inter-galacticmagnetic fields can imprint their structure on themorphology of blazar-

induced gamma ray halos. We show that the halo morphology arises through the interplay

of the source’s jet and a two-dimensional surface dictated by the magnetic field. Through

extensive numerical simulations, we generate mock halos created by stochastic magnetic

fields with and without helicity, and study the dependence of the halo features on the proper-

ties of the magnetic field. We propose a sharper version of the Q-statistics and demonstrate

its sensitivity to the magnetic field strength, the coherence scale, and the handedness of

the helicity. We also identify and explain a new feature of the Q-statistics that can further

enhance its power.

C.1 Introduction

Multiple analyses of observed gamma rays [159, 160, 161, 162, 163, 164, 165] provide

growing evidence for the existence of inter-galactic magnetic fields (for reviews see [166,

167]). The existence of such magnetic fields poses new questions for cosmology and prob-

ably also for particle physics [168, 169]. In addition, a primordial magnetic field can play

an important role during structure formation in the universe and could help us understand

the ubiquity of magnetic fields in astrophysical bodies.

A critical challenge at this stage is to sharpen observational techniques so that we

can better observe and measure inter-galactic magnetic fields. Of the various probes of

inter-galactic magnetic fields, blazar-induced gamma ray cascades hold certain key advan-

tages. The gamma ray cascades originate in the voids in the large-scale structure and are

mostly immune to complications of a noisy environment. The cascade develops in a rel-

atively small spatial volume and hence is a local probe of the magnetic field in the voids.

This is distinct from other methods, such as the Faraday rotation of the cosmic microwave

background polarization, that probe an integrated measure of the magnetic field. Gamma
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ray cascades are also highly sensitive probes and can trace very weak cosmological mag-

netic fields.

In this paper we study the effect of stochastic inter-galactic magnetic fields on blazar

induced gamma ray halos and some results overlap with those of Refs. [170, 171, 172, 173,

174]. The cascade process is complicated and all analyses use some simplifying assump-

tions. For example, the analysis in Ref. [171] only considered non-stochastic magnetic

field configurations. Other simplification schemes, such as the “large spherical observer”

method employed in Ref. [172], transport arrival directions of gamma rays for distant ob-

servers to a single Earth-bound observer. This technique is certainly useful to study spectral

properties of the cascade, but there is a danger that it loses or shuffles the spatial informa-

tion of gamma ray arrival directions that is crucial for morphological studies. Our focus is

on the effect of stochastic magnetic fields that are statistically isotropic and with or without

helicity. So we carefully analyse the spatial information of the gamma rays that is use-

ful for deducing properties of the magnetic field but, for the present, we only include an

approximate description of the cascade development.

An important helpful concept that we develop in this paper is that of the “PP surface”

(see Sec. C.4). This spatial surface holds the key to halo morphology and many of the

features that we see in our simulations can be understood in terms of the shape of the PP

surface and its intersection with the blazar jet.

We have applied a refined version of the Q-statistics first proposed in Ref. [175] to

study the morphology of halos. Our results show that this statistic can successfully extract

the helicity of the magnetic field. Our simulations also reveal that the plot of Q(R), where

R is a variable that will be explained below, has an additional bump. We are able to show

that this bump is a genuine feature of the Q-statistic and explain it in terms of properties of

the PP surface in Sec. C.8. Thus this extra feature of Q(R) may become an observational
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tool in future.

We give some background information in Sec. C.2 and C.3, discuss our simulation

techniques in Sec. C.4, discuss features of the halo in Sec. C.5, introduce the Q-statistic

in Sec. C.6 and apply it to stochastic fields in Sec. C.7. As mentioned above, we discuss

the bump feature in Q(R) in Sec. C.8. We summarize our conclusions in Sec. C.10. Our

stochastic magnetic field generation scheme is described in Appendix C.9.

C.2 Astrophysical Sources of High Energy Photons

Before we delve deeper into the details of halo formationmechanism, wewill briefly review

the astrophysical objects that emits high energy photons and are considered point sources.

The TeV photons from these sources induce electromagnetic cascades through pair produc-

tion with the extragalactic background light, γEBLγTeV → e+e−. In the presence of a magnetic

field, the charged leptons follow spiral paths as they propagate and lose energy due to in-

verse Compton scattering with the cosmic microwave background (CMB) photons. The

up-scattered CMB photons have gamma ray energies and produce extended halos around

the direction of the sources.

As the initial TeV photons propagates over hundreds of Mpc before pair producing leptons,

we will be interested in extragalactic sources. This makes Active Galactic Nuclei (AGN)

as our prime candidate sources [176], these are luminous objects found at the center of a

galaxy and thought to be accreting supermassive blackholes of mass anywhere from 106

to 1010M· [177]. The term AGN was coined after astronomical accuracy improved in a

way that allowed astronomers to discover that many luminous sources, which appeared to

have different properties, originated from objects found at the center of galaxies. Hence the

nomenclature of AGN classes has its root in the historical discovery of objects in that class.

Example of AGN includes Seyfert galaxies, QSO (Quasi-Stellar Object), Radio galaxies
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and quasars. The most luminous class are the quasars, the name originated from a contrac-

tion of ”quasi-stellar radio source” as they were first discovered as powerful radio emitters.

These quasars may or may not have relativistic jets, however whenever they do and Earth

finds itself in the line of sight (LoS), we call the objects blazars. Having these sources’

jet point in our direction allow us easily detect the blazars positions. In the next section

we review how the collimated TeV photons being emitted along the jets LoS give rise to

secondary γ emissions which are responsible for the formation of halo. Although the latest

update (January 2015) of the Roma BZCAT features 3561 observed blazars [178], no de-

tection of these halos have been found within the precision of the observations. However

there were indirect detection of the secondary emissions which enabled to impose lower

bound constraints on the strength of the IGMF [159].

C.3 Blazar Halos From an Intergalactic Magnetic Field

As previously stated, here we briefly discuss the formation of the halo under simplifying

assumptions. Consider a blazar located at the origin of our coordinate system described by

the unit basis vectors x̂, ŷ, ẑ. We choose ẑ so that Earth is located at rE =−dsẑ where ds is

the comoving distance to the source,

ds =
1

a0H0

∫ zs

0

1√
Ωm(1+ z)3 +ΩΛ

dz ≃ zs

0.22
Gpc. (C.1)

To perform the integral, we have used ΩΛ ≈ 0.69, Ωm ≈ 0.31, H0 ≈ 0.67h as found in

Ref. [58] and we have also assumed that zs ≪ 1 and used natural units so that c = 1. For

all the simulations in this paper we will choose ds = 1 Gpc.

The blazar will typically emit photons in a collimated jet which we approximate

to be a conical region with half-opening angle θjet ≈ 5◦. The energy Eγ0 of these photons

must lie above some threshold of about a TeV if they are to produce an electron-positron

pair from interaction with the Extragalactic Background Light (EBL). Due to the opacity
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of the EBL, the TeV photons will travel a mean free path (MFP) determined by the pair

production cross section σγγ and the number density of the EBL photons nEBL ,

Dγ0 = ⟨σγγnEBL⟩
−1 ≃ (80Mpc)

κ
(1+ zγγ)2

(10TeV
Eγ0

)
, (C.2)

Wehave assumed that nEBL ∝ (1+zγγ)
−2 to approximate theMFP in the final equality [179].

Following [171] we will set κ = 1 as this dimensionless constant is estimated to lie in the

range of 0.3 < κ < 3. The comoving distance from the source to the pair production event

is given by Dc
γ0 = (1+ zγγ)Dγ0.

The redshift of the produced lepton pairs will depend on the relative position of the

leptons to the source. Since Dc
γ0 ≪ ds, we make the approximation zγγ ≈ zs and we can

write,

Dc
γ0 ≃ (80Mpc)

κ
(1+ zs)

(10TeV
Eγ0

)
. (C.3)

The energy of each of the produced leptons will be Ee ≈ Eγ0/2. These leptons are

expected to travel a distanceDe before losing most of their energy through inverse Compton

(IC) cooling which occurs by upscattering CMB photons. The cooling distance is

De =
3m2

e
4σTUCMBEe

≃ (31 kpc)
(5 TeV

Ee

)( 1.22
1+ zγγ

)4
(C.4)

where σT = 6.65× 10−25cm2 is the Thomson scattering cross section and UCMB(zγγ) ≃

(0.26 eV/cm3)(1+ zγγ)
4 is the CMB energy density. Note that we can assume the whole

cascade development happens around redshift zγγ asDe ≪Dγ0. At that redshift, the average

energy of a CMB photon is

ECMB ≃ (6×10−4 eV)(1+ zγγ), (C.5)

which implies that, from energy conservation, the upscattered photons will have energy

Eγ =
4
3

ECMB
E2

e
m2

e
≃ (77 GeV)

( Eγ0

10 TeV

)2
. (C.6)
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As the lepton propagates, it upscatters ≈ (10TeV)/(10GeV)∼ 103 photons, and produces

a gamma ray cascade in the 1-100 GeV range if the initial gamma ray had an energy of a

few TeV. Clearly not every photon upscattered by the leptons will reach Earth. Those that

do must come from a set of events that satisfy a set of three constraints given in Ref. [171]

that we now describe.

After pair production, the lepton’s initial velocity will be almost parallel to the mo-

mentum of the parent photon with a negligible deviation of order the inverse Lorentz boost

factor me/Ee ∼ 10−6. Their subsequent trajectory will be determined by the magnetic field

B(x) through the Lorentz force. If the magnetic field is incoherent on length scales smaller

than the cooling distance De ∼ 30 kpc, the lepton trajectories will be diffusive and this situ-

ation is much harder to analyze. So we focus on magnetic fields that are coherent on scales

that are much larger than De. Then the lepton trajectories are bent in an effectively constant

magnetic field and follow a helical trajectory with gyroradius

RL = RL0|v⊥|, with RL0 =
Ee

e|B|
, (C.7)

which depends on the lepton’s perpendicular velocity to B, i.e. v⊥ = v− (v · B̂)B̂.

The quantity 2πRL0 is useful as it denotes the distance the leptonmust travel in order

to perform a full revolution. The value of RL0 is a function of the redshift as it depends on

|B|. For magnetic fields frozen in the plasma, the field strength redshifts as

|B|= B0(1+ zγγ)
2 ≈ B0(1+ zs)

2 where B0 is the magnetic field magnitude today. With

RL0 ≃ 3.5 Mpc
( Ee

5 TeV

)( B0

10−15G

)−1(1+ zs

1.22

)−2
, (C.8)

we can evaluate the ratio

De

2πRL0
≃ 0.0106

( Eγ

10 GeV

)−1( B0

10−15G

)(1+ zs

1.22

)−2
(C.9)

which determines the angular deflection of the leptons.
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Figure C.1: A TeV photon emitted from a blazar travels a comoving distance of dγ0 before
scattering off an EBL photon and pair producing leptons. The lepton trajectories are bent
due to the local magnetic field over a very short distance compared to the distance to the
source, ds, and are shown in the insets. (The insets show huge bending whereas we have
only considered magnetic fields that give small bending.) Inverse-Compton scattering of a
lepton and CMB photons results in a cascade of GeV energy gamma rays arriving at Earth
from the direction of the pair production. [Sketch taken from [171].]

As depicted in Fig. C.1, let us introduce the following angles: θ is the arrival angle

of the GeV photon with respect to the source location, δ represents the angle between the

upscattered photon and the TeV photon, α is the angle subtended by the TeV photon’s

momentum, rE the vector from the source to Earth, and finally ϕ is the azimuthal angle in

which the whole (planar) scattering process take place. We also introduce the polar vectors

ρ̂ and ϕ̂, in the x̂, ŷ plane. It is important to emphasize that the whole process occurs in a

plane to a good approximation because De ≪ Dc
γ0,ds and the length of the lepton trajectory

can be ignored. Then there are only 3 points that are relevant (the source, the pair production

point, and the observer) and they always lie in a plane.

Applying the sine formula to the triangle in Fig. C.1 we get our first constraint
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dssin(θ) = dγ0sin(δ ). (C.10)

where dγ0 is the distance traveled by the TeV photon and is a random variable drawn from

a distribution that depends on the MFP Dc
γ0 in Eq. (C.3). This is discussed in detail in

Sec. C.4.

The bending angle δ is related to the distance traveled by the lepton through the

local magnetic field which we write as B = Bn̂||. We also decompose the lepton’s initial

velocity at time ti = 0, v(ti = 0) = v||n̂||+ v⊥n̂⊥, where n̂⊥ · n̂|| = 0. At some later time t

the velocity is

v(t) = v||n̂||+ v⊥cos(ωt)n̂⊥± v⊥sin(ωt)(n̂⊥× n̂||), (C.11)

Here we introduced the angular frequency of the orbital motion ω = v⊥/RL = 1/RL0 and

the + (−) sign refers to the positron (electron) trajectory. A CMB photon upscattered at

time tIC will be directed along the lepton’s trajectory and so the deflection angle of Figure

C.1 can be expressed as cos(δ ) = v̂(0) · v̂(tIC). Using Eq. (C.11) we can derive the second

constraint,

1− cos(δ ) =
(

1− (v̂(0) · B̂)2
)(

1− cos(tIC/RL0)
)
. (C.12)

The time of inverse Compton scattering tIC is a stochastic variable. Given its value and the

magnetic field direction, the constraints determine the bending angle, δ .

A single propagating lepton will be able to upscatter CMB photons towards Earth

only at certain times when the lepton’s momentum is directed towards Earth. Photons up-

scattered at other times will not reach Earth and we can safely ignore them. The number of

photons upscattered by a lepton is very large (∼ 103), with mean deviation angles between

the photons ∼ 10−3 ×0.01 (see Eq. (C.9)). This angle is large enough that we only expect

∼ 1 of the cascade photons from any lepton to reach Earth. This allows us to adopt the

strategy that we first select a value of tIC from an exponential probability distribution as
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described in Sec. C.4 and then solve the constraint equations to find all TeV gamma rays

from the blazar that upscatter CMB photons that reach Earth. For different values of tIC,

different TeV gamma rays from the blazar will lead to observed photons. In this way, we

will be able to track the photons that arrive on Earth and not waste computational effort on

those that go elsewhere.

The third and final constraint is that the cascade gamma ray lies in the plane specified

by ϕ̂ . This requires that the Lorentz force in the azimuthal ϕ̂ direction vanishes between the

time of pair production and IC scattering. Namely the ϕ component of the impulse must

vanish,

Jϕ = ϕ̂ ·J = ϕ̂ ·
(
± e

∫ tIC

0
dt v(t)×B

)
= 0. (C.13)

The impulse can be simplified by pulling out the assumed constant magnetic field of the

integral and defining

vavg =
1

tIC

∫ tIC

0
dt v(t). (C.14)

The geometrical setup of Fig. C.1 forces vavg to bisect the angle δ and therefore its unit

vector can be written as

v̂avg = sin
(
δ/2−θ

)
ρ̂− cos

(
δ/2−θ

)
ẑ. (C.15)

Decomposing B as

B = bρ ρ̂+bϕ ϕ̂+bzẑ (C.16)

allows us to write

ϕ̂ · v̂avg× B̂ =−bρcos
(
δ/2−θ

)
−bzsin

(
δ/2−θ

)
= 0. (C.17)

To summarize this section, Eqs. (C.10), (C.12) and (C.17) are the constraints that

need to be satisfied by the variables (θ ,δ ,ϕ) given a magnetic field realization and initial

velocity of the TeV gamma ray (both of which depend on (θ ,δ ,ϕ)), the source-observer

distance (ds), the distance to pair production (dγ0), and the photon upscattering time (tIC).
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C.4 Halo Simulations

For events that satisfy the constraints in Eqs. (C.10), (C.12) and (C.17), an observer on

Earth will receive flux at a polar angle of θ from the line of sight to the blazar and at an

azimuthal angle ϕ . Solving these constraints requires the use of numerical methods when

considering general B(x) and when including the stochasticity in the propagating distances

(PDs) of the initial gamma ray and pair produced leptons.

Therefore to simulate one observed photon, we supply the distance dγ0 traversed by

some TeV gamma ray of energy Eγ0 emitted from the source before it pair produces leptons,

one of which in turn travels a distance ctIC before emitting a photon of energy Eγ . Once

these 4 values dγ0, Eγ0, ctIC and Eγ , are set and an ambient magnetic field is given, one can

numerically solve the constraint equations for θ , δ and ϕ . The process is repeated until N

(which we chose to be 1000 or 5000 per simulation) observed photons are simulated. This

will create the halo that one would observe if the source was emitting isotropically. For a

source with a specific jet orientation we only retain the events whose initial TeV photons lie

within the jet. These small number of events give us the observed halo that will be shown

in our plots.

Let us go through the details regarding the generation of dγ0, Eγ0, ctIC and Eγ . We

must supply some energy distribution for gamma rays emitted by blazars; for this we assume

a power law spectrum [180, 181] and follow Ref. [173] by choosing a spectral index of

Γ ≃ 2.5 that is characteristic of the TeV sources. This yields a spectrum given by,

dNγ0

dEγ0
∼
( Eγ0

TeV

)−2.5
. (C.18)

We shall also impose a 10 TeV cutoff on the emitted photon energy. The distance dγ0

traversed by a TeV gamma ray before turning into a pair of leptons is drawn from the
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exponential distribution,

P[dγ0] =
1

Dc
γ0(Eγ0)

e−dγ0/Dc
γ0(Eγ0). (C.19)

The resulting leptons will have energies Ee given by Eq. (C.6) and they will upscatter nu-

merous CMB photons along their trajectories. The mean free path between each scattering

is given by lMFP = (nCMBσT )
−1, where nCMB is the number density of CMB photons. The

lepton loses energy with each scattering and subsequent scatterings lead to lower energy

cascade gamma rays. Hence we run Monte Carlo simulations to determine the distributions

P(ctIC,Eγ |E(ini)
e ), giving us the probability that a lepton with initial energy E(ini)

e upscatters

a CMB photon to energy Eγ after traveling a distance de = ctIC. Examples of these distri-

butions are shown in Fig. C.2. Note that de will generally be much smaller than the cooling

distance De. Only events that lead to observed photons of energy between Emin = 5 GeV

and Emax = 50 GeV will be retained as these are in energies of observational interest for

the statistical analysis done in Sec. C.6.

Figure C.2: Examples of the probability distribution for the distance traveled by leptons of
initial energy Ee = Eγ0/2 before it upscatters a CMB photon to Eγ . These distributions are
for leptons evolving in the CMB light at a redshift of z ≈ 0.24, corresponding to a source
located at ds ≈ 1 Gpc from Earth. Note that the final distribution for Eγ = 43 GeV does
not appear on the left as the lepton does not possess enough energy to upscatter the CMB
photons to these energies.

We will solve the constraint equations in a variety of magnetic field backgrounds,

starting with simple analytic configurations for illustration purposes, and then move on to
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the more realistic case of stochastic, isotropic magnetic fields. Our procedure to generate

stochastic, isotropic magnetic fields is described in Appendix C.9.

As a warm up, and to compare our methodwith the results of Ref. [171], we consider

a source that radiates TeV photons isotropically in two different magnetic field

backgrounds. The first background,

B = B0

(
cos(β )ŷ− sin(β )ẑ

)
, (C.20)

with β = π/4, is a uniform magnetic field pointing at an angle π/4 from the line of sight.

The second background is a maximally helical field

B = B0

(
sin(2πz/λ )x̂+ cos(2πz/λ )ŷ

)
. (C.21)

Here λ is the coherence length of the helical field. We will take ds = 1 Gpc, B0 = 10−14 G

and λ = 500 Mpc as the prototypical values and eventually vary them one at a time to see

their effect on the halo morphology.

Next we solve the constraint equations and determine the arrival directions θ , ϕ

for several different energies Eγ , for an isotropically emitting source. The points located

further away from the source direction usually corresponds to lower energy photons. This is

expected since leptons that travel long distances (and hence allow for a large bending angle)

will have already lost a lot of energy and upscatter less energetic photons. This behavior

can be seen from the distribution shown in Fig C.2.

We show halos for the simple field configurations of Eqs.(C.20) and (C.21) in Fig. C.3.

Looking closely at Fig. C.3, the drawn points are triangular; upright triangles are gamma

rays that originate from electrons and inverted triangles are those that originate from positrons.

The distinction is made clearer in Fig. C.4 where red (black) points originate from positron

(electron) processes. If the source was taken to be a jet, gamma rays predominantly from

one of the two leptons will be observed.
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Figure C.3: Example of halos from blazars in a uniform (left) and maxially helical (right)
inter-galactic magnetic field as given in Eqs. (C.20) and (C.21). The colors denote the
energy of the observed gamma ray.

Figure C.4: Same as in Fig. C.3 but now red (black) points originate from inverse Compton
scattering due to positrons (electrons). If the source was taken to emit along a jet, most
of the observed gamma rays would originate from either positron or electron processes but
not both.

The constraint equations are quite complicated to solve but there is a helpful visu-

alization. First consider the third constraint equation, Eq. (C.17), and note that bρ and bϕ

are also functions of θ , δ and ϕ . So Eq. (C.17) provides one functional relation between

these variables that only depends on the magnetic field background. Hence the magnetic

field defines a two-dimensional surface in space. We will call this the “Pair Production

surface” or the “PP surface” since only lepton pair production at this surface can send GeV

gamma rays to the observer. In Fig. C.5 we show the PP surface for the magnetic fields

of Eqs. (C.20) and (C.21). On these plots we also show the pair production locations, “PP
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locations”, that resulted in the halos of Fig. C.3. Note that a gamma ray from the source

will propagate a certain distance, dγ0 and then pair produce. So the pair production points

also lie on a sphere of radius dγ0. This is partly enforced by the law of sines in Eq. (C.10),

which gives a relation between δ and θ . The intersection of this sphere and the PP surface

define a one-dimensional curve in space; CMB photons that are inverse Compton scattered

along the one-dimensional curve can propagate to Earth. However, not all points on this

one-dimensional curve will satisfy the final constraint. Namely, Eq. (C.12), picks out a lim-

ited set of points on the one-dimensional curve and these give the trajectories of the gamma

rays that are observed.

The PP surface can be found analytically for simple cases. For instance, the con-

straint in Eq. (C.17) with the helical magnetic field from Eq. (C.21), which has bz = 0,

reduces to,

bρ cos(δ/2−θ) = 0, (C.22)

with

bρ =B · ρ̂= sin(2πz/λ +ϕ). (C.23)

As cos(δ/2− θ) = 0 has only one solution at δ = π, θ = 0 in the physical range θ ∈

[0,π/2], δ ∈ [0,π], the surface is mainly determined by bρ = 0 which translates to,

ϕ =−2πz
λ

. (C.24)

This equation describes a spiral structure as seen in Figure C.5.

Until now, we have been assuming that the source emits photons isotropically. Be-

low, we will also consider the case when the source emits photon in a collimated jet. In that

case, there is a fourth constraint restricting the relevant part of the PP surface to where it

intersects the jet, and it is quite possible that there is no solution. We ignore such cases as

they are observationally irrelevant. In following figures we will show PP locations, even

if they do not lie within the jet. Only those PP locations that lie within the jet will lead to
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Figure C.5: The PP surface for the uniform magnetic field of Eq. (C.20) (left) and the
maximally helical magnetic field of Eq. (C.21) (right). The source is located at the orange
star; the observer is at z =−1 Gpc. The blue points are the events that give rise to the halos
shown in Figs. C.3.

Figure C.6: Example of how a blazar with a jet will only shine and activate a small region of
the PP surface (left) and the resultant halo (right). The magnetic field is given in Eq. (C.21)
with B0 = 10−14G, λ = 250 Mpc.

observed gamma rays. For instance, Fig. C.6 presents an example in which the source has

a jet with half-opening angle θjet = 5◦ and the magnetic field is given by Eq. (C.21). The

jet direction is chosen so that the Earth lies within the cone of the jet and the blazar can be

seen directly. The left plots in both figures shows that the jet picks out a small region of

the PP surface, and the right plots show the resulting halo.
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Figure C.7: Monte Carlo simulation using the magnetic field of Eq. (C.21) and with the
same setup as in Fig. C.6 but with B0 reduced to 5×10−15G. Compared to the right panel
of Fig. C.6, we see that the high energy gamma rays (blue and green points) are more
clustered and so the halo size is smaller at fixed energy.

Figure C.8: Sketch of a blazar jet shown in red intersects the green PP surface which de-
limits the shape of the halo (shown in blue) as seen by some observer. The halo photons
must be distributed in the blue region. A situation similar to the one depicted in the middle
and third sketch can be seen from the simulations in Fig. C.6 and Fig. C.9 below. The dif-
ferences between the many possible shapes arise due the characteristics of the intersection
between the blazar’s jet and the PP surface.
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C.5 Parameter Dependence of Halo Morphologies

In this section we discuss the structure of the halo as the parameters B0, λ and the sign of

the helicity of the maximally helical magnetic field in Eq. (C.21) are varied. The concept

of the PP surface will be a useful tool for this discussion as it allows us to clearly see how

the magnetic field dictates the halo’s shape.

The magnetic field strength directly affects the amount of bending of the lepton

trajectories since the gyroradius RL ∝ 1/B0. Therefore a weak magnetic field will require

that the initial TeV gamma ray is already propagating nearly towards Earth. Thus reducing

B0 will shrink the size of the halo at any given gamma ray energy, although lower energy

gamma rays may now enter the field of view. This can be seen in Fig. C.7 which was cre-

ated using B0 = 5×10−15 G and λ = 250 Mpc. The plot looks almost identical to Fig. C.6,

which was created using B0 = 10−14 G, except that the extent of the halo in the x and y

directions, for photons of the same energy, has shrunk by a factor of ∼ 2.

If one does not track the photon’s energy, the effect of a change in B0 is not easily

seen through the morphology of the halos as their shapes and sizes are determined by the

intersection of the jet and the PP surface. We show a few examples of this interplay in

the sketch of Fig. C.8. Understanding this could allow us to learn valuable information

about the inter-galactic magnetic field in the region probed by the PP locations by observing

the halo’s shape. In a real situation, we cannot observe the full halo shape as it will be

contaminated by background photons coming from other sources. However, we can still

extract certain useful halo information since the background is expected to be stochastically

isotropic and certainly not parity odd.
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Another important thing to note is that we have assumed the jet and the power spec-

trum to be fixed on the timescale necessary for the creation of the halos. Namely, the path

length of two events (i.e. the sum of the magnitude of the two vectors shown in Fig. C.1)

will differ as a function of their bending angle. Hence this can introduce a significant time

delay between the subsequent observations of two initial TeV photons emitted from the

source at the same time. If this time delay is large, as would occur for events whose PP

locations are Megaparsecs apart, we would expect the source dynamics to alter its power

spectrum and jet direction in that timeframe – making our fixed jet assumption false. A

quick change in jet direction would translate in observed events arising from potentially

very different regions of the PP surface. Fortunately, this should not affect our final results

once we average over many realizations as this already stacks random jet oritentations to-

gether. A large power spectrum variability could introduce more drastic effects but we will

neglect this complication in this initial exploration.

Let us quickly comment on the dependence of the morphology on the coherence

length of B. As can be seen from Eq. (C.3), the MFP Dc
γ0 of the TeV photons are of the

order of 10− 100 Mpc. Any magnetic field with coherence length much larger than Dc
γ0

will appear constant in space. On the other hand, for λc ≪ Dc
γ0, the halo will be produced

from a rapidly varying part of the PP surface and will be more scattered.

The helicity of the magnetic field in Eq. (C.21) can be flipped by changing x →−x.

A flip in the helicity simply leads to a parity inversion of the PP surface and the halo spiral

also changes handedness. However, to get more statistics, we will investigate both helicities

using independent simulations in Sec. C.7.
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Figure C.9: The PP locations on the PP surface and jet (left) and corresponding halo (right)
for λ = 100,500,2000 Mpc for the magnetic field in Eq. (C.21) with B0 = 10−14 G. The
direction to the source is at θ = 0.
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Figure C.10: Illustration of the Q-statistic. The plot represents two blazar halos in the
observational plane, each halo with just two photons, one at high energy (purple) and the
other at low energy (red). The image of the blazars is denoted by the stars and the line of
sight to the blazar (along ẑ) points out of the plane of the page as denoted by the arrow tip.
The left sketch shows a situation where Q < 0 since nred×npurple ·nblazar < 0; similarly the
sketch of the blazar on the right shows a Q > 0 situation.

C.6 The Q Statistic

One of the main goals of this work is to determine if the helicity of the inter-galactic mag-

netic field can be deduced from the shape of the blazar halos. As we have seen, under certain

conditions, a helical inter-galactic magnetic field can produce a clear spiral-like structure

in a gamma ray halo. Hence it is important to develop a statistical technique that is sensi-

tive to this structure. A statistic, called Q, was developed in Ref. [175], and was applied

to the diffuse gamma ray background observed by the Fermi telescope in Refs. [162, 163].

A non-zero value of Q was observed with high confidence in comparison to Monte Carlo

simulations that assume no inter-galactic magnetic field.

One can see from the halo plots above, e.g. Fig. C.3, that the arrival direction of

high energy photons tend to lie closer to the blazar line-of-sight than those for lower energy

photons. Hence different locations of the PP surface are sampled by photons of different

energies and the observed gamma rays can carry an imprint of any curvature or twist of the

PP surface. More precisely, the work of Ref. [175] showed that a left (right) handed helical

magnetic field will create left (right) handed spiral patterns in the observed photons.
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Belowwe briefly review the idea behind a slightlymodified version of the Q statistic

proposed in Ref. [175]. We will apply the statistics on regions surrounding an observed

blazar whose angular position will be denoted by the unit vector n(3) = ẑ. We consider a

disk of radius R centered on the location of the source and consider the set of photons within

this disk. These photons are binned according to their energies into non-overlapping bins

∆E1, ∆E2. We use N2 to denote the number of photons in bin ∆E2 within the disk of radius

R. We then perform the sum,

Q(∆E1,∆E2,R) =−n(3) ·

(
1

N2

N2

∑
j=1

n(2)
j ×

[
∑N1

i=1 n(1)
i Θ(m(1)

i ·m(2)
j )

∑N1
i=1 Θ(m(1)

i ·m(2)
j )+ ε

])
(C.25)

where n(a)
i ≡ ni(∆Ea) is the unit vector denoting the arrival direction of photon i

in bin a; m(a)
i is the unit vector obtained by projecting n(a)

i on to the xy-plane: m(a)
i =

n(a)
i −(n(a)

i · ẑ)ẑ. We’ve also introduced the infinitesimal quantity ε to keep the denominator

from vanishing. The original Q statistic in Ref. [175] was defined without the Heaviside

function (Θ) in Eq. (C.25). We illustrate the Q−statistic in Fig. C.10.

In the presence of background gamma rays in addition to the blazar gamma rays,

we expect Q(R) to start near 0 at R = 0, grow to a peak value near R = Rhalo, where Rhalo

is the angular radius of the halo, and finally come back down towards 0 at large R where

the signal becomes background dominated. However in mock maps with no background,

the value of Q should asymptotically flatten out to its maximal value attained at Rhalo, and

its value will be negative (positive) for right (left) handed magnetic fields. We can see this

behavior in Fig. C.11 where we simulate the halo without any stochasticity and with the

magnetic field of Eq. (C.21).

To showcase the Q-statistic in this paper we will separate the gamma rays in three
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Figure C.11: (Top Left) A set of simulated observed photons from the halo formed by a
blazar’s jet with half-opening angle of 5◦. The surrounding random magnetic field was
created with parameters described in Eq. (C.28) and has the form given by Eq. (C.27).
(Bottom Left) The PP locations of the photons responsible for the halo. (Right) The result
of applying the Q-statistic to the observed photons on the right.

energy bins:

∆E1 = (5,20), ∆E2 = (20,35), ∆E3 = (35,50), (C.26)

all numbers in GeV. This choice was the real reason we only simulated photons between 5

to 50 GeV.

C.7 The Q Statistic Applied to Stochastic Magnetic Fields

The result of Fig. C.11 is noisy and can be misleading as we are dealing with random mag-

netic fields. Indeed, these fields can sometimes create halos whose Q-statistics suggest the

wrong helicity. It is therefore important to average over many realizations of the magnetic

field and the jet orientation. Each realization will simulate a blazar with a jet of half-opening

angle θjet = 5◦ and having Earth in its LoS. The jet is also constrained to generate a halo
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with at least 3 events in order for the statistics to be applied; this condition is easily satisfied

if Earth is in the jet’s LoS. Jets pointing further away from the LoS might still yield observ-

able photons but we would not be able to identify these blazars and so we don’t simulate

those cases.

We will consider magnetic fields of the form,

B(x) =
1

2N2 +2 ∑
k∈K

b(k, fH,Brms)eik·x (C.27)

with the set K consisting of 2N2 + 2 vectors which have magnitude kmag and whose di-

rections are approximatively uniformly spread over the unit sphere. Half of the Fourier

coefficients b(k, fH,Brms) are drawn from their respective distribution as outlined in Ap-

pendixC.9, while the other half are set by the requirementb(k, fH,Brms)=b∗(−k, fH,Brms),

necessary for obtaining a real value for the magnetic field. The value of −1 ≤ fH ≤ 1 con-

trols the handedness of the field, namely fH = 1 (−1) corresponds to a maximally right-

handed (left-handed) helical field. Finally Brms determines the root mean square of B(x).

In Fig. C.11 we compute the Q-statistics for 100 realizations of halos created with

a random magnetic field created using the parameters

Brms = 1×10−14G, kmag = 0.01/Mpc,

fH = +1, 2N2 +2 = 27, (C.28)

where 2N2 + 2 is the number of directions of the k vector in Eq. (C.27). In Fig. C.12

we plot the average of Q over all the realizations, denoted Q(R), for the same runs as in

Fig. C.11 and for the three gamma ray energy bin combinations. By doing so, we have in

mind of averaging the Q-statistics obtained from small regions around multiple observed

blazars. The plot also shows the standard error in Q(R) which is given by the standard

deviation of Q(R) divided by the square root of the number of realizations in the Monte

Carlo simulations. The standard error follows from the central limit theorem and is the
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Figure C.12: (Left) Q(R) versus R for 100 Monte Carlo runs when the stochastic magnetic
fields are generated using the parameters shown in Eq. (C.28) with fH = +1. The mean
Q(R) is shown by the orange curve. (Right) A zoomed-in view of Q(R). The width of the
error band is given by the standard error i.e. standard deviation of the 100 Monte Carlo
Q(R) values divided by the square root of the sample size (100).

error in using the sample mean to estimate the population mean. However, it assumes that

the samples, Monte Carlo simulations in our case, from which values of Q(R) are drawn

are independent and identically distributed. This is certainly true in our setup but may not

be true for actual observations in which the same photons might contribute to the Q(R)

calculated for blazars that are close to each other. In addition, there will be variation in the

distance to observed blazars and other source characteristics. We plan to take some of these

factors into account in a follow-up analysis.

Pushing the statistics further, we are clearly able to distinguish between many dif-

ferent properties of the magnetic field as the number of realization increases. For instance,

we have plottedQ(R) versus R for 1000Monte Carlo simulations for fH = 0,±1 (Fig. C.13)

and the plots show a clear correlation between Q(R) and the helicity of the magnetic field.

We can also notice distinct oscillations that occur at small R. It is also reassuring that the
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Figure C.13: Q(R) versus R when averaging for 1000 simulations (left) and 20 simu-
lations (right). The realizations had parameters fH = −1 (red, solid), fH = 0 (black,
dashed) and fH = +1 (blue, dotted) for the three energy bin combinations: (∆E1,∆E2)
(top row), (∆E1,∆E3) (middle row) and (∆E2,∆E3) (bottom row) where the bins are de-
fined in Eq. (C.26). The other parameters of the stochastic magnetic fields are given in
Eq. (C.28) and the bands denote standard error of Q.

Figure C.14: Analysis of the same data as found in Fig. C.13 but computed with the original
definition of Q. Namely, we replaced the Θ term in Eq. (C.25) by 1. It is clear both from
the magnitude and the size of the error bars that the modified Q is a sharper statistics.
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Figure C.15: Q versus R for 1000 simulations with Brms = 10−14 G (blue,solid), 5 ×
10−15 G (orange, dashed), and 2×5×10−15 G (green, dotted) and fH = 1, k = 0.01/Mpc.

fH = +1 plot is the mirror image of the fH = −1 curve, just as we would expect due to

parity reflection. Within the clean context studied here, we only need ∼ 10−20 halos be-

fore we can detect the sign of the helicity through the sign of the Q’s at large R. However

this number depends heavily on the properties of the magnetic field, source variability and

background. Hence the determination of the exact amount of data required to make such

detection will require a careful analysis of these parameters and therefore is relegated to

future work.

In Fig. C.14, we show that the Θ factor in our definition of Q in Eq. (C.25) improves

the resolution. Without the Θ factor, the Q-statistic is determined by the cross product of

the average arrival direction of the photons (in two energy bins) within a radius R of the

source. Because of the electron-positron symmetry, photons tend to arrive on either side

of the source (see Fig. C.4), and the average arrival direction tends to be near the origin.

Introducing theΘ factor ensures that for every high energy photon selected, we only average
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the low energy photons that arrive on the same side with respect to the source. Then there

is a larger contribution to the value of Q. Essentially the Θ term limits the sum to gamma

rays within the electron (or the positron) branch of the halo (see Fig. C.4).

Next we examine the dependence ofQ(R) onmagnetic field parameters. In Fig. C.15

we plot Q(R) for several different magnetic field strengths and for fixed helicity fH = 1.

We see that increasing the magnetic field strength leads to an increasing amplitude of Q for

all energy combinations. The increase is due to the magnitude of n1 ×n2 which becomes

larger as the bending allows n1, n2 to point further apart.

The effect of changing the magnetic field coherence scale is shown in Fig. C.16

where the magnetic field strength and other parameters are fixed and only kmag is varied.

The magnetic field with larger coherence length gives a larger signal, but there is a turning

point as extremely large coherence scale fields will behave like uniform fields. The sig-

nal for smaller correlation length is washed out but the suppression depends on the energy

combination. This is to be expected from the analysis of Ref. [175] since Q with a certain

energy combination is sensitive to the magnetic helicity power spectrum at a definite co-

herence scale that is determined by the combination of energies. To probe magnetic fields

on small length scales, it is necessary to consider gamma rays whose energies are close to-

gether [175]. Thus the energy bins also have to be smaller and this means that the statistics

is poorer.

C.8 The Features at Small R

The Q-statistic is essentially a measure of the differential rotation found in the arrival di-

rection of photons of different energies. Q will be negative (positive) if the rotation is right

(left)-handed as is depicted in Fig. C.10. The results of our Monte Carlo simulations, for

example in Fig. C.13, show that Q has some oscillation at small R which is made abun-
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Figure C.16: Q versus R for 1000 simulations with k = 0.01/Mpc (solid, blue), k =
0.05/Mpc (orange, dashed), k = 0.1/Mpc (green, dotted) with Brms = 1× 10−14 G and
fH =+1.

dantly clear for the Q using the largest energy bins. Here we provide an explanation of this

small R feature. What the Q-statistic allow us to probe is the shape of the PP surface. As

already mentioned, it is clear from Fig. C.11 that high energy photons are found close to the

LoS and the low energy ones are further out. However there is another important piece of

information, namely the z coordinate of their PP locations; generally z will be small (more

negative) if it is low on the PP surface and hence close to Earth.

Remember that to give a contribution to Q, one requires a high energy photon (γHE)

and a low energy photon (γLE) as is shown in Fig. C.10. If most γLE photons have PP

locations higher up on the PP surface than the γHE’s, the Q-statistic measures the twist of

the PP surface as one traverses it from bottom to the top. This is in contrast to whenever

the low energy photons originate from PP locations close to Earth when compared to those

of γHE . As the twist is parity odd, these two cases contribute to Q with opposite signs and

is the reason for these oscillations.
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We can understand this effect explicitly with a little bit more thought. When R is

very small, we expect to see events with small bending angles. These mainly occur when

the lepton upscatters a photon towards Earth early after it was pair produced. The small

R observed γHE (γLE) photons must therefore have originated from TeV leptons with high

(low) energies. Because TeV gamma ray have a MFP that decreases with energy, we then

expect the γLE to be produced at PP locations closer to Earth than the γHE ones, therefore

Q initially measures the twist from top to bottom and |Q| grows as R departs from 0.

However as R increases further two things occur. First, the observed photons en-

tering the field of view come from events experiencing more bending that at small R. This

means that the lepton had to travel further and in the process has loss more energy, there-

fore the maximal energy of the new photons will be lower and won’t contribute to the high

energy bin. Hence the average z of the PP location of the high energy photons is fixed at

small R. Second, most of the volume entering the field of view will be located closer to

the source due to projection effects. For this reason, the events from PP locations at high

z starts to enter the field of view at a quicker rate than the events at low z. We are now

in the reverse situation: a large majority of photons γLE have PP locations that are higher

than the ones for the γHE . This gives a contribution to Q with the opposite sign pulling the

total towards 0 and sometimes even pushes it across (compare the top and bottom panel

of Fig. C.13). Finally when R becomes large, the low energy events with PP locations at

small z and far from the LoS start contributing to Q and dominate. This process, depicted in

Fig. C.17, is responsible for the features before the value of Q flattens out to its asymptotic

value.
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Figure C.17: The sign of the Q-statistic when applied to a halo produced by a magnetic
field with fH = 1. Here the squiggly lines represents photons of high (blue) and low (red)
energies. The top photons are the initial TeV gamma rays, the green points are the PP
locations and the bottom photons are the upscattered GeV photons that are eventually ob-
served. At small R, the events with small bending allows the Q-statistic to measure the
twist of the PP surface from top to bottom (purple shaded region, Q < 0). When R gets
larger and PP surface region near the blazar enters the field of view, the new events entering
the field of view contribute to Q with the opposite sign as they are located further up the
PP surface than the high energy events which only occurs close to the LoS (green shaded
region, Q > 0). Finally as R gets large and the whole halo is exposed, the overwhelming
low energy events at low z and far from the LoS dominates the signal and drives Q towards
its asymptotic value (brown shaded region, Q < 0).
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C.9 Generation of Isotropic Random Magnetic Fields

In this section we give additional details to the interested reader regarding our methods

to generate helical magnetic fields. We achieve this by first decomposing the magnetic

field B(x) in circularly polarized modes with basis vectors K±(k) that are divergence-free

eigenfunctions of the Laplace operator

K±(k) = e±(k)eik·x ≡ e1(k)± ie2(k)√
2

eik·x. (C.29)

The triad of unit vectors, {e1,e2,e3}, is constructed as

e1 ≡
n0 × k̂
|n0 × k̂|

, e2 ≡
k̂× e1

|k̂× e1|
, e3 =

k
k
≡ k̂ (C.30)

where n0 is any chosen unit vector such that n0 ̸= k̂.

With these definitions, the e’s form a right-handed orthonormal system and we have,

∇ ·K± = 0, ∇×K± =±kK±, K±∗(k) =−K±(−k) (C.31)

Hence any magnetic field can be decomposed as,

B(x) =
∫ d3k

(2π)3 b(k)eik·x

=
∫ d3k

(2π)3

[
b+K++b−K−], (C.32)

with the condition that

b±∗(k) =−b±(−k) (C.33)

to ensure that B(x) is real. The divergence-free condition, ∇ · B = 0 , is automatically

satisfied in this procedure.

We are interested in generating random magnetic fields with given energy (EB(k))

and helical (HB(k)) power spectra. The relations between the modes b±(k) and the power
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spectra are given by

1
8π

⟨|B(x)|2⟩=
∫ k2dk

16π3

[
|b+|2 + |b−|2

]
≡
∫

EB(k)d ln(k) (C.34)

and

⟨A(x) ·B(x)⟩=
∫ kdk

2π2

[
|b+|2 −|b−|2

]
≡
∫

HB(k)d ln(k). (C.35)

The ratio of EB and HB will be written in terms of a function fH(k) as [166],

HB(k) = fH(k)
8π
k

EB(k), (C.36)

and the “realizability condition” leads to the restriction

−1 ≤ fH(k)≤ 1 (C.37)

The field is non-helical if fH = 0, maximally right-handed if fH = +1, and maximally

left-handed if fH =−1.

Eqs. (C.34), (C.35) and (C.36) allow us to write,

|b±|2 =
(2π

k

)3
[1± fH(k)]EB(k). (C.38)

Hence the modes |b±(k)| are drawn from a normal distribution with mean µ± = 0 and

standard deviation σ± = (1± fH)(2π/k)3EB(k). We then include a uniformly drawn phase

angle θ±(k) ∈ [0,2π) which yields,

b±(k) = |b±(k)|eiθ±(k) (C.39)

In this paper we focus on stochastic magnetic fields that are isotropic but have power

on a single length scale λc = 2π/kmag and that have either fH(k) = 0 or fH(k) =±1. This

corresponds to a delta function distribution for EB(k) and vanishing or maximal helicity

of either sign. To ensure that the magnetic fields are stochastically isotropic, we choose
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N2 +1 vectors kn (n = 1, ...,N2 +1) that discretize half of the two-sphere of directions in

k−space,

kn = kmag(sinθi cosϕ j,sinθi sinϕ j,cosθi), (C.40)

with

θi = cos−1
(2i−1

N
−1
)
, ϕ j = 2π

( j−1)
N

, (C.41)

for i, j = 1, . . . ,N, and

kN2+1 = kmag(0,0,1) (C.42)

Once we have k and b±(k) as described above, we compute

b(k) = b+K++b−K− (C.43)

for every k = kn. We also find b(−k) using the reality condition

b(−k) = b∗(k). (C.44)

Finally we obtain the random magnetic field,

B(x) =
1

(2N2 +2) ∑
k∈K

b(k)eik·x (C.45)

where K is the set of vectors {kn,−kn} for n = 1, . . . ,N2 +1.

C.10 Conclusion

We have studied the effect of stochastic inter-galactic magnetic fields on the morphology

of gamma ray halos. The dependence of the morphology on the magnetic field strength, the

coherence length, and the helicity were investigated. Most importantly, we have provided

an understanding of the structure of the halo in geometrical terms, as arising due to the “PP

surface” as determined by the magnetic field. In simple cases, the PP surface can be found

analytically (for example, Eq. (C.24)).
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To analyze the halo morphology, we have proposed a sharper version of the Q-

statistic in Eq. (C.25) and applied it to simulated halos. Our key finding is that Q is a pow-

erful diagnostic of the magnetic helicity (Fig. C.13), field strength (Fig. ??) and coherence

scale (Fig. C.16). Based on the analytical work of Ref. [175], we expect the sensitivity of Q

to the coherence scale to depend crucially on the energies of the gamma rays that are used.

It would be interesting to quantitatively examine how the sensitivity of Q to the coherence

scale can be improved with a choice of energy bins.

In addition, our Monte Carlo simulations have revealed a bump in Q(R) at small

values of R (see Fig. C.13). We have understood and explained this feature in terms of the

PP surface in Sec. C.8. This new feature may become useful in the analysis of real data in

the future.

Our present study is limited in a few ways that we plan to overcome in future work.

First, we have not included any background gamma rays. These will introduce noise in the

evaluation ofQ and the error bars will increase. We have also limited ourselves to stochastic

isotropicmagnetic fields but with only one |k|−mode. This is useful at this stage as it allows

us to diagnose the effects of changing the coherence scale. In future, we plan to include a

spectrum of the magnetic field as motivated by current observations [169]. In future we also

plan to incorporate the full development of the electromagnetic cascade into our numerical

code, perhaps along the lines of Ref. [172] or [174]. Once we have understood individual

blazar halos, we will apply our techniques to the diffuse gamma ray background which is

expected to contain halos due to unseen blazars as well as those due to identified blazars.
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