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Abstract

This thesis presents measurements of the production cross-sections of a 𝑍 boson in association

with 𝑏-jets and with 𝑐-jets. The measurements are performed using 139 fb−1 of proton-proton

collision data collected at
√

𝑠 = 13 TeV by the ATLAS experiment at the Large Hadron Collider.

The measurement is performed using a novel unfolding technique which simultaneously unfolds

the 𝑏-jet and 𝑐-jet distributions while preserving the correlations between them. Inclusive and

differential cross-sections are measured for events containing a 𝑍 boson decaying into two electrons

or two muons and produced in association with at least one 𝑏- or 𝑐-jet. Three predictions from

Monte Carlo generators, using leading order or next-to-leading order matrix elements and interfaced

to parton shower models, are used to test the different shower models and matching/merging

schemes. All three predictions overestimate the number of 𝑏-jet events while underestimating the

number of 𝑐-jet events. The results motivate further study, using the analysis techniques developed

for this thesis, of the simulation and prediction of heavy-jet production.
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Introduction

Particle physics, the study of the fundamental particles and their interactions, attempts to under-

stand the physical universe at its most basic level. The Standard Model (SM) describing all of the

non-gravitational interactions between the known particles is perhaps the most successful scientific

theory ever developed in terms of predictive power. It has been shown to accurately and precisely

describe hundreds of different interactions between particles to astonishing precision: for example,

the prediction of the electron’s anomalous magnetic moment has been verified to 12 digits, making

it the most accurately verified theoretical value in the history of physics.

Particle colliders such as the Large Hadron Collider (LHC), which are used to scatter particles

(protons and heavy ions, in the case of the LHC) off of one another, have played a central role

in developing and testing the Standard Model. At the extremely high energies of the LHC, the

inelastic scattering of the protons, or equivalently the scattering of the quark and gluon constituents

of the protons, leads to a varying number of final-state particles. Large detectors such as the

ATLAS (A Toroidal LHC ApparatuS) detector identify those final-state particles, and analyses are

performed in order to reconstruct from those particles the interaction which took place between

the initial quarks and gluons.

Since the scattering of quarks and gluons is governed by quantum mechanics, their production

and interactions are probabilistic in nature. There is no way for a collider experiment to explicitly

control which final state will be produced in a given collision, or which production mechanism will

be responsible for a particular final state, since there can be many interactions leading to the same

outcome. Each collision at the LHC is effectively the roll of a thousand dice, each with a thousand

sides. Therefore, the key to understanding the particles and their interactions is to roll the dice

so many times that the probability is in our favor to see the same outcomes multiple times. Once

a given topology of final-state particles has been observed enough times, with enough precision,

the observations can be compared to the predicted cross-section, which quantifies the probability

of of a given scattering process to occur. Only when the observed and predicted cross-sections are

consistent with one another can we conclude whether or not the observed final state is likely due

to the underlying interaction predicted by the theory. In this sense, modern experimental particle
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physics, which seeks to measure increasingly rare particle interactions, is the science of overcoming

extremely small odds through the brute force of repetition.

The interactions which govern the scattering processes we observe in high-energy physics ex-

periments include the strong, weak, and electromagnetic interactions. The non-Abelian nature

of the strong interaction, as described by the theory of Quantum Chromodynamics (QCD), leads

to the confinement of quarks and gluons in composite particles such as protons and also to the

production of jets. These features of QCD lead to messy scattering processes which are difficult to

theoretically model; this further distances the final-state particles seen by particle detectors from

the particles involved in the initial scattering process. Therefore, scattering processes which can

serve as tests of QCD modelling are an especially important piece of a particle physics experiment’s

physics program.

One such test of QCD is the measurement of 𝑍+jet events. Around one out of every billion

𝑝𝑝 collisions at the LHC results in the production of a 𝑍 boson, the neutral mediator of the

weak interaction, and the probability for a 𝑍 to be produced in association with hadronic jets is

even smaller. These 𝑍+jets events are an essential probe of QCD because the production of the

𝑍 forces the event to be at an energy scale at which the theory of perturbative QCD (pQCD)

can be used to perform fully analytical calculations of the matrix element, the hard-scattering

process; phenomenological corrections, which are described in Chapter 1, are then applied in

order to produce a prediction relevant to experimental 𝑝𝑝 collisions. Of particular interest is the

measurement of 𝑍+jets events which include jets originating from 𝑏- and 𝑐-quarks; such jets are

referred to as “heavy-flavor jets” because of the large 𝑏- and 𝑐-quark masses. Measurements of

these 𝑍+heavy-flavor jets (𝑍+HF) events are important for a number of reasons. The first is

that these measurements help deepen our understanding of features of pQCD — for example, the

role gluon splitting into massive quarks plays in scattering processes — as well as the proton’s

structure. The parton distribution functions, which describe the momentum carried by the quarks

and gluons inside the proton, must be determined from experiment, and so 𝑍+HF measurements

can help determine the 𝑏- and 𝑐-quark distribution functions. For 𝑐-quarks in particular, there

is also the potential to detect an intrinsic charm component of the proton, an as-yet unobserved

bound state of the proton which includes a 𝑐 ̄𝑐 component more massive than the proton itself.

𝑍+HF events also must be measured precisely in order to improve the irreducible background

estimation of other measurements. For example, the 𝐻 → 𝑏𝑏̄ channel is the dominant decay

mode for the Higgs boson, with a branching ratio of ≈ 58%, and 𝑍+HF events are one of the

largest backgrounds to the observation of these Higgs decays [1, 2]. Measuring this decay channel

is key to understanding the Higgs self coupling as well as the symmetry-breaking mechanism of

the SM. Various beyond the Standard Model (BSM) searches for hypothetical particles such as
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supersymmetric top squarks [3] and new pseudoscalars [4] will also benefit from a more precise

modelling of their 𝑍+HF background, increasing the potential to discover new physics.

Recent measurements of 𝑍+HF events [5, 6] demonstrate discrepancies between theoretical

predictions and the data taken at the LHC; however, the precision of the measurements needs

to be improved in in order to determine the source of these discrepancies. This thesis seeks to

improve the precision of the 𝑍+HF measurement through the use of the full Run 2 ATLAS dataset

(139 fb−1) and the development of a novel method of unfolding: by simultaneously correcting the 𝑏-

jet and 𝑐-jet contributions for detector smearing, simultaneous measurements of both distributions

can be made while preserving their correlations. These techniques have been developed for the

first time in this thesis, and they have the potential to address the tensions seen by the earlier

measurements and to impact our understanding of the SM and beyond.

This thesis is organized as follows: Chapter 1 provides a theoretical overview, including brief

descriptions of the Standard Model, QCD, and the production of 𝑍 bosons. Chapter 2 describes

the LHC and the ATLAS experiment, while Chapter 3 describes how particles and jets are iden-

tified and reconstructed from ATLAS data. Chapter 4 motivates in detail the study 𝑍+𝑏-jet and

𝑍+𝑐-jet events. Chapter 5 describes the data and simulated samples used in the analysis, and

Chapter 6 describes the selections applied to the samples, as well as the measured observables.

Chapter 7 describes the procedure used to fit the light-jet background component to the data be-

fore background subtraction and unfolding; the unfolding technique developed for this analysis, in

order to account for the correlation between 𝑏-jets and 𝑐-jets, is presented in Chapter 8. Chapter

9 gives an overview of the sources of uncertainty and their relative contributions to the overall

measurement uncertainty. Chapter 10 presents the results of the analysis, including the inclusive

total cross-section and differential cross-section measurements. Finally, Chapter 11 summarizes

what has been learned and suggests potential future studies.



Chapter 1

Theoretical Background

1.1 The Standard Model

Figure 1.1: The fundamental particles of the Standard Model of particle physics [7].

The Standard Model (SM) of particle physics describes all of the known fundamental particles

of nature (Figure 1.1) and their interactions. While there are notable gaps in this theory, not

least of which is the total absence of gravity, it has been experimentally verified countless times

by decades of particle physics experiments.

The fundamental particles are divided into two distinct groups. The first group is the fermions,

with half-integer spin; they are further divided into the quarks, which have the color charge of

the strong interaction, and the leptons, which do not. The other group is the gauge bosons, with

integer spin, which mediate the electromagnetic, weak, and strong interactions, plus the Higgs
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boson. The SM Lagrangian describes how these particles interact with each other. As will be

covered in the next Section, the forms of the interaction terms between these particle fields stem

from the requirement that the Lagrangian densities ℒ of these particle fields have local gauge

invariance.

1.2 Gauge theories

The analysis discussed in this thesis is primarily a study of QCD. Here I provide a brief overview of

the gauge theory and its primary characteristics, though I start from the somewhat simpler theory

of Quantum Electrodynamics (QED) to develop much of the mathematics.

1.2.1 Quantum electrodynamics

For the purposes of illustrating how the local gauge invariance of a theory involving vector and

fermion fields results in a fundamental interaction between the fields, I will begin by discussing

QED. The starting point is a Lagrangian density (I will simply refer to it as the Lagrangian from

here) containing the Dirac (spin- 1
2 ) fermions particles we have observed in experiments as well as

the electromagnetic field strength tensor 𝐹𝜇𝜈 = 𝜕𝜇𝐴𝜈 − 𝜕𝜈𝐴𝜇, where 𝐴𝜇 is the photon field:

ℒ𝑜 = 𝜓 (𝑖𝛾𝜇𝜕𝜇 − 𝑚) 𝜓 − 1
4

𝐹𝜇𝜈𝐹 𝜇𝜈. (1.1)

So far the interactions between these particles have not been specified; this is the “free” Lagrangian,

in that the Hamiltonian one could obtain from this Lagrangian would include no potential energy.

The goal is to obtain the simplest possible Lagrangian which can describe what we see in experi-

ments. This means that, among other requirements, the Lagrangian needs to be invariant under

the Poincaré group of transformations. This group of transformations includes the Lorentz trans-

formation of special relativity as well as space-time translations and rotations; invariance under

these transformations ensures conservation of energy, momentum, and angular momentum, respec-

tively. Invariance will also ensure that the theory is stable, in that there is no state with energy

lower than the vacuum state; local, in that signals travel no faster than the speed of light; unitary,

meaning the predictions of the theory can be interpreted probabilistically; and renormalizable, a

feature which will be described later in this Chapter.

The Lagrangian 1.1 is not Poincaré-invariant, however. Under the transformations 𝑈(Λ), where

Λ is the Poincaré transformation in Minkowski space and 𝑈(Λ) the equivalent transformation acting

on vector fields, the photon field 𝐴𝜇 transforms as an invariant vector only up to a “gauge” (phase)
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𝛼(𝑥, Λ):

𝑈(Λ)𝐴𝜇(𝑥)𝑈∗(Λ) = Λ𝜈
𝜇𝐴𝜈 + 𝜕𝜇𝛼(𝑥, Λ) (1.2)

The gauge 𝛼(𝑥, Λ) has no physical meaning. The situation is analogous to that of classical electro-

magnetism, where the scalar potential 𝑉 is determined only up to a constant 𝑐, so the substitution

𝑉 → 𝑉 + 𝑐 changes nothing. The crucial difference, however, is that 𝑐 has a single value at all

locations, and so it represents an example of only global gauge invariance; here, 𝛼(𝑥, Λ) varies at

each space-time point 𝑥, and so to satisfy Poincaré invariance the theory of QED is required to be

locally gauge invariant. A local gauge transformation will result in the vector field transforming

according to

𝐴𝜇 → 𝐴𝜇 + 𝜕𝜇𝛼(𝑥, Λ) (1.3)

and the fermion fields transforming according to

𝜓(𝑥) → 𝑒𝑖𝛼(𝑥)𝜓(𝑥), (1.4)

and so the requirement of local gauge invariance boils down to the construction of a Lagrangian

which does not change if the substitutions Equation 1.3 and Equation 1.4 are made. The mass

term −𝑚 ̄𝜓𝜓 in Equation 1.1 is already invariant under the substitution in Equation 1.4, but the

first term involving the partial derivative 𝜕𝜇𝜓 is not. Therefore, in order to make this Lagrangian

locally gauge invariant, the partial derivative is replaced with a covariant derivative:

𝜕𝜇 → 𝐷𝜇 ≡ 𝜕𝜇 − 𝑖𝑒𝐴𝜇. (1.5)

Making this substitution, the QED Lagrangian becomes

ℒ = 𝑖𝜓 (𝑖𝛾𝜇𝐷𝜇 − 𝑚) 𝜓 − 1
4

𝐹𝜇𝜈𝐹 𝜇𝜈

= 𝜓 (𝑖𝛾𝜇𝜕𝜇 − 𝑚) 𝜓 + 𝑒𝜓𝛾𝜇𝜓𝐴𝜇 − 1
4

𝐹𝜇𝜈𝐹 𝜇𝜈

= ℒ𝑜 + ℒint.

(1.6)

This Poincaré-invariant Lagrangian now has an interaction term, 𝑒𝜓𝛾𝜇𝜓𝐴𝜇, describing how charged

fermions 𝜓 interact with the photon field 𝐴𝜇; the interaction is governed by the coupling strength

𝑒. In summary, by starting with the most general free Lagrangian and adding terms in order to
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satisfy local gauge invariance, a theory of QED has been constructed which fully determines the

possible interactions, is physically meaningful, and is extremely consistent with observations [8, 9].

1.2.2 Quantum chromodynamics

Similarly to how the Lagrangian of QED is largely specified using the requirement of local 𝑈(1)

gauge invariance, the Lagrangian of QCD is constructed by requiring local invariance under the

gauge transformations described by the group 𝑆𝑈(3). The most general free Lagrangian of QCD

looks similar to Equation 1.1:

ℒ𝑜 = 𝑞𝑖 (𝑖𝛾𝜇𝜕𝜇 − 𝑚) 𝑞𝑖 − 1
4

𝐺𝑎
𝜇𝜈𝐺𝜇𝜈

𝑎 . (1.7)

There are several key differences, however. Because fermions transform according to the fundamen-

tal representation of the gauge group, which for 𝑆𝑈(3) is of dimension 3, there are now three quark

fermion fields 𝑞1, 𝑞2, 𝑞3 instead of a single fermion field 𝜓. The three fields correspond to the three

“colors” of strong charge: red, green, and blue. In the same manner, the free QCD Lagrangian

includes 𝑎 = 1, … , 8 for each generator 𝑇𝑎 of the group 𝑆𝑈(3) because the vector gauge fields

transform according to the adjoint representation of the group, which for 𝑆𝑈(3) is of dimension 8.

The QCD field strength tensor

𝐺𝑎
𝜇𝜈 = 𝜕𝜇𝐺𝑎

𝜈 − 𝜕𝜈𝐺𝑎
𝜇 − 𝑔𝑓𝑎𝑏𝑐𝐺𝑏

𝜇𝐺𝑐
𝜈 (1.8)

is therefore formed from eight gluon fields 𝐺𝑎
𝜇. But there is also a new term, −𝑔𝑓𝑎𝑏𝑐𝐺𝑏

𝜇𝐺𝑐
𝜈, in the

QCD field strength tensor 𝐺𝑎
𝜇𝜈 which is not present in 𝐹𝜇𝜈. This is because the group 𝑆𝑈(3) is

non-Abelian, which means that the generators do not commute with one another:

[𝑇𝑎, 𝑇𝑏] = 𝑖𝑓𝑎𝑏𝑐𝑇𝑐, (1.9)

where the structure constants 𝑓𝑎𝑏𝑐 characterize the commutation relations. QED is a representation

of the Abelian 𝑈(1) group, meaning the generators of the group commute with one another and the

structure constants are all equal to zero. The non-Abelian nature of QCD dramatically changes

the nature of its interactions when compared to QED, as we will see multiple times in this Chapter.

As in QED, each of the gluon fields 𝐺𝑎
𝜇 is only Poincaré invariant up to a local gauge:

𝐺𝑎
𝜇 → 𝐺𝑎

𝜇 − 𝜕𝛼𝑎(𝑥, Λ) − 𝑓𝑎𝑏𝑐𝛼𝑏(𝑥, Λ)𝐺𝑐
𝜇. (1.10)
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Once again, the Lagrangian must be adapted so that it is locally gauge invariant. Under a local

𝑆𝑈(3) gauge transformation, the fermion fields transform according to

𝑞 (𝑥) → 𝑒𝑖𝛼𝑎(𝑥)𝑇𝑎𝑞 (𝑥) . (1.11)

Therefore, as in QED, the partial derivative in Equation 1.7 must be replaced with a covariant

derivative 𝐷𝜇. The final gauge-invariant QCD Lagrangian is

ℒ = 𝑞𝑖 (𝑖𝛾𝜇𝜕𝜇 − 𝑚) 𝑞𝑖 − 𝑔 (𝑞𝛾𝜇𝑇𝑎𝑞) 𝐺𝑎
𝜇 − 1

4
𝐺𝑎

𝜇𝜈𝐺𝜇𝜈
𝑎 . (1.12)

The result is an interaction Lagrangian for QCD which looks quite similar to Equation 1.6: it

includes a term −𝑔 (𝑞𝛾𝜇𝑇𝑎𝑞) 𝐺𝑎
𝜇 describing the interactions between the colored fermions 𝑞𝑖 and

the colored gluon fields 𝐺𝑎
𝜇, governed by the QCD coupling strength 𝑔. But the extra term in 𝐺𝑎

𝜇𝜈,

a result to the non-Abelian nature of QCD, means that, unlike the photon of QED, there are also

self-interaction terms for the gluon fields; whereas the photon carries no electric charge, the gluons

have color. The 3- and 4-gluon vertices these terms described are sketched in Figure 1.2. The

importance of these terms will be discussed in the following Sections.

ℒ𝑜 = 𝑞𝑖 (𝑖𝛾𝜇𝜕𝜇 − 𝑚) 𝑞𝑖 − 𝑔 (𝑞𝛾𝜇𝑇𝑎𝑞) 𝐺𝑎
𝜇 − 1

4
𝐺𝑎

𝜇𝜈𝐺𝜇𝜈
𝑎

= “𝑞𝑞” + “(𝜕𝐺)2” + 𝑔“𝑞𝑞𝐺”⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
QED, QCD Lagrangians

+ 𝑔“𝐺2𝜕𝐺” + 𝑔2“𝐺4”⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
QCD only

Figure 1.2: Above: QCD Lagrangian terms summarized (using “ ”) according to their field content.
Below: pictoral representations of the terms of the QCD Lagrangian. The first three terms appear
analogously in the QED Lagrangian as well; the latter two, which involve boson interaction terms,
only appear in QCD. Adapted from [8].

1.3 Renormalization

So far, the couplings 𝑒 and 𝑔𝑠 have been used for QED and QCD, respectively, without much

thought as to what they represent. In a Feynman diagram, such as the middle diagram of Figure

1.2, they represent the strength of the interaction between the fermion and the boson, called the

bare coupling. For example, the strength of the interaction between the photon and an electron
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is governed by the electric charge 𝑒. The value of this bare coupling is not determined by the

theory, however, and cannot be measured directly; experimenters such as myself (and perhaps

the reader!) only have access to the effective coupling, the strength of the interaction due to the

sum of all possible diagrams of the given process. Renormalization is the procedure by which

the bare quantities are replaced by their experimental counterparts in order for physical theories

using these quantities to be representative of what we measure in experiments. However, many of

the possible diagrams being included in the renormalized definitions are divergent, as they involve

integrals over the four-momenta of the interacting particles, and those momenta can be arbitrarily

large. Therefore, the cost of renormalization is to make the couplings “constants” dependent on

an arbitrary energy scale at which their values can be determined through experiment. Below is a

brief overview of the renormalization of QED and QCD and the ramifications of the procedure in

each case.

1.3.1 Quantum electrodynamics

I will start once again with QED, for which the 𝒪(𝑒2) corrections to the 𝑒−𝛾𝑒− vertex are shown

in Figures 1.3b–1.3e. The latter three diagrams show loop corrections to the electron four-vector

current. Integrating these loops over all fermion energies leads to high-energy (“ultraviolet” (UV)

in the usual parlance) divergences; however, due to the fact that QED is a locally gauge-invariant

theory, the UV divergence of the diagram in Figure 1.3c is exactly cancelled by the similar diver-

gences of the diagrams in 1.3d and 1.3e. This cancellation, known as the Ward identity, means

that only 1.3b needs to be estimated in order to renormalize the QED coupling ([10, 11]).

(a) (b) (c) (d) (e)

Figure 1.3: Lowest-order QED vertex diagram (a) and 𝒪(𝑒2) corrections (b-d). Adapted from [12].

Versions of the diagram in Figure 1.3b with two, three, or infinitely many loops are possible,

and all of the versions, which are based on the bare coupling of the theory, must be accounted for in

order to determine the effective coupling. To deal with this infinite series of corrections, the lowest-

order photon exchange diagram can be replaced with the infinite series of photon loop corrections

(Figure 1.4). This cannot be done for free, however; whereas the bare photon propagator is defined

as 𝑃𝑜 = 𝑒2
𝑜/𝑞2, when the lowest-order photon exchange diagram is redefined as the sum of all

the possible loop diagrams, each loop contributes a correction factor 𝜋(𝑞2), and so the effective
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propagator for the redefined lowest-order diagram goes as

𝑃(𝑞2) = 𝑃𝑜 + 𝑃𝑜𝜋(𝑞2)𝑃𝑜 + 𝑃𝑜𝜋(𝑞2)𝑃𝑜𝜋(𝑞2)𝑃𝑜 + … = 𝑃𝑜
1 − Π(𝑞2)𝑒2

𝑜
≡ 𝑒2(𝑞2)

𝑞2 , (1.13)

where Π(𝑞2) = 𝜋(𝑞2)/𝑞2. The second term, for example, corresponds to the one-loop diagram,

with a photon propagator on either side of the loop (like in Figure 1.3b).

eo

eo

+

eo

eo

+

eo

eo

+ … ≡

eo

eo

=

e(q2)

e(q2)

q

Figure 1.4: Renormalization of QED: the running coupling 𝑒(𝑞2) is the bare charge 𝑒𝑜 with the
higher order loop corrections absorbed. Adapted from [12].

In summary, Equation 1.13 shows that calculating the infinite series of diagrams in Figure 1.4

results in a photon propagator whic has the same form as the free propagator but replaces the bare

coupling 𝑒𝑜 with an effective coupling 𝑒(𝑞2). It is worrisome, though, that the effective coupling

is defined in terms of an infinite series of infinite coefficients (since 𝑞2 can be arbitrarily large).

This is not inherently a problem, since 𝑞2 can simply be chosen to be the scale at which 𝑒 can

be determined experimentally, thus avoiding the issue of have to evaluate 𝑒(𝑞2 = ∞) analytically.

However, this coupling is used to calculate particle interaction probabilities, so what happens if

experimenters want to make a prediction at some other scale? To get around this, it is first

assumed that we know the effective coupling at some reference scale 𝜇2. Equation 1.13 can then

be rearranged to redefine the bare coupling 𝑒𝑜 as

𝑒𝑜 = 𝑒(𝜇2)
1 + 𝜋(𝜇2)𝑒(𝜇2)

(1.14)

and this definition of the bare coupling can then be used to define the effective coupling at the

scale of interest 𝑞2:

𝑒(𝑞2) = 𝑒(𝜇2)
1 − [𝜋(𝑞2) − 𝜋(𝜇2)] 𝑒(𝜇2)

. (1.15)

Now 𝑒(𝑞2) is defined in terms of the finite difference [𝜋(𝑞2) − 𝜋(𝜇2)] of two divergent quantities.

Thus the overall consequence of renormalization is that the effective coupling strength is defined
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relative to the coupling strength at some other, arbitrarily chosen, reference scale at which it is

determined experimentally; it is said that the coupling strength runs with 𝑞2. Once this reference

scale is chosen, the renormalized theory completely specifies the coupling strength at all scales

through the 𝑞2 dependence of Equation 1.15.

As far as the Lagrangian is concerned, 𝜇2 is an arbitrary parameter, so no observable 𝒪 measured

in experiments can directly depend on it (though it will depending on the running of 𝑒 in reference

to that scale). This requirement is expressed by the renormalization group equation

[𝜇2 𝜕
𝜕𝜇2 + 𝜇2 𝜕𝑒

𝜕𝜇2
𝜕
𝜕𝑒

] 𝑂 = 0 (1.16)

or, more compactly,

𝛽(𝑒) = 𝜇2 𝜕𝑒
𝜕𝜇2 . (1.17)

Here 𝛽 is a perturbative expansion of scale dependence of 𝑒. The coefficient of the first term, 𝛽0𝑒,

corresponds to the one-loop correction and is given by

𝛽0 = 1
12𝜋

(2𝑛𝑓 − 11𝐶𝐴), (1.18)

where 𝑛𝑓 is number of degrees of freedom for fermions in the loops of Figure 1.4 and 𝛿𝑐𝑑𝐶𝐴 =

∑ 𝑓𝑎𝑏𝑐𝑓𝑎𝑏𝑑 defines the quadratic Casimir operator 𝐶𝐴 in terms of the structure constants describing

the group (such as in Equation 1.9) [13].

Replacing 𝑒(𝑞2) by 𝛼(𝑞2) = 𝑒2(𝑞2)/4𝜋 to make the comparison to QCD in the next subsection

visually simpler, the solution to the renormalization group equation looks like

1
𝛼(𝜇2)

= 1
𝛼(𝑞2)

+ 𝛽0ln ( 𝑞2

𝜇2 ) + … (1.19)

QED, an Abelian theory, has structure constants all equal to 0, and therefore 𝐶𝐴 = 0; at sufficiently

high energies, there are 𝑛𝑓 = 3 fermion families which can participate in the vacuum polarization

loops. Taking these values in Equations 1.19 and 1.18, the QED running coupling is obtained:

𝛼em(𝑞2) = 𝛼(𝜇2)

[1 − 1
3𝜋

𝛼(𝜇2)ln ( 𝑞2

𝜇2 )]
. (1.20)

This coupling strength increases as 𝑞2 increases, as evidenced by the minus sign in the denominator;
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simply put, the electromagnetic interaction gets stronger at higher energies. For example, taking

𝛼em = 1/137 at the reference scale 𝜇 = 1 MeV, 𝛼(𝑀𝑍) = 1/129 at the mass of the 𝑍 boson (≈ 100

GeV) [14].

1.3.2 Quantum chromodynamics

The renormalization procedure of QCD is very similar to that of QED, but once again, the non-

Abelian nature of QCD is of great significance to the final result. The nonzero structure constants

𝑓𝑎𝑏𝑐 result in 𝐶𝐴 = 3; combining this with the 𝑛𝑓 = 3 quark families, 𝛽0 = −9/(4𝜋), and the

running QCD coupling becomes

𝛼𝑠(𝑞2) = 𝛼(𝜇2)

[1 + 9
4𝜋

𝛼(𝜇2)ln ( 𝑞2

𝜇2 )]
. (1.21)

In comparison to Equation 1.20, the minus sign in the denominator has become a plus sign, which

means that the QCD running coupling strength decreases as 𝑞2 increases or, equivalently, as the

interaction distance decreases. This phenomenon is known as asymptotic freedom [15]. As noted

in Figure 1.5, at low energies (≲ 1 GeV), 𝛼𝑠 ≈ 1. This makes performing a pertubative expansion

approximation of QCD at this energy scale impossible: the terms in the perturbative expansion

are too large, and so their sum diverges. On the other hand, at energies ≳ 100 GeV, 𝛼𝑠 ≈ 0.1,

which allows for perturbation theory to be applied to QCD; since this is roughly the energy scale

of 𝑍 boson production, analyses focused on the associated production of this particle are an ideal

choice for perturbative QCD (pQCD) investigations.

1.3.3 (Anti)screening

The difference in behavior of the running couplings can also be seen by observing the shielding

behavior of the fermions coupled to these fields. In QED, an electron can spontaneously emit

a photon, which can decay into an electron-positron pair. Pairs produced in this way are then

polarized by the charge of the electron such that the positrons are closer to the electron. Because

of this, the electron charge is “screened:” as a probe moves closer to the electron, it penetrates the

electron-positron screen and “sees” more of the electron’s charge. This means that, in effect, the

charge increases as the distance to the particle is decreased.

This screening process occurs in QCD as well, but an additional, and stronger, anti-screening

process also takes place, in which e.g. a particle with red color charge is surrounded by other

red charges. The net result is that the observed color charge of a quark instead decreases as the

distance to the quark is decreased (Figure 1.6), or equivalently as 𝑞2 increases.
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Figure 1.5: Running of the strong coupling constant 𝛼𝑠 with energy scale 𝑄. The curve shows
QCD predictions for the combined world average value of 𝛼𝑠 (𝑀𝑍) [16].

Figure 1.6: Screening of (a) electric and (b) color charge [8].

1.4 QCD cross-section measurements

With renormalized field theories defined in terms of effective couplings, the next question to address

is how we, the particle physics experimenters, can use these theories to make predictions. The two

primary observable quantities which it would be useful to predict and then measure are the particle

resonance width Γ, the inverse of its decay rate, and the cross-section 𝜎, a measure of the probability
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of interaction between two particles in a scattering process. The generic cross-section goes as

𝜎 = 1
64𝜋2𝑠

∫ |ℳ𝑓𝑖|2𝑑Ω, (1.22)

where 𝑠 is the square of the center-of-mass energy; the evaluation of the matrix element (ME)

ℳ𝑓𝑖 = − ⟨𝑓| ℒint(𝑥 = 0) |𝑖⟩ − −𝑖2

2!
∫ 𝑑4𝑥 ⟨𝑓| 𝑇 [ℒint(𝑥)ℒint(𝑥 = 0)] |𝑖⟩ + … , (1.23)

which describes the probability of the transition 𝑖 → 𝑓, is the central calculation which must be

performed. The ME is a perturbative expansion of the interaction Lagrangian ℒint, and each higher

order term in the expansion corresponds to the addition of another loop in the scattering process,

such as in Figure 1.4 (which are accounted for in the integral of Equation 1.23 in a time-ordered

manner, hence the 𝑇 […] in the second term). At leading order, the ME corresponds to a diagram

like the first in Figure 1.4, which includes two vertices; from the expression for ℒint in Equation

1.6, we know that each vertex depends on the coupling constant 𝑒, so the ME will depend on

𝑒2 ∝ 𝛼. Therefore, |ℳLO|2 ∝ 𝛼2 for a leading order QED diagram. If we perform the perturbative

expansion of the ME and consider higher order diagrams, such as the next two diagrams in Figure

1.4 (though these are not the only possibilities), we have to sum the individual amplitudes and

then square. At each higher order, another loop is introduced, and so there is another factor of 𝛼

in the ME of the diagram; taking this into account, we can pull out these factors of 𝛼 and write

the perturbative expansion as

ℳ𝑓𝑖 = 𝛼𝑀LO + 𝛼2 ∑
𝑗

𝑀1,𝑗 + 𝛼3 ∑
𝑘

𝑀2,𝑘 + … , (1.24)

where ℳLO = 𝛼𝑀LO. Here ∑𝑗 ℳ1,𝑗 sums over the amplitudes of all next-to-leading order dia-

grams, ∑𝑘 ℳ2,𝑘 sums over the next-to-next-to-leading order diagram amplitudes, etc. |ℳ𝑓𝑖|2 is

then the square of the sum of these amplitudes [12]:

|ℳ𝑓𝑖|2 = (𝛼𝑀LO + 𝛼2 ∑
𝑗

𝑀1,𝑗 + …) (𝛼𝑀∗
LO + 𝛼2 ∑

𝑗′

𝑀∗
1,𝑗′ + …)

= 𝛼2|𝑀LO|2 + 𝛼3 ∑
𝑗

(𝑀LO𝑀∗
1,𝑗 + 𝑀∗

LO𝑀1,𝑗) + 𝛼4 ∑
𝑗,𝑗′

𝑀1,𝑗𝑀∗
1,𝑗′ + … .

(1.25)

Thus the perturbative expansion of the ME is an expansion in terms of the coupling constant

𝛼, which, according to our QED Lagrangian 1.6, governs the strength of the particle interactions.

The same expansion, but in terms of 𝛼𝑠, is seen in pQCD (Equation 1.12). The interaction

Lagrangians are the heart of the Standard Model, and measurements of the cross-section provide
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direct information about the underlying physics of the scattering processes.

In this manner, using pQCD, we can make cross-section predictions for processes where 𝑖 and

𝑗 are partons (quarks and gluons) interacting via the strong coupling. At the LHC, however, it is

not quarks which are collided, but protons containing quarks. So we also have to account for the

likelihood that a given quark of each proton is involved in the underlying scattering event that we

see. The cross-section of a hard-scattering process initiated by two hadrons (protons) 𝑎 and 𝑏 can

therefore be written as

𝜎𝑎𝑏→𝑋 = ∑
𝑖,𝑗

∫
1

0
𝑑𝑥𝑎 ∫

1

0
𝑑𝑥𝑏 𝑓𝑖(𝑥𝑎, 𝜇2

𝐹)𝑓𝑗(𝑥2, 𝜇2
𝐹)⏟⏟⏟⏟⏟⏟⏟⏟⏟

PDFs

⊗ 𝜎̂𝑖𝑗→𝑋(𝑝𝑖, 𝑝𝑗, 𝛼𝑠(𝜇2
𝐹), 𝑄2/𝜇2

𝐹)⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
𝜎̂

. (1.26)

As conveyed by the convolution operator ⊗, the cross-section can be factorized into two parts:

the short-distance, high-energy, perturbative hard process 𝜎̂ describing the probability that the

scattering of quarks 𝑖 and 𝑗 leads to the final state 𝑋, and the long-distance, low-energy, non-

perturbative parton distribution functions (PDFs) 𝑓𝑖(𝑥) describing the probability to find quark

𝑖 (𝑗) with momentum fraction 𝑥1 (𝑥2) in hadron 𝑃1 (𝑃2). The factorization scale 𝜇𝐹 acts as a

resolution parameter by effectively separating these two portions; emissions above this scale are

absorbed into 𝜎̂𝑖𝑗, while emissions below the scale are handled by the PDFs.

The factorization theorem 1.26 not only separates the perturbative and non-perturbative por-

tions of the calculation but says that they are independent; this means that the same estimation of

the non-perturbative physics can be used in any other prediction. With the perturbative portion

handled by the renormalized theory of QCD, we can now focus on this non-perturbative portion,

which includes the PDFs, parton showers, and fragmentation and hadronization [13].

1.4.1 Deep inelastic scattering

Consider elastic scattering processes such as those shown in Figure 1.7. As the energy of an

incident particle increases, the cross-section decreases because the target is more and more likely

to break apart; this is inelastic scattering. With enough energy we reach the regime of deep inelastic

scattering (DIS), where the incident particle now scatters off of the constituents of the initial target

particle. If those constituent parts of the original target are point-like — that is, they do not have

constituents themselves — we then see that the deep inelastic cross-section is independent of 𝑞2;

the inelastic scattering of the probe with the target as a whole can be understood in terms of the

elastic scattering of the probe with the constituents of the target.

This lack of 𝑞2 dependence in the scattering cross-section was predicted for the proton by

James Bjorken [18]. The inelastic scattering cross-section for an electron (with initial momentum

𝑘 = (𝐸,𝑘𝑘𝑘) in the laboratory frame) off of a proton (with initial momentum (𝑝 = (𝑀, 0)) through
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Figure 1.7: Electron elastic and inelastic scattering off of a carbon atom (left) and proton (right)
[17].

angle 𝜃, agnostic to the underlying structure of the proton, is

( 𝑑𝜎
𝑑Ω

) = 𝛼2𝐸2

4𝑘2 sin4(𝜃
2

)
(𝑊2(𝜈, 𝑞2) cos2(𝜃

2
) + 2𝑊1(𝜈, 𝑞2) sin2(𝜃

2
)) , (1.27)

where 𝑊1,2 are proton structure functions of 𝜈 = (𝑝⋅𝑞)/𝑀 and 𝑞2. Bjorken theorized that as 𝑞2 got

very large, these structure functions would exhibit scaling behavior, losing their 𝑞2 dependence:

𝑄2 → ∞
𝜈

𝑄2 fixed

⎫}
⎬}⎭

𝑀𝑊1(𝜈, 𝑄2) → 𝐹1(𝑥)

𝜈𝑊2(𝜈, 𝑄2) → 𝐹2(𝑥).
(1.28)

Here we have made the switch to 𝑄2 = −𝑞2 — it is equivalent the inverse wavelength squared of

the photon, or the resolving power of our DIS microscope — and introduced 𝑥 = 𝑄2/2𝑀𝜈, the

Bjorken scaling variable [18]. The above relations were confirmed by a collaboration of researchers

at MIT and at the Stanford Linear Accelerator (SLAC), as shown in Figure 1.8; the structure

functions exhibit exactly the behavior suggestive of point-like constituents of the proton [19].

1.4.2 Parton distribution functions

The evidence of point-like partons leads to the parton model of the proton, first proposed by

Richard Feynman, in which the total inelastic cross-section is expressed as a sum of elastic collisions

with the partons (Figure 1.9). As discussed at the beginning of this Section, the essence and validity

of this model is what allows for the factorization of the 𝑝𝑝 cross-section. In the parton model, we
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(a)

(b)

Figure 1.8: (a) Early (1969) data suggesting that the proton structure functions are nearly inde-
pendent of 𝑞2 [20]. (b) Friedman, Kendall, and Taylor won the 1990 Nobel Prize for their work
evidencing point-like constituents of the proton [19].

Figure 1.9: A schematic of the parton model. Adapted from [8].

assume that the quarks in the proton are effectively free. Furthermore, we assume that the energy

of the proton 𝐸 ≫ 𝑚𝑝; this means that we can not only neglect 𝑚𝑝, but we can also neglect the

component of the momentum of the struck quark transverse to the direction of the proton. This

means that the momemtum of the protons is the sum of the momenta of the quarks. The structure

functions 𝐹1,2 can then be written, using the Callan-Gross relation

2𝑥𝐹1(𝑥) = 𝐹2(𝑥) = ∑
𝑖

𝑒2
𝑖 𝑥𝑓𝑖(𝑥), (1.29)

in terms of 𝑥, which we interpret as the momentum fraction carried by a given parton, and the

PDFs 𝑓𝑖(𝑥), which we interpret as describing the probability that the struck parton 𝑖 carries a

fraction 𝑥 of the proton’s total momentum. The Callan-Gross relation is a result of the spin- 1
2
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nature of the quarks and is extremely well supported by experimental data.

As stated earlier, the PDFs are process-independent and only need to be obtained once. This

is crucial because the PDFs are a necessary input to the calculation of any cross-section involving

hadrons in the initial state. As long as the PDFs are known at the same scale as the factorization

scale of a given process, they can be used for a two-hadron process like Equation 1.26 or for the

𝑒𝑝 scattering process we’ve been discussing (Figure 1.10) [13]. However, the PDFs are also non-

perturbative, which means that they cannot be calculated using perturbation theory. Whereas the

hard scattering process 𝜎̂ treats the initial state particles as free, elastically-scattering quarks, which

puts the calculation in the asymptotically-free regime of perturbative QCD, the PDFs describe all

of the quarks and their momenta in reference to the bound state of the proton. This includes not

only the three valence quarks but also the sea quarks produced via gluon radiation, which are by

definition not asyptotically free, putting the PDFs beyond the scope of perturbative QCD.

Figure 1.10: The parton-model description of a hard-scattering process, factorized into the pertur-
bative PDFs 𝑓𝑖(𝑥) and the non-perturbative hard process 𝜎̂.

This raises the question of how the PDFs account for the gluons which are present within the

proton. It has been experimentally demonstrated that the quarks in the proton only account for

around half of the proton’s momentum; this means that the other half must be carried by the

gluons, which the PDFs so far do not mention. But accounting for the gluons conflicts with the

assumption of Bjorken scaling: as 𝑄2 increases, more gluon emission is resolved by the probe,

and so the probe particle sees the quarks as having lower momentum fraction 𝑥 (see Figure 1.11).

Therefore, when gluon brehmsstrahlung is also accounted for, the Bjorken scaling of the PDFs is

violated. This behavior was missed by the earlier scaling experiments, such as those in Figure

1.8, because they did not probe high enough in 𝑄2 or low enough in 𝑥. Fortunately, in the next

Section, we will see how we can not only incorporate the lack of Bjorken scaling into the parton

model but also use a PDF determined at one energy scale for a prediction at another.
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Figure 1.11: A visualization depicting how the increase in momentum transfer 𝑄2 leads to increased
resolution of the proton, and thus the violation of Bjorken scaling [12].

1.4.3 PDF evolution and determination

To account for the possibility that a parton 𝑎 of a given momentum fraction 𝑥 may have come from

a parent parton 𝑏 with some larger momentum fraction 𝑦, which could either have been a quark or

gluon, we use the Dokshitzer-Gribov-Lipatov-Altarelli-Parisi (DGLAP) equation [21–23]:

𝑑
𝑑 log 𝑄2 𝑓𝑎(𝑥, 𝑄2) = 𝛼𝑠

2𝜋
∑

𝑏∈{𝑞,𝑔}
∫

1

𝑥

𝑑𝑦
𝑦

𝑃𝑏𝑎 (𝑥
𝑦

) 𝑓𝑏(𝑦, 𝑄2). (1.30)

The Altarelli-Parisi splitting functions 𝑃𝑏𝑎 describe the probability that parton 𝑏 splits into parton

𝑎, and these splitting functions are used to determine the dependence of the structure functions

on 𝑄2. The DGLAP equations cannot determine the PDFs, but if the PDFs are already known

at some reference energy scale 𝑄2
𝑜 they can then be determined at any other scale 𝑄2 using the

DGLAP equation. The evolution of the structure function 𝐹2 with 𝑄2 is shown in Figure 1.12.

This is somewhat analogous to the renormalization group equation 1.19, but for the factorization

of the cross-section.

To obtain the PDFs at the original reference scale, it is assumed that the PDFs are smooth

functions of 𝑥 which depend on a finite number of parameters. There are several parameterizations

using different functional forms, including the Martin-Stirling-Thorne-Watt (MSTW) and Coordi-

nated Theoretical Experimental Project on QCD (CTEQ) collaborations [25, 26]. Experimental

data on a range of fixed-target and collider processes with well-know cross-sections are used to

determine the values of the parameters necessary to specify the PDFs; a sample of PDFs obtained

using the MSTW parameterization is given in Figure 1.13.
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Figure 1.12: Deviations of the 𝐹2 structure function from Bjorken scaling. Data from HERA and
fixed-target experiments are compared to the ZEUS NLO fit [24].

1.5 Parton showers

The cross-section in Equation 1.26 is an inclusive cross-section which represents the probability

of the process 𝑎𝑏 → 𝑋. Here, 𝑋 can be a final state accompanied by any number of extraneous

particles from initial- and final-state radiation; for example, if we’re interested in 𝑍 bosons in

the final state, the inclusive cross-section will include any number of accompanying jets. But

if we want to study the kinematics of the leading jet recoiling against the 𝑍 in the final state,

we run into a problem. We can use the DGLAP equation to determine the PDFs at different

energy scales corresponding to different levels of resolved radiation or lack thereof. But we need

something analogous for the hard process scattering cross-section calculation, because it is by

definition of Equation 1.26 an inclusive total cross-section calculation; the amount of initial and

final-state radiation is not specified. This is where Monte Carlo event generators [28] come in. The
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Figure 1.13: Distributions of the parton distribution functions times 𝑥 using the NNLO MSTW
parameterization at 𝑄2 = 10 GeV2 (left) and 𝑄2 = 10000 GeV2 (right) [27].

generators simulate a parton shower as described by the Sudakov form factors [29]

Δ𝑎(𝑡0, 𝑡) ≡ exp [−𝛼𝑆
2𝜋

∑
𝑏∈𝑞,𝑔

∫
𝑡

𝑡0

𝑑𝑡′

𝑡′ ∫
1

𝑥

𝑑𝑦
𝑦

̂𝑃𝑎𝑏 (𝑥
𝑦

)] , (1.31)

which give the probability that a parton 𝑖 evolves from time 𝑡0 to time 𝑡 without emission of a

parton 𝑗, governed once again by the splitting functions ̂𝑃𝑗𝑖
1 [13]. These provide a DGLAP-like

expression which is convoluted to the scattering process prediction:

𝑑
𝑑 log 𝑄2 log 𝑓𝑎(𝑥, 𝑡)

Δ𝑎(𝑡𝑐)
= 𝛼𝑠

2𝜋
∑
𝑏∈𝑞,𝑔

∫
1

𝑥

𝑑𝑦
𝑦

𝑃𝑏𝑎 (𝑥
𝑦

) 𝑓𝑏(𝑦, 𝑡)
𝑓𝑎(𝑥, 𝑡)

. (1.32)

The event generators solve this expression in order to account for unresolved splittings. In the

final state, highly virtual partons lose energy to splittings until the cutoff scale 𝑄𝑐 = 1
𝑡𝑐

is reached,

at which point all of the outgoing partons have to be packaged together into hadrons, as described

in the following Section. In the initial state, this algorithm is played backwards: the initial-state

parton gains virtuality until it reaches the momentum fraction of the PDF.

These parton shower models allow for predictions which account for the various soft and

collinear emissions which are not accounted for in fixed-order ME calculation but are in the PDFs
1The splitting functions here are unregularized, in that an infrared cutoff is used: emissions with 𝑧 above the

cutoff are deemed unresolvable, so these Sudakov form factors give the probability of evolving without resolvable
emission.
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through DGLAP evolution.2 However, they do not model hard partons well: the splitting func-

tions correspond to the soft and collinear limit of the full splitting process, and so the parton

shower models are not built to adequately model high-energy or large-angle emissions. Therefore,

higher-order ME calculations with hard splitting explicitly included are required. But the parton

shower models do still model the hard splittings — just not well — and so there is the potential for

double-counting these hard splittings with both the parton shower and ME calculations. Because

of this, the hard splittings have to be removed from the parton shower modelling with a matching

(using a LO ME calculation) or merging (using an NLO or higher-order ME calculation) procedure;

the specifics of such procedures are beyond the scope of this thesis.

1.6 Hadronization and underlying events

The next non-perturbative step of the 𝑝𝑝 collision is the formation of hadrons from the partons

available after the parton shower is performed. As the quarks and gluons in the shower separate

in the center-of-mass frame, the energy scale keeps dropping until they hadronize,3 i.e. combine

to form colorless hadrons. The end result is jets of hadrons moving roughly in the direction of the

original 𝑞 and ̄𝑞. Since this transition is non-perturbative, it must be modelled using experimental

data.

Fortunately, we can use a very similar formalism to what was used to describe the PDFs.

Recall that the parton distribution functions 𝑓𝑖(𝑥) describe the probability that a parton 𝑖 carries

momentum fraction 𝑥 of the proton’s overall momentum. We can define the hadronization functions

𝐷ℎ
𝑞 (𝑧) and 𝐷ℎ

̄𝑞 (𝑧), which describe the probability that a hadron ℎ is found in the jet of the original

quark or antiquark, respectively, carrying a fraction 𝑧 of its momentum. Just like the PDFs, these

functions are subject to momentum conservation, i.e.

∑
𝑖

∫
1

0
𝑑𝑥 𝑥𝑓𝑖(𝑥) = ∑

ℎ
∫

1

0
𝑑𝑧 𝑧𝐷ℎ

𝑞 (𝑧) = 1, (1.33)

so that the sum of the energies of the hadrons is equal to the energy of the parent quarks. The

hadronization functions are also, like the PDFs, subject to scaling violations due to gluon emission

and can be evolved with a DGLAP evolution equation.

The hadronization of the partons must be modelled based on the observation that the parton

momenta and flavors carry over to the resulting hadrons (so-called parton-hadron duality) [13, 27].

There are multiple phenomenological models to describe this carry-over. The two most commonly-
2Analytical calculations are possible as well, but most theoretical predictions for the LHC proceed use the

generator-based predictions described in this Section.
3The term fragmentation is usually used in conjunction with hadronization, often interchangeably; for example,

the functions 𝐷ℎ
𝑞 (𝑍) which I define in this Section are usually referred to as the “fragmentation functions.” To avoid

confusion, however, I am going to stick with “hadronization,” as I find that term more intuitive.
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used models are: the string hadronization model, in which separating quarks lose energy to the

color field, which collapses into a string and then breaks through 𝑞 ̄𝑞 production to form hadrons

(used by the Pythia event generator); and the cluster hadronization model, in which color-singlet

clusters of partons form through non-perturbative 𝑔 → 𝑞 ̄𝑞 splitting. A comparison of these models

is shown in Figure 1.14; a further discussion of the Monte Carlo generators used in this analysis

can be found in Chapter 5.

(a) String hadronization model (b) Cluster hadronization models

Figure 1.14: Two different models of parton shower hadronization [13].

The last non-perturbative portion of the 𝑝𝑝 collisions are the potential interactions of the partons

not involved in the main scattering process. The “underlying event” can involve other, separate

collisions as well as gluon strings between the main scattering partons and the spectator quarks

and gluons. All of this, plus everything described in this chapter, make up the “minimum bias”

events recorded by the loosest triggers of the detector’s trigger system. These non-perturbative

portions of the 𝑝𝑝 collisions, when combined with the pQCD predictions for the main scattering

interaction, provide the full picture of a collision event at the LHC (Fig 1.15). In the next Chapter,

an overview of the LHC itself and the detectors used to observe these events is provided.
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Figure 1.15: A breakdown of the various perturbative and non-perturbative portions of the 𝑝𝑝
cross-section [30].



Chapter 2

The Large Hadron Collider and

the ATLAS detector

2.1 The Large Hadron Collider

The Large Hadron Collider (LHC), commissioned in 2008 as the final stage of the CERN accelerator

complex (Figure 2.1), is located underneath the border of France and Switzerland. With its 27 km

circumference, it is the largest particle collider in the world, and in fact the largest machine ever

built. Although the LHC does spend a few weeks every year colliding heavy ions such as lead (at

center-of-mass energies up to
√

𝑠 = 5 TeV), it is primarily a proton-proton collider. The LHC has

had two runs of operation: during Run 1, from 2011 to 2012, the equivalent of 36 fb−1 of data was

collected with proton-proton (𝑝𝑝) collisions reaching a
√

𝑠 = 7 to 8 TeV; during Run 2, from 2015

to 2018, 139 fb−1 of 𝑝𝑝 data was collected with
√

𝑠 = 13 TeV.

The LHC’s two counter-circulating beams are made to collide at four interaction points, at

which the four main detectors are placed: A Toroidal LHC ApparatuS (ATLAS) [32] and the

Compact Muon Solenoid (CMS) [33], which are the two general-purpose detectors; the Large

Hadron Collider beauty (LHCb) [34] detector, which focuses on studying the 𝑏-quark to investigate

matter-antimatter asymmetry; and A Large Ion Collider Experiment (ALICE) [35], which studies

heavy-ion collisions.

2.1.1 Proton synchrotrons

The LHC is designed as a charged hadron synchrotron. In a synchrotron, particles are accelerated

using radio frequency (RF) cavities, which produce an oscillating electric potential. The oscillation

of this potential means that the accelerating force the charged particles receive as they pass through

26



2.1. THE LARGE HADRON COLLIDER 27

Figure 2.1: The CERN accelerator complex, culminating in the Large Hadron Collider (LHC) [31].

the RF cavities depends on the time of their arrival: particles which arrive at the cavity too “early”

see a smaller potential and are boosted less, and those which arrive “late” see a larger potential and

receive a larger boost (see Figure 2.2). In this way, the particle density peaks around the phase of

the average field strength. Dipole magnets are used to bend the paths of the particles into a ring,

and quadrupole magnets near the interaction points focus the particle in the plane transverse to

the beam pipes to maximize the probability of collisions at these points. Higher-multipole magnets

are used to correct imperfections in the magnetic field.

As the particles move faster, the frequency of the RF cavity potential must increase to boost

the particles as they pass. To keep the radius of the particles’ paths constant, the magnetic field

strength of the dipole magnets must also increase. Thus, as the name “synchrotron” suggests,

the frequency of the RF potential and the strength of the dipole magnetic field are synchronized

to ensure that the particles continue to accelerate while staying along the accelerator’s central

beamline.

At the LHC, in order to collide protons, two separate beams of protons circulate in opposite
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Figure 2.2: Diagram illustrating how the varying RF voltage applies accelerating potentials [36].
Protons arriving “late,” with too little energy to match the RF frequency (left red dashed line),
experience a larger accelerating potential, while protons arriving “early,” with too much energy
(right red dashed line), experiencing a smaller accelerating potential.

directions. Because the two beams circulate particles of the same charge, the orientation of the RF

cavities and of the dipole magnetic field of each beam is opposite the other beam. To accelerate the

protons, each beam is equipped with 8 RF cavities, which have the frequency of their potentials

increased to a maximum of 400 MHz; the peak value of the potential is 2 MV. In concert with the

increasing frequency of the RF cavities and speed of the particles, a total of 1232 superconducting

dipole magnets, each producing a magnetic field of a maximum of 8.3 T, curve particles moving

along the beamlines. Finally, 392 quadrupole magnets, with a nominal (maximum) field gradient

of 223 T/m (241 T/m), focus each beam as it approaches the interaction points. The dipole and

quadrupole magnets are superconducting, which requires them to be held at a temperature of 1.9

K; this is done using a liquid helium distribution system, which sends refridgerated liquid helium

in a pipe parallel to the LHC pipe [32, 36, 37].

2.1.2 Energy

The protons accelerated by the LHC start out as negative hydrogen ions, which are initially ac-

celerated by Linear Accelerator 4 (LINAC 4).1 The hydrogen ions are stripped of their electrons

during injection into the Proton Synchrotron Booster (PSB, “Booster” in Figure 2.1), which accel-

erates then the protons from 160 MeV to 1.4 GeV. The protons are then injected into the Proton

Synchrotron (PS); at 25 GeV, they enter the Super Proton Synchrotron (SPS); and they are fi-

nally injected into the LHC at 450 GeV. The first collisions which were achieved at the LHC, in

November 2009, occured at a center-of-mass energy of
√

𝑠 = 900 GeV; in March 2010,
√

𝑠 = 7 TeV

was reached, with 8 TeV becoming possible in 2012. For the LHC’s Run 2, the operational period

between April 2015 and the end of 2018, the protons were accelerated to 6.5 TeV, resulting in
√

𝑠 = 13 TeV collisions; the data from this Run are what will be discussed in this thesis [37].
1LINAC 4 replaced Run 2’s LINAC 2 during the 2019-2020 long shutdown.
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Figure 2.3: (a) Diffraction pattern of a circular aperture. (b) Limit of resolvability of two images:
the center of the diffraction pattern of one image is over the minimum of the diffraction pattern
of the other [38].

The reason to invest so heavily in the final center-of-mass energy of the proton collisions is that

this energy determines the resolution at which the LHC can view the underlying structure and

interactions within the proton. de Broglie’s inverse relationship between particle momentum and

wavelength,

𝜆dB = ℏ
𝑝

, (2.1)

tells us that increasing the momentum of a particle decreases its wavelength. Moreover, the

Rayleigh criterion

sin (𝜃R) = 𝜆
𝐷

(2.2)

tells us that for a given aperture of diameter 𝐷, the resolution 𝜃𝑅 is proportional to the wavelength;

this means that a smaller wavelength allows for points separated by a smaller angular distance to

be distinguished (see Figure 2.3). Combining these two statements tells us that the faster the

protons collide together, the smaller the objects which can be resolved by the detectors (resolution

sin (𝜃R) ∼ 1/momentum 𝑝). In this sense, the LHC and its detectors are simply a (very large)

proton microscope, with the protons acting as the light producing visible images and the detector

acting as the viewing lens.

As a further consequence of the increased energy, rare processes involving heavy particles or very

energetic final states are more easily resolvable: because of the Heisenberg uncertainty principle,
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more energetic particles decay more quickly, or equivalently over a shorter distance traveled, but

the high energies of the probing protons at the LHC can resolve these decays. As a result, as shown

in Figure 2.4, higher energies result in larger cross-sections for massive particles: for example, the

𝑝 ̄𝑝 collisions at the Tevatron at 1.8 TeV led to the discovery of the top quark, and the LHC quickly

exceeded the Tevatron’s lifetime top quark production by virtue of its higher center-of-mass energy.
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Figure 2.4: Production cross-sections for several processes as a function of center-of-mass energy
[39].

2.1.3 Luminosity

To draw any meaningful conclusions about what the detectors are seeing, no matter how energetic

the collisions are, requires studying many of these collisions to achieve statistically-significant

results. The rate of collisions is closely tied to the luminosity, the number of protons passing

through a given area of the detector per unit time. (This is why the LHC is not a proton-

antiproton collider: it is much more difficult to produce a large number of antiprotons, and so the

luminosity of such a collider would be far smaller).

The primary means of increasing the luminosity is keeping the protons tightly packed in bunches

so that the number of particles per unit area is high. Bunches of around 1.2 × 1011 protons are

formed at injection into the PS, which the RF cavities of the LHC then focus; in the LHC’s nominal
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operation mode, 2808 such bunches are present in each beam of the LHC. As mentioned above,

the oscillating potentials produced by the RF cavities of the LHC squeeze the particles together

longitudinally (along the beamline). Any defects in the positions of particles transverse to beam

axis are corrected using stochastic cooling: particles straying from the bunch have their positions

measured and a corresponding “kick” is given to the bunch, and over many revolutions these

corrections normalize the particle spread and contain the bunch. In the LHC, these techniques

produce bunches of approximately 1011 particles each. The bunches are spaced such that they

arrive at the ATLAS detector every 25 ns, corresponding to a bunch-crossing frequency of 40

MHz. A smaller bunch spacing would increase the rate of bunch crossings and the luminosity,

but it would also decrease the time available to the detectors to process signals; because of this,

the spacing is not decreased further. These bunches are further laterally condensed using the

quadrupole magnets, whose field lines direct the protons towards the center of the beam pipe.2

While the size of the bunches is not constant as the bunches travel through the LHC, it reaches

its minimum at the detectors, where powerful insertion magnets at each opening of the detector

squeeze the bunches down to 20 𝜇m across.

The instantaneous luminosity is defined as

ℒ = 𝑓𝑁2
𝑏

4𝜋𝜎𝑥𝜎𝑦
, (2.3)

where 𝑓 is the frequency of bunch crossings, 𝑁 is the number of protons per bunch, and 𝜎𝑥,𝑦 are the

size of a bunch at the interaction point in both directions transverse to the beam direction, about

16 microns for both beams (𝜎𝑥,𝑦 can be though of as the size 𝐷 of the aperture in Equation 2.2

of the LHC ”microscope”) [36]. Given the values quoted above, we can compute an instantaneous

luminosity of 1034 cm−2s−1, or 1034 bunch crossings per centimeter squared per second. This is

not the number of proton collisions; on average, we can expect that the 2 ∗ 1011 protons involved

in a single bunch crossing will result in 40 interactions to study. Further still, only some of these

interactions are of interest to a given researcher at a given time, so the actual number of events of

interest,

𝑁 = 𝜎𝐿, (2.4)

where 𝐿 = ∫ ℒ𝑑𝑡, depends on the particular cross-section 𝜎 of the process that is to be studied.

Increasing the luminosity necessarily increases the expected number of events of any process,

producing more data to analyze.
2The planned High-Luminosity LHC program requires, among other upgrades, 12 quadrupole magnets with

stronger magnetic fields to create even tighter bunches.
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Figure 2.5: (a) Cumulative luminosity of high-energy proton collisions delivered by the LHC to
ATLAS across Runs 1 and 2. (b) Cumulative luminosity delivered by the LHC, during stable beam
conditions at

√
𝑠 = 13 TeV, to ATLAS (green), recorded by ATLAS (yellow), and certified to be

good quality data (blue) from 2015 to 2018 [40].

The integrated luminosity ∫ ℒ 𝑑𝑡 provides a measure of the total data collection of the LHC. It is

usually expressed in inverse femtobarn, where 1 femtobarn = 10−39 cm2 is the unit used to express

cross-sections. The ATLAS experiment, described in Section 2.2, has received a total integrated

luminosity of 189.3 fb−1 across Runs 1 and 2 (Figure 2.5a). During Run 2 specifically, 156 fb−1

was delivered, 139 fb−1 of which was recorded by ATLAS during stable beam conditions (Figure

2.5b) [41]. With that tremendous amount of data, ATLAS and the other detectors of the LHC

have continued to experimentally verify the success of the Standard Model: as shown in Figure 2.6,

ATLAS has verified SM-predicted cross-sections over more than 10 orders of magnitude, making the

Standard Model one of the most successful scientific theories ever developed. In addition, ATLAS

has also placed severe constraints on a wide array of beyond the SM predictions; see Figure 2.7.

2.2 The ATLAS detector

As mentioned above, ATLAS is one of the two general-purpose detectors of the Large Hadron

Collider. As the measurements in this thesis are performed on ATLAS data, I will focus on

describing the structure of the ATLAS detector here.

2.2.1 Coordinate systems

The ATLAS detector (Figure 2.8, left) is a cylindrical toroid with forward-backward symmetry

with respect to the interaction point where the protons bunches cross. It is 44 m long and 25 m in

diameter, with a total weight of approximately 7000 tons. The toroidal shape allows for an almost

complete 4𝜋 coverage of the area surrounding the interaction point.

To discuss particle positions and momenta in this space, we use a right-handed Cartesian
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Figure 2.6: Standard Model measurements performed by the ATLAS collaboration using proton-
proton collisions with center-of-mass energies of 5, 7, 8, an 13 TeV [42].

coordinate system where the 𝑧-axis lies along the beamline, the 𝑦-axis points upwards, and the

𝑥-axis points towards the center of the LHC ring. A polar coordinate system can also be used, with

𝑟 extending from the interaction point perpendicular to the 𝑧-axis and the 𝜙 angle, rotating about

the 𝑧-axis, measuring inclination from the 𝑥-axis. A 𝜃 angle, which instead measures inclination

from the 𝑧-axis, is also often used. The coordinate systems are shown on the rightmost panels in

Figure 2.8.

Collisions occur in the center-of-mass reference frame of the protons, but not necessarily of the

partons which actually participate in the main scattering processes; therefore, the 𝑧-momenta of

the incoming particles are not necessarily balanced. It is more convenient to perform calculations

in the parton center-of-mass frame, where these momenta are balanced, and to then Lorentz boost

into the laboratory frame. Doing so requires Lorentz-invariant observable quantities. Two such

commonly-used quantities are the transverse momentum

𝑝T = √𝑝2
𝑥 + 𝑝2

𝑦 (2.5)
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Figure 2.7: Ranges of new particle masses excluded by ATLAS searches at the 95% confidence
level [43].

and the pseudorapidity

𝜂 = −ln [tan (𝜃
2

)] , (2.6)

which is used instead of 𝜃 because, for highly-relativistic massive particles, it is a good approxi-

mation of the Lorentz-invariant rapidity 𝑦 = 1
2 ln [(𝐸 + 𝑝𝑧) / (𝐸 − 𝑝𝑧)]. As 𝜂 and 𝜙 (which is also

Lorentz-invariant) are most commonly used to describe the trajectory of a particle through the

ATLAS detector, another useful quantity is the angular distance Δ𝑅 between objects:

Δ𝑅 = √Δ𝜂2 + Δ𝜙2. (2.7)

The ATLAS detector is composed of concentric subdetectors which rely on different technologies

and particle interaction principles to collect as much precise kinematic and identification informa-

tion as possible of the particles coming from the collisions. They are described in the following

subsections, moving from the center of the detector outwards.
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Figure 2.8: Cut-away view of the ATLAS detector (left), with right-handed Cartesian coordinate
system (right, top) and polar coordinate system (right, bottom) illustrated [44].

2.2.2 Inner detector

Particles exiting a proton-proton collision at the interaction point first encounter the beryllium

beam pipe [45]; the vast majority do not interact with the pipe, as it is meant to be an inactive

part of the detector. The first active part of the detector most particles interact with is therefore

the Inner Detector (ID) [46], whose purpose is to measure the momenta of charged particles.

A cylindrical detector covering the range 𝜂 ≤ 2.5, it consists of three subcomponents (Figure 2.9).

The pixel detector is the first and highest-granularity detector and is made up of three concentric

barrel layers, and two endcaps of three layers each, of rectangular silicon “pixels”. When charged

particles pass through the pixels, ions are freed and read out by 80.36 million electronic readout

channels. The pixel detector has an intrinsic accuracy of 10 𝜇m in the radial (𝑅−𝜙) plane and 115

𝜇m in the axial (𝑧, in the barrel region) and radial (𝑅, in the endcap regions) planes. In Run 2, the

Insertable B-Layer (IBL) [47], made up of additional pixel sensors (12.04 million additional readout

channels), was added between the pixel detector and the beam line to improve the resolution of the

charged particle origins, which are especially important for discerning 𝑏-hadrons (hence “B-layer”).

Beyond the pixel detector are the 4 layers of the Semiconductor Tracker (SCT) [48, 49], which is

made up of strips of silicon. The detection principle is the same as that of the pixel detector,

but the strips sacrifice some resolution to reduce the overall cost of the detector: the SCT has an

intrinsic accuracy of 17 𝜇m in the radial (𝑅 − 𝜙) plane and 580 𝜇m in the axial and radial planes.

Finally, the Transition Radiation Tracker (TRT) [50, 51] surrounds the SCT with long, thin drift

tubes filled with ionizable gas. A charged particle of 𝜂 < 2 typically passes through 35-40 tubes.

Charged particles passing through the tubes free ions which drift towards an anode wire in the

center of each tube, resulting in a readout current; the energy deposited by the drifting ions help

distinguish electrons from radiative photons, which result in much larger energy depositions.
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Figure 2.9: Schematic view of the ATLAS inner detector (ID). The ID consists of silicon pixels
and strips on the interior and drift tubes in the outermost layers [52].

Enclosing the ID is the solenoid magnet [53], which produces a 2T magnetic field. Charged

particles have their trajectories deflected by this magnetic field proportional to their transverse

momentum 𝑝T. This 𝑝T can therefore be determined by using the spatial hits in the inner detector

to reconstruct charged particle tracks and then measuring the impact parameter of the tracks. For

tracks with 𝑝T > 30 GeV, the ID was measured at commissioning to have a transverse impact

parameter resolution of 22.1 ± 0.9 𝜇m and a relative momentum resolution of 𝜎𝑝/𝑝 = (4.83 ±

0.16) × 10−4 GeV−1 × 𝑝T. The uncertainty in this resolution,

𝜎(1/𝑝T) = 𝐴𝑝T
⊕

𝐵𝑝T

𝑝T
√

sin 𝜃
, (2.8)

is dominated by multiple scattering error (𝐵𝑝T
) at low 𝑝T and by the intrinsic 𝑝T resolution and

residual misalignment errors (𝐴𝑝T
) at high 𝑝T [54].

2.2.3 Calorimeters

Beyond the solenoid and its magnetic field are the Electromagnetic and Hadronic Calorime-

ters [55, 56], in that order. The purpose of the calorimeters, which are shown in Figure 2.10,

is to measure the energy of incoming particles. In a calorimeter, incoming particles first interact

with a dense absorption (passive) material. This leads to electromagnetic or hadronic showers

of particles, which cause ionization or light production, respectively, in the active components of

the calorimeters. The resulting current or light signal, proportional to the energy of the detected

particles, is then read out by the connected electronics. The differing active materials used in
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the electromagnetic and hadronic calorimeters (which are specified below) result in different elec-

tromagnetic radiation lengths 𝑋𝑜 and nuclear interaction lengths 𝜆𝐼 for the two calorimeters.3

As 𝜆𝐼 is generally much larger than 𝑋𝑜 for dense materials, hadrons typically pass through the

electromagnetic calorimeter before showering in the hadronic calorimeter.

Figure 2.10: Cut-away schematic of the ATLAS electromagnetic and hadronic calorimeters [58].

The electromagnetic calorimeter (ECal) uses an accordion geometry of lead absorptive compo-

nents and liquid argon (LAr) active components. This geometry of overlapping layers allows for

full 𝜙 coverage, without any cracks, and also for fast readout from the front and back of the elec-

trodes. The calorimeter is divided into two regions: two half-barrels, separated by a small gap at

𝑧 = 0, cover |𝜂| < 1.475, while two endcaps perpendicular to the beamline cover 1.327 < |𝜂| < 3.2.

Energy is determined most precisely in the region |𝜂| < 2.5, where the calorimeter has three lead-

LAr layers; the region 2.5 < |𝜂| < 3.2 is covered by two layers. Figure 2.11 shows a section of a

module in the barrel region. The central (second) layer is the longest, so most often the center of

the electromagnetic shower, and the majority of the deposited energy, is in this layer. By contrast,

the third layer has half the resolution in 𝜂, while the first layer has 20 times the resolution in 𝜂

but a quarter the resolution in 𝜙. The electron likelihood identification, described in Section 3.4.2,

uses the information obtained from modules such as this.

The energy resolution [59] of the ECal can be parameterized as

𝜎(𝐸)
𝐸

= 𝑎√
𝐸

⊕ 𝑏
𝐸

⊕ 𝑐, (2.9)

3𝑋𝑜 is the mean distance over which a relativistic electron will lose all but 1/𝑒 of its energy to brehmsstrahlung,
while 𝜆𝐼 is the mean distance needed for the flux of relativistic primary hadrons to reduce to a fraction 1/𝑒 [32, 57].
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where 𝑎 is the stochastic term, 𝑏 is the electronic noise term, and 𝑐 is a constant term including

detector instabilities and miscalibration. The resolution is designed to be

𝜎(𝐸)
𝐸

= 10%√
𝐸

⊕ 170 MeV
𝐸

⊕ 0.7%. (2.10)

Figure 2.11: Sketch of a barrel module of the electromagnetic calorimeter, with the granularity of
the cells in each of the layers given [32].

The hadronic calorimeter (HCal) has three different sections (see Figure 2.10). The tile

calorimeter, consisting of 3 layers of steel (absorptive) and scintillator (active) plates, covers the

region |𝜂| < 1.7. The endcap copper-LAr calorimeters (HEC) cover the region 1.327 < |𝜂| < 3.2.

Finally, the forward calorimeter (FCal) covers the region 3.1 < |𝜂| < 4.9 and consists of three

layers: FCal1 is a copper-LAr calorimeter like the HEC, while Fcal2 and Fcal3 are tungsten-LAr

hadronic calorimeters. The tile calorimeter’s energy resolution, parameterized as in Equation 2.9

but with the negligible electronic noise term dropped, is measured to be

𝜎(𝐸)
𝐸

= 52.9%√
𝐸

⊕ 5.7%.

Similarly, the design energy resolutions of the HEC and FCal are 50%√
𝐸 ⊕ 3% and 100%√

𝐸 ⊕ 10%,

respectively.
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2.2.4 Muon spectrometer

The outermost layer of the ATLAS detector is the Muon Spectrometer (MS) [60], designed to

measure the momenta of the muons which, due to their higher mass, most often make it through the

calorimeters while losing minimal energy through interactions with atomic nuclei. The trajectories

of the particles in the MS are bent by superconducting toroidal magnets, which are shown in

Figure 2.12: the large barrel toroid covers the region |𝜂| < 1.4, while two endcap toroids cover

1.6 < |𝜂| < 2.7.

Figure 2.12: Cut-away schematic of the muon spectrometer [61].

Monitored drift tubes (MDTs) and cathode strip chambers (CSCs) are used for measurement

and tracking of the particle trajectories. In the region |𝜂| < 2.0, three layers of the MDTs are

used, while in the region 2.0 < |𝜂| < 2.7 one layers of CSCs is used together with two MDT layers

(see Figure 2.13). The MDTs work similarly to the TRT of the inner detector, in that charged

particles cause ionized electrons to drift towards an anode wire within the chambers. The CSCs

are multi-wire proportional chambers, where instead of a single wire concentric to a cylindrical

chamber several wires lie between two cathode strips. The spatial resolution of the MDTs during

Run 2 was measured to be 81.7 ± 2.2𝜇m on average, while the momentum resolution is ≈ 3% for

10 < 𝑝T ≲ 100 GeV, slowly rising to ≈ 10% for 𝑝T = 1 TeV [62, 63]. To reach this precision, each

wire’s position must be known to within 80 𝜇m; to account for the detector’s deformation due to

temperature and magnetic field effects, an optical base alignment system is used to monitor the

position of the MS modules in real time.

Muons are a common component of signal processes of interest to the ATLAS collaboration,

including the 𝑍 → 𝜇𝜇 events used for both the trigger efficiency and heavy-flavor jets studies

discussed in this thesis. Therefore, the muon trigger system, which determines whether to store

events containing muon, is particularly important. The fast muon triggering in the MS is performed
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Figure 2.13: Profile schematic of the muon spectrometer. Monitored drift tubes are shown in blue
and green [64].

by resistive plate chambers (RPCs) in the barrel region (|𝜂| < 1.05) and thin-gap chambers (TGCs)

in the endcap regions (10.5 < |𝜂| < 2.4). While the TGCs operate in much the same way as

the CSCs, being multiwire proportional chambers as well, the RPCs are parallel electrode-plate

detectors, using the electric field between the plates to cause avalanches along the ionization tracks

left by the passing particles.

In summary of the ATLAS subdetectors, Table 2.1 gives an overview of their 𝜂 coverage as well

as their 𝑝T and 𝐸T resolution.

Detector
component

Required
resolution

|𝜂| coverage
Measurement Trigger

Tracking 𝜎𝑝T
/𝑝T = 0.05% 𝑝T ⊕ 1% ±2.5

EM calorimetry 𝜎𝐸/𝐸 = 10%/
√

𝐸 ⊕ 0.7% ±3.2 ±2.5
Hadronic calorimetry (jets)
- barrel and endcap 𝜎𝐸/𝐸 = 50%/

√
𝐸 ⊕ 3% ±3.2 ±3.2

- forward 𝜎𝐸/𝐸 = 100%/
√

𝐸 ⊕ 10% 3.1 < |𝜂| < 4.9 3.1 < |𝜂| < 4.9
Muon spectrometer 𝜎𝑝T

/𝑝T = 10% at 𝑝T = 1 TeV ±2.7 ±2.4

Table 2.1: Expected coverage and resolution of the ATLAS subdetector systems [32].

2.2.5 Trigger system and data acquisition

During Run 2, proton bunches crossed in the ATLAS detector every 25 ns. Given that the average

bunch crossing generates around 1 MB of data, this would mean 40 TB/s of data generated, which

is impossible to transmit out of the detector given the readout technology employed. Even if it

was possible to read out the information at that rate, there would be the problem of storing more
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than two petabytes of new information every hour.

However, not all of the information generated by these bunch crossings is of interest to particle

physicists. In fact, most of it is superfluous; if the protons merely glance off of one another, for

example, then the collision is not energetic enough to generate final states which contain more

massive particles. What matters are the events which contain various useful signatures. These

can include events of physics interest, such as those involving a Higgs boson, or events used to

perform calibrations or efficiency measurements, such as the 𝑍 → 𝜇+𝜇− events used to determine

the muon trigger efficiencies (see Section 3.3.5). The ATLAS trigger system [65, 66] is therefore

responsible for quickly making decisions on whether or not a given event is one worth storing for

further analysis.

Figure 2.14: Schematic of the ATLAS trigger and data acquisition system for Run 2 [67].

Figure 2.14 gives an overview of the ATLAS trigger and data acquisition system in use during

Run 2. Outflowing particles passing through the calorimeters and the muon detectors leave energy

deposits which are converted into electical signals. These signals are sent to the hardware-based

first-level (L1) trigger [68] while they are simultaneously buffered in the front-end (FE) detector

read-outs. The calorimeter (L1Calo) and muon (L1Muon) portions of the L1 pass inputs to the

Central Trigger Processor (CTP) which is responsible for all L1 trigger decisions. In addition, prior

to Run 2, a topological trigger processor (L1Topo) was added to allow for further selections based

on the combined kinematic information from the calorimeter and muon detectors. These selections

can reduce backgrounds for the various triggers, saving bandwidth which can then be allocated to
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other processes of interest to expand their kinematic range. Overall, the L1 trigger has 2.5 𝜇s to

make a decision and reduces the event rate from 40 MHz to 100 kHz.

The events passing the L1 acceptance are passed to the Read-Out System (ROS), where they

are again buffered before being processed by the software-based High-Level Trigger (HLT) [69]. The

HLT receives Region-of-Interest (RoI) information from the L1 trigger to be used for reconstruction

(similar to that done by the offline software) by the HLT trigger algorithms. The processing time

allotted to the HLT is 200 ms, and the HLT reduces the event rate further to 1 kHz, corresponding

to 1.2 GB/s. Events in the ROS accepted by the HLT are then stored in CERN’s Tier-0 computing

center for offline reconstruction.

Event selection is controlled through the use of the trigger menu, which configures the list of

active trigger chains. The trigger chains, constructed using a L1 trigger and several HLT triggers,

are designed to select specific physics signatures (leptons, jets, missing transverse energy, etc.).

These trigger chains may or may not have a prescale factor applied; if a prescale factor of value 𝑛

is applied, a given event has a probability 1/𝑛 of being selected. These prescale factors are applied

to a L1 or to an HLT trigger in a chain and are used to optimize the total resource usage among

the physics priorities; for example, during Run 2, the main goal of the trigger menu design was

to maintain the unprescaled single-electron and single-muon trigger thresholds around 25 GeV, to

ensure the collection of most leptonic 𝑊 and 𝑍 decays.

The data selected for storage by the ATLAS trigger system, in the form of electronic signals,

are not yet ready to be used in physics analyses; those signals first have to be translated into

physics objects and their characteristics. This process of “reconstruction” is the subject of the

next Chapter.



Chapter 3

Offline Reconstruction and

Identification

Figure 3.1: An illustration of different types of particles passing through the various layers of the
ATLAS detector [70].

The final output of a 𝑝𝑝 collision in the ATLAS detector, from an experimental perspective,

is not the vast array of particles we are interested in, but rather a series of electronic signals

43
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registered by the various components of the detector (Figure 3.1). These signals are then used

to reconstruct physics objects and their kinematic variables. For example, Figure 3.1 shows that

electrons can be reconstructed from energy deposits in the electromagnetic calorimeter matched to

tracks left in the inner detector, but neutrons have to be reconstructed solely using energy deposits

in the hadronic calorimeter. Neutrinos, which pass completely undetected through ATLAS, have

to be reconstructed using missing transverse energy (momentum): the transverse momenta of the

outgoing reconstructed particles have to sum to zero in the center-of-mass frame of the collision.

Performance groups within ATLAS work on providing instructions, recommendations, and

software for identifying specific objects. The recommendations are designed to strike a balance

between identifying as large a percentage of those objects which were present in the event as

possible (efficiency) while ensuring that as few background or misidentified objects as can be

managed are included (purity). These reconstructions then have to be calibrated to account for

detector effects as well as the resolution of the detector: the MC simulated data has to be smeared

to match the resolution seen in the measured data. Finally, uncertainties which will propagate

through the analyses using these reconstructed objects have to be determined [71].

3.1 Tracks

The momenta and signs of the electric charge of particles can be inferred from the curvature of

their trajectories within the magnetic field produced by the solenoid and the toroid. These trajec-

tories are reconstructed as tracks [72, 73] in the ID. Tracks are assembled from three-dimensional

measurements of energy deposits in the silicon pixel and SCT, referred to as space-points. Seeds

are formed from three space-points in the pixel and in the first layer of the SCT. With a combina-

torial Kalman filtering technique [74], additional hits in the outer layers of the SCT are associated

with the seeds to form track candidates. Track candidates having 𝑝T > 400 MeV and |𝜂| < 2.5

are then fed to the ambiguity solver, which scores the candidates based on how likely they are to

correspond to the correct trajectory of a charged particle. Clusters associated to track candidates

increase the scores of those candidates, while holes — measurements on a detector surface expected

given the trajectory projection, but not observed — lower their score. Scores are also penalized

using the 𝜒2 of the track fit, determined using a Newton-Raphson method: the 𝜒2 is calculated

using the track-hit residuals 𝑟𝑖 = 𝑒𝑖(𝜏𝜏𝜏) − 𝑚𝑖, where 𝑚𝑖 is the position of the 𝑖th hit and 𝑒𝑖(𝜏𝜏𝜏) is

the position of intersection of the fitted track on the surface on which the 𝑖th hit was measured

(see Figure 3.2). The track is parameterized using 𝜏𝜏𝜏 = (𝑑0, 𝑧0, 𝜙0, 𝜃0, 𝑞/𝑝), where 𝑑0 and 𝑧0 are the

transverse and longitudinal impact parameters, respectively, 𝜙0 and 𝜃0 are polar angles, and 𝑞/𝑝

is the charge-to-momentum ratio of the particle which formed the track.
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Figure 3.2: Schematic representation of a charged particle passing through planes of the inner
detector [75].

Vertices are then defined as points in space where two tracks, or their fitted projections in the

ID, meet. Through an iterative process, tracks are weighted according to their compatibility with

a seed vertex position, and a fit is made to update the vertex position. At the last iteration, tracks

with insufficient weights are discarded, to be used with another vertex. Tracks are associated to

vertices in this way until either no tracks remain or there are no more vertices to associate to the

remaining tracks. Vertices with at least two tracks of 𝑝T > 400 MeV are considered as primary

vertex candidates, and among these the vertex with the largest sum of the squared transverse

momenta ∑𝑖(𝑝T,𝑖)2 of its associated tracks is selected and associated with the hard scatter.

3.2 Topological clusters

Electromagnetic and hadronic shower energy depositions in the calorimeters are reconstructed as

topological calorimeter clusters (topo-clusters) [76]. The clusters are groups of calorimeter cells

which received energy deposits with a sufficiently high signal-to-noise ratio (see Figure 3.3), where

the noise is the root-mean-square of the energy distribution measured in events from random bunch

crossings, i.e. the average energy expected to be deposited in a calorimeter cell [77]. A seed cell

with energy 4𝜎 above the noise level is used to start a topo-cluster, and neighboring cells are

included in the cluster. If a neighboring cell has energy 2𝜎 above the noise level, it is treated

as a secondary seed cell and its neighbors are included. If no more secondary seeds are present,
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all immediately surrounding cells with energy above a very low 0𝜎 threshold are included in the

cluster. Finally, if a cluster has two or more local maxima (𝐸EM
cell > 500 MeV), it is split between

the signal peaks into two smaller clusters. Cells which were a part of the original cluster are then

assigned to and shared between the two highest-energy clusters after the splitting. The results of

this splitting procedure can be seen in Figure 3.3(c), where several clusters effectively overlap on

their boundaries.

(a) (b)

(c)

Figure 3.3: Stages of the topo-cluster algorithm in the first module (FCAL0) of the FCAL calorime-
ter for a simulated dijet event with at least one jet entering this calorimeter [76]. Shown in (a) are
cells with 𝐸𝑐𝑒𝑙𝑙 > 4𝜎 noise, used to seed the topo-clusters; in (b), cells with 𝐸𝑐𝑒𝑙𝑙 > 2𝜎 noise, used
to grow the cluster; and in (c) boundary cells, with the outlines of the clusters added.

The energy of the topo-cluster, the sum of the energies deposited in the constituent cells,

is calibrated at the electromagnetic scale. However, the ATLAS hadronic calorimeter is non-

compensating, meaning that the response (i.e. how much deposited energy is converted into signal)

of the calorimeter to electromagnetic showers is not the same as its response to hadronic showers;

though the discrepancy varies with the energy of the incident particle, on average the hadronic

response is lower. To recover the hadronic energy loss, Local Hadronic Calibration [78] is used

to correct the topo-cluster energies before they are used to reconstruct hadronic jets. In this

calibration, using the GEANT4 simulation of the ATLAS detector [79], clusters are identified as



3.3. MUON RECONSTRUCTION 47

either electromagnetic or hadronic and then are corrected accordingly: both types receive differing

corrections for the energy lost outside of the active calorimeter volumes and discarded due to the

noise threshold, and the hadronic clusters specifically receive a correction for invisible and escaped

energy.

3.3 Muon reconstruction

Muon reconstruction [80, 81] is performed independently in the ID and MS. In the ID, muon tracks

are reconstructed as described in Section 3.1; the ID makes no distinctions between the tracks of

different charged particles. In the MS, a Hough transform [82] is used to search for hits in the

MDTs which align to form a candidate trajectory within the bending plane of the detector. This is

done in each of the three layers of MDTs, resulting in MDT segments in each layer (see Figure 3.4).

An algorithm then takes the segments from the middle layers, where more hits are available, and

attempts to fit them with segments from the inner and outer layers; this is also where the muon

sagitta is defined, which is listed in Chapter 9 as a source of experimental uncertainty because it

is proportional to the muon momentum, a key kinematic variable. A track candidate is formed if

more than two segments are fitted together, aside from in the barrel-endcap transition region where

a signal high-quality segment is sufficient. For each track candidate, a global 𝜒2 fit is performed

on the associated hits; tracks passing the selection criteria for this fit are accepted.

Endcap
Magnetic Field

z

y

0
0

EO

Inner

Middle

Outer

Muon track
Segment

Barrel Magnetic Field

α

β

Sagitta

s

Figure 3.4: Schematic diagram of muons passing through the three MDT layers (blue) of the MS.
The muon sagitta is defined as the distance from the position of the segment in the middle MDT
station to a virtual straight muon track drawn between the segments in the inner and the outer
MDT stations [83].

Reconstructed muons are categorized according to which subdetectors are used in the recon-
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struction. Combined (CB) muons are reconstructed by matching MS tracks to ID tracks and

performing a combined global refit using hits from both subdetectors. The tracks are associated

to the beamline in the transverse plane and to the primary vertex in the longitudinal plane. If

an MS track cannot be matched to an ID track, it instead is extrapolated to the beamline and

reconstructed as an MS-extrapolated (ME) muon; these are used to extend the coverage of muon

reconstruction from the |𝜂| < 2.5 range of the ID to the full |𝜂| < 2.7 range of the MS. In a comple-

mentary manner, the reconstruction can begin with an ID track, and if the inside-out algorithm can

match it to three loosely-aligned hits in the MS, then an inside-out (IO) muon is reconstructed.

If instead the ID track can be associated to a full MS track segment, it is reconstructed as a

segment-tagged (ST) muon, while if it can be matched with an energy deposit in the calorimeter

it is reconstructed as a calorimeter-tagged (CT) muon. The majority of reconstructed muons are

CB muons, so the others will not be focused on in this thesis.

3.3.1 Identification

Muon identification is performed by making quality selections to pick out muons with well-

reconstructed momenta and to suppress backgrounds (mainly pion and kaon decays). These quality

selections are adjusted to create five different muon identification quality working points: Medium,

Loose, Tight, Low-𝑝T, and High-𝑝T. The different quality working points, which require varying

numbers of hits, detector layers containing hits, and fit significance, are used in different physics

analyses depending on the purity, efficiency, and momentum resolution needed. The Medium iden-

tification criteria provides a balance of efficiency and purity suitable for most ATLAS analyses

while also keeping the reconstruction and background rejection uncertainties low. However, a

Higgs analysis might choose the Loose working point to maximize the reconstruction efficiency,

while another analysis might opt for the Tight working point in order to maximize the purity of

the muon sample, at the cost of a lower reconstruction efficiency.

This analysis uses exclusively Medium muons. They are required to have three or more hits in

at least two MDT layers, except in the region |𝜂| < 0.1, where one MDT with three hits but no

more than one MDT with no hits is required. The reconstruction efficiency for all Medium muons

with 𝑝T > 5 GeV and |𝜂| < 2.5 was 97% during Run 2.

3.3.2 Isolation

Muons are also categorized according to their relative isolation from hadronic activity in the ID and

calorimeters, which serves as a useful parameter for background rejection. The isolation is defined

using two variables: the track-based isolation variable 𝑝varcone30
T sums the transverse momenta

of tracks within Δ𝑅 = min(10 GeV/𝑝𝜇
T, 0.3) of the muon candidate, while the calorimeter-based
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isolation variable 𝐸topocone20
T does the same for the transverse energies of topo-clusters within

Δ𝑅 = 0.2. Ratios of these variables to the muon transverse momentum 𝑝𝜇
T are then used to create

the selection criteria for the seven different isolation working points. Like the quality working

points, these are optimized for different analyses. In this analysis, the FCTight working point is

used: it requires the 𝑝T sum within a variable-radius cone around the combined track in the ID

system to be smaller than 0.06 times the muon 𝑝T.

3.3.3 Reconstruction efficiency

To obtain the muon reconstruction efficiency within the acceptance of the ID (|𝜂| < 2.5), a tag-

and-probe method is used. In this method, one leg of a 𝐽/𝜓 → 𝜇𝜇 or 𝑍 → 𝜇𝜇 decay event is

deemed the “tag.” The tag leg needs to have fired the lowest unprescaled muon trigger, to trigger

online readout of the event, and it must pass stringent identification criteria in order to ensure a

pure sample of probe muons. The other leg of the decay is then the “probe” and is independently

reconstructed; it is used to measure the reconstruction efficiency. If both muons fulfill the selection

criteria of the tag muon candidate, they are considered as tag candidates in turn to avoid bias.

𝑍 → 𝜇𝜇 events are used to obtain the reconstruction efficiency for muons with 𝑝T > 15 GeV.

The selection criteria on the tag muon include: satisfying the Tight isolation and Medium quality

working points; 𝑝T > 27 GeV and |𝜂| < 2.5; requirements on the significance of the transverse

impact parameter 𝑑0 (|𝑑0|/𝜎(𝑑0), where 𝜎(𝑑0) is the total uncertainty on 𝑑0) and the longitudinal

impact parameter 𝑧0; and association with the primary vertex. The probe muon must satisfy

differing requirements depending on the type of muon and the particular efficiency measurement

being performed.

The reconstruction efficiency is then computed as the number 𝑁𝑋
𝑃 of probe muons 𝑃 that are

reconstructed and identified according to 𝑋 criterion, divided by the total number of probes 𝑁All
𝑃 :

𝜖(𝑋|𝑃 ) = 𝑁𝑋
𝑃

𝑁All
𝑃

. (3.1)

An efficiency “scale factor,” defined as the ratio

SF = 𝜖Data(X)
𝜖MC(X)

, (3.2)

measures the agreement between the measured efficiency 𝜖Data(X) and the simulated efficiency

𝜖MC(X), which is determined using the same events, phase space, and methods. This SF is then

used to correct simulations for real detector behavior. SFs are produced in 2D 𝜂 − 𝜙 maps, as the
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reconstruction efficiency has been found to be flat in 𝑝T.

For the
√

𝑠 = 13 TeV data recorded in Run 2, the reconstruction efficiency for Loose and Medium

muons was measured to be > 98% in the majority of the detector phase space (0.1 < |𝜂| < 2.5

and 𝑝T > 5 GeV), while the efficiency for Tight muons was > 95%. In both cases, the agreement

between data and simulation was excellent (≈ 0.5% difference for Loose and Medium muons, ≈ 1%

for Tight muons).

3.3.4 Momentum calibration

Figure 3.5: A schematic to illustrate the procedure of momentum or energy calibration.

In this and future Sections, I will be discussing calibration procedures for reconstructed objects,

so I will first provide a quick overview of the goal of these procedures.

For a given quantity, say the muon transverse momentum 𝑝T, a distribution, such as the red

one in Figure 3.5, can be obtained using either a controlled test experiment in the ATLAS detector

or a simulation. This distribution can be characterized by its resolution (width), scale (height),

and mean value. Given the control over the inputs in this scenario, the resolution will be quite

small. Using data collected by the ATLAS detector, this distribution cannot be reconstructed with

perfect accuracy; the data (green) will result in a measured 𝑝T distribution with a much larger

resolution as well as a different scale and mean. The first step of the muon transverse momentum

calibration is therefore to calibrate the muon transverse momentum data so that its scale and mean

align with the test data. In addition, in order for MC to data comparisons to be viable, the MC

(blue) 𝑝T distribution needs to have a resolution comparable to the measured data. Therefore,

the MC distribution is smeared, enlarging its resolution to match the resolution of the data. The

resolution effects intrinsic to the detector are only dealt with through unfolding, which is discussed

in Chapter 8.

In the ATLAS muon momentum calibration procedure, fine corrections to the simulated muon
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momenta reconstructed in the ID and MS subdetectors are applied. The corrections to the simu-

lated muon momenta are defined using parameters extracted from data using a maximum-likelihood

fit comparing the 𝐽/𝜓 → 𝜇𝜇 and 𝑍 → 𝜇+𝜇− invariant mass distributions; they are then applied in

(𝜂, 𝜙) regions with relatively homogeneous detector technology and performance. To correct the

momentum scale, the parameters extracted from data account for inaccuracies in the description of

the magnetic field and the size of the detector in the plane perpendicular to the field, both of which

affect the momentum scale. Likewise, to correct the muon momentum resolution, the parameters

account for inaccuracies in describing energy losses in the calorimeters and other materials between

the ID and MS; intrinsic resolution limitations due to the spatial resolution of hits; and residual

misalignment of the MS.

3.3.5 Trigger efficiency

The efficiency of the muon trigger system [84] is also evaluated using a tag-and-probe method. Be-

cause I have personally been involved in muon trigger efficiency scale factor production throughout

my doctorate, including the development of a centralized production framework and tutorial, I will

describe these efficiency measurements in perhaps more detail than is strictly necessary for this

thesis.

To select a clean di-muon sample of 𝑍 boson decay events, a pair of oppositely-charged muons

originating from the same interaction vertex, using transverse and longitudinal impact parameter

selections, is required. The invariant mass of the pair is required to be consistent with the 𝑍-boson

mass, |𝑚𝑍 − 𝑚𝜇𝜇| < 10 GeV. If one of the two muons has 𝑝T > 28 GeV and satisfies the Loose

isolation requirement, it is considered as a tag candidate. The tag candidate must further have

an angular distance of Δ𝑅 < 0.1 from an object that fired the lowest unprescaled muon trigger

(HLT_mu20_iloose_L1MU15 during 2015 and HLT_mu26_ivarmedium during 2016-2018). These

strict requirements on the tag, as mentioned earlier, are for the purpose of ensuring as little bias

as possible in the selection of the probe candidates; looser requirements on the tag could lead to

the preferential selection of probes with particular kinematics, etc.

The other muon is then taken as a probe candidate. As opposed to the tag candidate, the

probe candidate is subject to selections defined by the identification working point and trigger for

which the efficiency is desired. The identification working point selections include the number of

hits in the MDT chambers and the compatibility of tracks reconstruced in different subdetectors;

see Section 3.3.1 for the Medium woking point as an example. To ensure it is matched to the

trigger, the probe must lie within Δ𝑅 < 0.1 of an object which caused the trigger to fire. The

trigger efficiency is then defined as the fraction of probe candidates associated to at least one

trigger muon object.
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Trigger efficiencies are determined for L1 (Figure 3.6) and HLT (Figure 3.7) triggers; the HLT

efficiencies shown are for the L1-HLT chain, as the HLT efficiency relative to the L1 efficiency

is close to unity. The slight HLT inefficiency in the turn-on curve region is due to the fact that

no isolation requirements are imposed on the offline-selected muons; past the turn-on curves, the

efficiency plateaus extend to 𝑝T ≈ 500 GeV and beyond but are measured using 𝑡 ̄𝑡 and 𝑊+jet

events at 𝑝T ≳ 100 GeV for better statistics. The efficiencies are lower in the barrel region because

of reduced geometrical coverage, the result of support structures and the need for service access

to the ID and calorimeters. The drop in L1 efficiency in the endcap region for 2017 and 2018 was

due to gas leaks in the RPC chambers. Figure 3.7 also shows the trigger efficiency scale factors

in the bottom panel, which account for the differences in L1-HLT trigger chain efficiency between

data and MC. The discrepancy is more noticeable in the barrel region due to a different MC RPC

efficiency. It can be seen that these scale factors do not have a strong dependence on 𝑝T, and so

they are delivered in two-dimensional (𝜂, 𝜙) histograms; examples are shown in Figure 3.8.
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Figure 3.6: Efficiency of the single-leg trigger L1_mu20, in the barrel (left) and endcap (right)
regions, as a function of muon 𝑝T in 2015-2018 [84].
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The sources of systematic uncertainty considered in the trigger efficiency measurements are
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Figure 3.8: 2017 trigger efficiency scale factors for passing either the HLT_mu26_ivarmedium or
the HLT_mu50_ivarmedium trigger, in the barrel (left) and endcap (right) regions, shown in two-
dimensional bins of 𝜂 and 𝜙.

listed below. In each case, the systematic uncertainty is obtained by taking the difference in

efficiency determined with and without the systematical variations described; the total systematic

uncertainty is then the sum in quadrature of these differences.

• Pile-up dependence: In order to evaluate the uncertainty related to pile-up interactions,

a cut on the number of reconstructed vertices is imposed, the trigger efficiency above and

below this cut is computed, and each is compared to the nominal. The cut is made at 11

reconstructed vertices for 2015 and 2016, and at 19 reconstructed vertices for 2017 except for

Period K 2017, a high-pile-up period, for which the cut is set at 25 reconstructed vertices.

This procedure was performed separately for data and MC.

• Correlation between the tag and probe muons: Muon pairs from the 𝑍 → 𝜇+𝜇−

decay tend to be back-to-back in 𝜙. Since the barrel and endcaps have 16-fold and 12-fold

symmetry respectively, this means that if the tag muon ends up in a highly-efficient region of

the detector, the probe muon is likely to as well. To evaluate potential bias associated with

this effect, the trigger efficiency is calculated using an extra selection cut, Δ𝜙(tag, probe) <

𝜋 − 0.1. Selecting only tag and probe muons that satisfy the condition provides a sample

enriched in muons that are not back-to-back.

• Probe selection criteria: The effects of various probe selection cuts on trigger efficiency

are investigated. These include:

– Charge: Since charge affects the behaviour of muons in the magnetic field present in the

MS, it could conceivably affect muon trigger efficiency. The impact of this systematic

was evaluated by comparing the trigger efficiency using only all-positive or all-negative

probe muons; each sample was then compared to the nominal.

– Impact parameters: To investigate the effect of the probe impact parameter selections

on the efficiency, the efficiency is calculated without impact parameter cuts.
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– Isolation: An isolation cut is added to the probe muon selection in order to check the

effect on the trigger efficiency of requiring isolated probes.

– Transverse momentum: The efficiency scale factors are only delivered in bins of (𝜂, 𝜙), so

their dependence on 𝑝T is monitored by splitting probe muons into two groups according

to a 𝑝T cut; each group is then compared to the nominal. The value of the cut depends

on the 𝑝T threshold of the trigger of interest: for trigger thresholds of 26 GeV the cut

is 40 GeV, while for thresholds of 50 GeV a cut at 70 GeV is used. Trigger efficiency is

then calculated using only the subset of probe muons with 𝑝T above or below that cut;

each subset is then compared to the nominal.

• Background contribution: To evaluate the background-related uncertainty, the efficiency

measurements are repeated by enlarging the Z-mass window by ±5 GeV.

3.4 Electron reconstruction

Much of the procedure for reconstructing electrons is similar to that used to reconstruct muons,

including the assembly of hits in the ID into tracks; the use of calorimeter- and track-based iso-

lation working points; the creation of several identification working points for use in different

types of physics analyses; and the application of momentum calibrations. However, the electron

reconstruction faces the additional challenge of abundant brehmsstrahlung energy loss and pair

production. EM energy deposity in the electromagnetic calorimeter (ECal) also have to be iden-

tified as coming from electrons or photons. Notable differences and additions to the identification

and reconstruction processes are given below.

3.4.1 Reconstruction

Electrons are also reconstructed [85, 86] from clusters of ECal energy deposits. In 2015-2016, a

sliding-window algorithm [87] was used. First, the 𝜂 − 𝜙 space of the ECal is split into a 200 × 256

grid of elements (“towers”) of size Δ𝜂 × Δ𝜙 = 0.025 × 0.025 (the granularity of the second layer

of the ECal). For each tower, the energy depositions in the three layers (and the presampler,

for |𝜂| < 1.8; see Figure 3.9) are summed together. Electromagnetic energy cluster candidates

are then seeded from localized energy deposits using the sliding-window algorithm: the energy

of a 3 × 5 section of towers is summed, and if it exceeds 2.5 GeV it is kept as a candidate, and

the window moves over one tower in 𝜂 or 𝜙, repeating the process and removing the smaller of

cluster candidates in close proximity. In this manner, the reconstruction efficiency of clusters with

𝐸T > 15 GeV is greater than 99%.
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Figure 3.9: A schematic illustration of an electron passing through the ATLAS detector (red solid
line). The red dashed line represents a photon produced by the electron interacting with the
tracking material [85].

In 2017-2018, superclusters were used instead of the sliding-window algorithm to reconstruct

electrons. EM topo-clusters, sorted by 𝐸T and having 𝐸T ≥ 1 GeV, are sequentially used as seed

candidates. For electrons and photons, nearby (within the 3 × 5 cell window) “satellite” topo-

clusters are added to the seed candidate; for electrons only, additional satellite clusters within a

5×12 cell window are added if their best-matched track is the same as the best-matched track of the

seed cluster (see Figure 3.10). The electron reconstruction efficiency using the supercluster method

plateaus at ≥ 95% for 𝐸T ≥ 15GeV; this is less than the efficiency of the prior sliding-window

method, but the dynamically-sized superclusters better capture the energy of brehmsstrahlung

photons or electrons from converted photons.

ECal clusters are then matched matched to ID tracks to distinguish electrons from photons.

The tracks are refitted using a Gaussian Sum Filter (GSF) [89], which is based on the Kalman

filtering technique mentioned in Section 3.1, to account for energy loss due to brehmsstrahlung.

The seed-cluster matching algorithm works by checking to see if a given electron track candidate

falls within the EM cluster region-of-interest. Clusters matched to ID tracks, signalling an origin

from an electron produced in the beam interaction region, are classified as electrons, while clusters

which cannot be matched to tracks are classified as unconverted (pair-producing in the ECal)

photons.

Particle charge can be reconstructed from the curvature of their tracks in the ID. For electrons,

this identification is complicated by the presence of multiple tracks due to pair production as the

result of brehmsstrahlung. A single instance of pair production will lead to three tracks (the tracks

of the electron-positron pair plus that of the original electron), where two of the tracks will have the
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Figure 3.10: Diagram of the superclustering algorithm for electrons and photons, showing seed
clusters in red and satellite clusters in blue [88].

correct charge. To reduce the misidentification rate, a boosted decision tree trained on a simulated

single-electron sample is used to apply an additional selection criterion.

The reconstruction efficiency of electrons with “good-quality” tracks consisting of at least seven

silicon hits and at least one pixel hit was between 97% and 99% for 𝐸T > 15 GeV for 2015-2016

data; 𝐸T = 15 GeV, the reconstruction efficiency was determined solely from simulation.

3.4.2 Identification

Whereas the muon identification is performed through the use of quality requirements in the form

of cuts, electrons are identified in the online selection through the use of a likelihood (LH). The

inputs to the electron LH include tracking and calorimeter quantities 𝑖 to distinguish prompt

electrons from hadronic jets, converted photons, and electrons from heavy-flavor hadron decays.

Signal (prompt electron) and background (non-prompt electrons, as well as jets and electrons from

photon conversions) probability density functions (pdfs) 𝑃𝑆,𝑖(𝑥𝑖) and 𝑃𝐵,𝑖(𝑥𝑖), respectively, are

then determined for quantity 𝑖 at value 𝑥𝑖. Using simulation prior to 2017 and subsequently using

2015-2016 data [88], the pdfs are determined by smoothing the distributions of the quantities with

the adaptive kernel density estimator in the TMVA toolkit [90]. An overview of the different pdfs

used in Run 2 (2015-2016) is given in Table 1 of Ref. [85]. The values of the pdfs are then used to

construct the likelihood function for each event:

𝐿𝑆(𝐵)(x) =
𝑛

∏
𝑖=1

𝑃𝑆(𝐵),𝑖(𝑥𝑖). (3.3)
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From these LHs, a discriminant 𝑑𝐿 is determined as

𝑑𝐿 = 𝐿𝑆
𝐿𝑆 + 𝐿𝐵

. (3.4)

The identification working points for the electron reconstruction (VeryLoose, Loose, Medium, and

Tight) are then defined based on a value of the inverse sigmoid-transformed discriminant

𝑑′
𝐿 = −𝜏−1ln(𝑑−1

𝐿 − 1). (3.5)

The inverse sigmoid is used because the discriminant is often peaked at 0 (background) and 1

(signal), and so applying the inverse sigmoid zooms in on the more central peaks. This prescription

is taken from the TMVA toolkit with 𝜏 = 15.

Some advantages to the LH method of identification for electrons over the cut-based method

used for the muons include the ability to use discriminating quantities with similar distributions

without loss of efficiency and the avoidance of failing electrons because they do not satisfy the

selection criterion of a single quantity. In this analysis, Tight electrons are used, which are identified

at an efficiency of 80%.

3.4.3 Isolation

Similarly to muons, track-based and calorimeter-based variables are constructed to measure the

relative isolation of electron candidates. In this analysis, the FCTight_FixedRad working point

was used: it requires the sum of the calorimeter energy deposits and the 𝑝T of the ID tracks within

a variable-width (decreasing as a function of the 𝑝T) cone of the electron to be less than 0.6 times

the electron’s transverse energy.

3.4.4 Momentum calibration

After the energies of the electrons and photons are calculated from the reconstructed clusters to

determine electron candidates, electron energy calibration [91] is performed. Several steps are

taken to correct the electron energy scale in data before calibrating it with respect to smulation.

First, an accurate estimate of the reconstructed cluster energies are determined in simulation and

data by correcting for energy losses in materials upstream of the calorimeter, using cells in the

immediate (𝜂, 𝜙) vicinity of the cluster and beyond the liquid argon (LAr) calorimeter, with a

multivariate regression algorithm. Then, based on studies in simuation of energy deposits in the

ECal, corrections are applied to data to adjust the relative scale of the first and second ECal layers;

muon energy deposits from 𝑍 → 𝜇𝜇 events are used in the studies, as they are relatively insensitive
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to the passive material in front of the ECal. Next, the energy shift due to pile-up is corrected in

data by subtracting the average expected shift cell-by-cell and also by applying a correction to

each ECal layer accounting for the average number of interactions per bunch crossing as a function

of eta. Finally, relative non-uniformities in the amounts of passive material (due to, for example,

gaps in the absorbers in the calorimeters) and in the applied high voltage are corrected in data.

After all of these corrections are applied, the electron energy scale in data is calibrated in regions

of 𝜂. Simultaneously, the electron energy resolution calibration is applied to simulation (also in

regions of 𝜂). Both the energy scale and energy resolution calibration terms are determined by

comparing invariant mass distributions in data and simulation. The calibration is validated by

studying 𝐽/𝜓 → 𝑒𝑒 samples. Systematic uncertainties, including those related to pile-up, layer

calibration, and the material in front of the ECal, are determined using MC variations.

3.5 Jets

One of the most common features of proton-proton interactions at the LHC are collimated sprays of

hadrons produced by the fragmentation of energetic quarks and gluons; these sprays are referred to

as jets. Jets are a fundamental piece of many measurements and searches, and for those searches

the uncertainty in the jet energy often is the largest experimental uncertainty. Therefore, the

careful and precise reconstruction, calibration, and selection of jets is extremely important.

3.5.1 Reconstruction

Jets are reconstructed from topo-clusters using the anti-𝑘𝑡 algorithm [92] implemented in the

FastJet software package [93]. The algorithm defines the distance 𝑑𝑖𝑗 between two objects 𝑖 and 𝑗,

with the objects being either topo-clusters or previously-grouped topo-clusters called “pseudojets,”

and the distance 𝑑𝑖 between object 𝑖 and the beam as follows:

𝑑𝑖𝑗 = min ( 1
𝑝2

𝑇 ,𝑖
, 1

𝑝2
𝑇 ,𝑗

)
Δ𝑅2

𝑖𝑗

𝑅2 ,

𝑑𝑖 = 1
𝑝2

𝑇 ,𝑖
.

(3.6)

If 𝑑𝑖𝑗 is smaller than 𝑑𝑖, objects 𝑖 and 𝑗 are combined into a pseudojet; otherwise, object 𝑖 is called

a jet and removed from subsequent iterations of the clustering algorithm. The distances 𝑑𝑖𝑗 and

𝑑𝑖 are redefined and objects are combined or removed until no objects are left.

There are many different jet-clustering algorithms available, such as the 𝑘𝑡 algorithm, which

simply uses 𝑝2
𝑇 ,𝑖 instead of 1/𝑝2

𝑇 ,𝑖. The advantages of the anti-𝑘𝑡 algorithm are that all but the

softest jets result in circular clustering cross-sections, as seen in the bottom right of Figure 3.11,



3.5. JETS 59

and that the algorithm is infrared and collinearly safe: neither soft particles nor collinear splittings

change the jet definition (see Figure 3.12).

Figure 3.11: A sample event, along with soft “ghosts” artificially inserted, with the jets clustered
using different algorithms. The anti-𝑘𝑡 algorithm is shown in the bottom right. Each color denotes
a separate reconstructed jet [92].

Figure 3.12: Schematic demonstrating the problems which collinear and infrared safety avoid: a
collinear splitting should not cause a jet to be not reconstructed (left), nor should a soft emission
change the jet definition (right) [94].

The jets reconstructed from electromagnetic topo-clusters (even uncalibrated ones, since jets

are calibrated directly, as described in the next Section) are referred to as EMTopo jets. They

are defined at the electromagnetic energy scale 𝐸jet
meas at which the calorimeter correctly measures

electromagnetic shower energy depositions. EMtopo jets were the standard collections used in

ATLAS analyses until the end of Run 2. The jets which are used in this analysis, however,

are reconstructed using the “particle flow” approach, in which information from the tracker is
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combined with the topo-clustering process described above [95]. In EMTopo jets, the energy

deposited by charged particles in the calorimeter is used to determine the jet four-momentum.

PFlow jets instead use the momenta of the tracks which are associated with the topo-clusters of

charge particles, in addition to the topo-clusters of neutral particles. One of the main advantages

of this approach is that it improves the overall resolution of low-𝑝T jets (see Section 3.5.3), since for

those jets the momentum resolution of the tracker is significantly better than the energy resolution

of the calorimeter (see Table 2.1). Additionally, the association of tracks to vertices can determine

whether particles originate from pile-up vertices and therefore should be rejected. Just as for

EMTopo jets, the anti-𝑘𝑡 jet clustering algorithm is used to construct PFlow jets.

3.5.2 Jet energy scale calibration

Simulation is used to calibrate the energies of reconstructed jets, on average, to the energies of their

constituent stable particles; this is referred to as the jet energy scale (JES) calibration [77, 96].

This calibration accounts for detector effects which affect the jet energy measurements, including

the non-compensation of the calorimeter for hadronic energy deposits, dead material, and leakage

of particles beyond the calorimeters. In the simplest calibration scheme, the JES calibration is

performed by applying the calibration function ℱcalib to the energies1 of jets reconstructed at the

EM scale, 𝐸jet
meas:

𝐸jet
calib = 𝐸jet

meas/ℱcalib(𝐸jet
meas), with 𝐸jet

meas = 𝐸jet
EM − 𝒪(𝑁PV) (3.7)

This calibration scheme consists of three sequential corrections. First, to account for the extra

energy due to additional 𝑝𝑝 interactions, a pile-up correction is made through an offset applied to

the jet transverse energy:

𝐸corrected
T = 𝐸uncorrected

T − 𝒪(𝜂, 𝑁PV, 𝜏bunch). (3.8)

The offset is derived from minimum bias data and is a function of 𝜂, the number of primary vertices

𝑁PV, and the bunch spacing 𝜏bunch. Next, a correction is applied to the jet four-momentum such

that the direction of the topo-clusters points back to the primary vertex instead of the geometrical

center of the ATLAS detector, which is initially used as a reference to determine the direction of the

jets and their constituents. Finally, the energy of the jets is calibrated by creating a jet response

calibration function ℱcalib. For individual bins of the truth jet energy 𝐸jet
truth and 𝜂 (determined

before the origin correction above), the averaged jet calorimeter energy ⟨𝐸jet
truth⟩ and the averaged

1Calibrations are applied to jet energy 𝐸 rather than 𝐸T because the calorimeters explicitly measure 𝐸, and the
response curves can therefore be compared directly to the expected energy.
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jet energy response ⟨ℛjet
EM⟩ are determined. The calibration function is then obtained, for a given

value of 𝜂, from a fit on these averaged values for each 𝐸jet
truth bin, and is applied to the measured

jet energy to complete the JES calibration:

𝐸jet
JES =

𝐸jet
EM

ℱcalib(𝐸jet
EM)|𝜂

.

3.5.3 Jet energy resolution correction

Studies which measure jets or SM particles which decay into jets, as well as BSM searches relying on

a precise measurement of the missing transverse energy (MET), require a thorough understanding

of the jet energy resolution (JER) of ATLAS. The dependence of the relative JER on the jet

transverse momentum 𝑝T can be parameterized as

𝜎(𝑝T)
𝑝T

= 𝑁
𝑝T

⊕ 𝑆
√𝑝T

+ 𝐶, (3.9)

where the noise term 𝑁 is due to detector front-end electronics noise and pileup, the stochastic term

𝑆 accounts for statistical fluctuations in the amount of energy deposited, and the constant term 𝐶

includes effects which are constant in 𝑝T, such as non-uniformities in the calorimeter response [96].

𝑁 dominates below ≈ 30 GeV, while 𝐶 dominates above ≈ 400 GeV. The relative energy resolution

is measured using a dijet balance method (see [96]) and varies from (24 ± 1.5)% at 𝑝T = 20 GeV to

(6 ± 0.5)% and 300 GeV (see Figure 3.13); as mentioned earlier, this is a substantial improvement

in energy resolution at low 𝑝T over that of EMTopo jets (35%; see Figure 3.14).

Figure 3.13: (a) Relative jet energy resolution for JES-calibrated PFlow jets as a function of 𝑝jet
T ,

with the noise term (𝑁 in Equation 3.9) shown in pink. Error bars indicate the total (statistical
and systematic) uncertainties on the determination of the relative resolution using dijet events.
(b) Absolute uncertainty on the relative jet energy resolution as a function of jet 𝑝T. The fit to
the resolution as a function of 𝑝jet

T shows a resolution improvement for PFlow jets over EMTopo
jets at low 𝑝T [96].
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Figure 3.14: Relative jet energy resolution for JES-calibrated PFlow (blue) and EMTopo (green)
jets as a function of (a) 𝑝jet

T and (b) |𝜂jet|. The fit to the resolution as a function of 𝑝jet
T shows a

resolution improvement for PFlow jets over EMTopo jets at low 𝑝T [96].

With the JER in data known, the resolution in MC is made to match it as much as possible.

This is ensured by smearing MC jets using a Gaussian function in regions of jet 𝑝T where the data

JER is larger than the resolution in MC. Uncertainties in this smearing, as discussed in Chapter

9, are then propagated through the analysis.

3.5.4 Jet quality selection

Jet selection is applied through cuts to reject jets coming from background events, which include

beam-gas and beam-halo events and cosmic ray muons. For example, a jet produced by the

emission of a large brehmsstrahlung photon in the calorimeter by a cosmic ray muon can be

effectively rejected by cutting on the jet time 𝑡jet, as the jet from the brehmsstrahlung photon will

not be in-time with the beam collision. Two jet quality selections, Loose and Medium, are defined.

The Loose working point, whose efficiency is above 99%, is the recommendation for the majority

of analyses and is used in this thesis.

3.5.5 𝑏-jet tagging

In order to study events involving 𝑏-jets and/or 𝑐-jets, it is necessary to distinguish those events

from each other and from events involving light-jets. Fortunately, the “heaviness” of the 𝑏-quark

results in distinguishing features of their jets as opposed to jets originating from light quarks or

gluons. The semi-leptonic width Γsl(𝑏 → 𝑞) for a 𝑏-quark to decay into another quark can be

expressed as [97]

Γsl(𝑏 → 𝑞) = |𝑉𝑞𝑏|2
𝐺2

𝐹𝑚5
𝑄

192𝜋3 𝐼(𝜖), (3.10)
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where 𝑉𝑞𝑏 are elements of the Cabibbo–Kobayashi–Maskawa quark-mixing matrix [27], 𝐺𝐹 =

𝑔2/8𝑀2
𝑊, 𝜖 = 𝑚𝑞

𝑚𝑏
, and

𝐼(𝜖) = 1 − 8𝜖2 + 𝜖6 − 𝜖8 − 24𝜖 ln 𝜖. (3.11)

In large part because the 𝑉𝑞𝑏 are quite small (𝑉𝑐𝑏 = (42.2±0.8)×10−3, 𝑉𝑢𝑏 = (3.94±0.36)×10−3),

the 𝑏-quark has a small semi-leptonic decay width, which corresponds to a long lifetime. The

𝑏-quark can therefore travel through the beam pipe before decaying in the inner detector. The

result is that heavy-quark jets can be distinguished by the measurement of the impact parameter

from the secondary vertex, as shown in Fig. 3.15.

Figure 3.15: A diagram of a three-jet event where one jet originates from a 𝑏-quark. The large mass
of the 𝑏-quark results in a longer lifetime and therefore a displaced vertex for its decay products
[98].

There are currently several low-level tagging algorithms in use at ATLAS which work to identify

these features. The products of these algorithms are discriminants whose values are based on the

likelihood that a given jet is a 𝑏-jet or not. These discriminants are then combined using the DL1

deep neural network [99] to produce a more comprehensive flavor tagging algorithm. This analysis

makes use of a particular version of this neural network, DL1r, which outputs three nodes for

each jet: 𝑝𝑏, 𝑝𝑐, and 𝑝light, representing the probability that the jet is a 𝑏-jet, 𝑐-jet, or light-jet,
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respectively. These nodes are used to construct the final discriminant

𝐷DL1 = ln ( 𝑝𝑏
𝑓𝑐 ⋅ 𝑝𝑐 + (1 − 𝑓𝑐) ⋅ 𝑝light

) . (3.12)

𝑓𝑐 is the effective 𝑐-jet fraction in the background training sample, which can be tuned to enhance

discrimination of 𝑏- vs. 𝑐-jets or 𝑏- vs. light-jets; the value for the DL1r algorithm sets 𝑓𝑐 = 0.018.

Using the DL1r output scores, an operating working point (OP) can be defined by a cut on the

score which corresponds to a particular 𝑏-jet tagging efficiencies. The efficiency is defined as

𝜀𝑏 =
N𝑏

pass(𝐷DL1r > 𝑇𝑓)
N𝑏

total
, (3.13)

where N𝑏
Total is the total number of 𝑏-jets and N𝑏

pass is the number of 𝑏-jets with a DL1r score

larger than a threshold 𝑇𝑓. 𝑇𝑓 is the cut value for the OP and is determined using a simulated 𝑡 ̄𝑡

sample. OP are defined for 𝑏-jet tagging efficiencies of 60%, 70%, 77%, and 85%. Finally, these

efficiency OP can be used as bin edges to form “pseudo-continuous” 𝑏-tagging weight bins. The

bins correspond to 𝑏-jet tagging efficiencies of [0, 60]%, [60, 70]%, [70, 77]%, [77, 85]%, and [85,

100]% [100]. The distribution of jets falling into one of these bins will be used extensively in future

Chapters as an observable quantity.

This concludes the discussion on object reconstruction from ATLAS data. The next Chapter

will discuss why, in particular, this analysis is focused on heavy-flavor jets produced in association

with 𝑍 bosons.



Chapter 4

𝑍 Boson Associated Production

with Heavy-Flavor Jets

During Run 2, the LHC produced around 10 billion events which included a 𝑍 boson, the neutral

mediator of the weak interaction, in the final state. Around 120 million of these 𝑍 bosons have

been observed in ATLAS data through the Drell-Yan decay process, in which the 𝑍 decays into

two leptons of the same flavor (Figure 4.1a). In addition, the 𝑍 is often produced in association

with jets originating from quarks or gluons, against which the 𝑍 recoils (e.g. Figure 4.1b). Those

jets are categorized as light-jets if they originate from a gluon or an up, down, or strange quark

and as heavy-flavor (HF) jets if they originate from beauty or charm quarks.1 HF jets are the

focus of this analysis, and in this Chapter I will provide an overview of the study of both flavors.

Z

q

q̄ l+

l−

(a)

q̄

g

q

l+

l−

Z

(b)

Figure 4.1: (a) Drell-Yan production mode of a 𝑍 production. (b) Drell-Yan 𝑍 production in
association with a jet from initial-state radiation (b).

1Top quarks decay weakly, most often into a 𝑏-quark and a 𝑊 boson, before hadronizing due to their very large
mass.
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4.1 𝑍+𝑏-jets

There are two main reasons why 𝑍+𝑏-jets events are particularly interesting. The first is that the

modelling of 𝑍+jet events is performed using approximations which work well for light-jets but

which begin to break down for HF jets; this is due to the larger masses of the 𝑏- and 𝑐-quarks, and

is described in the following subsections. This tension results in significant systematic uncertainty

in the modelling of 𝑍+HF jets events, which can only be alleviated by better understanding the

QCD describing these events. The second reason is that the largest branching fraction of the Higgs

at its rest mass 𝑚𝐻 = 125 GeV is to two 𝑏-quarks (Figure 4.2), and so 𝑍+𝑏-jets events are a

significant background to SM Higgs measurements such as Figure 4.3(b). The same is true for a

slew of BSM searches for dark matter or supersymmetry, such as the pseudoscalar search shown in

Figure 4.3(c). The modelling of 𝑍+𝑏-jets events is often a leading systematic uncertainty for these

studies, limiting their ability to further our understanding of the Higgs or potentially discover new

physics.

Figure 4.2: Branching ratios for the Higgs boson as a function of the mass of the Higgs, with
𝑚𝐻 = 125 GeV denoted by the dotted line [101].

Compounding the fact that 𝑍+HF jet events are a large background to other measurements

and searches is the fact that current measurements of 𝑍+HF jets events are imprecise. This thesis

aims to perform a precision measurement of these events in order to provide experimental guidance

on the improvement of 𝑍+HF jets modelling. This will further our understanding of QCD, allow

for a better understanding of the Higgs bosons, and increase the sensitivity of future analyses to

BSM physics.
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Figure 4.3: (a) Diagram for production of Higgs boson in association with a vector boson. (b) An
example event count for a VH measurement, with 𝑍+HF-jet background in dark blue (right) [102].
(c) An example event count of a search for a pseudoscalar 𝑎 decaying into a 𝑏𝑏𝜇𝜇 final state, with
the 𝑍+jet background given in light blue (“DY+jets”) [4].
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4.1.1 Four-flavor number scheme

One of the reasons why 𝑍+𝑏-jet events are not precisely understood is that they are sensitive to

the differences in predictions made using two different calculation schemes, representing different

points of view on the presence of 𝑏-quarks in the proton. One point of view is to assume that,

because the 𝑏-quark is much heavier than the proton, it cannot be an initial-state quark in the

matrix element of the calculation, and therefore the only way to have 𝑏-quarks in the final state is

through an explicit gluon splitting in the high-𝑄2 matrix element calculation. This gluon splitting

can take place in either the initial state (Figure 4.4a) or the final state (Figure 4.4b) of the process.

Because only the four lightest quark are included in the PDFs, this is referred to as the “four-flavor

number scheme” (4FNS) [103].

g

b̄

Z

g b

(a)

q Z

q

b

b

g

(b)

Figure 4.4: Four-flavor number scheme (4FNS) diagrams with the 𝑏-jets coming from a gluon
splitting in the initial state (a) or the final state (b).

Because the 𝑏-quark mass sets a minimum energy scale for the gluon splitting, the matrix

element calculation of this prediction, at a fixed order in perturbation theory, will involve terms

which are proportional to

𝛼𝑛
𝑠 log2𝑛 ( 𝐸2

𝑚2
𝑏

) , (4.1)

where 𝐸 is the energy scale of the final-state particles. As the energy scale of the hard scatter-

ing process increases, the log term becomes more and more significant. This means that, while

𝛼𝑠(𝑚𝑍) ≈ 0.1 and is usable in perturbation theory, 𝛼𝑛
𝑠 log2𝑛(𝐸2/𝑚2

𝑏) will become too large for

perturbation theory to be valid. In short, at high energy, the gluon splitting into two 𝑏-quarks will

make perturbation theory unusable (or at least converge more slowly, thereby requiring higher-

order terms to obtain the same level of precision as at a lower energy scale). To fix this, an

explicit “resummation” of the log terms must be performed. This is a computationally intensive
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procedure which has to be done specifically for the phase space being measured. The final-state

resummation can be done with parton showers but, as mentioned earlier, the parton showers make

a soft approximation of the splitting functions, and the mass of the 𝑏-quark makes this a question-

able approximation. Even if an NLO calculation is performed to include the first radiation, the

initial-state radiation is still not resummed, and the perturbative expansion will be unusable or

very imprecise at 𝑛 = 2 and beyond.

Despite these problems, the 4FNS does have its advantages. It allows for explicit calculations of

final states involving two 𝑏-jets, and it also accounts for the mass of the 𝑏-quark in the calculation,

which is a relevant scale for a large portion of the phase space accessible at the LHC. Both of these

are in contrast to the calculation scheme described in the next Section.

4.1.2 Five-flavor number scheme

The problems inherent to the 4FNS are of little importance if the general scale of the process of

interest is low. If the scale is significantly higher than 𝑚𝑏, however, the 4FNS predictions are

spoiled by the large logarithms in the perturbative expansion and cannot be easily resummed. In

such a situation, an alternate calculation scheme, in which the 𝑏-quark is treated as massless but

included in the initial quark state of the matrix element through a 𝑏-quark PDF, can be used. This

is the “five-flavor number scheme” (5FNS) (Figure 4.5). In this scheme, the incident 𝑏-quark line in

the matrix element calculation is automatically resummed to all orders because the gluon splitting

is obtained via DGLAP evolution of the PDF, rather than putting it into the matrix element

explicitly by hand. There are a few tradeoffs, however. The first is that, by setting 𝑚𝑏 = 0,

predictions in regions of phase space where 𝑚𝑏 cannot be neglected are expected to be poor. In

addition, NLO calculations have to avoid double-counting the initial-state gluon splitting when

it enters the matrix element calculation as well. Finally, whereas final states including two 𝑏-jets

from the initial gluon splitting are observable in the 4FNS (see Figure 4.4a), such final states are

ignored in the 5FNS.

b Z

g b
Figure 4.5: 𝑍 boson production in association with 𝑏-quarks in the 5FNS with the 𝑏-quark from
the initial state (b).

The two 𝑏-jet final states of the 4FNS and the one 𝑏-jet final states of the 5FNS leave room
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for measurement distinction. However, if the two 𝑏-jets of the 4FNS diagram in Figure 4.4b are

collinear, or if one of the jets is too soft to leave a reconstructable signal in the detector, the event

will appear to have only one one 𝑏-jet and therefore be mistaken as the 5FNS diagram of Figure

4.5. Predictions of 𝑍+𝑏(𝑏) events, compared to inclusive 𝑍+jet predictions, are thus complicated

significantly by the presence of the 𝑏-quark, forcing a choice in approach that must then be studied

experimentally. Therefore, it is extremely important to perform measurements which could further

our understanding of future 𝑍+𝑏-jet predictions.

It should be noted that the 5FNS production of a 𝑊 instead of a 𝑍 is also possible, but in

the 𝑊 process a 𝑐-quark in the initial state is flavor-changed in the charged-current process into

a 𝑏-quark, and that change of flavor is Cabbibo-suppressed. A measurement of 𝑊+𝑏-jet events

would therefore have to rely on 4FNS predictions. In addition, such a measurement is inherently

less precise, due to the final state of one lepton plus missing energy being harder to distinguish

from background signatures. It is therefore important to first understand 𝑍+𝑏-jet events and then

to apply what is learned to 𝑊+𝑏-jet events.

4.2 𝑍+𝑐-jets

The 𝑐-quark, like the 𝑏-quark, is significantly more massive than the total mass of the proton’s

valence quarks, and so 𝑍+𝑐-jet predictions suffer from many of the same issues which plague

𝑍+𝑏-jet predictions. However, 𝑚𝑐 is about three times smaller than 𝑚𝑏, and so the kinematic

regions in which 𝑚𝑐 can be neglected, and those in which resummation is necessary, differ from the

similar regions with respect to 𝑚𝑏. Therefore, comparing 𝑐-jet and 𝑏-jet measurements in different

kinematic regions can provide a more detailed picture of which prediction schemes are appropriate

in those regions. For example, a recent ATLAS paper [104] measuring 𝛾 + 𝑏 and 𝛾 + 𝑐 events at
√

𝑠 = 8 TeV found that, for 𝛾 +𝑏, only the 5FNS predictions agree with the data at higher energies

(125 < 𝐸𝛾
𝑇 ≲ 200 GeV), while for 𝛾 + 𝑐 both the 4FNS and 5FNS predictions agree with the data

within uncertainties; the authors posit that this is is due to the fact that the scale at which gluon

splitting becomes the dominant production mode (over the Compton process 𝑞𝑔 → 𝑞𝛾) is lower for

𝛾 + 𝑏 than for 𝛾 + 𝑐, and so the need for the resummable 5FNS prediction is needed for 𝛾 + 𝑏 at

lower energies than for 𝛾 + 𝑐.

In addition, 𝑍+𝑐-jet measurements have the potential to address the longstanding question

of whether there is an intrinsic heavy-quark component of the proton, as theorized by Brodsky

et al. [105] several decades ago. As opposed to the extrinsic quark content, which comes from

the QCD brehmsstrahlung and pair-production processes and which is only present at high-𝑄2,

intrinsic quark content refers to possible bound states of the proton beyond its typical three-quark
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Figure 4.6: Diagrams which give rise to |𝑢𝑢𝑑𝑞 ̄𝑞⟩ bound states of the proton. Curly and dashed
lines represent transverse and longitudinal gluons, respectively [106].

|𝑢𝑢𝑑⟩ bound state. These other states, including |𝑢𝑢𝑑𝑐 ̄𝑐⟩ and ∣𝑢𝑢𝑑𝑏𝑏̄⟩, among others, contribute

to the overall Fock state of the proton, and while they are rare they are expected to lead to a

number of phenomenological consequences [106]. The states form due to the gluon exchange of

the valence up and down quarks, as shown in Figure 4.6. As the charm quark (𝑚𝑐 = 1.3 GeV) is

lighter than the bottom quark (𝑚𝑏 = 4.2 GeV), the effects of intrinsic charm bound states will be

more easily seen through experiment; for example, an enhancement of the charm PDF is expected

at 𝑥 ≥ 0.1 [107]. Explicitly measuring 𝑍+𝑐 processes could therefore not only help understand the

acceptability ranges of 4FNS and 5FNS predictions but also help constrain intrinsic charm models,

which motivates the inclusion of 𝑍+𝑐-jet measurements in this thesis.



Chapter 5

Data and Simulated Monte Carlo

Samples

5.1 ATLAS dataset description

This analysis uses data recorded by ATLAS during Run 2, from 2015 to 2018, at a center-of-mass

energy of
√

𝑠 = 13 TeV. Only events contained in luminosity blocks (∼1-2 minutes of data taking,

depending on the year) listed in the Good Run Lists (GRLs) [108] are used. The GRLs are XML

files which contain information for each luminosity block specifying if the LHC was operating under

stable beam conditions, if each subdetector was operational, if certain triggers were not being used,

or if any number of problems were present. The events included in the GRLs used in this analysis1

represent a total of 139 fb−1 of data taken during Run 2, as shown in Figure 2.5b.

Pileup reweighting, following the recommendations of the Jet/EtMiss working group [109], is

performed to account for 𝑝𝑝 collisions occurring in addition to the collision of interest. In-time

pileup, due to the additional 𝑝𝑝 collisions taking place in the same bunch crossing as the collision

of interest, is shown for each of the data-taking years of Run 2 in Figure 5.1. Out-of-time pileup,

due to collisions taking place in the bunch crossings proceeding and succeeding the bunch crossing

containing the collision of interest, is also relevant for when detectors are sensitive to electronic

signals integrated over longer than 25 ns, the spacing between the bunch crossings [110]. To account

for these effects, simulated minimum-bias events are overlaid on every MC generator event; these

account for the difference in data vs. MC of the average number of interactions per bunch crossing.
12015: data15_13TeV.periodAllYear_DetStatus-v89-pro21-02_Unknown_PHYS_-StandardGRL_All_Good_25ns.xml

2016: data16_13TeV.periodAllYear_DetStatus-v89-pro21-01_DQDefects-00-02-04_PHYS_ —
StandardGRL_All_Good_25ns.xml

2017: data17_13TeV.periodAllYear_DetStatus-v99-pro22-01_Unknown_PHYS_ —
StandardGRL_All_Good_25ns_Triggerno17e33prim.xml

2018: data18_13TeV.periodAllYear_DetStatus-v102-pro22-04_Unknown_PHYS_ —
StandardGRL_All_Good_25ns_Triggerno17e33prim.xml
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Figure 5.1: Luminosity as a function of the mean number of interactions per bunch crossing <𝜇>
for 2015-2018 𝑝𝑝 collision data taken at

√
𝑠 = 13 TeV [40].

5.2 Simulated data description

MC event generators model proton collisions to produce simulated events. Different MC campaigns

correspond to the different years of data-taking: campaign MC16a corresponds to 2015-2016 data,

campaign MC16d to 2017 data, and campaign MC16e to 2018 data. The different MC campaigns

account for the different pileup distributions shown in Figure 5.1. MC samples were produced to

estimate both the signal and background components of this analysis; the samples are described

below and summarized in Table 5.1.

5.2.1 Signal samples

Three simulated signal samples of 𝑍 boson production in association with jets (𝑍 → 𝑙𝑙 in Table 5.1)

are used in this analysis. The first is produced by Sherpa [111] using the ATLAS Sherpa v.2.2.11

configuration [112]. This configuration performs explicit matrix element (ME) calculations of 0-2

partons at next-to-leading order (NLO) plus 1-3 more partons at leading order (LO). The ME are

calcuated with the Comix [113] and OpenLoops [114] libraries. The PDF set used is the NNPDF

3.0 NNLO set [115], which is calculated at next-to-next-to-leading order (NNLO) in QCD with

𝛼𝑠 = 0.018. This means that the hard scattering processes (𝜎̂ in Equation 1.26) are calculated

at NNLO, and then are used to extract the PDFs from fits to experimental data providing 𝜎; the

data come from a number of different experiments, at different colliders, and so different NNLO

calculations are performed with respect to the different experiments and their final states. Higher

jet multiplicities are obtained using the Sherpa parton shower [116]. This parton shower model
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is based on a Catani-Seymour dipole factorization, which separates the overall shower correction

into individual 𝑚-parton loop corrections for each (𝑚+1)-parton exclusive final state. The model

is also is transverse momentum- (𝑘T)-ordered; this is beneficial because it relates the cut-off for the

parton shower to the minimum transvese momentum necessary to resolve partons [117, 118], and

it simplifies the procedure to merge the parton shower correction to the ME calculation. Here the

merging is performed using the MEPS@NLO prescription [119, 120]; the matching is governed by a

set of tuned parameters developed by the Sherpa authors. Sherpa uses the cluster fragmentation

model (see Section 1.6) for the hadronization of shower particles. In this sample, massless 𝑏 and 𝑐

quarks are included at ME level while massive 𝑏 and 𝑐 quarks are included in the parton shower;

this makes this sample a 5FNS prediction.

A second 𝑍 → 𝑙𝑙 sample is generated using MadGraph5_aMC@NLO v2.2.2 [121–123], which

includes 0-4 partons at LO in the ME calculation. The NNPDF 3.0 NNLO PDF set is used with

𝛼𝑠 = 0.018. The ME calculation is interfaced to Pythia 8.186 [124], which models the parton

shower, hadronization, and underlying event (this interface is denoted MG5_aMC+Py8 in Table

5.1). The Pythia parton shower is a 𝑘T-ordered dipole shower similar to Sherpa, but the Lund

string model (see Section 1.6) is used instead for hadronization. The A14 tune [125] of Pythia,

which uses Run 1 ATLAS data to optimize the multi-parton interaction parameters in Pythia

8, is used, along with the NNPDF 2.3 LO PDF set [126]. Overlap between the ME and parton

shower emissions is removed at LO using the CKKW-L merging procedure [127, 128]. This sample

is also based on the 5FNS prediction scheme.

Finally, an additional 5FNS theoretical prediction is generated using MadGraph5_aMC@NLO

v2.6.5 [112], which includes up to three additional final-state partons at NLO. The NNPDF 3.1

NNLO PDF set [129, 130], supplemented with the LUXqed photon PDFs, is used at 𝛼𝑠 = 0.118.

Showering is performed using Pythia 8.240 with the A14 tune and the NNPDF 2.3 LO PDF set.

As opposed to the previous MadGraph sample, this sample uses the FxFx NLO matching scheme

[131].

For the remainder of this document, these three signal samples will be referred to simply as

the Sherpa, MadGraph, and FxFx samples, respectively. The Sherpa sample is used to unfold

the data (Chapter 8); the MadGraph sample is used in conjunction with the Sherpa sample

to determine modelling uncertainties (Chapter 9); and all three samples will provide theoretical

predictions which will be compared to the unfolded measurements (Chapter 10).

5.2.2 Background samples

Several MC samples were generated to estimate the background components to the signal data,

and are subtracted from the the data prior to unfolding. The 𝑡 ̄𝑡 background was produced us-
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Process Generator Order of MC pQCD

𝑍 → 𝑙𝑙 (𝑙 = 𝑒, 𝜇) Sherpa v.2.2.11 0-2p NLO
3-4-5p LO

𝑍 → 𝑙𝑙 (𝑙 = 𝑒, 𝜇) MG5_aMC+Py8
(CKKW-L merging) 0-4p LO

𝑍 → 𝑙𝑙 (𝑙 = 𝑒, 𝜇) MG5_aMC+Py8
(FxFx merging) 0-3p NLO

𝑡 ̄𝑡 Powheg+Py8 NLO
𝑉 𝐻 Powheg+Py8 NLO

Single top (𝑠/𝑡/𝑡𝑊-channel) Powheg+Py8 NLO
𝑉 𝑉 → ℓℓ/ℓ𝜈/𝜈𝜈 + 𝑞 ̄𝑞 Sherpa v.2.2.1 NLO

𝑊 → 𝑙𝜈 Sherpa v.2.2.1 NLO
𝑍 → 𝜏𝜏 Sherpa v.2.2.1 NLO

Table 5.1: Summary of the MC generators used to produce the various background processes. “Or-
der of pQCD” refers to the order in QCD of the matrix element calculation of the MC simulation.
Np denotes the number of real parton emissions.

ing the PowhegBox v2 [132, 133] generator at NLO with the NNPDF 3.0 NNLO PDF set.

This sample was interfaced to Pythia 8.230 using the A14 tune and the NNPDF 2.3 LO PDF

set (Powheg+Py8 in Table 5.1). The sample was then normalized to the NNLO cross-section,

including the resummation of next-to-next-to-leading logarithmic (NNLL) soft gluon terms calcu-

lated with Top++2.0 [134]. Powheg+Py8 with the NNPDF 3.0 NNLO PDF set was also used

to simulate the production of vector bosons 𝑊, 𝑍 in association with a Higgs boson (𝑉 𝐻).

Single top quark production, in association with 𝑊 bosons (𝑡𝑊) as well as in the 𝑠- and 𝑡-

channels, was also simulated using PowhegBox v2 interfaced with Pythia 8.230 at NLO using

the NNPDF 3.0 NNLO PDF set. To remove overlap with the 𝑡 ̄𝑡 sample, the diagram-removal [135]

procedure was used.

Semi-leptonic diboson (𝑉 𝑉) final states, where one 𝑊 or 𝑍 boson decays leptonically and the

other decays hadronically, were simulated using Sherpa v.2.2.1 [136], with NLO MEs for up to

one parton emission and LO MEs for up to three parton emissions calculated using the NNPDF

3.0 NNLO PDF set. The ME calculations are matched to the Sherpa parton shower using the

MEPS@NLO prescription. Sherpa v.2.2.1 and the NNPDF 3.0 NNLO PDF set were also used to

generate the 𝑉+jets (𝑊 → 𝑙𝜈 and 𝑍 → 𝜏𝜏) background samples.

The minimum-bias events used for pileup reweighting included the single-, double-, and non-

diffractive 𝑝𝑝 processes of Pythia 8.186 using the A3 tune [137]. For all MadGraph and Powheg-

Box samples (see below), the EvtGen v1.6.0 program was used to simulate the decay of 𝑏 and 𝑐

hadrons. Finally, all simulated events were processed with the GEANT4 simulator of the ATLAS

detector [79] and reconstructed with the same software and algorithms as were used to reconstruct

the data.



Chapter 6

Event Selection

This Chapter outlines the selections used in this analysis to define the final state in which the

measurement is performed. The purpose of the selections is to balance background removal (signal

purity) with signal efficiency such that the residual background and efficiency uncertainties are

minimized. Included in this Chapter are estimates of the background after the selections are

applied, including comparisons between MC and data.

6.1 Event pre-selection

As mentioned in Chapter 5, only data events which are included in the ATLAS Good Run Lists

are included in this measurement. They are also subject to the LooseBad jet cleaning requirement

(“Looser” in [138]), which removes jets formed by beam-induced background particles, primarily

muons, interacting with the calorimeters. In addition, each event has to pass an unprescaled trigger

chain according to the data period and lepton flavor to be analyzed. The triggers are listed in Table

6.1, with the chain being the logical OR of the triggers in a given cell. Triggers with higher 𝑝T

thresholds generally have looser isolation requirements so that highly-boosted 𝑍 decays, in which

the two leptons are almost collinear, are not removed.

Years Muon Channel Eletron Channel

2015 HLT_mu20_iloose_L1MU15
HLT_mu50

HLT_e24_lhmedium_L1EM20VH
HLT_e60_lhmedium
HLT_e120_lhloose

2016 - 2018 HLT_mu26_ivarmedium
HLT_mu50

HLT_e26_lhtight_nod0_ivarloose
HLT_e60_lhmedium_nod0
HLT_e140_lhloose_nod0

HLT_e300_etcut

Table 6.1: The lowest unprescaled triggers for muon and electron channels, which form the trigger
chains for the respective years and lepton flavors.
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6.2 Object selections

The selections applied to the different physics objects used in this analysis — muons, electrons,

jets, and missing transverse momentum — are described in the following subsections.

6.2.1 Muons

Objects reconstructed in the region |𝜂| < 2.5 as CB or ME muons are identified using tracks

matched between the MS and ID, as described in Section 3.3.1. The tracks are associated to the

primary vertex using constraints on the transverse (|𝑑0|/𝜎(𝑑0) < 3.0) and longitudinal (|𝑧0 sin(𝜃)| <

0.5) impact parameters. The muon candidates are identified using the Medium quality working

point (see Chapter 3.3.1) and must pass the FCTight isolation working point. The 𝑝T of the muon

candidates must be larger than 27 GeV.

6.2.2 Electrons

Electron candidates are reconstructed in the region 𝜂 < 2.47, excluding the crack region 1.37 <

|𝜂| < 1.52 between the barrel and endcap ECAL cryostats, from energy deposits in the ECAL

matched to tracks in the ID. The tracks are subject to impact parameter (|𝑑0|/𝜎(𝑑0) < 3.0 and

|𝑧0 sin(𝜃)| < 0.5) constraints and are identified using the Tight quality working point (see Chapter

3.4.2). The electron cancidates must pass the FCTight_FixedRad isolation working point and have

𝑝T > 27 GeV.

Leptons passing the above selection criteria, which are summarized in Table 6.2, are referred

to as “good leptons.” Only good leptons are considered in the measurements of this analysis.

Lepton
Definition

Muon Channel
Criteria

Electron Channel
Criteria

Applied at
Truth Level?

Impact
Parameter

𝑧0 sin 𝜃 < 0.5 𝑧0 sin 𝜃 < 0.5
|𝑑0|/𝜎 (𝑑0) < 3 |𝑑0|/𝜎 (𝑑0) < 5

Identification Medium Tight
Isolation FCTight FCTight_FixedRad

Kinematics 𝑝T > 27 GeV, |𝜂| < 2.5 𝑝T > 27 GeV, |𝜂| < 2.47 Yes
(ignore crack electrons)

Table 6.2: Criteria used to define and select good leptons. The rightmost column notes which
of these detector-level selections are applied to the particle-level (“truth”) objects to produce the
theoretical predictions.

6.2.3 Jets

Jets reconstructed from noise-suppressed topo-clusters in the calorimeter are required to have

𝑝T > 20 GeV and |𝜂| < 2.5. To reduce the effects of pileup, jets are required to pass the Tight
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working point of the Jet Vertex Tagger (JVT) [109, 139], which is 96% efficient. This requirement

ensures that a significant fraction of the tracks have origins which are compatible with the primary

vertex. Finally, since leptons and jets are reconstructed independently, a single object can be

reconstructed as both a lepton and a jet; therefore, an overlap removal procedure [140] is performed.

Muons are discarded if Δ𝑅(jet, muon) < 0.4 and the number of tracks associated to the jet is larger

than 2, removing ambiguity between muons and jets containing semi-leptonic decays. Meanwhile,

electrons are discarded if 0.2 < Δ𝑅(jet, electron) < 0.4 are removed, while jets are discarded

if Δ𝑅(jet, electron) < 0.2; the former removal handles electron reconstruction bias as a result

of the nearby hadronic activity, while the latter removal ensures electrons aren’t duplicated as

jets. Only jets passing all of the above jets selections, as well as passing the requirement that

Δ𝑅(jet, any good lepton) < 0.4, are considered in this analysis.

Jets which pass all of the above selection criteria are referred to as “good jets.” Only good jets

are considered in this analysis.

6.2.4 𝑏-jets

To be considered a 𝑏-jet, a jet must first pass all of the selections described in the previous subsec-

tion. They are then considered “𝑏-tagged,” i.e. to have originated from a 𝑏-quark, if they pass the

DL1r operational working point (described in Section 3.5.5) corresponding to an 85% 𝑏-jet tagging

efficiency. Good jets which are also 𝑏-tagged according to this definition (thus passing all of the

selections summarized in Table 6.3) are referred to as “good 𝑏-jets.” Only good 𝑏-jets are measured

in this analysis.

Jet
Definition

Muon Channel
Criteria

Electron Channel
Criteria

Applied at
Truth Level?

Kinematics 𝑝T > 20 GeV and |𝑦| < 2.5 Yes

Overlap
Removal

Discard jet if
Δ𝑅(jet, 𝑒) < 0.2

Discard 𝑒 if
0.2 < Δ𝑅(jet, 𝑒) < 0.4

Discard 𝜇 if
Δ𝑅(jet, 𝜇) < 0.4 Yes

Δ𝑅(jet, any signal lepton) < 0.4 Yes
Jet Vertex Tagger Tight
𝑏-tagging DL1r 85% working point Truth 𝑏 or 𝑐

Table 6.3: Criteria used to define and select the good (𝑏-)jets which are measured in this analysis.
The rightmost column notes which of these detector-level selections are applied to the particle-level
(“truth”) objects to produce the theoretical predictions. At truth level, 𝑏-jet and 𝑐-jet events are
selected using their truth flavor information rather than the detector-level 𝑏-tagging discriminant
working point.
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6.3 𝑍 final state selection

Events containing a 𝑍 boson candidate are selected by requiring that the event contain exactly two

good leptons of the same flavor and opposite charge. At least one of the leptons must be matched

to the trigger chain used to preselect the events (Table 6.1); this is ensured by requiring that the

lepton be within Δ𝑅 < 0.4 of object which fired the trigger chain and have a 𝑝T greater than at

least one of the triggers in the chain. Moreover, the invariant mass of the dilepton pair has to be

within 76 < 𝑚𝑙𝑙 < 106 GeV, which is centered on 𝑚𝑍. In order to reject the large top background,

events with 𝑝𝑍
𝑇 < 150 GeV are discarded if the missing transverse energy (MET) > 60 GeV; this

selection is taken from a similar analysis [5] performed using 2015-2016 data, in which the selection

reduced the 𝑡 ̄𝑡 background by about 55% while reducing the signal by only about 5%. Finally, the

𝑍+HF jet final state is selected by requiring at least one good 𝑏-jet.

Table 6.4 summarizes these final-state selections. These and the above object selections were

checked using numerous cutflow comparisons: for each analysis framework being used by different

members of the analysis team, the number of events after each selection, in data and MC, was

obtained and compared to ensure consistency across the frameworks.

Selection Criteria Applied at
Truth Level?

Leptons Exactly 2 good leptons of
same flavor, opposite charge Yes

Trigger matching ≥ 1 good lepton trigger matched
to preselection chain

Invariant Mass 76 < 𝑚𝑍 < 106 GeV Yes
Missing Transverse

Energy (MET)
Discard event if:

MET > 60 GeV and 𝑝𝑍
T < 150 GeV

Jets ≥ 1 good 𝑏-jet Yes

Table 6.4: Selections used in this analysis, which are applied to the objects as defined in the above
sections.

6.4 Efficiency correction scale factors

The many selections described above are necessary to obtain a clean sample of 𝑍+HF jets events,

but with each selection comes the possibility that a signal event will not be measured because

it does not pass the selection. To account for each of these selection inefficiencies, efficiency

corrections must be applied to data. However, the process of unfolding detector resolution effects

(see Chapter 8) also includes such an efficiency correction, calculated from MC in the phase space of

the measurement. Therefore, to account for efficiency differences between data and MC, efficiency
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scale factors (SFs) of the form

𝑆𝐹 𝑥 = 𝜀𝑥
Data
𝜀𝑥

MC
(6.1)

are applied to the simulated events for each selection effect 𝑥. Efficiency SFs are produced by the

various Combined Performance groups of ATLAS by estimating the data and MC efficiencies in a

particular phase space. and account for the following effects:

• Single lepton triggers: Data and MC efficiencies are measured for each trigger in Table

6.1, for each isolation and identification working point, and are used to created a trigger SF

in bins of 𝜂 − 𝜙 (𝑝T − 𝜂) for muons (electrons). For a given trigger with efficiency 𝜀𝑙𝑖,Trig

for the first (largest 𝑝T) lepton 𝑙𝑖, the overall trigger efficiency is one minus the product of

inefficiencies (1 − 𝜀𝑙𝑖,Trig) for each lepton. For this analysis, with two signal leptons, the

trigger scale factor is given by

𝑆𝐹 Trig =
𝜀Trig

Data

𝜀Trig
MC

=
1 − (1 − 𝜀𝑙1,Trig

Data )(1 − 𝜀𝑙2,Trig
Data )

1 − (1 − 𝜀𝑙1,Trig
MC )(1 − 𝜀𝑙2,Trig

MC )
.

Example muon trigger efficiencies and scale factors can be seen in Figure 3.7, while similar

examples for electrons can be seen below in Figure 6.1.

Figure 6.1: Efficiency of the e24_lhvloose_nod0 trigger for Tight, Medium, and Loose electrons
as a function of the offline electron 𝐸T (a) and 𝜂 (b) [86].

• Lepton selections: For each muon, the identification working point, track-to-vertex asso-

ciation, and isolation efficiencies are corrected using SFs. Similarly, for each electron, the

electron reconstruction, identification, and isolation efficiencies are corrected using SFs. The

three respective SFs are multiplied together and applied for each signal lepton. For example,
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for the first (largest 𝑝T) lepton 𝑙1, the overall lepton SF is

𝑆𝐹 𝑙1 = 𝑆𝐹 𝑙1,ID × 𝑆𝐹 𝑙1,reco × 𝑆𝐹 𝑙1,iso. (6.2)

• JVT: A JVT SF is determined for each jet in an event, and the product of these SFs is

applied to reweight the event, to correct for the efficiency of the JVT Tight requirement.

• 𝑏-tagging: For each jet passing the 85% efficiency working point of the DL1r tagger, a 𝑏-

tagging SF is determined; the product of these SFs is applied to the event to correct for the

efficiency of the 𝑏-tagging selection.

6.5 ≥1 jet MC-data comparisons

The MC samples, once prepared with the above selections, are used to correct the data through

the efficiency corrections described above, MC-derived estimates of the larger backgrounds (see

Chapter 7), and unfolding (Chapter 8). To make sure that the MC samples are appropriate to use

to obtain these corrections (and their uncertainties), it is important to check that a comparison

between MC and data does not display unmanageable discrepancies. The comparison is made using

observables which have been carefully and precisely measured in other ATLAS/CMS analyses.

Because this is a measurement of SM physics, rather than a search relying on MC predictions to

investigate new physics, the MC-to-data agreement does not have to be perfect. Even if the MC is

mismodelled and only agrees with the data up to a 20% discrepancy, that 20% discrepancy becomes

an uncertainty of only a few percent in the final measurement. This is primarily because a) even if

the backgrounds are mismodelled, they are only a small fraction of the total sample (except for the

light-jet background discussed in Chapter 7); b) the efficiency scale factors are close to unity in all

𝜂 − 𝜙/𝑝T − 𝜂 bins, and so lepton kinematics mismodelling will result in a percent-level uncertainty;

and c) the unfolding corrections use MC truth and reco to form the migration matrices, and so in

those migration matrices the mismodelling effects mostly cancel out.

Several MC/data comparisons were made in the region of phase space corresponding to the

selections of Table 6.4 minus the requirement that the selected jet be 𝑏-tagged. The observables

chosen for these comparisons have been measured numerous times by different experiments and at

varying energy scales, etc. The MC-data agreement shown in the below plots is within the range

of what we would expect given those previous measurements, which provides some confidence that

the MC samples have been prepared adequately for this analysis.

Figure 6.2 shows the 𝑝T distribution of the 𝑍 boson, which drops off following a power law

as the 𝑝T increases, as expected from differential cross-section calculations. MadGraph tends to
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over-predict the 𝑝T distribution observed in data, while Sherpa underpredicts at ≳ 100 GeV, but

both generators are in agreement with the data up to 20% in entire kinematic region of interest.

This suggests that, given the uncertainty estimates described above, any potential mismodelling

of the 𝑍+jets processes of interest in this analysis will only have a small effect on the precision

of the final measurement. Figure 6.3 shows similar features in the predictions of the 𝑝T of the

leading jet. Leading jet 𝜂 is shown in Figure 6.4, which is flat as expected. Finally, Figure 6.5

shows the comparison between the observed and expected number of jets reconstructed in a given

event. The agreement between Sherpa and the data is better here than for the other observables,

with a difference of ≲ 5% for most jet multiplicities, while MadGraph under-predicts higher jet

multiplicities by up to 20%. Overall, the agreement for these observables does not vary between

the electron and muon channels, which suggests that there is little sensitivity to any differences in

the modelling of different flavors of leptons.

(a) (b)

Figure 6.2: Stacked histograms of the 𝑝T of the 𝑍 boson, obtained from 2015-2018 data and from
Sherpa 2.2.11 MC samples, in the (a) electron and (b) muon channels. The ratio plot shows the
MC/data ratio, including the ratio using the MadGraph MC samples instead.

(a) (b)

Figure 6.3: Stacked histograms of the leading jet 𝑝T, obtained from 2015-2018 data and from
Sherpa 2.2.11 MC samples, in the (a) electron and (b) muon channels. The ratio plot shows the
MC/data ratio, including the ratio using the MadGraph MC samples instead.



6.6. ≥1 𝐵-JET SIGNAL REGION 83

(a) (b)

Figure 6.4: Stacked histograms of the leading jet pseudorapidity 𝜂, obtained from 2015-2018 data
and from Sherpa 2.2.11 MC samples, in the (a) electron and (b) muon channels. The ratio plot
shows the MC/data ratio, including the ratio using the MadGraph MC samples instead.

(a) (b)

Figure 6.5: Stacked histograms of the number of reconstructed jets, obtained from 2015-2018 data
and from Sherpa 2.2.11 MC samples, in the (a) electron and (b) muon channels. The ratio plot
shows the MC/data ratio, including the ratio using the MadGraph MC samples instead.

6.6 ≥1 𝑏-jet signal region

This analysis is performed on events with at least one 𝑏-jet, with a 𝑏-jet defined as a jet passing

all of the jet selections listed in Table 6.4. This detector-level selection will include particle-level

𝑏- and 𝑐-jets, which will be unfolded simultaneously, as discussed in Chapter 8.

Table 6.5 lists the signal and background percentages in this signal region, in both the electron

and muon channels, using Sherpa 2.2.11. The largest background is 𝑍+light-jet events; despite

the use of 𝑏-tagging to suppress this background, the cross-section is ≈ 50× (≈ 10×) larger than

the cross-section for 𝑏-jets (𝑐-jets). To avoid suffering from large modelling uncertainties on this

background, the light-jet background is fit to the data, as described in Chapter 7. The second

largest background is 𝑡 ̄𝑡: each top quark decays into a 𝑏 and a 𝑊 boson, and the 𝑊 bosons decay

semi-leptonically, and so the final state includes two 𝑏-jets and two charged leptons.

Several MC-data comparisons were also performed in this region to validate the MC samples

before unfolding, with the Sherpa samples being used in the unfolding procedure. Figure 6.6
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Process Percentage (%) Weighted event count
Electron Muon Electron Muon

𝑍+HF jets 55.02 53.29 881524 1517111
𝑍+Light jets 42.47 44.46 680509 1265683

𝑡 ̄𝑡 1.64 1.45 26225 41314
Diboson 0.65 0.60 10461 16991

Single top (𝑠/𝑡/𝑡𝑊-channel)

< 0.5 < 0.5

2349 3664
𝑉 𝐻 1122 1715

𝑍 → 𝜏𝜏 154 300
𝑊 → 𝑙𝜈 Negligible

Total MC Events
(Observed Data)

1602327
(1509583)

2846835
(2628258)

Table 6.5: Percentage of signal and background events in the electon and muon channels using
Sherpa 2.2.11. The final row gives the total number of events in MC (data).

shows the 𝑝T distribution of the leading 𝑏-tagged jet: a more rapid departure of the MadGraph

prediction from the Sherpa prediction than in Figure 6.3 is seen. The gap is not as large for lepton

𝑝T, shown in Figure 6.7. Figure 6.8 shows lepton 𝜂, where both Sherpa and MadGraph are in

good agreement with the data. The invariant mass 𝑚𝑍 MC-data agreement for both Sherpa and

MadGraph is ≈ 5 − 10% too large; this is essentially an issue of cross-section normalization, as

this over-prediction is also seen in the low-𝑝T bins of the leading jet 𝑝T distributions. Finally,

the MC predictions of 𝑥𝐹 (tagged jet) ≡ 2𝑝T sinh(𝑦)/
√

𝑠 differ more significantly in the electron

channel than in the muon channel, as shown in Figure 6.10; low statistics in the final bin cause

the uncertainty on the predictions to be quite large.

(a) (b)

Figure 6.6: Stacked histograms of the leading 𝑏-jet 𝑝T, obtained from 2015-2018 data and from
Sherpa 2.2.11 MC samples, in the (a) electron and (b) muon channels. The ratio plot shows the
MC/data ratio, including the ratio using the MadGraph MC samples instead.
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(a) (b)

Figure 6.7: Stacked histograms of the lepton 𝑝T, obtained from 2015-2018 data and from Sherpa
2.2.11 MC samples, in the (a) electron and (b) muon channels. The ratio plot shows the MC/data
ratio, including the ratio using the MadGraph MC samples instead.

(a) (b)

Figure 6.8: Stacked histograms of the lepton pseudorapidity 𝜂, obtained from 2015-2018 data and
from Sherpa 2.2.11 MC samples, in the (a) electron and (b) muon channels. The ratio plot shows
the MC/data ratio, including the ratio using the MadGraph MC samples instead.

(a) (b)

Figure 6.9: Stacked histograms of the 𝑍 boson mass 𝑚𝑍, obtained from 2015-2018 data and from
Sherpa 2.2.11 MC samples, in the (a) electron and (b) muon channels. The ratio plot shows the
MC/data ratio, including the ratio using the MadGraph MC samples instead.
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(a) (b)

Figure 6.10: Stacked histograms of 𝑥𝐹 (tagged jet), obtained from 2015-2018 data and from Sherpa
2.2.11 MC samples, in the (a) electron and (b) muon channels. The ratio plot shows the MC/data
ratio, including the ratio using the MadGraph MC samples instead.

6.7 Observables

Four observables were measured in this analysis in the ≥1 𝑏-tagged jet signal region. Here is a

brief description of why these observables were chosen:

• [Leading tagged-jet 𝑝T] serves as a test of the modelling of gluon splitting into 𝑏-jets, and

therefore provides a good measure of the scalability of the 4FNS prediction. As mentioned in

Chapter 4, the matrix element calculations in 4FNS predictions are pertubative expansions

involving terms of the form 𝛼𝑛
𝑠 log2𝑛(𝐸2/𝑚2

𝑏), which are too large for resummation at higher

energies. Leading 𝑏-jet 𝑝T tests a range of final-state energies, and therefore can describe at

which energies the 4FNS begins to break down.

• [𝑍 𝑝T] (alternatively written as 𝑝𝑍
T) serves a similar role as an observable to leading 𝑏-jet

𝑝T, since jet emission recoils against the 𝑍 boson, but it is determined via lepton, rather

than jet, reconstruction. In general, leptons are the better and more precisely understood

reconstructed physics objects, and so 𝑝𝑍
T will have smaller uncertainties and be easier to

unfold. However, 𝑝𝑍
T is less sensitive to two 𝑏-jet events in which the jet emissions recoil

against each other, leaving the 𝑍 more or less at rest.

• [Δ𝑅(𝑍, leading tagged-jet)] is more sensitive to the collinearity of the 𝑏-jet splitting than

the leading 𝑏-jet 𝑝T (which in turn is more sensitive to the energy scale of the splitting).

• [Leading tagged-jet 𝑥𝐹 ] is included as a means to test the sensitivity of this analysis to

intrinsic charm; as noted in [107], at 𝑥𝐹 ≥ 0.1, intrinsic charm would increase the 𝑐-quark

PDF contribution to processes which include 𝑐-jets in the final state.

These four observables are by no means the only observables of physics interest. For example:
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• [Leading 𝑏-jet 𝜂 ] could be included for similar reasons as the leading 𝑏-jet 𝑝T: more energetic

𝑏-jets should be more forward (higher in 𝜂), and so a degradation of 4FNS predictions is

predicted as 𝜂 increases (though to a lesser extent than for leading 𝑏-jet 𝑝T, as leading jet 𝜂

is expected to be fairly flat).

• The [number of 𝑏-jets] can be measured in order to obtain the exclusive 𝑏-jet cross-section

for a given 𝑏-jet multiplicity.

It should be noted in particular that two 𝑏-jet observables are not included in this analysis. As

will be discussed in Chapter 8, the correlation between 𝑏- and 𝑐-jets is unfolded by constructing a

response matrix in the 𝑏-tagging quantile bins; this response matrix would have to be expanded

to account for the combined quantiles of the two tagged jets, and this implementation has not

been developed. Some examples of two 𝑏-jet observables which should be include in future studies

include:

• [Sub-leading 𝑏-jet 𝑝T], which should contrast the 4FNS and 5FNS predictions because, as

mentioned earlier, two 𝑏-jet final state diagrams are only calculated in 4FNS predictions; in

the 5FNS, a second 𝑏-jet can only be introduced via parton showering (which is also possible

in the 4FNS); and

• [Δ𝑅(Leading, sub-leading 𝑏-jets)], which would potentially be better handled by 4FNS

predictions because a full gluon splitting calculation (with nonzero 𝑚𝑏) is performed without

the assumptions of collinearity inherent to parton showering.

The four observables measured in this analysis provide a strong handle on the QCD phenomena

which are the focus of this 𝑍+HF measurement, as described in Chapter 5. In the next Chapter,

the estimation of the light-jet background is presented.



Chapter 7

Jet Flavor Fit

The largest background by far in the signal region of this analysis, as shown in Table 6.5, is 𝑍+light-

jets. This Chapter provides an overview of how this background component, whose distribution is

modelled using Monte Carlo (MC) for each observable, is fit to the data to obtain a data-driven

estimate of the normalization of this background. The normalized 𝑍+light-jets component is then

subtracted from the data before unfolding.

The method used to fit the light flavor fraction is presented in the context of an overall flavor

fit, which can be performed to fit the 𝑏-, 𝑐-, and light-jet flavor fractions of the MC signal sample.

Similar flavor fits were used to extract the 𝑍+𝑏-jet components signal in previous ATLAS and

CMS measurements. However, as discussed in the next Chapter, this method of separately fitting

the 𝑏- and 𝑐-jet contributions is discarded in favor of a combined unfolding technique. The flavor

fit method is therefore only used to estimate the light-jet background contribution to the 𝑍+jets

events.

7.1 Flavor fit using PCBT quantile bins

Initially, the light-jet contribution was fit to the data at the same time as the 𝑏-jet and 𝑐-jet

contributions using the distribution of events in the PCBT quantile bins introduced in Section

3.5.5. As discussed there, the PCBT bins describe different 𝑏-tagging efficiencies, corresponding to

[0, 60]%, [60, 70]%, [70, 77]%, [77, 85]%, and [85, 100]% [100]. This analysis selects 𝑏-jets passing

the 85% working point, which can end up in any of these quantile bins except the [100, 85]% bin,

which is therefore ignored. The PCBT quantile distributions then look like Figure 7.1a, where

𝑍+jets events have been split according to their truth flavor information into 𝑏-/𝑐-/light-jets. As

expected, the leftmost bin ([77, 85]% 𝑏-tagging efficiency) is dominated by light-jets, as the higher

𝑏-tagging efficiency results in lower 𝑏-jet purity, while the rightmost bin ([0, 60]%) is primarily

88



7.1. FLAVOR FIT USING PCBT QUANTILE BINS 89

𝑏-jets. A maximum likelihood fit is then performed, using RooFit v.6.22.00 [141], where each of

the three flavor fractions is allowed a floating normalization while the backgrounds are held fixed.

The normalization scale factors (SFs) — the post-fit template normalization divided by the pre-fit

normalization — are applied to the pre-fit MC flavor distributions to maximize the agreement with

data, resulting in Figure 7.1b.

(a) Pre-fit (b) Post-fit

Figure 7.1: PCBT quantile distribution of events with 24 < 𝑝T < 30 GeV pre-fit (a) and post-fit
(b) using Sherpa 2.2.11.

This PCBT fit is performed in each bin of the observable; for example, Figure 7.1 shows the

fit being performed in the 24 < 𝑝T < 30 GeV bin of leading tagged-jet 𝑝T. Doing so results in a

set of three scale factors for each bin (Figure 7.2). This binwise PCBT fit of the observable results

in an excellent MC-data agreement, as shown in Figure 7.3. This is not surprising, given that the

bins are fit individually; however, it relies on the PCBT templates, which are discriminated purely

using detector effects, and the templates are not the best tool for separating each individual flavor.

Figure 7.2: An illustration of how the PCBT flavor-fit scale factors (right) are derived for each bin
of the observable using the PCBT distribution (left). Shown here are the scale factors resulting
from the likelihood fit in in the 24 < 𝑝T < 30 GeV bin of leading tagged-jet 𝑝T, using Sherpa 2.2.11.
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Figure 7.3: Post-PCBT-fit distribution of leading tagged-jet 𝑝T in the muon channel, using events
generated with Sherpa 2.2.11. The MC/data ratio is shown in the second pad, while the flavor
SFs in each bin are plotted in the bottom pad.

7.2 Flavor percentage variance

The flavor fit described above, while resulting in excellent MC-data agreement, also exhibits un-

desirable variance. As an example, consider Figure 7.4, which shows the jet flavor percentages

in each bin of leading tagged-jet 𝑝T. Before the PCBT fit is performed, the distributions of jet

flavor percentage per bin are relatively smooth, with the 𝑐-jet flavor percentage in particular being

almost constant for 35 ≲ 𝑝T ≲ 300 GeV. After the PCBT fit, however, the 𝑐-jet percentage varies

from bin to bin, particularly for 𝑝T ≳ 100 GeV. The light-jet distribution also gains variance which

mirrors the variance in the 𝑐-jet distribution: in bins where the 𝑐-jet percentage varies upwards

from the relative mean, such as the bin of 130 < 𝑝T < 170 GeV, the light-jet percentage exhibits

a comparable downwards variation, and vice-versa. The 𝑏-jet distribution, meanwhile, appears

relatively unchanged after the PCBT fit.

The reason for the variance introduced by the PCBT fit is the similarity of the 𝑐- and light-jet

PCBT distributions, as shown in Figures 7.5b and 7.5c. The similarity of the distributions causes

there to be no clear singular solution to the maximum likelihood problem — a SF applied to the

𝑐-jet distribution results in a similar effect as if applied to the light-jet distribution — and so the

solution reached by the maximum likelihood fit is overly sensitive to small differences between the

𝑐-jet and light-jet distributions.



7.3. CONTROL REGION FIT 91

(a) Pre-fit (b) Post-fit

Figure 7.4: Distributions of jet flavor percentages in bins of leading tagged-jet 𝑝T (a) pre-PCBT
fit and (b) post-fit in the electron channel using MadGraph.

(a) 𝑏-jets (b) 𝑐-jets (c) Light jets

Figure 7.5: Distributions in the four PCBT quantiles, normalized by the total number of events, of
(a) 𝑏-jets, (b) 𝑐-jets, and (c) light-jets events with 80 < leading tagged-jet 𝑝T < 100 GeV. Events
are generated in the electron channel using MadGraph.

7.3 Control region fit

The method used to circumvent the problem described above is to separately fit the light-jet flavor

fraction in a control region. An orthogonal control region is constructed by selecting only events

with zero 𝑏-jets; as expected, this region is very pure (≈ 90%) in light-jets (see Figure 7.6). A flat

fit of the MC light-jet fraction to the data is performed in this control region and the resulting scale

factor is applied to each bin of the MC; subsequently, the PCBT fit described earlier in this Section

can be performed, but with the the light fraction no longer allowed to fluctuate. This two-step

flavor fit results in a MC-data agreement almost as good as using the method described above

(Figure 7.7a) while reducing the variance in the smooth flavor percentage distributions (Figure

7.7b).1

1A binwise fit of the light-jet flavor fraction can be performed instead of a flat fit; however, preliminary stud-
ies showed a negligible improvement in the post-fit MC-data agreement is negligible, and the binwise fit takes
substantially more time to perform.
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(a) (b)

Figure 7.6: (a) Leading jet 𝑝T in the zero 𝑏-jet control region, using electron channel events
generated using MadGraph. (b) Distributions of jet flavor percentages in bins of leading jet 𝑝T.

(a) (b)

Figure 7.7: (a) Leading tagged-jet 𝑝T after the light-jet fraction fit in the control region and the
PCBT fit of the 𝑏- and 𝑐-jet fractions, using muon-channel events generated using MadGraph.
(b) Distributions of flavor percentages in bins of leading tagged-jet 𝑝T.

7.4 Unfolding fitted results

The result of the flavor fits performed in this Section are scaled MC 𝑏-jet, 𝑐-jet, and light-jet

contributions which comprise the overall MC signal. From here, the 𝑏- and 𝑐-jet distributions

would each need to be unfolded, the motivation and process for which is described in the next

Chapter. As alluded to at the beginning of this Chapter, however, this analysis chooses instead

to discard the PCBT fit of the 𝑏- and 𝑐-jet components in favor of unfolding the 𝑏- and 𝑐-jet

contributions simultaneously. This preserves the correlations between the two contributions and

removes any uncertainty which is associated with the PCBT fit. The light-jet fit in the control

region, meanwhile, will still be performed, as it provides a more accurate description of the largest

background to our signal.



Chapter 8

Unfolding

Inherent to the measurements of 𝑍+HF jet observables are distortions due to the finite resolution of

the ATLAS detector. Unfolding, or deconvolution, is the process of correcting the measurements

for these distortions. Unfolding must be performed in order to compare experimental data to

theoretical predictions, which are not subject to detector resolution effects. Moreover, the results

of separate experiments using different detectors will be subject to varying resolution effects; only

by unfolding the effects of each detector can these separate results be compared and combined.

In this Chapter, I will present a general overview of the problem of unfolding, unfolding via

matrix inversion, and regularized methods of unfolding. I will then discuss how “unrolling” the

input 𝑏-jet and 𝑐-jet contributions prior to unfolding can be used to preserve the correlations

between them; this is performed using the PCBT bins in order to simultaneously unfold 𝑏-jet and

𝑐-jet distributions.

8.1 Overview

Suppose that an experiment has been performed in which a detector was used to take 𝑛 measure-

ments of some random observable variable 𝑥; as an example, consider an experiment using the

ATLAS detector to measure the transverse momentum 𝑝T of the leading 𝑏-tagged jet in each 𝑝𝑝

collision. The limited resolution of the detector used to perform the measurements means that the

measured values of 𝑥 will fluctuate stochastically from their corresponding true values 𝑦. In the

ATLAS example, this means that the measured 𝑏-tagged jet 𝑝T distribution will not match the

true 𝑏-jet 𝑝T distribution. The relationship between the distribution 𝑓(𝑦) of the true values 𝑦 and

the measured distribution 𝑔(𝑥) is given by a Fredholm integral equation of the first kind:

𝑔(𝑥) = ∫ 𝐴(𝑥|𝑦)𝑓(𝑦)𝑑𝑦 + 𝑏(𝑥), (8.1)
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where the resolution function 𝐴(𝑥|𝑦) describes the effect the the detector and 𝑏(𝑥) is the background

contribution [142]. The resolution function 𝐴(𝑥|𝑦) describes the total effect of the detector on the

true distribution:

𝐴(𝑥|𝑦) = 𝑠(𝑥|𝑦)𝜀(𝑦). (8.2)

Here the point-spread function 𝑠(𝑥|𝑦) describes the probability to observe 𝑥 given the true value 𝑦,

while the efficiency 𝜀(𝑦) describes the probability that an event with true observable value 𝑦 will

actually be measured; the number 𝑛 of measurements which were made may not equal the number

of possible measurements 𝑚. Using the ATLAS example, an event which does not fulfill all of the

isolation, identification, or reconstruction criteria will not be measured. On the other hand, we

may get a fake measured value when there was no event to actually measure; these backgrounds

are accounted for with the 𝑏(𝑥) term. The problem of unfolding is to solve for 𝑓(𝑦) assuming 𝑔(𝑥),

𝐴(𝑥|𝑦), and 𝑏(𝑥) are known.

In an experiment where a finite number of measurements are performed of the observable 𝑥,

we must discretize Equation 8.1. Let 𝜇𝜇𝜇 = (𝜇𝑗, … , 𝜇𝑀),1 with 𝜇𝑗 = ∫𝑗
𝑗−1

𝑓(𝑦)𝑑𝑦, be the “true his-

togram,” the expected number of events in 𝑀 bins if 𝑥 could be measured exactly. The experiment

obtains the data histogram 𝑛𝑛𝑛 = (𝑛𝑖, … , 𝑛𝑁), with 𝑛𝑖 = ∫𝑖
𝑖−1

𝑔(𝑥)𝑑𝑥 for 𝑁 bins [143]. Each of

these 𝑛𝑖 is itself a (Poisson-distributed) random variable: for each bin 𝑖, the expected number of

measured events is 𝜈𝑖 = 𝐸[𝑛𝑖], and so we have the expected histogram 𝜈𝜈𝜈 = 𝜈𝑖, … , 𝜈𝑁. Finally, we

can approximate the kernel resolution function 𝐴(𝑥|𝑦) of Equation 8.2 with the response matrix

𝑅𝑅𝑅. Each element 𝑅𝑖𝑗 of the response matrix gives the conditional probability for an event to be

reconstructed from a measurement in bin 𝑖 of the data histogram given that its true value was in

bin 𝑗 of the true histogram, i.e.

𝑅𝑖𝑗 = 𝑃(observed in bin 𝑖|true value in bin 𝑗). (8.3)

The response matrix 𝑅𝑅𝑅 of a given observable 𝒪 thus describes how strong an effect the detector has

on the true distribution of 𝒪. A perfectly diagonal response matrix for observable 𝒪 describes a

detector in which all events in a given truth bin 𝜇𝑗 of 𝒪 are reconstructed in the same data bin 𝜈𝑖 of

𝒪, in which case only the potential for detector inefficiency and the presence of backgrounds need to

be accounted for. On the other hand, a response matrix with many off-diagonal elements describes

a detector which tends to smear true values of the same truth bin 𝜇𝑗 of 𝒪 into different data bins,

i.e. a detector whose resolution prevents the observation of fine structure (sharp variations) in the
1I will consistently use bold symbols to differentiate vectors and matrices from variables.
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data.

Putting all of this together, the (one-dimensional) discretized form of the Fredholm equation

8.1 is

𝜈𝑖 =
𝑀

∑
𝑗=𝑖

𝑅𝑖𝑗𝜇𝑗 + 𝛽𝑖, (8.4)

where we continue to account for the possibility of background events 𝛽𝑖 in each bin [144]. The

task of unfolding in this analysis is therefore to obtain the estimators ̂𝜇̂𝜇̂𝜇 of the true distribution 𝜇𝜇𝜇

using our data distribution 𝑛𝑖 = ̂𝜈𝑖 and a response matrix 𝑅𝑅𝑅 obtained from MC simulation.

8.1.1 Estimator properties

Several concepts are used to evaluate the estimators ̂𝜇̂𝜇̂𝜇 = ( ̂𝜇1, … , ̂𝜇𝑀) we can obtain for the true

distribution. The first is consistency: an estimator is said to be consistent if ̂𝜇𝑗 converges to 𝜇𝑗

in the limit that infinitely many measurements are taken. This is a basic requirement for a useful

estimator; if the estimator is supplied with more data, it should provide a better estimate of the

true value. It is also desirable for an estimator to be unbiased, where the bias is defined [144] as

𝑏𝑗 = 𝐸[ ̂𝜇𝑗] − 𝜇𝑗. (8.5)

The expectation value 𝐸[ ̂𝜇𝑗] is the expected mean of ̂𝜇𝑗
2 from infinitely many experiments. An

unbiased estimator has 𝑏𝑗 = 0 for any number of measurements, while an asymptotically unbi-

ased estimator approaches 𝑏𝑗 = 0 as the number of measurements taken approaches infinity. So

whereas a consistent estimator is one which converges to the true value over an infinite number of

measurements, an unbiased estimator is one which converges to the true value when a large num-

ber of experiments, each of which includes a finite number of measurements, is performed. This

means that an unbiased estimator is particularly desirable for comparing the results of different

experiments.

Finally, the bias and the variance 𝑉 [ ̂𝜇𝑗] ≡ 𝐸[ ̂𝜇2
𝑗 ] − 𝐸[ ̂𝜇𝑗]2 can be used to estimate the inherent

error of the estimator by defining the mean squared error (MSE) [144]

MSE = 𝑉 [ ̂𝜃] + 𝑏2. (8.6)

These concepts are used to differentiate the different possible sets of estimators which can be
2Because the estimator 𝜇̂𝑗 is a function of the bins of data 𝑛𝑛𝑛 = 𝑛𝑖, … , 𝑛𝑁, which are random variables, 𝜇̂𝑗 itself is

a random variable which can be described by a probability distribution function (often referred to as the “sampling
distribution”), its mean, etc.
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constructed for a given experiment.

8.2 Inverting the response matrix

The simplest method of unfolding is to invert the response matrix. If we start with the matrix

relation 𝜈𝜈𝜈 = 𝑅𝑅𝑅𝜇𝜇𝜇 + 𝛽𝛽𝛽, we invert to get

𝜇𝜇𝜇 = 𝑅𝑅𝑅−1(𝜈𝜈𝜈 − 𝛽𝛽𝛽). (8.7)

We are assuming that the measured distribution is estimated with our data ( ̂𝜈𝑖 = 𝑛𝑖), which means

that the estimators for the true distribution are

̂𝜇𝜇𝜇 = 𝑅𝑅𝑅−1(𝑛𝑛𝑛 − 𝛽𝛽𝛽). (8.8)

This is both the least-squares solution and the solution obtained by maximizing the log-likelihood

function [144]. In some ways, it is a promising solution: looking at Equation 8.8, we can see that,

because we have chosen ̂𝜈𝑖 = 𝑛𝑖,

𝐸[ ̂𝜇𝑖] =
𝑁

∑
𝑖=1

𝑅−1
𝑗𝑖 𝐸[𝑛𝑖 − 𝛽𝑖] =

𝑁
∑
𝑖=1

𝑅−1
𝑗𝑖 𝐸[𝜈𝑖 − 𝛽𝑖]

= 𝜇𝑖,

(8.9)

meaning that the estimators are unbiased. In addition, the variance of the estimators is as small as

it can be for an estimator of zero bias [144]. Unfortunately, the use of the data 𝑛𝑛𝑛 as the estimators

of 𝜈𝜈𝜈 leads to a problem. The effects of finite detector resolution smear the true distribution; in

other words, fine structure, or sharp variations in the data, tend to get flattened out. Unfolding,

therefore, attempts to restore this fine structure. The data bins 𝑛𝑛𝑛 are random variables, and so

they are subject to statistical fluctuations. These statistical fluctuations can potentially introduce

artificial fine structure, which unfolding will then exaggerate. The resulting estimators will thus

have zero bias but a large variance; because of this, the unfolded results will be imprecise. One

natural next step, then, is to find a different set of estimators, which have a smaller variance at

the cost of some bias.

8.3 Regularized unfolding

Regularizing the unfolded distribution amounts to encouraging the estimators ̂𝜇̂𝜇̂𝜇 of the true distri-

bution to be smooth, i.e. to suppress the large variance of the matrix-inversion estimators [145].
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The downside is that, since the matrix-inversion solution is equivalent to the maximum-likelihood

solution, the set of estimators obtained will by definition not be the set which is most likely to

describe the true distribution. This can be a worthwhile tradeoff, however, because even if the

estimators are less accurate, the decrease in variance can make the estimators more precise, thus

decreasing the overall uncertainty in the unfolded results.

The first, and perhaps simplest, approach one can take to decrease the variance of the estimators

is to remove some of the fine structure from the inputs. This can be done by, for example,

decreasing the number of bins. However, typically the input binning is chosen explicitly to expose

finer structure (if present), and so decreasing the number of bins can end up removing too much

valuable information. A more systematic approach can therefore be taken to unfold the original

inputs but accept a nonzero bias. The following subsections go over a few of these approaches.

8.3.1 Tikhonov regularization

Regularizing the unfolded solution can be constructed as a maximization problem where, instead

of maximizing the log-likelihood function log 𝐿(𝜇𝜇𝜇), we maximize a linear combination of log 𝐿(𝜇𝜇𝜇)

and a regularization function 𝑆(𝜇𝜇𝜇) which will define how we are imposing “smoothness” on the

estimators of the true distribution 𝜇𝜇𝜇 [145]. Maximizing such a linear combination will lead to a

set of estimators which differ from the log-likelihood solution. We therefore also need to choose an

acceptable degree of difference Δ log 𝐿 from the log-likelihood solution, i.e.

log 𝐿(𝜇𝜇𝜇) ≥ log 𝐿max − Δ log 𝐿. (8.10)

The regularized unfolding problem can thus be described as the maximization of

𝛼[log 𝐿(𝜇𝜇𝜇) − log 𝐿max − Δ log 𝐿] + 𝑆(𝜇𝜇𝜇), (8.11)

where 𝛼 is the regularization parameter [144]. This parameter governs how much smoothness we

want to impose on the distribution: 𝛼 = 0 means as smooth as possible, though we are completely

ignoring the data, while a large value leads to approximately the original inverse solution.

Tikhonov regularization supposes that a good measure of the smoothness of the distribution

is the mean value of the square of one of its derivatives. This means that the smoothing function

looks something like

𝑆[𝑓true(𝑦)] = − ∫ (𝑑𝑘𝑓true(𝑦)
𝑑𝑦𝑘 )

2

𝑑𝑦. (8.12)
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Since we are thinking of 𝑓true(𝑦) as representing a histogram, the integral becomes a sum and the

derivative is approximated by using the difference between sucessive bins. For example, choosing

𝑘 = 2 because the second derivative is a measure of the curvature of the distribution, the above

expression simplifies to

𝑆(𝜇𝜇𝜇)𝑘=2 = −
𝑀−1
∑
𝑖=1

(−𝜇𝑖 + 2𝜇𝑖+1 − 𝜇𝑖+2)2. (8.13)

Slotting this smoothing function into our minimization expression (Equation 8.11), we see that this

method of regularization effectively penalizes the presence of bins very different from one another,

i.e. fine structure: if neighboring bins have very different values, then 𝑆(𝜇𝜇𝜇) will be a large negative

term in the maximization problem [144].

8.3.2 Iterative Bayesian unfolding

The Richardson-Lucy method [146, 147], promoted by D’Agostini [148] and often referred to as the

iterative Bayesian method, starts with some initial probabilities 𝑝𝑝𝑝0 = (𝑝1, … , 𝑝𝑀) for finding an

event in a given bin. The initial probabilities are usually set using MC particle-level information;

the resulting estimators will then be biased towards this distribution, as will be discussed below.

The estimators ̂𝜇̂𝜇̂𝜇 of the true distribution are then

̂𝜇̂𝜇̂𝜇 = 𝑛𝑡𝑜𝑡𝑝0𝑝0𝑝0, (8.14)

where 𝑛𝑡𝑜𝑡 = ∑𝑖 𝑛𝑖 is the total number of events in the measured histogram. The estimators are

then updated using the response matrix [149]:

̂𝜇𝑖 = 1
𝜀𝑖

𝑁
∑
𝑗=1

𝑃(true value in bin 𝑖|found in bin 𝑗) = 1
𝜀𝑖

𝑁
∑
𝑗=1

(
𝑅𝑖𝑗𝑝𝑖

∑𝑘 𝑅𝑗𝑘𝑝𝑘
) 𝑛𝑗. (8.15)

These estimators, which include the migration information 𝑅𝑖𝑗, will be an improvement over the

initial estimators. The improvement can be evaluated using a 𝜒2 test. If the 𝜒2 value is too large,

the initial probabilities are updated to 𝑝𝑝𝑝 = ̂𝜇̂𝜇̂𝜇/𝜇𝑡𝑜𝑡, where ̂𝜇̂𝜇̂𝜇 is the result of the previous iteration,

and Equation 8.15 is evaluated again. If 𝜒2 is low enough, ̂𝜇̂𝜇̂𝜇 can be taken as the regularized

solution.

If this process is iterated a very large number of times, the solution approaches the matrix

inversion solution, complete with its large variances; therefore, the question is how many iterations

are necessary to perform in order to arrive at a usable solution with a reasonably low 𝜒2. The

number of iterations plays the same role as the regularization parameter 𝛼 of the Tikhonov regu-
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Figure 8.1: Bias squared and variance of unfolding estimators, using the iterative Bayesian method,
as a function of the number of iterations. The regularization strength is inversely related to the
number of iterations. Unfolding was performed using Sherpa 2.2.11, with MadGraph as the
target “data.”

larization method, in that it determines how much smoothness will be imposed on the unfolding

solution: a large number of iterations, since the solution tends towards the matrix inversion solu-

tion, is effectively unregularized, while a small number of iterations leads to a highly regularized

set of estimators. For example, consider Figure 8.1, which shows the bias squared and the vari-

ance as a function of the number of Bayesian iterations performed using the Sherpa sample. For

a small number of variations, the bias is at its relative maximum because the initial estimators

were formed using MC particle-level information. On the other hand, the variance is at a relative

minimum. As the number of iterations increases, the regularization strength decreases; the bias
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decreases because the estimators are farther removed from the initial MC particle-level guess, and

the variance increases as more fine structure is accentuated.

8.3.3 Singular value decomposition

The method of singular value decomposition (SVD), developed by Höcker and Kartvelishvili [150],

is a linear algebraic method of extracting the key features of the response matrix. Since our

unfolding equation 8.4 is an expression of the linear transformation of ̂𝜇̂𝜇̂𝜇 into ̂𝜈 ̂𝜈 ̂𝜈, we can decompose

the transformation into separate rotation and stretching transformations. The general form of the

SVD is

𝑅 = 𝑈𝑆𝑉 𝑇, (8.16)

where 𝑅 is our 𝑀 × 𝑁 response matrix, 𝑈 and 𝑉 are 𝑀 × 𝑀 and 𝑁 × 𝑁 orthogonal matrices,

respectively, and S is an 𝑀 ×𝑁 diagonal matrix with non-negative diagonal elements called singular

values. The 𝑈 and 𝑉 matrices represent the rotations of the response matrix, while 𝑆 applies the

stretching or compression. The singular values, then, represent the semi-axes of the response

matrix; in 2D, for example, they would represent the semi-axes of an ellipse (see Fig. 8.2). This

Figure 8.2: A visual depiction of singular value decomposition of a matrix 𝑀 [151].

decomposition allows for the determination of ̂𝜇̂𝜇̂𝜇 using the singular values — essentially a system

of linear equations. Regularization is then applied by adding an extra curvature term and scaling

factor to the 𝜒2 minimization expression, in a manner similar (but not identical) to Tikhonov

regularization.
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8.3.4 The regularization parameter

All three of the above methods provide some sort of term which governs how much regularization

is applied: for the Tikhonov method (and similarly for SVD, although it is not described in detail

here), a scaling factor determines how much of a penalty is associated to the curvature terms of

the minimization, while for the iterative Bayesian method the regularization term is the number

of iterations. But there is no single, correct method for determining the proper regularization

strength. Possible regularization strength choices include the minimum of the MSE of Equation

8.6; the point at which the bias squared and variance are equal, as it does for approximately 10

Bayesian iterations in Figure 8.1; and others. In this analysis, the Bayesian unfolding technique was

performed using two iterations; this choice was made because, as seen in the Figure 8.1, the bias

effectively flattens at around two iterations while the variance continues to rise as more iterations

are performed. Performing only two iterations also limits the computing time necessary to perform

the unfolding.

8.4 Unfolding inputs

Unfolding is performed in this analysis using RooUnfold [145, 152], which includes implementations

of the unfolding methods mentioned above plus several others. The response matrix is formed using

events passing both particle-level (“truth”) and detector-level (reconstructed or “reco”) selections,

as outlined in Table 6.4; no reco-truth object matching, such as via a Δ𝑅 cut, is applied. The

truth distribution is used as the Bayesian prior for the first iteration of the matrix problem; as

shown in Figure 8.1, the unfolded result is biased towards this prior, but the bias decreases as the

number of iterations increases.

Events which pass the truth selections may fail reconstruction for a number of reasons, including

lepton ID and 𝑏-tagging inefficiencies, 𝑍 boson reconstruction, and small differences in the phase

space such as the 𝜂 “crack” Before the data is unfolded, the MC backgrounds are subtracted, and a

scale factor is applied to correct for the presence of fake events. The scale factor is determined by

dividing the number of events which passed both the truth and reco selections by the total number

of events which passed the reco selections.

8.5 Sequential flavor fit and unfold

For this analysis of 𝑍+𝑏-jet events, one approach for obtaining results from unfolded data would

be to do the following: first, perform a flavor fit of the MC to the data to infer the proportionality

of signal events (𝑏-jet events) to background events (𝑐-jet and light jet events); second, subtract
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the fitted MC background estimates from the data to obtain a signal sample; and finally, using a

response matrix determined solely using MC, unfold the background-subtracted data using one of

the aforementioned methods. The 𝑏-jet and 𝑐-jet distributions are unfolded separately to the truth

𝑏 and truth 𝑐 distributions, respectively, resulting in two separate sets of estimators.

In this method, a migration matrix is first formed for each heavy flavor with matrix elements

𝑀𝑖𝑗 = (reco value, true value). This matrix is then normalized so that the bins are of equal width

and divided by the true distribution to form the response matrix. Figure 8.3a shows an example

migration matrix on the left and the corresponding response matrix on the right. The red dot and

arrows provide an illustrative example of a response matrix element: an event in the second bin of

𝑝T in truth has a probability of being reconstructed in the first (∼ 30% chance), second (≲ 70%),

and third (≲ 10%) bin of 𝑝T.

(a) (b)

Figure 8.3: (a) An example migration matrix for the leading heavy-flavor jet 𝑝T observable using
Sherpa 2.2.11. Rescaling (a) to equal bin widths and dividing by the truth distribution results
in the response matrix (b). The red dot and arrows show the probability of migration from the
second bin of 𝑝T in truth to the first, second, or third bins of 𝑝T in reco.

8.6 Unrolled unfolding

Because this analysis is interested in both 𝑍+𝑏-jet events as well as 𝑍+𝑐-jet events, we must

considered how the detector’s limited resolution plays a role in our ability to distinguish between

the two signal components. The above method, which determines separate sets of estimators for

𝑏-jet and 𝑐-jet distributions, is agnostic to the correlations between the two flavor fractions (and

they certainly are (anti-)correlated: this analysis uses a 𝑏-tagging discriminant, and so events which

are 𝑏-tagged are by definition less likely to include 𝑐-jets.) These correlations affect the unfolded

results but also the uncertainties. For example, to perform a measurement of the 𝑍+𝑏-jet/𝑍+𝑐-jet

ratio, these correlations must be taken into account for the result to have meaning.

To account for these correlations, we unfold the migration between the two flavors before sepa-

rately plotting 𝑏-jet and 𝑐-jet distributions. The method used to perfom this simulatenous unfolding
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Figure 8.4: A migration probabilities matrix showing the eight possible migrations from particle-
level (“Truth”) 𝑏- and 𝑐-jets to each of the four PCBT bins at detector-level (“Reco”), as well as
migration between the bins of 𝑝T. These distributions were constructed using muon channel events
generated by Sherpa 2.2.11.

is to “unroll” our observables into the four PCBT bins and to use the unrolled distributions in

the unfolding. This will serve as the reconstructed input to the migration matrix. For the true

distribution, we have the 𝑏-jet and 𝑐-jet distributions separated using the truth information of the

originating quarks. These elements are used to construct the migration probabilities matrix shown

in Figure 8.4. This matrix demonstrates that there is simultaneous migration from particle-level 𝑏-

and 𝑐-jets to each detector-level PCBT quantile, as shown by the mostly-diagonal octants, and mi-

gration between bins of 𝑝T, as shown by the off-diagonal elements in each octant. For example, the

bin marked by the red dot quantifies the nonzero probability that an event which at particle-level

contained a 17-24 GeV 𝑐-jet is reconstructed with 24-30 GeV in the highest 𝑏-tagging efficiency

PCBT quantile.

The regularized unfolding methods discussed in this Chapter, such as Bayesian unfolding, work

as well for an 𝑀 × 𝑁 response matrix as they would for a standard square 𝑀 × 𝑀 response

matrix. Figures 8.5 and 8.6 shows the closure tests performed for leading 𝑏-jet and leading 𝑐-jet

𝑝T, respectively, in the electron channel for both Sherpa 2.2.11 and MadGraph, demonstrating

that the unfolded reconstructed distribution is consistent with the truth distribution.
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(a) Sherpa 2.2.11 (b) MadGraph

Figure 8.5: Sherpa 2.2.11 (a) and MadGraph (b) closure tests of leading 𝑏-jet 𝑝T in the muon
channel: for both generators, the reconstructed events unfolded using the migration matrix is
identical to the true distribution.

(a) Sherpa 2.2.11 (b) MadGraph

Figure 8.6: (a) Sherpa 2.2.11 and (b) MadGraph closure tests of leading 𝑐-jet 𝑝T in the muon
channel: for both generators, the reconstructed events unfolded using the migration matrix is
identical to the true distribution.

An unrolled migration matrix is obtained for each of the observables listed in section 6.7, which

allows for the 𝑏-jet and 𝑐-jet distributions to be obtained separately while still accounting for the

correlated detector effects. The results of this unfolding procedure are presented in Chapter 10.

Before that, Chapter 9 discusses the handling of the various uncertainties in this measurement.



Chapter 9

Uncertainties

This chapter describes how the total uncertainty in the unfolded results, which are presented in

Chapter 10, is estimated. The total uncertainty is determined in each bin of a given observable as

the sum in quadrature of the experimental, modelling, and statistical uncertainties. The estimation

of each of these uncertainties is described in further detail in the following sections.

9.1 Experimental systematic uncertainties

This section gives an overview of the detector-level uncertainties. The ATLAS combined perfor-

mance groups provide recommended systematic variations to account for uncertainty in the various

MC corrections and calibrations described in Chapter 3. These systematic variations are applied to

the MC samples to produce variated distributions, on which the entire measurement procedure —

the light-jet component fit, background subtraction, and unfolding — is performed. For each inde-

pendent systematic variation, the difference between the variated unfolded result and the nominal

unfolded result is obtained. The total experimental systematic uncertainty, which is labelled “Ex-

perimetal” in the total uncertainty plots below, is then the sum in quadrature of these differences;

as the uncertainties are independently obtained, they are treated as uncorrelated. For this anal-

ysis, systematic uncertainties were determined using MC16a systematic samples and then applied

to the full Run 2 dataset; this was done to save time in the generation of systematic samples and is

expected be a valid representation of the total systematic uncertainty due to the overall similarity

of the MC productions used. The only significant difference between the MC16 campaigns is the

pileup; as discussed in Chapter 5, this is taken into account in the simulated datasets through

pileup reweighting, and the impact of pileup on systematic variations is a second-order effect.

Each uncertainty, unless otherwise specified, is defined using asymmetric ±1𝜎 “up/down” vari-

ations. The uncertainties are listed in full in Tables 9.2 (jet uncertainties) and 9.1 (other uncer-

105
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tainties); an overview of their purpose is as follows [153]:

• EG: This group encompasses uncertainties due to imperfect electron calibration. This includes

mismodelling of the electron energy resolution (EG_RESOLUTION_ALL) and scale (EG_SCALE).

• EL_EFF: These uncertainties address the effects of imprecise electron efficiency measure-

ments. This includes measurements of the reconstruction (EL_EFF_Reco_TOTAL_1NPCOR_

PLUS_UNCOR), identification (EL_EFF_ID_TOTAL_1NPCOR_PLUS_UNCOR), and isolation (EL_EFF_

Iso_TOTAL_1NPCOR_PLUS_UNCOR) efficiencies which are used to form the efficiency scale fac-

tors applied to each signal lepton, as described in Chapter 6. In addition, a systematic is

included for the determination of the trigger scale factor (EL_EFF_Trigger_TOTAL_1NPCOR_

PLUS_UNCOR).

• MUON: This includes uncertainties in the muon measurements, including the smearing of

tracks in the ID (MUON_ID) and MS (MUON_MS) and mismodelling of the momentum scale

(MUON_SCALE). A charge-dependent scale correction (MUON_SAGITTA_RHO) is included, along

with the residual charge dependency after the correction (MUON_SAGITTA_RESBIAS). Finally,

both the statistical and systematic uncertainties in the isolation measurement (MUON_ISO_

STAT/MUON_ISO_SYST) and the track-to-vertex association (MUON_TTVA_STAT/MUON_TTVA_

SYST) are included.

• MUON_EFF: The uncertainties on muon efficiency measurements include per-object correc-

tion factors (MUON_EFF_STAT/MUON_EFF_SYS) and uncertainties in the trigger efficiencies

(MUON_EFF_TrigStatUncertainty/MUON_EFF_TrigSystUncertainty) used to form the ap-

plied trigger scale factors. Correction factors are also included specifically for low-𝑝T muons

(MUON_EFF_STAT_LOWPT/MUON_EFF_SYS_LOWPT).

• MET: The missing transverse energy (MET) uncertainties are uncertainties on the resolution

(MET_SoftTrk_ResoPerp) and scale (MET_SoftTrk_Scale) due to the track-based soft-term

contributions. These two uncertainties are accounted for using a single (symmetrized) varia-

tion as opposed to separate up and down variations. Hard-term uncertainties are covered by

the electron, muon, and jet uncertainties and are propagated through the MET calculation.

• JET: Uncertainties on the JES calibration are handled with correction factors measured in-situ

with respect to well-understood reference objects; these include 𝑍s (relevant for low-𝑝T (<

100 GeV) jets), photons (100 GeV - 1 TeV), and systems of previously-calibrated low-𝑝T jets

(1-2 TeV). A correction factor is then obtained as the ratio of the jet 𝑝T to the 𝑝T of the object

the jet is being balanced against. All of these nuisance parameters (NPs) are combined into

a smaller set of statistical (JET_EffectiveNP_Statistical), modelling (JET_EffectiveNP_
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Plot Category Source Systematics

“EGAMMA”

Electron
EG_RESOLUTION_ALL

EG_SCALE_AF2
EG_SCALE_ALL

Electron efficiency

EL_EFF_Reco_TOTAL_1NPCOR_PLUS_UNCOR
EL_EFF_ID_TOTAL_1NPCOR_PLUS_UNCOR
EL_EFF_Iso_TOTAL_1NPCOR_PLUS_UNCOR

EL_EFF_Trigger_TOTAL_1NPCOR_PLUS_UNCOR

“MUON”

Muon

MUON_SCALE
MUON_ID
MUON_MS

MUON_SAGITTA_RESBIAS
MUON_SAGITTA_RHO

MUON_ISO_STAT
MUON_ISO_SYST
MUON_TTVA_STAT
MUON_TTVA_SYST

Muon efficiency

MUON_EFF_STAT
MUON_EFF_SYS

MUON_EFF_TrigStatUncertainty
MUON_EFF_TrigSystUncertainty

MUON_EFF_STAT_LOWPT
MUON_EFF_SYS_LOWPT

“MET” Missing transverse
energy

MET_SoftTrk_ResoPara
MET_SoftTrk_ResoPerp

MET_SoftTrk_Scale

Table 9.1: Electron, muon, and missing transverse energy uncertainties. All of the sys-
tematic uncertainties have separate __up (+1𝜎) and __down (−1𝜎) variations except for
MET_SoftTrk_ResoPara and MET_SoftTrk_ResoPerp, which are symmetrized around the nomi-
nal distributions. The first column categorizes the systematics based on how they are plotted in
this Chapter.

Modelling), detector (JET_EffectiveNP_Detector), and mixed (JET_EffectiveNP_Mixed)

variations. Additional in-situ calibration are done to balance forward jets against central jets

(JET_EtaIntercalibration) and very high (1-2 TeV) 𝑝T jets against single-particle prop-

agation (JET_SingleParticle_HighPt). Other uncertainties accounted for include pileup

(JET_Pileup), which is relevant for very low-𝑝T jets; punch-through jets which escape the

calorimeters (JET_PunchThrough); the mismodelling of the jet flavor response (JET_Flavor_

Response) and composition (JET_Flavor_Composition), with 𝑏-jets handled individually

(JET_BJETS_Response); and the mismodelling of the jet vertex tagging (JVT) requirement

efficiency (JET_JvtEfficiency). An overview of the JES uncertainties as functions of jet 𝑝T

and 𝜂 is provided in Figure 9.1.

• JER: Uncertainties in the Jet Energy Resolution (JER) smearing correction applied to MC

are handled with a set of seven NPs (JET_JER_DataVsMC_MC16,JET_JER_EffectiveNP).

• PRW: The uncertainty in the reweighting of the pileup vertices in simulation to the data is

handled with the PRW_DATASF variations.
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Figure 9.1: Components of the fractional jet energy scale systematic uncertainty as a function of
(a) jet 𝑝T and (b) jet 𝜂 at 𝑝T = 60 GeV [96].

• FT_EFF: The uncertainty in the jet flavor tagging efficiency is handled with a set of nuisance

parameters determined using an eigenvector variation method. 44 variations are used for

𝑏-jets (FT_EFF_Eigen_B) and 19 are used each for 𝑐-jets (FT_EFF_Eigen_C) and light jets.

(FT_EFF_Eigen_Light).

9.2 Modelling uncertainties

This Section covers uncertainties related to the theory MC modelling of the signal and background

samples. As discussed in Chapter 5 the MadGraph and Sherpa simulated samples use matrix

element calculations at different levels of precision, different parton shower models and match-

ing/merging schemes, and different tunes of their free parameters.1 The difference between the

two distributions therefore spans that between the majority of the available MC generators. In-

cluding systematics on the signal and background modelling therefore provides an estimate of how

strongly the measurement results depend on the theoretical assumptions being made.

Because the Sherpa signal sample is used to form the response matrix, while the background

samples are subtracted from the data; the signal and background uncertainties have to be treated

separately, as described below.

9.2.1 Signal modelling

Since the MC 𝑍+HF jets distributions are used to form the response matrices with which the data

are unfolded, uncertainty in the modelling of those events has to be estimated after the unfolding

procedure has been performed. The uncertainty is therefore obtained by unfolding the Sherpa reco

distribution using two different response matrices: the first is derived from the Sherpa sample (in
1This does not include the PDF dependence, which is expected to be smaller than the difference described above.
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Plot Category Source Systematics

“JET”

General

JET_EffectiveNP_Detector{1,2}
JET_EffectiveNP_Mixed{1,3}

JET_EffectiveNP_Modelling{1,4}
JET_EffectiveNP_Statistical{1,6}

Eta
intercalibration

JET_EtaIntercalibration_Modelling
JET_EtaIntercalibration_NonClosure_2018data

JET_EtaIntercalibration_NonClosure_highE
JET_EtaIntercalibration_NonClosure_negEta
JET_EtaIntercalibration_NonClosure_posEta

JET_EtaIntercalibration_TotalStat

Pileup

JET_Pileup_OffsetMu
JET_Pileup_OffsetNPV

JET_Pileup_PtTerm
JET_Pileup_RhoTopology

Flavor
JET_Flavor_Composition

JET_Flavor_Response
JET_BJES_Response

Punch-through JET_PunchThrough_MC16
JET_SingleParticle_HighPt

𝑏-jets JET_BJETS_Response

JER
JET_JER_DataVsMC_MC16

JET_JER_EffectiveNP_{1,11}
JET_JER_EffectiveNP_12restTerm

“FT” Flavor tagging
efficiency

FT_EFF_Eigen_B_{1,44}
FT_EFF_Eigen_C_{1,19}

FT_EFF_Eigen_Light_{1,19}
“PRW” Pileup reweighting PRW_DataSF

Table 9.2: Jet uncertainties. All of the systematic uncertainties have separate __up (+1𝜎) and
__down (−1𝜎) variations. The first column categorizes the systematics based on how they are
plotted in this Chapter.

which case closure is obtained), and the other is derived from the MadGraph sample. The relative

difference between the resulting unfolded distributions is taken as an uncertainty on the modelling

of the signal samples; this uncertainty is labelled “(Unfolded) Sig. modelling” in the plots below.

It should be noted that this modelling uncertainty is larger than the the bias introduced by using

two Bayesian iterations: as seen in Figure 8.1, an unfolded solution derive using two iterations

suffers from only ≈ 0.1% more bias than a roughly unregularized (100 iterations) solution, and the

signal modelling uncertainty described here covers this excess.

9.2.2 Background modelling

The uncertainty in the MC modelling of the background components, which are subtracted from

the data and not used in the unfolding, also has to be taken into account. For each of Sherpa and

MadGraph the 𝑍+light-jet background component is fit in the control region. The fitted 𝑍+light-

jet distribution is then added to the other backgrounds as modelled by the same generator. This

results in a post-fit total background distribution for Sherpa and for MadGraph; the relative
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difference is taken as the background modelling uncertainty. This uncertainty is labelled “Bkg.

modelling” in the plots below.

9.3 Unfolded statistical uncertainty

This covers the statistical uncertainty on the measurement results as propagated through the

unfolding procedure. The uncertainty is determined through the toy MC procedure of RooUnfold,

in which toy datasets are sampled from the probability density of the input data and unfolded.

10,000 such toy datasets are generated by RooUnfold and unfolded using the nominal MC response

matrix to produce a covariance matrix expressing the variances on the unfolded bins. The diagonal

elements of this matrix are taken as the per-bin unfolding uncertainties. This uncertainty fully

accounts for the original statistical uncertainty in the data as it appears in the unfolded results,

as well as any variance introduced by the unfolding procedure itself: unfolding using two Bayesian

iterations introduces only ≈ 0.5% more variance over one iteration, as seen in Figure 8.1. This

statistical uncertainty is labelled “(Unfolded) Statistical” in the plots below.

9.4 Total and experimental uncertainty results

Presented below are sets of plots for each observable showing the total uncertainty, contribution

from each source of uncertainty, and the breakdown of uncertainty components as well as the

breakdown of the experimental systematic uncertainties. In general, the background modelling

uncertainty is the largest, due to the large light-jet component in the signal region. Because this

analysis seeks to measure 𝑐-jet as well as 𝑏-jet events, the 𝑏-tagging discriminant value was chosen

to be loose enough so as to not remove too many 𝑐-jet events. For example, as opposed the 85%

𝑏-tagging efficiency working point chosen for this analysis, the previous ATLAS 𝑍+𝑏-jet analysis [5]

used a 70% 𝑏-tagging efficiency working point (albeit of a different algorithm); as a result, the light-

jet background in the previous analysis was 18%, as compared to the > 40% background in this

analysis. It is therefore imperative to accurately estimate the background modelling uncertainty.

While the method presented here is robust and is used in other analyses, future studies should

compare this estimation to one derived from systematic variations of the PDFs, matching/merging

schemes, etc. used to generate the background MC samples. In addition, an analysis of 𝑍+𝑏-

jet/𝑍+𝑐-jet observable ratios would have much of this modelling uncertainty cancel in the ratio;

this is another avenue for future work.

As expected, the largest components of the experimental systematic uncertainty, which tends

to be most significant at low-𝑝T, are the jet and flavor-tagging systematic uncertainties. The

experimental systematic uncertainties are comparable between the lepton channels aside from
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the expected increase in electron-related systematic uncertainty in the electron channel. There

are, however, two bins in muon channel leading 𝑐-jet 𝑥𝐹 distribution with abnormally large jet

uncertainties. Given the limited statistics in this and larger 𝑥𝐹 bins, this is likely due to a small

stochastic fluctuation in one or multiple of the “JET” systematics samples.

Figure 9.2: Total uncertainty on the 𝑍 → 𝑙+𝑙−+ ≥ 1 𝑏-jet (left column) and 𝑍 → 𝑙+𝑙−+ ≥ 1
𝑐-jet (right column) differential cross-sections as functions of the leading heavy-flavor jet 𝑝T, in the
electron (top row) and muon (bottom row) channels.
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Figure 9.3: Systematic uncertainties on the 𝑍 → 𝑙+𝑙−+ ≥ 1 𝑏-jet (left column) and 𝑍 → 𝑙+𝑙−+ ≥ 1
𝑐-jet (right column) differential cross-sections as functions of the leading heavy-flavor jet 𝑝T, in the
electron (top row) and muon (bottom row) channels.
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Figure 9.4: Total uncertainty on the 𝑍 → 𝑙+𝑙−+ ≥ 1 𝑏-jet (left column) and 𝑍 → 𝑙+𝑙−+ ≥ 1 𝑐-jet
(right column) differential cross-sections as functions of 𝑝𝑍

T, in the electron (top row) and muon
(bottom row) channels.
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Figure 9.5: Systematic uncertainties on the 𝑍 → 𝑙+𝑙−+ ≥ 1 𝑏-jet (left column) and 𝑍 → 𝑙+𝑙−+ ≥ 1
𝑐-jet (right column) differential cross-sections as functions of 𝑝𝑍

T, in the electron (top row) and
muon (bottom row) channels.
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Figure 9.6: Total uncertainty on the 𝑍 → 𝑙+𝑙−+ ≥ 1 𝑏-jet (left column) and 𝑍 → 𝑙+𝑙−+ ≥ 1
𝑐-jet (right column) differential cross-sections as functions of the leading heavy-flavor jet 𝑥𝐹, in the
electron (top row) and muon (bottom row) channels.
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Figure 9.7: Systematic uncertainties on the 𝑍 → 𝑙+𝑙−+ ≥ 1 𝑏-jet (left column) and 𝑍 → 𝑙+𝑙−+ ≥ 1
𝑐-jet (right column) differential cross-sections as functions of the leading heavy-flavor jet 𝑥𝐹, in the
electron (top row) and muon (bottom row) channels.
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Figure 9.8: Total uncertainty on the 𝑍 → 𝑙+𝑙−+ ≥ 1 𝑏-jet (left column) and 𝑍 → 𝑙+𝑙−+ ≥ 1 𝑐-jet
(right column) differential cross-sections as functions of Δ𝑅(Z,heavy-flavor jet) in the electron (top
row) and muon (bottom row) channels.
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Figure 9.9: Systematic uncertainties on the 𝑍 → 𝑙+𝑙−+ ≥ 1 𝑏-jet (left column) and 𝑍 → 𝑙+𝑙−+ ≥ 1
𝑐-jet (right column) differential cross-sections as functions of Δ𝑅(Z,heavy-flavor jet), in the electron
(top row) and muon (bottom row) channels.



Chapter 10

Results

10.1 Inclusive cross-sections

Measured and predicted inclusive cross-sections were obtained for 𝑍 → 𝑙+𝑙−+ ≥ 1 𝑏-jet and 𝑍 →

𝑙+𝑙−+ ≥ 1 𝑐-jet in both the electron and muon channels; the values are presented in Tables 10.1 and

10.2 for the ≥ 1 𝑏-jet and ≥ 1 𝑐-jet processes, respectively. The measured inclusive cross-sections

in each channel are quoted with the total systematic and (unfolded) statistical uncertainties, as

described in the previous Chapter, as well as the uncertainty in the luminosity [154], which was

determined using the LUCID2 luminosity monitor [155]. The MC-predicted cross-sections are

given with the respective MC statistical uncertainties. These results are then combined using the

method of best linear unbiased estimators (BLUE, otherwise referred to as the Gauss-Markov or

Gauss method, e.g. [156]); the cross-sections are plotted in Figure 10.1.

In both lepton channels, the measured 𝑍 → 𝑙+𝑙−+ ≥ 1 𝑏-jet is in agreement with the previous

ATLAS result [5]. None of the three predicted 𝑍 → 𝑙+𝑙−+ ≥ 1 𝑏-jet cross-sections are in agreement

with the measured cross-section, but the NLO Sherpa (in disagreement with the data at the 2𝜎

level in both lepton channels) and FxFx (1𝜎) predictions outperform the LO MadGraph (≥ 4𝜎)

prediction. This suggests that the usage of NLO calculations plays an important role in the

accuracy of 𝑏-jet final-state predictions; this is reinforced in particular by the contrast between the

FxFx and MadGraph samples, which use the same NNPDF set and parton shower model but

differ in their complete ME order.

Meanwhile, the 𝑍 → 𝑙+𝑙−+ ≥ 1 𝑐-jet cross-section is consistently underestimated by all three

predictions, with Sherpa and MadGraph in tension with the data at 1.5𝜎 in both lepton chan-

nels and FxFx at 2𝜎. These discrepancies are likely the result of the over-estimation of 𝑏-jets

predictions causing an under-estimation of 𝑐-jets; a dedicated inclusive-flavor 𝑍+jets cross-section

measurement recently published by ATLAS [157] shows excellent agreement between data and the

119
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Sherpa 2.2.11 sample used.

𝑍 → 𝑙+𝑙−+ ≥ 1 𝑏-jet cross-section

𝜎 [pb] ± syst. ± stat. ± lumi.
Electron Muon

Data 10.798 ± 0.619 ± 0.037 ± 0.184 10.651 ± 0.713 ± 0.029 ± 0.181
𝜎 [pb] ± MC stat.

Electron Muon
Sherpa 12.445 ± 0.022 12.557 ± 0.022

MadGraph 13.872 ± 0.059 13.589 ± 0.068
FxFx 11.657 ± 0.048 11.876 ± 0.047

Table 10.1: Inclusive 𝑍 → 𝑙+𝑙−+ ≥ 1 𝑏-jet cross-section, in the electron and muon channels, as
measured in data and predicted by the Sherpa, MadGraph, and FxFx samples.

𝑍 → 𝑙+𝑙−+ ≥ 1 𝑐-jet cross-section

𝜎 [pb] ± syst. ± stat. ± lumi.
Electron Muon

Data 21.727 ± 1.419 ± 0.063 ± 0.456 21.649 ± 1.449 ± 0.049 ± 0.368
𝜎 [pb] ± MC stat.

Electron Muon
Sherpa 19.051 ± 0.033 19.258 ± 0.032

MadGraph 19.171 ± 0.075 19.216 ± 0.098
FxFx 18.023 ± 0.054 18.229 ± 0.055

Table 10.2: Inclusive 𝑍 → 𝑙+𝑙−+ ≥ 1 𝑐-jet cross-section, in the electron and muon channels, as
measured in data and predicted by the Sherpa, MadGraph, and FxFx samples.

Figure 10.1: Measured and predicted inclusive 𝑍 → 𝑙+𝑙−+ ≥ 1 𝑏-jet (left) and 𝑍 → 𝑙+𝑙−+ ≥ 1 𝑐-jet
(right) cross-sections. The measured cross-sections are compared to the cross-section predictions
of the Sherpa, MadGraph, and FxFx samples. The green bands correspond to the statistical,
systematic, and luminosity uncertainties on the measured cross-sections added in quadrature. Only
statistical uncertainties are plotted for the theoretical predictions.
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10.2 Differential cross-sections

The differential 𝑏-jet (left column) and 𝑐-jet (right column) distributions for both leptons channels

(electron (top row) and muon (bottom row)) for the four observables used in this analysis are

presented in Figures 10.2-10.5.

Figure 10.2 shows the differential cross-sections as functions of the leading heavy-flavor jet 𝑝T,

which are comparable between the two lepton channels. Past ≈ 150 GeV in leading 𝑏-jet 𝑝T, the

MadGraph sample is no longer in agreement with the data within the uncertainty, while the

FxFx sample remains so, reinforcing the above conclusion that NLO ME calculations are highly

beneficial to the modelling of heavy-flavor jets, particularly at high 𝑝T. Comparing the two NLO

predictions, Sherpa and FxFx, we see that the FxFx prediction of leading 𝑏-jet 𝑝T more closely

matches the data past ≈ 100 GeV. Given that these two predictions differ in the number of partons

included at LO vs. NLO, parton shower model, and merging scheme, it will be important to

investigate each choice separately in future studies. All three predictions overestimate the leading

𝑐-jet 𝑝T distribution in data, but Sherpa performs the best. For both 𝑏-jet and 𝑐-jet events, all

three generator predictions exhibit a different shape at low 𝑝T, with underestimations at 𝑝T ≲ 30

GeV followed by overestimation at slightly higher 𝑝T.

Figure 10.3 shows the differential cross sections as functions of the 𝑍 boson 𝑝T. All three

generators underestimate the 𝑏-jet data beyond 𝑝T ≳ 50. The agreement is worse than it is for

leading 𝑏-jet 𝑝T; one possible explanation is that, whereas modelling of the leading 𝑏-jet 𝑝T relies

more heavily on a proper NLO calculation to take into account the hard 𝑏-jet emission, modelling

𝑝𝑍
T requires accounting for all of the QCD radiation against which the 𝑍 recoils, and so the inclusion

of an NLO ME calculation may not be sufficient for an overall agreement with the data for 𝑝𝑍
T. In

addition, despite all three generators being in good agreement with the data for 𝑐-jet events up

to 500 GeV, the predicted shapes differ from the data for both 𝑏-jet and 𝑐-jet events in a similar

manner to the differences seen in Figure 10.2: a noticeable peak appears at ≈ 20 GeV for 𝑏-jet

events and ≈ 50 GeV for 𝑐-jet events. This suggests that the three generators all struggle to model

the soft QCD radiative effects well.

Figure 10.4 shows the differential cross sections as functions of the leading heavy-flavor jet 𝑥𝐹.

While the 𝑏-jet predictions are quite similar in both lepton channels, there is more variance in the

muon channel 𝑐-jet distribution, including the two bins noted in the previous Chapter as having

anomalously high uncertainties. MadGraph exhibits the best agreement with the data for 𝑏-jets

at 𝑥𝐹 < 0.15, while the FxFx sample performs better for 0.15 < 𝑥𝐹 < 0.3. For 𝑐-jets, on the other

hand (the impetus for including this observable in the first place), FxFx is in agreement with the

data at low 𝑥𝐹 while MadGraph is not. Overall, the lack of an NLO ME calculation does not

appear to be as detrimental to the MadGraph prediction as it seems it is for leading heavy-flavor
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Figure 10.2: Measured 𝑍 → 𝑙+𝑙−+ ≥ 1 𝑏-jet (left column) and 𝑍 → 𝑙+𝑙−+ ≥ 1 𝑐-jet (right column)
differential cross-sections as functions of the leading heavy-flavor jet 𝑝T, in the electron (top row)
and muon (bottom row) channels. The unfolded data is compared to the theoretical predictions
of the Sherpa, MadGraph, and FxFx samples. The hatched bands in the lower plot correspond
to the total uncertainty.

𝑝T. It is arguable that, because the heavy-flavor jet 𝑝T is normalized by the scale process in the

definition of 𝑥𝐹, 𝑥𝐹 is less sensitive to the order of the ME calculation (which, as seen above, plays

a large role in the modelling of hard QCD radiation). This is not surprising, as the 𝑥𝐹 variable

is designed to be sensitive to the PDF being used. Differences in PDFs are not tested well by the

samples used in this analysis, however, given the lack of diversity in the PDF sets used (NNPDF

3.0 NNLO for Sherpa and MadGraph, NNPDF 3.1 NNLO for FxFx).1

Figure 10.5 shows the differential cross-sections as functions of the angular separation Δ𝑅

between the 𝑍 boson and the leading 𝑏-jets and 𝑐-jets. For both lepton channels, all three theoretical
1The main difference between the NNPDF 3.1 and 3.0 NNLO PDF sets, according to the collaboration [130],

is the use of an inclusive HERA combined structure function measurement as opposed to separate HERA-I and
ZEUS/H1HERA-II measurements.
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Figure 10.3: Measured 𝑍 → 𝑙+𝑙−+ ≥ 1 𝑏-jet (left column) and 𝑍 → 𝑙+𝑙−+ ≥ 1 𝑐-jet (right
column) differential cross-sections as functions of 𝑝𝑍

T, in the electron (top row) and muon (bottom
row) channels. The unfolded data is compared to the theoretical predictions of the Sherpa,
MadGraph, and FxFx samples. The hatched bands in the lower plot correspond to the total
uncertainty.

predictions are in good agreement with the data for all values of Δ𝑅, including at small separation

values, where there is the greatest sensitivity to QCD radiation. The angular separation between

the 𝑍 and the heavy jet is correlated to the heavy-flavor jet 𝑝T, and so the excellent agreement for

Δ𝑅(𝑍,𝑐-jet), despite the poor agreement for the leading 𝑐-jet 𝑝T, is noteworthy.



10.2. DIFFERENTIAL CROSS-SECTIONS 124

Figure 10.4: Measured 𝑍 → 𝑙+𝑙−+ ≥ 1 𝑏-jet (left column) and 𝑍 → 𝑙+𝑙−+ ≥ 1 𝑐-jet (right column)
differential cross-sections as functions of the leading heavy-flavor jet 𝑥𝐹, in the electron (top row)
and muon (bottom row) channels. The unfolded data is compared to the theoretical predictions
of the Sherpa, MadGraph, and FxFx samples. The hatched bands in the lower plot correspond
to the total uncertainty.
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Figure 10.5: Measured 𝑍 → 𝑙+𝑙−+ ≥ 1 𝑏-jet (left column) and 𝑍 → 𝑙+𝑙−+ ≥ 1 𝑐-jet (right column)
differential cross-sections as functions of Δ𝑅(Z,heavy-flavor jet), in the electron (top row) and
muon (bottom row) channels. The unfolded data is compared to the theoretical predictions of the
Sherpa, MadGraph, and FxFx samples. The hatched bands in the lower plot correspond to the
total uncertainty.
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Conclusion and Future Work

This thesis presents a measurement of the cross section of 𝑍 bosons in association with one or more

heavy-flavor (𝑏 or 𝑐) jets. The purpose of the measurement is to better understand QCD phenomena

and their importance in the scattering processes observed in hadron collider experiments, such as

the splitting of gluons into massive quarks, the accuracy of differing pQCD predictions, and the

underlying structure of the proton. Specifically, 𝑏-jet measurements help test the strength of 4FNS

and 5FNS predictions in different regions of phase space, while 𝑐-jet measurements explore the

possibility of intrinsic charm.

The results presented here will be included in the final publication of an ongoing ATLAS anal-

ysis focusing on 𝑍+HF jets. The fitting and unfolding techniques, in particular, will be adapted

and improved upon for the analysis, which hopes to measure not only 𝑍+𝑏 and 𝑍+𝑐 events but also

𝑍+𝑏𝑏, 𝑍+𝑐𝑐, and 𝑍+𝑏/𝑍+𝑐 ratios. One significant improvement planned for the ATLAS analysis

is the estimation of the background modelling PDF uncertainty through variated weights on the

existing samples, accounting for differences in PDF through 1𝜎 variations in the eigenvalues of the

Hessian matrix. By applying differing event weights to the sample samples, the PDF systematic

uncertainty, taken as the relative difference between the nominal and variated distributions, will

be decoupled from systematic uncertainties related to the chosen parton shower model, match-

ing/merging scheme, etc. which are currently included in the uncertainty quoted in this thesis.

Other improvements which are planned or in development include a data-driven 𝑡 ̄𝑡 estimate, to

better understand the top background; additional observables to test different regions of phase

space, such as those mentioned at the end of Chapter 6; and additional theoretical predictions to

compare the unfolded data against, including those derived from the 4FNS; no centrally-produced

4FNS samples were available in time to be included in this analysis.

With the techniques developed and presented in this thesis, the full ATLAS measurement should

provide an even more robust addition to our understanding of QCD phenomena in heavy-quark
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production. Nevertheless, the analysis techniques and results discussed in this thesis, which will

form the bulk of the ATLAS paper, already illuminate many avenues of future study.
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