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Chapter 1.

Introduction

Fundamental physics focuses on understanding the fundamental laws that govern the
universe at the deepest level. In particle physics this has resulted in a theoretical
framework that describes the elementary particles – the smallest building blocks of
matter forming everything from atoms and molecules to stars and galaxies. This
so-called Standard Model of particle physics (SM) is more than just a catalog of
particles, it is a quantum field theory (QFT) that describes how the fundamental
particles interact. However, calculating the processes directly is highly complex,
making theoretical predictions not an easy task.

Physicists and mathematicians have worked hard to overcome this challenge. The
basic idea is to start with a simpler version of the system, where an exact solution is
known, and then “perturb” this solution by adding small corrections that approximate
the effect of more complex interactions. This approach can be implemented in a
framework called perturbation theory, where one expands the solution F of the hard
problem in terms of a small parameter α, often the coupling constant which represents
the strength of the interaction. To be more precise, one can write

F (α) =

∞∑
n=0

fn α
n , (1.1)

where it is known how to calculate the perturbative corrections fn. If the coupling
constant α is small, each additional term in the series becomes progressively smaller,
so that the sum in Eq. (1.1) can be truncated when the desired precision is reached.
This led to many precise predictions.

Despite its succes, perturbation theory applied to QFT is plagued by numerous
infinities, so that, at face value, perturbation theory loses its predictive power. Well-
known are the so-called ultraviolet (UV) infinities. Theorists have dealt with UV
infinities using renormalization, a process to systematically remove these infinities by
redefining the parameters (such as mass and charge) at each order of perturbation
theory [8]. However, this does not mean that we are out of the woods. Often the
coefficients in Eq. (1.1) grow as fn ∼ A−nn!, with A some constant. This causes the
perturbative series to be asymptotic: at first decreasing with increasing order, but

1



2 Introduction

then succumbing to the factorial growth. In particular, the series of Eq. (1.1) has
zero radius of convergence and diverges irrespective of the size of α. Once again,
even aided by renormalization, perturbation theory is haunted by infinity and it may
seem that perturbation theory is flawed again. However, the mathematical framework
of resurgence introduced by the mathematician Écalle [9] – building on the work of
Borel [10] – allows us to turn the divergent series into proper functions. In particular,
resurgence shows that the factorial growth of the coefficients indicates the presence of
non-perturbative effects that are non-analytic at α = 0, generally of the form

e−A/αF (1)(α) , (1.2)

where F (1)(g) is some function that admits a perturbative expansion on its own.

In the first part of this thesis, I will study non-perturbative QFT using resurgence.
I will consider formal aspects of resurgence as well as one of the more practical
applications of resurgence: renormalons [11]. In the context of renormalons, non-
perturbative effects like Eq. (1.2) scale as Λ/Q, with Λ the QCD scale parameter and
Q the scale of the problem at hand. Non-perturbative effects in QCD are proportional
to this ratio and often referred to as power corrections.

In the second part of this thesis, I will study a different type of power correction that
becomes relevant when a scattering process involves two, or more, widely seperated
scales. In this case, each coefficient of the power series Eq. (1.1) contains large
logarithms of the type αn logm ξ ∼ 1, with m up to 2n − 1, and ξ a ratio of the
widely separated scales. To obtain precise predictions, one cannot just truncate the
perturbative series, but one needs to resum these large logarithms to all orders in α.
This is a very common situation at hadron colliders; different scales may arise due
to the presence of particles with very different masses, or have a dynamical origin
following from the value of kinematic observables. Key to the resummation program
are factorization theorems, which determine how the scattering amplitude factorizes
into simpler (single scale) universal objects. By writing evolution equations for these
objects, we can eventually find an all-order formula where the large logarithms are
resummed.

In order to appreciate resurgence and factorization, we need to dive deeper into
both topics.

1.1. Resurgence

Resurgence analysis suggests that we should supplement asymptotic series with addi-
tional nonperturbative contributions like (1.2), which can be united in what is known
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as a transseries. In its simplest form, such a transseries can be written as

F (σ⃗, α) =

∞∑
n=0

σn F
(n)(α) e−nA

α , (1.3)

where F (n)(α) =
∑∞

h=0 f
(n)
h αh are called transseries sectors and they are usually all

asymptotic series. From a physics point of view, one can often think of the transseries
as the semiclassical expansion of a path integral which yields a sum over saddle point
contributions. In this interpretation, nA is the instanton action of the n-th saddle
point solution, where each saddle point contribution is weighted by a parameter σn
in the transseries whose value is determined by boundary conditions imposed on the
path integral. However, transseries structures like Eq. (1.3) can be used to describe
a much broader class of physical phenomena like quantum tunneling, soliton waves,
D-branes, and most notable for this thesis: renormalons.

Although asymptotic series diverge, a finite value can still be assigned to these
series using the method of Borel summation [10]. This summation technique plays a
central role in the theory of resurgence and provides a way to resum asymptotic series
up to arbitrary precision. In fact, Écalle showed that Borel summation lies at the basis
of a systematic procedure for finding missing nonperturbative contributions. Moreover,
he showed that these are intricately connected to one another in an algebraic sense
that he formulated in his alien calculus.

At the heart of alien calculus are the so-called alien derivatives ∆ℓA, which give
rise to relations between different transseries sectors. In particular the alien derivative
is a differential operator whose action on the transseries sectors is given by

∆ℓAF
(n)(α) ∝ F (n+ℓ)(α) , (1.4)

where the constants of proportionallity depend on the specific transseries we are
studying. Alien derivatives are abstract operators that are generically hard to compute
with. However, a so-called bridge equation can make the bridge between ordinary
calculus of derivatives and alien calculus. Such bridge equations therefore play a
central role in practical applications of resurgence.

Before resurgence was developed by Écalle, it was already known that there is
a connection between transseries sectors. A famous example of this stems from the
seventies: Bender and Wu studied the large n behaviour of the perturbative energy
levels En of the quartic anharmonic oscillator [12] and showed that their large order
behaviour could be recovered from studying the one-instanton sector of the ‘negatively
coupled’ quartic oscilator [13]. Resurgence is even more universal and also higher
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instanton sectors may contribute in the large order behaviour of the perturbative
coefficients. Schematically, such large order relations are of the form:

f
(0)
k≫1 f

(1)
h

+ f
(2)
h

+ f
(3)
h

+ . . .

“Predicting”

where the subscript k ≫ 1 denotes the large order behaviour of the perturbative
coefficients. What is less known is that the arrows can be reverted and that resurgence
can be used to study non-perturbative physics by starting from the perturbative
information:

f
(0)
k≫1 f

(1)
h

+ f
(2)
h

+ f
(3)
h

+ . . .

“Decoding”

This is in fact the reason for the name resurgence. If one takes enough perturbative coef-
ficients and starts digging deep enough, one eventually finds all other non-perturbative
transseries sectors.

1.2. Factorization

The key to understanding and using perturbative methods to calculate high energy
interactions between particles is the idea of factorization. Factorization separates a
process into parts that can be calculated independently, where each factor depends
only on physics happening on one distance scale. This approach is essential in QCD,
where it allows one to isolate short-distance effects (high-energy, perturbative) from
long-distance effects (low-energy, non-perturbative). As already highlighted above,
factorization is also one of the main ingredients for resummation, which is needed
when standard perturbative calculations break down due to large logarithmic terms.

Factorization analyses can be developed using a diagrammatic approach within
the full theory, i.e. QED or QCD, where factorization theorems are derived from
first principles. See e.g. [14–18] for seminal papers. An alternative approach to
factorization – which has become popular in the last two decades – is by means of an
effective theory, such as the soft-collinear effective field theory (SCET) [19–21]. In this
context, factorization theorems are constructed at the Lagrangian level, where soft
and collinear modes in the scattering process are defined through independent fields.
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In this thesis, we will follow the more traditional, diagrammatic approach, to
factorization. In particular, we will focus on the decay of an off-shell photon of
invariant mass Q into a massive fermion anti-fermion pair of mass m, which in turn
can be expressed in terms of two form factors F1 and F2. Such form factors – often
called Sudakov form factors due to the early work of Sudakov on the resummation
of the leading logarithms [22] – have been a prototype amplitude for factorization
studies. For the purpose of this thesis, we consider the small mass expansion of the
form factors, i.e. m≪ Q. The leading power (LP) term of this expansion is known to
factorize [23, 24]:

V µ = J ⊗ J̄ ⊗Hµ ⊗ S , (1.5)

where the jet functions J and J̄ collect the modes collinear to the fermion anti-fermion
pair respecitvely. The hard function Hµ and soft function S collect the hard and
soft modes of this process. The jet and soft function can be given universal operator
matrix definitions and therefore be applied to other processes as well. The process
dependence resides in the hard function. The first step in proving the factorization
formula Eq. (1.5) is to understand the regions of the space of loop momenta that give
the LP contributions. After appropriate approximations it is then possible to convert
the leading contributions into the form of the factorization theorem.

The study of power corrections in scattering processes at hadron colliders has
received increasing attention in the past few years due to its importance for precision
physics. In [25], such a study was initiated for the next-to-leading power (NLP)
correction to Eq. (1.5) and in particular how this can also be cast into a factorization
theorem. In this thesis, we consider the NLP corrections to the form factors F1 and
F2 in two complementary approaches. First, by analyzing the loop momentum regions
responsible for the NLP contributions using the so-called method of regions. Second,
by proposing operator matrix definitions for new NLP jet functions, which serve as
key ingredients in the NLP factorization theorem proposed by [25].

1.3. Outline

The structure of this thesis is as follows. In chapter 2, we introduce the mathematical
framework of resurgence and provide more context to what was discussed already in
Sec. 1.1. Our goal with this chapter is that a first time reader can become familiar
with the fundamentals of the topic. Chapter 3 delves into more formal and advanced
aspects of resurgence, focusing on the resurgence structure of large-order relations.
In chapters 4 and 5, we turn to one of the key applications of resurgence: the study
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of renormalons. Chapter 4 covers the basics of this non-perturbative phenomenon,
particularly as it manifests in QED and QCD. Toward the end of the chapter, we
introduce a novel method for analyzing renormalons using resurgence. Building on
this, in chapter 5 we apply these resurgence techniques to explore the renormalon
contributions to the Adler function.

The latter part of the thesis shifts focus to aspects of factorization. In chapter 6,
we provide a concise review of factorization from a diagrammatic perspective. In
particular, we review the LP factorization theorem for the QED massive form factors.
Here, we hihglight how the so-called method of expansion by momentum regions can
be used to verify such a theorem. To pave the way for NLP factorization, we employ
the method of regions in chapter 7 to analyze the two-loop massive form factors up to
NLP accuracy. Building on these results, in chapter 8 we propose operator matrix
definitions for NLP jet functions and validate them by comparison with the findings
of the previous chapter.

Finally, in chapter 9 we summarize the key results and conclusions of this thesis.
Additional details and background on the calculations presented throughout this work
are provided in four appendices.



Chapter 2.

Resurgence
This chapter is based on Secs. 2 and 3 and App. B of [1] and on Sec. 2 of [3].

In this introductory chapter, we delve into the method of resurgence, a set of mathemat-
ical techniques based on the groundbreaking work by J. Écalle [9]. The problem that
resurgence addresses is that of asymptotic series. These divergent series, while seem-
ingly problematic, encode profound information about the underlying non-perturbative
structure of the theory. This brings us to the main objective of this chapter: the
understanding of asymptotic behaviour of perturbative series and its relation to non-
perturbative sectors. As we show in this chapter, by leveraging the tools of resurgence
we can systematically bridge the gap between these two realms, uncovering the rich
interplay between the perturbative and non-perturbative.

In recent years, resurgence techniques have become more popular among physicists
and have been applied to a wide range of physical models. These include (but
definitely are not limited to) the Painlevé I equation [26–29], quantum mechanics [30–
34], quantum field theories [35–38], hydrodynamics [39, 40], two-dimensional gravity
[41, 42], topological strings [43–46] and many more.

While not every detail of this chapter is essential for understanding the later
sections of this thesis, our aim here is to introduce the mathematical framework of
resurgence in a way accessible to readers encountering the topic for the first time. For
this purpose, we will primarily follow the notation and presentation of [47], which in
our opinion is well suited to introduce the topic in a pedagogical way. For further
background information, we refer the interested reader to [48–50] or the review sections
of [27].

2.1. Borel summation of asymptotic expansions

Assume that some physical problem provides us with a power series in some coupling
constant α:

F (α) =

∞∑
n=0

fn α
n+1 , (2.1)

7
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where we have included an extra power of α on the left for later convenience. We
will further assume that this series is asymptotic, of the Gevrey-1 type – that is: we
assume that as n→ ∞, the coefficients fn grow factorially as

fnA
n+β

Γ(n+ β)
∼ c+O (1/g) , (2.2)

for some nonzero complex constants A, c and a real constant β. In most of what
follows, we will assume for simplicity that β is an integer. The results in this chapter
are easily generalized to the case of noninteger β, see e.g. Sec. 2.6.

Due to the factorial growth of the coefficients fn in Eq. (2.2), the series in Eq. (2.1)
does not converge for any nonzero value of α. When Eq. (2.1) arises in a physics
setting this is a problem, as one would expect the series F (α) to not just be purely
formal but to describe a function that has a finite value for some range of α-values.
The usual way to cure this problem is to take the Borel transform of the series:

F (α) =
∑
n

fnα
n+1 → B[F ](t) =

∑
n

fn
Γ(n+ 1)

tn, (2.3)

where t is the (complex) Borel transformation parameter conjugate to α. In the
literature, one often encounters different definitions of the Borel transform. That is,
the definition given in Eq. (2.3) is a special case of the more general Borel transform
Bν , defined by dividing in Eq. (2.3) by Γ(n+ 2− ν) instead. As we show in App. A.1,
the different definitions are closely related and lead to equivalent results.

For asymptotic series whose coefficients grow factorially, the compensating factorial
in the denominator in Eq. (2.3) leads to a finite radius of convergence. In this case
one may endeavour to sum the Borel transformed series, and after that invert the
transform to obtain a “Borel-summed” expression for the original series. To make the
inversion precise one traditionally defines the Borel sum as the Laplace transform of
B[F ]:

S0[F ](α) =

∫ ∞

0

dtB[F ](t) e− t
α . (2.4)

Notice that instead of integrating along the real positive line, one can integrate in
a different direction θ in the complex t-plane for which the integral converges. This
leads to a Borel sum Sθ[F ] where the integration in Eq. (2.4) is now from 0 to eiθ∞.
We will need this more general definition in what follows.
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It might appear as if the process of Borel transforming and then Borel summing is
a tautology, since the integral reinstates the factorial growth, e.g.∫ ∞

0

dt tn e−
t
α = Γ(n+ 1)αn+1. (2.5)

However, in many cases one can now first perform the infinite sum B[F ](t) and
analytically continue to the whole complex t-plane (or a multiple cover thereof) minus
a discrete set of points where the analytic continuation of B[F ](t) has singularities.
Next the integral in Eq. (2.4) can be performed. The effect is that integration and
summation are interchanged. One can show that for Gevrey-1 series, this leads to a
finite function S0[F ] [10].

The Borel transform B[F ](t) can still have singularities in the complex t plane,
which are in fact related to the factorial growth. A simple example illustrates this
point.

Example 2.1.1. In Eq. (2.3) let us choose fn = n!A−n. In that case we have

B[F ] =
∞∑

n=0

(
t

A

)n

=
A

A− t
, (2.6)

leading to a pole at t = A. As another example, consider f0 = 0 and fn = −(n−1)!A−n

for n > 0. The Borel transform is then

B[F ](t) = −
∞∑

n=1

1

n

(
t

A

)n

= log

(
1− t

A

)
, (2.7)

which leads to a branch cut running from A to ∞. In both Eqs. (2.6) and (2.7), the
series after the first equal sign converges for |t| < |A|. The second equals sign contains
the analytic continuation of this convergent series into a multi-valued function on the
entire t-plane except for t = A, where the function has a logarithmic branch point in
the case of Eq. (2.7).

When the singularities of B[F ](t) lie on the integration contour from 0 to ∞ in
Eq. (2.4) one can deform the contour such that one integrates either slightly above
the singularity under an angle θ = 0+, or below the singularity under an angle θ = 0−.
Deciding to integrate either above or below for the example Eq. (2.6) e.g. leads to an
ambiguity

S0+ [F ]− S0− [F ] = 2πiAe−
A
α . (2.8)
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Other singularities in the complex t plane will influence the integral in Eq. (2.4); the
contour may be chosen in many ways, adding sensitivity to other singularities in the
Borel plane as well. Notice the non-perturbative aspect of the ambiguities like in
Eq. (2.8) via the exponent e−A/α.

The Borel transform followed by the Laplace transform solves exactly the problem
we mentioned earlier: it turns an asymptotically divergent series in α into a finite
function of α. One can show that for Gevrey-1 series a particular asymptotic expansion
of that function around α = 0 is the original expansion F (α) that we started with.
While this solves our problem, this is certainly not the end of the story: the construction
depends on the integration path in the Laplace transform, and therefore the function
one arrives at is generally not unique. As it turns out, this non-uniqueness is a virtue
rather than a problem.

2.2. From Borel summation to alien calculus

In physics, singularities and divergences are usually regarded as troublesome. However,
in a resurgence context, all the information about an asymptotic series and the
associated non-perturbative data is encoded in the singularity structure of its Borel
transform. Before discussing how to systematically extract this information, we need
to introduce some concepts and terminology.

A function whose expansion gives a formal power series F (α) is said to be a simple
resurgent function if the Borel transform B[F ](t) has only simple poles or logarithmic
branch cuts as singularities. That is, near each singularity, say at t = ω, we have that

B[F ](t) = a

2πi (t− ω)
+ Ψ(t− ω)

log(t− ω)

2πi
+ Φ(t− ω) , (2.9)

for some a ∈ C and where the functions Ψ,Φ are analytic around the origin. More
generally, the Borel transform can also contain other singularities, e.g. double or higher
order poles as is the case for the Adler function discussed in Chapter 5. However, most
of our discussion in this chapter is focused on the simplest case of a single pole and a
log-branch cut that are commonly considered in the literature. In Sec. 2.6 we then
give the necessary details to extend the resurgence analysis needed for the discussion
of the Adler function.

To obtain a better understanding of the Borel singularities in Eq. (2.9), we
introduce alien calculus [9]. The fundamental object in alien calculus is the linear
differential operator ∆ω, the alien derivative, which acts on simple resurgent functions.
Being a derivative, it satisfies the Leibniz rule when acting on a product of simple
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resurgent functions. Furthermore, for those functions it has a rather simple expression:
by rewriting Ψ(t) in Eq. (2.9) as the Borel transform of a resurgent function G(α), i.e.
B[G](t) = Ψ(t), the alien derivative at a singular point ω is

∆ωF (α) = a+G(α) . (2.10)

When ω is not a singular point of B[F ](t), then ∆ωF (α) = 0. In other words, the
alien derivatives fully encode the singular properties of the Borel transforms of simple
resurgent functions. We emphasize that α in Eq. (2.10) cannot take the same value as
ω as they are variables in different planes.

Next, let us consider a direction θ in the complex plane of the Borel variable t
along which B[F ] has singularities. Such a singular direction is known as a Stokes
line, since as we shall see Stokes’ phenomenon [51, 52] occurs there. Because of
the singularities on the integration path, the Borel summation Sθ[F ] is no longer
well-defined. Of course, the singularities are easily avoided by integrating slightly to
the left or right of the direction θ, leading to summations that we denote by Sθ+ [F ]

and Sθ− [F ] respectively. These different summations lead to an ambiguity and one
may ask how these two distinct functions are related. They are in fact connected by
the Stokes automorphism Sθ, or its related discontinuity Disc θ. These are defined as

Sθ+ = Sθ− ◦Sθ = Sθ− ◦ (1−Disc θ) . (2.11)

One can show (see e.g. [50]) that these operators can be expressed in terms of the
alien derivatives via the exponential map

Sθ = exp

[ ∑
{ωθ}

e−
ωθ
α ∆ωθ

]
, (2.12)

where the set {ωθ} denotes all the singular points along the θ-direction. The main
point now is that if we know the Stokes automorphisms (or equivalently, the alien
derivatives), then we also know how to relate the different summations. Consequently,
at least in principle a full reconstruction anywhere in the complex α plane, including
non-perturbative contributions, of the function F (α) is then possible.

It is convenient to define the pointed alien derivative, related to the ordinary alien
derivative by

∆̇ω ≡ e−
ω
α∆ω. (2.13)
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This turns out to be a useful operator as it commutes with the usual derivative (see
again [50] for details), i.e.

[∆̇ω, ∂α] = 0. (2.14)

This will momentarily be used to derive a bridge equation.

2.3. Transseries and bridge equations

From the relation between Stokes automorphisms and alien derivatives, Eq. (2.12),
we notice that the ambiguity arising in Borel summation is non-perturbative in α,
being of order e−

ω
α . This implies that the non-perturbative solution we are trying to

construct must contain such non-perturbative exponential contributions. As we will see
in a moment, resurgence can be captured in a universal way through transseries [53].
Transseries are generalizations of perturbative series by the inclusion of terms with
non-perturbative (non-analytic) factors like e−

ω
α . Factors of this type are called

transmonomials.

Let us start by assuming that our resurgent function arises as a solution to some
problem depending on a single boundary condition, i.e. we consider the single parameter
transseries Ansatz

F (α, σ) =

∞∑
n=0

σne−nA
α Ψ(n)(α) , with Ψ(n)(α) = αβn

∞∑
h=0

f
(n)
h αh , (2.15)

where Ψ(0) is simply a perturbative series, as in Eq. (2.1), and Ψ(n), for n ≥ 1, are
the non-perturbative contributions. The transseries parameter σ counts the number
of e−

A
α factors [47] and parameterizes different choices of the boundary condition.1

The βn are called the characteristic exponents; we discuss their role in resurgence at
the end of Sec. 2.6. In the resurgence literature, Ψ(n) is often called the n-instanton
sector, even though in practice n may count solitons, renormalons, or some other
non-perturbative physical quantity. To avoid confusing readers with a high-energy
background, we shall call these quantities the n-th non-perturbative sector instead.

After introducing an intuitive pictorial representation of non-perturbative transseries
sectors and their interrelations in the form of the alien chain in the next subsection,
it will be straightforward in Sec. 2.6 to generalize this one-parameter transseries to

1This specific choice of the transseries Ansatz is useful to introduce the various resurgence concepts
in this chapter. In chapter 3, we will be more generic by introducing resurgence without assuming
an underlying transseries.
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multi-parameter transseries, by including further non-perturbative monomials like
e+A/α, log(α), etc.

We saw that the alien derivatives play an important role in the construction of the
complete non-perturbative solution to a problem. It is however still unclear how to
compute these derivatives in a systematic way. This is done through the construction
of the bridge equations, so named because they form a bridge between the ordinary
calculus of derivatives and alien calculus. Assume for the moment that F (α, σ) is the
solution to some differential equation (in the variable α). From Eq. (2.14) we get that
acting on this equation with ∆̇ω yields a new, linear differential equation to which
∆̇ωF (α, σ) is a solution. At the same time, acting on the original equation with ∂σ

shows that ∂σF (α, σ) is a solution to the same equation.

Example 2.3.1. Consider the non-linear differential equation

∂αF (α, σ) = 6 + F (α, σ)3 . (2.16)

Acting on this with ∆̇ω yields

∂α∆̇ωF (α, σ) = 3F (α, σ)2 · ∆̇ωF (α, σ) , (2.17)

which is a new, linear differential equation for ∆̇ωF (α, σ). Similarly, acting with ∂σ
leads to the same equation as Eq. (2.17), with ∆̇ωF (α, σ) replaced by ∂σF (α, σ).

Supposing the new linear differential equation is of first order (as is natural for a
problem with a single boundary condition) we conclude that the two new solutions
must be proportional to each other, i.e.

∆̇ωF (α, σ) = Sω(σ)∂σF (α, σ) , (2.18)

where Sω(σ) is a proportionality factor which still may depend on σ. This relation is
Écalle’s bridge equation [9]; it indeed presents a bridge between the alien derivatives
and the regular ones. By substituting ∆̇ω = e−

ω
α∆ω and expanding the transseries,

the LHS equals

∆̇ωF (α, σ) =

∞∑
n=0

σne−
nA+ω

α ∆ωΨ
(n)(α) , (2.19)

while the RHS yields

Sω(σ)∂σF (α, σ) = Sω(σ)

∞∑
n=0

nσn−1e−nA
α Ψ(n)(α) . (2.20)
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Both sides must be equal term by term according to the powers of σ and e−
A
α . To

this end, [27] defined a notion of degree as

deg
(
σnem

A
α

)
= n+m. (2.21)

Since the transseries Eq. (2.15) has degree deg(F (α, σ)) = 0, it follows that the
bridge equation can only contain nontrivial information at ω = ℓA, ℓ ∈ Z. Thus, for
transseries of this type we expect singularities in the Borel plane at ω = A but also at
integer multiples of A – something which we will also see for the Adler function in
chapter 5. Note that here ℓ = 0 is excluded because the Borel transform is regular at
the origin. Furthermore, ∆̇ℓAF (α, σ) only contains positive powers of σ, so we can
write the proportionality constant as a formal power series expansion

SℓA(σ) =

∞∑
k=0

S
(k)
ℓ σk . (2.22)

Taking the degree of both Eqs. (2.19) and (2.20) implies that S(k)
ℓ is only nonzero at

k = 1− ℓ, and therefore, writing S(1−ℓ)
ℓ ≡ Sℓ, we have that

SℓA(σ) = Sℓ σ
1−ℓ, ℓ ≤ 1 . (2.23)

The bridge equation Eq. (2.18) now reads

∞∑
n=0

σne−(n+ℓ)A
α ∆ℓAΨ

(n)(α) =

∞∑
n=0

Sℓ nσ
n−ℓe−nA

α Ψ(n)(α) , (2.24)

or equivalently

∆ℓAΨ
(n)(α) =

0 ℓ > 1,

(n+ ℓ)SℓΨ
(n+ℓ) ℓ ≤ 1, ℓ ̸= 0 ,

(2.25)

where we used that Ψ(n) = 0 for all n < 0. Although the alien derivative has an
involved definition, the final result for the alien derivative is surprisingly simple, and
works purely algebraically on the building blocks of the transseries, Eq. (2.15). We can
compute all alien derivatives as long as the yet unknown constants {S1, S−1, S−2, ...}
are known. We refer to these constants as Stokes constants. In general, computing
Stokes constants is a difficult task which depends on the specific system that one tries
to solve, and we shall not need to do so in this thesis.
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For simple resurgent functions with a single parameter, we now have two equations
for the alien derivative, i.e. Eqs. (2.10) and (2.25). Comparing the two yields

B[Ψ(n)](t) =
a

2πi (t− ℓA)
+

Sn→n+ℓ

2πi
B[Ψ(n+ℓ)](t− ℓA) log(t− ℓA) + regular , (2.26)

where ‘regular’ stands for a function that is analytic (and therefore non-singular)
at t = ℓA. In other words, near the singularity t = ℓA of B[Ψ(n)](t), we find the
resurgence of the the Ψ(n+ℓ) sector. In this expression, the so-called Borel residues
Sn→n+ℓ are constants that can be expressed in terms of the Stokes constants via Eqs.
(2.11), (2.12) and (2.25).

Example 2.3.2. For example we find

Sn→n+1 = −(n+ 1)S1, Sn→n+2 = −1

2
(n+ 1)(n+ 2)S2

1 , etc. (2.27)

and similarly

Sn→n−2 = −(n− 1)S−1, Sn→n−2 = −(n− 2)

(
S−2 +

1

2
(n− 1)S2

−1

)
, etc.

(2.28)

See [27] for closed-form expressions for all Borel residues.

2.4. One-dimensional alien chain

Instead of entering the world of alien calculus, we will follow the more pedagogical
picture of the alien chain developed in [47] as it will help us build an intuitive
language in which resurgence can be better understood. For example, in the case of a
single boundary condition, Stokes’ automorphism Eq. (2.12) can be fully computed
using Eq. (2.25) (see e.g. [27]), but once one needs to generalize to multi-parameter
transseries, the equations can become quite intricate. Instead, for practical situations,
the simple setup of the alien chain can be used and generalizations will come naturally.
(For multi-parameter transseries, we will introduce alien lattices in Sec. 2.6.)

From the point of view of the alien chain, the sectors Ψ(n) of the transseries,
Eq. (2.15), are viewed as nodes:

Ψ(0) Ψ(1) Ψ(2) Ψ(3) ...Ψ(4) Ψ(5)

which will be connected by alien derivatives to form a chain. We can then reinterpret
the resurgence equation, Eq. (2.25), as a set of allowed resurgence “motions” along this
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chain. That is, there is only one type of forward motion (i.e. with ℓ positive) because
of the constraint that ∆ℓAΨ

(n) = 0 for ℓ > 1. However, from the fact that nonzero
ℓ ≤ 1 can give nonvanishing alien derivatives, we see that there are multiple backwards
motions. Recall that (for real and positive A) to compute the Stokes automorphism
Eq. (2.12) at θ = 0 one only needs alien derivatives with ℓ > 0, whereas the Stokes
automorphism at θ = π only requires ℓ < 0. Therefore, we never need to consider
combinations of forward and backward motions together.

Example 2.4.1. As an example, there is only one forward path to go from Ψ(1) to
Ψ(4) by repeatedly acting with ∆A:

Ψ(1) ......

∆A

Ψ(2)

∆A

Ψ(3) Ψ(4)

∆A

However, there are multiple backwards motions to go from Ψ(4) to Ψ(1) using different
combinations of ∆−A, ∆−2A and ∆−3A:

Ψ(1) ...... Ψ(2) Ψ(3) Ψ(4)

∆−A ∆−A ∆−A

∆−2A ∆−2A

∆−3A

Before we can compute Stokes’ automorphism using allowed motions on the alien
chain, we need to introduce some further terminology and set up some computational
rules. We denote a step Sn→m

2 as a single link connecting two nodes n and m on the
chain and a path P as a combination of consecutive steps. The length ℓ(P) of a path
is then defined as the number of steps composing the path:

ℓ(P) = #{Sn→m ∈ P} . (2.29)

Looking at the proportionality factor on the RHS of Eq. (2.25), we see that it is
natural to define the weight w of a step Sn→m in terms of the Stokes constants Sk as

w(Sn→m) = mSm−n . (2.30)

2Note to be confused with the Borel residues of Eq. (2.26), which have a similar notation.
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The weight of a path is then simply the product of the weights of the steps that make
up the path

w(P) =
∏
Si∈P

w(Si) . (2.31)

Finally, it is convenient to define a “statistical factor” [47] linking two nodes as

SF(n→m) =
∑

P(n→m)

w(P)

ℓ(P)!
, (2.32)

where the sum is over all allowed paths linking nodes n and m. Equipped with these
definitions, let us now see how they turn up in the calculation of Stokes automorphisms,
through a specific example.

Example 2.4.2. Reviewing Eqs. (2.12) and (2.25), we notice that the actual form
of Stokes’ automorphism depends on the object it acts on. Focusing on the example
of the transseries sector Ψ(3), it follows from the allowed motions on the alien chain
that this sector has singularities both in the θ = 0 and θ = π directions. As the only
allowed forward motions consist of repeated actions of ∆A, we see that the Stokes
automoprhism in the θ = 0 direction takes a simple form:

S0Ψ
(3) = exp

(
e−

A
α ∆A

)
Ψ(3)

=
[
1 + e−

A
α ∆A +

1

2!

(
e−

A
α ∆A

)2
+

1

3!

(
e−

A
α ∆A

)3
+ . . .

]
Ψ(3)

= Ψ(3) + 4S1e
−A

α Ψ(4) +
20

2!
S2
1e

−2A
α Ψ(5) +

120

3!
S3
1e

−3A
α Ψ(6) + . . . (2.33)

In the θ = π direction, the Stokes automorphism does not take such a simple form, as
there are multiple allowed backward motions on the alien chain. Luckily, when acting
on Ψ(n), n > 0, the possible set of backward paths is finite. For Ψ(3) we obtain

SπΨ
(3) = exp

( 3∑
ℓ=1

eℓ
A
α ∆−ℓA

)
Ψ(3)

=

[
1 +

3∑
ℓ=1

eℓ
A
α ∆−ℓA +

1

2!

( 3∑
ℓ=1

eℓ
A
α ∆−ℓA

)2

+
1

3!

( 3∑
ℓ=1

eℓ
A
α ∆−ℓA

)3

+ . . .

]
Ψ(3)

= Ψ(3) + 2S−1e
A
α Ψ(2) +

(
S−2 + S2

−1

)
e2

A
α Ψ(1) . (2.34)

Having computed these actions explicitly, let us now translate these results to the
terminology we introduced above. We see that under the action of S0 on Ψ(3) we
obtain an infinite sum of higher sectors Ψ(n≥3): the nodes on the alien chain that can
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be reached by forward motions. The coefficients of the terms containing these sectors
can be expressed in terms of statistical factors Eq. (2.32). For example going from
Ψ(3) → Ψ(4), we see that there is only a single path, of length ℓ = 1 and weight w = 4S1.
Furthermore, we have to include a non-perturbative factor e−

A
α . Likewise, the path to

go from Ψ(3) → Ψ(5) has length ℓ = 2 with weight w = 20S2
1 . In order to get the correct

coefficient of the Ψ(5) term, we have to multiply by 1
2! and a non-perturbative term, i.e.

SF(3→5)e
−2A

α in total. Similarly, the coefficient in front of Ψ(6) is SF(3→6)e
−3A

α etc.
Adding up all different terms for all possible paths gives the full action of S0 on Ψ(3).

For the full action of Sπ, we need to consider the allowed backward motions.
Again, there is only a single path of length ℓ = 1 to go from Ψ(3) → Ψ(2), leading to a
statistical factor SF= 2S−1 and non-perturbative term e

A
α . To go from Ψ(3) → Ψ(1)

however, we have two allowed paths. One has ℓ = 1 with w = S−2, and the other path
has ℓ = 2 with w = 2S2

−1, so SF(3→1) = S−2 + S2
−1. In both cases we need to multiply

by the non-perturbative factor e2
A
α . Adding all terms for all possible paths again gives

the action of the Stokes automorphism.

To summarize what we have learned: S0Ψ
(n) (resp. SπΨ

(n)) is a sum over all
forward (backward) paths linking nodes to the right (left) of Ψ(n), i.e. the terms in
this sum can be written as

S0Ψ
(n) = Ψ(n) +

∑
m>n

SF(n→m)e
−(m−n)A

α Ψ(m), (2.35)

and likewise for SπΨ
(n), where the only difference is that one should sum over m < n.

2.5. Large order behaviour and asymptotics

With the knowledge of the previous sections, we can now return to our main goal: the
understanding of asymptotic behaviour of perturbative series in QFT and its relation
to non-perturbative sectors. In fact, the resurgent structure is even more general and
can be used to relate the asymptotic series of all non-perturbative sectors to each
other. To see this, we apply Cauchy’s theorem

f(α) =

∮
C

dy

2πi

f(y)

y − α

= −
∫ ∞

0

dy

2πi

Disc 0f(y)

y − α
−
∫ −∞

0

dy

2πi

Disc πf(y)

y − α
+

∮
(∞)

dy

2πi

f(y)

y − α
, (2.36)

where we assumed discontinuities only in the θ = 0 and θ = π directions. See Fig. 2.1
for the deformation of the contour to go from the first to the second line in Eq. (2.36).
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C

Figure 2.1.: In blue, (the inner contour) we show the contour C of the first line of the
Cauchy integral, Eq. (2.36). In red (the outer contour) the deformed contour
of the second line in that equation is shown. The zigzag lines on the right and
left denote the rays where Disc 0 and Disc π occur.

Notice that we deformed the contours even further such that the first two integrals in
Eq. (2.36) start from 0.

For example, we can apply this to the perturbative sector Ψ(0)(α). The disconti-
nuities of this sector are easily computed using the rules from the previous subsection:

Disc 0Ψ
(0) = (1−S0)Ψ

(0) = −
∞∑
ℓ=1

Sℓ
1e

−ℓA
α Ψ(ℓ), and Disc πΨ

(0) = 0 . (2.37)

In many cases, the integral around infinity vanishes (we will come back to this in
chapter 3), yielding

∞∑
k=0

f
(0)
k αk =

∞∑
ℓ=1

Sℓ
1

2πi

∫ ∞

0

dy
e−ℓA

y yβℓ

y − α

∞∑
h=0

f
(ℓ)
h yh . (2.38)

By expanding around α = 0, we can match equal powers in α on both sides of
this equation and perform the y-integrations, after which we arrive at a remarkable
connection between the perturbative and non-perturbative expansions:

f
(0)
k ≃

∞∑
ℓ=1

Sℓ
1

2πi

∞∑
h=0

f
(ℓ)
h

Γ(k − h− βℓ)

(ℓA)k−h−βℓ
. (2.39)

Here, we used a ≃ symbol instead of an equals sign to indicate that this relation only
describes the behavior as k → ∞. In particular, we have exchanged the sum over h
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and the integral in Eq. (2.38), which is only allowed formally – leading e.g. to the fact
that Γ(k − h− βℓ) may be ill-defined when h is large compared to k.

In words: Eq. (2.39) states that the asymptotic behaviour of the perturbative
coefficients f (0)k is completely determined by the non-perturbative expansion coefficients
f
(ℓ)
h . We will call relations like Eq. (2.39) large order relations which we discuss in more

depth in the next chapter. Furthermore, in chapter 5 we shall explain in detail how
one can unpack large order relations systematically, and decode from the perturbative
coefficients the non-perturbative ones.

We can repeat this derivation to obtain large order relations for other non-
perturbative sectors as well. The key ingredient is to rewrite Cauchy’s theorem
in terms of the Stokes discontinuities, so that from the rules discussed in the previous
subsection, one can write down large order relations by looking at allowed motions
on the alien chain. Let us note that of course all of this is only possible if the non-
perturbative sectors indeed have an asymptotic expansion (as opposed to a convergent
or even finite one) – we shall see later that this is not always the case, e.g. for the
Adler function.

To be explicit, we substitute Eq. (2.35) into Cauchy’s theorem to get

Ψ(n)(α) =
∑
ℓ>n

SF(n→ℓ)

2πi

∫ ∞

0

dy
e−(ℓ−n)A

y

y − α
Ψ(ℓ)(y)

+
∑
ℓ<n

SF(n→ℓ)

2πi

∫ −∞

0

dy
e−(ℓ−n)A

y

y − α
Ψ(ℓ)(y) . (2.40)

Again expanding around α = 0, matching equal powers in α and performing the
y-integrals, one finds

f
(n)
k ∼

∑
ℓ̸=n

SF(n→ℓ)

2πi
χ(n→ℓ)(k) , (2.41)

where it is convenient to define the large order factor3

χ(n→ℓ)(k) =

∞∑
h=0

f
(ℓ)
h

Γ(k + βn − h− βℓ)

((ℓ− n)A)k+βn−h−βℓ
. (2.42)

Thus, Eqs. (2.41) and (2.42) show how, using the alien chain formalism, the asymptotic
behaviour of expansion coefficients in non-perturbative sectors encodes all expansion
coefficients in other non-perturbative sectors.

3Note that we define these factors slightly different from [47], as we include an explicit factor of
Γ(k)/Ak.
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2.6. Generalizations and extensions

There are many generalizations of the concepts and constructions we have seen so
far, but in this thesis we only need two of them. First, we will need the concept of
multi-parameter transseries. Second, we need to consider transseries with terms that
include logarithmic factors. In this section, we follow the exposition in [27, 47]. We
finish with a short discussion on the types of singularities in the Borel plane that are
different than those discussed so far.

As we will see, for the Adler function in chapter 5, it is not enough to capture
all the non-perturbative contributions with a single exponential transmonomial e−

A
α .

Instead, we need to allow for more such exponentials, e−
Ai
α . In fact, two exponents

seem to suffice for the Adler function at the order we are interested in, but we shall
be somewhat more general. Thus, by writing A = (A1, ..., Ak), a typical Ansatz for a
k-parameter transseries solution to a non-linear problem is

F (α,σ) =
∑
n∈Nk

0

σne−
n·A
α Ψ(n)(α) , with Ψ(n)(α) = αβn

∞∑
h=0

f
(n)
h αh . (2.43)

Here we used the notation σn =
∏k

i=1 σ
ni
i . Understanding the resurgence properties

of such a transseries is again best understood in terms of the alien derivatives ∆ω. For
the one-parameter transseries, a key ingredient in the calculation of alien derivatives
was the bridge equation Eq. (2.25). In the case of the multi-parameter transseries, the
bridge equation usually takes the form

∆ℓ·AΨ(n)(α) = Sℓ · (n+ ℓ)Ψ(n+ℓ) , ℓ ̸= 0 , (2.44)

where for each combination ℓ ·A we now need a whole vector of Stokes parameters
Sℓ = (S

(1)
ℓ , ..., S

(k)
ℓ ) with the following general constraint:

S
(j)
ℓ = 0 if ℓi ≥ 1 + δij , ∀i ∈ {1, . . . , k} . (2.45)

Eqs. (2.44) and (2.45) can be derived by generalizing the steps we took in Sec. 2.3 to
the case of a multi-parameter transseries. The Borel singularities of the sectors Ψ(n)

lie at positions t = ℓ ·A in the Borel plane, with ℓ ∈ Zk with entries bounded from
below by Eq. (2.44). Thus Eq. (2.26) becomes

B[Ψ(n)](t) =
a

2πi (t−ℓ ·A)
+

Sn→n+ℓ

2πi
B[Ψ(n+ℓ)](t−ℓ ·A) log(t−ℓ ·A) + regular,

(2.46)
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Ψ(0,0) Ψ(1,0) Ψ(2,0) Ψ(3,0)

Ψ(0,1) Ψ(1,1) Ψ(2,1) Ψ(3,1)

Ψ(0,2) Ψ(1,2) Ψ(2,2) Ψ(3,2)

Ψ(0,3) Ψ(1,3) Ψ(2,3) Ψ(3,3)

...

...

...
...

...

...

...

...

∆−2A1+A2

∆−A1+A2

∆A2

∆A1

∆A1−A2∆−A2∆−A1−A2

∆−2A1

∆−A1

Figure 2.2.: Two-dimensional alien lattice. We show all allowed motions of a single step start-
ing from node Ψ(2,1). Compared to the allowed motions for the one-dimensional
alien chain, we observe a much richer structure of allowed resurgence motions.

where the Borel residues Sn→n+ℓ can be computed in terms of the Stokes parameters
S
(i)
ℓ using Eq. (2.44).

In Sec. 2.4, we explained how, in the one-parameter case, the bridge equation
translates to a set of allowed motions along an alien chain of non-perturbative sectors.
Furthermore, we gave computational rules for the computation of Stokes discontinuities
and large order formulae for the asymptotic behaviour of transseries. The natural
extension for multi-parameter transseries is to think of the sectors Ψ(n) as living
on a k-dimensional alien lattice. The computational rules outlined in the previous
subsections are then to a large extent unaltered, the main exception being that we
have a richer structure of allowed resurgence motions on the (multi-dimensional) alien
lattice.

Example 2.6.1. Consider the two-dimensional case k = 2 (see Fig. 2.2), and consider
all the motions consisting of a single step starting from the node Ψ(2,1). Similar to
what happens for the one-parameter transseries, the constraints in the bridge equation
Eq. (2.44) lead to only two types of forward motion in the ℓ = (1, 0) and ℓ = (0, 1)

directions: ∆A1
and ∆A2

. In other words, starting from node Ψ(2,1), the only way to
reach4 node Ψ(2,3) with purely forward motions is by acting with ∆A2 twice. For pure
backwards motion we have, as before, more options. In the example in Fig. 2.2, we see
the allowed purely backwards motions consisting of a single step, obtained by acting

4As will shortly be made clear, the concept of reaching a node means that the corresponding sector
then occurs in the large order description of the coefficients of the original sector.
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with ∆−A1
, ∆−A2

, ∆−2A1
and ∆−A1−A2

. This means that from Ψ(2,1) one can reach
node Ψ(0,1) using either ∆−2A1 or twice ∆−A1 .

The example shows that we now also have a type of mixed forward and backward
motion, obtained by acting with ∆−A1+A2 , ∆−2A1+A2 and ∆A1−A2 . However, similarly
to pure forward motion, the constraint of the bridge equation limits the forward part
of the motion in particular to minimal step sizes. E.g. acting with ∆−A1+2A2

does not
lead to an allowed motion. Finally, we should emphasize that for paths of multiple
steps it is not allowed to mix single steps with different directions, similar to the fact
that one could not mix forward and backward motion in the one-parameter case. The
reason for this is that for the computation of the Stokes automorphism, Eq. (2.12), in
a singular direction

θℓ = arg(ℓ ·A) , (2.47)

one only requires alien derivatives in the ℓ-direction. To clarify this with an example,
note that to reach node Ψ(0,3) starting from Ψ(2,1) one can act with ∆−A1+A2 twice,
but the path where one first acts with ∆−2A1+A2 and subsequently with ∆A2 is a
combination that does not occur in any Stokes automorphism.

For the computational rules, the concepts of step, path, their length, etc. stay
unchanged in the multi-parameter setting. However, as we now have a vector of Stokes
coefficients, the weight of a step, Eq. (2.30), becomes an inner product

w(S(n → m)) = m · Sm−n . (2.48)

The expression for Stokes’ automorphism acting on Ψ(n) in the singular direction
θℓ = arg(ℓ · A), is now given by the sum over all paths linking the node Ψ(n) to
Ψ(n+mℓ), with m > 0:

SθℓΨ
(n) = Ψ(n) +

∑
m>0

SF(n→n+mℓ)e
−m ℓ·A

α Ψ(n+mℓ). (2.49)

Likewise, the large order relation Eq. (2.41) becomes

f
(n)
k ≃

∑
ℓ̸=n

SF(n→ℓ)

2πi
χ(n→ℓ)(k) , (2.50)

with

χ(n→ℓ)(k) =

∞∑
h=0

f
(ℓ)
h

Γ(k + βn − h− βℓ)

((ℓ− n) ·A)k+βn−h−βℓ
(2.51)
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the generalization of the large order factor, Eq. (2.42). These generalizations to
multi-parameter transseries will all play a role when we study the Adler function.

As a final note on multi-parameter transseries, we want to mention that it might
be the case that despite what we have said, one finds that the action of an operator
like ∆2Ai

, for some value of i, is non-zero. One possibility is that there is an additional
transseries parameter related to an exponential transmonomial e−

2Ai
α . As a result, a

sector with exponential e−
2Ai
α lies on top of a sector with

(
e−

Ai
α

)2
. In [54], which

studies the all-order resurgence of factorially divergent series associated to a renormalon
in six-dimensional scalar ϕ3 theory, such a transseries was actually found with three
transseries parameters and exponential transmonomials e−

Ai
α , e−

2Ai
α and e−

3Ai
α . A

second way in which the action of ∆2Ai
does not vanish is that it might be the case

that the problem at hand does not allow for a bridge equation of the form Eq. (2.44).
In other words, the bridge equation does not lead to the constraint that ∆2Ai

vanishes.
We will come back to this in our discussion of the Adler function in Secs. 5.1 and 5.2.

Next, we discuss transseries with logarithmic transmonomials log(α). Note that in
the literature, see e.g. [26, 27, 47, 54], both multi-parameter transseries and logarithmic
factors often occur in the case of resonant transseries, which are transseries where
multiple Ai add up to 0 in such a way that logarithmic factors must occur to solve the
problem at hand. Although for the Adler function we have two exponents A1 = −A2

and logarithmic factors do occur, in its transseries the two effects are not related and
our transseries is not resonant.

One can of course add logarithmic transmonomials to the general multi-parameter
transseries Eq. (2.43). However, despite the fact that we need such a multi-parameter
transseries for the Adler function, we will see in Sec. 5.2 that the part of the transseries
with logarithms effectively looks like a one parameter transseries. Therefore, here we
only discuss how to extend the one-parameter transseries of Eq. (2.15) by including
logarithmic transmonomials.

The one-parameter transseries Ansatz with logarithms becomes:

F (α, σ) =

∞∑
n=0

σne−nA
α Ψ(n)(α), with Ψ(n)(α) =

pn∑
p=0

logp(α)

∞∑
h=0

f
(n)[p]
h αh+β[p]

n ,

(2.52)

where we included an expansion in logarithmic powers of α up to some finite logarithmic
power pn. Note that in doing this, we add a new transmonomial log(α) to the
transseries, but not a new transseries parameter σ̂ in addition to σ. The reason for
this is that the addition of logs generally does not change the location of singularities
in the Borel plane, so there are no new Stokes automorphisms that would act on such
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a parameter. For similar reasons, we consider all of the f (n)[p]h to belong to the same
non-perturbative sector and we will always draw them as a single box in alien chains
and lattices.

The derivation of the bridge equation, Eq. (2.25), is unaltered (and thus the
allowed motions along the alien chain are the same), but when we apply Cauchy’s
residue theorem to obtain large order relations, we get additional and more complicated
integrals. To be precise, when we expand Eq. (2.40) around α = 0, we additionally
need to perform integrals of the form∫ ∞

0

dy yse−mA
y logp(y) , (2.53)

for some s, m and p. These integrals can be evaluated exactly, and it is straightforward
to show that this yields the following large order relation for the perturbative coefficients

f
(0)[0]
k ∼

∞∑
ℓ=1

Sℓ
1

2πi

∞∑
h=0

f
(ℓ)[0]
h

Γ(k − h− β
[0]
ℓ )

(ℓA)k−h−β
[0]
ℓ

+

∞∑
ℓ=1

Sℓ
1

2πi

∞∑
h=0

pℓ∑
p=1

f
(ℓ)[p]
h

[
log(ℓA)− ∂g

]p
Γ(g)

(ℓA)k−h−β
[p]
ℓ

∣∣∣∣∣
g=k−h−β

[p]
ℓ

, (2.54)

where the first term is analogous to (2.39) and the second follows from the logarithmic
transmonomials. One can derive similar equations for the large order behaviour of the
coefficients of the non-perturbative sectors.

Although most of our discussion in Sec. 2 was focused on the case of a single pole
and a log-branch cut, we finish this section with a short discussion on other types of
singularities in the Borel plane that might appear. Indeed we will need this in the
upcoming sections for the Adler function. In fact, the characteristic exponents βn we
added in the transseries Ansatz already allow for higher order poles in the Borel plane.
Looking at Eqs. (2.42) and (2.50), we notice that these characteristic exponents play a
role in the large order behaviour of the perturbative and non-perturbative coefficients.
To see how this translates to the Borel plane, consider a formal power series F (α) and
its Borel transform

F (α) =

∞∑
n=0

Γ(n− β)αn+1 =⇒ B[F ](t) = Γ(−β)
(1− t)−β

, (2.55)

where we assumed that β < 0. In particular, β = −1,−2,−3, ... correspond to a single,
double, triple pole etc. in the Borel plane.
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Furthermore, the sectors with logarithms in the transseries Ansatz Eq. (2.52) yield
new types of singularities. As an example, consider the p = 1 terms of Eq. (2.54) with
∂gΓ(g) = Γ(g)ψ(g) (with ψ(z) = d

dz log Γ(z) the digamma function), i.e. consider the
formal series

G(α) =

∞∑
k=0

Γ(k − β)ψ(k − β)αk+1 (2.56)

with β < 0 again. Its Borel transform is given by

B[G](t) = −Γ(−β) log(1− t)− ψ(−β)
(1− t)−β

, (2.57)

and we indeed observe that these terms lead to a type of singularity we have not
considered so far. We will discuss the role of these Borel singularities for the Adler
function when we encounter them in Secs. 5.1 and 5.2.

2.7. Numerical methods

Richardson transforms, Padé approximants and conformal transformations are often-
used as numerical methods in the resurgence literature because they are well-suited
to extract as much information as possible from a limited set of perturbative data.
Since we make considerable use of these methods in this thesis, we discuss them here
in some detail. See [55] for a more extensive exposition.

2.7.1. Richardson transforms

Consider a sequence S(k) which we know how to compute numerically for arbitrary k,
and has an expansion of the form

S(k) = s0 +
s1
k

+
s2
k2

+ . . . . (2.58)

Our first aim is to calculate s0, which we can do by computing limk→∞ S(k). However,
it might well be that one needs to compute S(k) for many and large values of k
to confidently judge the limit. The Richardson transform [56, 57] is a method to
accelerate this process and enable one to reach the desired limit with (significantly)
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fewer values of k. It is defined recursively by

RT[S](k, 0) = S(k), (2.59)

RT[S](k,N) = RT[S](k + 1, N − 1) +
k

N

(
RT[S](k + 1, N − 1)− RT[S](k,N − 1)

)
,

where we denote the N
th

Richardson transform of S(k) by RT[S](k,N).

Example 2.7.1. Consider the case for N = 1, which corresponds to

RT[S](k, 1) = S(k + 1) + k
(
S(k + 1)− S(k)

)
= s0 +

s1 − s2
k2

+O
( 1

k3

)
. (2.60)

Clearly the limit limk→∞ RT[S](k, 1) = s0 has a faster rate of convergence than S(k),
as the subleading part proportional to s1 now scales as O

(
1/k2

)
. Since the Richardson

transform RT[S](k,N) cancels the subleading terms in S(k) up to order 1/kN , the
estimate of s0 thus becomes better when both k and N increase,

We can also find a closed form, in terms of S(k),S(k + 1), . . . ,S(k +N), for the
N

th
Richardson transform by solving the following set of equations for s0:

S(k) = s0 +
s1
k

+ . . .+
sN
kN

S(k + 1) = s0 +
s1

k + 1
+ . . .+

sN
(k + 1)N

...

S(k +N) = s0 +
s1

k +N
+ . . .+

sN
(k +N)N

(2.61)

where we truncated the series in Eq. (2.58) after the N
th

term. The solution for s0,
up to order O(1/kN+1), is given by

s0 ≈ RT[S](k,N) =

N∑
n=0

(−1)n+N (k + n)N

n!(N − n)!
S(k + n) +O

( 1

kN+1

)
. (2.62)

Example 2.7.2. Let us see how the Richardson transform works in practice by
considering the function

f(u) =
1

1 + u
2

+
log(1− u)

u
=

∞∑
k=0

((
− 1

2

)k

− 1

k + 1

)
uk. (2.63)
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If one is only given numerical values for the first, say 40, coefficients T(k):

T(k) =
(
− 1

2

)k

− 1

k + 1
, (2.64)

one can use the Richardson transform to extract the leading growth of these coefficients:

T(k) ≈ −1

k
+

1

k2
+ ... (2.65)

where the ellipsis contains terms for both the subleading 1
k behaviour and the (− 1

2 )
k

term. In Fig. 2.3a we show the coefficients T(k) in blue for 1 ≤ k ≤ 40, together with
their second Richardson transform. Here we used Eq. (2.62) to calculate the Richardson
transform as the direct formula has a faster implementation than the recursive formula
given in Eq. (2.59). We see that the Richardson transform gives a clear acceleration
of the series to the value s0 = 0 with

RT[T(k)](38, 2) = −0.00001562865083298977613 (2.66)

Higher order Richardson transforms give even better estimates of s0.

We may go even further and extract s1, by constructing the sequence

k
(
T(k)− 0

)
≈ −1 +

1

k
+ ... (2.67)

This converges to −1 in the k → ∞ limit. In Fig. 2.3b we see this sequence together
with its second Richardson transform, showing again good convergence towards −1:

RT
[
k
(
T(k)− 0

)]
(38, 2) = −0.9999841284122182302 (2.68)

One can naturally continue this process and also extract the coefficients si, i > 1.
Also the (− 1

2 )
k term of T(k) can be extracted and we show how this can be done

in chapter 5. For now we highlight the fact that this term does not spoil the above
convergence towards s0 and s1.

2.7.2. Padé approximants and Borel-Padé summation

Consider an analytic function f(u), or even a formal power series

f(u) =

∞∑
k=0

aku
k . (2.69)
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Figure 2.3.: In (a), we show the coefficients ck (bottom curve, blue), Eq. (2.64), together
with their second Richardson transform (top curve, orange). In (b), we show
the sequence k

(
T(k)− 0

)
(top curve, blue) of Eq. (2.67), again with the second

Richardson transform (bottom curve, orange).

One can define the Padé approximant of f(u) [58, 59] as

PN,M [f ](u) ≡
∑N

n=0 bnu
n∑M

m=0 cmu
n
. (2.70)

This rational function should be thought of as an approximation to f(u) itself: the
coefficients bn and cn are precisely chosen such that the first N +M + 1 coefficients of
the Taylor expansions of f(u) and PN,M [f ](u) agree. (Note that the Padé approximant
has N +M + 2 coefficients in total, but an overall scaling of these coefficients has
no effect on the rational function.) Given a power series f(u), software packages like
Mathematica can compute Padé approximants up to around 100 coefficients exactly,
and even further numerically. In practice, one usually computes the diagonal Padé
approximant of order N , PN [f ](u) (defined as PN,M [f ](u) with M = N), and we shall
always do so in this thesis.

The main use of Padé approximants lies in the fact that they can encode singu-
larities. If for example f(u) describes a function with a pole at some point u0 ̸= 0, a
truncated Taylor expansion of f(u) will not ‘see’ such a pole easily, simply because a
Taylor expansion is a polynomial which has a finite value at u0. The Padé approxi-
mant, on the other hand, by construction must have a number of poles, and essentially
always5 one of these will turn out to be near u0.

This ability of Padé approximants to encode singularities of f(u) goes even further:
a Padé approximant can also spot more complicated singularities in f(u) such as

5In rare cases where a singularity does not show up, it can be made visible by changing the order
of the Padé approximant. As a check, we have always compared Padé approximants at slightly
different orders for the computations in this thesis.
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Figure 2.4.: Poles of the order 120 diagonal Padé approximant to the function in Eq. (2.63).
One clearly sees the (single) pole at u = −2 as well as the mimicked branch
cut starting at u = 1.

logarithmic branch cuts. Of course the rational function PN [f ](u) does not have such
branch cuts, but for large N it does have a large number of poles, and these poles can
accumulate into half-lines that start at some point u0, thus mimicking a branch cut,
not only in a pictorial way but also in the sense that integrals around branch cuts are
well-approximated by integrals around the poles.

For a real power series, the coefficients in the Padé approximant will also be real.
In general, this leads to Padé poles that are also at real locations, but occasionally
‘spurious’ poles occur when the denominator of the Padé approximant has two non-real
complex conjugate zeroes. The occurrence of such spurious poles is usually not very
problematic, as they occur sporadically and can often be removed by taking a slightly
higher or lower order Padé approximant.

Example 2.7.3. To illustrate the process of Padé approximation, let us once again
look at the example Eq. (2.63). The function f(u) has a simple pole at u = −2 and
a logarithmic branch cut starting at u = 1. Using the exact Taylor expansion in
Eq. (2.63), and from that result computing P120[f ](u) using Mathematica, we find a
rational function whose poles we plot in Fig. 2.4. Both the single pole at u = −2 and
the accumulation of all other poles to mimick the branch cut at u = 1 are clearly visible
in the figure.

In this thesis, we use Padé approximants in two different ways. First of all, we
use these approximants to spot singularities for functions (usually in the Borel plane)
for which we only have a finite number of expansion coefficients available. A second
application of Padé approximants is that they can be used to replace an actual Borel
transform B[F ](t) of an asymptotic series before doing the Laplace transform. That
is, instead of computing

S[F ](g) ≈
∫ ∞

0

dtB[F ]N (t) e−
t
g (2.71)
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using an Nth order Taylor expansion of B[F ](t), one instead computes

S[F ](g) ≈
∫ ∞

0

dtPBN [F ](t) e−
t
g , (2.72)

with PBN ≡ PN ◦ B. The reason why this is useful is that it does not make much
sense to Laplace transform a Taylor series of a Borel transform directly: such a Taylor
series is simply a polynomial, and its Laplace transform does nothing but reinsert
factors of n! in front of the nth coefficient of B[F ](t) – that is, it simply returns a
cut-off version of the original asymptotic series, which when we make N larger and
larger will still diverge for any value of the parameter.

If instead of directly Laplace transforming a Borel plane power series one takes
a diagonal Padé approximant first, the resulting functions are much better behaved.
There are two reasons for this: first of all in a Laplace transform of the form Eq. (2.72)
the function PBN [F ](t) behaves very nicely as t→ ∞: it simply becomes a constant,
so the total integral including the decaying exponential converges very fast. More
importantly, however, as we have seen PBN [F ](t) encodes the singularities of B[F ](t)
very well, and these singularities contain information about the non-perturbative
contributions to the function O(g) that we are trying to approximate – non-perturbative
contributions that ‘cure’ the asymptotic growth of the power series expansion.

As a result, whenever we want to numerically compute an inverse Laplace transform
of a Borel transform whose analytical form is unknown, we use a Padé approximant.
This procedure is known as Borel-Padé summation or sometimes Borel-Écalle-Padé
summation; further details can be found in e.g. [27, 47].

2.7.3. Conformal transformations

As we saw earlier in this chapter, very often there is a dominant Borel singularity at,
say, t = A – corresponding with the leading divergence of the associated asymptotic
series – and the subdominant singularities are at t = nA for n ≥ 2. In the case there
are branch cut singularities and if one tries to approximate the Borel transform using
a Padé approximant, it might be hard to distinguish the different singularities as the
branch cuts are mimicked by the accumulation of Padé poles. To pull the branch cuts
apart, one can take a conformal map before taking the Padé approximant [60, 61]. To
be specific, the conformal mapping

C : t→ − 4zA

(1− z)2
(2.73)
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Figure 2.5.: In (a), we show the poles of the diagonal Padé approximant PB140[F ](t) of
Eq. (2.74). As the poles of different branch cuts are hard to distinguish, we
show in (b) the Padé singularities after applying the conformal map Eq. (2.73)
to the Borel plane. We clearly observe that the different branch cuts are pulled
apart with z = −1 and z = ±i corresponding to t = 1 and t = 2 in the left
figure respectively. Furthermore, the second branch point of both logarithms
at t = ∞ is made visible in (b) with an accumulation of poles near z = 1.

maps the half-line [A,∞) in the t-plane to the unit circle in the z-plane. E.g. t = A

gets mapped to z = −1, t = 2A gets mapped to z = ±i etc. Again, an example may
be best to illustrate the usefulness of the conformal mapping.

Example 2.7.4. Consider the following Borel transform:

B[F ](t) = log(1− t) + log(2− t) , (2.74)

which has two branch cuts starting at t = 1 and t = 2. In Fig. 2.5a we show the poles
of the diagonal Padé approximant PB140[F ](t) and clearly observe an accumulation
of poles at t = 1. However, it is not clear if the poles near t = 2 correspond to the
branch cut of log(2− t), or are still a representation of the branch cut of log(1− t). To
pull the different branch cuts apart, we can apply the conformal mapping of Eq. (2.73).
Fig. 2.5b shows the Padé poles of the order N = 140 Padé approximant after taking the
conformal mapping. The different branch cuts at t = 1 and t = 2 are mapped to z = −1

and z = ±i respectively and are now easily distinguishable. Both logarithms log(1− t)

and log(2 − t) also have a second branch point at t = ∞, which gets mapped to the
finite location at z = 1 by the conformal mapping and subsequently made visible by the
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Padé approximant. The above observations are easily verified with a small calculation:

CB[log(1− t)](z) = 2 log(1 + z)− 2 log(1− z)

CB[log(2− t)](z) = log(2) + log(z + i) + log(z − i)− 2 log(1− z) , (2.75)

with CB = C ◦ B. We indeed see four different logarithmic branch points appearing in
the z-plane.





Chapter 3.

Resurgence of large order relations
This chapter is based on [3].

Let us consider an asymptotic perturbative series in some variable1 z:

φ(0)(z) =

∞∑
g=0

φ(0)
g zg+1 . (3.1)

From the previous chapter, we learned that the perturbative coefficients φ(0)
g in

Eq. (3.1) are related to other non-perturbative coefficients φ(n)
h . These relations are

collected in so-called large order relations – which we encountered already in Sec. 2.5
and in particular Eq. (2.39) – and repeat here for clarity in the simplified case that
βℓ = 0:

φ
(0)
g

Γ(g)
≃

∞∑
ℓ=1

Sℓ
1

2πi

∞∑
h=0

(kA)g−hΓ(g − h)

Γ(g)
φ
(ℓ)
h . (3.2)

As explained below Eq. (2.39), this should be understood to hold in the large g limit.
Originally, large order relations of this type appeared in [26].

As said already in the introduction of this thesis, the study of the large order
behaviour of asymptotic series in physics predates the conception of resurgence and
large order relations. Many other implicit and explicit discussions of large order
behaviour have appeared over the years, e.g. [62–64]. To the best of our knowledge, the
first (leading instanton) large order formulas of the form in Eq. (3.2) appeared in [65]
and subsequently also in [43, 44, 66] before being generalized to the multi-instanton
version of Eq. (3.2) from [27] in the context of ODEs and matrix models.

In the more recent mathematics literature, the focus of resurgence research has
not been on large order behaviour as much as it has been in the physics literature,
but Écalle and Sharma described a method to study large order relations in [67], and
most of the essectial techniques needed to discuss large order behaviour can be found
in the textbook [68]. In 2020, Sauzin used these techniques to study the large order

1For most physicists it might feel strange to use g as a summation variable as it is often used
as the coupling constant in which one expands perturbative series. However for those feeling
uncomfortable at the moment, hang on, as for most of this chapter we are actually interested in
expansions in 1/g around g = ∞.

35
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Figure 3.1.: Borel transform of the Adler function large order expansion – discussed in
more detail in chapter 5. The black dots are the singularities of the Borel-Padé
transform of the 1/g expansion of Eq. (3.2) for ℓ = 1. The red transparent
disks are added to aid the eye and are positioned at log(ℓ)+πin, with ℓ = 1, 2, 3
and n ∈ Z. The two plots show the contributions to the large order relation
coming from the two leading nonperturbative sectors. The spurious black dots
with imaginary part ∼ ±9πi in the right hand plot are a result of numerical
instabilities.

behavior of the asymptotic ‘Stirling series’ that occurs when expanding the logarithm
of the gamma function [69].

The applications of large order relations go beyond toy models: in chapter 5 we
will study the resurgent structure of the Adler function, and use large order relations
to extract higher nonperturbative sectors that have an interpretation as renormalon
contributions. Without turning to details yet, let us give a small preview of what
we will encounter in chapter 5. For each ℓ in Eq. (3.2) the ratio of gamma functions
yields a new asymptotic series in 1/g, which in the context of the Adler function (as
in many other examples of asymptotic series) is studied by plotting poles of the Padé
approximant to its Borel transform. This leads to the plots shown in Fig. 3.1, where
the black dots indicate the singularities of the Borel transform of these series, which
in turn should determine nonperturbative contibutions to the large order relation.
In fact, it was this interesting singularity structure – somewhat reminiscent of the
‘peacock patterns’ observed in [70] – that led us to the question which underlying
structure gives rise to these patterns.

The observed pattern is not specific to the Adler function: it also appears for a
variety of other models – see e.g. Fig. 3.2, which displays a similar plot for a toy model
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Figure 3.2.: In (a), we show the singularities of the Borel-Padé transform of Eq. (3.2) for
ℓ = 1 for the quartic free energy. Similar to the plots shown in Fig. 3.1, we
observe singularities at log(k) + 2πin, but now for integers k ≥ 2 and n ∈ Z.
As the singularities are branch cuts (mimicked by the accumulation of poles
of the Padé approximant), the poles corresponding to different branch cuts
are hard to distinguish. In (b), we therefore show the Padé singularities after
applying a conformal map to the Borel plane – recall Sec. 2.7.3 – which maps
the singularities on the positive real axis to the unit circle; the images of some
other lines with imaginary part 2πn are also drawn. We clearly observe that
the branch cuts are pulled apart and can therefore conclude that the poles on
the real axis in (a) belong to different branch cuts. We refer to example 3.2.2
for more details.

that we will study extensively later in this chapter. In this case, the Padé poles line
up to mimic branch cuts (rather than poles) in the Borel transform of the large order
expansion, but the repeating structure of singularities is essentially the same. These
observations are particularly interesting in light of the fact that the 1/g expansion of
Eq. (3.2) itself takes the form of a transseries [27, 71]. These two ingredients form the
starting point of this chapter.

Throughout this chapter, we provide numerous examples to illustrate various
concepts and to numerically verify our statements. As these examples are primarily
meant to support the more abstract concepts, we keep the examples small and refrain
from too many details. Many more details will be given in chapter 5, when we perform
the resurgence analysis of the Adler function.

In this chapter, we study the resurgent structure of the transseries that large
order relations constitute. Before we do so, we review in Sec. 3.1 the tools from
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resurgence that are necessary for the rest of the chapter. In Secs. 3.2.1 and 3.2.2, we
show how the resurgent structure of large order relations can be understood using
the so-called Stirling transform, which repackages all the coefficients into new series
that appear in the large order relation Eq. (3.2). In particular, these new series
make the repeated pattern in the imaginary direction in Figs. 3.1 and 3.2a manifest,
leading to an underlying geometric structure that we dub the Borel cylinder. We
subsequently derive the Stokes phenomenon [51, 52] in Sec. 3.2.3, and explain how
it relates to the Stokes phenomenon of the original asymptotic expansion. In doing
so, we test to what extent the resummation of the large order relation describes
the perturbative coefficients exactly: when we resum Eq. (3.2) for finite g, can we
calculate the perturbative coefficients φ(0)

g to arbitrary precision? We will find that
the answer to this question is often ‘yes’, even in cases where one ignores potential
contributions to the large order relation coming from a Cauchy integral at infinity.
Finally in Sec. 3.2.4, we will formulate ‘exact’ large order relations, and see that this
resummation establishes a natural extension of the large order relation to non-integer
and even complex values of g. Sec. 3.3 is devoted to a test of the exact large order
relation for a toy model called the quartic partition function and Sec. 3.4 finishes with
our conclusions and an outlook.

3.1. From Stokes constants to Borel residues

In the previous chapter we gave a ‘classical’ introduction of resurgence, where we
assumed that our resurgent function arises from a problem that has a bridge equation,
i.e. we assumed a particular form of the underlying transseries – recall e.g. Eq. (2.18)
for the one-parameter transseries. This was in particular useful to explain the important
resurgence concepts, however in many applications, such a bridge equation is hard to
derive or even non-existent – see in particular chapter 5. Therefore, in this section
we will be more generic by introducing resurgence without assuming an underlying
bridge equation or transseries. Instead, we start from the setting of a simple resurgent
function – introduced in Eq. (2.9) – where the Borel transform only has poles and
logarithmic branch cuts as its singularities. We will in particular be interested in the
case of logarithmic singularities, but this is not a very strong restriction as we can
switch to a different Borel transform – see App. A.1.

In this chapter, we will be mostly interested in what happens at a single Stokes line.
Without loss of generality, by rotating the complex z variable and the corresponding
Borel transform variable t if necessary, we may assume that this Stokes line is the
positive real axis. The Stokes line can contain more than a single singularity, but
we do make the assumption that any singularities on it are at t = ℓA for ℓ ∈ Z>0.
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This is often a reasonable assumption; for example, there may be multi-instanton or
renormalon configurations in our physical problem, and those would lead to precisely
such a pattern of singularities.

Taking these assumptions into account, let us then assume that near some sin-
gularity t = ℓA, the Borel transform of the perturbative series Eq. (3.1) has the
form

B[φ(0)](t) =
S0→ℓ

2πi
B[φ(ℓ)](t− ℓA) log(t− ℓA) + regular, (3.3)

which is just a particular instance of Eq. (2.26). The main difference with Eq. (2.26)
is that the Borel residues S0→ℓ are now assumed to be general and not necessarily
expressed in terms of Stokes constants via a bridge equation as in e.g. Example 2.3.2.
Of course, there is some freedom in scaling S0→ℓ and φ(ℓ) in opposite ways; usually
this freedom is fixed by requiring that the leading term in φ(ℓ) is unity.

Quite common in the theory of resurgence is that the relation (3.3) generalizes to
the other formal power series φ(k) as well: we have that

B[φ(k)](t) =
Sk→k+ℓ

2πi
B0[φ

(k+ℓ)](t− ℓA) log(t− ℓA) + regular, (3.4)

for integers k, ℓ such that k ≥ 0 and k + ℓ ≥ 0. In this chapter, we will use the
terminology that the sectors know about each other.

An important observation is that the Borel residues S0→ℓ are formally multivalued,
since there are in general many paths γ along which we can analytically continue the
Borel transform from t = 0 to t = ℓA. Therefore, to properly define the Borel residues
S0→ℓ, we must commit to a convention with regards to these paths. A standard
convention is the one shown in Fig. 3.3 on the left side, where we analytically continue
the Borel transform above the Stokes line to the singularity of interest. We will come
back to this ambiguity in Sec. 3.1.2.

3.1.1. Stokes phenomenon

Whenever we encounter a Stokes line, we are interested in computing the discontinuity

discφ(0)(z) = (S+ − S−)φ
(0)(z) . (3.5)

In this chapter, whenever it is clear what the singular direction θ is, we will omit the
angle, e.g. denote the lateral Borel sums with angles infinitesimally larger or smaller
than θ by S+φ

(0) and S−φ(0) respectively. In computing the discontinuity in Eq. (3.5),
it is important that the Laplace integrals for both S+ and S− do not cross any branch
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Figure 3.3.: Conventions for the description (3.3) of the Borel transforms near singularities
at t = ℓA: on the left the standard convention (continuation above the Stokes
line) and on the right an alternative convention (continuation below the Stokes
line).

Figure 3.4.: Considering the difference of lateral resummations, there are two natural
choices: we either let all branch cuts (and thus the Hankel contours) run off to
infinity below the real line (upper graphs) or we let them run off to infinity
above real line (lower graphs).

cuts associated to the logarithmic contributions to the Borel transform Eq. (3.3). One
may achieve this by aligning all branch cuts with the Stokes line (see the left hand side
of Fig. 3.4), but a more conventient choice is to let all branch cuts go off to infinity in
a diagonal direction and deform the integration contour into a sum of so-called Hankel
contours, as depicted in the middle of Fig. 3.4.
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By decomposing the integration contour in terms of Hankel contours around
individual singularities in this way, we can use Eq. (3.3) to find2

(S+ − S−)φ
(0)(z) = −S−

( ∞∑
k=1

S0→k φ
(k)(z) e−kA/z

)
. (3.6)

More suggestively, we can write this as

S+φ
(0)(z) = S−

(
φ(0)(z)−

∞∑
k=1

S0→k φ
(k)(z) e−kA/z

)
, (3.7)

which tells us that the Borel summation along one side of the Stokes line is equal
to the resummation along the other side when we modify the asymptotic expansion
in the appropriate way. This is a manifestation of Stokes phenomenon. Using the
Stokes automorphism S defined by S+ = S− ◦S, – recall Eq. (2.11) – we can write an
equivalent statement in terms of asymptotic expansions which reads

Sφ(0)(z) = φ(0)(z)−
∞∑
k=1

S0→k φ
(k)(z) e−kA/z. (3.8)

Similarly, for Eq. (3.4), the action of the Stokes automorphism Eq. (3.8) generalizes to

Sφ(k)(z) = φ(k)(z)−
∞∑
ℓ=1

Sk→k+ℓ φ
(k+ℓ)(z) e−ℓA/z , (3.9)

for generic sectors φ(k). Comparing to Eq. (2.35), we see that we obtained a similar
formula for Stokes’ automorphism, where the Borel residues are replaced by the
statistical factor. To be precise:

SFn→m = −Sn→m , (3.10)

which also yields a formula to compute Borel residues in the case of a one-parameter
transseries – recall example 2.3.2.

So far, we have not made any assumptions about an underlying transseries, but
the above expressions Eqs. (3.8) and (3.9) show that it is useful to unite the formal,

2Here, we have exchanged the order of summation over k and integration in t. This is an operation
that, especially in a resurgence setting, has to be treated with care, but since the sums over k (as
opposed to those over g) generally have a nonzero radius of converge, this exchange of sums and
integrals can often be put on solid footing.
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asymptotic power series φ(n) in a transseries,

Φ(σ⃗, z) =

∞∑
n=0

σn φ
(n)(z) e−nA/z . (3.11)

In the above expression we have assigned weigths σn, i.e. the transseries parameters,
to each transseries sector φ(n); these are all collected in the single vector σ⃗ on the left
hand side. The advantage of introducing these parameters is that we can now also
view any asymptotic expansion before the Stokes jump Eq. (3.9) – that is, simply φ(k)

– as a transseries with σn = δn,k. In fact, one may be more general and think of the
Stokes automorphism as mapping one transseries expansion – with particular values
of σn and summed above the Stokes line using the S+ procedure – to another one –
with other values of σn and summed below the Stokes line using the S− procedure.

Using the transseries notation, we can write the action of the Stokes automorphism
as an action on the transseries parameters:

SΦ(σ⃗, z) = Φ(S · σ⃗, z) . (3.12)

Effectively, we are multiplying the (infinite) vector σ⃗ with an (infinite) lower-triangular
Stokes matrix S whose elements are given by the Borel residues

(S)nm =


−Sm→n for m < n

1 for m = n

0 for m > n ,

=


1 0 0 . . .

−S0→1 1 0 . . .

−S0→2 −S1→2 1 . . .

. . . . . . . . . . . .

 (3.13)

for integers m,n ≥ 0. In particular, this means that we have the following action on a
single transseries parameter

S : σn 7→ σn −
n−1∑
m=0

σmSm→n . (3.14)

This generic description expresses the Stokes phenomenon in terms of an infinite set
of Borel residues.

Example 3.1.1. In section 3.3 we will introduce the quartic free energy – a popular
toy model to study resurgence (see e.g. [71]). Throughout this section and the next, we
will occasionally refer forward to aspects of this example to clarify the material. The
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quartic free energy has a two-parameter transseries solution that can be written as

F (x, σ, ρ) =

∞∑
n=0

σnF (n)(x)e−nA/x + ρ , (3.15)

where the F (n)(x) are formal power series in x. Their Borel transforms have a Stokes
line along the positive real axis and therefore F (x, σ, ρ) undergoes a Stokes transition.
Despite the fact that there are an infinite number of transseries sectors F (n), it turns
out that setting σn = σn is a convenient parametrization under which the Stokes
automorphism along the arg(x) = 0 direction acts as

S0F (x, σ, ρ) = F (x, σ + S1, ρ) . (3.16)

Thus we can reduce the number of degrees of freedom for this particular transition to
one parameter σ and one Stokes constant S1. These relate to our generic formulation
(3.11) and (3.9) when

Sk→k+l = −
(
k + l

k

)
Sl
1 . (3.17)

The second parameter ρ is irrelevant for the above argument; it only plays a role when
we consider another Stokes transition across the negative real axis.

3.1.2. Multivalued Borel residues

As we mentioned in Sec. 3.1.1, the Borel residues Sk→k+ℓ depend on the path along
which we analytically continue the Borel transforms from one point to another. In
computing the discontinuity along a Stokes line, Eq. (3.6), we assumed that the Hankel
contours run off to infinity below the Stokes line, meaning that we could use the Borel
residues Sk→k+ℓ as defined by paths above the Stokes line – the convention in the left
of Fig. 3.3. Alternatively, we could consider diagonal Hankel contours above the Stokes
line, in which case we would need to use a different set of residues that we denote by
S̃k→k+ℓ and which correspond to analytic continuation of the Borel transforms along
paths below the Stokes line, as in Fig. 3.3 on the right.
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To relate the two sets of Borel residues, we observe that both choices should
describe the same discontinuity:

Disc φ(0) = −S−

( ∞∑
k=1

S0→kφ
(k)e−kAz

)
= −S− (S− 1)φ(0)

= −S+

( ∞∑
k=1

S̃0→kφ
(k)e−kAz

)
= −S+

(
1−S−1

)
φ(0) . (3.18)

The top (bottom) line in this equation is obtained by letting the Hankel contours run
to infinity below (above) the real line, as shown by the diagrams in the top (bottom)
of Fig. 3.4. Eq. (3.18) implies that two conventions lead to two distinct transseries
expansions that after the appropriate lateral resummation should reproduce the same
discontinuity. Hence, these respective transseries must consist of different linear
combinations of the formal power series φ(k), and therefore they are defined by two
distinct sets of residues {Sk→k′} and {S̃k→k′}. To reproduce the same discontinuity,
the two transseries expressions should be related via

S

( ∞∑
k=1

S̃0→kφ
(k)e−kAz

)
=

∞∑
k=1

S0→kφ
(k)e−kAz. (3.19)

If we know one set of residues, we can derive the other set straightforwardly by using
this equation and the Stokes automorphism Eq. (3.9). Using the Stokes matrix S we
can interpret the above equation as saying that

S ·



0

S̃0→1

S̃0→2

S̃0→3

. . .


=



0

S0→1

S0→2

S0→3

. . .


(3.20)

Solving this equation for the first three Borel residues S̃0→k, we find that

S̃0→1 = S0→1

S̃0→2 = S0→2 + S0→1S1→2

S̃0→3 = S0→3 + S0→1S1→3 + S0→2S2→3 + S0→1S1→2S2→3 . (3.21)
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The general solution is

S̃k→k+ℓ =

ℓ∑
r=1

∑
k=k0<...<kr=k+ℓ

r−1∏
j=0

Skj→kj+1
. (3.22)

Note that all the ‘one-step’ residues Sk→k+1 = S̃k→k+1 are equal. This is as expected,
since their respective paths are in the same homotopy class (see figure 3.3). Of
course, for the ‘multi-step’ residues, we could have chosen even more complicated
homotopy classes for the paths, going above some singularities and below others, or
even circling the singularities several times – but the two conventions above are clearly
the most natural ones. Regardless of the conventions that we pick, any complete set
of residues contains the same information about the resurgence relations (3.3) as any
other complete set.

Example 3.1.2. For the quartic free energy, whose Borel residues Sk→k+ℓ were given
in (3.17), one can also calculate the alternative set of Borel residues using (3.22),
leading to

S̃k→k+ℓ = (−1)ℓ
(
k + ℓ

k

)
Sℓ
1 . (3.23)

These are again expressed in powers of a single Stokes constant S1.

3.1.3. Derivation of large order formulas

We already derived large order relations in Sec. 2.5, but let us now give a slightly
different derivation in terms of Borel residues to keep the discussion as generic as
possible. Again, we use Cauchy’s theorem to write

φ
(0)
g

g!
=

∮
0

dt

2πi

B[φ(0)](t)

tg+1
(3.24)

=
∑
k≥1

S0→k

∫
H−

kA

dt

(2πi)2
B[φ(k)](t−kA)

tg+1
log(t−kA) +

∮
∞

dt

2πi

B[φ(0)](t)

tg+1
, (3.25)

where in the second line we deformed the contour around t = 0 to a contour around
infinity and in the process picked up various Hankel contours associated to singularities
that the Borel transform has. Given our definition of the Stokes automorphism, each
of these Hankel contours H−

kA grabs the k-th singularity located at kA and ‘leaves’
the Borel plane below the positive real axis – as shown in figure 3.4. For the rest of
this computation we will assume that the contribution around infinity vanishes and
therefore ignore it – but we will come back to this assumption in Secs. 3.2.4 and 3.3.3.
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By an appropriate shift, the right hand side can now be rewritten as

φ
(0)
g

g!
= −

∑
k≥1

S0→k

∫ ∞−iϵ

0

dt

2πi

B[φ(k)](t)

(t+ kA)g+1
, (3.26)

where ϵ is an infinitesimally small positive number, causing the contour to run below
the singularities. We can then replace the Borel transforms by their Taylor series
around t = 0 and integrate term by term with respect to t, which produces the familiar
asymptotic large order relations that read3

2πiφ
(0)
g Ag

Γ(g)
≃ −

∑
k≥1

S0→kk
−g
∑
h≥0

Γ(g − h)

Γ(g)
(kA)hφ

(k)
h . (3.27)

This is the same form of the large order formulas that we already derived in Sec. 2.5,
but with the statistical factor replaced by minus the Borel residues.

3.2. Resurgence of the large order transseries

We finished the previous section with the usual form of the large order relation,
connecting the coefficients in the perturbative sector of a transseries to the coefficients
in its nonperturbative sectors. An important observation (already underlying e.g. [27])
is now that this formula itself has the form of a transseries: by writing

k−g = e−g log(k) (3.28)

we see that it has ‘instanton actions’ log(2), log(3), log(4) etc. We shall call this
transseries the large order transseries. The nature of this transseries is slightly
different from the ones we have discussed so far, though; in particular, the instanton
actions are not all integer multiples of a finite set of ‘basis actions’, and they are (by
the nature of the logarithmic function) not single-valued. One may therefore wonder
about the resummation of this transseries, whether it also has a Stokes automorphism,
how its Stokes data are related to those of the original transseries, and so on. It is to
those questions that we turn in this section.

3To anticipate our discussion in section 3.2.4, where we will want to extend these expressions to
complex values of g, we already write Γ(g) rather than (g − 1)! on the left hand side of this
equation.
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3.2.1. The Stirling transform

For each k in the large order transseries Eq. (3.27), the ratios of gamma functions can
be expanded in powers of 1/g. This yields a formal power series in 1/g for each k,
whose coefficients encode the perturbative fluctuations φ(k)

h around the k-th instanton
sector. For k = 1, the first few terms of this series read

−S0→1

(
φ
(1)
0 +

Aφ
(1)
1

g
+
Aφ

(1)
1 +A2φ

(1)
2

g2

+
Aφ

(1)
1 + 3A2φ

(1)
2 +A3φ

(1)
3

g3
+O(g−4)

)
. (3.29)

Because the 1-instanton coefficients φ(1)
h grow factorially as h becomes large, the above

power series will generically be asymptotically divergent as well. In fact, this is the
case for all k-sectors in the large order relation Eq. (3.27).

Working out a few more orders in Eq. (3.29), we find that the integer coefficients
appearing in the series correspond to Stirling numbers of the second kind [72]. The
above series therefore constitutes what we will call a rescaled Stirling transform of
the first instanton series. Let us elaborate: a formal power series ψ(z) =

∑
n≥0 anz

−n

defines a sequence of coefficients an whose Stirling transform is another sequence of
coefficients bn defined by

bn =

n∑
k=0

{
n

k

}
ak , (3.30)

where the integers
{
n
k

}
are the Stirling numbers of the second kind; see App. A.2 for a

definition. We then say that the formal power series

ψ̃(g) =

∞∑
n=0

bng
−n (3.31)

is the Stirling transform of the series ψ(z). Furthermore, we can rescale the argument
z → z/A in ψ(z) to obtain a new series in z−1:

ψ
( z
A

)
=

∞∑
n=0

(anA
n) z−n . (3.32)
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Finally, we introduce a formal power series ψ̂(g) which is the Stirling transform of this
rescaled series, and which looks as follows:

ψ̂(g) =

∞∑
n=0

n∑
k=0

{
n

k

}(
akA

k
)
g−n

= a0 +
Aa1
g

+
Aa1 +A2a2

g2
+
Aa1 + 3A2a2 +A3a3

g3
+O(g−4) . (3.33)

This series is what we call the rescaled Stirling transform of ψ(z) and it matches
exactly the series expansion (3.29) of the large order relation (3.27). If we now identify
the coefficients ah with the coefficients φ(1)

h of the one-instanton sector of our original
transseries, then we conclude that the asymptotic expansion for k = 1 in Eq. (3.27)
is the rescaled Stirling transform of that one-instanton series. More generally, the
asymptotic expansion in 1/g of the large order transseries in its nonperturbative sector
multiplying k−g = e−g log k can be expressed as a rescaled Stirling transform of the
k-instanton series of the original transseries, where the scaling factor is kA instead
of A.

Having understood that the asymptotic expansions appearing in the large order
relations are actually rescaled Stirling transforms of the original instanton series, we
can define

φ̂(k)(g) =

∞∑
n=0

n∑
ℓ=0

{
n

ℓ

}(
φ
(k)
ℓ (kA)

ℓ
)
g−n , (3.34)

and rewrite the asymptotic large order relations (3.27) as

2πiφ
(0)
g Ag

Γ(g)
≃ −

∞∑
k=1

S0→kφ̂
(k)(g) e−g log(k) . (3.35)

Thus, Eq. (3.35) allows us to order the contributions by size where the one-instanton
coefficients φ(1)

h determine the leading expansion in 1/g, and higher instanton coeffi-
cients φ(k)

h determine nonperturbative contributions to the large order transseries that
are exponentially suppressed as e−g log(k).

Example 3.2.1. Let us test Eq. (3.35) by performing a resurgent large order analysis
at leading instanton order k = 1. (We will perform tests for higher k below in example
3.2.4.) To this end (see also [71]), we study the large order growth of perturbative
coefficients F (0)

g of the quartic free energy, which we already briefly introduced in
example 3.1.1.
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The large order relation for the quartic free energy is exactly of the form of
Eq. (3.35), with instanton sectors F (k) that carry an instanton action A = 3/2 and
with Borel residues S0→k expressed in terms of a Stokes constant S1 = −2 by Eq. (3.17).
To test Eq. (3.35), we call the sequence on the left hand side of this equation rg and
plot the ratio

rg

S1φ̂
(1)
0

≃ 1 +O(g−1) , (3.36)

for g up to 500 in the first plot of Fig. 3.5. This indeed convergences towards 1
as g becomes large. Likewise, in the second plot, we test the expected subleading
g−1-behaviour by plotting the ratio

g
rg − S1φ̂

(1)
0

S1φ̂
(1)
1

≃ 1 +O(g−1) , (3.37)

which again converges towards 1 in the large g limit. We can similarly test the g−N

contributions to the leading sector of Eq. (3.35) by summing the right hand side of
Eq. (3.34) (for k = 1) up to order n = N − 1. We then plot the difference between
the (exact) left and (truncated) right hand side of Eq. (3.34) for values of g up to
500, where we divide by the expected g−N contribution at that order so that we expect
the rescaled difference to become 1 at large g. In Fig. 3.5 we see that indeed both
sides of Eq. (3.35) match up to order g−12 (where the only reason to stop is not to
make the figure too large), confirming the validity of the Stirling numbers appearing in
Eq. (3.34).
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Figure 3.5.: A test of the rescaled Stirling transform appearing in Eq. (3.35), for the leading
k = 1 sector and up to order g−12.
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At this point, we have established how the large order transseries (3.35) is con-
structed in terms of the instanton coefficients φ(k)

h of the original transseries. Still,
the question remains whether the newly constructed large order transseries is truly a
resurgent transseries, in the sense that the Borel transforms of its formal power series
φ̂(k)(g) know about each other like the original series φ(k)(g) do in Eq. (3.4). In order
to answer this question, we want to derive similar resurgence relations for the Borel
transforms of the rescaled Stirling transforms φ̂(k). The first question to address is
therefore what the Borel planes of these series look like.

It so happens that the Stirling transforms of functions have a rather interesting
property when it comes to their Borel transforms: consider the Stirling transform ψ̃(g)

– defined through Eqs. (3.30) and (3.31) from the series ψ(z). Its Borel transform,
assuming as usual that it converges and through analytic continuation defines a
function, has the following simple form:

B0[ ψ̃ ](t) = B0[ψ ](et − 1) . (3.38)

Two remarks are in order. First of all, notice that this simple form of the Borel transform
is true for the 0-Borel transform. Its generic n-Borel transform is straightforwardly
obtained through differentiation – see App. A.1-A.2 – yielding a Borel transform
that is less simple. To keep the formulas concise, we therefore switch to the 0-Borel
transform from now on in the remainder of this chapter and leave out the subscript.
Subsequently, the rescaled Stirling transform ψ̂(g) given by Eq. 3.33, also has a Borel
transform that relates to B[ψ ] as follows:

B[ ψ̂ ](t) = B[ψ ]
(
A(et − 1)

)
. (3.39)

As a result, we find that the 0-Borel transforms of the asymptotic series φ̂(k)(g)

appearing in the large order relations can be expressed explicitly in terms of the Borel
transforms of the original instanton series φ(k), using their proper rescaling:

B[φ̂(k)](t) = B[φ(k)]
(
kA(et − 1)

)
. (3.40)

We provide derivations of these statements in App. A.2.

The above relations already reveal the underlying reason for the appearance of
the towers of singularities in the Borel plane that we discussed in the introduction:
the Borel transforms (3.40) of the rescaled Stirling series are functions of et and are
therefore invariant under t→ t+2πi. As a result, any singularity in the Borel plane of
the original instanton series B[φ(k)] reappears as a tower of evenly spaced singularities
in the Borel plane of B[φ̂(k)]. As we explain in the next subsection, this ‘translational
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symmetry’ also explains why it makes sense to write k−g as e−g log(k) in terms of the
‘multivalued instanton action’ log(k) in the large order transseries (3.35).4

3.2.2. Resurgent structure

Now that we have seen that the Borel transforms of the rescaled Stirling transforms of
the φ(k)(z) can be expressed in terms of the Borel transforms of these instanton series
themselves, we can derive resurgence relations like Eq. (3.4) for the rescaled Stirling
transforms. Using Eq. (3.40), we obtain

B[φ̂(k)](t) = B[φ(k)]
(
kA(et − 1)

)
(3.41)

=
Sk→k+ℓ

2πi
B[φ(k+ℓ)]

(
kA(et − 1)− ℓA

)
log
(
kA(et − 1)− ℓA

)
+ regular

=
Sk→k+ℓ

2πi
B[φ̂(k+ℓ)]

(
t− log

(
k+ℓ

k

))
log

(
t− log

(
k+ℓ

k

))
+ regular ,

where in going from the first to the second line we expanded s ≡ kA(et − 1) around
s = ℓA using the ordinary resurgence relations Eq. (3.4). In the last line we expanded
the logarithm around s = ℓA and used Eq. (3.40) to go back to the Borel transform of
φ̂(k+ℓ). Notice that we are just interested in the singular terms in these expressions;
the higher order terms in the expansion of the logarithm only yield regular terms,
since they multiply a Borel transform which is analytic at s = ℓA.

The resurgence relations given in Eq. (3.41) for the transseries sectors φ̂(k) of the
large order transseries are quite similar to Eq. (3.4) which describe the resurgence
of the original transseries sectors φ(k). We observe in particular that the large
order transseries sectors labeled by k and k + ℓ are connected by the same Borel
residues Sk→k+ℓ that occurred for the original transseries. An important difference
lies in the fact that the locations of the Borel singularities are completely different
from those of the original transseries. Within the original transseries, the k-instanton
sector knows about the (k + ℓ)-sector by expanding B[φ(k)](t) around t = ℓA. In the
case of our large order transseries, the k-sector knows about the (k + ℓ)-sector by
expanding B[φ̂(k)](t) around t = log

(
k+ℓ
k

)
. In fact, due to the t ∼ t+2πi symmetry of

Eq. (3.40), we can add any integer multiple of 2πi to the location of a given singularity
of B[φ̂(k)](t) to find another singularity from which the same (k + ℓ)-sector resurges
with the same Borel residue Sk→k+ℓ.

4In a different context, the change of variables s = kA(et − 1) is the uniformizing map in [61] for a
Borel transform with a single singularity at s = −kA.
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Summarizing this discussion, the Borel transform B[φ̂(k)](t) will have singularities
at

A(k)
ℓ,n = log

(
k + ℓ

k

)
+ 2πin for k + ℓ > 0 , ℓ ̸= 0 and n ∈ Z , (3.42)

from which the (k+ℓ)-sector resurges with residue Sk→k+ℓ. When we lift the condition
that k + ℓ > 0, which happens for example in the case with two opposite primitive
instanton actions A1 = −A2, we can also get singularities at

Ã(k)
ℓ,n = log

(
−k + ℓ

k

)
+ (2n+ 1)πi for k + ℓ < 0 , ℓ ̸= 0 and n ∈ Z . (3.43)

This pattern of singularities is for example relevant for the plots shown in Fig. 3.1 at
the beginning of this chapter. One can write similar formulas for more general cases
(which we will not consider further in this thesis) when there are several primitive
instanton actions A1, A2, . . ., even when there is no relation between them, where the
addition of πi in Eq. (3.43) changes.

Using the above notation, the resurgence relations in Eq. (3.41) can be written
compactly as

B[φ̂(k)](t)

∣∣∣∣
t=A(k)

ℓ,n

=
Sk→k+ℓ

2πi
B[φ̂(k+ℓ)]

(
t−A(k)

ℓ,n

)
log
(
t−A(k)

ℓ,n

)
+ regular , (3.44)

which also makes the similarity to Eq. (3.4) more manifest. As for ‘ordinary’ resurgence,
these large order resurgence relations tell us that when we integrate around any
singularity A(k)

ℓ,n in the Borel plane, we can extract the formal power series φ̂(k+ℓ). In
the spirit of Sec. 3.1, this suggests that we should unite all these series into what we
call the generic large order transseries

Φ(σk,n, g) =

∞∑
n=−∞

∞∑
k=1

σk,n φ̂
(k)(g) e−gA(1)

k,n =

∞∑
n=−∞

Φn(σ⃗n, g) . (3.45)

The parameters σk,n are again transseries parameters associated to sectors (k, n). In
Sec. 3.2.3 we will see how the Stokes automorphism acts on these parameters. In
anticipation of what is to come, it is also useful to write the above full transseries
Φ, as an infinite sum over ‘horizontal’ subtransseries Φn. The large order transseries
Eq. (3.35) is then obtained by setting σk,n = −S0→kδn,0. Note that the locations A(k)

ℓ,n

of the Borel singularities in the k-th Borel plane correspond to the relative distances
between the instanton actions of the sectors (k + ℓ,m + n) and (k,m) in the large
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order transeries:

A(k)
ℓ,n = A(1)

k+ℓ,m+n −A(1)
k,m , (3.46)

for arbitrary integers m. These distances are visible in the Borel plane of the leading
sector – see also the singularities shown in Fig. 3.1. The fact that the singularities of
the Borel transforms correspond to relative distances between instanton actions holds
in general, but is often concealed by the fact that in ordinary transseries these actions
lie on a semi-lattice generated by a single primitive instanton action A. For the large
order transseries, on the other hand, there are infinitely many primitive instanton
actions log(p) for p prime.

We conclude that the large order transseries is truly a resurgent transseries, just
like the original transseries. The only differences are that its singularities no longer
depend on the instanton action A of the original transseries, and that each singularity
associated to a sector k + ℓ is copied at locations shifted by integer multiples of 2πi in
the Borel plane of B[φ̂(k)]. The domain of the variable t in terms of which the Borel
transforms B[φ̂(k)] are defined is thus effectively a cylinder that we will henceforth call
the Borel cylinder. This cylinder provides the best way to structure the singularities
found in Figs. 3.1 and 3.2 that we encountered at the beginning of this chapter; we
discuss this further in example 3.2.2 below.

Example 3.2.2. Let us see whether in examples we can reproduce the singularity
structure A(k)

ℓ,n and Ã(k)
ℓ,n that is described in Eqs. (3.42) and (3.43). Since we do not

have closed form expressions for the various Borel transforms, we make use of Padé
approximants – see Sec. 2.7.2 – to mimic their singularity structure. The singularities
A(1)

ℓ,n and Ã(1)
ℓ,n, as approximated by the Padé approximant of B[φ̂(1)], were already

shown in Figs. 3.1 and 3.2 at the beginning of this chapter, for the Adler function
and the quartic free energy respectively. As further evidence for the structure, we also
consider the second rescaled Stirling transform for the quartic free energy. In Fig. 3.6
we plot the singularities of the Padé approximant of the Borel transform B[F̂ (2)] of
this series.

Starting with Fig. 3.1a for the Adler function, we clearly observe singularities at
the anticipated positions t = A(1)

ℓ,n with ℓ = 1, 2. For Fig. 3.1b, besides singularities

at t = A(1)
ℓ,n with ℓ = 2, we also notice singularities at positions t = Ã(1)

ℓ,n , with
ℓ = 1, 2. This is a consequence of the fact that the Adler function has two opposite
primitive instanton actions A1 = −A2, which as we have explained leads to additional
contributions in the large order relation (3.35) that scale with (−k)−g = e−g log(k)±πi,
leading in turn to Eq. (3.43).



54 Resurgence of large order relations

-1.5 -1.0 -0.5 0.5 1.0 1.5

-15

-10

-5

5

10

15

(a)

-1.5 -1.0 -0.5 0.5 1.0 1.5

-1.5

-1.0

-0.5

0.5

1.0

1.5

(b)

Figure 3.6.: In (a), we show the singularities of the diagonal order 800 Padé approximant
of B[F̂ (2)](t). As the branch cuts are mimicked by an accumulation of poles,
the poles corresponding to different branch cuts on the real line are hard to
distinguish. We therefore show in (b) the order 300 diagonal Padé approximant
of B[F̂ (2)] after applying the conformal map of Eq. (3.47). The branch cuts
positioned on the positive real line are now pulled apart as they are mapped
to the unit circle. The singularity at t = log(1/2) = − log(2) of Fig. (a) gets
mapped to z ≈ 0.24. Furthermore, the ‘flower-like’ curves in the z-plane
correspond to ℑ(t) = ±2πi and ℑ(t) = ±4πi. Unfortunately, the branch cut
starting at z ≈ 0.24 ‘uses’ many poles of the Padé approximant, so we only
observe a limited number of singularities starting on these curves. As a result,
the branch cuts at ℑ(t)± 2πni for n ̸= 0 are instead best viewed in the original
t-plane.

For Figs. 3.2a and 3.6a we observe singularities at t = A(1)
ℓ,n and t = A(2)

ℓ,n respec-
tively. However, as the branch cuts on the real axis are mimicked by the accumulation
of Padé poles along, it is hard to distinguish the branch cuts starting at different points.
We have therefore applied a conformal mapping

t = −4z log
(
k+1
k

)
(1− z)2

, (3.47)

which maps the half-line [log k+1
k ,∞) to the unit circle in the z-plane, where in

particular t = log k+1
k gets mapped to z = −1. The resulting figures for the Padé

approximants of these conformally mapped series are shown in Figs. 3.2b and 3.6b for
k = 1 and k = 2 respectively. We observe that the branch cuts starting on the real
positive t-axis are now pulled apart in the z-plane and become clearly visible.
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Figure 3.7.: The Hankel contours H−
log(1+ℓ) along which we integrate in Eq. (3.50).

3.2.3. Stokes automorphism

In the previous section, we have verified that the large order transseries Eq. (3.35)
and its generic version Eq. (3.45) truly form resurgent transseries by establishing the
resurgent structure (3.44) of their nonperturbative sectors. For practical purposes, we
are often interested in resumming the sectors φ̂(k) that appear in these large order
transseries. The reason for this – as explained elaborately in chapter 5 – is that we
often want to use the large order behaviour of the perturbative coefficients φ(0)

g –
which may be easy to obtain in specific examples – to decode the nonperturbative
coefficients φ(k)

h of the k-instanton sector, which may not be so easy to obtain by
other methods, for example because the nonperturbative effects in the underlying
physical problem are not a priori known. To achieve such a decoding, we need to
first ‘remove’ all sectors φ̂(k′) for which k′ < k from the large order transseries before
we can read off the coefficients in the k-th sector. The only effective way to do this
is by resumming these series φ̂(k′) and substracting them from the left hand side of
the large order transseries. As is so often the case, to achieve this we need to decide
along which contour in the Borel plane – or here: the Borel cylinder – we resum, and
different choices are related by a Stokes phenomenon. In this subsection we discuss
various contours and use the resurgence relations of Eq. (3.44) as well as consistency
of resummation to derive the Stokes phenomenon of the generic large order transseries.

As we saw in Eq. (3.42), the singularities of the large order transseries sectors
φ̂(k) accumulate along horizontal lines separated by integer multiples of 2πi. There
are two natural resummations S0+ and S0− , whose contours go above and below the
singularities on the real positive line respectively:

S0± φ̂
(k)(g) = g

∫ ∞±iϵ

0

B[φ̂(k)](t) e−gtdt . (3.48)



56 Resurgence of large order relations

We can then define the discontinuity operator

Disc 0 = S0+ − S0− , (3.49)

in order to study the Stokes phenomenon as discussed in Sec. 3.1.1. The discontinuity
of the first large order transseries sector φ̂(1) can readily be computed, and yields

Disc 0 φ̂
(1) =

∞∑
ℓ=1

S1→1+ℓ g

∫
H−

log(1+ℓ)

dt

2πi
B[φ̂(1+ℓ)](t−log(1+ℓ)) log (t−log(1+ℓ)) e−gt

= −
∞∑
ℓ=1

S1→1+ℓ e
−g log(1+ℓ)S0− φ̂

(1+ℓ) , (3.50)

where the Hankel contours H−
log(1+ℓ) are shown in Fig. 3.7. We can repeat this

computation for generic sectors φ̂(k) and find that

Disc 0 φ̂
(k) = −

∞∑
ℓ=1

Sk→k+ℓ e
−g log( k+ℓ

k )S0− φ̂
(k+ℓ) . (3.51)

Note that the instanton actions that appear correctly correspond to the singularities
A(k)

l,0 in Eq. (3.42). From the discontinuity of the large order transseries sectors φ̂(k),
we extract the Stokes phenomenon

S0φ̂
(k) = φ̂(k) −

∞∑
ℓ=1

Sk→k+ℓ φ̂
(k+ℓ) e−g log( k+ℓ

k ) , (3.52)

which is the direct analogue of Eq. (3.9) for the original transseries. The action of the
Stokes automorphism can be formulated within the horizontal subtransseries Φn(g, σ⃗n)

of Eq. (3.45) as follows:

S0Φn (g, σ⃗n) = Φn (g,S0 · σ⃗n) , (3.53)

or at the level of individual transseries parameters as

S0 : σk,n 7→ σk,n −
k−1∑
j=1

σj,nSj→k . (3.54)

This mapping should be compared to Eq. (3.14) for the original transseries. The
matrix S0 is essentially the same as S given in Eq. (3.13), but with the ‘zeroth’ row
and column removed. Since a φ̂(0) sector does not exist in the large order transseries,
we can assume such a sector to vanish identically and naturally extend the Stokes
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matrix S0 to include also a j = 0 contribution in Eq. (3.54), in which case we simply
have

S0 = S . (3.55)

The equivalence of the Stokes matrix associated to the Stokes phenomenon of the
large order transseries across the positive real axis, to that of the ordinary transseries,
also means the following. If we consider our large order transeries (3.35) and study its
Stokes phenomenon in the anti-clockwise direction, given by the inverse automorphism
S−1

0 or equivalently by the inverse Stokes matrix S−1, we retrieve the alternative Borel
residues by virtue of Eq. (3.20):

S−1 ·



0

S0→1

S0→2

S0→3

. . .


=



0

S̃0→1

S̃0→2

S̃0→3

. . .


. (3.56)

Said otherwise, we have that

S0

( ∞∑
k=1

S̃0→kφ̂
(k)(g)e−g log(k)

)
=

∞∑
k=1

S0→kφ̂
(k)(g)e−g log(k) . (3.57)

That is, the large order transseries with transseries parameters S̃0→k resummed above
the positive real line (with S0+) is equivalent to the large order transseries with
parameters S0→k resummed below the positive real line (with S0−). This equation is
the direct analogue of Eq. (3.19) for the original transseries.

We can generalize the discontinuity Disc 0, across singularitities that lie on the
positive real line of the Borel plane, to Stokes transitions with discontinuities that we
will label Disc n and that arise from singularities A(k)

l,n on other horizontal lines with
fixed n – see Fig. 3.8. For completeness, let us derive the Stokes automorphisms for
these transitions and see how they alter the transeries parameters σk,n.

Consider the contours shown in Fig. 3.8 on the left, which define Borel summations

Sn± φ̂(k)(g) = g

∫ ∞+2πin±iϵ

2πin

B[φ̂(k)](t) e−gtdt . (3.58)
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By the symmetry of the Borel cylinder, these resummations can be related to Eq. (3.48)
as follows:

Sn± φ̂(k)(g) = e−2πingS0± φ̂
(k)(g) . (3.59)

For integer g, the prefactor on the right hand side equals 1, reflecting the symmetry of
the Borel cylinder under translations by 2πi. In what follows, we will also be interested
in cases with non-integer g (where for real g we can mathematically think of the
factors of e−2πing as transition functions on a nontrivial U(1)-bundle over the Borel
cylinder), so we will keep these factors explicit in our formulas. We can now define
discontinuities Disc n = Sn+ − Sn− , which can be expressed as

Disc n φ̂
(k)(g) = e−2πing Disc 0 φ̂

(k)(g) . (3.60)

In terms of Stokes automorphisms we then have

Snφ̂
(k)(g) = φ̂(k)(g)− e−2πing

∞∑
ℓ=1

Sk→k+ℓ φ̂
(k+ℓ)(g) e−g log( k+ℓ

k ) . (3.61)

We note that the sectors φ(k+ℓ) and the Stokes residues Sk→k+ℓ appear, as was to be
expected, but with an instanton action that is shifted by −2πin.

Next, we can derive the action of this Stokes automorphism on the subtransseries
of Eq. (3.35):

SnΦm(σ⃗m, g) = Φm(σ⃗m, g) + Φm+n ((S− I) · σ⃗m, g) , (3.62)

where I is an infinite identity matrix. As a consistency check, note that Eqs. (3.61)
and (3.62) reduce to Eqs. (3.52) and (3.53) respectively when we set n = 0. For the
full transseries, we find that

SnΦ(σ, g) =

∞∑
m=−∞

Φm(σ⃗m + (S− I) · σ⃗m−n, g) , (3.63)

or at the level of individual transseries parameters we find

Sn : σk,m 7→ σk,m +

k−1∑
j=1

σj,m−nSj→k . (3.64)

Having derived the actions of the Stokes automorphisms Sn, we can now consistently
resum the (generic) large order transseries along any of the contours shown in Fig. 3.8
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Figure 3.8.: On the left we show the contours [n±] corresponding to the resummations Sn±

defined in Eq. (3.58). Once we have derived the Stokes phenomena Sn across
the nth horizontal ray of singularities, we are able to resum the large order
transseries along any of the contours shown on the right.

on the right, running from t = 0 to t = +∞. Changing the contour prescription can
then straightforwardly be compensated for by applying the appropriate automorphism
Sn to the transseries. For example, as a consequence of Eq. (3.57) we know that the
following two resummations are equal:

S0+

∑
k≥1

S̃0→kφ̂
(k)e−g log(k)

 = S0−

∑
k≥1

S0→kφ̂
(k)e−g log(k)

 . (3.65)

We can extend this to any of the contours shown on the right of Fig. 3.8 using our
automorphisms Sn.

Recall that the original motivation for resumming large order transseries sectors
was to decode the higher instanton fluctuations φ(k)

h from the large order behaviour
of the perturbative coefficients φ(0)

g . In general we only know those coefficients for
nonnegative integers g. Within that context, the factor e−2πing therefore reduces
to the identity and all Stokes automorphisms Sn are equal to S0. Thus, for these
purposes, the discussion above simplifies greatly and we can simplify the generic large
order transseries Eq. (3.45) to

Φ(σ⃗0, g) =

∞∑
k=1

σk,0 φ̂
(k)(g)e−g log(k) . (3.66)

Example 3.2.3. We can test the relation Eq. (3.60) between different discontinuities
numerically for the k = 1 sector of the quartic free energy. As already explained
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in example 3.2.2, we do not have a closed form expression for the Borel transform
B[F̂ (1)](t), but we can numerically approximate this function using Padé approximants.
In particular, the singularities of the Padé approximant encode the singularities of
B[F̂ (1)](t). To test Eq. (3.60), we replaced B[F̂ (1)](t) by its diaganal Padé approximant
of order N , PBN [F̂ (1)](t), and performed the integration required to compute the
discontinuity numerically.

Since this computation does not require the perturbative coefficients, we can test it
for any g, not necessarily integer. In particular we have tested the relation between
the discontinuities at n = 0 and n = −1 for diverse values of g. For example, taking
g = 5/3 yields

Disc 0F̂
(1)(g) ≈ −0.20236122 . . .+ 0.00000000 . . . i ,

e−2πig Disc−1F̂
(1)(g) ≈ −0.20236165 . . .+ 0.00000496 . . . i , (3.67)

which nicely matches to five decimal places. To obtain Eq. (3.67), we took the diagonal
Padé approximant of order N = 800. This high order is necessary for producing enough
singularities near A(1)

k,−1 to compute Disc−1F̂
(1)(g) with sufficient accuracy. Including

even more terms should increase the accuracy of the match even further.

In the next subsection we will see that ‘horizontal’ resummations like Eq. (3.65)
naturally appear in the derivation of what we will call exact large order relations.

3.2.4. Exact large order relations

In the previous subsection we learned that the large order transseries inherits the
resurgence structure – expressed in terms of the Stokes matrix S – from the original
transseries, despite its distinct singularity structure. We derived the Stokes auto-
morphism Sn for multiple ‘horizontal’ Stokes transitions that allow us to relate the
different resummation prescriptions shown in Fig. 3.8 on the right. We arrived at
these results by starting with the conventional large order relation Eq. (3.27) that we
derived at the end of Sec. 3.1.3. Many properties of the large order transseries that
we have discussed can also be derived in a more direct way, as we demonstrate in this
section.

Let us therefore take a step back and consider the large order relation in its
integral form Eq. (3.26), which we repeat here for convenience and where we have
again discarded the contribution from infinity:

φ
(0)
g

g!
= −

∑
k≥1

S0→k

∫ ∞−iϵ

0

dt

2πi

B[φ(k)](t)

(t+ kA)g+1
. (3.68)
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In Sec. 3.1.3 we asymptotically expanded the right hand side of this expression by
expanding the Borel transform B[φ(k)](t) as a power series in t and performing the
integral term by term. Let us now present a different approach: we first introduce the
variable u = log(t+ kA) which allows us to rewrite the expression as

φ
(0)
g

g!
= −

∑
k≥1

S0→k

∫ ∞−iϵ

log(kA)

du

2πi
B[φ(k)](eu − kA) e−gu . (3.69)

Subsequently, we shift the integration variable to v = u− log(kA) and obtain

2πiφ
(0)
g Ag

Γ(g)
= −

∑
k≥1

S0→ke
−g log(k)

(
g

∫ ∞−iϵ

0

dv B[φ(k)](kA(ev − 1)) e−gv

)
. (3.70)

On the right hand side we recover the Borel transform (3.40) of the rescaled Stirling
transforms φ̂(k) that we studied before. This equation expresses the perturbative
coefficient φ(0)

g as the resummation of the large order transseries (3.35) along the
contour below the positive real axis. Whenever the sum over k on the right hand side
converges, which is generally the case in examples, Eq. (3.70) is an exact relation that
is also valid for finite g. We will therefore call this expression the exact large order
relation from now on.

The brief computation above reproduces much of the hard work of this section:
it allows us to rederive the resurgence relations Eq. (3.44) and singularity structure
Eq. (3.42) and subsequently the automorphisms Sn that we found in the previous
section. Most importantly, it assigns a distinct contour [0−] to our large order
transseries with residues S0→k along which its resummation computes the correct
value for the perturbative coefficients φ(0)

g .

The right hand side of the exact large order relation constitutes a function of g
that we can expand in a large g limit. Eq. (3.70) tells us that one possible transseries
expansion is the large order transseries Eq. (3.35), which after resummation along the
[0−] contour gives back the same function. If we repeat the computation above, but
with Hankel contours running above the real positive t axis in Eq.(3.68) – see again
the bottom graphs in Fig. 3.4 – then we obtain a similar expression:

2πiφ
(0)
g Ag

Γ(g)
= −

∞∑
k=1

S̃0→ke
−g log(k)

(
g

∫ ∞+iϵ

0

dv B[φ(k)](kA(ev − 1)) e−gv

)
. (3.71)
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This is simply the [0+]-resummation of the large order transseries with the alternative
Borel residues S̃0→k. The resulting function is of course equal to (3.70):

2πiφ
(0)
g Ag

Γ(g)
= S0+

(
−

∞∑
k=1

S̃0→ke
−g log(k)φ̂(k)(g)

)

= S0−

(
−

∞∑
k=1

S0→ke
−g log(k)φ̂(k)(g)

)
. (3.72)

The equality of both resummations is consistent with the Stokes automorphism
Eq. (3.57) that we derived in the previous subsection, and can be seen as an alternative
derivation of that equation. More generally, by considering Eq. (3.69) and substituting
v = u− log(kA) + 2πin where n is any integer, we can see that

2πiφ(0)Ag

Γ(g)
= e−2πing Sn+

(
−

∞∑
k=1

S̃0→ke
−g log(k)φ̂(k)(g)

)

= e−2πing Sn−

(
−

∞∑
k=1

S0→ke
−g log(k)φ̂(k)(g)

)
, (3.73)

which is consistent with Eq. (3.59). In example 3.2.4, we check the exact relation
Eq. (3.70), and in particular Eq. (3.72), for the quartic free energy.

Example 3.2.4. We consider again the quartic free energy introduced already in
previous examples. In particular, recall example 3.2.1 where we tested the large order
transseries (3.35) for k = 1. We performed the test by applying ratio tests on

rg ≡ 2πiAg

Γ(g)
F (0)
g (3.74)

in the large g-limit. We can now also perform tests for k > 1 by resumming the
asymptotic large order relation, i.e. we can test the exact large order relation (3.70).
Similar to example 3.2.3, we do not have an exact Borel transform B[F̂ (k)](t) at
our disposal, so we replace this function by its (diagonal) Padé approximant in the
integration and define

r(k)g ≡ Sk
1 e

−g log(k)

∫ ∞−iϵ

0

dvPB_N [F̂ (k)](v)e−gv . (3.75)
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A numerical evaluation of the integral yields, for example for g = 20:

r20 ≈ 1.386394325206770660 i ,

r20−r(1)20 ≈ 0.000000879112757638 + 0.000000000111827370 i ,

r20−(r
(1)
20 +r

(2)
20 ) ≈ 0.000000000000643417− 0.000000000223651298 i ,

r20−(r
(1)
20 +r

(2)
20 +r

(3)
20 ) ≈ −0.000000000000643249− 0.000000000000010324 i . (3.76)

To obtain these numbers, we used the N = 100 diagonal Padé approximant. We observe
that r(1)20 already matches the exact value r20 to 7 decimal places and adding further
r
(k)
20 improves the approximation even further.

In [27], a nice way to visualize approximations with an increasing number of
nonperturbative sectors was introduced. In Fig. 3.9a, we compare rg to the resummed
large order relation for 1 ≤ g ≤ 30 and up to twelve nonperturbative sectors in this
way. The vertical axis shows the precision, defined by

log10

∣∣∣∣∣ rg

rg −
∑n

k=1 r
(k)
g

∣∣∣∣∣ , (3.77)

and n ranging from 1 to 12. In Fig. 3.9b, we also test Eq. (3.71) by changing
the integration path in Eq. (3.75) to the [0+] contour and using the Borel residues
Eq. (3.23) – i.e. we replace Sk

1 by −(−S1)
k. It is important to realize that we must do

both replacements: the large order relation only gives exact results when we use the
Borel residues that correspond to the chosen integration contour. We observe that once
we do this, both resummations of the large order transseries match the exact values rg
with an extraordinarily small error.

In Sec. 3.1.3 we discussed the derivation of the classical ‘asymptotic’ large order
relation which expresses the large g behaviour of the perturbative coefficients φ(0)

g

in terms of the large order transseries shown in Eq. (3.35). In the present section
we learned that we can also express those same perturbative coefficients as the
resummation of the large order transseries, without invoking any large g limit. It is
therefore natural to wonder if Eq. (3.70) is an exact large order relation, in the sense
that its right hand side computes the perturbative coefficients φ(0)

g also at finite g

to arbitrary precision. Figs. 3.9a and 3.9b support this idea, as both resummations
describe the perturbative coefficients with extraordinary precision. Let us discuss this
possibility of exactness somewhat further.

One possible objection that one might raise against this assertion is that a fi-
nite number of perturbative coefficients φ(0)

g can be changed ‘by hand’ by adding a
polynomial to φ(0)(z), without altering the instanton coefficients that determine the
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Figure 3.9.: In (a) we show the precision – defined by Eq. (3.77) – of the resummed large
order transseries along the [0−] contour. We plotted the values for g ranging
from 1 to 30 and n ranging from 1 to 12. In (a) we used an integration contour
below the real line as in Eq. (3.75). In (b) we show a similar plot where we
used an integration path along the [0+] contour instead.

resummation on the right hand side of Eq. (3.70). Therefore, how can that equation be
used to exactly compute all φ(0)

g ? As we will explain now, this apparent contradiction
is resolved by the contribution at infinity to the Laplace transform that appeared in
Eq. (3.25) but that we have ignored in what followed.

Imagine that indeed we wish to alter a select number of perturbative coefficients
by adding a polynomial to the original series φ(0)(z) as follows:

φ̃(0)(z) = φ(0)(z) +
G∑

g=0

agz
−g , (3.78)

thereby altering the values of φ(0)
g with g ≤ G to φ̃

(0)
g = φ

(0)
g + ag. Clearly, the

large order behaviour of the perturbative coefficients φ̃(0)
g is unaffected by such a

modification and hence the instanton coefficients φ̃(k)
h = φ

(k)
h also remain unchanged.

However, the exact large order relation for φ̃(0)
g at finite g ≤ G must differ from the

original by ag. To see how this happens, we first note that the Borel transform of our
new series φ̃(0) reads

B[φ̃(0)](t) = B[φ(0)](t) +

G∑
h=0

ah
h!
th . (3.79)

The first term on the right hand side, when inserted into Eq. (3.25), yields the familiar
exact large order relation of φ(0)

g when we follow the contour deformation as explained
in Sec. 3.1.3. The second term on the right hand side, however, leads to poles at t = 0
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and t = ∞. If we deform the contour away from zero to t = ∞ we obtain

φ̃
(0)
g

g!
=
(
exact large order relation of φ(0)

g

)
+

G∑
h=0

ah
h!

1

2πi

∮
t=∞

th−g−1 dt . (3.80)

An elementary residue computation shows that the latter term is simply ag/g!, as
required. We can even extend the argument to the case that G = ∞, as long as the
power series that is then added in Eq. (3.78) has a non-zero radius of convergence:
the large order behaviour is unaltered and therefore the instanton coefficients of the
large order relation will remain unchanged. The Borel transform of such a series with
a nonzero radius of convergence will moreover be analytic in the whole complex plane
and hence, as with the polynomial, a residue computation at infinity will again simply
add the coefficient ag/g! to the exact large order relation. In the next section, we
will discuss a contribution at infinity of this kind in some more detail for the quartic
partition function.

A final interesting aspect of the exact large order relation is the fact that, since the
right hand side is now a function of g, we can carry out the resummation even when g
is not a positive integer. In fact, we can resum the large order transseries for arbitrary
complex values of g. If we regard the perturbative coefficients as a prescription to
assign values φ(0)

g to positive integers g, one can wonder whether the resummation of
the large order transseries for arbitrary g provides a natural extension of this map
φ
(0)
g : N → C to the complex domain. We will discuss this question for a specific

example in the next section.

3.3. A worked out example

In the previous section we derived the exact large order relation, Eq. (3.70), for the
perturbative coefficients of an asymptotic transseries. Although our derivation of
this relation is only valid for integer values of g – for example because in the Cauchy
integral representation of Eq. (3.24) one can only extract residues when g is integer
– nothing prevents us from studying the resulting equation for generic real or even
complex values of g. In this section, we want to find out to what extent the large order
relation is truly exact. We do so by studying the example of the quartic partition
function – closely related to the quartic free energy that featured in several previous
examples – for which the perturbative coefficients φ(0)

g have a closed form expression
which admits a natural extension5 to complex g.

5We will be careful in using the word ‘extension’ rather than (analytic) ‘continuation’, since a
function which is only known at integer values of g does not have a unique analytic continuation
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3.3.1. Quartic integral and free energy

So far in this chapter, we have used the quartic free energy in various examples to
illustrate some of the concepts and perform numerical checks on the formulas we
derived. For the purpose of the storyline, we kept the examples small and restricted
ourselves to the necessary details, postponing a more detailed introduction of the
model to the present section. Of course, the quartic model is a favorite toy model in
many resurgence studies, so the interested reader can find many further applications
of this model elsewhere, notably in [71].

Let us start by considering the quartic partition function

Z(ℏ) =
1

2π

∫
Γ

dw e−
1
ℏV (w) , (3.81)

where V (w) is a quartic potential defined by

V (w) =
1

2
w2 − λ

24
w4 , (3.82)

and Γ is an infinite contour in the complex w-plane chosen such that the integral
converges. The parameters ℏ and λ can be arbitrary nonzero complex numbers. One
can think of Eq. (3.81) as a zero-dimensional path integral, hence the name ‘partition
function’ for Z(ℏ).

By defining x ≡ λℏ and changing the variable w →
√
ℏw, Eq. (3.81) can be

written as6

Z(x) =
1√
2π

∫
Γ̃

dw e−
1
2w

2+ x
24w

4

, (3.83)

where Γ̃ is the curve obtained from Γ by the above rescaling. The partition function
can be shown to satisfy the second-order linear differential equation

16x2Z ′′(x) + (32x− 24)Z ′(x) + 3Z(x) = 0 . (3.84)

In the next subsection, we will consider the transseries solution to this differential
equation and test the exact large order relation, Eq. (3.70), for this transseries.

Before we do so, let us introduce the quartic free energy F = logZ, which is
the model we discussed in the examples 3.1.1 and 3.2.1 – 3.2.4. Using Eq. (3.84),
it is straightforward to show that F satisfies the following nonlinear second order

to complex values of g. Thus, our extensions will not be unique – our claim, rather, is that in a
resurgence setting they constitute a natural choice.

6For convenience, we change the overall normalisation by a factor
√
ℏ/(2π); see [71] for more details.
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differential equation:

16x2F ′′(x) + 16x2 (F ′(x))
2
+ (32x− 24)F ′(x) = 0 . (3.85)

Being a second order ODE, the solution to Eq. (3.85) has two integration constants
and is therefore described by a two-parameter transseries which turns out to have the
form

F (x, σ, ρ) =

∞∑
n=0

σn e−
nA
x

∞∑
g=0

F (n)
g xg + ρ , (3.86)

with instanton action A = 3/2 and σ and ρ the transseries parameters. This expression
was used in example 3.1.1. As Eq. (3.85) is a non-linear ODE, one obtains infinitely
many instanton sectors F (n) with evenly spaced actions nA, leading to the pattern
of Borel plane singularities of Fig. 3.3. By plugging the transseries Eq. (3.86) into
Eq. (3.85), one can obtain recursive relations to determine the instanton coefficients
F

(n)
g that can be found in App. B of [71].7

3.3.2. Test of the exact large order relations

We want to test the exact large order relation, Eq. (3.70), for the quartic partition
function. We therefore need the solution to the second-order linear ODE of Eq. (3.84),
which takes the form

Z(σ0, σ1, x) = σ0Z
(0)(x) + σ1 e

−A
x Z(1)(x) , (3.87)

with the same instanton action A = 3/2 as for the quartic free energy, but now only
two asymptotic series:

Z(0)(x) =

∞∑
n=0

Z(0)
g xn , Z(0)

g =

(
2

3

)g
(4g)!

26g (2g)! g!
,

Z(1)(x) =

∞∑
n=0

Z(1)
g xn , Z(1)

g = − i√
2

(
−2

3

)g
(4g)!

26g (2g)! g!
. (3.88)

7In [71], the instanton sectors F
(n)
g are labeled as F

(n,0)
g . Furthermore, because the integration

constant ρ is simply an additive constant, the two-parameter transseries in (3.86) is dubbed a
‘1.5-parameter’ transseries there.
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The corresponding 0-Borel transforms of the two asymptotic sectors can be expressed
in closed form in terms of hypergeometric functions and are given by8

B[Z(0)](t) = 2F1

(
1

4
,
3

4
, 1;

2t

3

)
,

B[Z(1)](t) =− i√
2
2F1

(
1

4
,
3

4
, 1;−2t

3

)
. (3.89)

With the expressions for the partition function at our disposal, we can now plug these
results into Eq. (3.70). The exact large order relation for the coefficients Z(0)

g consists
of only a single term on the right hand side:

Z(0)
g = − S1

2πi
Γ(g + 1)A−g

∫ e−iθ∞

0

dtB[Z(1)]

(
3

2
(et − 1)

)
e−gt , (3.90)

where θ = arg(g) and the Stokes constant reads S1 = −2. Let us explain the integration
path in Eq. (3.90). The extension of our exact large order relation to generic real and
positive g is straightforward, but in the case of complex g we need to be careful: when
the real part of g, ℜ(g), is negative, any Laplace integral going from 0 to +∞ along
the real t-axis will not converge. Hence we need to adjust the angle along which we
integrate as we move g through the complex plane. The correct way to do this is to
set the angle of integration to −θ. This will moreover ensure that the Laplace integral
converges as rapidly as possible, which is desirable from a numerical computational
point of view.

If we regard the perturbative coefficients Z(0)
g in Eq. (3.88) as obtained from a

function whose domain consists of integers g ∈ N, then this function admits a natural
extension to the domain of complex numbers:

Z(0)
g =

(
2

3

)g
Γ(4g + 1)

26g Γ(2g + 1)Γ(g + 1)
, (3.91)

i.e. we replace the factorials by gamma functions.9 The first question that we want to
address is whether the exact large order relation can reproduce the exact value of Z(0)

g ,
defined in this way, for real positive g. The answer to this question is shown in the
upper graph of Fig. 3.10a for the real part of Z(0)

g . (One obtains similar plots for its
imaginary part.) The solid red line plots the exact value of Eq. (3.91), and the round
blue markers are computed using the right hand side of Eq. (3.90). The triangular

8Notice that in [71], the 1-Borel transform was used.
9Strictly speaking we also need to define cg for constant c as eg log c and pick a branch for the

logarithm, but we can ignore this subtlety in what follows and simply assume that cg is always
extended in the ‘natural’ way from integer g.
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(d) arg(g) = π

Figure 3.10.: Results of the numerical integration of the exact large order relation for
the quartic partition function for four different values of arg(g) and with |g|
(horizontal axis) ranging from 0 to 2. In the upper graphs in each panel, we
show in red (solid line) the real part of the exact value of Z(0)

g , Eq. (3.91).
The round blue markers display the numerical results for Eq. (3.90), whereas
the green triangle markers show the results for Eq. (3.92), with Stokes’
phenomenon taken into account. The Stokes phenomenon, which occurs at
arg(g) = π/2, explains why the blue markers match the red line in Figs. (a)
and (b), and the green markers do so in (c) and (d). In the lower graphs in
each panel, we show the ratio of the exact and computed values. We achieve
a good accuracy for |g| > 0.5, whereas for smaller values of |g|, the numerical
accuracy decreases due to the exponential factor in the Laplace integral which
becomes large in this regime. In (d), we shifted |g| by 1/1000 in the numerical
integrations to avoid computing ratios of infinities. The lower graph shows
that even close to the singularities, the exact large order relation works to
great accuracy.
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green markers in this plot will be explained shortly. The lower graph depicts the ratio
between the exact and computed values. Clearly, the two expressions match nicely
also for non-integer g. Notice that there are no singularities on the integration path –
i.e. on the real positive line – of Eq. (3.90), so we do not need to deform the contour
here.

We can also consider negative real values of g. For this, we need to rotate the
phase of g from 0 to π and rotate the direction of the integration contour in Eq. (3.90)
to −∞ in the opposite direction, as we explained before. In Fig. 3.10d we show the
result. At first sight our conjecture of exactness of Eq. (3.90) seems to fail, as the blue
markers clearly fail to accurately describe the analytic expression for Z(0)

g . However,
there is a simple reason for this: the Borel transform B[Z(1)]

(
3
2 (e

t − 1)
)

has numerous
singularities along the imaginary axis, and these induce a Stokes phenomenon when the
integration contour crosses this axis. Hence, when we rotate the contour of integration
to the negative axis in the Borel plane, we pick up nonperturbative corrections that
we need to include. Taking these nonperturbative contributions into account we find
for ℜ(g) negative that

Z(0)
g = − S1

2πi
Γ(g + 1)A−g

(
1− 2e2πig

1 + e4πig

) ∫ e−iθ∞

0

BZ(1)
(
A(et−1)

)
e−gtdt , (3.92)

The nonperturbative corrections are therefore described by including the additional
factor

− 2e2πig

1 + e4πig
, (3.93)

as we derive in App. A.3. Using Eq. (3.92) we obtain the green (triangular) markers
in the different panels of Fig. 3.10. Indeed, these markers describe the exact values of
the perturbative coefficients for ℜ(g) < 0, as one can see in Fig. 3.10d.

Now, we can also test the exact large order relation for complex values of g. The
most interesting values are those for which the integration contour in the Borel plane
is near the Stokes line. To clearly see the Stokes phenomenon, we have therefore tested
the exact large order relation for arg(g) = 0.45π (Fig. 3.10b) and arg(g) = 0.55π

(Fig. 3.10c). Before the Stokes phenomenon takes place – which happens at θ = 0.5π –
we observe that the blue markers obtained using Eq. (3.90) correctly describe Z(0)

g .
Conversely, the green markers Eq. (3.92) describe Z

(0)
g correctly after the Stokes

phenomenon has occurred. Note that in particular the difference between the blue
and green markers in Figs. 3.10b and 3.10c becomes more significant when g is very
small, since – as is always the case for a Stokes transition – the two differ by a
nonperturbative, exponentially small contribution in the large g expansion.



Resurgence of large order relations 71

3.3.3. Discussion

The analysis in this section has shown that for the quartic partition function, the exact
large order relation, Eq. (3.92), describes the natural extension of the perturbative
coefficients, Eq. (3.91), to the complex g-plane to high numerical precision. To
make this work, we needed to account for the Stokes phenomenon, showing that this
phenomenon plays an equally important role for large order transseries as it does for
‘ordinary’ ones.

It is important to realize, though, that as the perturbative coefficients φ(0)
g are

only defined for positive integers g, the extension to complex g is in general not
unique. The extension of the factorials to gamma functions was the natural choice
– in a sense, we make the same choice as one does when using the Laplace integral
(which defines the gamma function) in Eq. (2.4) to reintroduce the factorials after
having performed a Borel transform. Less natural options are certainly available: one
could for example extend the factorials to Hadamard’s gamma function, but with this
replacement Eqs. (3.90) and (3.91) would no longer lead to the same result.

One may now wonder whether the exact large order relation for complex g only
worked for this specific example, or if it works in general. Let us first emphasize that
for more complicated (non-linear) examples one cannot even give a ‘natural’ extension
of φ(0)

g to complex values of g. Furthermore, deriving the integral expression of the
exact large order relation by other means that provide a natural smooth g-dependence
– as we were able to do in App. A.3 for Eq. (3.90) – is not possible in general. In fact,
we can turn things around and say that the exact large order relation itself defines the
most natural extension to the complex g-plane of φ(0)

g . Of course, as the example of
the partition function shows, if we want to define an extension to complex g in this
way, Stokes’ pheneomenon must be taken into account carefully. A final subtlety is
that we have ignored a potential contribution at infinity in the Cauchy integral that is
used to extract φ(0)

g from the Borel transform, also when we took g non-integer. Let
us now discuss this subtlety for the quartic parition function.

To this end, let us ask under which conditions a contribution at infinity of the
form ∮

∞

dt

2πi

B[φ(0)](t)

tg+1
, (3.94)

is nonzero. In the explicit example of the quartic partition function, we already found
a match between the resummed large order transseries without such a contribution
and the exact value of the perturbative coefficients for values of g throughout the



72 Resurgence of large order relations

complex plane. This seems to suggest that in this example the contribution at infinity
vanishes for any g, but is this really the case?

Because we have an explicit expression for the Borel transform of the quartic
partition function, we can expand it around t = ∞ and obtain

B[Z(0)](t) ≃ t−
1
4

∞∑
n=0

an

(
1√
t

)n

, (3.95)

where the coefficients an depend on a branch choice at infinity of the hypergeometric
function. Since the Borel transform goes to zero as t approaches infinity, the integral
of Eq. (3.94) vanishes for ℜ(g) > 0: consider a circular path CR of radius R, then the
integral scales as ∫

CR

dt

2πi

B[Z(0)](t)

tg+1
≃ O

(
R−g−1/4

)
, (3.96)

which for ℜ(g) > 0 vanishes as R → ∞. When we complexify g and rotate into the
half-plane where ℜ(g) < 0, the situation is complicated. Formally, the contribution at
infinity should diverge and therefore the exact large order relation should break down.
However, this is not what we found in this section: remarkably, the exact large order
relation seems to hold, even when ℜ(g) < 0, if we account for the Stokes phenomenon
of B[Z(1)]

(
3
2 (e

t − 1)
)
. It is noteworthy, however, that the integrand of Eq. (3.94),

when we plug in the expansion Eq. (3.95), has a simple pole – with residue an – at
infinity whenever g = − 1

4 − n
2 for a nonnegative integer n. These are exactly the

values of g for which both sides of the large order relation (3.92) diverge and where a
finite contribution an would be neglectable anyway – see also Fig. 3.10d. Formally,
this argument is invalidated by the fact that the residue is defined as the coefficient of
the simple pole in a Laurent series expansion in t, which the above series is not – it is
an expansion in fractional powers of t. Yet, the fact that the series has simple poles
for the same values of g for which the coefficient Z(0)

g diverges, does not seem like a
coincidence.

It would be interesting to better understand the nature of the contribution at
infinity and how in the end it does or does not contribute to the exact large order
relation for complex values of g, as well as to what extent this holds true for other
transseries. In this regard, note that this example is much simpler than generic large
order transseries, since there is only a single instanton sector and hence no Stokes
transitions Sn across horizontal lines on the Borel cylinder to account for. In fact,
‘unwrapping’ the Borel cylinder for a fully nonlinear problem, one would find an infinite
number of diagonal Stokes lines in the large order Borel plane, each containing a single
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primitive instanton action plus all its positive integer multiples. Combining all of the
corresponding Stokes automorphisms into a single one that rotates from the positive
to the negative real t-axis seems to be a very difficult task.

Finally, let us comment on the nature of the Stokes phenomenon, computed in
Eq. (A.21), of the Borel transform B[Ẑ(1)](t) ≡ B[Z(1)]

(
3
2 (e

t − 1)
)

in the example of
the quartic partition function. Usually, when an asymptotic series undergoes a Stokes
phenomenon, it ‘jumps’ by an exponentially small factor e−A/z multiplied by a diferent
asymptotic series. On the contrary, here we observe that the series Ẑ(1)(x) jumps
by an exponentially small factor multiplied by itself. This phenomenon is known as
self-resurgence and appears also in the context of WKB solutions (see e.g. section 5
of [73]). Using asymptotic large order relations, we have checked explicitly that the
higher order terms of the formal power series Ẑ(1)(x) probe the lower order terms of
that exact same series. From the dependence on et − 1, one sees that the singularities
at t = 2πin for nonzero integers n in the Borel cylinder of B[Ẑ(1)] correspond to
the origin in the original Borel plane of B[Z(1)]. This shows that there is actually a
nonzero Borel residue at the origin on the other sheets of the multisheeted (original)
Borel plane – i.e. if one takes a path around some of the other singularities. This is
a particular example of the multivaluedness of the Borel residues that we discussed
in Sec. 3.1.2. This particular type of Stokes phenomenon for large order transseries
appears in this example because both Z(0) and Z(1) know about each other – that is:
S0→1 and S1→0 are both nonzero. In the context of nonlinear ODEs, one always has
that the residues Sk→0 vanish, and hence the same effect does not occur in the Borel
cylinders of the first sector B[φ̂(1)] – see e.g. Figs. 3.1a, 3.1b and 3.2a. Even in those
examples, though, it does occur for the higher sectors B[φ̂(k>1)] – see e.g. Fig. 3.6a,
where we do find singularities at t = 2πin for integer n ̸= 0.

3.4. Conclusion

Large order relations are a powerful tool for decoding fluctuations in higher non-
perturbative sectors. They have been used extensively in a wide variety of physical
models. In this chapter, originally motivated by the desire to understand the repeating
singularity structure found in Fig. 3.1, we have taken a closer look at the generic
underlying transseries structure of these large order relations. We have argued that
for rather generic transseries – only assuming the resurgent structure of Eq. (3.4) –
we can fully explain this observed singularity structure, as described by Eq. (3.42).
We have seen that the large order transseries is constructed out of rescaled Stirling
transforms φ̂(k) of the original instanton sectors, and that these formal power series
have a Borel cylinder rather than a Borel plane: t ∼ t+ 2πi.
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We derived the Stokes automorphism S0 of the large order transseries across
the positive real axis of this Borel cylinder, which turns out to be qualitatively the
same as that of the original transseries, expressed in terms of the Stokes matrix S in
Eq. (3.13). After establishing further automorphisms Sn across copies of the positive
real axis, we obtained a clear and unambiguous resummation procedure for the large
order transseries which, after establishing the exact large order relations Eq. (3.73), is
expected to compute the perturbative coefficients φ(0) exactly in many cases. We have
checked the ‘exactness’ of this statement for the quartic partition function, where we
found that the exact large order relation holds, even for complex values of g, and that
Stokes phenomenon for the large order transseries plays an important role to make
this happen.

From a practical point of view, what we have gained is a clear understanding of
the precise contour along which one is supposed to resum the large order transseries
sectors with a given set of Borel residues in order to succesfully probe higher order
instanton coefficients φ(k>1)

h . Having established a clear understanding of its Stokes
phenomenon, we can now also resum the large order transseries along other contours
using the automorphisms Sn. We would like to stress that our analysis makes no
assumptions about the Stokes data of the underlying transseries: we formulated our
results in terms of generic Borel residues rather than specific Stokes constants.

From a more conceptual point of view, it is interesting that the exact large order
relation does not only compute the perturbative coefficients φ(0)

g , but also allows us to
extend them to complex values of g. It is striking that the exact large order relation for
the quartic partition function, which we tested thoroughly in Sec. 3.3, seems to work
for all complex values of g – if we take the Stokes phenomenon explained in App. A.3
into account – and does not seem to be spoiled by the contribution at infinity in the
Cauchy integral. Of course, this is only a single example, but it would be interesting
to see more examples where this contribution might or might not be relevant.

A first open question that would be interesting to address is therefore whether the
example of the quartic partition function is special or whether the exactness that we
found holds for large classes of examples, either because contributions from infinity
are absent or because we can pinpoint such contributions and correctly take them into
account. This question is intimately related to the question whether our techniques
(and in particular the Stirling transform) can lead to numerical gain: while from the
computations that we have performed the use of the Stirling transform does not seem
to lead to much faster numerics for large values of g, it may lead to improvements for
small values of g – but to compute at such values, it is crucial that many contributions
to the exact large order relation – including potential contributions from infinity – are
properly taken into account.
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The results of this chapter can most likely be generalized to broader settings, and
it would be interesting to explore some of those. Here, one can think of transseries with
multiple Stokes lines, transseries with logarithmic terms (such as resonant transseries),
transseries that have additional parameters and display the higher order Stokes
phenomenon of [74], etc. While we do not expect major qualitative differences in such
cases, it would still be good to extend the large order toolbox that we have developed
to these settings.

The geometry of the Borel cylinder also begs to be explored further. While
the t ∼ t + 2πi symmetry in the Borel plane of the large order transseries is exact
when we explore positive integer g, in more general cases our expressions involved
factors of e−2πig for each shift in the imaginary direction. This seems to hint at a
structure where the quantities that we compute, rather than functions on the Borel
cylinder, are sections of a bundle over this cylinder. Exploring this possibility may
lead to an even better, more geometric understanding of large order relations. Another
geometric question arises from the fact that the locations of the singularities on the
Borel cylinder are the logarithms of the locations of the singularities of the original
transseries. This may suggest that we should not only think of sectors φ̂(k) associated
to singularities at log(k), but that one can also think of a sector φ̂(0) that encodes the
original perturbative series and that has been shifted to the end of the Borel cylinder
at −∞.





Chapter 4.

From renormalons to resurgence
This chapter is based on Secs. 2 and 5 of [1].

The perturbative description of gauge theory quantities in terms of a coupling constant
is of central importance to our understanding of such theories, and thereby our ability
to use them for phenomenology. A full description of these quantities in fact should
include non-perturbative contributions, usually in the form of power corrections,
themselves multiplied by associated perturbative series in the coupling constant. The
direct calculation of such non-perturbative corrections is in many cases very challenging,
and often not even fully understood.

From the previous two chapters we know that access to non-perturbative corrections
can be gained via the perturbative series itself. Being an asymptotic series, the series
sum must be properly defined. The intrinsic ambiguities of such a definition take the
form of non-perturbative power corrections. This interesting aspect of perturbative
series was first explored in [75, 76] and in particular in [11], where the factorial growth
of the perturbative series due to fermion loop diagrams was discussed, and termed
renormalon divergence. In this chapter – and in more depth in the next chapter, using
the mathematical techniques of resurgence – we shall explore such aspects for the
Adler function [77]. The application of resurgence to renormalon physics was first
studied in [35, 78–80] and investigated in followup-works by these authors. Other
interesting recent developments are e.g. in [81] and in a series of papers starting with
[37] and summarized in [82]. Excellent reviews on renormalons are [83, 84].

In Sec. 4.1, we briefly discuss the Adler function to introduce the standard
renormalon lore. We schematically show how so-called bubble diagrams lead to
factorialy growth and explain the distinction between UV and IR renormalons. We
next show how bubble diagrams naturally show up in the so-called flavour expansion.
In particular, we derive a convolution integral in the Borel plane that is the starting
point of Sec. 4.2. In this section we discuss a novel new way to study renormalons by
studying the resurgence properties of this convolution integral. We discuss numerous
examples that are most relevant for the next chapter, where we study the resurgence
properties of the Adler function in more depth. However, the result of Sec. 4.2 can be
applied to a broader class of problems.

77
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4.1. Renormalons

We consider the Adler function D(Q2) [77], which is defined as the logarithmic
derivative with respect to Q2 of the vacuum polarization Π(Q2) in gauge theory:

D(Q2) = 4π2Q2 dΠ(Q2)

dQ2
, (4.1)

where Π(Q2) is related to the correlator of two vector currents jµ = ψ̄γµψ,

(−i)

∫
d4x e−iqx ⟨0|T

{
jµ(x)jν(0)

}
|0⟩ = (qµqν − ηµνq2)Π(Q2) , Q2 = −q2 . (4.2)

The Adler function has long featured as an object to study asymptotic behaviour of
perturbative series and renormalons, see e.g. [85–87]. This is because, as a self-energy,
it depends on only one scale, and because its imaginary part, for timelike Q2, is
directly related to the so-called R-ratio of the inclusive e+e− cross section to hadrons
and muons.

The perturbative expansion of the Adler function is typically expressed in terms
of Feynman diagrams. A class of diagrams that by itself lead to factorial coefficient
growth, and are typical for renormalons, are bubble-chain diagrams, in which n

fermionic self energies are inserted in the photon or gluon propagator, see Fig. 4.1.
For QED and QCD, the type of (renormalon) singularity in the Borel plane depends
on the loop-momentum regions of these diagram, specifically the ultraviolet (UV) and
infrared (IR) ones. We review this in the next subsection.

4.1.1. UV and IR renormalons

Consider the one-loop vacuum-polarization graph (“bubble”) in Fig. 4.1a. Its expression
in d = 4− 2ϵ dimensions reads

Πµν = (kµkν − k2ηµν)π(k, µ) (4.3)

with

π(k, µ) =
−2iNfe

2µ2ϵ

(2π)d

(
2− d

1− d

)∫
ddq

1

(q + 1
2k)

2(q − 1
2k)

2
. (4.4)
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(a) (b)

. . .

Figure 4.1.: (a) One fermion bubble, (b) chain of fermion bubbles.

. . .

. . .

Figure 4.2.: Bubble chain inserted into Adler function.

This integral can be readily carried out using a Feynman parameter, leading to

π(k, µ) =
2Nfe

2

(4π)2

(
4πµ2

−k2
)ϵ

(2− 2ϵ)Γ(1 + ϵ)Γ(1− ϵ)2

ϵ (3− 2ϵ)Γ(2− 2ϵ)

=
αNf

3π

[
1

ϵ
− γE + log 4π − log

(−k2
µ2

)
+

5

3

]
+O(ϵ) . (4.5)

To remove the ultraviolet divergence in Eq. (4.5) one includes an MS counterterm,
which leads to

π(k, µ) = −αβ0f log
(−k2e−5/3

µ2

)
, (4.6)

where β0f = T Nf/3π, with T = 1 for QED and T = 1/2 for QCD. For the Adler
function, we consider the diagrams in Fig. 4.2, where a fermion bubble chain with n
bubbles is inserted. The diagrams, summed over the number of bubbles, yield the
expression

D = α

∫ ∞

0

dk̂2

k̂2
F (k̂2)

∑
n

[
αβ0f log

(
k̂2Q2e−5/3

µ2

)]n
, (4.7)

where k̂2 = −k2/Q2, and F represents the rest of the diagram (see [87]). We can
examine the n-dependence of the integral separately for small and large k̂2 (the
separation being defined by the argument in the logarithm in Eq. (4.7) being unity),
using the small and large k̂2 dependence of F . Up to subleading corrections in n the
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result [83, 87] reads

D =
CF

π

∞∑
n=0

αn+1
s

[
3

4

(
Q2e−5/3

µ2

)−2(−β0f
2

)2

n! +
1

3

Q2e−5/3

µ2
βn
0f n!

(
n+

11

6

)]
, (4.8)

where the first part is due to the IR behavior and the second to the UV behavior of the
integrand in Eq. (4.7). We see that bubble-chain diagrams produce factorial growth
at leading power in Nf , i.e. the n-bubble contribution is proportional to (αNf )

n.

To see what this implies for the Borel transform of the Adler function, we use
(2.3). For the IR case one finds (u ≡ −β0f t)

B[D]IR(u) ∼
1

u− 2
, B[D]UV(u) ∼

1

(u+ 1)2
, (4.9)

where we only exhibit the leading u-poles and suppress prefactors. As is known,
these poles become logarithmic branch cuts when two or more bubble chains are
present [88]. We will show this explicitly in Sec. 5.2. The IR renormalon pole in
Eq. (4.9) for QED lies on the negative Borel parameter axis, and vice versa for
the UV renormalon pole. As we will discuss in section 4.1.2, for QCD one changes
β0f → β0 = −(11− 2Nf/3)/(4π), which also implies a change of sign for u, so that
IR (UV) renormalon poles are on the positive (negative) real t axis.

As shown in Eqs. (2.4) and (2.8), the poles on the positive u-axis imply ambiguities
in the Borel-resummed perturbative series. In fact, they imply non-perturbative
corrections; the QCD version of the ambiguity in equation (2.8), due the pole at u = 2

in (4.9), is proportional to

e
2

β0α ∼
(
Λ

Q

)4

, (4.10)

with Λ the QCD scale parameter, and Q the scale of the Adler function. Non-
perturbative effects in QCD are proportional to this typically very small ratio, and
are often also referred to as power corrections. Our goal in the next chapter, then, is
to learn more about power corrections for the Adler function, using the methods of
resurgence introduced in chapters 2 and 3.

4.1.2. Flavour expansion

In the previous subsection, we discussed how bubble-chain diagrams cause perturbative
series to show factorial growth. To formalize this, let us consider the flavour expansion
of QED/QCD with Nf massless fermions. We can write an observable in perturbation
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theory as

F (α) =

∞∑
n=0

cn α
n, (4.11)

where, in general, the coefficients cn can be written as an expansion in Nf ,

cn = c(0)n + ...+ c(n−1)
n Nn−1

f . (4.12)

In this flavour expansion, we take the large Nf limit while keeping the ’t Hooft coupling
Nf α fixed. In this limit, the dominant contribution to cn is given by c(n−1)

n and we
therefore reorder the perturbative expansion as an expansion in 1/Nf :

F =
1

Nf

∞∑
n=0

c(n−1)
n (Nfα)

n

(
1 +O

(
1

Nf

))
. (4.13)

To see what diagrams go into each order of 1/Nf , recall the one-loop vacuum-
polarization graph (fermion bubble)

Πµν(k) = = (kµkν − ηµνk
2) π(k2), (4.14)

which we already calculated in Eqs. (4.4) and (4.6), where we found

π(k2) = −αβ0f
[
log

(−k2
µ2

)
+ C

]
, (4.15)

with C a scheme dependent constant – e.g. C = − 5
3 in the MS-scheme, as in Eq. (4.6).

We notice that such a fermion bubble counts as Nfα = O(1) in the flavour expansion.
Including the external lines, the effective photon propagator with n such fermion
bubbles reads

n ≡ ︸ ︷︷ ︸
n fermion bubbles

= − i

k2

(
ηµν − kµkν

k2

)[
− π(k2)

]n
, (4.16)

so that a bubble chain counts as (Nfα)
n = O(1) in the flavour expansion as well. In

other words, the coefficients c(n−1)
n in Eq. (4.13), and also the coefficients at higher

orders in the flavour expansion, can be computed by replacing virtual photons/gluons
by the bubble chain Eq. (4.16). From Eq. (4.15) it then follows that this leads to the
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inclusion of logarithms in the Feynman integral. As already explained in Sec. 4.1.1,
integrating over such logarithms in a Feynman integral leads to factorial growth.

Diagrams including the sum over bubble chains can be computed using the effective
(Dyson summed) propagator of such a bubble chain:

Dµν(k) = − i

k2

(
ηµν − kµkν

k2

) 1

1 + π(k2)
− iξ

kµkν
k4

, (4.17)

with ξ the gauge fixing parameter. However, instead of working with this Dyson-
summed effective propagator, it will be more convenient to work with its Borel
transform with respect to α (which appears in π(k2)), which reads [85]

B
[
αDµν(k)

]
(u) = − i

k2

(
ηµν − kµkν

k2

)(
− µ2

k2
e−C

)u

− iξ
kµkν
k4

, (4.18)

where we again rescaled the usual variable t in the Borel plane to u = −β0f t. Fur-
thermore, before Borel transforming we inserted an overall factor of α that will be
convenient later, when we perform the actual diagram calculations. When we have
nc > 1 bubble chains in a diagram, we can use the fact that the Borel transform
of a product of series is obtained by taking the convolution of the individual Borel
transforms:

B
[ nc∏
j=1

αDµjνj (kj)

]
(u)

=
1

(−β0f )nc−1

∫ u

0

[ nc∏
j=1

duj

]
δ
(
u−

nc∑
j=1

uj

) nc∏
j=1

B
[
αDµjνj

(kj)
]
(uj) . (4.19)

This can be verified by taking the Laplace transform of both sides of the equation
with respect to t. In Sec. 4.2 we give more details on the effect of the convolution
integral on the resurgence structure in the case of general nc. In Sec. 5.2, where we
discuss the Adler function at order 1/N2

f , we will only need the case nc = 2.

For the case of QED we notice that positive t corresponds to negative u, since β0f
is positive. For QCD one completes β0f to the full first coefficient of the β-function
β0 = −(11− 2Nf/3)/(4π) [83, 88, 89], so that now positive t corresponds to positive u
(thus, infrared renormalons appear on the positive u axis for QCD, and on the negative
axis for QED). In practice this implies that one can perform a QED calculation to
obtain the non-abelian counterpart in QCD by replacing β0f with β0 and by adding
the appropriate SU(3) color factors. In the literature, this procedure is also known
as “naive non-abelianization” [90–92]. We should mention here that for the large
Nf limit, β0 changes sign (this happens for Nf > 16) after which QCD is no longer
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asymptotically free. Hence, for QCD, instead of a large Nf expansion one uses a large
β0 expansion, and we rewrite Eq. (4.12) as an expansion in β0

cn = c̃(0)n + ...+ c̃(n−1)
n βn−1

0 . (4.20)

Thus, in the large β0 expansion for QCD, the expansion of a generic observable
Eq. (4.13) becomes

F =
1

β0

∞∑
L=0

c̃(n−1)
n (β0α)

n

(
1 +O

(
1

β0

))
. (4.21)

where we now define the ’t Hooft coupling as β0 α for the QCD case. In what follows,
we refer to the large Nf expansion for both QED and QCD, even though we use the
large β0 expansion in QCD. We perform our calculations in QED and in the end use
the procedure of naive non-abelianization to convert our results to obtain the QCD
result.

4.2. Using Borel convolution integrals for resurgence

We saw in the previous section that the flavour expansion is a useful framework to
isolate perturbative series that show factorial growth due to individual diagrams,
i.e. renormalons. At higher orders in 1/Nf , an important ingredient of the flavour
expansion is the convolution integral Eq. (4.19). In section 5.2, we shall apply this
integral to go beyond the leading order in the flavour expansion for the Adler function.
In this section, we discuss what the effect is of the convolution integral on the resurgence
structure. In particular, we will see momentarily that one does not need to know the
particular exact Borel transforms, but that the structure of the alien derivatives and
their calculus can be used instead. Although the techniques are a straightforward
application of the framework outlined in Sec. 2, in physics applications this is, as far
as we are aware, a novel way to study renormalon effects.

The results we present in this section have twofold use. First, they set up the
calculation of particular O(1/N2

f ) diagrams that we shall encounter in the next chapter.
The results, however, are more general and also apply to more complicated convolution
integrals which one would encounter at higher orders in 1/Nf . We explain, by means
of examples that are relevant for the next chapter, how the convolution integral ‘builds’
resurgent functions. The results will also show glimpses of the full resurgent structure
that would emerge upon including all orders in 1/Nf .
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4.2.1. Resurgence of the convolution integral

Given two asymptotic formal power series F (0)(α) and G(0)(α), we can define a new
power series Ψ(0)(α), which in general is again asymptotic, by taking the product:

Ψ(0)(α) ≡ F (0)(α)G(0)(α) . (4.22)

As explained in more detail in chapters 2 and 3, the resurgence properties of Ψ(0)

can be recovered from the singularities of the Borel transform. Here, the convolution
integral appears as the Borel transform of Ψ(0) is computed as

B[Ψ(0)](u) =

∫ u

0

du1 B[F (0)](u)B[G(0)](u− u1) , (4.23)

and the resurgence structure can be found using the relation Eq. (2.26) between the
different non-perturbative sectors B[Ψ(n)](u). However, except for simple examples,
performing the convolution integral might be a difficult task. We can study instead the
resurgence properties of Ψ(0) by using the alien derivatives. Acting with an arbitrary
alien derivative ∆ω yields

∆ωΨ
(0) = ∆ω

(
F (0)(α)

)
G(0)(α) + F (0)(α)∆ω

(
G(0)(α)

)
, (4.24)

since the alien derivative satisfies the Leibniz rule. Thus, the calculation of ∆ωΨ
(0)

has shifted to the calculation of ∆ωF
(0) and ∆ωG

(0). Consequently, if the resurgence
structure of F (0) and G(0) is known, one can compute the resurgence structure of
Ψ(0). As alluded to above, we will see in Sec. 5.2 that, with one exception, the
convolution integral Eq. (4.23) cannot be computed exactly. It will be easier to obtain
the resurgence properties of F (0) and G(0) instead of that of Ψ(0). Therefore, to
prepare our discussion in Sec. 5.2, and to show how Eq. (4.24) can be employed in
practice, we discuss in this section a few relevant examples. In these examples the
convolution integral can be computed exactly and therefore these computations act as
a check on the method of alien derivatives.

4.2.2. Convolution of pure factorial growth

Let us begin with the simplest possible model. Consider an asymptotic formal power
series where the perturbative coefficients show pure factorial growth:

F (0)(α) =

∞∑
n=0

Γ(n+ 1)αn+1 =⇒ B[F (0)](u) =
1

1− u
. (4.25)
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As the complete asymptotics of F (0) is determined by the pole of B[F (0)](u) in the Borel
plane, we know that in the full transseries there is just one possible non-perturbative
sector, F (1), which consists of only a single term SF

1 f
(1)
0 (α) = 2πi. As we will encounter

many different Stokes constants for different resurgent functions, we adopt the notation
in which we put the function name as a superscript on the Stokes constants, e.g. SF

1 .

Although the resurgence of F (0) is relatively simple, i.e.

∆1F
(0) = 2πi , (4.26)

with all other alien derivatives vanishing, we show in this section that F (0) can be
used as a building block to build more complicated resurgent functions. By taking
powers of F (0), we will show schematically how such a resurgence structure builds up.

Consider the formal power series

Ψ(0)(α) =
(
F (0)(α)

)2
, (4.27)

where its Borel transform is computed as

B
[
Ψ(0)

]
(u) =

∫ u

0

du1
1

1− u1

1

1− u+ u1
= −2

log(1− u)

2− u
. (4.28)

Having the exact Borel transform, we obtain the resurgence structure using Eq. (2.26).
Since we know that

B
[
Ψ(0)

]
(u) = −SΨ

1 B
[
Ψ(1)

]
(u− 1)

log(1− u)

2πi
, (4.29)

we can read off the result

SΨ
1 B
[
Ψ(1)

]
(u− 1) =

4πi

1− (u− 1)
. (4.30)

Transforming back to the α-plane, this corresponds to the formal power series

SΨ
1 Ψ(1)(α) = 4πi

∞∑
n=0

Γ(n+ 1)αn+1 . (4.31)

We see that in this ‘squared model’, the leading non-perturbative sector Ψ(1) is no
longer a single term but now shows pure factorial growth itself.

Though we were able to perform the convolution integral exactly and therefore
immediately read off the resurgence structure, it is instructive to obtain the same
result using alien derivatives. On the one hand, the bridge equation, Eq. (2.25), tells
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us that ∆1Ψ
(0) = SΨ

1 Ψ(1). On the other hand, we have by direct calculation

∆1Ψ
(0) = 2F (0)∆1F

(0) = 2

∞∑
n=0

2πi Γ(n+ 1)αn+1, (4.32)

where we used Eq. (4.26). We observe the same result as obtained from the exact
Borel transform in Eq. (4.31). Likewise, for the second non-perturbative sector Ψ(2)

we get

2
(
SΨ
1

)2
Ψ(2) = ∆2

1Ψ
(0) = 2∆1F

(0)∆1F
(0) = 2(2πi)2 , (4.33)

which is a sector with a single coefficient. Notice that this can also be related to the
expansion of Eq. (4.28) around u = 2 which reads

B[Ψ(0)(u)
∣∣∣
u=2

= ±2
πi

2− u
+ ... , (4.34)

where the ellipsis denotes regular terms. Up to a sign ambiguity this agrees with
Eq. (4.33). This ambiguity originates in the ambiguous expansion of the logarithm
log(1 − u) in Eq. (4.28) around u = 2. We come back to this point extensively in
Sec. 5.2.4, where we shall see how to resolve such ambiguities.

This simple example easily generalizes to higher powers of F (0)(α). For example,
consider

Φ(0)(α) ≡
(
F (0)(α)

)3
. (4.35)

The convolution integral to get the Borel transform B[F (0)(α)3] can still be done
exactly, but we stay in the α-plane and follow the second method we just used for(
F (0)(α)

)2. Acting once with ∆1 yields

SΦ
1 Φ

(1) = ∆1Φ
(0) = 3

(
F (0)

)2
∆1F

(0) = 6πi

∞∑
n=0

αn+2
n∑

h=0

Γ(n−h+1)Γ(h+1) . (4.36)

Acting twice with ∆1 yields

2
(
SΦ
1

)2
Φ(2) = ∆2

1Φ
(0) = 6F (0)

(
∆1F

(0)
)2

= 6(2πi)2
∞∑

n=0

Γ(n+ 1)αn+1 . (4.37)

Finally we have

6
(
SΦ
1

)3
Φ(3) = ∆3

1Φ
(0) = 6

(
∆1F

(0)
)3

= 6(2πi)3 . (4.38)
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F (0) F (1)

Ψ(0) Ψ(1) Ψ(2)

Φ(3)Φ(2)Φ(1)Φ(0)

Figure 4.3.: Alien chains for the convolution of an asymptotic power series where the
perturbative coefficients show pure factorial growth. The sectors with a filled
box are true asymptotic sectors, whereas the white boxes are not and consist
of a finite number of terms.

In Fig. 4.3, we show the alien chain built up with more sectors, more of which are now
asymptotic.

4.2.3. Convolution of power series with a double pole

In the next chapter we shall consider diagrams at order 1/N2
f in the flavour expansion.

We will encounter two generalizations of the above convolution integral of power series
with pure factorial growth, which we introduce and discuss already in this section.
The first generalization is the case that the large order relation of the formal power
series that we convolute with itself is determined by a double pole, treated in this
subsection. In the next subsection we address the convolution of a power series with
(infinitely many) evenly separated poles in the Borel plane.

Consider a power series F (0)(α) where the large order growth of the coefficients is
determined by a double pole in the Borel plane at u = 1, e.g.

F (0)(α) =

∞∑
n=0

Γ(n+2)

(
a+

b

n+1

)
αn+1 =⇒ B[F (0)](u) =

a

(1−u)2 +
b

1−u. (4.39)

Notice that we keep the option open for subleading growth coming from a (1− u)−1

term. We use a and b as a compact notation for f (1)0 and f
(1)
1 respectively. We are

again interested in the resurgence properties of

Ψ(0)(α) ≡
(
F (0)(α)

)2
. (4.40)
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The Borel transform of this power series is given by the convolution integral

B[
(
F (0)

)2
](u) =

∫ u

0

du1

(
a

(1− u1)2
+

b

1− u1

)(
a

(1− u+ u1)2
+

b

1− u+ u1

)
= 2

a2 + ab

1− u
− SΨ

1 B
[
Ψ(1)

]
(u− 1)

log(1− u)

2πi

− 2

(
2a2

(2− u)2
+
a2 + 2ab

2− u

)
, (4.41)

where in the second equality we emphasized the resurgence of the non-perturbative
sector Ψ(1), which has the explicit form

SΨ
1 B
[
Ψ(1)

]
(u− 1) = 4πi

(
2a2

(2− u)3
+

2ab

(2− u)2
+

b2

2− u

)
. (4.42)

Notice that, studying the singularities of these expressions around u = 2, it might
look like the second non-perturbative sector Ψ(2) gets contributions from both the
Ψ(1) sector and the last line in Eq. (4.41). However, as

log(1− u)
∣∣∣
u=2

= ±πi− (2− u)− 1

2
(2− u)2 + ... , (4.43)

the last line cancels against the (real part of the) expansion of the logarithm and
B[Ψ(1)] around u = 2.

The inverse Borel transforms of Eq. (4.42), together with the residue of the simple
pole at u = 1 in Eq. (4.41), yield the coefficients of the first non-perturbative sector

SΨ
1 Ψ(1)(α) = 4πi(a2+ab)+4πi

∞∑
n=0

2Γ(n+3)

(
a2+

2ab

n+2
+

b2

(n+2)(n+1)

)
αn+1. (4.44)

where, in the sum, we factored out the leading order growth Γ(n+ 3) coming from the
fact that Eq. (4.42) has a cubic pole in the Borel plane (recall Eq. (2.55)).

Instead of performing the convolution integral as in Eq. (4.41), we can again use
alien derivatives. Since

∆1F
(0) = 2πi

( a
α
+ b
)
, (4.45)
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we find

SΨ
1 Ψ(1) = 2F (0)∆1F

(0) = 4πi
( a
α
+ b
) ∞∑

n=0

Γ(n+ 2)

(
a+

b

n+ 1

)
αn+1 (4.46)

= 4πi(a2 + ab) + 4πi

∞∑
n=0

2Γ(n+ 3)

(
a2 +

2ab

n+ 2
+

b2

(n+ 2)(n+ 1)

)
αn+1 ,

which is indeed the same as in Eq. (4.44).

For this specific example there is another way to think about Eq. (4.46). Instead
of identifying the coefficients f (0)n , we rewrite Eq. (4.46) as

SΨ
1 Ψ(1) = 4πi

( a
α
+ b
) ∞∑

n=0

F (0)
n αn+1

= 4πi aF
(0)
0 + 4πi a

∞∑
n=0

f
(0)
n+1α

n+1 + 4πi b

∞∑
n=0

f (0)n αn+1 (4.47)

Next, consider a generic series and its Borel transform

G(α) =

∞∑
n=0

gnα
n+1 =⇒ B[G](u) =

∞∑
n=0

gn
Γ(n+ 1)

un. (4.48)

The derivative of the Borel transform yields

B[G]′(u) =
∞∑

n=0

gn+1

Γ(n+ 1)
un =⇒ H(α) =

∞∑
n=0

gn+1α
n+1, (4.49)

where in the last step we applied an inverse Borel transform. In other words, the
newly constructed series H(α), with coefficients those of G(α) but shifted: gn → gn+1,
corresponds to taking the derivative in the Borel plane. Applied to Eq. (4.47), this
implies

SΨ
1 B[Ψ(1)](u) = 4πi aB[F (0)]′(u) + 4πi bB[F (0)](u). (4.50)

We shall employ this observation in Sec. 5.2.

4.2.4. Convolution with equidistant singularities

A final case we need is where we take the convolution of perturbative series F (0) and
G(0), where the large order behaviour of their coefficients, f (0)n and g

(0)
n , come from

singularities at u = 1, 2, 3, ... in the Borel plane. Furthermore, we assume that we
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know both the resurgence properties of F (0) and G(0), i.e. we know the action of the
alien derivative ∆1:

∆1F
(0) = SF

1 F
(1) , ∆2

1F
(0) = 2(SF

1 )2F (2) , ∆3
1F

(0) = 6(SF
1 )3F (3) , (4.51)

etc., and similar for G(0), but now with the Stokes constant SF
1 replaced by SG

1 . This
is the standard structure of alien derivatives if one assumes that F (0) and G(0) are
one parameter transseries for which one can derive a bridge equation as we did in
Sec. 2.3. However, in the next chapter we will argue that the Adler function does not
necessarily has such a bridge equation – see in particular the discussion in Sec. 5.1.5).
Therefore, we also allow for non-vanishing actions of ∆2, ∆3, ∆4 etc. In fact, when
we apply the machinery of this section to the Adler function at order 1/N2

f , we see
that such ‘multiple steps forward’ alien derivatives indeed occur.

Using the Leibniz rule repeatedly, we may now also obtain the resurgence structure
of the product

Ψ(0) ≡ F (0)G(0) . (4.52)

In particular, to obtain the first non-perturbative sector Ψ(1), we can act with ∆1.
This yields

SΨ
1 Ψ(1) =

(
∆1F

(0)
)
G(0) + F (0)

(
∆1G

(0)
)
. (4.53)

In order to obtain the sector Ψ(2), we can act with ∆2
1, for which Ψ(2) gets contributions

from

1

2
∆2

1

(
F (0)G(0)

)
=

1

2

(
∆2

1F
(0)
)
G(0)+

(
∆1F

(0)
)(

∆1G
(0)
)
+
1

2
F (0)

(
∆2

1G
(0)
)
, (4.54)

and potentially also with a nonzero ∆2, for which the contributions come from

∆2

(
F (0)G(0)

)
=
(
∆2F

(0)
)
G(0) + F (0)

(
∆2G

(0)
)
. (4.55)

Likewise, an arbitrary sector Ψ(n) could get contributions from products of alien
derivatives of the form ∆n

1 , ∆n−2
1 ∆2, ∆n−3

1 ∆3, ..., ∆n.

4.2.5. Prefactor singularities

A final subtlety that we need to address is one that we will encounter at several points
in our computations. The Borel transforms in the convolution integral, Eq. (4.19),
may contain singular factors – in practice: poles – that only depend on the overall
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Borel plane variable u, not on the integration variables ui. Such singular factors can
therefore be taken outside the integral; see Eq. (5.45) and the expressions below it for
examples that we will encounter.

In the case of a transseries with non-perturbative exponentials A1 = −A2, these
overall singularities can be somewhat difficult to interpret. Clearly, singular prefactors
play a role in the singularity structure of the final Borel transform, and therefore
they will determine some of the structure of the full transseries solution that we are
after. However, since the singularities are not obtained by acting with a specific alien
derivative on one of the factors in the integrand, it is not always immediately clear to
which transseries sectors the expansions around them belong.

For example, an expansion in the Borel plane around u = A1 could describe a
(1, 0) sector, but also other (1 + n, n) sectors. When such an expansion comes from
actions of alien derivatives on factors in the convolution integrand, one can simply
read off which alien derivatives play a role and therefore which sectors appear. When
an expansion comes from a prefactor singularity, this is not the case. As a result,
in these cases one needs other arguments (e.g. comparing different expansions that
involve the same higher nonperturbative sectors) to determine the precise transseries
structure.

Some of our results on the transseries structure will therefore be conjectural,
depending on such additional arguments, though in many cases we can also fully pin
down the structure. We will even encounter situations where the extra singularities
are a virtue rather than a nuissance – occasionally, they help us to read off transseries
coefficients that would otherwise have remained hidden in a regular expansion, but
that now become part of the singular structure.

To summarize what we learned in this section, it is clear that the resurgence structure
of the convolution integral, Eq. (4.19), can be obtained in two ways: either directly
via the singularity structure of the Borel transform, or by applying alien derivatives
acting on the constituents of the convolution integral. The examples discussed in this
section were relatively simple and we were able to compute the convolution integral
exactly. However, generally, in harder problems it is difficult (if not impossible), to
compute the convolution integral exactly. In fact, as we see in the next section, this is
indeed the case for the Adler function at order 1/N2

f in the flavour expansion, so that
there we have to turn to the second method using alien derivatives. Let us emphasize
that this method is quite general, and certainly not only applicable to the resurgence
properties of the Adler function. It may further open the door to study renormalons
in physics in general.





Chapter 5.

Resurgence analysis of the Adler
function at O(1/N2

f )

This chapter is based on Secs. 4 and 6 of [1]. Compared to [1], new here
is the discussion on Stokes’ automorphism for the Adler function with

one bubble-chain and the natural choice of the two transseries parameters.

As discussed in the previous chapters, resurgence provides tools to systematically decode
non-perturbative information directly from the perturbative data. The techniques
usually require a substantial number of perturbative terms (of order 10 at least, and
for precision numerics of order 100), which explains why resurgence has not been
widely applied to particle physics and phenomenology yet. Let us note that more
broadly in quantum field theory, resurgence techniques have been introduced in e.g.
[35, 54, 93, 94] and follow-up works by the same authors. The time seems ripe for
applications to more phenomenologically relevant quantities, since for many observables
in particle physics a substantial number of perturbative terms can be computed. The
Adler function – already briefly introduced in the previous chapter – is a good starting
point. In fact, in this chapter, we shall be able to extract new non-perturbative results
for the Adler function at O(1/Nf ) and O(1/N2

f ), where Nf is the number of flavours in
the fermion loop diagram. The description of both perturbative and non-perturbative
contributions is conveniently summarized in a transseries [53] and here we will do the
same.

There has been much earlier work on renormalon contributions to the Adler
function [85–87, 91, 95–99], as well as their connection to its operator product expansion
[88, 100]. The Adler function appears in more recent renormalon studies [101–105],
including a study whether field theories can have renormalons beyond the usual Borel
plane [106]. The Adler function has recently been studied using resurgence techniques
[107, 108], based on renormalization group considerations [109, 110].1

1Note that in these works, assumptions are used that reproduce the expectations by Parisi and ’t
Hooft [11, 89, 100] that renormalons occur at half-integer multiples of 1/β0, the inverse of the
leading beta function coefficient. It was found recently [111] that in several examples, this pattern
is in fact not present – even though the breaking of the pattern only shows up at finite Nf and
not in a perturbative expansion in the reciprocal of that parameter.

93
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To obtain our perturbative data, we compute two- and three-loop skeleton diagrams
for the Adler function for gauge theory, using Eq. (4.18), the Borel transform of the
gauge field propagator with fermion loop insertions. For the two-loop case (O(1/Nf ))
we find, using our resurgence techniques, the complete transseries of the Adler function
due to renormalon contributions, including subleading effects, which reproduces and
extends earlier results in [85–87, 107].

Sec. 5.1 discusses how renormalons are usually studied for the Adler function: by
introducing a single bubble chain in the Feynman diagrams. This section contains
many known results, but we try to present these in a way that is most suitable for
a resurgent analysis. We give the exact expression of the Adler function at leading
order in the flavour expansion. Subsequently we perform the resurgence analysis of the
Adler function at this order, showing how resurgence and large order relations can be
used to extract all non-perturbative sectors in the corresponding transseries. We give
many details and checks on the resurgence analysis, to set up a solid framework that
can be used at higher orders in the flavour expansion as well. We finish this section
with a discussion on some of the more subtle issues encountered at this order.

Our aim is then to explore higher orders in the flavour expansion and investigate
which aspects of the leading order analysis persist, and which ones may even show
a richer structure. To accommodate the computations at next to leading order, we
developed in Sec. 4.2 a powerful convolution method that facilitates the calculation of
renormalon contributions due to adding new fermion-loop-summed propagators. In
Sec. 5.2 we then compute a set of planar diagrams present at next to leading order in
the flavour expansion of the Adler function. Although not all master integrals of the
(O(1/N2

f )) diagrams are known, we can investigate much of the resurgent structure
that occurs at order 1/N2

f . We discuss the non-perturbative sectors for individual
diagrams as well as the alien lattice structure, which is considerably richer than at order
1/Nf . We find non-perturbative asymptotic sectors, and alien derivative operators
that establish relations between these sectors. Moreover, we find a new logarithmic
type of non-perturbative power correction in the coupling constant plane. When we
put all ingredients together, an intricate transseries structure emerges. Our results
derive from thorough analytical and numerical analyses, which were already described
extensively in previous chapters.

We summarize our findings in Sec. 5.3 and discuss some open questions. We refer
to App. B for further background on the calculation of the diagrams.
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n

(a)

n

(b)

Figure 5.1.: Diagrams at O(1/Nf ) in the flavour expansion. Diagram (a) contributes with a
factor of 2 to account for the similar diagram where the bubble chain connects
below the vertices.

5.1. Adler function with one bubble chain (O(1/Nf))

We briefly discussed, in Sec. 4.1, how bubble chain diagrams cause the perturbative
series of the Adler function to show factorial growth. For clarity, let us recall the
definition of the Adler function. We consider the Fourier transform of the correlation
function of two vector currents jµ = ψ̄γµψ of massless quarks, which can be written as

(−i)
∫
d4x e−iqx⟨0|T{jµ(x)jν(0)}|0⟩ = (qµqν − ηµνq

2)Π(Q2) , (5.1)

with Q2 = −q2. The Adler function is defined as

D(Q2) = 4π2Q2 dΠ(Q2)

dQ2
. (5.2)

Understanding its asymptotic behaviour in perturbation theory and how this is related
to non-perturbative expansions will be the main focus for the rest of this chapter.
We use the flavour expansion to isolate the relevant Feynman diagrams that lead to
asymptotic series. In this section we focus on the diagrams in Fig. 5.1 that contribute
to the Adler function at leading order in the flavour expansion. In Sec. 5.2, we will
then discuss (a subset of) the diagrams at next-to-leading order in 1/Nf for the Adler
function.

Instead of calculating diagrams directly, we shall calculate their Borel transform, as
the bubble chain then simplifies to an analytic, regularized photon propagator – recall
Eq. (4.18). In what follows, we will work in Landau gauge, i.e. ξ = 0, and in d = 4

dimensions since the Adler function is UV finite after counterterms for the fermion
bubbles are included. As we will explain in the next subsection, the perturbative
coefficients of the Adler function itself can then be easily extracted by applying an
inverse Borel transform.
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The calculation of the diagram in Fig. 5.1a is relatively straightforward. Using
results of App. B.1 and B.2 one can show that the two-loop integral factorizes into
one-loop ones. With the one-loop master integral Eq. (B.1) we find

B[Πa(Q
2)](u) =

1

2π2

(
Q2

µ2
eC
)−u

1

u(u+ 1)(u− 1)2(u− 2)2
, (5.3)

where for notational simplicity we ignored an overall factor of the colour Casimir factor
CF that we will reinstate in our final expressions. In order to calculate the diagram of
Fig. 5.1b, one needs the two-loop scalar master integral given in Eq. (B.4). By similar
methods as for the diagram in Fig. 5.1a we derive

B[Πb(Q
2)](u) = − 1

6π2

(
Q2

µ2
eC
)−u[

6

u(u+ 1)(u− 1)2(u− 2)2

+
ψ(1)( 4−u

2 )− ψ(1)( 3−u
2 ) + ψ(1)(u+1

2 )− ψ(1)( 2+u
2 )

u(u− 1)(u− 2)

]
, (5.4)

with ψ(1)(z) = d2

dz2 log Γ(z) the trigamma function. Taking the two diagrams together
and using Eq. (5.2) to translate the result for Π(Q2) to that of the Adler function
D(Q2), we obtain the Borel transform of the Adler function at leading order (LO) in
the flavour expansion (which has also recently been derived in [112]):

B[DLO](u) = 4π2Q2 d
dQ2

[
B[Πb(Q

2)](u) + 2B[Πa(Q
2)](u)

]
=

2

3

(
Q2

µ2
eC
)−uψ(1)

(
4−u
2

)
− ψ(1)

(
3−u
2

)
+ ψ(1)

(
1+u
2

)
− ψ(1)

(
2+u
2

)
(u− 1)(u− 2)

. (5.5)

In the next subsection we use this result to perform the resurgence analysis, as the
expression allows for a straightforward expansion around u = 0. Note that this result
was already known in the equivalent forms [86]

B[DLO](u) =
32

3

(
Q2

µ2
eC
)−u

1

2− u

∞∑
n=2

(−1)nn

(n2 − (1− u)2)2
(5.6)

=
32

3

(
Q2

µ2
ec
)−u

1

2− u

∞∑
n=2

(−1)n

4(1− u)

[
1

(n− 1 + u)2
− 1

(n+ 1− u)2

]
, (5.7)

where the second form of this equation allows one to easily read off the pole structure.
We see that there exists an infinite set of both UV (u < 0) and IR (u > 0) singularities
at integer values of u, all of which are double poles, except for the singularity at u = 2
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u

1 2 3 4 5 6−1−2−3−4−5−6

Figure 5.2.: Singularities of B[DLO](u). The UV-renormalons lie at u = −1,−2,−3, ... and
the IR-renormalons at u = 2, 3, 4, .... Characteristic for the Adler function is
that the singularity at u = 1 is missing (see the discussion below Eq. (5.7)).

which is a single pole and the singularity at u = 1 which is absent,2 see also Fig. 5.2.
This also agrees with the calculation that led to Eq. (4.9), which presented the leading
IR and UV poles in the Borel plane. We should mention here that the singularity at
u = 1 really is absent: it is present in Eq. (5.3) and Eq. (5.4) separately, but cancels
when we take the two diagrams together. The fact that the IR renormalon at u = 1

is absent is characteristic for the Adler function and is already expected on physical
grounds, as there is no dimension-2 operator in the OPE for the Adler function with
massless fermions [88, 100].

5.1.1. Transseries Ansatz

Our goal is to construct the transseries for the Adler function. For the associated
resurgence analysis we need the perturbative coefficients of the leading order Adler
function DLO(Q

2) itself, i.e. we need to do an inverse Borel transform on the results
obtained in the previous subsection. In this section, and the sections hereafter, we
will work mostly with the variable u = −β0t as the actual Borel parameter instead of
t, so that singularities in the Borel plane are conveniently placed at integer positions.
Therefore, we expand the Borel transform Eq. (5.5) around u = 0 and write the result
as

B[DLO(Q
2)](u) =

∞∑
n=0

dn
Γ(n+ 1)

un, (5.8)

after which the perturbative coefficients dn of DLO can be read off:

D̂LO(α) =

∞∑
n=0

dnα̂
n+1 (5.9)

= α̂+

(
23

6
− 4ζ3

)
α̂2 + (18− 12ζ3) α̂

3 +

(
201

2
− 42ζ3 − 60ζ5

)
α̂4 + ...

2Note that although there appears to be a pole at u = 1 in Eq. (5.7), it vanishes because the
expansion around u = 1 of the terms in square brackets starts at order O(u− 1).
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Here α̂ = −β0α is the variable conjugate to the Borel variable u. As the inverse Borel
transform gives an additional factor of α̂, we also defined D̂(Q2) = −β0D(Q2), to
compensate for the additional factor of −β0. Furthermore, to avoid logarithms of
Q2

µ2 e
C that will make the analysis needlessly complicated, we choose µ2 = Q2eC . For

notational convenience, we will drop the hats on D̂ and α̂ in what follows. When we
give the full transseries expression in the end of this section, we will reinstate the
factors of β0.

With the exact Borel transform Eq. (5.5) one can easily compute the first, say
n = 1000, perturbative coefficients. (However, for the resurgence analysis we perform
below, we found that 200 coefficients was enough.) With these coefficients at our
disposal, we can start thinking about what we may expect the transseries to look
like. As explained near Eq. (2.46), for a k-parameter transseries the Borel singularities
of the transseries sector lie at positions u = ℓ ·A with ℓ ∈ Nk and A = (A1, ..., Ak)

the non-perturbative exponents. As the poles of B[DLO](u) lie at both positive and
negative integer values of u, a minimal Ansatz for the transseries is a transseries
with two non-perturbative exponents A1 = 1 and A2 = −1. Therefore, we write the
perturbative sector as

D
(0,0)
LO (α) ≡

∞∑
n=0

d(0,0)n αn+1, (5.10)

with d
(0,0)
n ≡ dn the perturbative coefficients of Eq. (5.9). This will now be the

(0, 0)-sector of the following transseries

DLO(α) =
∞∑

n=0

∞∑
m=0

σn,me
−n

A1
α e−m

A2
α D

(n,m)
LO (α) , (5.11)

with σn,m the transseries parameters. Two remarks are in order.

First, we should emphasize here that this is a minimal transseries Ansatz and,
recalling our discussion in Sec. 2.6, it might be the case that one needs additional
non-perturbative exponents on top of A1 and A2, e.g. one needs a new exponent A3

which is an integer multiple of A1 or A2 as was the case in [54]. Furthermore, one
might need additional transmonomials – as is the case at order 1/N2

f in the flavour
expansion where we find logarithmic transmonomials, see Sec. 5.2.

Secondly, in the case that the Adler function indeed has two non-perturbative
exponents A1 and A2, one might wonder if the Adler function satisfies a bridge equation
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of a two-parameter transseries as discussed in chapter 2. In this case, we can write

σn,m = σn
1 σ

m
2 , (5.12)

where the infinitely many transseries parameters σn,m are expressed in just two free
parameters σ1 and σ2. However, since e.g. a differential equation for the Adler
function as needed for the procedure in Sec. 2.3 is not known, we cannot derive a
bridge equation that would allow us to read off the number of parameters. Therefore,
we will be more general for now and work with the generic transseries parameters
σn,m. We shall discuss the interpretation of the transseries parameters in Sec. 5.1.4.

In order to test the Ansatz Eq. (5.11), and construct the non-perturbative sectors3

D
(n,m)
LO (α) = αβnm

∞∑
h=0

d
(n,m)
h αh , (5.13)

we will use resurgent large order relations. Of course, we know the exact Borel
transform Eq. (5.5) and can therefore read off the non-perturbative sectors from the
singularity structure in the Borel plane. We emphasize that this is a rather unique
situation. In many resurgence examples one does not have the luxury of knowing the
exact Borel transform. Often, one can only compute (a few) perturbative coefficients
and thus large order relations are the only way to proceed. In fact, in Sec. 5.2 when
we study the Adler function at the next order in the flavour expansion, we cannot
compute the Borel transform exactly anymore. To prepare for that, we will therefore
mainly focus on the large order analysis and show how this is sufficient to extract the
non-perturbative sectors from perturbative data only.

5.1.2. Resurgence analysis: first two non-perturbative sectors

From the transseries ansatz, Eq, (5.11), we can readily write a large order relation for
the perturbative coefficients

d
(0,0)
k ∼ −

∞∑
ℓ=1

S(0,0)→(ℓ,0)

2πi

∞∑
h=0

d
(ℓ,0)
h

Γ(k − h− βℓ,0)

(ℓA1)k−h−βℓ,0

−
∞∑
ℓ=1

S(0,0)→(0,ℓ)

2πi

∞∑
h=0

d
(0,ℓ)
h

Γ(k − h− β0,ℓ)

(ℓA2)k−h−β0,ℓ
, (5.14)

3We use the conventional notation βnm (and sometimes for readability βn,m) for the starting orders
in the non-perturbative sectors; of course these orders (that always have two indices) should not
be confused with the β-function and its coefficients.



100 Resurgence analysis of the Adler function at O(1/N2
f )

which is a relation between the perturbative coefficients d(0,0)k and the non-perturbative
coefficients d(ℓ,0)h and d(0,ℓ)h , i.e. only the (ℓ, 0) and (0, ℓ) sectors will play a role. Notice
that following chapter 3 and the discussion below Eq, (5.11), we wrote the large
order relation in terms of Borel residues and not in terms of Stokes constants since a
bridge equation for the Adler function is not known.4 In order to avoid clogging up
our equations with the lengthy notation of the Borel residues, and to avoid writing
down ubiquitous minus signs and factors of 2πi, we will absorb these factors in the
non-perturbative coefficients. Therefore we write

d̃
(ℓ,0)
h ≡ −S(0,0)→(ℓ,0)

2πi
d
(ℓ,0)
h and d̃

(0,ℓ)
h ≡ −S(0,0)→(0,ℓ)

2πi
d
(0,ℓ)
h . (5.15)

From the previous chapters, we know that ordering the elements of Eq. (5.14) by their
size gives us a way to extract the non-perturbative coefficients, keeping in mind that
this relation is valid in the large k limit.

First, we observe that nodes in the alien lattice that are further away from the
(0, 0)-node, i.e. with larger ℓ, have a more exponentially suppressed contribution to
the large order growth of d(0,0)k . As A1 = 1 and A2 = −1 are equal in size, the leading
order growth comes from the (1, 0) and (0, 1) sectors. However, we saw above that the
pole in the Borel plane at u = 1 is missing, meaning that the (1, 0)-contribution is
actually absent, so hence the leading growth will be coming from the (0, 1) sector:

d
(0,0)
k ∼

∞∑
h=0

d̃
(0,1)
h

Γ(k − h− β0,1)

A
k−h−β0,1

2

+O(2−k) (5.16)

=
Γ(k − β0,1)

A
k−β0,1

2

[
d̃
(0,1)
0 +

A2 d̃
(0,1)
1

k
+
A2(β0,1 + 1)d̃

(0,1)
1 +A2

2 d̃
(0,1)
2

k2
+ ...

]
+O(2−k) ,

where O(2−k) refers to contributions from the (ℓ, 0) and (0, ℓ) non-perturbative sectors
with ℓ ≥ 2. In the second line we factored out the leading order growth in k and
explicitly wrote the first two corrections in 1/k. To show that this expression indeed
captures the large order behaviour of the perturbative coefficients, and in order to
find the various as yet unknown coefficients that appear in this large order relation,
we can perform ratio tests on the known perturbative coefficients d(0,0)k . Recall also
examples 3.2.1 and 3.2.4 of the previous chapter where we already performed such

4In the case of Eq. (5.12), the Borel residues can be written as S(0,0)→(ℓ,0) = −Sℓ
1,0 and S(0,0)→(0,ℓ) =

−Sℓ
0,1 for some Stokes constants S1,0 and S0,1.
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Figure 5.3.: Fig. (a) shows the sequence A(k), Eq. (5.17) (top curve, blue), together with its
first Richardson transform (bottom curve, orange) to accelerate the convergence.
Similar, (b) shows the sequence B(k) (bottom curve, blue), Eq. (5.18), and its
first Richardson transform (top curve, orange). We observe that already the
first Richardson transform significantly accelerates the convergence. Higher
order Richardson transforms converge even faster and become indistinguishable
from the gray, horizontal lines denoting the expected values A2 = −1 and
β0,1 = −2.

ratio tests. We start with A2 and β0,1, and consider

A(k) ≡ k
d
(0,0)
k

d
(0,0)
k+1

∼ A2 +O
(1
k

)
(5.17)

and

B(k) ≡ k log

[
fk+1

fk

]
∼ −β0,1 +O

(1
k

)
with fk =

d
(0,0)
k Ak

2

Γ(k)
, (5.18)

which should converge to A2 and −β0,1 in the large k-limit, respectively. In Figs. 5.3a
and 5.3b we have plotted these two sequences together with their first Richardson
transform for the first 200 perturbative coefficients. Recall from Sec. 2.7.1 that the
Richardson transform method accelerates convergence of sequences of the form

s0 = lim
k→∞

S(k) with S(k) = s0 +
s1
k

+
s2
k2

+ ... (5.19)

where the coefficients sn are not known explicitly, and the Nth Richardson transform
of S(k) is denoted by RT[S](k,N).

Above Eq. (5.10) we expressed the expectation that the non-perturbative exponent
A2 is equal to −1. Recalling our discussion around Eq. (2.55), also the value β0,1 = −2

for the characteristic exponent was expected since the leading singularity in the Borel
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Figure 5.4.: Fig. (a) and (b) show the sequence D0(k) (top curve left, blue), Eq. (5.20), and
D1(k) (bottom curve right, blue), Eq. (5.22), respectively. To accelerate the rate
of convergence, the other curves show the 10th Richardson transform in orange,
which shows good convergence to the exact values 4

9
and 10

27
, respectively,

denoted by the gray horizontal lines.

plane at u = −1 is a double pole. Using Richardson transforms, we confirm these
expectations to good numerical precision. For example, RT[A](190, 10) agrees to 23
decimal places with A2 = −1, and we obtain similar precision for β(0,1) = −2.

We can now systematically extract the non-perturbative coefficients d(0,1)h in
Eq. (5.16). First, we rewrite that equation in the form

D0(k) ≡
d
(0,0)
k A

k−β0,1

2

Γ(k − β0,1)
∼ d̃

(0,1)
0 +O

(
1

k

)
. (5.20)

In Fig. 5.4a we have plotted the sequence together with its 10th Richardson transform,
and we conclude that

d̃
(0,1)
0 =

4

9
(5.21)

to great precision, e.g. RT[D0](190, 10) agrees with 4/9 to 26 decimal places. We should
notice here that we determined the value of d̃(0,1)0 , in which the unknown Borel residue
S(0,0)→(0,1) is absorbed. This is actually a generic phenomenon in the resurgence of
transseries with free parameters; one can see from Eq. (5.11) that rescaling these
parameters will rescale the expansion coefficients in the non-perturbative sectors.
Moreover, as σn,m is rescaled, the Borel resdiues are similarly rescaled. As a result,
only ‘scale invariant’ combinations of the expansion coefficients and the Borel residues
have a physical meaning. In Sec. 5.1.4, we use this scale invariance to give a natural
interpretation to the transseries parameters.
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Next, we can plot the sequence

D1(k) ≡ k

[
D0(k)−

4

9

]
∼ A2 d̃

(0,1)
1 +O

(1
k

)
(5.22)

and from Fig. 5.4b we deduce that this sequence converges to

A2 d̃
(0,1)
1 =

10

27
. (5.23)

which can again be verified up to 26 decimal places by doing 10 Richardson transforms.
We can repeat this process and find a closed form for all of the 1/k contributions in
the large order relation:

d
(0,0)
k ∼ Γ(k + 2)

(−1)k

[
4

9
+

10

27

1

k

∞∑
n=0

(−1

k

)n]
+O(2−k)

=
Γ(k + 2)

(−1)k

[
4

9
+

10

27

1

k + 1

]
+O(2−k). (5.24)

Using Eq. (5.16), we can also rewrite this in terms of the non-perturbative coefficients
d
(0,1)
h , which are seen to be

d̃
(0,1)
0 =

4

9
, d̃

(0,1)
1 = −10

27
, d̃

(0,1)
h≥2 = 0. (5.25)

Most of the coefficients vanish and as a result, the (1, 0) sector is not an asymptotic
series but a finite one. We will revisit this point more extensively later.

So far, from the first 200 perturbative coefficients that we computed numerically
and analyzed, we have extracted the complete first non-perturbative sector D(0,1)

LO . For
the leading order Adler function, we know the exact Borel transform Eq. (5.5) and
can therefore check our large order relations. That is, we have that

B[D(0,0)
LO ](u)

∣∣∣
u=−1

=
4/9

(u+ 1)2
+

10/27

(u+ 1)
+ regular terms, (5.26)

which indeed agrees with Eq. (5.25). (This is also the reason that we wrote the above
numerical estimates with an equal sign.) Note that this leading UV behaviour was
already indicated in Eq. (4.9), but here we determined the precise coefficient, as well
as the subleading term.

Having obtained the complete first non-perturbative sector, we can now subtract the
corresponding leading order growth from the large order expression for the perturbative
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Figure 5.5.: In Fig. (a) and (b), we show the sequences A(k) of Eq. (5.17) (outer two
curves, in blue), and B(k) of Eq. (5.18), but now constructed from δ

(1)
k given

in Eq. (5.27). We also show their 2nd Richardson transforms. (Middle two
curves, in orange.) Note that as the parity of k is important, we took the
Richardson transforms separately on even and odd k.

sector coefficients. That is, we construct the sequence

δ
(1)
k ≡ d

(0,0)
k − Γ(k + 2)

(−1)k

[
4

9
+

10

27

1

k + 1

]
(5.27)

where the asymptotic growth should now be dominated by the non-perturbative sectors
(2, 0) and (0, 2), i.e.

δ
(1)
k ∼

∞∑
h=0

d̃
(2,0)
h

Γ(k − h− β2,0)

(2A1)k−h−β2,0
+

∞∑
h=0

d̃
(0,2)
h

Γ(k − h− β0,2)

(2A2)k−h−β0,2
+O(3−k). (5.28)

Since the Borel transform has poles at both u = −2 and u = +2, we now see two
sectors appearing in this formula. Note that also A1 = −A2 = 1, i.e. they are
equal but opposite in sign. Even though the rest of the (ℓ, 0) and (0, ℓ) sectors are
quite different from each other, as we shall see later, the parity of k will have an
important effect on the right hand side of this expression. In particular, in order to
use Richardson transforms to speed up the convergence of series, we have to separate
even and odd k and perform Richardson transforms on them separately. In Figs. 5.5a
and 5.5b, we show the sequences of Eq. (5.17) and Eq. (5.18), but now constructed
from δ

(1)
k . Notice that the ratio test Eq. (5.18) can be taken, if we assume that the

starting orders β2,0 = β0,2 ≡ β2 are the same. Even though we find in Eq. (5.29)
below that strictly speaking β2,0 ̸= β0,2, this is not an issue since we can compute
with β2 = min(β2,0, β0,2) and allow for a finite number of vanishing leading coefficients
in one of the two series. Here, we conclude that 2A2 = −2A1 = −2 and β2 = −2.
Following Eqs. (5.20) and (5.22), but now also taking the parity of k into account by
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using ratio tests for even and odd k separately, we obtain

d̃
(2,0)
0 = 0, d̃

(2,0)
1 = 2 and d̃

(0,2)
0 = −2

9
, d̃

(0,2)
1 =

7

54
, (5.29)

with all other coefficients equal to zero. This can be compared to the expansions
around u = 2 and u = −2 respectively, and we find the expected agreement with the
exact Borel transform:

B[D(0,0)
LO ](u)

∣∣∣
u=−2

= − 2/9

(2 + u)2
− 7/54

(2 + u)
+ regular terms

B[D(0,0)
LO ](u)

∣∣∣
u=2

=
2

(2− u)
+ regular terms , (5.30)

where this leading IR behaviour was indicated in Eq. (4.9), here given with the precise
coefficient. Notice that in the second line the leading singularity around u = 2 is a
single pole and therefore one should expect β2,0 = −1 instead of −2, as mentioned
above. Indeed, we found that d̃(2,0)0 = 0 and one can conclude that the series effectively
starts at order −1.

5.1.3. Resurgence analysis: all non-perturbative sectors

Having used resurgence to recover the expressions for the first and second non-
perturbative sectors of the Adler function transseries, we can repeat the analysis of the
previous subsection to also obtain other sectors. Since the procedure is very similar,
we will be more brief here about the techniques and will focus more on the results and
on the general structure that emerges.

To find higher sectors, we recursively probe the next sector by subtracting from
the large order expression for the perturbative coefficients all sectors we have found
so far. Each sector provides two nonzero coefficients, s(ℓ)k and t

(ℓ)
k , whose values for

1 ≤ ℓ ≤ 8 are given in Tab. 5.1 and we find the following pattern:

δ
(ℓ)
k ≡ δ

(ℓ−1)
k − Γ(k + 2)

(−ℓ)k+2

(
s
(ℓ)
k +

t
(ℓ)
k

k + 1

)
, (5.31)

where ℓ labels the sectors, and the coefficients δ(ℓ)k are the ones whose large order
behaviour can be used to probe sector ℓ+ 1. As before, we obtained these numbers
numerically, using ratio tests. However, for these specific diagrams, we fortunately
have an analytic Borel transform result, and as in the previous section our numbers
can be directly checked with the expansion of the Borel transform around the poles.
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ℓ s
(ℓ)
k t

(ℓ)
k

1 4
9

10
27

2 − 2
9 − 7

27 + 4(−1)k

3 2
15 − 4

3 (−1)k 9
50 − 6(−1)k

4 − 4
45 + 4

9 (−1)k − 88
675 + 40

27 (−1)k

ℓ s
(ℓ)
k t

(ℓ)
k

5 4
63 − 2

9 (−1)k 130
1323 − 35

54 (−1)k

6 − 1
21 + 2

15 (−1)k − 15
196 + 9

25 (−1)k

7 1
27 − 4

45 (−1)k 119
1944 − 154

675 (−1)k

8 − 4
135 + 4

63 (−1)k − 304
6075 + 208

1323 (−1)k

Table 5.1.: This table gives the values of s(ℓ)k and t
(ℓ)
k for 1 ≤ ℓ ≤ 8 contributing to the large

order behaviour of the perturbative coefficients via Eq. (5.31). As explained
in the text, these values can be extracted numerically from the perturbative
coefficients, but as these values can also be extracted from the exact Borel
transform, this table is exact.

ℓ d̃
(ℓ,0)
0 d̃

(ℓ,0)
1 d̃

(0,ℓ)
0 d̃

(0,ℓ)
1

1 0 0 4
9 − 10

27

2 0 2 − 2
9

7
54

≥ 3 8(−1)ℓ

3(ℓ−1)(ℓ−2)
8(−1)ℓ(2ℓ−3)
3(ℓ−1)2(ℓ−2)2 − 8(−1)ℓ

3(ℓ+1)(ℓ+2)
8(−1)ℓ(2ℓ+3)
3(ℓ+1)2(ℓ+2)2

Table 5.2.: All non-zero non-perturbative coefficients of the Adler function at leading order
(1/Nf ) in the flavour expansion.

Thus, our numbers are not only approximately equal to the given fractions, but turn
out to be exact.

A closer examination of these numbers reveals the following general pattern:

s
(ℓ)
k =

8

3
(−1)ℓ

 −1
(ℓ+1)(ℓ+2) for ℓ < 3

−1
(ℓ+1)(ℓ+2) + (−1)k 1

(ℓ−2)(ℓ−1) for ℓ ≥ 3.
(5.32)

Similarly, we find a closed form for t(ℓ)k :

t
(ℓ)
k =

8

3
(−1)ℓ


− 10

27 for ℓ = 1

− 7
72 + 3

2 (−1)k for ℓ = 2
−ℓ(2ℓ+3)

(ℓ+1)2(ℓ+2)2 + (−1)k ℓ(2ℓ−3)
(ℓ−2)2(ℓ−1)2 for ℓ ≥ 3.

(5.33)

Observe that in all these results, there are terms without k-dependent signs as well as
terms with (−1)k factors, respectively probing the coefficients of the (ℓ, 0) sectors (with
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non-perturbative exponent ℓA1 = +ℓ) and the (0, ℓ) sectors (with non-perturbative
exponent ℓA2 = −ℓ).

Also notice that we have a closed form with a fixed pattern for all ℓ ≥ 3, while
ℓ = 1 and ℓ = 2 are different. This can be traced back to the fact that the LO Adler
function is the sum of the two diagrams of Fig. 5.1, where the first diagram only
contributes singularities at u = −1, u = 1 and u = 2 to the Adler function. Here we
recall Eq. (5.3), and note that the singularity at u = 0 from that expression vanishes
when we take the derivative w.r.t Q2 to obtain the Adler function.

Combining all results, we arrive at the first main result of this chapter: the
complete asymptotic expansion of the perturbative coefficients of the Adler function
at LO in the flavour expansion,

d
(0,0)
k =

Γ(k + 2)

(−1)k

∞∑
ℓ=1

1

ℓk+2

(
s
(ℓ)
k +

t
(ℓ)
k

k + 1

)
. (5.34)

The sum over ℓ converges, and for each term within the sum we only have finitely
many coefficients rather than asymptotic expansions, so this is now not a large order
formula but an exact form for the coefficients (hence the equal sign). At the next
order in 1/Nf , in Sec. 5.2, we will mostly lack exact expressions, but resurgence will
still provide us with very precise large order relations, that involve non-perturbative
sectors.

The coefficients of the non-perturbative sectors (ℓ, 0) and (0, ℓ) are summarised in
Tab. 5.2, with the starting orders βℓ,0 = β0,ℓ = −2. We have seen now that for the
Adler function at O(1/Nf ) the non-perturbative sectors consist of only one or two
coefficients, i.e. the 1/k expansions are not asymptotic. This means that these sectors
do not lead to further resurgence. Thus we have now carried out this resurgence
analysis to its natural end: there is no resurgence of non-perturbative sectors at any
other sector than the (0, 0)-sector. In other words, the picture of the alien lattice in
this case simplifies to that of Fig. 5.6.

This structure implies that the (ℓ, 0)-sector with ℓ > 1 is not reached by repeatedly
applying ∆A, i.e. for ℓ > 1, ∆ℓ

AD
(0,0)
LO = 0. Instead one needs non-vanishing alien

derivatives for larger steps forward: ∆ℓAD
(0,0)
LO ∼ D

(ℓ,0)
LO . Similarly, we have for

ℓ > 1 that ∆ℓ
−AD

(0,0)
LO = 0, but ∆−ℓAD

(0,0)
LO ∼ D

(0,ℓ)
LO . We will comment more on the

implications of this in the next subsection.

Finally, observe that at order 1/Nf , the alien ‘lattice’ in fact is hardly a lattice:
all internal (n,m) sectors with n ≠ 0 and m ̸= 0 vanish. In Sec. 5.2, we will see that
this is a result of the relative simplicity of the expressions at order 1/Nf , and that at
higher orders such internal sectors do appear.
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D(0,0)

...

...D(2,0) D(3,0)

D(0,1)

D(0,2)

D(0,3)

...
...

...

...

...

...

∆2A

∆3A

∆−A

∆−2A

∆−3A

Figure 5.6.: Alien lattice for the LO Adler function. The only asymptotic sector is the
(0, 0)-sector, which we denoted by a filled box to distinquish it from the (ℓ, 0)
and (0, ℓ) sectors which are not asymptotic. The dashed boxes are sectors that
completely vanish.

5.1.4. Stokes automorphism and transseries

So far, we worked with generic transseries parameters σn,m. A natural interpretation
of these parameters comes from the Stokes automorphism Sθ. In Eqs. (3.12)-(3.14) we
saw how Stokes’ automorphism acts on the transseries parameters, where in particular,
we expressed Sθ in terms of the Borel residues. In other words, the Borel residues
describe the jump across every single Stokes line. Recalling example 3.1.1, we saw a
case where the Stokes automorphism along the θ = 0 direction can be fully described
by one transseries parameters σ and one Stokes constant S1. For the Adler function,
we have now two singular directions in the θ = 0 and θ = π directions. As the only
non-vanishing Borel residues are S(0,0)→(ℓ,0) and S(0,0)→(0,ℓ) for ℓ > 0, the Stokes
automorphism as an action on the transseries parameters becomes

S0 : σn,m → σn,m + S(0,0)→(n,0) , and Sπ : σn,m → σn,m + S(0,0)→(0,m) . (5.35)

First of all, we notice that we can seperate the transseries parameters into two sets of
transseries parameters σn,m = σn + σ̃m. The Stokes automorphism then becomes

S0 : (σn, σ̃m) → (σn + S(0,0)→(n,0), σ̃m) ,

Sπ : (σn, σ̃m) → (σn, σ̃m + S(0,0)→(0,m)) . (5.36)
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So under the two different Stokes automorphism, only one set of transseries parameters
jumps at a time.

We can do even better by exploiting the scale-invariance of the transseries pa-
rameters, Borel residues and coefficients. As discussed below Eq. (5.21), we have the
freedom to fix the coefficients and Borel residues. A natural choice is to set all the
non-zero Borel residues to the same value, such that the Stokes automorphism can
be described by a single parameter and a single constant. To be precise, we pick
S(0,0)→(ℓ,0) = −2πi and S(0,0)→(0,ℓ) = −2πi, such that the factors of 2πi in Eq. (5.15)
drop out. In other words, d̃(ℓ,0)h = d

(ℓ,0)
h and d̃(0,ℓ)h = d

(0,ℓ)
h , which implies that we can

drop the tilde in all the non-perturbative coefficients we wrote down earlier. With
this gauge choice of Borel residues and non-perturbative coefficients, we see that the
transseries parameters σn jump by the same constant −2πi under the action of S0.
Similarly, the parameters σ̃m jump by the same constant −2πi under the action of
Sπ. As a result, two transseries parameters are sufficient to fully describe the Stokes
jumps in the θ = 0 and θ = π directions, and we can set σn = σIR and σ̃m = σUV.

Taking the above considerations into account, we can write the complete transseries
Eq. (5.11) in the following form:

DLO(α, σIR, σUV) = D
(0,0)
LO (α) + σIRD

IR
LO(α) + σUVD

UV
LO (α), (5.37)

where we labeled the different pieces according to their QCD nature. That is, DIR
LO

contains all IR renormalons in QCD, meaning that these are the UV renormalons in
QED. Likewise, DUV

LO contains all UV (IR) renormalons in QCD (QED). With this
choice for the transseries parameters, the Stokes automorphism is then described by

S0DLO(α, σ1, σ2) = DLO(α, σ1 − 2πi, σ2) ,

SπDLO(α, σ1, σ2) = DLO(α, σ1, σ2 − 2πi) . (5.38)

In other words, the Stokes jump in the θ = 0 direction is fully sensitive to the IR
sectors

DIR
LO(α) = −CF

β0

[
2 e

2
β0α +

∞∑
ℓ=3

e
ℓ

β0α

( 8
3 (−1)ℓ

(ℓ−1)(ℓ−2)

−1

β0α
+

8
3 (−1)ℓ(2ℓ−3)

(ℓ−1)2(ℓ−2)2

)]
. (5.39)
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Likewise, the Stokes jump in the θ = π direction is sensitive to the UV sectors

DUV
LO (α) = −CF

β0

[
e

−1
β0α

(
4

9

−1

β0α
− 10

27

)
+ e

−2
β0α

(
− 2

9

−1

β0α
+

7

54

)
+

∞∑
ℓ=3

e
−ℓ
β0α

( − 8
3 (−1)ℓ

(ℓ+ 1)(ℓ+ 2)

−1

β0α
+

8
3 (−1)ℓ(2ℓ+ 3)

(ℓ+ 1)2(ℓ+ 2)2

)]
. (5.40)

In these expressions, we switched back to the original coupling constant α – recall
the discussion below Eq. (5.9), where we switched to the variable α̂ = −β0α – and
reinstated all factors of β0 = −(11− 2Nf/3)/(4π), again expressed in QCD variables.
We observe the overall factor 1/β0, and that the coupling constant α always comes
with a factor β0. Recalling Eq. (4.21), this was to be expected as the flavour expansion
is an expansion in 1/β0.

The sums over the sector number ℓ converge and can be carried out explicitly.
Defining

xIR = e
1

β0α and xUV = e−
1

β0α , (5.41)

and performing the sums in Eq. (5.39) yields

DIR
LO(α, σ1) =

8CF

3β0

[
x2IR

(
1

β0α
− 7

4

)
− xIR(1 + xIR)

(
log(1 + xIR)

β0α
+ Li2(−xIR)

)]
, (5.42)

where Li2 is the dilogarithm. For Eq. (5.40) we get

DUV
LO (α, σ2) =

CF

β0

[
xUV

(
4

9

1

β0α
+

10

27

)
− x2UV

(
8

9

1

β0α
+

8

27

)
(5.43)

− 8

3

1

xUV

(
1+

1

xUV

)(
log(>3)(1+xUV)

β0α
− Li(>3)

2 (−xUV)

)]
,

where we defined

log(>n)(1 + x) ≡ log(1 + x) +

n∑
j=1

(−x)j
j

and Li(>n)
2 (x) ≡ Li2(x)−

n∑
j=1

xj

j2
(5.44)

as the logarithm and polylogarithm with the first n terms of their Taylor expansion
removed. Although Eq. (5.43) appears to generate factors such as 1/x2, these in fact
cancel as the first three coefficients of the Taylor expansion of the log and Li2 are
subtracted.
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5.1.5. Discussion

At this point, we have studied the full single bubble-chain part of the Adler function.
Before moving on to the main goal of our investigation, the multi-bubble chain
contributions, let us discuss some finer details of the structure that has appeared.

In Sec. 5.1.4 we argued by studying Stokes’ automorphism that two transseries
parameters are sufficient to describe the two different Stokes jumps in the θ = 0

and θ = π directions. We notice that the resulting transseries is different from
that of the two-parameter transseries structure known from many toy models and
discussed in chapter 2. This difference was to be expected: e.g. ∆2

A1
D

(0,0)
LO = 0, but

∆2A1D
(0,0)
LO ∼ D

(2,0)
LO . Compared to chapter 2, where we had ∆2A1D

(0,0)
LO = 0, this

means that the Adler function at least has a bridge equation beyond that of such
simple toy models. Unfortunately, since e.g. a differential equation for the Adler
function as needed for the procedure in Sec. 2.3 is not known, we cannot derive a
bridge equation which would allow us to read off the number of parameters and the
transseries structure. The fact that we are able to describe the Stokes jumps for
the Adler function at order 1/Nf with only two transseries parameters, might be an
artifact of the flavour expansion and could break down at higher orders in the flavour
expansion.

One may wonder how many free parameters the transseries structure of the Adler
function really has. This is not a question that can be answered from the Borel
plane alone; once one finds a singularity at a location A it is natural to include a free
parameter σ in front of the e−A/α transmonomial, but it is then not clear whether
the e−nA/α sectors should come with the same parameter σ, powers σn, or with new
parameters. (See e.g. [54] where, as we discussed below Eq. (2.51) the latter is the
case.) Thus, our transseries may be a many-parameter one, but on physical grounds
we still expect the number of ‘true’ parameters to be two. The reason is that there are
only two Stokes automorphisms that play a role – and as we shall see, this continues
to be the case when we include further bubble chains – an IR one along the positive
real u-axis and a UV one along the negative real u-axis. A single parameter could
in principle suffice to describe the jump across a single Stokes line, and there is no
known additional physical effect that would lead to singularities on other rays in the
u-plane, so we conjecture that two parameters is in fact enough. Interestingly, this is
similar to the recent work of [113] where in a different setting a transseries was found
with many degrees of freedom (parameterized by variables τk there) but with only a
single transseries parameter for each Stokes line.

When it comes to the values of the transseries parameters, these are difficult to
determine and require further physics input. This is beyond the scope of this thesis,
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where we are mainly interested in the underlying structure. In principle, one would
need to numerically sum non-perturbative sectors of the Adler function transseries
and compare these to experimental data to read off values for σIR and σUV. See [107]
for an effort in this direction for the IR Stokes automorphism.

Recall that in Eq. (5.43), a variable xUV appears which comes from the UV
singularities and grows exponentially large when α→ 0. This is a common feature for
transseries that have instanton actions of opposite sign, ±A. An expansion in such a
large variable xUV may not seem very physically meaningful. One possible solution to
this is of course that the parameter σUV vanishes or is small. Even if this were not
the case, xUV still has a definite value at any given energy scale, and so an expression
like Eq. (5.43) still makes sense, even though its small α expansion may not. In fact,
often a sum over different powers of x2 is itself not asymptotic but converges, as in
our examples above (see also [114] for recent progress on this topic). Also note that
part of the large order growth of the original perturbative series is still determined by
σUV-dependent sectors, so even when they have coefficient zero, these sectors do play
a role.

As a final remark, let us address the fact that many of the non-perturbative sectors
we have found only have a finite number of terms – and therefore, these sectors in
particular have no asymptotic growth of their own. This may seem to limit the use
of resurgence techniques to only the perturbative sector, but we expect this to be
an artifact of the simplicity of the single bubble chain approximation. In fact, in
the next sections we shall see that many non-perturbative sectors do become true
asymptotic expansions when further bubble chains are included. This is reminiscent of
the ‘Cheshire cat resurgence’ of [115] where asymptotic growth of sectors can disappear
in particular parameter limits5. This may also happen in 1/Nf expansions – see for
example the interesting approach of [38] where it was found that in the Gross-Neveu
model, only at finite Nf the full resurgent structure and asymptotic growth of sectors
becomes visible.

5.2. Adler function with two bubble chains
(O(1/N2

f ))

In Sec. 5.1 we discussed how the minimal two-parameter transseries Ansatz for the
Adler function could be obtained using the resurgence relations described in chapters 2
and 3. From a resurgence point of view, the structure of this transseries at order 1/Nf

5We quote the authors of [115]: “All of the characteristics of resurgence remains even when its role
seems to vanish, much like the lingering grin of the Cheshire Cat”.
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was surprisingly simple as the only asymptotic sector is the perturbative (0, 0)-sector.
In particular, we saw that most of the non-perturbative sectors are in fact vanishing
(recall Fig. 5.6), and those sectors that were not vanishing only consist of one or two
terms. As a result, we were even able to sum the whole non-perturbative part of the
transseries, leading to the closed form expressions given in Eqs. (5.42) and (5.43).

From our discussion in Sec. 4.2, we do not expect that this relatively simple
transseries structure is still present at higher orders in the flavour expansion, i.e. after
adding more bubble chains. (See e.g. [97–99, 116] for earlier work including two or
more bubble chains.) Recalling Fig. 4.3, we observed that the convolution integral
leads to asymptotic non-perturbative sectors, and found that the alien chain or lattice
gradually builds up by taking more and more convolution integrals. We therefore
expect that already at the next order in the flavour expansion, i.e. at order 1/N2

f , the
transseries for the Adler function will contain asymptotic non-perturbative sectors.

In order to test these expectations, and to get a first view of the resurgence
structure at higher orders in the flavour expansion, we discuss in this section the Adler
function at order 1/N2

f (NLO). Unfortunately, a complete calculation of the Adler
function at this order is not possible yet, because for some diagrams the master integrals
for the Feynman integrals appearing at this order are not yet known. Therefore, we
focus in this section on the set of planar diagrams shown in Fig. 5.7, which we are
able to compute. (These diagrams are leading in the SU(3) color structure.) A brief
review of the complete set of diagrams at order 1/N2

f can be found in App. B.3.

Note that the subset of diagrams of Fig. 5.7 is not gauge invariant, and our
resurgence analysis in this section is only on a diagram by diagram basis. Unless
very specific cancellations occur between diagrams, however, one may expect most
of the resurgence features that appear in individual diagrams to also appear in the
sum of the full set of diagrams – as indeed occurred at order 1/Nf – and it is those
resurgence features that we are after. Our assumption in the present work is that such
cancellations do not occur unless there is a clear physical reason for them, as is the
case for the absence of a singularity at u = 1 in the Borel plane.

In particular, we discuss the resurgence of the complete first two non-perturbative
sectors, i.e. the (1, 0), (0, 1), (2, 0) and (0, 2) sectors. Using large order relations, we
show how these results can be extracted numerically from the perturbative coefficients
only. To supplement these results, we use the techniques of Sec. 4.2 to get one of
the key results of this section: the exact Borel transforms of these sectors. Using the
same techniques, we even find that there are further (n,m) sectors with both n and
m nonzero, contary to what was the case at leading order in 1/Nf . At the end of
the section, we briefly discuss the remaining transseries sectors and summarize the
structures we have found in Tab. 5.3.
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m
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Figure 5.7.: Subset of diagrams at O(1/N2
f ) that are computed in this section.

5.2.1. Four diagrams at O(1/N2
f )

Using the convolution integral Eq. (4.19), the Borel transform of the diagrams shown
in Fig. 5.7 can be computed using an analytic regularized propagator for each of the
bubble chains, Eq. (4.18). In terms of the convolution integral, the Borel transform
for each diagram is given by

B[Π(Q2)](u) =
−1

β0f

(
Q2

µ2
eC
)−u ∫ u

0

du1 du2 δ
(
u− u1 − u2

)
Π(u1, u2) , (5.45)

where Π(u1, u2) is the Q2-independent part of these diagrams in terms of the two
Borel parameters u1 and u2 of the bubble chains. Here and in the expressions that
follow, we again ignore an overall colour factor C2

F . For diagrams (a)-(c) in Fig. 5.7,
we managed to compute the Q2-independent part Π(u1, u2) exactly to all orders in u1
and u2, see App. B.1 and B.2 for more details, and the result reads:

Πa(u1, u2) = − 3

2π2

1

u(1−u)(2−u)
1

(u1−2)(u1−1)(u1 + 1)

1

(u2−2)(u2−1)(u2 + 1)
,

Πb(u1, u2) = − 3

2π2

Γ(u)

(1− u)Γ(3− u)

Γ(1− u1)

(u1 − 2)Γ(2 + u1)

Γ(1− u2)

(u2 − 2)Γ(2 + u2)
,

Πc(u1, u2) =
3

2π2

1

u(1− u)(2− u)

Γ(u)

Γ(3− u)

u1Γ(1− u1)

Γ(2 + u1)

Γ(1− u2)

(u2 − 2)Γ(2 + u2)
, (5.46)

where, after taking the δ-function in the convolution integral (5.45) into account, we
have u = u1 + u2. For diagram (d) we do not have a such a closed form, but instead
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computed the expansion in u1 and u2, for which the first few terms read

Πd(u1, u2) =
201

4
− 36ζ3 +

(315
4

− 54ζ3

)
u1 +

(3123
16

− 63ζ3 − 90ζ5

)
u21

+
(873

8
− 54ζ3

)
u2 +

(747
4

− 93ζ3 − 60ζ5

)
u22 +

1

u

(
18 +

9u1
4

+ 36u21

)
+
(4539

16
− 144ζ3 − 90ζ5

)
u1u2 + ... (5.47)

In App. B.1 we give additional details for the computation of the perturbative coeffi-
cients for this diagram.

In order to get the contributions to (Borel transform of the) Adler function, we
can perform the convolution integral (5.45) and take the derivative with respect to Q2

(recall Eq. (5.2)). The convolution integral (5.45) for diagram (a) can be computed
exactly, and we obtain

B[D(Q2)](u) =
1

β0f

(
Q2

µ2
eC
)−u

B[D](u) , (5.48)

with the closed form expression

B[Da](u) =
6

(1− u)(2− u)

[
log(1 + u)

3(1− u)u(2 + u)
+

log(1− u)

(3− u)(2− u)u

+
2 log(1− u

2 )

3(4− u)(3− u)(1− u)

]
. (5.49)

However, for the other three diagrams we do not have the benefit of a closed form.
Instead, one can expand the Π(u1, u2) for these diagrams in u1 and u2 and perform
the convolution integral order by order. In this way we find

B[Da](u) = −3u

4
− 3u2

2
− 81u3

32
− 215u4

64
− 2707u5

640
+O(u6) (5.50)

B[Db](u) = −3u

4
− 3u2

2
− 85u3

32
−
(
239

64
− ζ3

4

)
u4 −

(
3211

640
− ζ3

2

)
u5 +O(u6) (5.51)

B[Dc](u) = −3u

8
− 13u2

16
− 95u3

64
−
(
277

128
− ζ3

8

)
u4−

(
759

256
− 11ζ3

40

)
u5+O(u6) (5.52)

B[Dd](u) = 3u+

(
137

16
−6ζ3

)
u2 +

(
565

32
−9ζ3

)
u3 +

(
11219

384
− 38ζ3

3
− 65ζ5

6

)
u4

+

(
27787

640
− 703ζ3

48
+ζ23−

65ζ5
4

)
u5 +O(u6) , (5.53)

where, even though we have the closed form in Eq. (5.49), we added the first few
coefficients for B[Da](u). For diagrams (a)-(c), we computed the coefficients up to
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order u150. Diagram (d) is computationally more involved and we managed to compute
up to order u18.6

Before we enter the detailed resurgence analysis, we can already have a closer look
at the singularities of each of those expressions in the Borel plane. The singularities of
diagram (a) can be read off immediately from its closed form, Eq. (5.49): branch cuts
starting at u = −1, u = 1 and u = 2 and poles at u = −2, u = 1, u = 2, u = 3, and
u = 4. For the other diagrams, for which we only have a finite number of perturbative
coefficients, we cannot read off the singularities in this way. Instead, we use Padé
approximants – already explained in Sec. 2.7.2. The poles of these Padé approximants
give a good indication of where the ‘true’ singularities in the Borel plane are located.
In order to see the type of singularities that we can expect in the Borel plane of the
different diagrams, we plot the poles of the diagonal Padé approximants in Fig. 5.8.

For diagrams (b) and (c), we see essentially the same pattern arising as for diagram
(a): the emergence of poles in the UV direction and a branch cut starting at u = 1 and
at u = 2. We also expect the emergence of branch cuts beyond u = 2 for diagrams (b)

and (c), but more on this in a moment. As we do not have many terms for diagram
(d) it is hard to tell if the Padé poles near u = −1 and u = 1 are the start of a branch
cut, or are Borel plane poles instead. We also observe some ‘spurious’ poles that have
an imaginary component. A closer look reveals that these poles always come in pairs:
they are the complex conjugate of each other. This is a common phenomenon for
Padé approximants, and often reveals the fact that these mimic one pole without an
imaginary component.

It is interesting to note that in the Borel transforms of the individual diagrams, the
singularity at u = 1 does not disappear. This was also the case for the LO (O(1/Nf ))
Adler function: when the diagrams were taken separately they did have a singularity
at u = 1. However, these singularities at u = 1 cancelled when we added the diagrams.
On physical grounds, we expect that this will still happen when we take all diagrams
together at every given order in the flavour expansion – recall the discussion on the
OPE below Eq. (5.7). Nevertheless we do not expect singularities at other values of
u to cancel. This also did not happen in the case of the LO Adler function where
the singularities on a diagram by diagram basis indeed gave a realistic picture of the
singularities for the sum of the diagrams.

5.2.2. Transseries Ansatz

Our discussion of resurgence in chapter 2 was mainly focused on the case where the
singularities of the Borel transform are simple poles or logarithmic branch cuts. In

6Our calculation exhausts the current datamine [117], which we used to compute these coefficients.
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Figure 5.8.: Plot (a)-(c) show the singularities of the diagonal order 75 Padé approximants of
the diagrams (a)-(c) respectively. Branch cuts are mimicked by an accumulation
of poles. As we only have 18 coefficients for diagram (d), we show the Padé
poles of the diagonal order 9 Padé approximant in plot (d).

many examples studied so far in the literature these are indeed the only singularities
that occur, but in the case of the Adler function several other types of singularity are
present. We already encountered double poles in Sec. 5.1, and if we look at the exact
Borel transform for diagram (a), we observe another type of singularity:

B[Da](u)
∣∣∣
u=1

= −3
log(1− u)

u− 1
+ ... (5.54)

where the ellipsis denotes other singularities (poles and logarithmic branch cuts) as
well as regular terms. At the end of Sec. 2.6 we saw that a singularity of the form in
Eq. (5.54) follows from perturbative coefficients that grow as Γ(k + 1)ψ(k + 1), where
ψ(z) is the digamma function. Dividing by Γ(k + 1), this means that the leading
growth of the coefficients of the Borel transform B[Da](u) is given by −3 log(k), where
we read off the −3 from Eq. (5.54) and used ψ(k) = log(k) +O(1/k).

In Fig. 5.9, we show the perturbative coefficients of B[Da] together with the
function −3 log(k), and indeed this function matches the leading growth of these
coefficients quite well. We observe similar logarithmic growth for the coefficients
B[Db](u) and B[Dc](u). Notice that the plotted points for the coefficients of B[Db](u)

nearly overlap with those for B[Da](u), implying that the leading growths of Db and
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Figure 5.9.: Plot of the first 150 perturbative coefficients of B[Da] (blue), B[Db] (orange),
B[Dc] (green). As the solid gray line we also show the function −3 log(k) to
highlight the fact that the coefficients for (a) and (b) and (c) show logarithmic
growth. Similarly, we observe logarithmic growth for the coefficients for (c).
Since the points denoting the coefficients for (a) and (b) practically overlap,
we included a subfigure zooming in at part of those sequences. In red, above
the horizontal axis, we show the 18 coefficients for B[Dd] we have calculated.
As the even and odd coefficients seem to follow different curves it is unclear if
these coefficients also show logarithmic growth.

Da are equal. For the coefficients of B[Dd](u) it is more difficult to tell if the coefficients
show logarithmic growth, as we only have 18 coefficients where the even and odd
coefficients seem to follow notably different curves, so that we only have 9 coefficients to
determine the trend for each curve. This makes determining the large order behaviour
unrewarding. Nevertheless it is a pleasant surprise to see from Fig. 5.8d how well
the Padé approximation already estimates the location of the poles in u near ±1.
Comparing the logarithmic growth ∼ Γ(k+1)ψ(k+1) with Eq. (2.54), which describes
the large order relation for a transseries Ansatz of the type Eq. (2.52) with logarithms,
we see that at the level of the transseries this implies that logarithmic terms are
included in the expansion in α. As discussed in Sec. 5.1 for the Adler function at LO
in the flavour expansion, the form of the complete transseries is further determined by
the fact that the Borel transforms of the diagrams have singularities at both negative
and positive integer values of u. Taking these considerations into account, we make
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the following minimal transseries Ansatz for diagrams (a), (b) and (c):

DNLO(α) =

∞∑
n=0

∞∑
m=0

σn,me
−n

A1
α e−m

A2
α

[
D

(n,m)[0]
NLO (α) + log(α)D

(n,m)[1]
NLO (α)

]
, (5.55)

where as in the LO case A1 = −A2 = 1.7 Two remarks are in order.

First of all, we note that diagram (a) does not have an infinite number of sin-
gularities in the Borel plane, hence in that case the sums over n and m truncate.
Furthermore, note that as the sectors with logarithms lead to singularities of the form
Eq. (5.54), we expect that the sectors D(0,m)[1]

NLO vanish as diagram (a) does not contain
such a singularity at u = −1 and because the Padé plots for diagram (b) and (c) do
not show branch cuts starting from negative integers. We will have more to say about
diagram (d) at the end of the next subsection.

As a second remark, notice that we use generic transseries parameters σn,m. Similar
to our analysis in Sec. 5.1.4, we can study Stokes’ automorphism to see how many
parameters are actually necessary to describe the relevant Stokes jumps. However, as
we will see in the rest of this section, the non-perturbative sectors themselves show
asymptotic growth and therefore have further resurgence to other non-perturbative
sectors. This makes the analysis much more intricate and substantial to carry out.
We therefore plan to come back to this in future work [118].

5.2.3. Resurgence analysis: non-perturbative sectors (1, 0)

and (0, 1)

Following what we did in Sec. 5.1 for the LO Adler function, we can translate the
transseries Ansatz into large order relations for the perturbative coefficients and
study these numerically. This will then lead to the extraction of non-perturbative
sectors. Taking into account that some coefficients grow logarithmically, this yields
the following natural form for the large order relation for the perturbative coefficients:

d
(0,0)
k ∼ S(0,0)→(1,0)

2πi

∞∑
h=0

Γ(k − h− β)

Ak−h−β
1

(
d
(1,0)[0]
h + d

(1,0)[1]
h (log(A1)− ψ(k − h− β)

)
+

S(0,0)→(0,1)

2πi

∞∑
h=0

Γ(k − h− β)

Ak−h−β
2

d
(0,1)[0]
h +O(2−k) , (5.56)

7One often encounters the phenomenon of resonance – see also the discussion on page 24 – in
transseries with logarithms and when multiple Ai add up to 0. Although the latter is the case
for the diagrams considered in this section, their transseries do not show resonance. See [54] for
another example of this behaviour.
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where, since we can allow a finite number of the leading coefficients to vanish, we
assumed β[0]

1,0 = β
[0]
0,1 = β

[1]
1,0 = β

[1]
0,1 ≡ β with no loss of generality (see also the discussion

below Eq. (5.28)). As we did in Sec. 5.1, we absorb the Borel residues and factors of
2πi into the non-perturbative coefficients:

d̃
(ℓ,0)[p]
h ≡ −S(0,0)→(ℓ,0)

2πi
d
(ℓ,0)[p]
h , d̃

(0,ℓ)[p]
h ≡ −S(0,0)→(0,ℓ)

2πi
d
(0,ℓ)[p]
h . (5.57)

Non-perturbative sectors with these coefficients are denoted with a similarly notation
D̃(ℓ,0)[p] and D̃(0,ℓ)[p] respectively.

Diagram (a)

For explicit results, let us first focus on diagram (a) as the closed form of the Borel
transform, Eq. (5.49), allows us to read off the resurgence structure using Eqs. (2.26)
and (2.57). We extract the dominant growth

d̃
(1,0)[1]
0

Γ(k − β)ψ(k − β)

Ak−β
1

∼ d̃
(1,0)[1]
0

Γ(k − β) log(k − β)

Ak−β
1

+O
(1
k

)
, (5.58)

from the expansion around Eq. (5.54), which yields the exact values

β = −1 , d̃
(1,0)[1]
0 = −3 , and d̃

(1,0)[1]
h>0 = 0 . (5.59)

Subtracting the leading growth from the large order formula yields

δ
(0)
k ≡ Ak−β

1

Γ(k − β)

(
d̃
(0,0)
k − d̃

(1,0)[1]
0

Γ(k − β)ψ(k − β)

Ak−β
1

)
∼

∞∑
h=0

Γ(k − β − h)

Γ(k − β)
Ah

1

[
d̃
(1,0)[0]
h + (−1)h+β−kd̃

(0,1)[0]
h

]
+ ... , (5.60)

a type of growth that we already encountered in Sec. 5.1. Taking similar ratio tests
as we did there, and taking the parity of k into account, we find full asymptotic
expansions:

d̃
(1,0)[0]
h =


1
3 − 3γE + 13

9 log(2) h = 0

Γ(h)
( (

3h+ 3
2

)
+ (−1)h 1

2 + 1
2h

)
h > 0

(5.61)
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for the (1, 0) sector, and

d̃
(0,1)[0]
h =

0 h = 0

Γ(h)
(

1
2 − (−1)h 1

36 − 1
2h+1

(
2
3h+ 4

9

)
− 1

3h
1
4

)
h > 0

(5.62)

for the (0, 1) sector. We have checked Eqs. (5.61) and (5.62) numerically up to 20
decimal places for the first 15 coefficients by using Richardson transforms. Note the
gamma-functions Γ(h) in these expressions, implying that the first non-perturbative
sectors are now indeed asymptotic series, just like the perturbative sector. As an
additional check, we can read off the resurgence structure from the exact Borel
transform Eq. (5.49) using Eq. (2.46). For example, near the singularity positioned at
u = 1 we get

B[D(0,0)
a ](u)

∣∣∣
u=1

= 3
log(1− u)− ψ(1)

1− u
+

1
3 + 3ψ(1) + 13

9 log(2)

1− u

− B[D̃(1,0)[0]](u− 1) log(1− u) + ... , (5.63)

where the ellipsis denote regular terms, and with

B[D̃(1,0)[0]](u− 1) =
3

(2− u)2
+

3
2

2− u
− 1

2u
+

1

3− u
. (5.64)

As already discussed above, the first term in Eq. (5.63) can be compared with Eqs. (2.56)
and (2.57) and yields the coefficients of Eq. (5.59). This is the reason why we included
the ψ(1) term there, and then subtracted it again in the next term. Using ψ(1) = −γE
in the second term in Eq. (5.63) yields the coefficient in the first line in Eq. (5.61).
Finally, an inverse Borel transform of Eq. (5.64) gives the second line in Eq. (5.61).
In a similar way, one can read off the resurgence of the D̃(0,1)[0] sector, i.e. Eq. (5.62),
by expanding B[D(0,0)

a ](u) around u = −1.

We discussed a diagram for which it was possible to find a closed form Borel
transform, but the true power of resurgence analysis emerges when we study the
diagrams for which we do not have such an exact expression. To be precise, for
diagrams (b) and (c), we can study the large order behaviour of the perturbative
coefficients for these diagrams, compute coefficients in the transseries numerically and
can then usually infer their exact values. Furthermore, we can use the discussion of
Sec. 4.2 on convolution integrals and their resurgence as a cross check. The interested
reader can apply the methods of Sec. 4.2 to obtain the same results for diagram (a).
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Diagram (b)

Turning to diagram (b), we find, by studying the large order behaviour of the pertur-
bative coefficients, that β1,0 = β0,1 = −1 and that the non-zero coefficients are

d̃
(1,0)[1]
0 = −3 (5.65)

d̃
(1,0)[0]
h =


1
3 − 3γE + 13

9 log(2) h = 0

Γ(h)
(
6− 3

2h

)
h > 0

(5.66)

d̃
(0,1)[0]
0 =

1

5

(
log(2)− log(3)

)
. (5.67)

We have checked these numbers numerically up to 12 decimal places for the first 15
coefficients for d̃(1,0)[0]h , after which we inferred the exact expression – an expression
that we shall argue to be correct in a different way in a moment. From the coefficients,
we deduce the following information. The leading order growth of this diagram is given
by a log-sector with a single coefficient d̃(1,0)[1]0 . Furthermore, the non-perturbative
(1, 0) sector is now an asymptotic sector, while the (0, 1) sector only contains just
a single non-zero coefficient corresponding to a simple pole in the Borel plane (we
already observed this in Fig. 5.8b).

Using the results of Sec. 4.2, we can check these numerical results using the
method of alien derivatives acting on the convolution integral. We therefore rewrite
the convolution integral for D(0,0)

b (recall Eqs. (5.45) and (5.46)) as

B[D(0,0)
b ](u) =

−6Γ(1 + u)

(1− u)Γ(3− u)
B[Ψ(0)](u) , (5.68)

where we defined

B[Ψ(0)](u) =

∫ u

0

du1 B[F ](u1)B[F ](u− u1), B[F ](u) = Γ(1− u)

(2− u)Γ(2 + u)
. (5.69)

The singularities of the Borel transform B[F ](u) are simple poles at positive integers,
except at u = 2 which is a double pole. Therefore, the resurgence structure of F can
be easily read off from the expansions around these poles and we find

∆1F =
1

2
(2πi) , ∆2F = −1

6
(2πi)

(
1

α
+

17− 12γE
6

)
, . . . (5.70)

Using the procedure as outlined in Sec. 4.2, we obtain

SΨ
1 Ψ(1) = ∆1Ψ

(0) = 2F∆1F = (2πi)F (α). (5.71)
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In other words, in a neighborhood around u = 1, the Borel transform of Ψ(0) looks like

B[Ψ(0)](u)
∣∣∣
u=1

= −SΨ
1 B[Ψ(1)](u− 1)

log(1− u)

2πi
+ ...

= −B[F ](u− 1) log(1− u) + ...

= − Γ(2− u)

(3− u)Γ(1 + u)
log(1− u) + ... , (5.72)

where the ellipsis denotes regular terms around u = 1. By adding back in the prefactor
for B[D(0,0)

b ](u), close to u = 1 Eq. (5.68) becomes

B[D(0,0)
b ](u)

∣∣∣
u=1

=
−6Γ(1 + u)

(1− u)Γ(3− u)

[
B[Ψ(0)](u)

∣∣∣
u=1

+ ...
]

=
6 log(1− u)

(1− u)(2− u)(3− u)
+ ...

≡ −d̃(1,0)[1]0

log(1− u)

1− u
− B[D̃(1,0)[0]

b ](u− 1) log(1− u) + ... , (5.73)

with d̃(1,0)[1]0 = −3 already given in Eq. (5.65) and where

B[D̃(1,0)[0]
b ](u) =

6

1− u
− 3

2− u
. (5.74)

Indeed, by performing an inverse Borel transform, we can now directly read off the
coefficients d̃(1,0)[0]h for h > 0 already given in Eq. (5.66).

Note however that the prefactor in the first line of Eq. (5.73) itself has a pole
at u = 1 – see also our discussion in Sec. 4.2.5. As a result, a constant term from
the regular part between square brackets (indicated by the dots) also contributes to
the singular terms in the last line. Therefore, the coefficient d̃(1,0)[0]0 , which should
correspond to a simple pole at u = 1 in the Borel plane, is not determined yet by
studying the convolution integral. Furthermore, B[F ](u) in Eq. (5.69) does not have
singularities at negative integers, meaning that ∆−1F = 0. Therefore it does not
seem possible to compute B[D(0,0)

b ](u) locally near u = −1, and thus we can also not
extract d̃(0,1)[0]0 using the method of convolution. We come back to this point in the
next subsection, where we will see that by including further non-perturbative sectors
in the analysis, some of these undetermined coefficients can still be found.

Diagram (c)

In a similar manner, for diagram (c), a large order analysis of the perturbative
coefficients yields β1,0 = β0,1 = −1 as well as the following non-zero expansion
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coefficients for the non-perturbative sectors:

d̃
(1,0)[1]
0 = −3

2
(5.75)

d̃
(1,0)[0]
h =

− 1
2 − 3

2γE − 1
6 log(2) h = 0

Γ(h)
( (

3h+ 3
2

)
− (−1)h 1

2 + 1
2h

1
2

)
h > 0

(5.76)

d̃
(0,1)[0]
0 =

1

6
+

1

2

(
log(2)− log(3)

)
, (5.77)

which we have checked numerically up to at least 13 decimal places for the first 15
coefficients for d̃(1,0)[0]h . We observe a similar pattern as for diagram (b): a log-sector
with a single coefficient d̃(1,0)[1]0 , an asymptotic (1, 0)[0] sector, and a (0, 1) sector which
contains only a single non-perturbative coefficient.

Once again, we can also determine these coefficients by studying the convolution
integral more closely. Therefore, we write the convolution integral of diagram (c) as

B[D(0,0)
c ](u) =

−6Γ(u)

(1− u)(2− u)Γ(3− u)
B[Φ(0)](u) , (5.78)

where we defined

B[Φ(0)](u) =

∫ u

0

du1 B[F ](u1)B[G](u− u1) , B[G](u) = uΓ(1− u)

Γ(2 + u)
, (5.79)

and with B[F ] the same as in Eq. (5.69). Using that both ∆1F = ∆1G = 1
2 (2πi) we

obtain

SΦ
1 Φ

(1) = ∆1Φ
(0) = F∆1G+G∆1F =

1

2
(2πi)(F (α) +G(α)). (5.80)

A brief calculation now yields

B[D(0,0)
c ](u)

∣∣∣
u=1

=
−6Γ(u)

(1− u)(2− u)Γ(3− u)
B[Φ(0)](u)

∣∣∣
u=1

+ ...

= − log(1− u)

1− u

6− 3u(4− u)

u(2− u)2(3− u)
+ ...

≡ −d̃(1,0)[1]0

log(1− u)

1− u
− B[D̃(1,0)[0]

c ](u− 1) log(1− u) + ... , (5.81)

with d̃(1,0)[1]0 = − 3
2 as given above in Eq. (5.75), and where

B[D̃(1,0)[0]
c ](u) =

1
2

1 + u
+

3

(1− u)2
+

3
2

1− u
+

1
2

2− u
. (5.82)
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It is straightforward to show that the inverse Borel transform of this indeed yields
the coefficients d̃(1,0)[0]h given in Eq. (5.76) for h > 0. In the next subsection we see
how the convolution integral method also allows us to obtain information about the
coefficients d̃(1,0)[0]0 and d̃(0,1)[0]0 .

To summarize the results so far (see also Tab. 5.3): although the convolution
integral for diagram (a) was the only one we could compute exactly, our resurgence
large order analysis, together with the power of the convolution analysis, allowed us to
make a transseries Ansatz and extract the whole first non-perturbative (1, 0) and (0, 1)

sectors for the diagrams (a), (b) and (c). For all three diagrams, the leading order
growth of the perturbative coefficients is governed by the non-perturbative coefficient
d̃
(1,0)[1]
0 . In particular, we found for diagram (c) that d̃(1,0)[1]0 = − 3

2 , while for both
diagrams (a) and (b) the growth is twice as strong, i.e. d̃(1,0)[1]0 = −3. We already
observed this qualitatively in Fig. 5.9, where we saw that the growth of perturbative
coefficients for diagram (c) is indeed less than for the diagrams (a) and (b), which were
more or less overlapping. However, at closer inspection, one sees that the points do
not overlap exactly – an artifact of the subleading growth dictated by the coefficients
d̃
(1,0)[0]
h and d̃(0,1)[0]h that we have now also computed. For all three diagrams, the (1, 0)

sector is asymptotic while only for diagram (a) the (0, 1) sector is asymptotic.

Diagram (d)

Finally, we want to offer some observations on diagram (d). A numerical resurgence
analysis on this diagram is challenging as we only have 18 coefficients, and we already
observed that the even and odd coefficients behave differently. In Fig. 5.9, we see
that the growth of the upper curve is much stronger than that of the other three
diagrams (a), (b) and (c). Although it looks like the curve bends slightly, there
are not enough coefficients to tell if this is the beginning of logarithmic growth. It
might as well be the case that the large order growth of the coefficients is different.
Furthermore, the coefficients that we displayed have opposite sign to the coefficients of
the other diagrams, though the lower curve clearly bends downwards towards negative
coefficients.

5.2.4. Resurgence analysis: non-perturbative sectors (2, 0)

and (0, 2)

In the previous subsection we determined the non-perturbative (1, 0) and (0, 1) sectors
for diagrams (a)-(c), using both numerical results and the method of alien derivatives
acting on the convolution integral. In order to probe the second non-perturbative
sectors (2, 0) and (0, 2), we must subtract the first sectors from the large order
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expressions. This is not as straightforward as in the LO case (see Eq. (5.27)), since
now the coefficients d̃(1,0)[0]k and d̃(0,1)[0]k grow factorially themselves, implying that we
need to subtract an entire (divergent) asymptotic series. To make this possible, we
have to apply Borel summation on the first non-perturbative sector before subtracting
it, as was discussed in great length in chapter 3.

To prepare for this we rewrite Eq. (5.60) as

δ
(0)
k ∼ Γ(k − β)

Ak−β

∞∑
ℓ=1

1

ℓk−β

∞∑
h=0

Γ(k − β − h)

Γ(k − β)
(ℓA)hd̃

(ℓ,0)[0]
h + (0, ℓ)-sectors

=
Γ(k − β)

Ak−β
eβ log(ℓ)

∞∑
ℓ=1

e−k log(ℓ)P (ℓ,0)

(
1

k

)
+ (0, ℓ)-sectors (5.83)

where we defined

P (ℓ,0)(x) ≡
∞∑
h=0

p
(1,0)
h xh and P (0,ℓ)(x) ≡

∞∑
h=0

p
(0,ℓ)
h xh . (5.84)

The coefficients p(ℓ,0)h and p
(0,ℓ)
h are the coefficients in the 1/k expansion of the first

line of Eq. (5.83), obtained from expanding the ratio of gamma functions. Recalling
Sec. 3.2.1, notice that the coefficients P (ℓ,0) and P (0,ℓ) are not exactly the rescaled
Stirling transform of D̃(ℓ,0) and D̃(0,ℓ) respectively, as in Sec. 3.2.1 we worked with
β = 0. The coefficients p(ℓ,0)h and p(0,ℓ)h are still easily obtained by doing an expansion
in 1/(k − β) first – for which we can use the rescaled Stirling transform of Sec. 3.2.1 –
after which one goes from the 1/(k−β) expansion to the final 1/k expansion. One can
show that this last expansion, i.e. the case of non-zero β ≠ 0, only has a minor effect
and that the properties of the Stirling transform that were so powerfull in chapter 3
are still applicable to our situation.

Recalling the procedure outlined in chapter 3, in the large order expressions we
replace these series with the Borel-summed version8

S[P (1,0)](x) = p
(1,0)
0 +

∫ ∞

0

dtB[P (1,0)](t)e−t/x , (5.85)

and similarly for S[P (0,1)](x) with x = 1/k. Unfortunately, this expression cannot
be taken at face value, as the asymptotic expansion of P (0,1) and P (1,0) is not Borel
summable. More precisely, there are singularities on the integration contours, as we
can see in Fig. 5.10, where we show the singularities of the Padé approximants of the

8Recall that the constant term is not included in our definition of B[p(1,0)](t), which is why we have
to add it separately.
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Figure 5.10.: For diagram (a), Figs. (a) and (b) show the Padé poles (small black dots) of
the 75th diagonal Padé approximant of B[P (1,0)] and B[P (0,1)] respectively.
The larger red transparant points are positioned at log(ℓ)+πim, with ℓ = 1, 2, 3
and m ∈ Z. At large imaginary values, some ‘spurious’ poles appear due to
numerical inaccuracies.

Borel transforms of Eq. (5.84) for diagram (a). These are the same figures as already
shown in Fig. 3.1 and is historically the inspiration for [3], i.e. chapter 3.

From chapter 3, we recall that the singularities of B[P (1,0)] and B[P (0,1)] can
be traced back to the singularities of B[D(0,0)

a ](u). To be precise, the expansion of
B[D(0,0)

a ](u) around u = 1 and u = 2 read(
6

(3− u)(2− u)2u
− 1

)
· log(1− u)

(1− u)
, and

2 log(1 + u)

(1− u)2(2− u)u(2 + u)
, (5.86)

where in the first expression we subtracted the log(1−u)
1−u term from Eq. (5.49) as its

contribution, i.e. the large order growth initiated by the coefficient d̃(1,0)[1]0 , is already
subtracted in Eq. (5.83). The expansions of (5.86) have singularities at u = 1, 2, 3

and u = −2, 1, 2 respectively.9 Because of the symmetries of the (rescaled) Stirling
transform, the singularities of B[P (1,0)] can be found at log(2)+2πim and log(3)+2πim

and for B[P (0,1)] we should observe singularities at log(1)+(2m+1)πi and log(2)+πim.
This is indeed the observed pattern in Fig. 5.10.

For both diagrams (b) and (c), we have simple (0, 1)-sectors with only a single
coefficient, so we do not need to perform a Borel-Padé summation on these sectors to

9The pole around u = 0 cancels against the first term in the expansion of the logarithms.
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be able to subtract them. For the (1, 0) sector, we obtain a similar plot as in Fig. 5.10a,
where the positions of the singularities are traced back to locations of the poles in the
expansions around log(1− u), given in Eqs. (5.73) and (5.81). To be precise, for both
diagram (b) and (c), we observe singularities at log(2) + 2πim and log(3) + 2πim.

Since the Borel transforms in particular have singularities on the real positive axis,
we need to deal with the ambiguity of the Laplace contour. In order to do so, we
performed a numerical integration under a small negative angle just above the real
axis of Fig. 5.10b. See Sec. 2.7.2 for details about the numerical integration. This
choice for the ‘upper contour’ implies that the Borel sums also get an imaginary part.
However, as we will see in a moment, this imaginary part does not play a role in
determining the perturbative coefficients through large order formulas, because of a
similar and corresponding ambiguity in the choice of logarithm branch cuts in the
Borel plane. The convention in the original publication [1] – and therefore also in this
chapter – is opposite of the one in chosen in chapter 3 and [3]. Of course, we also
could have chosen the ‘lower contour’ in this chapter; the imaginary contribution will
then have opposite sign, but will still be ‘canceled’ leading to the same large order
results.

Diagram (a)

With the Borel summed (1, 0) and (0, 1) sectors at our disposal, we can now turn our
attention to the resurgence of the second non-perturbative (2, 0) and (0, 2) sectors.
As in the previous subsection, we start with a discussion of diagram (a). We can
now subtract the numerically performed integral from the perturbative coefficients.
Recalling that β = −1 and A1 = −A2 = 1, we obtain the new sequence

δ
(1)
k = d

(0,0)
k − d̃

(1,0)[1]
0

Γ(k − β)ψ(k − β)

Ak−β
1

−Γ(k − β)

Ak−β
1

S[P (1,0)]

(
1

k

)
− Γ(k − β)

Ak−β
2

S[P (0,1)]

(
1

k

)
, (5.87)

which probes the contribution of the (2, 0) and (0, 2) sectors to the large order behaviour
of the perturbative coefficients. In Fig. 5.11 we show d

(0,0)
k together with δ

(1)
k for

20 ≤ k ≤ 100 for diagram (a). We clearly observe that the (real) perturbative
coefficients d(0,0)k diverge faster than both Re[δ(1)k ] and Im[δ

(1)
k ]. This is already a good

sign that these coefficients probe the subleading non-perturbative (2, 0) and (0, 2)

sectors.

Let us now discuss the fact that δ(1)k for diagram (a) appears to have an imaginary
part. This may seem at odds with the fact that we are describing the large order
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Figure 5.11.: Plot of the coefficients d(0,0)k (top, blue) and Re[δ(1)k ] (bottom, orange), Im[δ
(1)
k ]

(middle, green) for 20 ≤ k ≤ 100 for diagram (a). We clearly observe that the
coefficients δ(1)k are ‘less asymptotic’ compared to the perturbative coefficients
d
(0,0)
k , a sign that this new sequence probes the subleading non-perturbative

(2, 0) and (0, 2) sectors.

behaviour of a real expansion of the Adler function, but in fact it is not. Our numerical
resurgence analysis yields

i Im
[
δ
(1)
k

]
∼ ±πi

[
−Γ(k+2)

2k+2
· 3− Γ(k+1)

2k+1
· 3
2
+

Γ(k+1)

(−2)k+1
· 1

36
− Γ(k+1)

3k+1

]
, (5.88)

where the overall sign ambiguity comes from a choice of contour in the Borel-Padé
evaluation of Eq. (5.87), either above or below the singularities on the positive real
axis in the Borel plane. Note that this imaginary contribution can itself be Borel
transformed into

±iπ

[
−3

1

(2− u)2
− 3

2

1

2− u
− 1

36

1

2 + u
− 1

3− u

]
. (5.89)

Now, these same imaginary and ambiguous contributions will also appear in the Borel
transform of diagram (a) itself, Eq. (5.49). For example, an ambiguity is present in the
expansion of the logarithm log(1−u) in that expression around u = 2. This expansion
takes the form

6 log(1− u)

(3− u)(2− u)2(1− u)u

∣∣∣∣
u=2

= − ±3πi

(2− u)2
− ± 3

2πi + 3

2− u
+ ... (5.90)
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where we see the exact same imaginary ambiguity as in the first and second term of
Eq. (5.89). As a result, the coefficients of the (2, 0) sector that can be read off from
either Eq. (5.88) or Eq. (5.89) will not be ambiguous and moreover will be purely real.

A similar reasoning can be applied to the third ambiguous term in Eq. (5.89)
which will reappear in the expansion around log(1 + u) of Eq. (5.49):

2 log(1 + u)

(1− u)2(2− u)u(2 + u)

∣∣∣∣
u=−2

= − 1

36
· ±πi
2 + u

+ ... . (5.91)

For the fourth ambiguous term in Eq. (5.89), which will determine a (3, 0) sector
coefficient, we expand around u = 3:

6 log(1− u)

(3− u)(2− u)2(1− u)u

∣∣∣∣
u=3

= −±πi− log(2)

3− u
+ ... . (5.92)

Taking the same steps as we did for the (1, 0) and (0, 1) sectors, we can now determine
the coefficients in the (2, 0) and (0, 2) sectors by doing a large order analysis on the
δ
(1)
k . Above, we have already analysed the imaginary part of δ(1)k . The real part does

not have a contribution to the (0, 2) sector, but is does affect the (2, 0) sector. From
it, we extract β2,0 = −1 and the (2, 0) coefficients

d̃
(2,0)[1]
0 = −2 (5.93)

d̃
(2,0)[0]
h =

3− 2γE + 1
4 log(3) h = 0

Γ(h)
( (

2
3h+ 11

9

)
(−1)h + 1− 2

9
1
2h

)
h > 0 .

(5.94)

As we see, the (2, 0) sector contains again a log(α) contribution in the transseries,
given by the coefficient d̃(2,0)[1]0 . We were able to extract the first 15 coefficients in
Eq. (5.94) (as well as those of the simpler imaginary part, Eq. (5.88)) numerically
from Eq. (5.87) up to 9 decimal places, after which we inferred the exact expressions.
Once again – recall how we did this for the (1, 0) and (0, 1) sectors in Eqs. (5.63) and
(5.64) – we know that this is exact to all orders, because we can compare with the
exact Borel transform.

Diagram (b)

Similar to diagram (a), before we can probe the second non-perturbative (2, 0) and
(0, 2) sectors of diagram (b), we want to subtract the (1, 0) and (0, 1) sectors. As both
the (0, 1) sector and the log part of the (1, 0) sector (i.e. the (1, 0)[1] sector) contain just
one coefficient, we can directly subtract these parts. The (1, 0)[0] coefficients however
grow asymptotically, and therefore we have to perform a Borel-Padé summation on
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this part. This leads to the new sequence

δ
(1)
k = d

(0,0)
k − Γ(k−β)

Ak−β
2

d̃
(0,1)[1]
0 − Γ(k−β)

Ak−β
1

[
d̃
(1,0)[1]
0 ψ(k−β) + S[P (1,0)]

(
1

k

)]
, (5.95)

with β = −1 and A1 = −A2 = 1 and the coefficients d̃(1,0)[1]0 and d̃
(1,0)[0]
0 given in

Eqs. (5.65) and (5.67) respectively. A numerical analysis on the imaginary part of δ(1)k

yields a contribution to the (2, 0) sector:

i Im
[
δ
(1)
k

]
∼ ±6πi

Γ(k + 1)

2k+1
+O(3−k) . (5.96)

From the real part of δ(1)k we extract for both sectors β2,0 = β0,2 = −1. Furthermore,
we extract a single non-perturbative coefficient for the (0, 2) sector,

d̃
(0,2)[0]
0 = −1

6
+

2

9
log(2) , (5.97)

and the first few coefficients of the (2, 0) sectors. We list the first four:

d̃
(2,0)[0]
0 = −2 , d̃

(2,0)[0]
1 = −14

3
, d̃

(2,0)[0]
2 = −5

2
, d̃

(2,0)[0]
3 = −7

6
− 8ζ3 . (5.98)

We have obtained these coefficients numerically up to at least 9 decimal places, as
well as seven further ones not displayed here, after which we inferred the analytic
expression. Furthermore, notice that the (2, 0) sector of this diagram does not have a
log sector, i.e. all the coefficients d̃(2,0)[1]h vanish.

We can improve on these results using again the method of alien derivatives acting
on the convolution integral to find all d̃(2,0)[0]h exactly. We repeat Eqs. (5.68) and
(5.69), for this diagram:

B[D(0,0)
b ](u) =

−6Γ(1 + u)

(1− u)Γ(3− u)
B[Ψ(0)](u), (5.99)

with the convolution integral

B[Ψ(0)](u) =

∫ u

0

du1 B[F ](u1)B[F ](u− u1), B[F ](u) = Γ(1− u)

(2− u)Γ(2 + u)
. (5.100)

In order to extract the (2, 0) sector, we need the expansion of B[Ψ(0)] around u = 2,
i.e. we need the second non-perturbative sector Ψ(2). As discussed in Sec. 4.2, this
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implies we need

∆1F =
1

2
(2πi), and ∆2F = −1

6
(2πi)

(
1

α
+

17− 12γE
6

)
, (5.101)

which are read off from the expansions around the poles of B[F ] positioned at u = 1

and u = 2. We notice that, similar to the LO Adler function, ∆2
1F = 0. However,

∆2F is now non-vanishing. This yields

(
SΨ
1

)2
Ψ(2) = 2 · 1

2
(∆1F )

2 + 2 · F∆2F (5.102)

=
1

4
(2πi)2 − 1

3
(2πi)

(
1

α
+

17− 12γE
6

) ∞∑
n=0

Fnα
n+1

= 2πi

(
1

2
πi− 1

3
F0

)
− 1

3
(2πi)

∞∑
n=0

(
Fn+1 +

17− 12γE
6

∞∑
n=0

Fn

)
αn+1 .

Recalling the discussion at the end of Sec. 4.2.3, in particular Eqs. (4.47) and (4.50),
we can write the Borel transform of Ψ(2) in terms of B[F ](u) and its derivative B[F ]′(u)

w.r.t. u. Therefore, the Borel transform B[Ψ(0)] around u = 2 reads

B[Ψ(0)](u)
∣∣∣
u=2

=
1
2πi− 1

3F0

u− 2
−
(
SΨ
1

)2 B[Ψ(2)](u− 2)
log(1− u

2 )

2πi
+ ... (5.103)

=
1
2πi− 1

3F0

u− 2
+
1

3

(
B[F ]′(u−2)+

17−12γE
6

B[F ](u−2)

)
log
(
1− u

2

)
+ ...

Adding back in the prefactor to get B[Db](u) and F0 = 1
2 yields, after a brief calcula-

tion10,

B[D(0,0)
b ](u)

∣∣∣
u=2

=
−6Γ(1 + u)

(1− u)Γ(3− u)
B[Ψ(0)](u)

∣∣∣
u=2

+ ...

=
6πi− 2

2− u
− B[D̃(2,0)

b ](u− 2) log(1− u

2
) + ... , (5.104)

with

B[D̃(2,0)
b ](u−2) =

2u

(1−u)(4−u)

(
1

4−u +
17−12γE

6
− ψ(3−u)− ψ(u)

)
. (5.105)

10Note that in Eq. (5.96) the factor 6πi appears with an ambiguous sign. As usual, in large order
formulas this imaginary ambiguity should not contribute to the perturbative coefficients; it will be
‘canceled’ by the 6πi terms in the present equation. One may be worried that here, no ambiguous
sign appears in front of the 6πi, but this is a result of the fact that we have implicitly chosen the
‘lower contour’ by applying a particular form of the Stokes automorphism and the resulting alien
derivatives.
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The exact coefficients d̃(2,0)[0]h are obtained from the residue of the simple pole around
u = 2 in Eq. (5.104), and after applying an inverse Borel transform on Eq. (5.105).

At this point, we want to come back to a left over point of the previous subsection:
the resurgence of the d̃(1,0)[0]0 and d̃(0,1)[0]0 coefficients – which we were not yet able to
determine there – from the convolution integral. (We shall see momentarily how the
same reasoning also leads to the resurgence of the d̃(0,2)[0]0 coefficient.) In principle, as
B[F ](u) only has singularities at positive integers of u, also its convolution integral
B[Ψ(0)](u) only has possible singularities at positive integers of u. Therefore, with the
techniques of studying the convolution integral with alien derivatives, it seems we can
only make statements about the local expansions of B[Ψ(0)](u) around these values.
However, the prefactor

−6Γ(1 + u)

(1− u)Γ(3− u)
(5.106)

in front of this convolution integral has singularities at u = 1 and the negative integers
of u. Therefore, these singularities pick up regular terms of B[Ψ(0)](u) at these points.
In particular, the prefactor also leads to the pattern of singularities at negative integers
in u of B[D(2,0)

b ](u− 2). Furthermore, there is also a singularity at u = 1 and therefore
we notice that this sector contributes to the coefficients d̃(1,0)[0]0 , d̃(0,1)[0]0 and d̃(0,2)[0]0 .
For example, expanding the Borel transform of the (0, 2) sector around u = 1 yields

B[D̃(2,0)
b ](u− 2) log(1− u

2
)
∣∣∣
u=1

=
13 log(2)

9(u− 1)
+ ... (5.107)

with the ellipsis denoting regular terms around u = 1. We notice that this indeed corre-
sponds with part of the coefficient d̃(1,0)[0]0 already obtained numerically in Eq. (5.66).
The remaining part of this coefficient follows from the fact that we multiplied a pole
at u = 1 of the prefactor with the expansion of B[Ψ(0)[u] around u = 1. Similarly,
we can expand the same expression around u = −1 and u = −2 to find (parts of)
the coefficients d̃(0,1)[0]0 and d̃(0,2)[0]0 as given above. In conclusion, we see in particular
that knowing the subleading (2, 0) and (0, 2) sectors actually teaches us a bit more
about the leading (1, 0) and (0, 1) sectors that we were not able to deduce from the
perturbative (0, 0) sector alone.

Diagram (c)

Finally, we discuss the resurgence of the (2, 0) and (0, 2) sectors of diagram (c). For
this, we can use the same sequence as in Eq. (5.95), but now using the coefficients of
the (1, 0) and (0, 1) sectors of diagram (c) given in Eqs. (5.75)-(5.77). A numerical
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analysis yields

i Im
[
δ
(1)
k

]
∼ ±3πi

Γ(k + 2)

2k+2

(
1− 1

k + 1

)
+O(3−k) (5.108)

for the imaginary part. Similar to diagram (b), there is only a single non-vanishing
non-perturbative coefficient in the (0, 2) sector:

d̃
(0,2)[0]
0 = −17

72
+

1

3
log(2) . (5.109)

However, the (2, 0) sector of diagram (c) has a log contributing in the transseries,
given by the non-perturbative coefficient

d̃
(1,0)[1]
0 = −2 . (5.110)

Again we list the first four coefficients of the (2, 0)[0] sector and we show in a moment
how higher coefficients are obtained using the convolution method:

d̃
(2,0)[0]
0 = 4− 2γE +

log(3)

4
, d̃

(2,0)[0]
1 =

1

3
,

d̃
(2,0)[0]
2 =

11

12
, d̃

(2,0)[0]
3 = −43

12
+ 4ζ3 . (5.111)

The numerical analysis on δ
(1)
k agrees with Eqs. (5.108)-(5.111) up to at least 11

decimal places.

These same results are obtained using the convolution integral method. We repeat
Eqs. (5.78) and (5.79),

B[D(0,0)
c ](u) =

−6Γ(u)

(1− u)(2− u)Γ(3− u)
B[Φ(0)](u), (5.112)

with

B[Φ(0)](u) =

∫ u

0

du1 B[F ](u1)B[G](u− u1) , B[G](u) = uΓ(1− u)

Γ(2 + u)
, (5.113)

and B[F ] the same as for diagram (b) given in Eq. (5.69). Again, for the resurgence of
the (2, 0) and (0, 2) sectors of diagram (c), we need access the second non-perturbative
sector of Φ. To compute this this, we use ∆1F and ∆2F already given in Eq. (5.101),
and also

∆1G =
1

2
(2πi), and ∆2G = −1

3
(2πi) . (5.114)
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As ∆2
1F = ∆2

1G = 0, we get

(
SΦ
1

)2
Φ(2) = 2 · 1

2
∆1F∆1G+ F∆2G+G∆2F (5.115)

=
1

4
(2πi)2 − 1

3
(2πi)

∞∑
n=0

Fnα
n+1 − 1

6
(2πi)

(
1

α
+

17−12γE
6

) ∞∑
n=0

Gnα
n+1

= (2πi)

(
1

2
πi− 1

6
G0

)
− 1

6
(2πi)

∞∑
n=0

(
2Fn +Gn+1 +

17−12γE
6

Gn

)
αn+1.

We can write the Borel transform B[Φ(2)](u) in terms of B[F ](u), B[G](u), and B[G]′(u).
This yields

B[Φ(0)](u)
∣∣∣
u=2

=
1
2πi− 1

6G0

u− 2
−
(
SΦ
1

)2 B[Φ(2)](u− 2)
log(1− u

2 )

2πi
+ ... (5.116)

=
1
2πi− 1

6G0

u− 2
+

1

6

(
2B[F ](u− 2) + B[G]′(u− 2)

+
17− 12γE

6
B[G](u− 2)

)
log
(
1− u

2

)
+ ... .

Adding back in the prefactor to get B[Dc](u) and G0 = 0 yields

B[D(0,0)
c ](u)

∣∣∣
u=2

=
−6Γ(u)

(1− u)(2− u)Γ(3− u)

[
B[Φ(0)](u)

∣∣∣
u=2

+ ...
]

= − 3πi

(2− u)2
− 3πi

2− u
− B[D̃(2,0)

c ](u− 2) log(1− u

2
) + ... , (5.117)

with

B[D̃(2,0)
c ](u−2) = − 1

1−u

(
1

4−u − 2

2−u +
17−12γE

6
− ψ(3−u)− ψ(u)

)
. (5.118)

An inverse Borel transform indeed yields the coefficients d̃(2,0)[0]h given above. Note
that the prefactor in the first line of Eq. (5.117) has a pole at u = 2, and therefore
a constant term from the regular part between square brackets also contributes to
the singular terms in the last line. This corresponds to the coefficient d̃(2,0)[0]0 . With
the same reasoning as for diagram (b), we can get parts of the coefficients of d̃(1,0)[0]0 ,
d̃
(0,1)[0]
0 and d̃(0,2)[0]0 by expanding the sector B[D(2,0)

c ] around the singular points u = 1,
u = −1 and u = −2 respectively.

This finishes the analysis and discussion of the resurgence of the (2, 0) and (0, 2)

sectors. In our analysis, we saw that for diagram (b) and (c) the (2, 0) sector was more
interesting from a resurgence point of view, with resurgence relations that involve
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multiple non-perturbative sectors. In the next two subsections, we study some further
non-perturbative sectors and draw the alien lattices for these diagrams.

5.2.5. Further non-perturbative sectors and alien derivative
structure

In the previous two subsections, we have focused on the resurgence of the (1, 0), (0, 1),
(2, 0) and (0, 2) sectors from the perturbative (0, 0) sector. As already observed in these
sections, the coefficients of (some of) these non-perturbative sectors show asymptotic
growth, so these sectors themselves have resurgence relations to other non-perturbative
sectors. We will see momentarily that non-perturbative sectors like (n,m) with n ̸= 0

and m ̸= 0 will appear, something we have not observed before.

Diagram (a)

Let us once again start our discussion with diagram (a). In Eqs. (5.63) and (5.64), we
saw how in the Borel plane of B[D(0,0)

a ](u), the (1, 0) sector resurges in the form

B[D̃(1,0)[0]](u− 1) =
3

(2− u)2
+

3

2(2− u)
− 1

2u
+

1

3− u
. (5.119)

Likewise, one finds the Borel transform of the (0, 1) sector:

B[D̃(0,1)[0]](u+ 1) = − 1

4(2− u)
− 2

3(1− u)2
+

2

9(1− u)
− 1

2u
+

1

36(2 + u)
. (5.120)

In particular, we notice that these expressions have a singularity at u = 0. One can
wonder why the perturbative (0, 0) sector does not contain this singularity in its own
Borel transform. The reason is that, to get the (0, 0) sector, one has to include the
logarithms:

B[D̃(1,0)[0]](u− 1) log(1− u)
∣∣∣
u=0

=
1

2
+O(u) (5.121)

and

B[D̃(0,1)[0]](u+ 1) log(1 + u)
∣∣∣
u=0

= −1

2
+O(u) . (5.122)

That is, as seen from the point of view of the (0, 0) sector, the two constant terms
that would contribute to a singularity at u = 0 cancel. However, from the perspective
of the (1, 0) and (0, 1) sectors, the individual singularities contribute to the large order
growth of these sectors. Note that what these sectors see is not the (0, 0) sector again,
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as that sector has a vanishing constant term (see Eq. (5.50)) and moreover, as in
examples with bridge equations, one would not expect a sector like (1, 0) to be able to
detect the (0, 0) sector. Thus, we conclude that what we find here is the contribution
of a (1, 1) sector, i.e. we get

D(1,1)[0] =
1

2
, (5.123)

which is a sector containing only a single non-perturbative coefficient. This relation
is best viewed in the alien lattice, for which we now learn that it must contain the
following arrows:

D(1,0) D(2,0) D(3,0)

∆2

∆1

D(1,1)

∆−1

D(0,1)

∆1
D(2,1)

∆2

D(3,1)

∆3
D(2,1)

∆−1

Here we also included the motions towards other non-perturbative sectors. Let us
make two more remarks about this diagram.

First of all, observe that from the (0, 1) sector we have also drawn alien derivative
arrows towards a (2, 1) and a (3, 1) sector. The existence of a (2, 1) sector can be
argued in a similar way as above and we will show this explicitly in a moment, by
looking at the singularities in the relevant Borel transforms and observing that these
do not correspond to sectors that are already known. The same argument for a (3, 1)

sector is on less solid ground, as the coefficient we find for that sector is also contained
in the relevant perturbative coefficient in the (2, 0) sector, and so we cannot be certain
that it is indeed the former sector that the (1, 0) sector detects. Thus, for now the
existence of a (3, 1) sector is a conjecture, which we hope to come back to in future
work.

Secondly, notice the alien derivative ∆1 pointing from the (1, 0) sector to the (2, 0)

sector; this alien derivative was discussed and explained around Eq. (5.89). In this
diagram, we drew the (2, 0) sector with a white, solid box, which would imply that it is
not an asymptotic series, contrary to the fact that we already know from the previous
subsection that this is an asymptotic sector. The reason for this representation here is
that the (1, 0) sector only sees a small, non-asymptotic part of the (2, 0) sector.

Similarly, we observe that the Borel transform of the (0, 1) sector has a double pole
at u = 1, whereas this does not resurge from the (0, 0) sector directly, i.e. in our analysis
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we only found a single pole given by the coefficient d̃(1,0)[0]0 = 1
3 − 3γE + 13

9 log(2). A
closer inspection of the (2, 0) sector reveals the same double pole at u = 1, i.e. we have

B[D̃(2,0)[0]](u− 1) = − 2

3(1− u)2
+

11

9(1− u)
+

1

3− u
− 2

9(4− u)
, (5.124)

with the same coefficient 2
3 as in Eq. (5.120). Again, from the point of view of the

(0, 0) sector, one has to include the logarithms:

B[D̃(2,0)[0]](u− 1) log
(
1− u

2

) ∣∣∣
u=1

=
2 log(2)

3(1− u)2
+

2
3 + 11

9 log(2)

1− u
+ ... (5.125)

and

B[D̃(0,1)[0]](u+ 1) log(1 + u)
∣∣∣
u=1

= − 2 log(2)

3(1− u)2
+

− 1
3 + 2

9 log(2)

1− u
+ ... . (5.126)

This means that the (0, 0) sector does not see the double pole, but the (2, 0) and
(0, 1) sectors independently do. Furthermore, we observe that the (2, 0) and the (0, 1)

sectors see the same double pole, and we thus conclude that this is part of the (2, 1)

sector.

We notice however that the single pole, as seen from the point of view of the (2, 0)

and (0, 1) sectors has a different residue in the two cases, i.e. 11/9 and 2/9 respectively.
This is a result of the fact that both sectors have resurgence relations towards both
the (1, 0) sector and the (2, 1) sector. As the (2, 0) sector sees the (2, 1) and (1, 0)

sectors with different weights compared to the (0, 1) sector (which depend on different
Stokes constants), we conclude that it is hard to distinguish which part of the single
pole at u = 1 is part of the (2, 1) sector and which part corresponds to the (1, 0) sector.
Being able to distinguish between the two would allow one to extract an interesting
relation between the Stokes constants of the Adler function. This is another point
that we hope to come back to in future work.

Again, these relations are best viewed in terms of the alien lattice, which as we
now have learned also contains the following ingredients:

D(2,0) D(3,0) D(4,0)

∆2

∆1

D(2,1)

∆−1

D(0,1)

D(1,0)

∆2

∆2

∆−1
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The full alien lattice for diagram (a) can now be obtained by combining the previous
two diagrams with the similar diagram for the (0, 0) sector:

D(0,0) D(1,0) D(2,0)

∆2

∆1

D(0,1)

∆−1

D(0,2)

∆−2

D(3,0) D(4,0)

∆4

∆3

where we also inlcuded motions from the perturbative (0, 0) sector towards a (3, 0)

and (4, 0) sector (see also the discussion in the next subsection).

Diagrams (b) and (c)

For diagrams (b) and (c), we have seen that only the (1, 0) and (2, 0) sectors are
asymptotic. To be precise, we derived for diagram (b) the following Borel transform of
the (1, 0) sector:

B[D̃(1,0)[0]
b ](u− 1) =

6

2− u
− 3

3− u
. (5.127)

The singularities at u = 2 and u = 3 can be seen as part of the (2, 0) and (3, 0) sectors,
i.e. in terms of alien lattices:

D(1,0) D(2,0) D(3,0)

∆2

∆1

(5.128)

Diagram (c) on the other hand is slightly different. The Borel transform of its
(1, 0) sector reads

B[D̃(1,0)[0]
c ](u− 1) =

1

2u
+

3

(2− u)2
+

3

2(2− u)
+

1

2(3− u)
. (5.129)

Again we notice a singularity at u = 0 which is not seen by the perturbative (0, 0) sector.
We therefore conclude that this is the effect of a non-zero (1, 1) sector. As before,
this new sector is not an asymptotic sector, but it only contains one non-perturbative
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coefficient. This yields the following part of the alien lattice:

D(1,0) D(2,0) D(3,0)

∆2

∆1

D(1,1)

∆−1

We already observed earlier that the (2, 0) sector of both diagram (b) and (c) has an
infinite number of singularities in u at both positive and negative integers. Coming
back to our discussion in Sec. 4.2.5, we want to mention here that from the convolution
integral alone, Eq. (5.79), we would not have expected singularities at u = 0 or negative
values of u. However the prefactor in front of the convolution integral, Eq. (5.79) adds
singularities at non-positive u. It is therefore hard to distinguish which part of the
pole at u = 1 for diagram (c) is related to the (0, 1) sector or the (1, 2) sector. First
of all, the singularities at positive integers of u follow mainly from the convolution
integral, but they also arise from the prefactors in front of the convolution integral
since these add a pole at u = 1 for diagram (b) and a pole at u = 1, 2 for diagram (c).
We therefore expect that this contributes to both a (1, 0) and a (2, 1) sector as seen
from the (2, 0) sector. Likewise, the prefactor adds an infinite number of singularities
at negative u, leading to both (0, n) as well as (2, 2+ n) sectors, for n ≥ 1, or in terms
of motions on the alien lattice:

D(2,0) D(3,0) D(4,0)

∆2

∆1

. . .

D(2,1)

∆−1

D(2,4)

∆−3

D(2,3)

∆−4

...

D(1,0)

∆−1

D(0,1)

D(0,2)

...

∆−3

∆−4

All in all, we see that at order 1/N2
f in the number of flavours, the Adler function

displays many more interesting resurgence features than were present at order 1/Nf .

5.2.6. Overview: transseries sectors and relations

We have discussed the resurgence of the first non-perturbative sectors ((1, 0) and
(0, 1)) as well as the second non-perturbative sectors ((2, 0) and (0, 2)) of diagrams
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(a)-(c), plus how further sectors resurge from these sectors. We now briefly sketch the
resurgence structure of higher sectors for these diagrams.

Looking at the closed form expression for diagram (a) in Eq. (5.49), we notice
from the singularity structure that the only remaining non-vanishing sectors are the
(3, 0) and (4, 0) sectors. Furthermore, as these singularities are not branch cuts but
just simple poles, we conclude that they describe non-asymptotic sectors containing
just a single non-vanishing non-perturbative coefficient.

From our discussion in Sec. 4.2.4, it might seem that we need to act with many
alien derivatives to get access to the higher sectors of diagrams (b) and (c). However,
the constituents F and G of the convolution integral of diagram (b) and (c) (recall
Eqs. (5.68) and (5.78) respectively), have ∆n

ωF = ∆n
ωG = 0 for n > 1. This implies that

we only get non-vanishing contributions by acting with at most two alien derivatives
– one for each factor in the convolution product. Still, that leaves us with quite a
few options to consider, but as we see momentarily, we can categorise all remaining
options into a few classes. We discuss each of these classes case by case.

Let us first discuss the higher non-perturbative asymptotic sectors of diagram (b).
The non-vanishing alien derivatives acting on F of that diagram are given by

∆1F =
1

2
(2πi) , ∆2F = −1

6
(2πi)

(
1

α
+

17− 12γE
6

)
, (5.130)

and

∆nF =
(−1)n

(2− n)(n+ 1)!(n− 1)!
(2πi) , n ≥ 3 . (5.131)

First of all, using the convolution method we get an asymptotic contribution to the
(n, 0), n ≥ 3, sector via:

F∆nF . (5.132)

One can show that this gives a contribution to B[D(0,0)
b ](u) around u = n proportional

to

−6Γ(1 + u)

(1− u)Γ(3− u)
B[F ](u− n) log

(
1− u

n

)
=

−6Γ(1 + u)

(1− u)Γ(3− u)

Γ(n+ 1− u)

(n+ 2− u)Γ(2 + u− n)
log
(
1− u

n

)
. (5.133)
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The ratio of gamma functions is regular for n ≥ 3 and furthermore it cancels the pole
at u = 1. We therefore see that this asymptotic part of the (n, 0) sector is completely
determined by the singularity at u = n+ 2, i.e., by the sector (n+ 2, 0).

Secondly, one gets contributions from acting with two alien derivatives:

∆k F∆(n−k)F . (5.134)

However, many of these cases do not lead to a contribution to the resurgence of diagram
(b) due to the prefactor in front of the convolution integral. That is, the contributions
of Eq. (5.134) that lead to a simple pole do not contribute as the prefactor contains a
term 1/Γ(3−u) which has zeros at u = n for n ≥ 3. As a result, the only non-vanishing
contribution follows from the case k = 2 as this leads to a double pole at u = n. In
particular, this results in a contribution to B[D(0,0)

b ](u) at u = n proportional to:

−6Γ(1 + u)

(1− u)Γ(3− u)

1

(n− u)2
. (5.135)

Combining the above observations leads to the contributions to the alien lattices shown
in the second column of Tab. 5.3.

The structure of higher sectors of diagram (c) is similar to that of diagram (b).
The non-vanishing alien derivatives acting on G are

∆nG =
n(−1)n(2πi)

(n+ 1)!(n− 1)!
, n ≥ 1 . (5.136)

Acting with a single alien derivative on the product FG, we get asymptotic contribu-
tions to the (n, 0) sectors (n ≥ 3) from

F∆nG+G∆nF . (5.137)

First, we consider n = 3, whereG∆3F yields a contribution to B[D(0,0)
c ](u) proportional

to

log(1− u
3 )

8(2− u)
. (5.138)

Likewise, F∆3G yields a contribution proportional to(
1

8(2− u)
+

1

4(5− u)

)
log(1− u

3
) . (5.139)
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mn n

m

n

m

(0
,0
)

D(0,0) D(1,0) D(2,0)

∆2

∆1

D(0,1)

∆−1

D(0,2)

∆−2

D(3,0) D(4,0)

∆4

∆3

D(0,0) D(1,0) D(2,0)

∆2

∆1

D(0,1)

∆−1

D(0,2)

∆−2

. . .

...

(1
,0
)

D(1,0) D(2,0) D(3,0)

∆2

∆1

D(1,1)

∆−1

D(1,0) D(2,0) D(3,0)

∆2

∆1

D(1,0) D(2,0) D(3,0)

∆2

∆1

D(1,1)

∆−1

(0
,1
)

D(0,1) D(1,1) D(2,1)

∆2

∆1

D(0,2)

∆−1

D(3,1)

∆3

D(1,0)

∆2

D(0,1)

(2
,0
)

D(2,0) D(3,0) D(4,0)

∆2

∆1

D(2,1)

∆−1

D(1,0)

∆−1

D(2,0) D(3,0) D(4,0)

∆2

∆1

. . .

D(2,1)

∆−1

D(2,4)

∆−3

D(2,3)

∆−4

...

D(1,0)

∆−1

D(0,1)

D(0,2)

...

∆−3

∆−4

(0
,2
)

D(0,2) D(0,2)

(3
,0
)

D(3,0) D(3,0) D(5,0)

∆2 D(3,0) D(5,0)

∆2

D(3,1)

∆−1

D(2,0)

∆−1

(0
,3
)

- D(0,3)

(n
,0
)

D(4,0) D(n,0) D(n+2,0)

∆2

(0
,n

)

- D(0,n)

Table 5.3.: Final summary of the relations between non-perturbative sectors at order 1/N2
f .
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Notice in particular that the expansion of this around u = 2 leads to part of the
coefficient d̃(2,0)[0]0 .

For n > 3, the only non-vanishing contribution of the convolution integral to the
resurgence of diagram (c) coming from a single alien derivative is given by F∆nG.
This yields a contribution proportional to

log(1− u
n )

(2 + n− u)
. (5.140)

Similar to diagram (b), when acting with two alien derivatives, one can show that only
a double pole coming from the convolution integral contributes to the resurgence of
diagram (c). This means that the contribution has to come from ∆2F∆n−2G, and we
get a term proportional to

−6Γ(u)

(1− u)(2− u)Γ(3− u)

1

(n− u)2
(5.141)

We have added the resulting motions on the alien lattice in Tab. 5.3.

This brings us to the end of our resurgence analysis of diagrams (a), (b) and (c). The
results are summarized in Tab. 5.3. Compared to the LO Adler function, at order
1/N2

f the (n, 0) sectors (and also the (0, 1) sector for diagram (a)) are asymptotic
sectors with their own resurgence relations towards further non-perturbative sectors.
In particular we find sectors like (n,m) with n ̸= 0 and m ≠ 0. We notice however that
the asymptotic non-perturbative sectors only have resurgence relations to sectors that
contain only one or two coefficients, quite similar to asymptotic perturbative series
of the LO Adler function. We expect that at higher order in the flavour expansion,
the asymptotic non-perturbative sectors will have resurgence towards full asymptotic
sectors, thus yielding an alien lattice with more motions between sectors.

5.3. Conclusion and outlook

In this chapter we have analyzed the transseries of the Adler function, which includes
non-perturbative effects, to order 1/N2

f . Let us summarize our main findings.

First, while the exact Borel transform of the O(1/Nf ) Adler function and its
singularities has been known for a long time [85, 86] (reviewed and rederived in
Sec. 5.1), we constructed a complete resummed two-parameter transseries expression –
recall Eqs. (5.42) and (5.43) – for the Adler function at order 1/Nf in the original α
variable. At this order in 1/Nf there are only poles in the Borel plane: UV double
poles at negative integer values of the (rescaled) Borel plane parameter u, and IR
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double poles at positive integer values with the exceptions of an absent pole at u = +1

and the occurence of a single pole at u = +2.

Second, we found that resurgent properties of the Adler function are best expressed
using the calculus and lattice structure based on the alien derivative (as advocated in
[47]). In particular, applying the techniques developed in Sec. 4.2, we saw in Sec. 5.2
a way to extract resurgence properties without having immediate access to the exact
Borel transform of a given asymptotic expansion. Furthermore, from this technique
we were able to extract locally the form of the Borel transformed result.

Our third finding is a more intricate singularity structure in the Borel plan at
order 1/N2

f , involving logarithmic branch cuts. In particular, using the Borel-Padé
technique and a large order analysis of the coefficients that we computed, we found
many of these branch cuts at IR singularities and a few at UV singularities. Of course,
since we have only computed a limited number of diagrams, we cannot state with
full certainty which singularities have branch cuts (and therefore which sectors have
asymptotic expansions) in the full Adler function at all orders in 1/Nf . However,
we conjecture that all singularities in fact become of this sort - except of course a
potential IR singularity at u = +1 which on physical grounds (due to the absence of a
corresponding operator in the OPE [88, 100]) we expect to remain absent.

A fourth finding for the order 1/N2
f transseries is that overlapping poles and

branch point singularities in the Borel plane lead to log(α) transmonomials in the
transseries and indicate a new type of power correction. These factors were already
anticipated in [98]; we indeed find that they occur. Furthermore, at this order in the
flavour expansion – summarised in Tab. 5.3 – we found non-perturbative sectors (n,m)

with both n ̸= 0 and m ̸= 0. These sectors come with both the IR transmonomial
e1/β0α and the UV transmonomial e−1/β0α. We expect all of this structure to persist
at higher orders in 1/Nf .

The picture that emerges from these findings is that the structure of our transseries,
displayed in detail for order 1/N2

f in Tab. 5.3, is interestingly different from that
occurring in many models studied in the literature. In particular, we have seen that
for the Adler function, ‘multiple forward alien derivatives’ such as ∆2 give nonzero
results, whereas in most simple models that have a bridge equation, only ∆1 provides
a nonvanishing ‘forward motion’. Furthermore, even though opposite non-perturbative
exponentials ±A as well as logarithmic transmonomials appear in the Adler function
transseries, the transseries turns out not to be resonant.

With our analysis, many open questions and opportunities for further research
suggest themselves. Let us mention a few interesting directions.
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To start verifying further the conjecture that for the full Adler function all non-
perturbative sectors are asymptotic, one could take a closer look at specific diagrams
at higher orders in 1/Nf and study their resurgence properties using the techniques
developed in this thesis. Ultimately, it would be interesting to also be able to perform
a sum over all orders in 1/Nf . For example, this may allow one to see if the interesting
shift in renormalon pole locations of [111] also occurs for the Adler function.

A second interesting area for further research concerns the structure of the Adler
transseries. One way to answer this question would be using a bridge equation; however,
no such equation is currently available. Despite this limitation, we have demonstrated
that the absence of a bridge equation did not hinder our analysis at order 1/Nf . By
studying the Stokes automorphism, we concluded that two transseries parameters
at this order suffice. Our findings suggest that the 1/N2

f diagrams discussed in this
section also feature two Stokes lines and, consequently, two Stokes automorphisms.
Nevertheless, it remains possible that one would in fact require more parameters. A
related observation is that our Adler transseries has a nonvanishing ‘two steps forward’
alien derivative ∆2; a ‘three-steps forward’ ∆3 etc. This may indicate a situation
where sectors like the e−2A/α sector introduce their own independent transseries
parameters. It will therefore be interesting to study the Stokes automorphism for the
1/N2

f diagrams, following an approach similar to that employed in Sec. 5.1.4 for the
1/Nf diagrams.

In conclusion, the Adler function remains an interesting object to study using
resurgence techniques. It is sufficiently complicated to show features not displayed
by many simpler models, but is also amenable to further perturbative studies that
might uncover some of the subtleties mentioned. We expect many more lessons and
surprises to lie ahead.



Chapter 6.

From power counting to factorization

And now for something completely different: in this and the next two chapters, we
shift our focus to the topic of factorization.

The importance of factorization theorems and their impact on precision physics –
particularly through resummation – was already highlighted in Sec. 1.2. The goal of
this chapter is to review some key aspects of factorization and establish the necessary
notation for the discussions ahead. Specifically, we will focus on the diagrammatic
derivation of the leading power factorization theorem, Eq. (1.5), already given in the
introduction of this thesis. Subsequently, we will review how a next-to-leading power
factorization theorem can be derived along similar lines, as detailed in [25] (see also
[119–121]).

The structure of this chapter is as follows. In Sec. 6.1, we start by discussing
how infrared (IR) singularities of Feynman integrals can be classified and represented
in a diagrammatic way. We then discuss how IR power counting can be used as a
mechanism to isolate the dominant contribution of a Feynman integral. In particular,
we review the QED power counting analysis of [25] and discuss how the diagrammatic
representation can be cast into a factorization formula. The leading power contribution
to this factorization formula is well established (see e.g. [23, 24] for more details).
In [25], also the ingredients necessary to extend the factorization formula to next-to-
leading power for both parametrically small and zero fermion masses was derived. In
chapters 7 and 8, we will discuss this subleading power factorization formula in great
detail in the case of massive fermions. Before we do so, we review the leading power
factorization formula in Sec. 6.2. This gives us the chance to set up the notation and
explain the ingredients to verify the factorization formulas, as we will follow a similar
strategy in the next two chapters at subleading power.

6.1. Factorization in a diagrammatic language

From the previous chapters, it should be clear that the singularity structure of a
complex function encodes important information. For a generic Feynman integral, this
is not any different and in this section we review how IR singularities can be classified.

147
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In particular, we discuss how factorization was first derived at the diagrammatic
level from a systematic study of these IR singularities in terms of collinear and soft
singularities.

6.1.1. Reduced diagrams

An arbitrary Feynman diagram G(p1, ..., pE) with E external legs, L loops and I

internal lines can be written as

G(p1, . . . , pE) =

L∏
j=1

∫
ddkj
(2π)d

N(pr, ks)

I∏
i=1

1

l2i −m2
i + iϵ

, (6.1)

with N(pr, kj) some numerator factor and mi and li the mass and momentum of the
i-th propagator, where the latter may depend on the external momenta pr, 1 ≤ r ≤ E,
and loop momenta ks, 1 ≤ s ≤ L. For every line we introduce a Feynman parameter
αi resulting in the Feynman-parametrized form

G(p1, . . . , pE) = Γ(I)

I∏
i=1

∫ 1

0

dαiδ
(
1−

I∑
k=1

αk

) L∏
j=1

∫
ddkj
(2π)d

Ñ(pr, kj , αi)

D(pr, kj , αi)I
, (6.2)

where Ñ(pr, kj , αi) gathers all numerator factors after the parametrization. Potential
IR singularities of this integral correspond to roots of the denominator

D(pr, kj , αi) =

I∑
i=1

αi

(
l2i −m2

i

)
+ iϵ . (6.3)

As the integral in Eq. (6.2) is a contour integral in the complex variables kj and αi,
the condition D = 0 alone is not enough to produce a singularity of G. By Cauchy’s
theorem, we may deform the integration contours to stay away from singularities.
However, if D = 0 is the result of a fixed endpoint of the αi contour, deforming the
contour away from the singularity is not possible. Another way in which the singularity
cannot be avoided is if two coalescing poles in li pinch the contour in between them. We
call these singularities endpoint and pinch singularities respectively. These necessary
conditions for such a singularity are summarised by the Landau equations [122]l2i −m2

i = 0 or αi = 0

∂D
∂lµi

= 0 , ∀i, µ .
(6.4)
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Example 6.1.1. As an example of the Landau equations, consider the massless
triangle

G(p1, p2) =

∫
ddk

(2π)d
1

k2(k + p1)2(k − p2)2

= 2

∫ ∏
i

dαiδ(1− α1 − α2 − α3)

∫
ddk

(2π)d
1

D3
, (6.5)

with p21 = p22 = 0 and

D = α1k
2 + α2(k + p1)

2 + α3(k − p2)
2 . (6.6)

There are two collinear solutions to the Landau equations, Eq. (6.4), which read

kµ = ypµ1 , α3 = 0 , α1y + α2(1 + y) = 0 , (6.7)

and

kµ = zpµ2 , α2 = 0 , α1z − α3(1− z) = 0 . (6.8)

Furthermore, there is one soft solution which reads

kµ = 0,
α2

α1
=
α3

α1
= 0 . (6.9)

Notice that the soft solution overlaps with the collinear solution in the limit y → 0 or
z → 0.

Although solving the Landau equations is not too difficult in the above example, it
may become cumbersome for more complicated Feynman integrals. A more intuitive
picture is offered by the graphical analysis of Coleman and Norton [123]. They define
a space-time separation

∆xµi ≡ αil
µ
i , (6.10)

which can be interpreted as the displacement done in proper time αil
0
i of a classical

particle with four-velocity vµ = (1, li/l
0
i ). In terms of ∆xµi , the Landau equations,

Eq. (6.4), become ∆xµi = 0, if l2i ̸= m2
i∑

i∈loop j ∆x
µ
i ηi,j if l2i = m2

i

(6.11)
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(a) (b) (c)

Figure 6.1.: Reduced diagrams for the one loop massles triangle as discussed in exam-
ples 6.1.1 and 6.1.2.

where the sum runs over the propagators in a certain loop j and ηi,j is +1 (−1) if li is
in the same (opposite) direction as the loop momentum kj . As the following example
shows, the solutions to the Landau equation can be represented by so called reduced
diagrams made up of the displacement vectors ∆xµj .

Example 6.1.2. The collinear solutions of example 6.1.1 now become respectively

∆xµk = −∆xµk+p1
, ∆xk−p2

= 0 , (6.12)

and

∆xµk = −∆xµk−p2
, ∆xk+p1

= 0 . (6.13)

The reduced diagrams corresponding to these two solutions are shown in Fig. 6.1 (a)
and (b). For the soft solution, we write

∆xµk = λα1

(
kµ

λ

)
, (6.14)

and think of kµ = 0 as the limit λ → ∞. This agrees with the physical picture
of Coleman and Norton where vanishing momentum corresponds with an infinite
wavelength. The reduced diagram is shown in Fig. 6.1 (c).

Hence, the task of finding solutions to the Landau equations now boils down
to drawing all the possible reduced diagrams, obtained by contracting off-shell lines
to points (the first condition in Eq. (6.11)). They form the vertices of the reduced
diagram, whereas the on-shell lines form the lines of the reduced diagram (the second
condition in Eq. (6.11)). The general reduced diagram for a QED process where a
photon decays into N fermions is shown in Fig. 6.2. The following terminology is
standard. We call a set of lines collinear to each other a jet subdiagram, which is



From power counting to factorization 151

. . .

. .
.

..
.

. .
.

. . .

H

J1

S

JN

Figure 6.2.: General reduced diagram for a QED proces where a photon decays into N
fermions.

abbreviated by Ji in the reduced diagram. The vertex H where lines from different
jet subdiagrams meet is called the hard vertex. The lines with vanishing momenta can
be gathered in a so-called soft subdiagram, denoted by S.

6.1.2. Power counting of QED amplitudes

The Landau equations – and therefore the reduced diagrams in the Coleman-Norton
picture – give the necessary conditions for a Feynman integral to have IR singularities.
However, these are not sufficient conditions for a Feynman integral to be singular as
the integration measure or numerator factors might supress the singularity. In order
to understand what configurations actually diverge, one introduces IR power counting.

The solutions to the Landau equations form a so-called pinch surface in the multi-
dimensional (kj , αi)-space. These hypersurfaces can be parameterized using a set of
intrinsic coordinates {va}. The remaining variables are called normal coordinates {nb}
and they describe the perturbations around the singular pinch surfaces. By rescaling
the normal coordinates with a power counting variable λ, we have a way to measure
the degree of divergence of the pinch surfaces. We rescale

nb → λωbnb (6.15)
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for some power ωb after which we can perform a so-called power expansion in λ.
Eq. (6.2) becomes

G(p1, . . . , pE) =
Γ(I)

(2π)Ld

I∏
i=1

∫ 1

0

dαi δ
(
1−

I∑
k=1

αk

)
∏
a,b

∫
dvaλ

ωb

∫
dnb

Ñ(pr, va, nb, αi, λ)

D(pr, va, nb, αi, λ)I

= λγG
(
I +O(λ)

)
, (6.16)

where I is the homogeneous integral obtained after expanding the Feynman integral
G to leading power in λ, and γG denotes the IR degree of divergence of this integral.
We conclude that γG ≤ 0 denotes diagrams which really do have singularities, whereas
diagrams with γG > 0 are finite and vanish in the limit λ→ 0.

We notice that the power counting analysis not only gives the leading power (LP)
in λ. One can also expand further and extract subleading powers in λ. In [25], this
power counting analysis has been caried out for the reduced diagrams shown in Fig. 6.2,
by carefully counting how many powers of λ each vertex and each line gives, and
simplifying the overall expression with certain graph identities. The analysis was
done for QED in the case of massless fermions, as well as the case of fermions with a
parametrically small mass m ∼ λQ. In the rest of the thesis we are interested in the
latter case and the power counting result of [25] reads

γG = If + 2mγ + 4mf +

N∑
i=1

(
N (i)

γ +N
(i)
f + 2n

(i)
f − 1

)
, (6.17)

with If the total number of internal fermion lines in the amputated soft subdiagram
and mf (mγ) denote the number of soft fermion (photon) connections with the hard
part. Similarly, N (i)

f (N (i)
γ ) is the number of collinear fermion (photon) connections

of jet i to the hard part and n
(i)
f is the number of soft fermion connections to jet i.

Notice that Eq. (6.17) is independent of n(i)γ – the number of soft photon connections
to jet i. A similar formula in [25] can be found for the power counting in the case of
QED with massless fermions.

Similar to [25], as a specific case of the power counting formula Eq. (6.17), we
consider the decay of an off-shell photon into two massive fermions γ∗ → ff̄ . The
LP configuration is γG = 0, which is obtained for N (i)

f = 1 and all other variables
vanishing. The corresponding reduced graph is shown in Fig. 6.3 (a). We denoted the
jet and soft subdiagrams by Jf , Jf̄ and S respectively and the hard vertex by Hff̄ .
The next order in the power expansion γG = 1 has one additional photon connection
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. .
.

. . .

Hff̄

Jf

S

Jf̄

(a) γG = 0

. .
.

. . .

Hf,f̄γ

Jf

S

Jf̄γ

(b) γG = 1

. .
.

. . .

Hfγ,f̄γ

Jfγ

S

Jf̄γ

(c) γG = 2

. .
.

. . .

Hf,f̄γγ

Jf

S

Jf̄γγ

(d) γG = 2

. .
.

. . .

Hf,f̄f̄f

Jf

S

Jf̄f̄f

(e) γG = 2

. .
.

. . .

Hf,f̄,γ

Jf

S

Jf̄

(f) γG = 2

Figure 6.3.: Reduced diagrams for fermions with a parametrically small mass m ∼ λQ
contributing up to NLP [25]. Diagram (a) is the LP reduced diagram whereas
diagram (b) is the first subleading contribution of order λ. Diagrams (c)-(f)
contribute at order λ2. We labeled the different jet sub diagrams by their
connection to the hard vertex, which has a similar notation.

between a jet subdiagram and the hard vertex. One of the two configurations is shown
in Fig. 6.3 (b), where a similar diagram can be drawn with the upper jet subdiagram
connected to the hard vertex by both a fermion and a photon. We denoted this new
jet subdiagram by Jf̄γ where again the subscript indicates the connection of the jet
subdiagram to the hard vertex. Ultimately, we are also interested in γG = 2 and
we call both the orders λ and λ2 next-to-leading power (NLP). At order λ2, more
configurations exist and their reduced diagrams are shown in Fig. 6.3 (c)-(f).

The reduced diagrams of Fig. 6.3 encode all relevant soft and collinear configu-
rations up to NLP. If one can find functional forms for the jet and soft subdiagrams
as well as for the hard vertex, we would have a way to factorize the amplitude (in
anticipation of such a factorization formula, we will therefore call these jet, soft and
hard functions from now on). It is known for a long time that such a factorization
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formula indeed exist at LP, see e.g. [23, 24] for details, and it reads

MLP = Jf ⊗Hf,f̄ ⊗ Jf̄ ⊗ S (6.18)

where the symbol ⊗ denotes a contraction of spinor and Lorentz indices, which are
neglected for notational simplicity (we will be more precise later on). We will review
this well known factorization formula Eq. (6.18) in the next section.

Following the same reasoning, we may assume that a similar factorization formula
holds at NLP:

MNLP = Jf ⊗Hf,f̄γ ⊗ Jf̄γ ⊗ S + Jfγ ⊗Hfγ,f̄ ⊗ Jf̄ ⊗ S + Jfγ ⊗Hfγ,f̄γ ⊗ Jf̄γ ⊗ S

+ Jf ⊗Hf,f̄γγ ⊗ Jf̄γγ ⊗ S + Jfγγ ⊗Hfγγ,f̄ ⊗ Jf̄ ⊗ S

+ Jf ⊗Hf,f̄f̄f ⊗ Jf̄f̄f ⊗ S + Jfff̄ ⊗Hfff̄,f̄ ⊗ Jf̄ ⊗ S , (6.19)

where we included the new NLP jet functions Jf̄γ , Jf̄γγ and Jf̄f̄f shown in Fig. 6.3 (b)-
(e), as well as the similar jet functions Jfγ , Jfγγ and Jfff̄ . A few remarks are in
order. First of all, the first two terms start at order λ and to be accurate to order
λ2, we also need their subleading terms. Similarly, we also need the subleading λ

and λ2 contributions of Eq. (6.18). We discuss both subtleties further in chapter 8.
Second, we expect the soft function to be the same for all diagrams – including the
LP factorization formula Eq. (6.18) – except for diagram (f) of Fig. 6.3 where the soft
function has a direct connection to the hard function. However, this reduced diagram
only contributes at the three loop order, which is beyond the scope of this thesis,
and we therefore excluded this from the factorization formula. Finally, we want to
note that [25] gives a more general factorization formula with N jets in the final state.
However, the jet functions we will derive with two final state jets should be universal.
That is, they can also be used for amplitudes with more than two final state jets and
the difference would only be in the hard function. We come back to this in chapter 8.

6.2. LP factorization

In this section, we review the LP factorization formula Eq. (6.18) by discussing the
decay of an off-shell photon of invariant mass Q into a massive fermion anti-fermion
pair of mass m

γ∗(q) → q(p1) + q̄(p2) , (6.20)
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p1

p2

(a)

p1

p2

(b)

Figure 6.4.: Tree and one loop diagrams contributing to the massive form factors in QED.

whose tree and one loop contribution in QED is given respectively in Fig. 6.4 (a)
and (b). The LP factorization is well known [23, 24], and we review it here to set up
notation and explain the strategy we will utilize in checking the NLP factoriztation
formula, Eq. (6.19), in chapters 7 and 8.

6.2.1. Massive form factors

Following [124], the vertex function V µ(p1, p2) corresponding to the process, Eq. (6.20),
is expressed in terms of two form factors, F1 and F2, as follows:

V µ(p1, p2) = ū(p1) Γ
µ(p1, p2) v(p2), (6.21)

Γµ(p1, p2) = −i e eq
[
F1

(
s,m2

)
γµ +

1

2m
F2

(
s,m2

)
i σµνqν

]
, (6.22)

where σµν = i
2 [γ

µ, γν ]; furthermore, s = (p1 + p2)
2 represents the center of mass

energy, and m en eq are the fermion mass and charge fraction respectively. The form
factors Fi, i = 1, 2 can be extracted by applying projection operators:

Fi

(
s,m2

)
= Tr

[
Pµ
i (m, p1, p2) Γµ(p1, p2)

]
, (6.23)

where

Pµ
i (m, p1, p2) =

/p2 −m

m

[
i g

(i)
1 γµ +

i

2m
g
(i)
2

(
pµ2 − pµ1

)]/p1 +m

m
, (6.24)
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and1

g
(1)
1 = −1

e

1

4(1− ϵ)

1

(s/m2 − 4)
,

g
(1)
2 =

1

e

3− 2ϵ

(1− ϵ)

1

(s/m2 − 4)2
,

g
(2)
1 =

1

e

1

(1− ϵ)

1

s/m2(s/m2 − 4)
,

g
(2)
2 = −1

e

1

(1− ϵ)

1

(s/m2 − 4)2

[
4m2

s
+ 2− 2ϵ

]
. (6.25)

Here and in the next chapters, we work in d = 4 − 2ϵ dimensions and compute
the unsubtracted form factor at one and two loops respectively. We therefore omit
counterterm insertions, which makes the mass m the unrenormalized mass. The form
factors have the perturbative expansion

Fi

(
s,m2, µ2

)
= F

(0)
i

(
s,m2

)
+
e2q αEM

4π
F

(1)
i

(
s,m2, µ2

)
+

(
e2q αEM

4π

)2

F
(2)
i

(
s,m2, µ2

)
+O

(
α3
EM

)
, (6.26)

with αEM = e2/(4π) and where

F
(0)
1

(
s,m2

)
= 1, F

(0)
2

(
s,m2

)
= 0. (6.27)

We are interested in computing the higher order corrections in the small mass (or
high-energy) limit m2/s ∼ λ2 ≪ 1. We assume the center of mass frame, with the
incoming quark moving along the positive z-axis. The momenta of the quark and
anti-quark can then be decomposed along two light-like directions, n± = (1, 0, 0,∓1)

as follows:

pµ1 =
(√

p2 +m2, 0, 0, p
)
= p+1

nµ−
2

+ p−1
nµ+
2
,

pµ2 =
(√

p2 +m2, 0, 0,−p
)
= p+2

nµ−
2

+ p−2
nµ+
2
. (6.28)

In the small mass limit the p±i components have the scaling properties

p+1 = n+ · p1 = p−2 = n− · p2 =
√
p2 +m2 + p ∼ √

s,

p−1 = n− · p1 = p+2 = n+ · p2 =
√
p2 +m2 − p ∼ λ2

√
s. (6.29)

1The definition of g(2)2 in [124] has a typo; here we follow the definition given in Eq. (2.7) of [125].
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In what follows it will prove useful to define a variable

ŝ ≡ p+1 p
−
2 =

(√
m2 + p2 + p

)2
, (6.30)

such that

s = 2m2 + p+1 p
−
2 + p−1 p

+
2 = 2m2 + ŝ+

m4

ŝ
. (6.31)

Throughout the remainder of this thesis, we define the loop integration measure in
dimensional regularization as follows:∫

[dk] ≡
(
µ2eγE

4π

)ϵ ∫
d4−2ϵk

(2π)4−2ϵ
. (6.32)

We will next compute the one loop massive form factor using the method of regions.

6.2.2. Method of regions

In order to test the factorization formulas, Eqs (6.18) and (6.19), we need some data
to compare with. For the purpose of checking the LP factorization formula Eq. (6.18)
– which we do in this section – we need at least the one loop small mass expansion
of the form factors, i.e. m≪ Q. In [25] some explicit checks have been provided at
one loop for the NLP factorization formula, Eq. (6.19). However, a more thorough
test of the factorization formula requires at least a two-loop computation, since the
functions in the second and third line of Eq. (6.19) appear for the first time at NNLO.
The analysis is much more extensive and we therefore dedicate the next two chapters
to this.

The small mass expansion alone does not provide enough information to compare
with the corresponding factorized expression given in Eq. (6.18). Indeed, in the small
mass limit it is possible to calculate the form factors with the method of expansion by
momentum regions [126–128], often also simply called the method of regions. Within
this approach, one assigns to the loop momentum a specific scaling, which can be
hard, collinear, soft, etc, with respect to the scaling of the external particle momenta.
Each term defines a momentum region, and it is then possible to expand the form
factors directly at the level of the integrand in the small parameters appearing in each
region. The full result is recovered by summing over all regions. This approach is
particularly useful because we expect the jet functions in Eq. (6.19) to be directly
related to the collinear and anti-collinear region contributions. (See [129, 130] for
previous applications of the method of regions to study the correspondence between
collinear regions and jet functions.)
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Let us explain the method of regions in more detail by discussing the one loop form
factor in the limit m2 ≪ s and calculating the first two terms in the expansion. Notice
that for now we are just interested in the first term of this expansion, i.e. the LP term,
but we need the subleading term as well when we discuss the NLP factorization in the
next two chapters. At one loop only the single diagram of Fig. 6.4(b) contributes to
the form factors and the amplitude in Feynman gauge reads

−e3qe3
∫
[dk]

ū(p1)γ
ρ(/k + /p1 +m)γµ(/k − /p2 +m)γρv(p2)

[k2 + i0+][(k + p1)2 −m2 + i0+][(k − p2)2 −m2 + i0+]
(6.33)

The first step in the method of regions is then to decompose k along the light-like
directions n±:

kµ = k+
nµ−
2

+ k−
nµ+
2

+ kµ⊥, kµ = (k+, k−, k⊥), (6.34)

where k± = n± · k. The second identity in the equation above provides a compact
notation to indicate scaling relations similar to the scaling we assigned to the external
momenta in Eq. (6.29). As we will see below, up to one loop the following loop
momentum modes contribute:

Hard (h): k ∼
√
ŝ (λ0, λ0, λ0) ,

Collinear (c): k ∼
√
ŝ (λ0, λ2, λ1) , (6.35)

anti-Collinear (c̄): k ∼
√
ŝ (λ2, λ0, λ1) .

Beyond one loop – see chapter 7 – we find that two additional momentum modes are
necessary, which scale as

Ultra-Collinear (uc): k ∼
√
ŝ (λ2, λ4, λ3) ,

Ultra-anti-Collinear (uc̄): k ∼
√
ŝ (λ4, λ2, λ3) . (6.36)

One might also expect the following modes to contribute:2

Semi-Hard (sh): k ∼
√
ŝ (λ1, λ1, λ1) ,

Soft (s): k ∼
√
ŝ (λ2, λ2, λ2) , (6.37)

however, these turn out to give rise to scaleless loop integrals and therefore do not
contribute up to two-loop level.3

2In literature the modes of Eq. (6.37) are sometimes referred to as soft and ultra-soft respectively [21].
3In the presence of rapidity divergences this depends on the type of rapidity regulator, which we

discuss in detail in Sec. 7.2 and App. C.
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k2 k+p−1 k−p+1 k+p−2 k−p+2 [dk]

(h) 1 λ2 1 1 λ2 1
(c) λ2 λ2 λ2 1 λ4 λ4

(c̄) λ2 λ4 1 λ2 λ2 λ4

(uc) λ6 λ4 λ4 λ2 λ6 λ12

(uc) λ6 λ6 λ2 λ4 λ4 λ12

Table 6.1.: Scaling associated to the different momentum regions.

The next step is to perform the power expansion of the integrand in Eq. (6.33) in
each momentum region. For example, for the collinear region, it is straightforward
to do this power expansion by expanding in λ using the scalings of the third row of
Tab. 6.1 – which is obtained using the scalings of Eq. (6.29) for the external momenta
and the collinear scaling of Eq. (6.35) for the loop momenta. That is, the third
denominator in Eq. (6.33) is expanded as

1

k2 − k−p+2 − k+p−2 + i0+

∣∣∣∣
c

=
1

−k+p−2 + i0+

[
1− k2

−k+p−2 + i0+
+O(λ4)

]
(6.38)

and one can perform a similar expansion for the rest of the integrand. Here and in the
rest of this thesis, to denote that k has collinear scaling, we introduced the notation
|c, with a similar notation for the other momentum scalings. After the integrand in
Eq. (6.33) is expanded up to the order in λ in which we are interested, we can perform
the loop integration using standard techniques. (We will be brief for now on the one
loop calculation as we will give many more details when we turn to the two loop
calculation in the next chapter.) The procedure for the other momentum regions is
the same.

Finally, the form factor is given as a sum over the contributing regions. For
instance, at one loop we have:

F
(1)
i

(
µ2

ŝ
,
µ2

m2
, ϵ

)
= F

(1)
i

∣∣∣
h

(
µ2

ŝ
, ϵ

)
+ F

(1)
i

∣∣∣
c

(
µ2

m2
, ϵ

)
+ F

(1)
i

∣∣∣
c̄

(
µ2

m2
, ϵ

)
, (6.39)

and all other regions vanishing as they lead to scaleless integrals which vanishes
in dimensional regularization. Each region is expected to depend non-analytically
(logarithmically) on a single scale, which is dictated by the kinematics of the process.
We find that the non-analytic dependence of the hard region is conveniently given in
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terms of the factor ŝ, while the non-analytic structure of the collinear and anti-collinear
regions is given in terms of the mass m.

It is important to emphasize that we are integrating over the whole loop integration
domain. This may seem disturbing as we are expanding the integrand in a specific
limit of this domain, so one might expect that we should limit the integration domain
as well to avoid a possible overcounting with other momentum regions. This overlap
is often called the zero-bin contribution [131]. However, since each individual region
depends on a single scale, the overlap with another region would be given by a scaleless
integral. Indeed, the region results we show below and in the next chapter do not
have such overlap. We refer to App. C.4 for an example of a zero-bin contribution.

For the form factor F1 we have

F
(1)
1

∣∣∣
h

=

(
µ2

−ŝ− i0+

)ϵ{
− 2

ϵ2
− 3

ϵ
− 8 + ζ2 + ϵ

(
−16 +

3ζ2
2

+
14ζ3
3

)
+
m2

ŝ

[
− 2

ϵ
− 6 + ϵ

(
−16 + ζ2

)]
+O(ϵ2) +O(λ4)

}
, (6.40)

for the hard region, and

F
(1)
1

∣∣∣
c

=

(
µ2

m2 − i0+

)ϵ{
1

ϵ2
+

2

ϵ
+ 4 +

ζ2
2

+ ϵ

(
8 + ζ2 −

ζ3
3

)
+
m2

ŝ

[
1

ϵ
+ 5 + ϵ

(
13 +

ζ2
2

)]
+O(ϵ2) +O(λ4)

}
, (6.41)

for the collinear region, and

F
(1)
1

∣∣∣
c̄
= F

(1)
1

∣∣∣
c
. (6.42)

In the prefactors in Eqs. (6.40) and (6.41), we have explicitly written the Feynman
prescription i0+, which upon expanding in ϵ give logarithms log(µ2/(−ŝ − i0+))

and log(µ2/(m2 − i0+)). For µ2 > 0,m2 > 0 and ŝ > 0 these can be rewritten
using log(µ2/(−ŝ− i0+)) → log(µ2/ŝ) + iπ and log(µ2/(m2 − i0+)) → log(µ2/m2) to
obtain the imaginary parts. For notational convenience, we will drop the Feynman
prescription in what follows and note that this can always be reinstated by ŝ→ ŝ+ i0+

and m2 → m2 − i0+ after which the imaginary parts can be retrieved adopting the
rule described above.

The form factor F2 starts at NLP. We have

F
(1)
2

∣∣∣
h

=

(
µ2

−ŝ

)ϵ{
m2

ŝ

[
4

ϵ
+ 16 + ϵ

(
32− 2ζ2

)]
+O(ϵ2) +O(λ4)

}
, (6.43)
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and

F
(1)
2

∣∣∣
c

=

(
µ2

m2

)ϵ{
m2

ŝ

[
− 2

ϵ
− 8 + ϵ

(
−16−ζ2

)]
+O(ϵ2) +O(λ4)

}
, (6.44)

and

F
(1)
2

∣∣∣
c̄
= F

(1)
2

∣∣∣
c
. (6.45)

These results can be compared directly with [124] by extracting the coefficients
F (1)

i (s, µ) as defined in Eq. (18) there, as follows:

F (1)
i (s, µ) =

e−ϵγE

Γ(1 + ϵ)

(
µ2

m2

)−ϵ

F
(1)
i (s, µ). (6.46)

Summing over the regions and expanding also the scale factors in powers of ϵ we find

F (1)
1 (s, µ) =

{
1

ϵ

[
1− 2 ln

(
− m2

ŝ

)]
− 3 ln

(
− m2

ŝ

)
− ln2

(
− m2

ŝ

)
+ 2ζ2

+
m2

ŝ

[
4− 2 ln

(
− m2

ŝ

)]
+O(ϵ) +O(λ4)

}
, (6.47)

and

F (1)
2 (s, µ) = 4

m2

ŝ
ln

(
− m2

ŝ

)
+O(ϵ) +O(λ4),

in agreement with the high-energy expansion ŝ≫ m2 of Eqs. (19) and (20) of [124].

6.2.3. LP jet function

To one loop accuracy, the LP factorization formula Eq. (6.18) can be expanded as

V µ(p1, p2) = J
(0)
f ⊗H

(0),µ

f,f̄
⊗ J

(0)

f̄
⊗ S(0)

+ J
(1)
f ⊗H

(0),µ

f,f̄
⊗ J

(0)

f̄
⊗ S(0) + J

(0)
f ⊗H

(0),µ

f,f̄
⊗ J

(1)

f̄
⊗ S(0)

+ J
(0)
f ⊗H

(1),µ

f,f̄
⊗ J

(0)

f̄
⊗ S(0) + J

(0)
f ⊗H

(0),µ

f,f̄
⊗ J

(0)

f̄
⊗ S(1) , (6.48)

where, similar to Eq. (6.26), we assummed that the jet functions have the perturbative
expansion

Ji = J
(0)
i +

e2q αEM

4π
J
(1)
i +

(
e2q αEM

4π

)2

J
(2)
i +O

(
α3
EM

)
, (6.49)
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and with a similar expansion for the hard and soft functions.

The jet functions can be defined in terms of the matrix elements

Jf (p1, n1) =
〈
p1
∣∣ψ̄(0)Wn1(0,∞)

∣∣0〉 , (6.50)

and

Jf̄ (p2, n2) =
〈
p2
∣∣Wn2

(∞, 0)ψ(0)
∣∣0〉 , (6.51)

where Wn(x, y) represents a Wilson line defined by

Wn(x, y) = exp

[
− i e eq

∫ y

x

ds n ·A(s n)
]
. (6.52)

The choice of the gauge-link vectors n1 and n2 is free. Given that their function is
to mimic the coupling of photons collinear to the outgoing fermion to the opposite
moving hard fermion, we will make for computational convenience the choice n1 = n+,
n2 = n− and drop the second argument in Eqs (6.50) and (6.51) from now on. At
lowest order in perturbation theory, the jet function is given by

J
(0)
f (p1) = ū(p1) and J

(0)

f̄
(p2) = v(p2) . (6.53)

The one loop contribution to Jf (p1) is given by

(−ie eqµϵ)2
∫ 0

∞
dλ

∫
dx ⟨p1|ψ̄(0)n+A(λn+)ψ̄(x) /A(x)ψ(x)|0⟩

= ie2e2qū(p1)

∫
[dk]

/n+(/p1 − /k +m)

k2[(p1 − k)2 −m2][n+k]
, (6.54)

where we considered the vertex correction, which is the only 1PI contribution. Further-
more, we work in Feynman gauge as this was also the choice of gauge in the previous
subsection. The corresponding diagram is shown in Fig. 6.5 (a), where the double line
represents the linear Wilson line propagator

nµ+
[n+k]

. (6.55)

The little hook at the end of the outgoing fermion line indicates that we have to
include the spinor ū(p1). A small calculation yields

J
(1)
f (p1) =

(
µ2

m2

)ϵ

ū(p1)
Γ(ϵ)eϵγE

ϵ(1− 2ϵ)

(
1− 2mϵ

ŝ
/p
−
2

)
, (6.56)
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p1

(a)

p2

(b)

Figure 6.5.: Figures (a) and (b) show the diagrammatic representation of the one loop LP
jet functions J

(1)
f (p1) and J

(1)

f̄
(p2) respectively.

where we used the identity

/n+ =
2

p−2

(
p−2

/n+
2

)
≡ 2

p−2
/p
−
2

(6.57)

to put the result in a familiar form.

Similarly, the one loop contribution to Jf̄ (p2) is shown in Fig. 6.5 (b), where the
Wilson line propagator is now given by

nµ−
[−n−k]

. (6.58)

The result reads

J
(1)

f̄
(p2) =

(
µ2

m2

)ϵ
Γ(ϵ)eϵγE

ϵ(1− 2ϵ)

(
1 +

2mϵ

ŝ
/p
+
1

)
v(p2) . (6.59)

Comparing the jet functions in the two directions, one observes the symmetry pµ1 ↔
−pµ2 , and hence also the symmetry nµ+ ↔ −nµ−. The origin of the minus sign is related
to the fact that the momentum p2 along the anti-fermion leg is taken outgoing, thus
against the fermion flow, while for the quark leg the (outgoing) momentum p1 goes in
the same direction as the fermion flow.

Before we can verify the above jet functions, we need the soft and hard functions.
Their tree level expressions can be easily matched to the full tree level diagram –
shown in Fig. 6.4 (a) – which reads

ū(p1) (−ieγµ) v(p2) . (6.60)
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This can be compared to the factorized expression

J
(0)
f ⊗H

(0),µ

f,f̄
⊗ J

(0)

f̄
⊗ S(0) . (6.61)

Given that the tree level expressions for Jf and Jf̄ are just the spinors, we obtain the
following:

H
(0),µ

f,f̄
= −ie eq γ

µ , S(0) = 1 . (6.62)

We now have the ingredients to verify the jet functions Jf and Jf̄ up to one loop by
comparing with the results obtained with the method of regions. That is, we can
compare the factorized expression

J
(1)
f ⊗H

(0),µ

f,f̄
⊗ J

(0)

f̄
⊗ S(0) (6.63)

with the c-region of the vertex function V µ(p1, p2). Substituting the results calculated
above, we get

J
(1)
f ⊗H(0),µ

f,f̄
⊗ J

(0)

f̄
⊗ S(0)

=

(
µ2

m2

)ϵ
Γ(ϵ)eϵγE

ϵ(1− 2ϵ)
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1− 2mϵ

ŝ
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− ieγµ
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= −ie eq ū(p1) γµ v(p2)
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µ2

m2

)ϵ [
1

ϵ2
+

2

ϵ
+ 4 +

ζ2
2

+O(ϵ)

]
+O(λ) , (6.64)

where in the last line, we only kept the LP term and performed the expansion in ϵ.
Recalling the relation Eq. (6.22) between the vertex function V µ(p1, p2) and the form
factors, we indeed find agreement with the collinear expansion of the form factor F1

at LP given in Eq. (6.41). Similarly, one finds agreement with the LP term of the
factorized expression

J
(0)
f ⊗H

(0),µ

f,f̄
⊗ J

(1)

f̄
⊗ S(0) (6.65)

and the LP terms of the c̄-region of V µ(p1, p2).

Finally, we give the LP one loop hard function

H
(1),µ

f,f̄
= −ie eq γ

µ

(
µ2

−ŝ

)ϵ [
− 2

ϵ2
− 3

ϵ
− 8 + ζ2

]
+O(λ) , (6.66)

which is just equal to the one loop hard region. As discussed in more detail in the next
subsection, we are mainly interested in the hard-collinear part of the factorization and
we therefore work with bare form factors. As a result, we saw that the soft momentum
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region vanishes, so we can assume that the soft function is trivial, i.e. S(0) = 1 and
S(1) = 0.

6.2.4. Discussion

In view of verifying the NLP factorization formula Eq. (6.19), it may be useful to
elaborate on the results given in this section for the LP factorization formula. As said
before, the factorization of the amplitude at leading power is well known, and often
presented in the following form in the literature:

V µ
LP

(
p1, p2) =

Jf (p1, n
+)

Jf (n−, n+)
⊗Hµ

ff̄
(p+1 , p

−
2 )⊗

Jf̄ (p2, n
−)

Jf̄ (n
+, n−)

⊗ S(n+ · n−) . (6.67)

A few words of explanation are in order. The hard function Hµ(p+1 , p
−
2 ) represents the

virtual hard modes contributing to the amplitude, and thus it depends on the large
momentum components p+1 and p−2 . Next, we have the contribution due to the jet
functions, which reproduce virtual collinear and anti-collinear modes. Their operator
matrix definitions were already given in Eqs. (6.50) and (6.51). Lastly, Eq. (6.67)
contains the soft function S(n+ · n̄−), as well as the eikonal approximation of the two
jet functions, all defined in terms of the vacuum expectation value of Wilson lines.
That is:

S(β1 · β2) =
〈
0
∣∣Wβ1(0,−∞)Wβ2(∞, 0)

∣∣0〉 , (6.68)

for the soft function, and

Jf (β1, n
+, µ) =

〈
0
∣∣Wβ1

(0,−∞)Wn+(∞, 0)
∣∣0〉 ,

Jf̄ (β2, n
−, µ) =

〈
0
∣∣Wn−(0,−∞)Wβ2

(∞, 0)
∣∣0〉 , (6.69)

for the two eikonal jet functions. Again, one has the freedom to choose β1 = n− and
β2 = n+.

It is important to notice that Eq. (6.67) describes the factorization of the form
factor after soft and collinear singularities have been removed from the hard function,
and they appear explicitly in the jet and soft functions. Let us clarify this relevant
point. Loop corrections to the amplitude V µ

(
p1, p2) in general contain soft and

collinear divergences, in case of massless fermions, and just soft divergences, in case of
massive fermions, as considered here. Calculating V µ

(
p1, p2) by means of the method

of regions generates spurious singularities within each region, such that the original
singularities are reproduced only after the sum of all regions has been taken. At one
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loop – and as we will see in the next chapter also for two-loops – the massive form
factors receive contributions from the hard, collinear and anticollinear regions. We
would like soft singularities to be associated to the soft function S(β1 ·β2), however, the
latter corresponds to the contribution one would obtain from the soft regions, which is
known to be scaleless. The standard interpretation of scaleless regions in dimensional
regularization is that one has soft and ultraviolet divergences cancelling each other,
such that 1/ϵIR − 1/ϵUV = 0. Conventionally, UV poles are removed from the soft
function, and inserted back into the hard function which becomes finite. The soft
function then contains the leftover infrared divergence, and it is a pure counterterm.
Given the definitions for the soft function S and the jet functions Jf and Jf̄ , soft and
collinear poles appear in all three functions and are double-counted. For this reason
they need to be removed from either the soft function or the jet functions. This is
achieved in Eq. (6.67) by dividing with Jf and Jf̄ .

Now, in this thesis we are mostly interested to check that the jet functions
appearing at subleading power are able to reproduce the contribution given by the
collinear and anti-collinear regions. We aim to reproduce the factorization theorem in
Eq. (6.67) (and its generalization at subleading power, to be discussed) in its “bare”
form, i.e., before soft (and collinear) singularities are reshuffled into pure-counterterm
soft and eikonal jet functions. For the leading power contribution this implies that we
can write the factorization formula as

V LP
µ

(
p1, p2) = Jb

f (p1)⊗Hb
µ(p

+
1 , p

−
2 )⊗ Jb

f̄ (p2), (6.70)

where the index b, for “bare”, means that no reshuffling of soft and collinear singularities
has been considered. In what follows we will always intend a factorization theorem as
written in Eq. (6.70), and drop the index b for simplicity.

This concludes the discussion of the LP factorization formula, Eq. (6.18). Before
we turn to the NLP factorization formula, Eq. (6.19), let us summarize the strategy
we used in this section to verify the LP factorization formula:

1. First expand the form factors in momentum regions. As said before, some of the
jet functions appearing in the NLP factorization formula start at two loops. We
will therefore consider the two loop form factors and discuss their region analysis
in chapter 7.

2. Next, we construct operator matrix elements for the jet functions. We already
gave the definitions for the LP jet functions Jf and Jf̄ in Eqs. (6.50) and (6.51)
respectively. In chapter 8, we will propose operator matrix elements for the NLP
jet functions.
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3. Before we can verify these jet functions, we need to match with the appropriate
hard functions. We will also discuss this in chapter 8.

4. Finally, we can compare the resulting factorized expression with the momentum
regions. In particular the regions with collinear scaling (c and c̄) are a good
cross-check for the jet functions.





Chapter 7.

Region analysis of QED massive
fermion form factor

This chapter is based on [2].

In the previous chapter, we discussed how IR singularities of Feynman integrals can
be analysed. Together with IR power counting, the leading (LP) and subleading
contributions to an amplitude can be categorized, with the result up to next-to-leading
order in the power counting (NLP) summarised in Fig. 6.3. These diagrams can be
cast into the factorization formulas given in Eq. (6.18) for the LP contribution, and
Eq. (6.19) for NLP. We then considered the simplest QED process that gives non-trivial
contributions to all the jet functions appearing in Eqs. (6.18) and (6.19), namely, the
decay of an off-shell photon of invariant mass Q into a massive fermion anti-fermion
pair of mass m. We reviewed the LP factorization formula and in particular how this
can be varified using the method of regions.

The purpose of this chapter is to provide data that can be used to validate the NLP
factorization formula Eq. (6.19). Since some of the jet functions at NLP appear for the
first time at NNLO, we consider the two-loop calculation of the massive form factors
evaluated within the method of regions. The two-loop result is known [124, 132], and
in recent years a lot of effort has been devoted to the calculation of the three loop
correction [125, 133–143], although no complete analytic result as yet exists.

It is possible to use geometric methods (see e.g. [144–146]) to reveal all regions
contributing to an integral. In the case of the problem at hand we find it is still
possible to find all regions contributing up to two loops by straightforward inspection
of the propagators in the loops. One advantage of this method is that the regions
are directly associated to the scaling of the loop momenta, rather than to the scaling
of Feynman parameters, as when geometric methods are used. This will allow us to
relate more easily to the factorization formula.

Besides providing more data for the comparison with Eq. (6.19), the calculation
carried out in this chapter has intrinsic value of its own. For instance, one feature of
the region expansion, which was found in [127, 147, 148], is that, at the level of single
integrals, more regions appear at two loops, that were not present in the calculation
at one loop. This is problematic for the derivation of factorization theorems valid at

169
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all orders in perturbation theory. It is clear that if new momentum modes appear at
each order in perturbation theory, no factorization theorem can be expected to be
valid to all orders in perturbation theory. However, it was already observed in [149]
that, although new regions appear in single integrals at two loops, their contributions
cancels when summing all diagrams, i.e., at the level of the form factors. The analysis
in [149] considered only the LP terms in the small mass expansion; our calculation
shows that the ultra-collinear regions cancel also at NLP, at the level of the form
factors. This result gives confidence in the all-order validity of factorization formulae
such as Eq. (6.19), whose derivation is based on power counting arguments [25] using
the momentum modes appearing at one loop.

Another well-known feature of the method of regions is that expansion of the
integrand in certain regions may render the integral divergent, even in dimensional
regularization, so that additional analytic regulators are necessary in order to make
the integral calculable. We check that this is indeed the case for the massive form
factor, starting at two loops. Analytic regulators were already applied in the past
to the calculation of single integrals. Here, we need to apply analytic regulators to
the calculation of different diagrams, which gives us the opportunity to discuss a
few different regulators in detail and verify their consistency by checking that the
dependence on the analytic regulator cancels at the level of single integrals, given that
the full result does not require analytic regulators.

This chapter is structured as follows. Sec. 7.1 describes the general approach
we adopt for the expansion by regions, while Sec. 7.2 presents the corresponding
technical details. As will be discussed there, we compute diagrams categorized into
three different topologies depending on the flow of the internal momenta, which we
denote by A, B and X.1 The main results are provided in Sec. 7.3, where we list
explicit expressions of the form factor specified per region, up to NLP. We conclude and
discuss our results in Sec. 7.4, pointing to several interesting subtleties we encountered,
which can be relevant for chapter 8 where we discuss the NLP jet functions in more
detail.

In App. C and D, we present further technical details related to the use of rapidity
regulators and the regional analysis performed in topology X, which is the most
challenging of the three topologies.

1We adopt the definition of topology as given in [150] in the context of IBP reductions for Feynman
integrals.
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Figure 7.1.: Diagrams that contribute to the massive form factor at two-loop in QED. The
dashed lines in diagram (a) represent massless fermions.

p1

p2

p1

p2

Figure 7.2.: Diagrams with a closed fermion loop that cancel in QED by Furry’s theo-
rem [151].

7.1. Calculational steps

Here we describe the general approach that we adopt throughout the rest of this
chapter, deferring a discussion of technical details to Sec. 7.2.

7.1.1. Diagrams contributing to the two-loop form factor

The diagrams that contribute to the massive form factors, Eq. (6.22), at two-loop are
displayed in Fig. 7.1. There are eight diagrams in total, labeled (a) - (h), with p1 and p2
denoting the external momenta of the outgoing fermion and anti-fermion respectively.
Solid and dashed lines are used to represent massive and massless fermions respectively.
Fig. 7.2 suggests there are two additional diagrams, but these diagrams cancel by
Furry’s theorem [151]. Concerning diagram (e), note that the fermion running inside
the loop does not need to correspond to those on the external lines, but here we ignore
this possibility for simplicity as it would introduce an additional hierarchy of scales
that makes the power counting much more involved. Diagrams (b) and (c), as well as
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(f) and (g), are related by exchanging p1 and p2 and therefore we expect this symmetry
to be present also during an expansion by regions.

In anticipation of our regional analysis, it is convenient to classify diagrams (a) to
(h) into three different topologies labeled A, B and X which are distinguished by the
flow of their internal momenta.

7.1.2. Topology classification

Starting with diagrams (a)-(d), we note that the Feynman integrals contributing to
these diagrams share the following parameterization

IA;{ni} ≡
∫
[dk1][dk2]

1

k2n1
1

1

k2n2
2

1

[(k1−k2)2]n3

1

[(k1+p1)2−m2]n4

1

[(k2+p1)2−m2]n5

× 1

[(k1−p2)2−m2]n6

1

[(k2−p2)2−m2]n7
, (7.1)

which we define as topology A. In Eq. (7.1), k1 and k2 denote the internal loop momenta
and the integer ni represents the generic power associated to the ith propagator.

In a similar way, the integrals associated to diagrams (e), (f) and (g) in Fig. 7.1
can be parameterized by

Ib3,b4,b5,b6B;{ni} ≡
∫
[dk1][dk2]

1

[k21−m2]n1

1

[k22−m2]n2

µ2b3
3

[(k1−p1)2]n3+b3
(7.2)

× µ2b4
4

[(k1+k2−p1)2−m2]n4+b4

µ2b5
5

[(k1+p2)2]n5+b5

µ2b6
6

[(k1+k2 + p2)2−m2]n6+b6

1

[(k1+k2)2]n7
,

and this defines topology B. An important distinction compared to topology A is
the appearance of the complex numbers bi associated to propagators 3, 4, 5 and 6 in
Eq. (7.2), where artificial scales µi with unit mass dimensions have been introduced
on dimensional grounds. The need for the powers bi can be seen as follows. When
expanding in momentum regions, one finds eikonal propagators that contain only
the k+i or k−i momentum components. As a result, additional divergences may arise
from the k+i and k−i integrals because the dimensional parameter ϵ regulates only the
transverse momentum components ki,⊥. Various regulators have been introduced in
the literature to tame these rapidity divergences, e.g. space-like Wilson-lines [152],
δ regulators [153–157], η regulators [158, 159], exponential regulators [160], analytic
regulators [161–164] and pure rapidity regulators [165]. In this thesis, we adopt the
analytic regulator [161], meaning that we raise the relevant propagators to complex
powers bi. The rapidity divergences then manifest themselves as poles in bi, similar to
poles in ϵ that one encounters in dimensional regularization. As will be described in
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greater detail in Sec. 7.2.2, one does not need to add all four regulators bi simultaneously
to regulate the rapidity divergences present in diagrams (e), (f) and (g). However, we
do need to make different choices per diagram, and therefore the parameterization in
Eq. (7.2) captures all three diagrams at once. Furthermore, we point out that the bi’s
do not need to be different; in fact, we will see that only a single regulator is sufficient
in topology B. We refer to App. C for more details, as well as for a study on the use of
other rapidity regulators. Note that the rapidity divergences show up only as a result
of the expansion by regions, since the corresponding full Feynman integral gets fully
regularized by the dimensional regulator ϵ alone. This observation provides us with a
valuable cross-check: all dependence on bi must cancel once all regions are combined.

Finally, we come to topology X, which corresponds to diagram (h) and is charac-
terized by the parameterization

Ib3,b4,b5,b6X;{ni} =

∫
[dk1][dk2]

1

k2n1
1

1

k2n2
2

µ2b3
3

[(k2−p1)2−m2]n3+b3

µ2b4
4

[(k1+k2−p1)2−m2]n4+b4

× µ2b5
5

[(k1+p2)2−m2]n5+b5

µ2b6
6

[(k1+k2+p2)2−m2]n6+b6

1

[(k1+k2)2]n7
, (7.3)

where again we need bi ̸= 0 in order to regulate rapidity divergences that show up
once we expand by region.

7.1.3. Summary of technical details

A common approach in the computation of higher order loop diagrams is to reduce the
many Feynman integrals to master integrals using integration by parts (IBP) identities.
When it comes to calculating these integrals following the method of regions one has
two options. Either one first reduces the large number of integrals in each topology,
Eqs. (7.1)-(7.3), to master integrals before expanding by regions. However, as we
are interested in an expansion up to NLP, the expansion of a master integral into
its momentum regions might lead to many additional integrals, so that again a new
reduction to master integrals is recommended per momentum region. Or, one might
as well first expand by regions and only perform an IBP reduction at the very end of
the calculational steps. Ultimately, these two ways are equivalent and cannot lead to
different final results. We will discuss these alternative approaches further in Sec. 7.2.1,
where we also point out the subtleties that enter while expanding the topologies in
different momentum regions.

Another difficulty we encountered concerns the analytic regulators that we added
to topologies B and X, Eqs. (7.2) and (7.3). Although the analytic regulator is a
convenient regulator when computing Feynman integrals, it has the downside that the
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usual IBP reduction programs cannot handle non-integer powers of the propagators.
To the best of our knowledge, only Kira [166] is suitable for this, which we therefore
adopt as our standard IBP reduction program. In topology A, which does not require
rapidity regulators, we also use LiteRed [167] as an independent crosscheck of our
results.

As discussed in Sec. 6.2.1, the one-loop form factor contains just three momentum
regions: hard, collinear and anti-collinear. However, the number of momentum regions
is much larger at the two-loop level. First, the two loop momenta k1 and k2 can
have different scalings, which already gives nine possibilities that combine the hard,
collinear and anti-collinear momentum regions. Second, we find the appearance of
two new momenta scalings: ultra-collinear and ultra-anti-collinear; the contribution
from such regions was already observed in [148]. Finally for topology B and X, new
regions might appear when one shifts the loop momenta before expanding in regions.
Although such a shift leaves the full integral invariant, it can lead to additional regions
when expanding.

A summary of our work flow is given in Fig. 7.3, which shows the steps we have
discussed so far. Not shown is the final step, which consists of verifying whether the
small mass limit as given in [124, 168] is reproduced after collecting all regions.

7.2. Region expansions

Having presented the computational scheme in Sec. 7.1, we now move to the technical
details of the calculation of the integrals in topology A, B and X using the method
of regions. An important remark from the outset concerns the distinction between
the regions present at the level of the diagrams in Fig. 7.1 on the one hand, and the
integral level on the other hand; these do not necessarily coincide as non-vanishing
regions at the integral level can cancel when combined to constitute the diagrams.
The results presented in this section should be understood at the integral level.

We shall now discuss topology A, B and X in turn. For each topology, we analyze
first the associated regions (at the integral level), followed by a discussion of its IBP
relations. At the end of each topology subsection, we provide a brief summary of the
aspects that enter the computation of the momentum regions.

7.2.1. Region expansion of topology A

As explained in Sec. 6.2.1, it is convenient to use light-cone coordinates, Eq. (6.34),
to identify the various momentum regions that lead to non-vanishing contributions.
At one-loop we found that only momentum modes h, c and c̄ contributed. This
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Two-loop massive form factor

Topology BTopology A Topology X

ϵ regulated ϵ+ν regulated ϵ+ν1+ν2 regulated

hh · · · cc
Expansion by

regions + IBP (Kira)
Expansion by

regions + IBP (Kira)

Solve master integrals and collect results

IBP IBP IBP (Kira)

Figure 7.3.: Flow diagram displaying the pipeline of our NLP region analysis of the QED
massive form factor. The diagrams in Fig. 7.1 are classified into either topology
A, B or X depending on their momentum flow. We regulate each topology using
dimensional regularization, denoted by ϵ, plus additional rapidity regulators,
denoted ν, in case of topology B, and ν1, ν2 in case of topology X, as it turns
out to need two rapidity regulators. For each topology, we expand the relevant
integrals by regions and then reduce the result into a simpler set of master
integrals with IBP reduction using Kira [166].

picture changes as soon as we move to the two-loop level where we receive additional
contributions coming from momentum modes such as uc and uc, as defined in Eq. (6.36).
In total, there are 25 possible combinations of momentum modes at the two-loop level.
However, many combinations vanish because they lead to scaleless integrals. For the
Feynman integrals contributing to diagrams (a)-(d) we find 11 non-vanishing regions:
hh, cc, c̄c̄, cc̄, c̄c, ch, hc, c̄h, hc̄, ucc̄ and ucc, with the momentum flow as indicated in
Tab. 7.1 on page 186. Even though the power expansion for the momentum modes is
straightforward using e.g. Tab. 6.1, the resulting integrals can in general become quite
involved. Let us illustrate this by highlighting several subtleties that enter here.

The first subtlety we want to discuss concerns the interplay between the usual
IBP reduction and the region expansion. To this end, we consider as an example the
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hh region of topology A, Eq. (7.1), which up to LP reads

IA

∣∣∣
hh

=

∫
[dk1][dk2]

1

k2n1
1

1

k2n2
2

1

[(k1 − k2)2]n3

1

[k21 + k−1 p
+
1 ]

n4

1

[k22 + k−2 p
+
1 ]

n5

1

[k21 − k+1 p
−
2 ]

n6

1

[k22 − k+2 p
−
2 ]

n7
+O

(
λ2
)
, (7.4)

while many additional terms occur beyond LP. To see this, we expand the fourth
propagator of Eq. (7.1) in the hh-region up to NLP

1

(k1 + p1)−m2
=

1

k21 + k−1 p
+
1

− k+1 p
−
1

[k21 + k−1 p
+
1 ]

2
+O

(
λ4
)

=
1

k21 + k−1 p
+
1

− m2

ŝ

k21 − [k21 − k+1 p
−
2 ]

[k21 + k−1 p
+
1 ]

2
+O

(
λ4
)
. (7.5)

In the second line of Eq. (7.5) we used the identity p−1 =
(
m2/ŝ

)
p−2 to rewrite the

power expansion in terms of the first, fourth and sixth LP (inverse) propagators
appearing in Eq. (7.4). Typically, one can perform an IBP reduction on the full
integrals for a given diagram and then expand by regions. However, Eq. (7.5) shows
that after the regions expansion, the number of integrals increases considerably again
beyond LP. Therefore, a new IBP reduction applied to the hh-region is called for.
Instead, one might just as well expand the full integrals in the momentum region, and
perform a single IBP-reduction on region integrals at the end.

As a second subtlety, note that in order to set up the IBP reduction for the
expanded topology, the LP propagators of Eq. (7.4) appear in the last line of Eq. (7.5).
Similarly, as shown for the fourth propagator in Eq. (7.5), we can rewrite the power
expansion of the fifth, sixth and seventh propagator in terms of the corresponding LP
propagators, where we can use the identity p+2 =

(
m2/ŝ

)
p+1 for the sixth and seventh

propagator. This implies that Eq. (7.4) defines a closed topology for the hh-region up
to arbitrary order in the power expansion. This is particularly useful when applying
IBP relations, because it leads to the smallest number of master integrals to solve.
Along similar lines, the full power expansion of the cc and c̄c̄ region can also be written
in terms LP propagators only.

Another subtlety concerns regions where the loop momenta k1 and k2 scale
according to different momentum modes, which requires extending the expanded
topology by an additional propagator. For example, consider the expansion of the



Region analysis of QED massive fermion form factor 177

denominator of the third propagator in Eq. (7.1) in the c̄c region

(k1 − k2)
2 = k21 − 2k1,⊥ · k2,⊥ + k22︸ ︷︷ ︸

∼λ2

− k−1 k
+
2︸ ︷︷ ︸

∼1

− k+1 k
−
2︸ ︷︷ ︸

∼λ4

. (7.6)

The perpendicular components in Eq. (7.6) cannot be rewritten in terms of the LP
propagators from Eq. (7.1). Rather than adding −2k1,⊥ · k2,⊥ to the c̄c topology, we
instead rewrite this as

−2k1,⊥ · k2,⊥ = −2k1 · k2 + k+1 k
−
2 + k−1 k

+
2 , (7.7)

and add [−2k1 · k2]−n8 as an additional propagator to the c̄c topology. The same logic
can be applied to other regions where k1 and k2 scale differently. Eq. (7.7) shows
that standard propagators may turn into non-standard propagators of the form k−1 k

+
2

which cannot be given directly as input to the IBP programs that are currently on the
market. We treat these in the following way, which we will refer to as a loop-by-loop
approach. First, we rewrite k−1 k

+
2 as k1 · (k+2 n−) and perform an IBP reduction over

k1 while considering k2 and k+2 n
− as external momenta similar to p1 and p2. By doing

so, the integrals over k1 get reduced to a smaller set of integrals. Next, we repeat
the first step but now switching the roles of k2 and k1, i.e. we perform IBP over k2
rewriting k−1 k

+
2 as (k−1 n

+) · k2, while considering k1 and k−1 n
+ as external momentum.

Again, the number of integrals over k2 gets reduced. The combination of both IBP
reductions over k1 and k2 leaves us with a smaller set of (two-loop) integrals to solve.

Finally, one must be careful when dealing with regions where one of the loop
momenta has hard scaling and the other has (anti-)collinear scaling. As discussed
above, one can define a closed topology containing the LP propagators and the addition
of an eighth propagator [−2k1 ·k2]−n8 . However, because a loop-by-loop IBP reduction
may lead to new propagators that are not part of the expanded topology, adding these
propagators to the topology does not work as this leads to an over-determined topology.
A possible solution, which we used for topology A, is to perform the IBP reduction
over the loop with hard loop momentum and then compute the master integrals. After
that, the left-over one-loop integrals with (anti-)collinear loop momentum will be
simple enough to calculate directly.

Let us summarize our strategy for topology A:

1. Expand Eq. (7.1) in a given momentum region and rewrite subleading corrections
in terms of the LP propagators.
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2. Use IBP relations that can either handle both loops over k1 and k2 at the same
time or adopt a loop-by-loop approach by introducing a non-standard additional
propagator [−2k1 · k2]−n8 .

3. Solve the resulting master integrals and repeat steps 1-3 for the remaining
momentum regions.

7.2.2. Region expansion of topology B

As we already stated in Sec. 7.1, the Feynman integrals needed to calculate diagrams
(e), (f) and (g) in Fig. 7.1 can be classified as part of topology B, defined in Eq. (7.2).
More specifically, all integrals obtained from diagram (e) have the form Ib3,b4,b5,b6B;{ni}
with both n3 ≤ 0 and n5 ≤ 0, the integrals of diagrams (f) satisfy n3 ≤ 0, while the
integrals of diagrams (g) correspond to n5 ≤ 0. The integrals of diagrams (e) thus
belong to a subclass of the integrals associated to diagrams (f) and (g). Consequently,
the regions contributing to diagram (e) form a subset of those contributing to diagram
(f) and (g). In addition, the integrals of diagram (f) and diagram (g) can be related to
each other by the transformation p1 ↔ p2, k1 ↔ −k1 and k2 ↔ −k2. In the following
we will discuss the regions obtained in diagrams (e), (f) and (g).

Diagram (e)

Starting with the integrals of diagram (e), we find that the regions hh, hc, c̄h, cc and
c̄c̄ contribute.2 Of these, the first three regions are free of rapidity divergences, so
that we can set the analytic regulators bi = 0 in Eq. (7.2) either at the beginning or
at the end of the calculation (both giving to the same results). Taking bi = 0 from
the start, we can treat these three regions similarly to the corresponding regions in
topology A, as we discussed in Sec. 7.2.1. However, there are two other regions, the cc
and c̄c̄ regions, that do have rapidity divergences, so that here the regulators bi must
be kept. fortunately, we do not need to include four regulators bi in the calculation.
Because n3 ≤ 0 and n5 ≤ 0 we can safely take b3 = 0 and b5 = 0 at the beginning
of the calculation. Interestingly, we find that we cannot take b4 = b6 to regulate
the rapidity divergences of all integrals3, although taking either b4 = 0 or b6 = 0 is
possible. We therefore call b6 = ν and b3 = b4 = b5 = 0 with corresponding scale
µ6 = µ̃ as our scheme to regulate the rapidity divergences in both the cc and c̄c̄ regions

2Note that the hc̄-region and hc-region, as well as the c̄h-region and ch-region are equivalent for this
diagram. Furthermore, these two regions only appear at the Feynman integral level, but cancel at
the diagram level as will become clear in Sec. 7.3. Similar cancellations occur for diagrams (f), (g)
and (h).

3Indeed if we take b4 ̸= b6, the integrals are proportional to Γ(b4 − b6). A similar situation was
encountered in Ref. [169].
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of diagram (e). Note that this particular choice breaks the symmetry between the cc
and c̄c̄ regions. Nevertheless, after combining all of the above five regions, our result
up to NLP for each integral, has no rapidity divergence. Moreover we find agreement
with the corresponding result obtained by expanding the full result in Ref. [132, 170]
in the small mass limit.

Diagram (f)

The regions needed to calculate the integrals of diagram (f) are more complicated.
First, the integrals of diagram (f) satisfy n3 ≤ 0. Similar to diagram (e), we encounter
rapidity divergences in the cc and c̄c̄ regions, and in order to handle those we take
b3 = b4 = 0 and b5 = b6 = ν with corresponding scale µ5 = µ6 = µ̃. However, we find
that the rapidity divergences do not cancel after summing the cc and c̄c̄ regions. We
therefore expect that there is at least one more region with rapidity divergences.

Indeed, in addition to the five regions for diagram (e) (hh, hc, c̄h, cc and c̄c̄), we
find three additional contributing regions, although it is not straightforward to define
these three regions in momentum space using the definition for Ib3,b4,b5,b6B;{ni} in Eq. (7.2).
We exploit the freedom to shift k2 → −k1 − k2 to so that topology B can be written
as:

I ′
b3,b4,b5,b6
B;{ni} =

∫
[dk1][dk2]

1

[k21−m2]n1

1

[(k1+k2)2−m2]n2

µ2b3
3

[(k1−p1)2]n3+b3
(7.8)

× µ2b4
4

[(k2+p1)2−m2]n4+b4

µ2b5
5

[(k1+p2)2]n5+b5

µ2b6
6

[(k2−p2)2−m2]n6+b6

1

k2n7
2

.

We stress that Ib3,b4,b5,b6B;{ni} and I ′ b3,b4,b5,b6B;{ni} are equivalent before region expansion due
to the Lorentz invariance, but this is not always the case for a given region, i.e. after
expansion. For example, in the cc-region, the loop momenta k1 and k2 have the same
momentum scaling and as a result, the shift k2 → −k1 − k2 does not change the scale
of the propagators nor the results of the integrals. However, in the hc-region, the
shift k2 → −k1 − k2 changes the leading behavior of the second, fourth, sixth and
seventh propagator of Ib3,b4,b5,b6B;{ni} and as a result we find a different hc-region through
this shift. In general, one must be aware that different momentum flows can lead to a
different scaling of the leading term in the propagator and uncover additional regions
as a result. This illustrates the alternative viewpoint that regions correspond to the
scaling of the leading term in the propagators rather than the loop momenta itself, a
reasoning which connects also to the geometric approach in parameter space. However,
in view of factorization, it is more convenient to still think about the scaling of the
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hc hh c̄h cc c̄c̄

I ′f

If

hh c̄h cc c̄c̄ hc′ c̄c′ c̄uc′

k
2
→

−
k
1
−
k
2

Figure 7.4.: Momentum regions that contribute to the integrals of diagram (f) before and
after applying the transformation k2 → −k1 − k2, corresponding to If and I ′f
respectively. The dashed arrows represent how the regions in If transform
accordingly, e.g. the original hc-region maps onto a new hh-region after the
collinear mode k2 mixes with the dominant hard scale associated to k1. Note
how two previously uncovered regions, c̄c′ and c̄uc′, and a different hc-region
appear after the shift, where the c̄c′-region removes the rapidity divergences
present in the cc and c̄c̄ regions. Regions that remain invariant are displayed
on top of each other, while additional regions are shifted outwards so that all
regions are found by collapsing the top row onto its base If .

momentum modes of the loop momenta, rather than the scaling of the leading term in
the propagators.

Based on the new definition I ′ b3,b4,b5,b6B;{ni} , we find three additional regions: c̄c′, hc′

and c̄uc′, as illustrated in Fig. 7.4. Besides a modified hc-region, we also find c̄c′

and c̄uc′ as complete new regions. Apart from these three regions, we do not need
other regions based on I ′ b3,b4,b5,b6B;{ni} , as these are the same as the corresponding regions
given based on Ib3,b4,b5,b6B;{ni} . The appearance of the c̄uc′-region for example can be
understood as follows (the c̄c′-region following similarly). First, note that the last
propagator, 1/k22, in Eq. (7.8) has ultra-collinear scaling in the c̄uc′-region. Having
found this region in this way, it is also clear that we could not have found it in the
original momentum routing. First, it is not possible to select scalings of both loop
momenta such that the last momentum factor is ultra-collinear. Second, it is only
possible to make the last propagator have an ultra-collinear scaling if one considers the
ucuc-region, which leads to scaleless integrals. This is because the masses and external
momenta in the propagators of Eq. (7.2) have harder scales than the loop momentum
with an ultra-(anti-)collinear mode, thus kinematic configurations where one of the
loop momenta is ultra-(anti-)collinear are always scaleless. In other words, in the
parametrization of Eq. (7.2), the propagator (k1 + k2)

2 can produce a leading term
with uc scaling only if k1 and k2 are large and opposite, so that they almost cancel.
Thus this ultra-collinear kinematic configuration can only be revealed by the shift
leading to the parametrization in Eq. (7.8). A similar circumstance has been discussed
in Ref. [130] at one-loop, where a soft region arises in the kinematic configuration in
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which the loop momentum is large and opposite to an external momentum, such that
their sum is soft. In general, revealing such regions by means of momentum shifts in
order to find the scaling of the leading term may become ever more intricate at higher
loops, due to an increasing number of loop momenta that can conspire to yield new
regions. We can still validate our results in another way though. Combining the new
c̄c′-region with the cc-region and c̄c̄-region from before the shift, we remove all the
rapidity divergences belonging to the integrals of diagram (f). Furthermore, combining
all of the above eight regions, we obtain the result up to NLP for each integral of
diagram (f), reproducing the corresponding result found by expanding the exact result
in Refs. [132, 170] in the small mass limit.

Diagram (g)

All the Feynman integrals for diagram (g) fall in the category of Eq. (7.2) with n5 ≤ 0.
Diagram (g) is related to diagram (f) by the transformation p1 ↔ p2, k1 ↔ −k1 and
k2 ↔ −k2. Naturally the rapidity regulators should also be exchanged: b3 ↔ b5 and
b4 ↔ b6. Thus we choose as rapidity regulators b3 = b4 = ν and b5 = b6 = 0 with
corresponding scales µ3 = µ4 = µ̃. All the regions from diagram (f), corresponding to
the hh, hc̄, ch, cc and c̄c̄, cc̄′, hc̄′ and cuc′ regions can then be copied.

Remarks

Above we discussed how one can apply the rapidity regulators and find all the
contributing regions per diagram. However, the calculation of the integrals in each
region is not always straightforward and we therefore finish the discussion of topology
B with a few technical remarks on these calculations.

First, regarding regions without rapidity divergences, such as the hh, hc and cuc′

regions, we can safely set ν = 0 and calculate the resulting integrals in each region
following the same methods as for topology A. We emphasize however that in topology
B (and also in topology X below) for the region including a hard loop momentum
and a (anti-)collinear momentum, one should be quite careful when calculating the
expanded integrals. Specifically, one should first expand the full integral Ib3,b4,b5,b6B;{ni} into
regions, e.g. the hc-region, and only then perform IBP reduction on the part with hard
loop momentum. Then Ib3,b4,b5,b6B;{ni} will be expressed as a linear combination of one-loop
integrals – which we generically denote by Ici – that include only the collinear-mode
loop momentum. Although in the hc-region Ib3,b4,b5,b6B;{ni} is free of rapidity divergences
and the bi have been set to zero, we find that rapidity divergences reappear in some of
these Ici . The rapidity divergences are however expected to cancel among different Ici
leading to a finite Ib3,b4,b5,b6B;{ni} . In this particular case, one should choose an auxiliary
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regulator to regulate Ici . The poles in this auxiliary regulator will then cancel to yield
a finite Ib3,b4,b5,b6B;{ni} . Alternatively, one can rearrange the integrands of Ici at the level of
Feynman parametrization so that the integrations over the Feynman parameters are
well-defined and finite without introducing extra regulators.

We use the first method to calculate the integrals in the region including a hard
loop momentum and a (anti-)collinear momentum, which is more convenient than
the second one when dealing with a large number of such integrals. We also use the
second method to calculate several integrals, always leading to the same results. Note
that such complexity does not appear in topology A.

Then, for regions with rapidity divergences, we first expand the integrals with the
rapidity regulator ν and perform IBP reduction using Kira to obtain a set of master
integrals in each region. As a result, we only need to calculate the master integrals
with up to 2-fold Mellin-Barnes (MB) representations after expanding in the rapidity
regulator ν and the dimensional regulator ϵ to the required order.

Before moving to the last topology, we summarise the subtleties we have encoun-
tered in topology B:

1. Shifts in the loop momenta that leave the full integral invariant, can lead to
additional regions nonetheless. These are needed to find all regions, and remove
all rapidity divergences in a consistent manner.

2. The introduction of rapidity regulators requires detailed inspection on a case by
case basis depending on the given diagram.

3. One must expand in ν before ϵ as the rapidity regulator is a secondary regulator.

7.2.3. Region expansion of topology X

The Feynman integrals needed for the last diagram in Fig. 7.1, diagram (h), belong
to a new topology we denote as X, reflecting the shape of (h), defined in Eq. (7.3)
with n7 ≤ 0. Due to a new pattern of rapidity divergences, which we will see when
analysing the cc and c̄c̄ regions, X is the most complicated of the three topologies.

Focusing on the c̄c̄-region first, it suffices to set b3 = b4 = ν1 and b5 = b6 = 0

in order to regulate the corresponding rapidity divergence, but this choice does not
regulate the rapidity divergence in the cc-region. However, we note that the integrand
in Eq. (7.3) is invariant under exchanging p1 ↔ p2, k1 ↔ −k1 and k2 ↔ −k2, which
leads to a symmetry between the cc and c̄c̄-regions. Motivated by this symmetry one
may thus set b3 = b4 = 0 and b5 = b6 = ν2 to regulate the rapidity divergence in
the cc-region. So in order to regulate simultaneously the rapidity divergences in the
cc-region and the c̄c̄-region, we choose b3 = b4 = ν1 and b5 = b6 = ν2. The associated
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Figure 7.5.: Similar to Fig. 7.4, now displaying the momentum shifts performed in diagram
(h) of topology X. Two shifts starting from Ih are needed, to I ′h and I ′′h , in
order to uncover all regions. In contrast to Fig. 7.4, we only display new regions
with respect to parametrization Ih.

scales we shall denote by µ̃1 and µ̃2 for ν1 and ν2 respectively. Note that ν1 = ν2 leads
to an unregulated divergence, similar to what we saw in topology B for diagram (e).

According to the definition of topology X as given in Eq. (7.3), together with the
choice of rapidity regulators ν1 and ν2 as argued above, we find 8 regions in total:
hh, hc, c̄h, ucc, c̄uc, cc, c̄c̄ and c̄c. The rapidity divergences only appear in the last
three regions. However, their sum does not yet lead to a finite result in the rapidity
regulators ν1 and ν2, as can for example be checked for the integral with ni = 1 for
i ≤ 6 and n7 = 0, which is discussed in more detail in App. D.1. This requires us to
look for other regions with rapidity divergences, and this we do again by redefining the
loop momenta. Let us adopt the shifts k1 → −k1 − p2 and k2 → −k2 + p1 to redefine
topology X as

I ′
ν1,ν1,ν2,ν2

X;{ni} =

∫
[dk1][dk2]

1

(k1+p2)2n1

1

(k2−p1)2n2

1

[k22−m2]n3+ν1
(7.9)

× µ2ν1
1

[(k1+k2+p2)2−m2]n4+ν1

µ2ν1
1

[k21−m2]n5+ν2

µ2ν2
2

[(k1+k2−p1)2−m2]n6+ν2

µ2ν2
2

[(k1+k2)2]n7
.

Note that the momentum in the last propagator should be (k1 + k2 − p1 + p2) rather
than (k1 + k2) according to the above shifts k1 → −k1 − p2 and k2 → −k2 + p1.
However, this does not affect the analysis of the regions in diagram (h) as all the
integrals associated to diagram (h) satisfy n7 ≤ 0, meaning that (k1 + k2 − p1 + p2)

2

appears in the numerator. After shifting, the integral Iν1,ν1,ν2,ν2

X;{ni} with n7 < 0 can
always be rewritten as a linear combination of I ′ ν1,ν1,ν2,ν2

X;{n′
i} .
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Adopting definition I ′ ν1,ν1,ν2,ν2

X;{ni} , we find two new regions: the cc′-region and
the c̄c̄′-region, as shown in Fig. 7.5. In these momentum regions, (k1 + k2)

2 scales
homogeneously, while (k1 + k2 − p1 + p2)

2 does not, which provides another reason to
choose the last propagator in the form of Eq. (7.9). We have checked that the rapidity
divergences cancel after combining the cc c̄c̄, c̄c, cc′ and c̄c̄′ regions. However, to
obtain the correct result after combining all regions, we find that we need yet another
two regions. As it turns out these are the ch′′-region and the c̄h′′-region, without
rapidity divergences. These can be revealed by adopting the following parametrization

I ′′
ν1,ν1,ν2,ν2

X;{ni} =

∫
[dk1][dk2]

1

(k1−k2)2n1

1

k2n2
2

µ2ν1
1

[(k2−p1)2−m2]n3+ν1

µ2ν1
1

[(k1−p1)2−m2]n4+ν1

× µ2ν2
2

[(k1−k2+p2)2−m2]n5+ν2

µ2ν2
2

[(k1+p2)2−m2]n6+ν2

1

k2n7
1

, (7.10)

as obtained from Iν1,ν1,ν2,ν2

X;{ni} after shifting k1 → k1 − k2, as also shown in Fig. 7.5.
Combining all of the above 12 regions (hh, hc, c̄h, uc̄c, c̄uc, cc, c̄c̄, c̄c, cc′, c̄c̄′, ch′′ and
c̄h′′) we indeed obtain the result up to NLP for each integral of diagram (h), consistent
with expanding the full result in Ref. [132, 170] in the small mass limit4.

Compared to the topology A and B, the calculation of the integrals in topology
X is more involved due to the appearance of two different rapidity regulators ν1 and
ν2. As remarked already at the end of Sec. 7.3.2, one should expand the integrals
first in the rapidity regulator(s) followed by the dimensional regulator ϵ, as the νi are
secondary regulators. However, in the case of more than one rapidity regulator, we
need to further fix the expansion order in the νi. Here we choose to expand in ν1 before
expanding in ν2. We emphasize that the expansion order in νi does not affect the final
results once all regions are combined as the rapidity divergences cancel. Of course,
additional rapidity regulators make the IBP reduction more complex. Even though

4The identification of the missing contribution may depend on the momentum shift considered. In
the case at hand, the shift k1 → k1−k2 applied onto Iν1,ν1,ν2,ν2

X;{ni}
leads to the missing contribution

being identified with the ch′′- and the c̄h′′-regions. Note, however, that we always have the
freedom to apply two further shifts k1 → k1 + p1 and k2 → k2 − p2 onto I′′ ν1,ν1,ν2,ν2

X;{ni}
which

make the contribution due to the ch′′- and c̄h′′ region unchanged, respectively. However, in this
case, the ch′′ and c̄h′′ can also be regarded as two sh h′′ regions (where by sh we indicate the
semi-hard scaling introduced in Eq. (6.37)) without changing the scaling of each propagator and
the final results of the integrals. From the point of view of a factorization analysis, the second
shift is more meaningful: this is because interpreting the new regions as ch′′- and c̄h′′-regions,
one has a momentum configuration in which there is a lightlike edge with both endpoints in
the hard subgraph, which does not conform with the Coleman-Norton interpretation, which is
instead consistent with the sh h′′ regions interpretation. We refer to section 2.3 of [146] for further
discussions. Here we do not explore this issue further, because, as indicated in Table 7.3, these
additional regions (either identified as ch′′- and c̄h′′-regions or sh h′′-regions) do not contribute
at the form factor level. From the point of view of a factorization analysis, this indicates that the
relevant regions at two loops are still just the hard, collinear and anticollinear regions identified at
one loop, which is consistent with the power counting analysis discussed in the previous chapter.
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the rapidity divergences are fully regularized by ν1 (ν2) in the c̄c̄-region (cc-region),
meaning that we can choose ν2 = 0 (ν1 = 0), this is not the case in the cc′-region and
c̄c̄′-region, where both ν1 and ν2 are necessary.5

Summarising the subtleties we encountered in topology X, we find that

1. In contrast to topology B, topology X requires two unique rapidity regulators ν1
and ν2. One must adopt a consistent order with respect expanding in ν1 and ν2.

2. We find altogether 12 regions, some of which only show up after rerouting the
internal momenta.

7.3. Results

We now present the main results of this chapter and list the various momentum regions
that contribute to the two-loop massive form factors F1 and F2. We switch viewpoint
from Sec. 7.2 and emphasize that the results here are at the level of the diagrams
rather than integrals. Recall that some momentum regions may not contribute at the
diagrammatic level even though they contribute at the integral level. An overview of
the various regions that contribute to each diagram is provided below in Tables 7.1-7.3
for topologies A, B and X respectively.

As discussed in Sec. 7.2, diagrams belonging to topology B and X may require the
introduction of rapidity regulators. Consequently, the corresponding diagrams acquire
poles in ν (in case of topology B), and poles in ν1 and ν2 (in case of topology X).
Because the full form factor is independent of any rapidity divergences, the regulator
dependence must cancel after combining all regions; we check this explicitly in the
results we provide below. In this respect, two remarks are in order.

First, as we already observed in the one-loop result given by Eqs. (6.40) and
(6.41), it is natural to factor out the overall scaling per momentum region, i.e.(
−µ2/ŝ

)ϵ and
(
µ2/m2

)ϵ for each hard and (anti-)collinear loop respectively. In con-
trast to the one-loop case, we now receive an additional contribution coming from the
ultra-(anti-)collinear region which appear with a factor

(
µ2ŝ2/m6

)ϵ. Note that these
scales also appear as powers of ν depending on the specific momentum region and as
a result of regulated propagators. For example, in the case of collinear scaling in k2,
one expands

[k22 − 2k2p2]
ν = [−2k2p

−
2 ]

ν +O(λ2),

which has hard scaling and thus leads to an overall factor
(
µ̃2/ŝ

)ν .
5The integrals in these two regions were among the most challenging to calculate.
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topology A hh cc c̄c̄ ch c̄h ucc̄ ucc

(a)

k1 + p1

k2

p1

p2

✓ ✓ ✓

(b) k1

k2 − p2

p1

p2

✓ ✓ ✓ ✓

(c) k1

k2 + p1 p1

p2

✓ ✓ ✓ ✓

(d) k1

k2 + p1

p1

p2

✓ ✓ ✓ ✓ ✓ ✓ ✓

Table 7.1.: Overview of the regions that contribute up to NLP per diagram in topology A.

Secondly, it is important to note that any power of ν that we factor out is irrelevant
for carrying out the check whether the rapidity regulators cancel in the full result.
This is due to the fact that except for the leading order term, all terms lead to finite
terms in ν and thus vanish upon setting ν to zero, e.g.(

µ̃2

ŝ

)ν
1

ν
−
(

µ̃2

−m2

)ν
1

ν
= ln

(
−m

2

ŝ

)
+O (ν) , (7.11)

which shows how the regulator dependence indeed cancels. A side remark concerns the
opposite behavior of the signs associated to the hard and collinear scales in the case
of rapidity regulators, i.e.

(
µ2/ŝ

)ϵ and
(
−µ2/m2

)ϵ, as compared to the scenario in
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topology B hh cc c̄c̄ cc̄′ c̄c′ ch c̄h hc̄′ hc′ cuc′ c̄uc′

(e)

p1

p2

p1 − k1 − k2

k2 k1

k2 − p2

✓ ν ν

(f)

p1

p2

p1 − k1 − k2

k1
k2

k1 + p2

✓ ν ν ν ✓ ✓ ✓

(g)

p1

p2

p1 − k1 − k2 k1

k2

k1 − p1

✓ ν ν ν ✓ ✓ ✓

Table 7.2.: Overview of the regions that contribute up to NLP per diagram in topology B.
We denote with ν regions that require a rapidity regulator. In black (blue) we
show the flow of loop momenta k1, k2 corresponding to the parametrization IB
(I ′B).

which the rapidity regulator is absent, i.e.
(
−µ2/ŝ

)ϵ and
(
µ2/m2

)ϵ. This is purely an
automatic consequence of a Wick rotation, as we explain in more detail in App. C.2.

In topology X, we have two independent rapidity regulators, ν1 and ν2, and
therefore double poles may arise. Similar to the single pole case, these cancel as can
for example be seen by considering(

µ̃2
2

−m2

)ν2 1

ν22
−
(
µ̃2
2

ŝ

)ν2
(

1

ν22

)
= − 1

ν2
ln

(
−m

2

ŝ

)
+

1

2
ln2
(
−m

2

ŝ

)
− ln

(
−m

2

ŝ

)
ln

(
µ̃2
2

ŝ

)
+O (ν2) (7.12)
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topology X hh cc c̄c̄ c̄c hc c̄h c̄uc ucc cc′ c̄c̄′

(h)

p1

p2

k1

k2

k1

k2

✓ ν2 ν1 ν1,ν2 ✓ ✓ ✓ ✓ ν1,ν2 ν1,ν2

Table 7.3.: Overview of the regions that contribute up to NLP in the topology X. Note the
presence of only one diagram here. As opposed to the topology B, two rapidity
regulators are needed to make all regions well-defined. Regions to which this
applies are denoted by ν1 and/or ν2. In black (blue) we show the flow of loop
momenta k1, k2 corresponding to the parametrization IX (I ′X). We omit the
momentum flow of I ′′X as it does not contribute at the level of the form factor.

where the remaining single pole in ν2 cancels against terms that have simultaneous
poles in ν1 and ν2,(

µ̃1
2

ŝ

)ν1 (
µ̃2
2

ŝ

)ν2 1

ν1ν2
−
(
µ̃1

2

−m2

)ν1 (
µ̃2
2

ŝ

)ν2 1

ν1ν2

=
1

ν2
ln

(
−m

2

ŝ

)
+ ln

(
−m

2

ŝ

)
ln

(
µ̃2
2

ŝ

)
+O (ν1, ν2) , (7.13)

while the finite terms in Eq. (7.12) and Eq. (7.13) combine to a double logarithm
of (−m2/ŝ).

We now provide our results for F1 and F2, split by the various regions as specified
in Tables 7.1-7.3 for topologies A, B and X respectively. For further checks and
in anticipation of a QCD generalization, we also list the QCD color factor for each
diagram, which would follow if the virtual photons were gluons. We finish this section
by commenting on the series of checks we have performed to validate our results
against existing results in the literature.

7.3.1. Topology A

Diagram (a)

QCD color factor: CFTRNf , with Nf the number of light flavors. For the QED
massive form factors, we can also allow for multiple light flavors, with different charges,
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and therefore we add an overall factor to diagram (a)

C =
Nf

e2q

Nf∑
l=1

e2q,l , (7.14)

with eq,l the fractional charges of the light flavors. We divided out the factor e2q as it
was explicitly extracted from the form factors in Eq. (6.26). The results for diagram
(a) are:

F
(2,a)
1

∣∣∣
hh

=C

(
µ2

−ŝ

)2ϵ
[

2

3ϵ3
+

28

9ϵ2
+

18ζ2 + 353

27ϵ
+

28ζ2
9

− 52ζ3
9

+
7541

162

+
m2

ŝ

(
4

3ϵ2
+

110

9ϵ
+

4ζ2
3

+
1615

27

)]
, (7.15)

F
(2,a)
1

∣∣∣
cc

=C

(
µ2

m2

)2ϵ
[
− 1

3ϵ3
− 17

9ϵ2
+

−45ζ2 − 196

27ϵ
− 85ζ2

9
− 22ζ3

9
− 2012

81

+
m2

ŝ

(
− 2

3ϵ2
− 79

9ϵ
− 10ζ2

3
− 2575

54

)]
. (7.16)

By symmetry, we have

F
(2,a)
1

∣∣∣
c̄c̄

= F
(2,a)
1

∣∣∣
cc
. (7.17)

For F2 we get

F
(2,a)
2

∣∣∣
hh

= C

(
µ2

−ŝ

)2ϵ
m2

ŝ

[
− 8

3ϵ2
− 196

9ϵ
− 8ζ2

3
− 2498

27

]
, (7.18)

F
(2,a)
2

∣∣∣
cc

= C

(
µ2

m2

)2ϵ
m2

ŝ

[
4

3ϵ2
+

98

9ϵ
+

20ζ2
3

+
1249

27

]
. (7.19)

By symmetry, we have

F
(2,a)
2

∣∣∣
c̄c̄

= F
(2,a)
2

∣∣∣
cc
. (7.20)
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Diagram (b)

QCD color factor: C2
F

F
(2,b)
1

∣∣∣
hh

=

(
µ2

−ŝ

)2ϵ
[
1

ϵ3
+

7

2ϵ2
+

53− 4ζ2
4ϵ

− 7ζ2
2

− 32ζ3
3

+
355

8

+
m2

ŝ

(
9

ϵ3
+

55

2ϵ2
− 36ζ2 − 513

4ϵ
− 55ζ2

2
− 96ζ3 +

3171

8

)]
, (7.21)

F
(2,b)
1

∣∣∣
c̄c̄

=

(
µ2

m2

)2ϵ
[
1

ϵ3
+

6

ϵ2
+

17ζ2 − 6

ϵ
+ 46ζ2 +

94ζ3
3

+ 14

+
m2

ŝ

(
− 5

2ϵ2
+

144ζ2 − 63

4ϵ
+

191ζ2
2

+ 72ζ3 −
629

8

)]
, (7.22)

F
(2,b)
1

∣∣∣
ch

=

(
µ2

m2

)ϵ(
µ2

−ŝ

)ϵ
[
− 2

3ϵ3
− 8

3ϵ2
− 28

3ϵ
+

16ζ3
9

− 92

3

+
m2

ŝ

(
− 6

ϵ3
− 31

3ϵ2
− 575

6ϵ
+ 16ζ3 −

1997

12

)]
, (7.23)

F
(2,b)
1

∣∣∣
ucc̄

=

(
µ2ŝ2

m6

)ϵ(
µ2

m2

)ϵ
[
− 4

3ϵ3
− 4

3ϵ2
− 60ζ2 + 8

3ϵ
− 20ζ2 −

112ζ3
9

− 16

3

+
m2

ŝ

(
− 3

ϵ3
− 8

3ϵ2
+

−135ζ2 − 14

3ϵ
− 40ζ2 − 28ζ3 −

22

3

)]
. (7.24)

For F2 we get

F
(2,b)
2

∣∣∣
hh

=

(
µ2

−ŝ

)2ϵ
m2

ŝ

[
− 6

ϵ3
− 31

ϵ2
+

12ζ2 − 235

2ϵ
+ 31ζ2 + 64ζ3 −

1593

4

]
, (7.25)

F
(2,b)
2

∣∣∣
c̄c̄

=

(
µ2

m2

)2ϵ
m2

ŝ

[
− 3

ϵ2
− 48ζ2 + 15

2ϵ
− 71ζ2 − 48ζ3 +

27

4

]
, (7.26)

F
(2,b)
2

∣∣∣
ch

=

(
µ2

m2

)ϵ(
µ2

−ŝ

)ϵ
m2

ŝ

[
4

ϵ3
+

62

3ϵ2
+

247

3ϵ
+

1705

6
− 32ζ3

3

]
, (7.27)

F
(2,b)
2

∣∣∣
ucc̄

=

(
µ2ŝ2

m6

)ϵ(
µ2ŝ

m2

)ϵ
m2

ŝ

[
2

ϵ3
+

4

3ϵ2
+

90ζ2+8

3ϵ
+ 20ζ2+

56ζ3
3

+
16

3

]
. (7.28)

Diagram (c)

Diagram (c) is related to diagram (b) via the symmetry c↔ c̄.
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Diagram (d)

QCD color factor: C2
F

F
(2,d)
1

∣∣∣
hh

=

(
µ2

−ŝ

)2ϵ
[
1

ϵ4
+

2

ϵ3
+

2ζ2 + 17

2ϵ2
+

−24ζ2 + 184ζ3 + 303

12ϵ
+

103ζ22
10

− 35ζ2
2

+
152ζ3
3

+
631

8
+
m2

ŝ

(
2

ϵ3
− 16ζ2 − 32

ϵ2
+

−6ζ2 − 16ζ3 + 73

ϵ

−64ζ22
5

− 174ζ2 +
68ζ3
3

+
893

2

)]
, (7.29)

F
(2,d)
1

∣∣∣
cc

=

(
µ2

m2

)2ϵ
[
2− 3ζ2
ϵ2

+
−8ζ2 − 13ζ3 + 10

ϵ
− 163ζ22

5
− 22ζ2 − 16ζ3 + 38

+
m2

ŝ

(
12−8ζ2
ϵ2

+
12ζ2−72ζ3+60

ϵ
− 712ζ22

5
−44ζ2+136ζ3+228

)]
, (7.30)

F
(2,d)
1

∣∣∣
ch

=

(
µ2

m2

)ϵ(
µ2

−ŝ

)ϵ
[
− 2

3ϵ4
− 5

3ϵ3
− 22

3ϵ2
+

2 (8ζ3 − 111)

9ϵ
+

4ζ22
5

+
40ζ3
9

− 238

3

+
m2

ŝ

(
− 4

3ϵ3
+

16ζ2 − 31

ϵ2
+

−84ζ2 + 480ζ3 − 613

6ϵ

+
608ζ22
5

+ 20ζ2 −
598ζ3
9

− 4411

12

)]
, (7.31)

F
(2,d)
1

∣∣∣
ucc̄

=

(
µ2ŝ2

m6

)ϵ(
µ2

m2

)ϵ
[

1

6ϵ4
+

2

3ϵ3
+

15ζ2+8

6ϵ2
+

90ζ2+14ζ3+24

9ϵ
+

493ζ22
20

+20ζ2+
56ζ3
9

+
16

3
+
m2

ŝ

(
1

3ϵ3
+

3

ϵ2
+
15ζ2+23

3ϵ
+45ζ2+

28ζ3
9

+
61

3

)]
. (7.32)

By symmetry, we have

F
(2,d)
1

∣∣∣
c̄c̄

= F
(2,d)
1

∣∣∣
cc
, F

(2,d)
1

∣∣∣
c̄h

= F
(2,d)
1

∣∣∣
ch
, F

(2,d)
1

∣∣∣
ucc

= F
(2,d)
1

∣∣∣
ucc̄

. (7.33)

For F2 we get

F
(2,d)
2

∣∣∣
hh

=

(
µ2

−ŝ

)2ϵ
m2

ŝ

[
− 4

ϵ3
− 20

ϵ2
+

4ζ2 − 70

ϵ
+ 48ζ2 −

160ζ3
3

− 249

]
, (7.34)

F
(2,d)
2

∣∣∣
cc

=

(
µ2

m2

)2ϵ
m2

ŝ

[
8ζ2 − 8

ϵ
+ 48ζ2 + 16ζ3 − 40

]
, (7.35)

F
(2,d)
2

∣∣∣
ch

=

(
µ2

m2

)ϵ(
µ2

−ŝ

)ϵ
m2

ŝ

[
8

3ϵ3
+

14

ϵ2
+

51

ϵ
+ 8ζ2 −

64ζ3
9

+
349

2

]
, (7.36)
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F
(2,d)
2

∣∣∣
ucc̄

=

(
µ2ŝ2

m6

)ϵ(
µ2

m2

)ϵ
m2

ŝ

[
− 2

3ϵ3
− 4

ϵ2
− 10ζ2+8

ϵ
−60ζ2−

56ζ3
9

−16

]
. (7.37)

By symmetry, we have

F
(2,d)
2

∣∣∣
c̄c̄

= F
(2,d)
2

∣∣∣
cc
, F

(2,d)
2

∣∣∣
c̄h

= F
(2,d)
2

∣∣∣
ch
, F

(2,d)
2

∣∣∣
ucc

= F
(2,d)
2

∣∣∣
ucc̄

. (7.38)

7.3.2. Topology B

Diagram (e)

QCD color factor: CFTR

F
(2,e)
1

∣∣∣
hh

=

(
µ2

−ŝ

)2ϵ
[

2

3ϵ3
+

28

9ϵ2
+

18ζ2 + 353

27ϵ
+

28ζ2
9

− 52ζ3
9

+
7541

162

+
m2

ŝ

(
28

3ϵ2
+

254

9ϵ
+

28ζ2
3

+
3775

27

)]
, (7.39)

F
(2,e)
1

∣∣∣
cc

=

(
µ2

m2

)2ϵ(
µ̃2

ŝ

)ν
[
− 4

3ϵ3
+

1

ϵ2

(
4

3ν
− 4

3

)
− 1

ϵ

(
20

9ν
+

8ζ2
3

+
56

9

)
+

36ζ2 + 112

27ν
+

32ζ2
3

+
20ζ3
9
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ŝ
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, (7.40)

F
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∣∣∣
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(
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+
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+
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+
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ŝ

(
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3ϵ2
+

1

ϵ

(
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ν
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)
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. (7.41)

Notice that the LP contribution of the hh region is the same as for diagram (a),
Eq. (7.15). For F2 we get

F
(2,e)
2

∣∣∣
hh

=

(
µ2

−ŝ

)2ϵ
m2

ŝ

[
− 8

3ϵ2
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9ϵ
− 8ζ2

3
− 2498

27

]
, (7.42)

F
(2,e)
2

∣∣∣
cc

=

(
µ2

m2

)2ϵ
m2

ŝ

[
4

3ϵ2
+

98

9ϵ
+ 12ζ2 +

25

27

]
. (7.43)
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By symmetry, we have

F
(2,e)
2

∣∣∣
c̄c̄

= F
(2,e)
2

∣∣∣
cc
. (7.44)

Diagram (f)

QCD color factor: C2
F − 1

2CFCA

F
(2,f)
1

∣∣∣
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=

(
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−ŝ

)2ϵ
[
− 1

ϵ3
+
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4ϵ
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3
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ŝ

(
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+
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2
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8

)]
, (7.45)

F
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[
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]
, (7.46)
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1
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+
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, (7.47)
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, (7.48)
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1
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(
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, (7.49)
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)]
, (7.50)
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F
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For F2 we get

F
(2,f)
2
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=

(
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[
6
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, (7.52)
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6
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, (7.53)

F
(2,f)
2
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[
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, (7.54)
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(2,f)
2

∣∣∣
c̄c′

=

(
µ2

m2

)2ϵ
m2

ŝ

[
6
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+
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, (7.55)
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−ŝ

)ϵ(
µ2

m2

)ϵ
m2

ŝ
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, (7.56)
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]
. (7.57)

Diagram (g)

Diagram (g) is related to diagram (f) via the symmetry c↔ c̄.

7.3.3. Topology X

Diagram (h)

QCD color factor: C2
F − 1

2CFCA

F
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)]
, (7.58)
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, (7.61)
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ŝ

)ν2
[
1

ϵ4
+

4

ϵ3
+
ζ2 + 12

ϵ2

+
12ζ2−2ζ3+96

3ϵ
+
7ζ22
10

+12ζ2−
8ζ3
3

+80 +
m2

ŝ
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, (7.62)
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By symmetry, we have
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(2,h)
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∣∣∣
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∣∣∣
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,

F
(2,h)
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∣∣∣
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(ν2 ↔ ν1) . (7.65)

For F2 we get
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ŝ

[
− 4

ϵ3
− 32

ϵ2
− 4 (ζ2 + 24)

ϵ
− 32ζ2 +

8ζ3
3

− 256

]
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By symmetry, we have

F
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2

∣∣∣
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(2,h)
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∣∣∣
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(2,h)
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, F
(2,h)
2
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= F
(2,h)
2

∣∣∣
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. (7.71)

7.3.4. Cross-checks

We have listed all contributions to the massive form factor at two loop at NLP per
momentum region. To validate our results and to make sure no region has been left
unaccounted for, we have performed several cross-checks with results presented in [168]
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and [124]. The former presents the full result of the two-loop QED massive form factor
at the level of the individual diagrams, while the latter provides the corresponding
QCD result for all diagrams combined, see Eqs. (22) and (23) in [124] for F1 and F2

respectively.

In order to compare our results with [168] and [124], one needs to keep the following
in mind. To begin with, one must define

F (2)
i (ϵ, ŝ) =

e−2ϵγE

Γ(1 + ϵ)2

(
µ2

m2

)−2ϵ

F
(2)
i

(
ϵ,
m2

ŝ

)
, (7.72)

as defined in Eq. (21) in [124], and second, expand the variable x as defined in Eq. (14)
in [124] in powers of m2/ŝ to match our conventions. Finally, we also remark that
one must reinstate the QCD color factors in the QED diagrams in Fig. 7.1 before
comparing against Ref. [124]. With these conventions in mind, we now compare
the sum of the momentum regions as given in Sec. 7.2.1-7.2.3 to the expansion in
m2/ŝ up to NLP of the full result of [168] and [124], where we have made use of the
Mathematica package HPL [171, 172] to expand the polylogarithms.

First, we have checked that diagram (a), which is absent in [168], reproduces the
CFTRNf term in [124], while diagram (e) can be checked either directly against the
result of [168] or against the CFTR term in [124]. Similarly, one can verify the result
of the remaining diagrams (b)-(d) and (f)-(h) by checking directly with [168], which
we reproduce up to some small verified typos.

In addition to an inspection at the individual diagram level, we have also performed
checks at the level of the form factor itself. The sum of our results of diagrams (b)-(d)
and (f)-(h) reproduces the term proportional to C2

F in [124]. Additional diagrams
appearing only in QCD do not contribute at C2

F .

As a final check we remark that the LP part of the hh region corresponds to the
massless limit and we have verified this with the massless form factors at two loops as
given in [173, 174].

7.4. Discussion of results

The previous section contains the main results of this chapter, namely, the two-
loop massive form factors F1 and F2, in the limit ŝ ≫ m2, written as the sum of
contributions arising from all momentum regions. It may be useful to elaborate on
this result a bit more, focusing in particular on what can be learnt in light of the
computational technique itself, and of factorization.
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The first issue one encounters within the expansion by regions is of course identi-
fying all contributing regions. To this end, geometric methods have been developed,
which identify the regions by associating them to certain scaling vectors in the pa-
rameter representation of a given Feynman graph G [144–146, 175–178]. From the
perspective of exploiting the expansion by regions to reveal the underlying factorization
structure of a given physical observable, it is important to be able to associate a
given region to the (hard, collinear, soft, etc) scaling of the loop momenta, in order to
reinterpret a given region as originating from the exchange of a (hard, collinear, soft,
etc) particle. Identifying all regions by assigning all possible momentum scalings to the
loop momentum is however non-trivial, because loop momenta can be routed in many
different ways. As discussed in the literature (see e.g. [126, 130]), starting from a given
integral representation it may be necessary to shift the loop momenta one or more
times in order to reveal all regions. In case of the two-loop calculation considered here,
we found it was necessary to perform such shifts in topologies B and X, as discussed
in Sec. 7.2.2 and 7.2.3 respectively. An obvious question is whether loop momentum
shifts are sufficient to reveal all regions. The answer is positive for the two-loop
problem at hand. In general, finding all regions by means of loop momentum shifts
becomes increasingly involved as the loop order grows; it remains an open question
whether this approach can be effective at to all loop orders. Let us also mention that
shifting the loop momenta does not provide per se a criterion to establish whether
all regions have been taken into account. In case the result of the exact integral is
unknown, we find it useful to consider other constraints, such as the requirement that
rapidity divergences cancel in the sum of all regions, which is a strong constraint on
whether all regions have been correctly considered. Another criterion that we have
found quite useful is to determine, given a certain loop momentum parametrization,
whether all possible scalings of the leading term in a given propagator can be obtained,
as explained in Sec. 7.2.2. If not, this gives a good indication that some momentum
regions are missing, and a momentum shift is needed to reveal them.

Once all regions have been found, the next question concerns their significance for a
factorization approach. In this respect, one of the relevant results of our analysis is the
observation that new momentum regions appearing at the two-loop level cancel in the
physical observable, i.e. the form factors F1 and F2 in this case. Indeed, it was observed
already some time ago [147, 148] that at higher-loop order new regions may appear,
compared to the one already present at lower loops. From a factorization viewpoint
this may be problematic, because it could imply that an all-order factorization cannot
be obtained. Indeed, one would have to add new contributions to the factorization
theorem at each subsequent order in perturbation theory. For our case we find
new ultra-(anti-)collinear regions appearing at two loops, both at the level of master
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integrals and single diagrams, but these cancel in the form factors, so that only the
regions already appearing at one loop contribute. More specifically, we find that the
sum of the ucc̄, ucc regions of diagrams (b) and (c) cancels against the sum of the
regions c̄uc′, cuc′ in diagrams (f) and (g); similarly, the sum of the ucc, ucc̄ regions in
diagrams (d) cancels against the sum of the c̄uc, ucc regions in diagram (h).

Focusing now on the calculation of the loop integrals in a given region, as usual one
has to deal with standard UV and IR singularities, which we regulate in dimensional
regularization, as well as rapidity divergences. In this thesis we consider massive form
factors, which means that collinear singularities are regulated by the masses on the
external legs, and one is left with soft singularities, which give a single pole per loop,
proportional to 1/ϵ in dimensional regularization. As is well-known, the expansion
into regions generates additional poles in each region. For instance, the hard region
at one loop and the hard-hard region at two loop correspond to the massless form
factor, because masses are neglected when the momentum is hard and proportional to
the large scale ŝ; as such, in the hard region we find double poles per loop, generated
when the loop momentum becomes soft and collinear to one of the external momenta.
The double poles cancel against additional UV singularities arising in the collinear
momentum regions; indeed, the cancellation of spurious singularities, i.e., the fact that
the two loop massive form factors contain at most 1/ϵ2 poles, provides another check
that all regions have been correctly taken into account.

As mentioned above, the expansion by regions also generates rapidity singularities,
which we observe in topology B and X. We discussed in Sec. 7.1 that the original
master integrals do not have rapidity divergences, and when summing all regions
of a given integral, we indeed observed the cancellation of rapidity divergences at
the integral level (details have been given in Sec. 7.2). In the context of the present
discussion, it may be more interesting to note that rapidity divergences cancel per
region for the form factor F1 at LP, and at NLP for the form factor F2 (which is
probably a consequence of the fact that F2 starts at NLP). With the calculation at
hand we are however not able to determine whether this is a general feature, valid at
arbitrary order. We leave such questions for further research.

Concerning the specific structure of the rapidity divergences per diagram, we
saw that for topology B it was enough to use a single rapidity regulator, while for
topology X we needed up to two rapidity regulators. In general the addition of a
rapidity regulator breaks the symmetry p1 ↔ p2: for instance, in case of topology B
the cc region ceases to be equal to the c̄c̄ region. In case of more than one rapidity
regulator, symmetry between regions can also be broken by expanding the integral
in the regulators in a given order. This is what happens in case of topology X: even
if we choose the rapidity regulators ν1 and ν2 such that the symmetry between the



200 Region analysis of QED massive fermion form factor

cc and c̄c̄ regions is respected, expanding in ν1 and ν2 in a chosen order breaks this
symmetry.

To conclude, we found that the calculation of the massive form factors in the limit
ŝ≫ m2 by means of the method of regions provides useful data in light of developing
a factorization framework for scattering amplitudes beyond leading power. It gave us
the additional opportunity to test features of the region expansion of complete form
factors, giving new perspectives with respect to cases where the method is applied to
single integrals.



Chapter 8.

Next-to-leading power jet functions
This chapter is based on forthcoming work [4].

In the previous chapter, we discussed the first step in verifying the NLP factorization
formula of Eq. (6.19): the expansion by momentum regions of the two-loop massive
QED form factors up to NLP. As discussed at the end of Sec. 6.2.4, we aim to verify
the factorization formula in its “bare” form, i.e., before reshuffling soft and collinear
singularities into soft and eikonal jet functions. In this form, the factorization formula,
accurate up to NLP, can be written as

V µ
NLP(p1, p2) = Jf ⊗Hµ

f,f̄
⊗ Jf̄ + Jfγ ⊗Hµ

fγ,f̄
⊗ Jf̄ + Jfγ ⊗Hµ

fγ,f̄γ
⊗ Jf̄γ

+ Jfγγ ⊗Hµ

fγγ,f̄
⊗ Jf̄ + Jfff̄ ⊗Hµ

fff̄,f̄
⊗ Jf̄

+ Jf⊗Hµ

f,f̄γ
⊗Jf̄γ + Jf⊗Hµ

f,f̄γγ
⊗Jf̄γγ + Jf⊗Hµ

f,f̄f̄f
⊗Jf̄f̄f . (8.1)

where we used that in its bare form, the soft function becomes trivial, i.e. S = 1 as
corrections consist of scaleless integrals. From another point of view, we can also see
that the soft function is trivial up to two loops, as all soft regions for the massive form
factors vanish up to this order.

With the results of the previous chapter at hand, we are now ready to propose
operator matrix definitions for the jet functions, and in particular verify them by
comparing to the various momentum regions as summarised in Sec. 7.3. Note that in
this chapter we will mainly consider the first two lines of Eq. (8.1). For the complete
factorization at NLP one also needs the jet functions of the last line. However, given
the symmetry between the c and c̄ regions of the form factors it is sufficient to check
the factorization formula already by focussing on the first two lines of Eq. (8.1). It
is straightforward to extend the results of this chapter to include operator matrix
definitions for Jf̄γγ and Jf̄f̄f as well. Furthermore, we want to emphasize that although
we verify the proposed jet functions with the process γ∗ → ff̄ , they are in fact universal
and can be used for other processes as well. The process dependence resides in the
hard functions.

This chapter is structured as follows. In Sec. 8.1, we extend the one loop fac-
torization – already discussed at LP in Sec. 6.2.3 – up to NLP. This affords us the
opportunity to set up the necessary notation for this chapter and discuss the first

201
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NLP jet function Jfγ . Next in Sec. 8.2, we propose operator matrix definitions for the
various NLP jet functions. In particular, we consider their perturbative expansion up
to two loops. Besides the jet functions, we will also give an effective diagrammatic
interpretation to the corresponding hard functions. In Sec. 8.3, we verify the proposed
jet functions by comparing with the momentum regions obtained in the previous
chapter. We will see that there is a strong relation between the jet functions and the
different regions on a diagram by diagram basis. As a result, we can often compare
results diagram by diagram. We finish in Sec. 8.4 with a discussion of various subtleties
we encountered.

8.1. One loop factorization up to NLP

Recall the LP jet functions Jf and Jf̄ , defined in Eqs. (6.50) and (6.51) respectively,
and computed in Sec. 6.2.3 up to one loop. We repeat the result for completeness:

J
(0)
f = ū(p1) , J

(1)
f (p1) =

(
µ2

m2

)ϵ

ū(p1)
Γ(ϵ)eϵγE

ϵ(1− 2ϵ)

(
1− 2mϵ

ŝ
/p
−
2

)
. (8.2)

and

J
(0)

f̄
(p2) = v(p2) , J

(1)

f̄
(p2) =

(
µ2

m2

)ϵ
Γ(ϵ)eϵγE

ϵ(1− 2ϵ)

(
1 +

2mϵ

ŝ
/p
+
1

)
v(p2) . (8.3)

We already verified these jet functions up to LP by comparing the factorized expression

J
(1)
f ⊗H

(0),µ

f,f̄
⊗ J

(0)

f̄
(8.4)

with the c-region of the vertex function V µ(p1, p2), where we used H(0),µ

f,f̄
= −ie eq γµ.

In this chapter we are mainly interested in the NLP factorization, i.e. order λ2

(or equivalently m2). The projection of Eq. (8.4) onto F1 up to NLP is given by(
µ2

m2

)ϵ{
1

ϵ2
+

2

ϵ
+ 4 +

ζ2
2

+
m2

ŝ

[
2

ϵ
+ 4

]
+O(ϵ) +O(λ4)

}
, (8.5)

where we performed the expansion in ϵ and λ. Similarly, we can project onto F2,
which yields (

µ2

m2

)ϵ{
m2

ŝ

[
− 4

ϵ
− 8

]
+O(ϵ) +O(λ4)

}
. (8.6)
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Comparing to F1 and F2 in the c-region, Eqs. (6.41) and (6.44) respectively, we notice
that the NLP contributions do not match. This was to be expected as according to
Eq. (8.1), we expect new jet functions to appear at this order in the power expansion.

8.1.1. Jfγ jet function

For the one loop form factors, only the (fγ)-jet function can contribute at NLP as
the other jet functions only start contributing from two-loop onwards. We therefore
expect that up to NLP, the one loop c-region of the vertex function V µ(p1, p2) – or
equivalently that of F1 and F2 – is reproduced by the factorized expression

J
(1)
f ⊗H

(0),µ

f,f̄
⊗ J

(0)

f̄
+ J

(1)
fγ ⊗ H̃

(0),µ

fγ,f̄
⊗ J

(0)

f̄
. (8.7)

Let us make the following remarks about the second term. First of all, we can be more
specific and write

Jfγ = Jρ
fγ(p1 − ℓ, ℓ) , and Hfγ,f̄ = Hµ,ρ

fγ,f̄
(p1 − ℓ, p2, ℓ) , (8.8)

where the arguments in the jet function denote the momenta flowing through the
fermion and photon leg respectively. In the hard function, the arguments denote the
shift in outgoing fermion momenta, as well as the additional momentum ℓ for the
collinear photon emission. We want the jet and hard function to depend only on the
large momentum component ℓ+ of ℓ. However, since Jfγ starts to contribute at order
λ, and we want the NLP factorization formula to be accurate up to order λ2, we need
to keep the subleading transverse momentum ℓ⊥. Thus, we can Taylor expand the
hard function in the transverse momentum

Hµ,ρ

fγ,f̄
(p1−ℓ, p2, ℓ) = Hµ,ρ

fγ,f̄
(p1−ℓ+, p2, ℓ+)+ℓσ⊥

[
∂

∂ℓσ⊥
Hµ,ρ

fγ,f̄ ,σ
(p1−ℓ, p2, ℓ)

]
ℓ⊥=0

+O(λ2)

≡ Hµ,ρ

fγ,f̄
(p1−ℓ+, p2, ℓ+) + ℓσ⊥H

µ,ρ

f∂γ,f̄ ,σ
(p1−ℓ+, p2, ℓ+) . (8.9)

Now, by defining a jet function Jf∂γ that absorbs the ℓσ⊥, we can write the second
term of Eq. (8.7) as[

J
(1)
fγ ⊗H

(0),µ

fγ,f̄
+J

(1)
f∂γ ⊗H

(0),µ

f∂γ,f̄

]
⊗ J

(0)

f̄

=

∫ p+
1

0

dℓ+
[
J
(1)
fγ,ρ(p1−ℓ+, ℓ+)H

µ,ρ

fγ,f̄
(p1−ℓ+, p2, ℓ+)

+ J
(1)
f∂γ,ρσ(p1−ℓ+, ℓ+)H

µ,ρ,σ

f∂γ,f̄
(p1−ℓ+, p2, ℓ+)

]
J
(0)

f̄
, (8.10)
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where we expanded the ⊗-product, which besides spinor contractions now also includes
contractions of the Lorentz indices carried by the photon leg, as well as a convolution
over its large momentum component. Notice that due to the extra factor ℓ⊥, the Jf∂γ
has a power counting that starts at order λ2.

The jet functions Jfγ and Jf∂γ were already derived in [25] from a generic
amplitude, assuming the validity of the factorized picture of above. An operator
matrix definition for these jet functions was however not given. Let us do that here
and verify that our operator matrix definition both reproduces the result of [25] as
well as the c-region of F1 and F2 up to NLP. We define the (fγ)-jet function as

Jµ
fγ(p1, ℓ

+) =

∫ ∞

−∞

dξ

2π
e−iℓ(ξn+)⟨p1|

[
ψ̄(0)Wn+(0,∞)

]
Aµ

n+
(ξn+)|0⟩, (8.11)

with [179]

Aµ
n+

(y) =Wn+
(∞, y)

(
iDµWn+

(y,∞)
)
, (8.12)

where Dµ = ∂µ−ie eq Aµ is understood to act at the spacetime point y. A few remarks
are in order. First of all, we notice that the part in square brackets in Eq. (8.11) is
the same as for the jet function Jf defined in Eq. (6.50). This mimicks the fermion
coupling of these jet functions with the hard function. Similar, the additional insertion
of Aµ

n+
(ξn+) in the definition of Jfγ can be understood as the photon coupling to

the hard part. Second, we notice that this definition of Jfγ is gauge invariant, since
both the factor inside the square brackets and Aµ

n+
(ξn+) in Eq. (8.11) are individually

gauge invariant. Finally, for the complete factorization at NLP we also need the jet
function Jf̄γ(p2, ℓ−) in opposite direction, which now depends on the momentum p2

and the large momentum component ℓ− of the photon which is c̄-collinear to f̄ . We
will consider its operator matrix definition in Sec. 8.2.2 and for now only test the
factorization of the c-region as the c̄-region is exactly the same due to the symmetry
of the form factors.

In Feynman gauge, expanding Eq. (8.11) at leading order in perturbation theory,
one finds two terms that contribute

J
(1)µ
fγ (p1, ℓ

+) = ie2ū(p1)

∫
[dk]

γµ
(
/p1 − /k +m

)
k2[(k − p1)2 −m2]

δ(n+k − n+ℓ)

− ie2ū(p1)

∫
[dk]

/n+

(
/p1 − /k +m

)
kµ

k2[(k − p1)2 −m2][n+k]
δ(n+k − n+ℓ) . (8.13)
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p1

(a)

p1 − ℓ

ℓ

p2

(b)

Figure 8.1.: In (a), we show the diagrammatic representation of the jet function J
(1)
fγ .

Fig. (b) shows the diagram used to calculate the leading order hard function
H

(0)

(fγ) and H
(0)

(f∂γ).

This jet function is shown in Fig. 8.1 (a), where the black dot on the vertex of the
photon with the Wilson line is translated into

σ

µ
=

(
gµσ − nσ+ kµ

n+k

)
δ(n+k − n+ℓ) . (8.14)

The one-loop contribution J (1)µ
fγ (p1, ℓ

+) was already calculated in [25] in axial gauge.
Here we work in Feynman gauge; the results should of course be the same as the
operator matrix definition, Eq. (8.11), is gauge invariant. Indeed, a straightforward
calculation yields

J
(1)µ
fγ (p1, x) =

(
µ2 eγE

m2

)ϵ

Γ(ϵ)ū(p1)

{
mx1−2ϵ

(
−γµ +

2/p
−
2
pµ1
ŝ

)

+
m2

ŝ

[
1

1−ϵ
(
δ(1−x)− (1−2ϵ)x1−2ϵ

)
γµ/p

−
2
− 4x−2ϵ(1−x)p−µ

2

]}
, (8.15)

which is in agreement with the result presented in [25]. Two remarks about this result
can be made. First, as discussed earlier and made explicit in Eq. (8.10), we still
need to perform an integral over the large momentum component ℓ+, when the jet
function is convoluted with the hard function. In calculating Eq. (8.15), we made the
change of variables x ≡ ℓ+/p+1 and subsequently removed a factor of 1/p+1 in the above
expression because of the variable change in the measure. We will therefore perform
the convolution integral over x, instead of ℓ+. Second, a priori the x-integration
appears to be over the whole range (−∞,∞), but in fact it is restricted to 0 < x < 1.
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To see this, consider one of the scalar integrals needed to calculate Eq. (8.15):∫
dℓ−dd−2ℓ⊥

(2π)d
1[

2xp+1 ℓ
− + ℓ2⊥ + iη

] [
2(1− x)ℓ−p+1 − ℓ2⊥ + xm2 − iη

] . (8.16)

We notice that if the two poles in ℓ− lie on the same side of the integration contour
the integral over ℓ− vanishes, as it can be closed at infinity in such a way that no
singularities are ecnlosed by the integration contour. A brief analysis shows that only
if 0 < x < 1, the poles in ℓ− are on different sides of the integration contour.

The jet function Jf∂γ at one loop is given by multiplying the integrands in
Eq. (8.13) by kσ⊥. The result reads

J
(1)µσ
f∂γ (p1, x) =

(
µ2 eγE

m2

)ϵ

m2Γ(ϵ)x
2−2ϵ

2(1− ϵ)
ū(p1)

[
2

x
ηµσ⊥ + γσ⊥

(
2

ŝ
/p
−
2
pµ1 − γµ

)]
. (8.17)

In order to find the hard functions we consider the diagram in Fig. 8.1 (b), where the
dashed line represents the photon that has to be connected to the (fγ)-jet function.
The full amplitude reads

H̃
(0)µρ

fγ,f̄
(p1, p2, ℓ) = e γµ

i(−/p2 − /ℓ +m)

(p2 + ℓ)2 −m2
γρ . (8.18)

Performing the Taylor expansion as we did in Eq. (8.9), we obtain

H
(0)µρ

fγ,f̄
(x) = H̃

(0)µρ

fγ,f̄
(p1, p2, ℓ)

∣∣∣
ℓ⊥=0

=
−ie
xŝ

γµ
(
/p
−
2
+ x/p

+
1
−m

)
γρ , (8.19)

and

H
(0)µρσ

f∂γ,f̄
(x) =

∂

∂ℓσ⊥
H̃

(0)µρ

fγ,f̄
(p1, p2, ℓ)(x, ℓ⊥)

∣∣∣∣
ℓ⊥=0

=
−ie
xŝ

γµγσ⊥γ
ρ, (8.20)

where we suppressed the arguments of the hard functions, except for their dependence
on x.

8.1.2. Verifying the one loop factorization

With the (fγ)-jet computed, we are now able to verify the factorized expression Eq. (8.7)
by comparing to the c-expansion of the one loop form factors. It is straightforward to
compute the final x-integral of∫ 1

0

dx J
(1)
fγ,ρ(p1, x)H

(0)µρ

fγ,f̄
(x) J

(0)

f̄
(p2) , (8.21)
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and project onto F1 and F2. This yields(
µ2

m2

)ϵ{
m2

ŝ

[
− 2

ϵ
− 2

]
+O(ϵ) +O(λ4)

}
(8.22)

for F1 and for F2 we obtain(
µ2

m2

)ϵ{
m2

ŝ

[
2

ϵ

]
+O(ϵ) +O(λ4)

}
. (8.23)

In a similar manner, we compute the convolution integral of∫ 1

0

dx J
(1)
f∂γ,ρσ(p1, x)H

(0)µρσ

f∂γ,f̄
(x) J

(0)

f̄
(p2) , (8.24)

which only contributes to F1 at NLP:(
µ2

m2

)ϵ{
m2

ŝ

[
1

ϵ
+ 3

]
+O(ϵ) +O(λ4)

}
. (8.25)

Upon summing all contributions Eqs (8.5), (8.22) and (8.25), we obtain for F1(
µ2

m2

)ϵ{
1

ϵ2
+

2

ϵ
+ 4 +

ζ2
2

+
m2

ŝ

[
1

ϵ
+ 5

]
+O(ϵ) +O(λ4)

}
. (8.26)

Similarly, we obtain for F2(
µ2

m2

)ϵ{
m2

ŝ

[
− 2

ϵ
− 8

]
+O(ϵ) +O(λ4)

}
, (8.27)

where we summed the contributions of Eq. (8.6) and (8.23). This is indeed in agreement
with the c-region of the one loop form factors as computed in Eqs. (6.41) and (6.44)
respectively.

8.2. Jet functions up to NLP

So far, we gave operator matrix definitions for the jet functions Jf , Jf̄ and Jfγ and
successfully verified them up to NLP by comparing to the momentum regions of the
one loop form factors. We are now ready to discuss the full NLP factorization formula
Eq. (8.1) and also define operator matrix definitions for the remaining (fγγ)- and
(fff)-jet functions. As said before, the (fγγ)- and (fff)-jet functions appear for the
first time at two loops, and to verify their operator matrix definitions we can compare
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with the momentum regions of the two-loop massive form factors. Before we do so, a
few remarks are in order.

First of all, the factorization formula Eq. (8.1) can be expanded as

V µ
NLP

(
p1, p2)

= Jf (p1)H
µ

f,f̄
(p1, p2) Jf̄ (p2)

+

∫ p+
1

0

dℓ+
[
Jfγ(p1, ℓ

+)Hµ

fγ,f̄
(p1, p2, ℓ

+) + Jf∂γ(p1, ℓ
+)Hµ

f∂γ,f̄
(p1, p2, ℓ

+)
]
Jf̄ (p2)

+

∫ p+
1

0

dℓ+1

∫ p−
2

0

dℓ−2 Jfγ(p1, ℓ
+
1 )H

µ

fγ,f̄γ
(p1, p2, ℓ

+
1 , ℓ

−
2 ) Jf̄γ(p2, ℓ

−
2 )

+

∫ p+
1

0

dℓ+1 dℓ
+
2

[
Jfγγ(p1, ℓ

+
1 , ℓ

+
2 )H

µ

fγγ,f̄
(p1, p2, ℓ

+
1 , ℓ

+
2 )

+ Jfff̄ (p1, ℓ
+
1 , ℓ

+
2 )H

µ

fff̄,f̄
(p1, p2, ℓ

+
1 , ℓ

+
2 )
]
Jf̄ (p2)

+ Jf (p1)

∫ p−
2

0

dℓ−
[
Hµ

f,f̄γ
(p1, p2, ℓ

−) Jf,f̄γ(p2, ℓ
−) +Hµ

f̄∂γ
(p1, p2, ℓ

−) Jf̄∂γ(p2, ℓ
−)
]

+ Jf (p1)

∫ p−
2

0

dℓ−1 dℓ
−
2

[
Hµ

f,f̄γγ
(p1, p2, ℓ

−
1 , ℓ

−
2 ) Jf̄γγ(p2, ℓ

−
1 , ℓ

−
2 )

+Hµ

f,f̄f̄f
(p1, p2, ℓ

−
1 , ℓ

−
2 ) Jf̄f̄f (p2, ℓ

−
1 , ℓ

−
2 )
]
, (8.28)

where we made the convolution integral over large momentum components between
the various jet and hard functions explicit (notice that spinor and Lorentz indices are
still suppressed, we make these explicit below). We already saw in Sec. 8.1.1 how the
convolution integral over Jfγ and Hµ

fγ,f̄
– now the second line in Eq. (8.28) – was

derived. The other convolution integrals in Eq. (8.28) can be derived in a similar way.
Notice however that for the jet functions Jfγγ and Jfff̄ the convolution integral is
over two large momentum components ℓ+1 and ℓ+2 , which are the large momentum
components of the c-collinear photons and fermions respectively. Similarly, we need to
integrate over two components ℓ−1 and ℓ−2 for the jet functions Jf̄γγ and Jf̄f̄f . Finally,
we notice that the (fγγ)- and (fff)-jet functions are already of order λ2, so there is
no need to expand further in transverse momentum, i.e. up to NLP there is need for a
jet function Jf∂γγ etc.

The second remark we want to make is that altough the two-loop massive form
factors have more regions compared to one-loop, we can still compare region per region
with the factorization formula. To be precise, the cc-region can be compared with the
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following factorized expression:[
J
(2)
f ⊗H

(0)

f,f̄
+ J

(2)
fγ ⊗H

(0)

fγ,f̄
+ J

(2)
fγγ ⊗H

(0)

fγγ,f̄
+ J

(2)

fff̄
⊗H

(0)

fff̄,f̄

]
⊗ J

(0)

f̄
, (8.29)

where besides the jet functions Jfγγ and Jfff̄ not considered so far, we also need the
two-loop expansion of Jf and Jfγ . In Eq. (8.29), and also in what follows below, we
keep Jf∂γ often implicit as it should be understood as the next order in the expansion
of Jfγ . The c̄c̄-region can be compared with:

J
(0)
f ⊗

[
H

(0)

f,f̄
⊗ J

(2)

f̄
+H

(0)

f,f̄γ
⊗ J

(2)

f̄γ
+H

(0)

f,f̄γγ
⊗ J

(2)

f̄γγ
+H

(0)

f,f̄f̄f
⊗ J

(2)

f̄f̄f

]
. (8.30)

For the ch and c̄h regions, we need to expand the hard function as well as one of the
jet functions to one-loop while keeping the other jet function at tree level. That is, we
can compare the ch-region with[

J
(1)
f ⊗H

(1)

f,f̄
+ J

(1)
fγ ⊗H

(1)

fγ,f̄

]
⊗ J

(0)

f̄
, (8.31)

and the c̄h-region can be compared with

J
(0)
f ⊗

[
H

(1)

f,f̄
⊗ J

(1)

f̄
+H

(1)

f,f̄γ
⊗ J

(1)

f̄γ

]
. (8.32)

For the comparison with the cc̄-region, we need the hard functions at tree level and
the jet functions expanded up to one-loop:

J
(1)
f ⊗H

(0)

f,f̄
⊗ J

(1)

f̄
+ J

(1)
fγ ⊗H

(0)

fγ,f̄
⊗ J

(1)

f̄

+ J
(1)
f ⊗H

(0)

f,f̄γ
⊗ J

(1)

f̄γ
+ J

(1)
fγ ⊗H

(0)

fγ,f̄γ
⊗ J

(1)

f̄γ
. (8.33)

We notice that this is another test for the one-loop Jf and Jfγ functions already
computed in Secs. 6.2.3 and 8.1.1 respectively. The final region to compare with is
the hh-region, for which we need the hard function expanded up to two loops while
keeping the jet functions at tree level. This should therefore be reproduced by

J
(0)
f ⊗H

(2)

f,f̄
⊗ J

(0)

f̄
. (8.34)

However, as the hard functions are matching conditions we notice that H(2)

f,f̄
can be

immediately picked to be the hh-region. There is therefore no need to consider this
region again in this chapter.

As already remarked in the introduction of this chapter, we can keep our discussion
consise due to the symmetry between the c and c̄ regions of the form factors. To be
precise, if we can show that the factorized expression Eq. (8.29) indeed reproduces the
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p1
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p1

(b)

p1
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Figure 8.2.: Diagrams contributing to Jf at two-loops.

cc-region, we know that it is also possible to factorize the c̄c̄-region.1 Similarly, it is
sufficient to show the factorization of the ch-region. We now consider the jet and hard
functions needed for Eqs. (8.29), (8.31) and (8.33). It is straightforward to extend the
results to Eqs. (8.30) and (8.32) as well.

8.2.1. Jf jet

In Sec. 6.2.3, we already defined the following operator matrix definitions for the jet
functions Jf and Jf̄ :

Jf (p1) =
〈
p1
∣∣ψ̄(0)Wn+

(0,∞)
∣∣0〉 , Jf̄ (p2) =

〈
p2
∣∣Wn−(∞, 0)ψ(0)

∣∣0〉 . (8.35)

In particular, we verified their one-loop contribution – shown in Fig. 6.5 – by comparing
to the momentum regions of the one-loop form factor. In order to verify that these
definitions also work at two loops, we consider the expansion up to O(e4). In Fig. 8.2,
we show the six 1PI contributions to Jf (one can draw similar diagrams for Jf̄ ), where
one notices the similarity with the full two-loop diagrams (a), (b), (d), (e), (g) and (h)
respectively. As an example, the integral expression of the ladder diagram, Fig. 8.2 (c),

1In the previous chapter, we saw that the symmetry between cc and c̄c̄ is broken due to the needed
rapidity regulators. However, as we will discuss in Sec. 8.4 it is still enough to focus on the
factorization of the cc-region.
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p1

p2

(a)

p1

p2

(b)

Figure 8.3.: Diagrammatic expressions that correspond with the tree level and one-loop
hard functions of Hµ

f,f̄
.

is given by:

e4e4qū(p1)

∫
[dk1][dk2]γµ

i(/p1 − /k1 +m)

(p1 − k1)2 −m2
γν

i(/p1 − /k2 +m)

(p1 − k2)2 −m2

× −i
k21

−i
(k2 − k1)2

−inµ+
[n+k1]

−inν+
[n+k2]

, (8.36)

and similar integral expressions can be derived for the other diagrams shown in Fig. 8.2.

Next, we consider the Hµ

f,f̄
hard function. The tree level hard function was already

given in Eq. (6.62). It corresponds with the tree level diagram shown in Fig. 8.3 (a).
To verify the factorization formula up to two-loops, i.e. reproduce the ch-region, we
will also need the hard function at one loop. It can be extracted from the diagram
shown in Fig. 8.3 (b), where the one-loop diagram should be computed in the hard
momentum limit with the method of regions. Notice that in the computation of
these hard functions, we do not include spinors for the external fermions as these are
included in Jf and Jf̄ .

8.2.2. Jfγ jet

We already considered the operator matrix definition for Jfγ in the previous section,
but let us repeat the definition for completeness:

Jµ
fγ(p1, ℓ

+) =

∫ ∞

−∞

dξ

2π
e−iℓ(ξn+)⟨p1|

[
ψ̄(0)Wn+

(0,∞)
]
Aµ

n+
(ξn+)|0⟩, (8.37)

with

Aµ
n+

(y) =Wn+(∞, y)
(
iDµWn+(y,∞)

)
. (8.38)
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p1

(a)

p1

(b)

p1

(c)

p1

(d)

p1

(e)

p1

(f)

Figure 8.4.: Two-loop contributions to Jfγ .

Similarly, the jet function Jf̄γ can be defined as

Jµ

f̄γ
(p2, ℓ

−) =
∫ ∞

−∞

dξ

2π
e−iℓ(ξn−)⟨p2|

[
Wn−(∞, 0)ψ(0)

]
Aµ

n−
(ξn−)|0⟩ . (8.39)

The one-loop contribution to Jfγ and Jf∂γ were already computed in Eq. (8.15)
and (8.17) respectively. Similarly, one computes the one-loop contribution to Jf̄γ
which yields

J
(1)µ

f̄γ
(p2, x̄) =

(
µ2 eγE

m2

)ϵ

Γ(ϵ)

{
mx̄1−2ϵ

(
−γµ +

2/p
+
1
pµ2
ŝ

)
(8.40)

− m2

ŝ

[
1

1− ϵ

(
δ(1− x̄)− (1− 2ϵ)x̄1−2ϵ

)
γµ/p

+
1
− 4x̄−2ϵ(1− x̄)p+µ

1

]}
v(p2) ,

and

J
(1)µσ
f∂γ (p2, x̄) =

(
µ2 eγE

m2

)ϵ

m2Γ(ϵ)x̄
2−2ϵ

2(1− ϵ)

[
2

x̄
ηµσ⊥ + γσ⊥

(
2

ŝ
/p
+
1
pµ2 − γµ

)]
v(p2). (8.41)

where we defined the momentum fraction x̄ = ℓ−/p−2 .

In Fig. 8.4, we show the two-loop contributions to Jfγ (one can draw similar
diagrams for Jf̄γ), where we used the Feynman rule defined in Eq. (8.14) to draw the
diagrams. For example, the integral expression for the diagram shown in Fig. 8.4 (c)
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p1 − ℓ

ℓ

p2

(a)

p1 − ℓ

ℓ

p2

(b)

p1 − ℓ

ℓ

p2

(c)

p1 − ℓ

ℓ

p2

(d)

p1 − ℓ

ℓ

p2

(e)

p1 − ℓ

ℓ

p2

(f)

Figure 8.5.: In (a), we show the diagram that correspond with the tree-level hard function
H

(0)

fγ,f̄
. In (b)-(f), we show the diagrams that corresponds to the hard function

H
(1)

fγ,f̄
.

is given by

e4e4qū(p1)

∫
[dk1][dk2]γρ

i(/p1 − /k1 +m)

(p1 − k1)2 −m2

−i
k21

(
gρµ − nρ+k

µ
1

n+k

)
δ(n+k1 − n+ℓ)

γσ
i(/p1 − /k2 +m)

(p1 − k2)2 −m2

−i
k22

−inσ+
n+k2

. (8.42)

Again, we notice the strong correspondence with the full two-loop diagrams (a), (b),
(d), (e), (g) and (h) respectively.

The tree level hard function H(0)µρ

fγ,f̄
was derived in Eq. (8.19), as well as the hard

function H(0)µρσ

f∂γ,f̄
in Eq. (8.20). Similarly to the case of the (f)-jet function, in order

to be accurate up to two loop and reproduce the ch-region up to NLP, we also need
the one-loop hard functions H(1)µρ

fγ,f̄
and H

(1)µρσ

f∂γ,f̄
. Due to the additional emission of

a photon from the hard function, the one loop hard function can be extracted from
the five diagrams shown in Fig. 8.5. The dashed line represents the c-collinear photon
that is to be connected to the Jfγ jet function. These diagrams are again computed
using the method of regions, where the loop momentum has hard scaling and we take
the momentum ℓ to be c-collinear. In order to be accurate up to NLP, the diagrams
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p1−ℓ1

ℓ1

ℓ2−p2

ℓ2

(a)

ℓ2−p2

ℓ2

p1−ℓ1

ℓ1

(b)

p1−ℓ

ℓ1

ℓ2

ℓ2−p2

(c)

Figure 8.6.: Diagrammatic expressions that correspond with the tree-level hard function
H

(0)

fγ,f̄γ
.

need to be computed up to O(λ), as the jet function Jfγ starts at order O(λ). For
example, consider one of the propagators of the diagram shown in Fig. 8.5 (f):

/k−/ℓ−/p2+m
(k − ℓ− p2)2−m2

=
/k−/ℓ+−/ℓ⊥−/p−2 +m

(k−ℓ+−p−2 )2
(
1− 2k⊥ · ℓ⊥

(k−ℓ+−p−2 )2
+O(λ2)

)
, (8.43)

where we expanded according to hard momentum scaling for k and c-collinear scaling
for ℓ. For H(1)µρ

fγ,f̄
, one evaluates the relevant propagators at ℓ⊥ = 0, while for H(1)µρσ

f∂γ,f̄
,

one takes the derivative with respect to ℓ⊥.

Finally, to reproduce the cc̄-region, we also need the hard function H(0)

fγ,f̄γ
. This

hard function can be derived from the three diagrams shown in Fig. 8.6. For example,
the diagram shown in (a) yields the following part of the hard function:

ieγµ
i(−/p2 − /ℓ1 +m)

(p2 + ℓ1)2 −m2
γρ

i(−/p2 − /ℓ1 + /ℓ2 +m)

(−p2 − ℓ1 + ℓ2)2 −m2
γσ
∣∣∣∣
O(λ0)

= −ieγµ
−/p−2 − x/p

+
1

xŝ
γρ

−(1− x̄)/p
−
2
− x/p

+
1

x(1− x̄)ŝ
γσ +O(λ) , (8.44)

where we expanded according to c-scaling for ℓ1 and c̄-scaling for ℓ2 and with x = ℓ+1 /p
+
1

and x̄ = ℓ−2 /p
−
2 .

8.2.3. Jfγγ jet

For the (fγγ)-jet function, we want to have an additional photon going out of the jet,
compared to the (fγ)-jet function. We therefore define Jfγγ as

Jµν
fγγ(p1, ℓ

+
1 , ℓ

+
2 ) =

∫
dξ1
2π

∫
dξ2
2π

e−iℓ1(ξ1n+)e−iℓ2(ξ2n+)

⟨p1|
[
ψ̄(0)Wn+

(0,∞)

]
Aµ

n+
(ξ1n+)Aν

n+
(ξ2n+)|0⟩ . (8.45)
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p1

(a)

p1

(b) (c)

Figure 8.7.: Diagrams (a) and (b) show the two-loop contributions to Jfγγ . In (c) we show
the leading order hard function for H(fγγ). All momenta are flowing from left
to right.

Notice that this jet function is again made of gauge invariant building blocks and is
therefore gauge invariant itself. Furthermore, there are now two large momentum
components that are not integrated over, namely ℓ+1 and ℓ+2 . The leading order
perturbative contribution to this jet function starts at two loops and the contributing
diagrams are shown in Fig. 8.7 (a) and (b). We notice the similarities with diagrams
(d) and (h) and, in fact, we will see in the next section that they only contribute to the
cc-region of these diagrams. This is to be expected, since these are the only diagrams
where two photon propagators can connect to the hard vertex.

The lowest order hard function can be derived from the diagram shown in
Fig. 8.7 (c). That is, by keeping the hard momentum fractions, we obtain

H
(0)µρσ
(fγγ) (x1, x2) = ieγµ

i(−/p2 − /ℓ1 − /ℓ2 +m)

(p2 + ℓ1 + ℓ2)2 −m2
γσ
i(−/p2 − /ℓ1 +m)

(p2 + ℓ1)2 −m2
γρ
∣∣∣∣
O(λ0)

(8.46)

= −ieγµ /
p−
2
+ (x1+x2)/p

+
1

(x1+x2)ŝ
γρ
/p
−
2
+ x1/p

+
1

x1ŝ
γσ +O(λ) ,

where xj = ℓ+j /p
+
1 , j = 1, 2. Note that we only had to expand the hard function up to

order O(λ0) since the corresponding jet function is already at O(λ2) accuracy.

8.2.4. Jfff jet

The final jet function we consider in this thesis is the (fff)-jet function. The three
fermions can attach in two distinct ways to the hard function while conserving the
charge flow. As a result, we can consider two different operator matrix definitions for
the (fff)-jet function. It turns out that we need both definitions in order to find all
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p1
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Figure 8.8.: Diagrams (a) and (b) show the two-loop contributions to J
(I)
fff . In (c) we show

the leading order hard function for H
(I)

fff̄,f̄
. All momenta are flowing from left

to right.

a

b

c

p1

(a)

a

b

c

p1

(b) (c)

Figure 8.9.: Diagrams (a) and (b) show the two-loop contributions to J
(II)
fff . In (c) we show

the leading order hard function for H
(II)

fff̄,f̄
(notice the different fermion flow

compared to H
(I)

fff̄,f̄
shown in Fig. 8.8 (c)). All momenta are flowing from left

to right.

the contributions to the massive form factors. The definitions are

J
(I)

fff̄
(p1, ℓ

+
1 , ℓ

+
2 ) =

∫ ∞

−∞

dξ1
2π

∫ ∞

−∞

dξ2
2π

e−iℓ1(ξ1n+)e−iℓ2(ξ2n+) (8.47)

× ⟨p1|
[
ψ̄(0)W (0,∞)

][
W (∞, ξ1n+)ψ(ξ1n+)

][
ψ̄(ξ2n+)W (ξ2n+,∞)

]
|0⟩,

and

J
(II)

fff̄
(p1, ℓ

+
1 , ℓ

+
2 ) =

∫ ∞

−∞

dξ1
2π

∫ ∞

−∞

dξ2
2π

e−iℓ1(ξ1n+)e−iℓ2(ξ2n+) (8.48)

× ⟨p1|
[
W (∞, 0)ψ(0)

][
ψ̄(ξ1n+)W (ξ1n+,∞)

][
ψ̄(ξ2n+)W (ξ2n+,∞)

]
|0⟩ .

Note that we will have multiple uncontracted spin indices after calculating these jet
functions in perturbation theory. As these spin indices have to be contracted in the
right way with the hard function, we take a bit more care and explicitly denote the
spin indices below. Both contributions J (I)

fff̄
and J

(II)

fff̄
start at two loops, and their
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expressions read

J
(I)

fff̄
(p1, ℓ

+
1 , ℓ

+
2 ) = e2

∫
[dk1][dk2] δ(ℓ

+
1 −k+1 )δ(ℓ+2 −k+2 ) (8.49){(

ū(p1)γ
ρ i(/k1+m)

k21−m2

)
c

−i
(p1−k1)2

(
i(−/k2+m)

k22−m2
γρ

i(/p1−/k1−/k2+m)

(p1−k1−k2)2−m2

)
ba

−
(
ū(p1)γ

ρ
i(/p1−/k1−/k2+m)

(p1−k1−k2)2−m2

)
a

−i
(k1+k2)2

(
i(−/k2+m)

k22−m2
γρ
i(/k1+m)

k21−m2

)
bc

}
,

and

J
(II)

fff̄
(p1, ℓ

+
1 , ℓ

+
2 ) = e2

∫
[dk1][dk2]δ(ℓ

+
1 −k+1 )δ(ℓ+2 −k+2 ) (8.50){(

ū(p1)γ
ρ i(/k1+m)

k21−m2

)
c

(
i(−/p1+/k1+ /k2+m)

(p1−k1−k2)2−m2
γρ
i(/k2+m)

k22−m2

)
ab

−i
(p1−k1)2

−
(
ū(p1)γ

ρ i(/k2+m)

k22−m2

)
b

(
i(−/p1+/k1+/k2+m)

(p1−k1−k2)2−m2
γρ
i(/k1+m)

k21−m2

)
ac

−i
(p1−k2)2

}
,

where a, b and c denote the open spin indices.

We also need two hard functions for the different definitions of the (fff)-jet.
The lowest order hard function for J (I)

fff̄
can be derived from the diagram shown in

Fig. 8.8 (c) and is given by

H
(I) (0)µ

fff̄,f̄
(x1, x2) = (−ie)3

(
γµ

−i(/p2+/ℓ1+/ℓ2 −m)

(p2+ℓ1+ℓ2)2−m2
γν

)
ab

−i
(p2+ℓ1)2

(γν)cd

∣∣∣∣
O(λ0)

(8.51)

= − ie3

ŝ(x1 + x2)

(
γµ
[
/p
−
2
+ (x1 + x2)/p

+
1

]
γν

)
ab

1

ŝx1
(γν)cd +O(λ) ,

where xj = ℓ+j /p
+
1 , j = 1, 2. The spinor indices a, b and c are contracted with the

open indices of the J (I)

fff̄
. The left over index d will be contracted with the open index

of Jf̄ after convolution of the jet functions with this hard function. For the second jet
function, J (II)

fff̄
, we have a different hard function namely

H
(II) (0)µ

fff̄,f̄
(x1, x2) = (−ie)3

(
γν

i(/p2+
/ℓ1+/ℓ2+m)

(p2+ℓ1+ℓ2)2−m2
γµ
)

ba

−i
(p2+ℓ1)2

(γν)cd

∣∣∣∣
O(λ0)

(8.52)

=
ie3

ŝ(x1 + x2)

(
γν

[
/p
−
2
+ (x1 + x2)/p

+
1

]
γµ
)

ba

1

ŝx1
(γν)cd +O(λ) ,

which one can derive from the diagram shown in Fig. 8.9 (c).
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8.3. Verifying results in different regions

The main purpose of this chapter is to check whether the operator matrix definitions
for the various NLP jet functions work, and thus that the factorization formula
Eq. (8.1) reproduces the results for the process γ∗ → ff̄ considered in this thesis.
We already verified in Secs. 6.2.3 and 8.1 that the one loop contribution indeed can
be factorized up to NLP. The recipe to check the NLP factorization formula at two
loops is the same: calculate the new jet functions up to two loops and compare
with the different momentum regions, presented in the previous chapter. However,
calculating the relevant jet functions up to two loops with their general momentum
fraction dependence is a task on its own, and with a complexity beyond that of the
calculation of the momentum regions of the previous chapter. Luckily, for the purpose
of checking the jet definitions, it suffices to do something one could call “reversed
factorization”. To give an example, we consider the (fγ)-jet function at one loop. We
make the observation that the convolution of the jet function with the hard function
schematically takes the form∫

dℓ+ J
(1)
fγ,ρ(ℓ

+)H
(0)µρ

fγ,f̄
(ℓ+) =

∫
dℓ+

∫
[dk]J ρ(k)δ(ℓ+ − k+)H

(0)µρ

fγ,f̄
(ℓ+) , (8.53)

where J denotes the integrand of the jet function with the overall δ-function extracted.
Because of the constraint given by the δ-function, integrating over ℓ+ yields a standard
two-loop integral over the full measure [dk]. Similarly, we can rewrite the convolution
of the other jet functions with their respective hard functions into standard two loop
integrals. Moreover, we find that the resulting integrals can be cast into the momentum
region expansions of the three topologies A, B and X. In other words, we can thus
validate the NLP factorization formula using all the tools developed in the previous
chapter, without first calculating the specific x-dependence of the jet function. We
leave it to future work to calculate all the relevant jet functions up to two loops with
a general momentum fraction dependence.

8.3.1. cc-region

We will now verify the jet functions by comparing our factorized expression to the
various momentum regions obtained in the previous chapter. Let us start with the
cc-region, which means we need to compare with[

J
(2)
f ⊗H

(0)

f,f̄
+ J

(2)
fγ ⊗H

(0)

fγ,f̄
+ J

(2)
fγγ ⊗H

(0)

fγγ,f̄
+ J

(2)

fff̄
⊗H

(0)

fff̄,f̄

]
⊗ J

(0)

f̄
, (8.54)
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Diagram Jf Jfγ Jfγγ Jfff

(a)
p1

p2

p1 p1

(c)
p1

p2

p1 p1

(e)
p1

p2

p1 p1

(f)
p1

p2

a

b

c

p1

(g)
p1

p2

p1 p1

(d)+(h)

p1

p2

p1

p2

p1 p1

p1

p2

p1 p1 p1

(h)’
p1

p2

a

b

c

p1

Table 8.1.: Summary of the jet functions contributing to the cc-region.
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where we suppressed the arguments of the various jet and hard functions. We already
noticed that the perturbative expansion of the jet function shows similarities with
the full QED diagrams. As a result, it is often not necessary to compare the full
factorized expression with the full sum of all cc-regions, but we can already compare
on a diagram by diagram basis. The results are summarised in Tab. 8.1, where in
the first column we listed the full QED diagrams that have a cc-region. The last
four columns list the diagrams contributing to the factorized expression Eq. (8.54)
– i.e. the diagrams in the perturbative expansion of J (2)

f , J (2)
fγ , J (2)

fγγ and J
(2)

fff̄
– that

reproduce the cc region of the full QED diagram(s). A few remarks are in order here.

First of all, we want to emphasize that the correct NLP result is only obtained
after one also takes the subleading contributions of Jf and Jfγ into account. This is
different compared to SCET, where one defines the jet function in such a way that
they have a homogeneous power counting.

Second, we notice that the cc-region of diagrams (a), (c), (e) and (g) is reproduced
by the jet functions J (2)

f and J (2)
fγ . This can be understood due to the corresponding

reduced diagrams only having a fermion, or a fermion plus photon connection between
the hard vertex and the collinear subdiagram.

Furthermore, we notice that the cc-region of diagrams (d) and (h) is only reproduced
when taken together. Besides contributions from J

(2)
f and J (2)

fγ we also get contributions

from J
(2)
fγγ . Again, we can understand the latter contribution as one is indeed able to

draw a reduced diagram with a fermion and two photons connecting between the hard
vertex and the collinear subdiagram.

Another subtlety concerns the rapidity divergences. We recall from the previous
chapter that rapidity divergences showed up in the cc-regions of diagrams (e)-(h). The
same divergences also showed up in the calculation of the factorized expression. As the
operator matrix definitions given for the various jet functions do not include a rapidity
regulator a priori, we added regulators after writing down the loop integrals by reversed
factorization. Because these integrals were matched exactly to the cc-expansion of one
of the three topologies A, B or X, we could pick the regulators in the same way as we
did for the region expansion discussed in the previous chapter. We discuss this point
further in Sec. 8.4.

Finally, we notice that J (2)

fff̄
reproduces the cc-region of diagram (f) and the cc′-

region of diagram (h), where we recall from the previous chapter that in order to find
all regions for diagram (h), we had to define multiple momenta routings. We therefore
see that the jet functions give a clear separation between the cc and cc′-regions of
diagram (h). We come back to this point in Sec. 8.4. There are two more diagrams in
the perturbative expansion of J (2)

fff̄
not listed in Tab. 8.1. However, they contribute to
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the triangle diagrams shown in Fig. 7.2. As explained in Sec. 7.1.1, these diagrams
cancel each other by Furry’s theorem and can therefore be neglected.

8.3.2. ch-region

So far, we tested the NLP factorization formula sucessfully in situations where one
of the ingredients was expanded up to either one or two loops, but with the other
ingredients kept at tree level. A more stringent test is achieved when we take two
or more ingredients at higher loop. In this section we consider the ch-region which
should be compared with the factorized expression[

J
(1)
f ⊗H

(1)

f,f̄
+ J

(1)
fγ ⊗H

(1)

fγ,f̄

]
⊗ J

(0)

f̄
. (8.55)

Let us start again at LP. From the results given in Sec. 7.3, we know that for the
ch-region the diagrams (b), (d), (f), (g) and (h) have a LP contribution. However, the
factorized expression gets only one contribution given by

J
(1)
f ⊗H

(1)

f,f̄
⊗ J

(0)

f̄
=

p1

⊗
p1

p2

⊗ v(p2) . (8.56)

Projecting onto F1 yields(
µ2

m2

)ϵ(
µ2

−ŝ

)ϵ [
− 2

ϵ4
− 7

ϵ3
− 22

ϵ2
+

16ζ3 − 180

3ϵ
+

12ζ22
5

+
56ζ3
3

− 152

]
+O(λ2) ,

(8.57)

which agrees with the sum of all five diagrams (b), (d), (f), (g) and (h) that have a
LP contribution for the ch-region.

At NLP, we also get a contribution from

J
(1)
fγ ⊗H

(1)

fγ,f̄
⊗ J

(0)

f̄

=

p1

⊗


p1 − ℓ

ℓ

p2

+

p1 − ℓ

ℓ

p2

+

p1 − ℓ

ℓ

p2



222 Next-to-leading power jet functions

+

p1 − ℓ

ℓ

p2

+

p1 − ℓ

ℓ

p2


⊗ v(p2) (8.58)

We notice that these five contributions show a strong similarity with diagrams (b), (d),
(f), (g) and (h) respectively. However, there is no one-to-one relation like we had for
most of the diagrams in the cc-region. Instead, we have to take all diagrams together
before we can compare. To be precise, we project onto F2, which gives(

µ2

m2

)ϵ(
µ2

−ŝ

)ϵ
m2

ŝ

[
− 4

ϵ3
− 8

ϵ2
+

32ζ3 − 56

ϵ
+

320ζ3
3

− 280

]
, (8.59)

where we also included the contribution coming from Eq. (8.56). Similarly, we can get
the order O(λ2) term of F1(

µ2

m2

)ϵ(
µ2

−ŝ

)ϵ
m2

ŝ

[
− 4

ϵ4
+

2

ϵ3
+

20ζ2 − 8

ϵ2
+

284ζ3 − 90ζ2 − 66

3ϵ

+
568ζ22
5

− 322ζ3
3

− 92ζ2 + 6

]
. (8.60)

Using the region results of the previous chapter, one can check that this is the same
as the sum of all the ch-regions given by diagrams (b), (d), (f), (g) and (h).

8.3.3. cc̄-region

The final test for our NLP factorization formula is the comparison with the cc̄-region,
for which the factorized expression reads:

J
(1)
f ⊗H

(0)

f,f̄
⊗ J

(1)

f̄
+ J

(1)
fγ ⊗H

(0)

fγ,f̄
⊗ J

(1)

f̄

+ J
(1)
f ⊗H

(0)

f,f̄γ
⊗ J

(1)

f̄γ
+ J

(1)
fγ ⊗H

(0)

fγ,f̄γ
⊗ J

(1)

f̄γ
. (8.61)
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As usual, we first discuss LP. From the results given in Sec. 7.3, we know that only
diagram (h) has a LP contribution for the cc̄-region. The factorized expression reads

J
(1)
f ⊗H

(0)

f,f̄
⊗ J

(1)

f̄
=

p1

⊗
p1

p2

⊗
p2

(8.62)

Projecting onto F1 yields(
µ2

m2

)2ϵ
[
1

ϵ4
+

4

ϵ3
+
ζ2+12

ϵ2
+
12ζ2−2ζ3+96

3ϵ
+
7ζ22
10

+12ζ2−
8ζ3
3

+80

]
+O(λ2) , (8.63)

which agrees with the LP term of diagram (h).

The NLP contribution of the factorized expression Eq. (8.61) currently shows a
mismatch with the region analysis – that is, the sum of diagrams (f), (g) and (h). A
resolution to this issue appears imminent [4], and as such, we present only a brief
outline of the discrepancy below.

The mismatch between the region result and the factorized expression can be seen
from diagram (f):

p1

p2

k1

k2

where the bold lines correspond with the hard lines. For clarity, we will work up to
order λ, meaning only the first three terms in Eq. (8.61) contribute. The hard lines
can be expanded as

−/k1 − /p2 +m

(k1 + p2)2 −m2
γρ

−/k1 + /k2 − /p2 +m

(k1 − k2 + p2)2 −m2
γσ

=
−/k1 − /p2 +m

2k1 · p−2
γρ

−/k1 + /k2 − /p2 +m

2k1 · (−k2 + p2)−
γσ +O(λ2) . (8.64)

While this expression already factorizes at the integrand level, it cannot be mapped
directly onto the factorization formula. The issue arises from the second propagator,
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which introduces a non-standard eikonal propagator:

1

2k1 · (−k2 + p2)−
=

ŝ

[2k1 · p−2 ][2(−k2 + p2) · p+1 ]
. (8.65)

The hard propagator 1/[(−k2 + p2) · p+1 ] does not correspond to any ingredient in one
of the jet or hard functions (while this propagator is part of Hfγ,f̄γ , it only contributes
at order λ2 and, therefore, cannot explain the mismatch already observed at order λ).
This analysis is based on a single diagram, so one might expect that the problematic
propagator cancels when summing over all relevent diagrams (f), (g) and (h). However,
such a cancellation does not occur.

Let us conclude with a short discussion of potential solutions. One possibility is to
modify one or more of the hard functions H(0)

f,f̄
, H(0)

fγ,f̄
, H(0)

f,f̄γ
or H(0)

fγ,f̄γ
. However, any

modification must preserve the factorization for all other regions, placing strong con-
straints on allowable changes. Along similar lines, alternations to the jet functions Jfγ
and Jf̄γ must not disrupt the factorization elsewhere. Furthermore, introducing new
jet functions might be necessary, but these too must respect factorization constraints.

At the time of writing, it appears that a proper treatment of fermionic self-energy
corrections on the external legs may provide the solution. The problematic propagator
1/[(−k2 + p2) · p+1 ] seems to cancel when these self-energy contributions are taken into
account. To verify this, these self-energy contributions must be incorporated into both
the region analysis and the factorization formula Eq. (8.61). Note that no new jet-
and hard functions are needed as the self-energy contributions naturally appear in the
current operator matrix definitions of the jet functions. We will revisit this potential
solution in forthcoming work [4].

Ideally, the solution should have an intuitive interpretation in terms of diagrams
or the structures that are already part of the jet functions of above. While this is not
strictly required – since hard functions are merly matching functions – it would make
the factorization framework applicable to processes beyond those considered in this
thesis, see also the discussion around Eq. (8.66).

8.4. Discussion

In this chapter we proposed operator matrix elements for the various jet functions up
to NLP. It may be useful to elobarate on the results.

An important point in chapter 7 was that new momentum regions can emerge by
shifting loop momenta before applying the expansion by regions. When comparing
our factorization formula with the cc-region in Sec. 8.3.1, we noticed that the distinct



Next-to-leading power jet functions 225

cc and cc′ regions of diagram (h) were reproduced by different jet functions. This
observation suggests an alternative perspective: the factorization formula itself can
serve as a novel tool for identifying which momentum regions contribute.

A second point worth emphasizing is the universality of the jet functions. While
we verified these jet functions by comparing them to the one- and two-loop form
factors, it is important to note that they are not limited to this specific process. In
fact, a more universal factorization formula holds [25]:

Mn

∣∣
LP+NLP

=

( n∏
i=1

J i
f

)
⊗H S +

n∑
i=1

(∏
j ̸=i

Jj
f

)[
J i
fγ ⊗Hi

fγ + J i
f∂γ ⊗Hi

f∂γ

]
S

+

n∑
i=1

(∏
j ̸=i

Jj
f

)
J i
fγγ ⊗Hi

fγγ S +

n∑
i=1

(∏
j ̸=i

Jj
f

)
J i
fff ⊗Hi

fff S

+
∑

1≤i≤j≤n

( ∏
k ̸=i,j

Jk
f

)
J i
fγJ

j
fγ ⊗Hij

fγ,fγ S , (8.66)

where the process dependence is captured by the hard functions – now labeled according
to the NLP jet functions they pair with. Demonstrating that the factorization formula
accurately reproduces the NLP contribution to the cc̄-region of the two-loop form
factors is crucial in establishing this universality.

Although reversed factorization provides a straightforward method for verifying
the factorization formula, calculating the momentum fraction dependence of the jet
functions is essential for applications such as resummation. One approach involves
rewriting the delta function δ(n+k − n+ℓ) in terms of a cut propgator:

δ(n+k − n+ℓ) = 2p−2 δ(2p
−
2 · k − xŝ)

= −2p−2
2πi

(
1

2p−2 · k − xŝ+ iη
− 1

2p−2 · k − xŝ− iη

)
. (8.67)

This reformulation allows the integrals to be evaluated using standard techniques,
such as IBP reductions and related methods [180, 181].

A key point in the previous chapter was the need for rapidity regulators for
topologies B and X. In this chapter, we added these regulators in a somewhat ad
hoc fashion – notably to both the hard functions and the jet functions – to reproduce
the results from the region analysis. While this approach suffices for verifying the
factorization formula, a more universal description for implementing rapidity regulators
is needed. This need can also be seen from the region analysis, where our choice of
rapidity regulators broke the c and c̄ symmetry of the form factors in diagrams (e) and
(h). Ideally, the rapidity regulators should not break such symmetries. Developing a
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universal description for rapidity regulators is crucial, particularly for applying the
factorization formula to other processes where no momentum region results may be
available for comparison.

To conclude, we proposed operator matrix elements for the NLP jet functions and
verified them by comparing to the various momentum regions of the massive form
factors. We showed that the one-loop form factors can indeed be factorized up to NLP.
At two loops, the factorization formula successfully matched all regions except the
cc̄-region, which remains to be fully addressed. Current investigations – which will be
reported in [4] – provide strong confidence that the solution to this last challenge is
well within reach.



Chapter 9.

Summary and conclusion

The overall theme of this thesis was the concept of power corrections, which we
approached from two distinct perspectives: non-perturbative power corrections arising
from renormalons, and power corrections to the QED one- and two-loop massive
form factors. These were studied using the methods of resurgence and factorization
respectively. Let us now briefly summarize the main findings.

After an introduction to resurgence in chapter 2, we considered more formal
aspects of the subject in chapter 3. One of the main applications of resurgence is
the decoding of non-perturbative physics from asymptotic series, with large order
relations serving as a powerful tool for this purpose. We showed that these large order
relations themselves form resurgent transseries as well, and in particular we showed
that their resurgence structure is inherited from the original transseries. We discussed
the Stokes phenomenon for this transseries and the origin of the towers of singularities
that appear in the Borel plane. Furthermore, we discussed how one can consistently
resum the large order transseries. While large order relations are often analyzed in
the asymptotic limit, we showed that they are, in fact, exact. This property allows for
the precise resummation of the large order transseries and the exact determination of
the perturbative coefficients.

We then proceeded in chapter 4 with one of the key applications of resurgence:
renormalons. We briefly introduced the standard lore of renormalons and explained
how diagrams with multiple bubble chains can be computed using a convolution
integral in the Borel plane. Building on this, we then presented a novel method to
study renormalons using resurgence properties of this convolution integral, enabling the
calculation of non-perturbative renormalon effects that were previously very challenging
to do.

In chapter 5, we studied the renormalon contributions to the Adler function.
At leading order in the flavor expansion (O(1/Nf )) – using large order relations
and by studying Stokes’ automorphism – we constructed the complete resummed
two-parameter transseries expression. We then extended our analysis to the Adler
function at order O(1/N2

f ) using the convolution method inroduced in chapter 4. For
the diagrams considered, this method enabled us to construct the entire transseries
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structure. In particular, we identified non-perturbative sectors and alien derivative
operators that establish the resurgence relations between these sectors. Furthermore,
we observed sectors that exhibit a mixing between UV and IR transmonomials.
Additionally, we uncovered a logarithmic type of non-perturbative power correction in
the coupling constant plane.

In chapter 6, we shifted our focus from resurgence to aspects of factorization. We
first reviewed the power counting formula for massive fermions in QED, that leads to
the factorization formula – accurate up to NLP – central to the last three chapters. To
verify this factorization formula, we introduced the method of expansion by momentum
regions and computed the momentum regions of the one-loop massive form factors
in QED. We demonstrated how the factorization formula up to LP was verified by
comparing to these momentum regions.

To test the NLP factorization formula, we explained that the momentum regions
of the two-loop form factors were required. Chapter 7 was dedicated to this, where we
categorized all contributions per region up to NLP. Besided providing the necessary
data to verify the factorization formula, we also had the opportunity to test aspects
of the region expansion and obtain new perspectives. In particular, we had to define
multiple momentum routings in order to uncover all momentum regions. Additionally,
we demonstrated how the rapidity divergences canceled in the sum of all regions and
subsequently validated our results by reproducing the form factors at NLP as known
in the literature. Altough new ultra-(anti-)collinear regions appear at two loops, we
showed that these regions cancel in the form factors, so that only the regions already
appearing at one loop contribute. This result brings confidence that an all-order
factorization can be achieved.

Finally, in chapter 8, we proposed operator matrix definitions for the various
NLP jet functions and verified them by comparing to the region results presented
in chapter 7. We showed that the momentum regions can be reproduced by these
operator matrix definitions. While there are some kinks still to be ironed out for the
cc̄-region, it appears [4] that this region also fits within the factorization framework. A
particularly interresting finding is that the different momentum routings – needed to
uncover all regions – can be distinguished by the fact that they correspond to different
jet functions. This can therefore also be viewed as a novel approach to identifying
new regions.

In conclusion, this thesis highlighted that the resurgence structure in physical
problems can be more intricate – and often more intriguing – than in a simplified toy
model setting where a bridge equation is available. As a result, many opportunities for
further research naturally arise. On the formal side, the transseries structure in the
absence of bridge equation can be studied. In applied contexts, resurgence techniques
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can address challenges in collider and particle physics, such as the determination
of non-perturbative effects to the top quark pole mass, or power corrections to the
hadronic tau lepton decay which is a key input to determinations of the strong coupling
constant. In the direction of factorization, the operator matrix definitions presented in
this thesis serve as a starting point for many interesting future investigations. These
include the possibility to resum large logarithms at NLP accuracy and the development
of radiative jet functions. The results presented in this thesis should meaningfully
contribute to these directions.



Appendix A.

Resurgence

A.1. n-Borel transforms

Consider an asymptotic power series

φ(α) =

∞∑
g=0

φg α
g , (A.1)

where compared to Eq. (2.1), we also included a constant term in α. Comparing
Eq. (2.6) and Eq. (2.7) of Example 2.1.1, we see that the difference between a pole and
a logarithmic branch cut in the Borel plane lies in an asymptotic coefficient growth
proportional to and g! and (g − 1)! respectively – or equivalently, in a different value
of β in Eq. (2.1). One can turn this observation around by defining different Borel
transforms.

We define the 0-Borel transform of the sequence φ as

B0[φ](t) ≡
∞∑
g=0

φg

g!
tg . (A.2)

The 0-Borel transform is a formal power series in the variable t. The 1-Borel transform
of φ is then defined to be the t-derivative of the 0-Borel transform:

B1[φ](t) ≡
d

dt
B0[φ](t) =

∞∑
g=0

φg+1

g!
tg . (A.3)

More generally, we define the n-Borel transform of φ to be

Bn[φ](t) ≡
∞∑
g=0

φg+n

g!
tg , (A.4)
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which can be viewed as the nth derivative of the 0-Borel transform of φ. In fact, for
general real (or even complex) ν, one may define

Bν [φ](t) ≡
∞∑
g=0

φg

Γ(g − ν + 1)
tg−ν , (A.5)

which for ν = n integer agrees with Eq. (A.4). It is then generally true that

d

dt
Bν [φ](t) = Bν+1[φ](t) . (A.6)

When we start from a sequence that grows factorially as

φn

A−(n+β)Γ(n+ β)
= const +O

(
1

g

)
as g → ∞ (A.7)

for some nonzero complex constant, and some real choice of β, then B1−β [φ](t) has
a simple pole at t = A. Using Eq. (A.6), we see that similarly, for integer k ≥ 1,
Bk−β [φ](t) has a pole of order k at t = A, and B−β [φ](t) has a logarithmic branch
point. To keep our formulas concise, we use these facts in this thesis to assume, without
too much loss of generality, that our functions in the Borel plane have only simple
poles and logarithmic branch points as their singularities, or occasionally even only
logarithmic branch points. We can always choose an appropriate n-Borel transform
such that this is the case. Extending the results of this thesis so that they also apply
to these cases is completely straightforward.

Once a ν-Borel transform is analytically continued beyond the disk of convergence,
it can be mapped back to the Borel sum via

Sγφ(α) = αν−1

∫
γ

Bν [φ](t) e
− t

α dt , (A.8)

where to ensure convergence, the contour γ is a straight path starting at the origin
and approaching infinity in the half plane where ℜ(t/α) > 0. Note that the left hand
side of this equation is independent of ν. This resummation constructs a function of α
which we can asymptotically expand again to retrieve the formal power series φ(α).

The Borel transform (and its corresponding Borel sum) that we introduced in
chapter 2 and use in practice, will usually be the Borel transform B1 as this is also the
Borel transform one encounters most often in the particle physics literature. However,
as discussed in chapter 3, it might be convenient to switch to another Borel transform
as some resurgence properties are easier to derive.
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A.2. Properties of Stirling transforms

Stirling numbers of the second kind can be defined as [72]

{
n

k

}
=

1

k!

k∑
j=0

(−1)j
(
k

j

)
(k − j)

n
. (A.9)

They allow us to express the 0-Borel transform of the Stirling transform ψ̃(g) defined
in Eq. (3.31) in terms of the 0-Borel transform of ψ(α):

B0[ ψ̃ ](t) =

∞∑
n=0

∞∑
k=0

k∑
j=0

(−1)j(k − j)nak
k!n!

(
k

j

)
tn = B0[ψ ](et − 1) . (A.10)

The n-Borel transform is then obtained by simply differentiating both sides n times
with respect to t. One finds for example

B1[ ψ̃ ](t) = etB1[ψ ](et − 1) , (A.11)

which can also be obtained by explicitly computing B1[ψ̃] using (A.4) and (A.9), just as
we showed for the 0-Borel transform in (A.10). The 0-Borel transform of the rescaled
Stirling transform (3.33) is essentially obtained by repeating the computation (A.10),
only with ak replaced by akAk, leading to

B0[ ψ̂ ](t) = B0[ψ ]
(
A(et − 1)

)
, (A.12)

which again can be differentiated with respect to t to obtain the corresponding n-Borel
transforms.

A.3. Stokes phenomenon for gamma functions

In the example of the quartic partition function in Sec. 3.3, the Borel transform
B[Z(1)]

(
3
2 (e

t − 1)
)

induces a Stokes phenomenon as we cross the imaginary t-axis. In
order to derive the exact form of this Stokes phenomenon, we start from the exact
large order relation as it holds for positive g:∫ ∞

0

B[Z(1)]

(
3

2
(et − 1)

)
e−gtdt = −2πi

S1

Γ(4g + 1)

26g Γ(2g + 1)Γ(g + 1)2
. (A.13)

Our goal is then to derive the Stokes phenomenon that the gamma functions on the
right hand side of this expression undergo and combine them into a Stokes phenomenon
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for the whole expression. To this end, we use Binet’s Log Gamma formula,

log Γ(z) =

(
z − 1

2

)
log(z)− z +

1

2
log(2π)︸ ︷︷ ︸

C(z)

+

∫ ∞

0

(
1

2
− 1

t
+

1

et − 1

)
e−zt

t
dt , (A.14)

for ℜ(z) > 0. This expression consists of singular and constant terms (as 1/z → 0)
that we collect in the function C(z), and 1/z corrections which are resummed using
Borel-Laplace resummation. Let us first shift the argument by one:

log Γ(z + 1) = C(z + 1) +

∫ ∞

0

((
1

2
− 1

t
+

1

et − 1

)
e−t

t

)
e−ztdt . (A.15)

In the latter term we interpret the integrand as a 1-Borel transform of some formal
power series F (z):

B1[F ](t) =

(
1

2
− 1

t
+

1

et − 1

)
e−t

t
. (A.16)

By shifting and rescaling the argument we straightforwardly find that

log Γ(z + 1) = C(z + 1) +

∫ ∞

0

B1[F ] (t) e
−ztdt ,

log Γ(2z + 1) = C(2z + 1) +

∫ ∞

0

1

2
B1[F ]

(
t

2

)
e−ztdt ,

log Γ(4z + 1) = C(4z + 1) +

∫ ∞

0

1

4
B1[F ]

(
t

4

)
e−ztdt . (A.17)

The large z expansion of the function C(z) has a finite radius of convergence and
will therefore not contribute to any Stokes phenomenon that the large z expansion of
log Γ(cz + 1) undergoes. Let

B1[Fn](t) =
1

n
B1[F ]

(
t

n

)
, (A.18)

then each B1[Fn](t) has simple poles located at t = 2πinm, with residue 1/(2πim), for
all nonzero integers m. When we move the contour of integration across the imaginary
t-axis – as depicted in Fig. A.1 for F1 – we therefore pick up poles which lead to the
discontinuity

disc−π
2
Fn = − log

(
1− e2πing

)
. (A.19)
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Figure A.1.: The Stokes phenomenon of F1

Note that the contour of integration runs along an angle −θ in the lower half plane in
order to keep e−gt real and exponentially suppressed. The Stokes automorphism on
the product of gamma functions then acts as

S−π
2
eF4−F2−2F1 =

(
1− 2e2πig

1 + e4πig

)
eF4−F2−2F1 . (A.20)

This Stokes jump is independent of the Borel transform that we chose. Taking the
above jump into account in Eq. (A.13) and now using the 0-Borel transform that we
use throughout the paper, we find that after the Stokes transition, i.e. for g in the left
half of the complex plane, it becomes∫ −i∞+ϵ

0

B0[Z
(1)]

(
3

2
(et − 1)

)
e−gtdt

=

(
1− 2e2πig

1 + e4πig

)∫ −i∞−ϵ

0

B0[Z
(1)]

(
3

2
(et − 1)

)
e−gtdt . (A.21)

This implements the Stokes phenomenon that we use in Sec. 3.3 to analytically continue
the exact large order relation, Eqs. (3.90)-(3.92), when π

2 < θ < 3π
2 .
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Resurgence analysis of the Adler
function at O(1/N2

f )

B.1. Master integrals

In this appendix we discuss the master scalar integrals we used in the calculation of the
diagrams considered in chapter 5. The diagrams given in Figs. 5.1a, 5.7a, 5.7b and 5.7c
can be computed using standard one-loop techniques and the one-loop massless master
integral

Î(1,2)(n1, n2) ≡ (−q2)n12−d/2

∫
ddk

iπd/2

1

(−k2)n1(k − q)2n2

=
Γ(n12 − d

2 )

Γ(d− n12)

Γ(d2 − n1)

Γ(n1)

Γ(d2 − n2)

Γ(n2)
, (B.1)

with d the number of space-time dimensions. We have adopted the following notation:
the superscripts for an integral Î(l,n) indicate the number of loops and the number of
propagators. The prefactor ensures that the result is independent of (−q2) and we do
not get factors of π. Furthermore, we introduced the shorthand notation n12 = n1+n2

with its natural extension to the cases with more indices.

For the calculation of the diagrams in Figs. 5.1b and 5.7d, we need to consider the
massless two loop two-point function

Î(2,5)(n1, n2, n3, n4, n5)

≡ (−q2)n12345−d

∫
ddk1
iπd/2

ddk2
iπd/2

1

(−k21)n1(−k22)n2(−k23)n3(−k24)n4(−k25)n5
, (B.2)

where k3 = k2 − q, k4 = k1 − q and k5 = k1 − k2. A general representation for the
massless two-point function with arbitrary powers ni of the propagators can be found
in [182]. For a historical overview of this integral, see [183]. For the diagram with one
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bubble chain, given in Fig. 5.1b, we need the result for

Î(2,5)(1, 1, 1, 1, u+ 1). (B.3)

We should mention here that we can work in d = 4 dimensions, as the UV and IR
divergences are regulated by the power u in the propagator. This integral was first
solved using IBP relations and the method of uniqueness in [184], and the result in
d = 4 dimensions reads

Î(2,5)(1, 1, 1, 1, u+1) =− 1

2u

[
ψ(1)

(
1+u
2

)
−ψ(1)

(
1−u
2

)
+ψ(1)

(
2−u
2

)
−ψ(1)

(
2+u
2

)]
,

(B.4)

with ψ(1)(z) = d2

dz2 log Γ(z) the trigamma function.

For the diagram in Fig. 5.7d with two bubble chains, we need the two-loop master
integral

Î(2,5)(1, u2 + 1, 1, 1, u1 + 1). (B.5)

This master was computed in [185, 186] for three arbitrary powers using IBP relations.
The result reads1

Î(2,5)(α, β, 1, 1, γ)

γδÎ(1,2)(1, δ + 1)
=
Î(1,2)(α, γ+1)

d− 3
S
(

d
2−α−1, β−1, d2+α−δ−2, δ−β

)
+(α↔β)

(B.6)

with δ = α+ β + γ − d
2 . The function S encapsulates all symmetries of this integral

and is given by:

S(a, b, c, d) =
ψ(1− c)− ψ(c)

H(a, b, c, d)
− 1

c
− b+ c

bc
F (a+ c,−b,−c, b+ d) (B.7)

where ψ(z) = d
dz log Γ(z) is the digamma function and

H(a, b, c, d) =
Γ(1 + a)Γ(1 + b)Γ(1 + c)Γ(1 + d)Γ(1 + a+ b+ c+ d)

Γ(1 + a+ c)Γ(1 + a+ d)Γ(1 + b+ c)Γ(1 + b+ d)
, (B.8)

F (a, b, c, d) =

∞∑
n=1

(−a)n(−b)n
(1 + c)n(1 + d)n

= 3F2(−a,−b, 1; 1 + c, 1 + d; 1)− 1 . (B.9)

1In [186], the integral is denoted by I4(α, β, γ, δ).
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We have used this result to calculate the expansion of Î(2,5)(1, u2 +1, 1, 1, u1 +1) in u1
and u2. After the expansion, one still needs to carry out the infinite sum in Eq. (B.9).
In order to perform the sums, we made use of the package Summer [187], which itself
relies on FORM [188, 189]. The first few terms read

Î(2,5)(1, u2+1, 1, 1, u1+1) = 6ζ3 + 5ζ5
(
3u21 + 3u1u2 + 2u22

)
− 6ζ23

(
u21u2 + u1u

2
2

)
+

525

8
ζ7u

2
1u

2
2 +O

(
u31, u

3
2

)
. (B.10)

Notice that in the limit u2 → 0 and u1 → u, one recovers the expansion of Eq. (B.4)
around u = 0. For the calculation of the full diagram, we want to take the convolution
integral, Eq. (4.19), to get the Borel transform in terms of u = u1 + u2. As∫ u

0

du1 u
m
1 (u− u1)

n =
m!n!

(m+ n+ 1)!
um+n+1, (B.11)

we see that if we want the Borel transform up to order m+ n+ 1, we need all terms
where the powers of u1 and u2 add up to m + n. We have added the expansion in
terms of u1 and u2 of Î(2,5)(1, u2 + 1, 1, 1, u1 + 1) up to combined order m+ n = 18

in a separate file that is available from the authors upon request. The result can be
expressed in terms of regular zeta values and multiple-zeta values (MZVs) defined as

ζm1,m2,...,mk
≡

∑
i1>i2>...>ik>0

1

im1
1 im2

2 ...imk

k

, (B.12)

for positive integers mj . The number of indices of the sums is called the depth and
the sum of the powers, i.e. m1 + ...+mk, the weight. Of course, MZVs of depth one
are just the regular zeta values. The Summer package contains all sums up to weight
nine. In order to express the sums of higher weight in terms of MZVs, we made use of
the tables in the multiple zeta value data-mine up to the maximal available weight 22
[117]. To give an example, at order u41u42 one finds

ζ5,3,3 =

∞∑
i1=1

1

i51

i1−1∑
i2=1

1

i32

i2−1∑
i3=1

1

i33
, (B.13)

which in the data file are denoted by z5z3z3, with similar notations for sums of
higher depth. In general, at higher orders in u1 and u2, the weight increases and
one also finds MZVs of larger depth. For numerical values of these MZVs, up to 100
decimal places, we have used the EZ-Face calculator [190] that can still be found at
http://wayback.cecm.sfu.ca/cgi-bin/EZFace/zetaform.cgi and checked its output up
to several decimal places.

http://wayback.cecm.sfu.ca/cgi-bin/EZFace/zetaform.cgi
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B.2. Diagram momentum integrals

Recall the definition of the Adler function (4.1)

D(Q2) = 4π2Q2 dΠ(Q2)

dQ2
, (B.14)

where Π(Q2) is related to the correlation function of two vector currents jµ = ψ̄γµψ

of massless quarks,

(−i)
∫
d4xe−iqx⟨0|T{jµ(x)jν(0)}|0⟩ = (qµqν − ηµνq

2)Π(Q2) , (B.15)

and where Q2 = −q2. In order to extract Π(Q2), one can use

ηµν

(d− 1)Q2
, (B.16)

as the projector for Π(Q2). At order 1/Nf , this yields the following integral expression
for the diagram of Fig. 5.1a,

B[Πa(Q
2)](u) = −i

(4π)2(µ2ϵ)2

(d− 1)Q2

∫
ddk1
(2π)d

ddk2
(2π)d

B
[
αDρσ(k2)

]
(u)

× tr

[
γµ
/k1
k21
γρ

(/k1 − /k2)

(k1 − k2)2
γσ
/k1
k21
γµ

(/k1 − /q)]

(k1 − q)2

]
, (B.17)

where the Borel transform of the bubble chain, B
[
αDρσ(k2)

]
(u), is given in Eq. (4.18).

After performing the spinor trace, Eq. (B.17) can be written in terms of the master
integral of Eq. (B.1). Likewise, for the diagram of Fig. 5.1b we get

B[Πb(Q
2)](u) = −i

(4π)2(µ2ϵ)2

(d− 1)Q2

∫
ddk1
(2π)d

ddk2
(2π)d

B
[
αDρσ(k1 − k2)

]
(u)

× tr

[
γµ
/k1
k21
γρ
/k2
k22
γµ

(/k2 − /q)

(k2 − q)2
γσ

(/k1 − /q)]

(k1 − q)2

]
, (B.18)

which after the fermion trace has been performed, reduces to the master integrals of
Eqs. (B.1) and (B.4).

Let us consider the diagrams of Fig. 5.7 studied in Sec. 5.2 at order 1/N2
f . For

the diagram of Fig. 5.7a, the loop integral reads

B[Πa(Q
2)](u1, u2)=−i

(4π)4(µ2ϵ)3

(d− 1)Q2

∫
ddk1
(2π)d

ddk2
(2π)d

ddk3
(2π)d

B
[
αDρσ(k1−k3)

]
(u1) (B.19)
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× B
[
αDαβ(k1−k2)

]
(u2)tr

[
γµ
/k1
k21
γρ
/k3
k23
γσ

i/k1
k21
γα
/k2
k22
γβ
/k1
k21
γµ

(/k1−/q)]
(k1−q)2

]
.

After the spinor trace has been performed, the remaining integrals reduce to the master
of Eq. (B.1). Likewise, the diagrams of Figs. 5.7b and 5.7c read

B[Πb(Q
2)](u1, u2)

= −i
(4π)4(µ2ϵ)3

(d− 1)Q2

∫
ddk1
(2π)d

ddk2
(2π)d

ddk3
(2π)d

B
[
αDρσ(k1−k3)

]
(u1)B

[
αDαβ(k1−k2)

]
(u2)

× tr

[
γµ
/k1
k21
γρ
/k3
k23
γσ
/k1
k21
γµ

(/k1 − /q)

(k1 − q)2
γα

(/k2 − /q)

(k2 − q)2
γβ

(/k1 − /q)

(k1 − q)2

]
, (B.20)

and

B[Πc(Q
2)](u1, u2)

= −i
(4π)4(µ2ϵ)4

(d− 1)Q2

∫
ddk1
(2π)d

ddk2
(2π)d

ddk3
(2π)d

B
[
αDρσ(k1−k2)

]
(u1)B

[
αDαβ(k2−k3)

]
(u2)

× tr

[
γµ
/k1
k21
γρ
/k2
k22
γα
/k3
k23
γβ
/k2
k22
γσ
/k1
k21
γµ

(/k1 − /q)]

(k1 − q)2
,

]
(B.21)

which reduce to the same master integral of Eq. (B.1). Finally, we studied the diagram
of Fig. 5.7d which reads

B[Πd(Q
2)](u1, u2)

= −i
(4π)4(µ2ϵ)3

(d− 1)Q2

∫
ddk1
(2π)d

ddk2
(2π)d

ddk3
(2π)d

B
[
αDρσ(k1−k2)

]
(u1)B

[
αDαβ(k3)

]
(u2)

× tr

[
γµ
/k2
k22
γα

(/k2 − /k3)

(k2 − k3)2
γβ
/k2
k22
γρ
/k1
k21
γµ

(/k1 − /q)

(k1 − q)2
γσ

(/k2 − /q)

(k2 − q)2

]
. (B.22)

This diagram can be written in terms of the master integrals of Eqs. (B.1) and (B.6)
where the latter master integral requires the most computational effort. See App. B.1
for the details of this computation. We refer to App. B.3 for a brief discussion on the
remaining diagrams at order 1/N2

f .

B.3. Remaining O(1/N2
f ) diagrams

In Sec. 5.2, we considered a subset of the diagrams at order 1/N2
f in the flavour

expansion. In this appendix, we briefly discuss the current status of the remaining
diagrams at order 1/N2

f , given in Fig. B.1. Notice that these are the abelian diagrams
and we did not present the diagrams with non-abelian self interactions of the gauge field.
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Figure B.1.: Diagrams at order 1/N2
f in the flavour expansion that are not computed in

this thesis.

As explained at the end of Sec. 4.1.2, one uses the process of naive non-abelianization,
i.e. replace β0f by β0, to model the non-abelian effects.

The two bubble chain diagrams (a)-(d) of Fig. B.1 were considered in [98]. In
particular, these authors focused on the leading UV singularity because a full calculation
of these diagrams is not possible yet, as the corresponding master integrals are not
known. Notice that the results given are for the vacuum polarization (taking the
derivative with respect to Q2, Eq. (5.2), yields the results for the Adler function). The
leading singularity found is2

log(1 + u)

(1 + u)2
, (B.23)

which would imply the leading order growth of the perturbative coefficients to be

dn ∼ (−1)nΓ(n+ 2)ψ(n+ 2) . (B.24)

where ψ is the digamma function. At the level of the transseries, this translates to a
non-perturbative contribution of the form

1

α
log(α) e

1
α . (B.25)

Recall that an exponential like this is typical for UV renormalons and grows expo-
nentially large when α → 0. Possible solutions were already discussed in Sec. 5.1.5:
either the transseries parameter in front of such a momomial vanishes, or as long as α

2The parameter u in [98] is defined with an opposite sign compared to the definition used in this
thesis. Here, we present the result in our conventions.
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has a definite value, an expression like this still makes sense. Furthermore, we notice
that the leading order growth of Eq. (B.24) is enhanced by a factor n compared to
leading order growth Γ(n+1)Ψ(n+1) of the diagrams considered in Sec. 5.2. In order
to construct the transseries, and the relations between the non-perturbative sectors,
one either needs access to sufficient perturbative data of these diagrams, or one needs
the expansion of the Borel transform around the singularity at u = −1 as well as
expansions around other singular points in u. In particular, we recall from diagram
(d) discussed in Sec. 5.2, that for both procedures one has to compute a number of
coefficients that is at least in the double digits, which is a challenging task to perform.

In Figs. B.1e and B.1f, we show the so called nested diagrams, where the square
box denotes the LO (1/Nf ) diagrams considered in Sec. 5.1, i.e.

n ≡ n + 2
n

. (B.26)

A discussion of the singularity structure in the Borel plane of these diagrams can be
found in [116] (where again, the results given are for the vacuum polarization). Using
Borel Padé techniques, these authors showed that the singularities for the sum of these
two diagrams at u = 1 drops out (as expected by OPE arguments). Furthermore, they
were able to deduce that the singularities at u = 2 and u = −1 are branch points,
suggesting the presence of further asymptotic sectors. However, is was not possible to
compute sufficient perturbative data to determine the precise nature of these branch
points.

As far as we know, the diagram of Fig. B.1g has not been considered so far in the
literature, as it is a difficult diagram with three bubble chains and its corresponding
master integral is not known.

In order to compute the diagrams of Fig. B.1, one needs to compute difficult
skeleton diagrams (i.e. the diagrams where the bubble chains are replaced by the
analytic regularized propagators of Eq. (4.18)). In particular, this means that diagrams
(e) and (f) are two loop skeleton diagrams, diagram (a)-(d) are three loop skeleton
diagrams and diagram (g) is a four loop skeleton diagram. We expect that diagrams (d)
and (g) are the most challenging diagrams to compute as these, respectively, correspond
to three loop, non-planar master integrals with two analytic regularized propagators
and a four loop master integral with three analytic regularized propagators.



Appendix C.

Rapidity regulators

In this appendix, we consider the following one-loop integral

R =

∫
[dk]

1

[k2 −m2]

1

[(k + p1)2]

1

[(k − p2)2]
, (C.1)

with p2i = m2 and study three different regulators that can be used to regulate the
rapidity divergences that show up once Eq. (C.1) is expanded in momentum regions.
Before we discuss these regulators, let us briefly discuss how rapidity divergences
appear. For reasons that will become clear in a moment, let us put the mass of the
first propagator in Eq. (C.1) to M2 for now and consider the collinear expansion

R
∣∣∣
c
=

∫
[dk]

1

[k2 −M2]

1

[(k + p1)2]

1

[−k+p−2 ]

=
iµ2ϵeϵγE

(4π)2
Γ(ϵ)

ŝ

∫ 1

0

dxx−1(1− x)−ϵ
(
−m2x+M2

)−ϵ
, (C.2)

where we performed the loop integral. One can obtain the remaining x-integral after
a standard Feynman parametrization. In the limit M2 → m2 that we are interested
in, the remaining x-integral ∫ 1

0

dxx−1 (1− x)−2ϵ (C.3)

diverges for x→ 0.1 To be precise, we see that the dimensional regulator ϵ does not
regulate all divergences present in the integral in Eq. (C.2). This so-called rapidity
divergence can be traced back to the fact that the eikonal propagator only contains
the k+ component and therefore new divergences may arise from the k+-integral as ϵ
only regulates the transverse momentum component k⊥.

1In fact, the x-integral diverges for all M ̸= 0.
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Eq. (C.2) also shows that in the limit M2 → 0, the divergence of the remaining
x-integral ∫ 1

0

dxx−1−ϵ (1− x)−ϵ =
Γ(−ϵ)Γ(1− ϵ)

Γ(1− 2ϵ)
, (C.4)

is fully regulated by ϵ alone. In other words, the presence of rapidity divergences in a
Feynman integral is sensitive to propagator masses. This example therefore reflects
why topology A, being free of rapidity divergences, is so different from topology B
and X, which do have rapidity divergences.

C.1. Full result

To validate that rapidity regulators work, we need to calculate the full integral Eq. (C.1).
A straightforward calculation (using e.g. the Schwinger parameterisation followed by
one-fold Melin-Barnes integral) yields

R(full) =
ieϵγE

(4π)2

(
µ2

m2

)ϵ [(
1− 4m2

s

)− 1
2+ϵ

π2

s

Γ(1− 2ϵ)Γ(1 + 2ϵ)

Γ2(1− ϵ)Γ(1 + ϵ)

− Γ(−1− 2ϵ)Γ(1 + ϵ)

m2Γ(1− 2ϵ)
2F1(1, 1,

3

2
+ ϵ,

s

4m2
)

+

(−s
m2

)−ϵ
Γ2(1− ϵ)Γ(ϵ)

2m2Γ(1− 2ϵ)
2F1(1, 1− ϵ,

3

2
,
s

4m2
)

]
, (C.5)

where we recall that s = (p1+p2)
2 = 2m2+ ŝ+m4/ŝ. In the small mass limit m2 ≪ ŝ,

we expand Eq. (C.5) up to NNLP as

R(full)
∣∣∣
NNLP

=
i

(4π)2ŝ

{[
4ζ2 +

1

2
ln2
(
−m

2

ŝ

)]
− 2m2

ŝ

+

(
m2

ŝ

)2 [
1

2
+ 4ζ2 +

1

2
ln2
(
−m

2

ŝ

)]}
+O (ϵ) . (C.6)

This expansion can now be compared to the region expansion of Eq. (C.1).

C.2. Analytic regulator

As this is the regulator used throughout the main body of this thesis, we first discuss
the analytic regulator, which is implemented by raising the last propagator to a
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fractional power ν such that Eq. (C.1) is rewritten as [161]

R(a.r.) =

∫
[dk]

1

[k2 −m2]

1

[(k + p1)2]

(
µ̃2
)ν

[(k − p2)2]1+ν
. (C.7)

For simplicity, we only consider the LP contribution in the remainder of this appendix.
The hard contribution is given by

R(a.r.)
∣∣∣
h
=

∫
[dk]

1

[k2]

1

[k2 + k−p+1 ]

(
µ̃2
)ν

[k2 − k+p−2 ]
1+ν

=
i

(4π)2ŝ

(
µ2

−ŝ

)ϵ [
1

ϵ2
− ζ2

2
+O(ϵ, ν)

]
. (C.8)

We note there is no rapidity divergence in the hard region, so we can safely set ν = 0

either at the beginning or at the end of the calculation. In the collinear region, we
have

R(a.r.)
∣∣∣
c
=

∫
[dk]

1

[k2 −m2]

1

[(k + p1)2]

(
µ̃2
)ν

[−k+p−2 ]1+ν

=
ieϵγE

(4π)2ŝ

(
µ2

m2

)ϵ(
µ̃2

ŝ

)ν

Γ(ϵ)

∫ 1

0

dxx−1−ν(1− x)−2ϵ . (C.9)

Comparing to Eq. (C.3) we explicitly see how the power ν regulates the rapidity
divergence in a similar manner as how ϵ regulates the IR and UV divergences in
Eq. (C.4). Carrying out the integral over x yields

R(a.r.)
∣∣∣
c
=

i

(4π)2ŝ

(
µ2

m2

)ϵ(
µ̃2

ŝ

)ν [
− 1

ϵ ν
+ 2ζ2 +O(ϵ, ν)

]
. (C.10)

Similarly, after expanding Eq. (C.7) in the anti-collinear region, we obtain

R(a.r.)
∣∣∣
c̄
=

∫
[dk]

1

[k2 −m2]

1

[k−p+1 ]

(
µ̃2
)ν

[(k − p2)2]1+ν

=
i

(4π)2ŝ

(
µ2

m2

)ϵ(
µ̃2

−m2

)ν [
− 1

ϵ2
+

1

ϵ ν
+

5ζ2
2

+O(ϵ, ν)

]
. (C.11)

Note that the symmetry of the collinear and anti-collinear region gets broken due to
the fact that we added the analytic regulator to the last propagator only.2 Here, we
remark that the natural overall scales for a hard or collinear loop are (µ2/(−ŝ))ϵ and
(µ2/m2)ϵ respectively. However, with the analytic regulator, we get slightly different

2This is similar to diagram (e) as is discussed in Sec. 7.2.2: adding a power ν in a symmetric way,
i.e. to both the second and third propagator, does not regulate the rapidity divergences.



Rapidity regulators 245

overall factors (µ̃2/ŝ)ν and (µ̃2/(−m2))ν , see Eqs. (C.10) and (C.11) respectively. This
is an effect of the usual Wick rotation to Euclidean space, which produces an additional
factor (−1)ν .

Other regions do not contribute. For example, the semi-hard region leads to a
scaleless integral and thus a vanishing contribution

R(a.r.)
∣∣∣
sh

=

∫
[dk]

1

[k2 −m2]

1

[k−p+1 ]

(
µ̃2
)ν

[−k+p−2 ]1+ν
= 0. (C.12)

Now, after combining all contributing regions we find that

R(a.r.)
∣∣∣
LP

= R(a.r.)
∣∣∣
h
+R(a.r.)

∣∣∣
c
+R(a.r.)

∣∣∣
c̄

=
i

(4π)2ŝ

[
4ζ2 +

1

2
ln2
(
−m

2

ŝ

)]
+O (ϵ) , (C.13)

which is the same as the LP result in Eq. (C.6) and we notice that all rapidity
divergences have cancelled in the final result, as they should.

C.3. Modified analytic regulator

Instead of raising the power of a propagator by ν, the analytic regulator can also be
used to modify the phase space measure as [164]∫

ddk δ
(
k2
)
θ
(
k0
)

→
∫
ddk δ

(
k2
)
θ
(
k0
)( µ̃

k−

)ν

. (C.14)

Here the amplitude itself does not need to be modified. This has the advantage that
fundamental properties such as gauge invariance and the eikonal form of the soft
and collinear emissions are maintained. The modified analytic regulator is therefore
convenient to construct factorization theorems to all orders. To this end, we can
modify the measure [dk] as follows [191]∫

[dk] →
∫
[dk]

(
µ̃2

−k+p−2 + i0+

)ν

, (C.15)

and define

R(m.a.r.) =

∫
[dk]

1

[k2 −m2]

1

[(k + p1)2]

1

[(k − p2)2]

(
µ̃2

−k+p−2 + i0+

)ν

. (C.16)
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Note that the chosen regulator on the right hand side of Eq. (C.15) leads to R(m.a.r.)|h =

R(a.r.)|h, R(m.a.r.)|c = R(a.r.)|c and R(m.a.r.)|sh = R(a.r.)|sh. After a direct calculation
of R(m.a.r.)

c̄ , we have

R(m.a.r.)
∣∣∣
c̄
=

∫
[dk]

1

[k2 −m2]

1

[k−p+1 ]

1

[(k − p2)2]

(µ̃)
2

[−k+p−2 ]ν
(C.17)

=
ieϵγE

(4π)2ŝ

(
µ2

m2

)ϵ(
µ̃2

−m2

)ν [
Γ(ϵ)

ν
− Γ(ϵ) (ψ(1− 2ϵ)− ψ(ϵ)) +O(ν)

]
.

Comparing R(m.a.r.)|c̄ with R(a.r.)|′c̄, we find that

R(m.a.r.)
∣∣∣
c̄
−R(a.r.)

∣∣∣
c̄
= O(ν). (C.18)

which means that this regulator is also sufficient to reproduce the result of Eq. (C.6).

C.4. δ-regulator

The final regulator we want to discuss is the so-called δ-regulator [192]. It is imple-
mented by adding a small mass to the propagator denominators,

R(δ) =

∫
[dk]

1

[k2 −m2 − δ1]

1

[(k + p1)2]− δ2]

1

[(k − p2)2 − δ3]]
. (C.19)

The δi are regulator parameters that are set to zero unless they are needed to regulate
any divergences. Following the discussion below Eq. (C.2), we see that we can
immediately put δ1 = 0 from the beginning as Eq. (C.2) is divergent for all M ≠ 0.
This means that the rapidity divergences have to be regulated by δ2 and/or δ3.

We recall from Sec. C.2 that the hard region is free of rapidity divergences, so δ2
and δ3 can be set to zero in this region as well, which reproduces Eq. (C.8)

R(δ)
∣∣∣
h
=

i

(4π)2ŝ

(
µ2

−ŝ

)ϵ [
1

ϵ2
− ζ2

2
+O(ϵ)

]
. (C.20)

Next, we consider the collinear expansion

R(δ)
∣∣∣
c
=

∫
[dk]

1

[k2 −m2]

1

[(k + p1)2 − δ2]

1

[−k+p−2 − δ3]

=
iµ2ϵeϵγE

(4π)2
Γ(ϵ)

ŝ

∫ 1

0

dx (x− δ3/ŝ)
−1 (

m2(1− x)2 + δ2x
)−ϵ

. (C.21)
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Comparing Eq. (C.21) to Eq. (C.3) we see that δ3 regulates the rapidity divergence in
the remaining x-integral. Furthermore, we notice that δ2 is not needed to regulate the
divergence and can therefore be set to zero. Carrying out the remaining x-integral
and performing the ϵ-expansion yields

R(δ)
∣∣∣
c
=

i

(4π)2ŝ

(
µ2

m2

)ϵ[
1

ϵ
ln
(
1− ŝ

δ3

)
+ 2Li2

( 1

1− δ3/ŝ

)
+O(ϵ)

]
. (C.22)

Similarly for the anti-collinear region we now need to keep δ2 to regulate the rapidity
divergence and can set δ3 = 0. This yields

R(δ)
∣∣∣
c̄
=

∫
[dk]

1

[k2 −m2]

1

[k−p+1 − δ2]

1

[(k − p2)2]
= R(δ)

∣∣∣
c
(δ2 ↔ δ3) . (C.23)

Next, we take the semi-hard expansion, where both δ2 and δ3 need to be kept to
regulate the rapidity divergences. Because of the mass-like terms δ2 and δ3, this does
not lead to a scaleless integral like for the analytic regulator, Eq. (C.12). We get

R(δ)
∣∣∣
sh

=

∫
[dk]

1

[k2 −m2]

1

[k−p+1 − δ2]

1

[−k+p−2 − δ3]
(C.24)

=
i

(4π)2ŝ

(
µ2

m2

)ϵ [
1

ϵ2
+

1

ϵ
ln

(
−m

2ŝ

δ2δ3

)
+
ζ2
2

− Li2
(
1 +

δ2δ3
m2ŝ

)
+O(ϵ)

]
,

where we performed the ϵ-expansion.

Unfortunately, taking the h, c, c̄ and sh regions together does not reproduce
the LP part of the full result as given in Eq. (C.6) and in particular, the rapidity
divergences are not canceled. The reason is that the semi-hard region has overlap
with the collinear and anti-collinear regions. To be precise, taking the soft limit of the
collinear region, Eq. (C.21) yields

R(δ)
∣∣∣
c,∅

=

∫
[dk]

1

[k2 −m2]

1

[k−p+1 − δ2]

1

[−k+p−2 − δ3]
= R(δ)

∣∣∣
sh
, (C.25)

where we recognize the semi-hard region R(δ)|sh of Eq. (C.24). To get the full result,
we have to perform a so-called zero-bin subtraction where one subtracts the overlapping
semi-hard region from the collinear region. Similarly, for the anti-collinear region one
has to subtract

R(δ)
∣∣∣
c̄,∅

= R(δ)
∣∣∣
sh
. (C.26)
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Indeed, adding all regions together and including the zero-bin subtractions yields the
correct full result of Eq. (C.6)

R(δ)
∣∣∣
LP

=R(δ)
∣∣∣
h
+R(δ)

∣∣∣
c
+R(δ)

∣∣∣
c̄
−R(δ)

∣∣∣
sh

=
i

(4π)2ŝ

[
4ζ2 +

1

2
ln2
(
−m

2

ŝ

)]
+O (ϵ, δi) , (C.27)

where in the last line we were able to take the δ2 → 0 and δ3 → 0 limits as the rapidity
divergences cancel.

C.5. Choosing a rapidity regulator

We found that all three regulators can be used to regulate the rapidity divergence that
shows up in the region expansion of the Feynman integral of Eq. (C.1). However, from
a calculation point of view, the δ-regulator given in Sec. C.4 is the most complicated
one as it leads to additional scales in the integral. Furthermore, it introduces an
additional semi-hard region compared to the analytic and modified analytic regulators
as discussed in Secs. C.2 and C.3. Regarding the δ-regulator, we showed that a
zero-bin subtraction was necessary to avoid double counting momentum regions, which
complicated the region analysis even further.

The analytic regulator and the modified analytic regulator are similar to each
other. Neither of them increase the number of scales present in the Feynman integral
and in case of the example discussed in this appendix, both lead to the same regions.
With the specific choice we made for the analytic and modified analytic regulator, the
only difference between the two at the integrand level comes from the anti-collinear
region, Eq. (C.17). As a result, due to the additional propagator, the calculation of
R(m.a.r.)|c̄ is more complex than R(a.r.)|c̄. This additional complexity that arises from
the modified analytic regulator would make the two-loop calculation of the form factor
much more difficult as compared to when one would adopt the analytic regulator
instead. In this thesis, we therefore used the analytic regulator whenever rapidity
divergences showed up.



Appendix D.

Regions in topology X

As discussed in detail in Sec. 7.2, finding all momentum regions for a given Feynman
integral can be a subtle process. To supplement the discussion given in Sec. 7.2, we
provide in this appendix some details about the momentum region analysis for one
of the Feynman integrals needed in the calculation of diagram (h), which belongs to
topology X. Topology X in particular is difficult because of the complexity of the
integrals - we needed two different rapidity regulators and had to route the momenta
in three different ways in order to find all regions. The example we consider is
Iν1,ν1,ν2,ν2

X;1,1,1,1,1,1,0, which according to the momentum routing given in Eq. (7.3) reads

IX =
1

C
Iν1,ν1,ν2,ν2

X;1,1,1,1,1,1,0

=
1

C

∫
[dk1][dk2]

1

k21

1

k22

µ̃2ν1
1

[(k2 − p1)2 −m2]1+ν1

µ̃2ν1
1

[(k1 + k2 − p1)2 −m2]1+ν1

× µ̃2ν2
2

[(k1 + p2)2 −m2]1+ν2

µ̃2ν2
2

[(k1 + k2 + p2)2 −m2]1+ν2
, (D.1)

where for convenience we factored out

C =
1

(4π)4ŝ2
. (D.2)

As discussed in Sec. 7.2.3, both regulators ν1 and ν2 are needed to regulate the rapidity
divergences once IX is expanded in different momentum regions. The full unexpanded
integral on the contrary is free of rapidity divergences and therefore ν1 and ν2 can be
set to zero, and the result can be found in Ref. [132, 170]. In order to compare with
the momentum region approach, we expand the full result in the small mass limit up
to NLP:

IX
full

∣∣∣
NLP

=

(
µ2

m2

)2ϵ [
−1

ϵ

(
1

3
L3 + ζ2L+ ζ3

)
− 1

2
L4 + ζ2L

2 − ζ3L− 37ζ22
10

−m
2

ŝ

(
4L2 − 8L+ 4ζ2

)
+O (ϵ)

]
, (D.3)
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where we defined

L = ln

(
−m

2

ŝ

)
. (D.4)

In the remainder of this appendix we first present in App. D.1 all the momentum
regions which contribute to the full result of Eq. (D.3) up to NLP. In App. D.2, we
then compare these regions to the output of the software package Asy.m, which uses a
geometric approach to reveal all the relevant regions for a given Feynman integral in
parameter space. We finish this appendix with a discussion on a method that can be
used to find all regions in momentum space.

D.1. Regions in momentum space

As we have shown in Sec. 7.2.3, there are 12 regions needed for the integrals of
topology X.1 To cover all these regions in momentum space, the region expansion
given by the momentum routing of Eq. (7.3) is not sufficient, and one also needs to
consider the routings as given in Eqs. (7.9) and (7.10). In what follows, we will show
that indeed all three different momenta routings are needed in the region expansion of
IX , Eq. (D.1), to get all the 12 regions that make up the full result of Eq. (D.3).

We first present all the eight different momentum regions given by the first
parameterisation of topology X defined by Eq. (7.3). Up to NLP we get

IX
∣∣∣
hh

=

(
µ2

−ŝ

)2ϵ
[
− 1

ϵ4
+

6ζ2
ϵ2

+
83ζ3
3ϵ

+
177ζ22
10

+
m2

ŝ

(
−3

ϵ2
− 6

ϵ
+9ζ2+12

)]
(D.5)

IX
∣∣∣
cc
=

(
µ2

m2

)2ϵ(
µ̃2
2

ŝ

)2ν2
[

3

8ϵ4
− 1

2ϵ3ν2
+

21ζ2
8ϵ2

+
1

ϵ

(
6ζ3−

ζ2
2ν2

)
+

ζ3
3ν2

+
1177ζ22
80

+
m2

ŝ

(
1

ϵ

(
2

ν2
+ 7

)
− 14ζ2 +

10

ν2
+ 21

)]
(D.6)

IX
∣∣∣
c̄c
=

(
µ2

m2

)2ϵ(
µ̃2
1

−m2

)ν1
(
µ̃2
1

ŝ

)ν1
(

µ̃2
2

−m2

)ν2
(
µ̃2
2

ŝ

)ν2
[

1

4ϵ4
+

1

ϵ3

(
1

2ν2
+

1

2ν1

)
+

1

ϵ2

(
5ζ2
4

− 1

ν1ν2

)
+

1

ϵ

(
3ζ2
2ν1

+
3ζ2
2ν2

+
17ζ3
6

)
− ζ2
ν1ν2

+
14ζ3
3ν1

+
14ζ3
3ν2

+
279ζ22
40

+
m2

ŝ

(
1

ϵ

(
2

ν2
+

2

ν1
+ 4

)
− 4ζ2 +

2

ν1
+

2

ν2
− 4

)]
(D.7)

1Note that we can safely limit ourselves to the Feynman integrals with n7 ≤ 0 as only these are
needed in the computation of F1 and F2 for diagram (h).
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IX
∣∣∣
hc
=

(
µ2

−ŝ

)ϵ(
µ2

m2

)ϵ[
8

3ϵ4
− 8ζ2
ϵ2

− 316ζ3
9ϵ

− 158ζ22
5

+
m2

ŝ

(−4

3ϵ2
+

4

3ϵ
+4ζ2−

40

3

)]
(D.8)

IX
∣∣∣
c̄uc

=

(
µ2

m2

)ϵ(
µ2ŝ2

m6

)ϵ[ −1

24ϵ4
− 5ζ2
8ϵ2

− 7ζ3
18ϵ

− 493ζ22
80

+
m2

ŝ

(
1

3ϵ2
+

5

3ϵ
+5ζ2+

19

3

)]
(D.9)

Note that the LP of IX |hh can be found in [147, 193]. By symmetry, we have

IX
∣∣∣
c̄c̄

= IX
∣∣∣
cc
(ν1 ↔ ν2), IX

∣∣∣
c̄h

= IX
∣∣∣
hc
, and IX

∣∣∣
ucc

= IX
∣∣∣
c̄uc

. (D.10)

The second parameterisation of topology X, Eq. (7.9), gives two new regions: the
cc′-region and the c̄c̄′-region. By defining2

I ′X =
1

C
I ′

ν1,ν1,ν2,ν2

X;1,1,1,1,1,1,0 , (D.11)

the NLP results of these two new regions read

I ′X
∣∣∣
cc′

=

(
µ2

m2

)2ϵ(
µ̃2
1

−m2

)ν1
(
µ̃2
1

ŝ

)ν1
(

µ̃2
2

−m2

)2ν2
[
− 29

4ϵ4
+

1

ϵ3

(
3

ν2
+

1

2ν1

)
+

1

ϵ2

(
7ζ2
4

− 1

ν22

)
+

1

ϵ

(
ζ2
2ν1

+
83ζ3
6

)
− ζ2
ν22

− ζ3
3ν1

− 7ζ3
ν2

+
473ζ22
40

+
m2

ŝ

(
− 3

ϵ2
+

1

ϵ

(
− 2

ν1
− 14

)
− ζ2 −

10

ν1
− 2

ν2
− 42

)]
(D.12)

I ′X
∣∣∣
c̄c̄′

=

(
µ2

m2

)2ϵ(
µ̃2
2

−m2

)2ν1
(

µ̃2
1

−m2

)ν2
(
µ̃2
1

ŝ

)ν2
[
2

ϵ4
+

1

ϵ3

(
− 3

ν2
− 1

2ν1

)
+

1

ϵ2

(
3ζ2 +

1

ν1ν2
+

1

ν22

)
+

1

ϵ

(
−3ζ2
2ν1

− ζ2
ν2

+
41ζ3
3

)
+

ζ2
ν1ν2

+
ζ2
ν22

− 14ζ3
3ν1

+
2ζ3
ν2

+
59ζ22
10

+
m2

ŝ

(
4

ϵ2
+

1

ϵ

(
− 4

ν2
− 2

ν1
− 4

)
+ 2ζ2 −

2

ν1
− 10

ν2
+ 2

)]
. (D.13)

2Recall that the difference between I′X and IX only arises in the momentum region expansion.
The unexpanded integrals are the same.
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Finally, to get the full NLP result, two more regions are needed and can be found
using the third parametersisation. Recalling Eq. (7.10), we define

I ′′X =
1

C
I ′′

ν1,ν1,ν2,ν2

X;1,1,1,1,1,1,0 . (D.14)

These last two missing momentum regions are the ch′′ and c̄h′′ regions and their
expressions are given by

I ′′X
∣∣∣
ch′′

=

(
µ2

m2

)ϵ(
µ2

−ŝ

)ϵ
[
m2

ŝ

(
2

ϵ2
+ 2

)]
, (D.15)

and by symmetry

I ′′X
∣∣∣
c̄h

= I ′′X
∣∣∣
ch′′

. (D.16)

Note that the ch′′ and c̄h′′ regions do not contribute at LP.

For notational simplicity, we denote IX
∣∣
• as IX

• from now on. Combining all of
the above 12 regions, we obtain the result of the integral Eq. (D.1) up to NLP. That
is,

IX
hh + IX

cc + IX
c̄c̄ + IX

c̄c + IX
hc + IX

c̄h + IX
c̄uc + IX

ucc + I ′X
cc′ + I ′X

c̄c̄′ + I ′′X
ch′′ + I ′′X

c̄h′′

=

(
µ2

m2

)2ϵ [
−1

ϵ

(
1

3
L3 + ζ2L+ ζ3

)
− 1

2
L4 + ζ2L

2 − ζ3L− 37ζ22
10

−m
2

ŝ

(
4L2 − 8L+

4ζ2
3

)
+O(ν1, ν2, ϵ)

]
, (D.17)

which is the same as Eq. (D.3). We notice that all rapidity divergences have canceled.

D.2. Regions in parameter space

To find all the above 12 regions for IX , we can also use the Mathematica package
Asy.m [144, 145], which implements a geometric approach to reveal the relevant regions
for a given Feynman integral and a given limit of momenta and masses. The program
relies on the so-called alpha-representation of IX in Eq. (D.1), which can be written
in the following form

IX = C1

∫ ∞

0

[dy](y3y4)
ν1(y5y6)

ν2A3ϵ+2ν1+2ν2
3

(
m2A1−s12A2−iη

)−2−2ϵ−2ν1−2ν2
,

(D.18)
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where yi are the so-called alpha parameters and

[dy] =

6∏
i=1

dyiδ(1− y1 − y2 − y3 − y4 − y5 − y6) . (D.19)

For notational convenience, we defined

C1 =
ŝ2µ4ϵµ̃4ν1

1 µ̃4ν2
2 e2ϵγEe−2i(ν1+ν2)πΓ(2 + 2ϵ+ 2ν1 + 2ν2)

Γ2(1 + ν1)Γ2(1 + ν2)
, (D.20)

and

A1 =y4y5(y4 + y5) + y5y6(y5 + y6) + y23(y5 + y6) + y1(y3 + y4)
2 + (y2 + y3)(y5 + y6)

2

+ y3y4(y4 + y5) + y3y4(y3 + y5) + y1y
2
6 + y2y

2
4 ,

A2 =y1y6(y3 + y4) + y4y6(y3 + y5) + y2y4(y5 + y6) ,

A3 =y5(y4 + y6) + (y2 + y3)(y4 + y5 + y6) + y1(y2 + y3 + y4 + y6) . (D.21)

The package Asy.m formulates the expansion by regions of a Feynman integral by
studying the scaling of each alpha-parameter yi, as opposed to the method used in
this thesis where we defined the regions by studying the scaling behaviour of loop
momentum components. The two methods are closely related, as the scaling of each
parameter yi corresponds directly to the scale of the i-th denominator factor of the
original Feynman integral. To find the possible scalings of the parameters yi that lead
to non-vanishing integrals, Asy.m uses a geometrical method based on convex hulls
[144]. Using the package Asy.m for IX , we get 12 regions listed as

R =
(
{0, 0, 0, 0, 0, 0}, {0, 0, 0, 0, 2, 2}, {0, 0, 2, 2, 0, 0}, {0, 0, 0, 2, 0, 2}, {0,−4,−2, 2, 0, 0},
{0, 4, 4, 4, 2, 6}, {0,−2,−2, 0,−2,−2}, {0, 2, 0, 0, 0, 2}, {0, 0, 0,−2, 0, 0},
{0, 0, 0, 0, 0,−2}, {0,−2,−2, 0, 0, 0}, {0, 2, 2, 2, 0, 2}

)
. (D.22)

The j-th region of IX is now denoted by the vector Rj , which specifies the scales of
the alpha parameters. To be precise, one scales yi → yiλ

Ri
j with λ≪ 1 and expands

Eq. (D.18) around λ = 0. This yields the alpha representation of IX in the j-th region
which we denote as IX

j .

We have checked that the regions as listed by Asy.m lead to the same regions as we
found in momentum space and listed in App. D.1. For simplicity, we only calculated
the LP term of IX

j , except for IX
9 and IX

10 as these start at NLP. We find that IX
1 -IX

12

are the same as IX
hh, IX

cc , IX
c̄c̄ , IX

c̄c , IX
c̄uc, IX

uc̄c, I ′X
cc′ , I ′X

c̄c̄′ , I ′′X
ch′′ , I ′′X

c̄h′′ , IX
hc and IX

c̄h,
respectively.
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Figure D.1.: We show diagram (h) including labels for the vertices and propagators in
Fig. D.1a. The vertices α and β are shown in Figs. D.1b and D.1c with
possible momentum modes for each propagator when the loop momenta are
regarded as (anti-)collinear.

D.3. Finding regions in momentum space

We finish this appendix by presenting a method that can be used to find all the regions
in momentum space of a Feynman integral. In principle, we can use Asy.m to find the
scale of each propagator in a given region and then obtain the corresponding modes
of loop momenta. However, in our case, it is important to apply an independent
cross-check to find the regions in momentum space. To illustrate our method, we focus
again on the integral IX , Eq. (D.1), and use the collinear-type region – which means
the loop momenta k1 and k2 are both collinear or anti-collinear – as an example.

Regardless of whether we perform expansion by region or not, the momentum
flowing into a vertex of a Feynman diagram is conserved. We can use this fact to
constrain the possible scales of the propagators connected to the same vertex. To
make this precise, we labeled the vertices and propagators of IX in Fig. D.1a. Vertex
α, shown again in Fig. D.1b, includes three lines with one of them being the external
fermion line with momentum p1 which is regarded as the collinear momentum. At
present, we only focus on the collinear-type regions such that the momentum of
one of the remaining two lines should be collinear or anti-collinear. By momentum
conservation, the momentum of the third line is now fixed. That is, if the photon line –
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labeled by 2 – has momentum with collinear scaling, then by momentum conservation
the fermion line – labeled by 3 – has also collinear momentum. However, if the photon
line has anti-collinear scaling, then the momentum of the fermion line should be
hard.3 The only case left for the collinear-type region is when the fermion line has
anti-collinear scaling, which leads to a hard momentum scaling for the photon line. In
Fig. D.1c, all possibilities are listed for vertex β, which attaches to the fermion line
with momentum p2, regarded as the anti-collinear momentum.

We notice that once we determine the modes of the momenta that flow into the
vertices α and β, the momentum scaling of every line in the diagram can be extracted.4

As discussed above, the momenta of the lines labelled 2 and 3 can have the modes cc,
c̄h and hc̄ and the momenta of the lines labelled 1 and 5 can have modes c̄c̄, ch and
hc. Naively, we have 9 different configurations after considering these two vertices.
We divide these 9 configurations into 3 categories, which are given by

Rc
1 = (c̄ccc̄, c̄c̄hc̄, ccch, cc̄hh) ,

Rc
2 = (c̄hc̄c̄, hccc, hhc̄c) ,

Rc
3 = (chc̄h, hc̄hc) . (D.23)

Each configuration, e.g. c̄ccc̄ in Rc
1, represents the momentum modes of the lines

labelled 1, 2, 3 and 5 respectively. Note that the regions determined by the configura-
tions in Rc

1 can be given using the definition of Eq. (7.3), while those in Rc
2 can be given

using Eq. (7.9). We did not show the definitions of the propagators that can be used to
give the configurations in Rc

3. The reason is that these two configurations in Rc
3 only

give scaleless integrals and hence do not contribute. It is also straightforward to check
that the integrals in both configurations cc̄hh and hhc̄c are scaleless. Finally, we find
5 contributing configurations, c̄ccc̄, c̄c̄hc̄, ccch, c̄hc̄c̄ and hccc which indeed correspond
to the c̄c, c̄c̄, cc, c̄c̄′ and cc′ regions given in Sec. 7.3.3, respectively. In principle, one
can also choose vertices α and µ or β and µ to analyze the possible collinear-type
regions in topology X. However, we did not find any additional collinear-type regions
that contributed up to NLP. The other regions in topology X, where the loop momenta
have hard or ultra-(anti-)collinear scaling, can be found following a similar procedure.

3Notice that hard here and h in the following refer to the scaling
√
ŝ(λ0, λ0, λ1) as it is the sum of

collinear, which scales as
√
ŝ(λ0, λ2, λ1), and anti-collinear, which scales as

√
ŝ(λ2, λ0, λ1). This

is slightly different compared to the hard mode defined in Eq. (6.35).
4In fact, one can also pick the vertices α and µ or β and µ.
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Samenvatting

Fundamentele natuurkunde richt zich op het begrijpen van de fundamentele wetten
van de natuur. Binnen de deeltjesfysica heeft deze zoektocht geleid tot een krachtige
theorie, genaamd het Standaardmodel. Dit model beschrijft de kleinste deeltjes
van materie – bekend als elementaire deeltjes – die alles om ons heen vormen, van
atomen tot sterrenstelsels. Het Standaardmodel is meer dan alleen een opsomming
van deeltjes; het verklaart ook hoe deze deeltjes met elkaar interacteren. Het maken
van voorspellingen op basis van deze interacties is echter buitengewoon complex.

Om dit te vereenvoudigen, gebruiken natuurkundigen een methode genaamd
storingsrekening – ook wel perturbatietheorie genoemd. Deze methode begint met een
eenvoudiger systeem en voegt kleine correcties toe om complexere interacties mee te
nemen. Deze correcties vormen een reeks waarmee voorspellingen steeds nauwkeuriger
kunnen worden gemaakt.

Ondanks het succes van storingsrekening in de natuurkunde, heeft deze methode
een groot probleem: het leidt vaak tot wiskundige oneindigheden die voorspellingen
onmogelijk maken. Een van deze problemen, bekend als ultraviolet-oneindigheden,
wordt aangepakt via een proces genaamd renormalisatie. Dit proces verwijdert de
oneindigheden door de parameters van de onderliggende theorie aan te passen. Maar
zelfs na renormalisatie groeit de storingsreeks op een manier die het verkrijgen van
nauwkeurige resultaten bemoeilijkt. De reeks gaat zich gedragen als een divergente,
asymptotische reeks, waarbij de eerste termen de nauwkeurigheid verbeteren, maar
latere termen de nauwkeurigheid juist weer verminderen.

Dit probleem betekent niet dat storingsrekening nutteloos is. Wiskundigen hebben
een methode ontwikkeld genaamd resurgence, waarmee dergelijke asymptotische reeksen
kunnen worden omgezet in zinvolle functies. Resurgence laat zien dat de storingsreeks
alleen niet genoeg is, er ontbreken zogenoemde niet-perturbatieve effecten. Dit zijn
effecten die niet beschreven kunnen worden door de gebruikelijke storingsreeks, maar
wel cruciale informatie over het systeem bevatten.

In het eerste deel van dit proefschrift, hoofdstuk 2-5, onderzoeken we zowel formele
aspecten van resurgence als ook de praktische toepassingen ervan: renormalons.
Renormalons zijn niet-perturbatieve effecten die voorkomen in theorieën zoals het
Standaardmodel en worden vaak power corrections genoemd.

Om te beginnen, in hoofdstuk 2 en 3, bestuderen we zogenoemde grote-orde-relaties
met behulp van resurgence. Deze grote-orde-relaties laten zien hoe in de divergente
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storingsreeks niet-perturbatieve effecten verborgen zitten. Bovendien laten we zien
hoe deze niet-perturbative effecten uit de storingsreeks gedestilleerd kunnen worden.
Dit maakt het een belangrijk hulpmiddel voor natuurkundigen, aangezien zij vaak
alleen een directe manier hebben om de storingsreeks te berekenen, en geen andere
eenvoudige manier voor de niet-perturbatieve effecten.

In hoofdstuk 4 en 5 passen we deze methoden vervolgens toe om renormalons te
bestuderen. Met behulp van resurgence kunnen we de berekeningen van renormalon
effecten – effecten die vaak worden genegeerd – vereenvoudigen. We passen deze
technieken toe op de Adler-functie – een belangrijke functie in de deeltjesfysica – en
onderzoeken hoe renormalons hierop van invloed zijn. Door resurgence methoden te
gebruiken, kunnen we een nauwkeurige formule opstellen die deze niet-perturbatieve
renormalon effecten beschrijft.

In het tweede deel van dit proefschrift verschuift de focus naar een ander type power
correction door gebruik te maken van factorisatie. Factorisatie is een methode die een
complex proces – waarbij verschillende fysische schalen betrokken zijn – opsplitst in
eenvoudigere delen, die van een enkele schaal afhangen en afzonderlijk kunnen worden
berekend. Deze techniek is cruciaal voor het begrijpen van het gedrag van deeltjes in
hoogenergetische botsingen, zoals die in deeltjesversnellers.

In hoofdstuk 6-8 passen we factorisatie toe op een verstrooiingsproces waarbij een
foton vervalt in twee deeltjes met een relatief kleine massa. Met behulp van een techniek
genaamd expansie in momentumregio’s laten we zien hoe de factorisatieformule voor
dit proces op verschillende niveaus van precisie kan worden geverifieerd. Op leidende
orde van precisie, ook wel de leading power correctie genoemd, laten we zien hoe de
berekening van deze correcties kan worden opgesplitst in een procesafhankelijk deel,
het zogenoemde harde deel, en in universele functies genaamd jet functies. Het harde
deel in factorisatie beschrijft de interactie op korte afstand waarbij de fundamentele
deeltjes met elkaar botsen. Een jet functie beschrijft hoe een hoogenergetisch deeltje,
geproduceerd in een botsing, zich ontwikkelt tot een smalle bundel van deeltjes, een
jet. Omdat jet functies universeel zijn, kunnen ze in veel verschillende berekeningen
opnieuw worden gebruikt en hoeven ze slechts één keer te worden uitgerekend. Om de
precisie verder te verhogen, onderzoeken we ook de next-to-leading power correcties.
In het bijzonder laten we zien hoe nieuwe jet functies kunnen worden gedefinieerd om
deze next-to-leading power correcties nauwkeurig te beschrijven.

Kort samengevat gaat het onderzoek gepresenteerd in dit proefschrift over het
concept van "power corrections" – vandaar de titel van deze thesis – die ons kunnen
helpen de interacties tussen elementaire deeltjes beter te begrijpen en bovendien
nauwkeuriger te beschrijven. Dit gebeurt vanuit twee invalshoeken. Allereerst kijken
we naar power correcties die voortkomen uit niet-perturbatieve effecten, zoals in het
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geval van renormalons. Vervolgens bestuderen we power correcties in berekeningen
waarbij meerdere fysische schalen betrokken zijn. Deze twee onderwerpen worden
respectievelijk benaderd met behulp van de methoden van resurgence en factorisatie.



Summary

Fundamental physics focuses on understanding the fundamental laws of nature, and
in the realm of particle physics, this quest has led to a powerful theory called the
Standard Model. This model describes the smallest particles of matter – known as
elementary particles – which make up everything around us, from atoms to galaxies.
The Standard Model does more than list particles; it also explains how these particles
interact. However, making predictions based on these interactions is extremely complex.

To make things easier, physicists use a method called perturbation theory, which
simplifies the problem by starting with a simpler system and adding small corrections
to account for more complex interactions. These corrections form a series that allows
predictions to be made more precisely.

Despite its success in all areas of physics, perturbation theory faces a significant
problem: it often leads to mathematical infinities that make predictions impossible.
One of these issues, known as ultraviolet infinities, is handled through a process called
renormalization. This process removes the infinities by adjusting the parameters of
the underlying theory. However, even after renormalization, the mathematical series
still grows out of control in a way that makes it difficult to get accurate results. The
series begins to behave like a divergent, asymptotic series, where early terms improve
the accuracy, but later terms on the other hand worsen the accuracy.

This challenge does not mean that perturbation theory is useless. In fact, mathe-
maticians have developed a way to turn these divergent series into meaningful functions
through a method called resurgence. Resurgence indicates that the perturbative series
is not enough, there are non-perturbative effects missing. These effects cannot be
described by the usual perturbative series, but can provide crucial information about
the system.

In the first part of this thesis, chapters 2-5, we explore formal aspects of resur-
gence as well as one of the more practical applications of resurgence: renormalons.
Renormalons are non-perturbative effects that appear in theories like the Standard
Model and are often referred to as power corrections.

First, in chapters 2 and 3, we study so-called large-order relations with resur-
gence. These large-order relations show how in the divergent perturbative series,
non-perturbative effects are hidden. In particular, we show how these non-perturbative
effects can be obtained using the perturbative series alone. This makes it a valuable
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tool for physicists, as they often only have a way to calculate the perturbative series,
and no direct simple way to calculate the non-perturbative effects.

Then, these methods are applied to study renormalons in chapters 4 and 5. Using
resurgence, we are able to simplify how we calculate renormalon effects, which are
parts of calculations that often get ignored. We apply these techniques to the Adler
function, a key quantity in particle physics, and look at how renormalons affect it. By
using resurgence methods, we are able to build an accurate formula that describes
these non-perturbative renormalon effects.

The second part of the thesis shifts focus to another type of power correction in
particle physics using factorization. Factorization is a method that separates a complex
process – in which multiple physical scales are involved – into simpler parts, each of
which depend on a single scale and can be calculated independently. This technique is
crucial for understanding the behavior of particles in high-energy collisions, such as
those in particle accelerators.

In chapters 6-8, we apply factorization to the study of a scattering process in which
a photon decays into a pair of particles with a relatively small mass. Using a tool called
expansion by momentum regions, we show how the factorization formula for this process
can be verified at different levels of precision. At leading order of precission, also
called the leading power correction, we show how the calculation of these corrections
can be factorized into a process dependent part, the so-called hard part, and into
universal functions called jet functions. The hard part in factorization represents the
short-distance, high-energy interaction where the fundamental particles scatter off
each other. A jet function describes how a highly energetic particle, produced in a
collision, transforms into a narrow spray of particles called a jet. Furthermore, being
universal, the jet functions can be reused for many different processes and therefore
only need to be calculated once. To go even further, and increase the precision, we
also explore the next-to-leading power corrections. In particular, we show how new jet
functions can be defined to accurately describe the next-to-leading power corrections.

In summary, this thesis explores the idea of "power corrections" – hence the title
of this thesis – which help in our understanding of particle interactions and describe
their behavior more accurately. First, it delves into power corrections that come from
non-perturbative effects, like renormalons, and second, it examines power corrections
in calculations that involve multiple physical scales. These two topics are approached
using methods known as resurgence and factorization respectively.
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